AAAAAAAAA

VRIJE UNIVERSITEIT

FastLanes: A Next-Gen File Format

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor
aan de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. J.J.G. Geurts,
volgens besluit van de decaan
van de Faculteit der Bétawetenschappen
in het openbaar te verdedigen
op vrijdag 9 januari 2026 om 13.45 uur

in de universiteit

door

Azim Afroozeh

geboren te Yazd, Iran

promotor:

copromotor:

promotiecommissie:

prof.dr. P. Boncz

dr. H. Miihleisen

dr. P. Toziin

prof.dr. D. Lemire

prof.dr. V. Leis

prof.dr. J.R. van Ossenbruggen
dr. J. Urbani

11(¢¢

SIKS Dissertation Series No. 2026-06
The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

DOI: 10.5463/thesis.1348

Copyright © 2026 Azim Afroozeh

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without the prior written permission of the author.

DECLARATION OF AUTHORSHIP

I, Azim Afroozeh, hereby declare that the thesis titled “FastLanes: A Next-Gen File Format”
and its content are the result of my own work.
I confirm that:

* This work was primarily conducted during my pursuit of a research degree at these
universities.

 If any portion of this thesis has been previously submitted for an academic degree or
any other qualification at these universities or any other educational institution, I have
explicitly disclosed this information.

* I have consistently acknowledged the sources of published works by other authors that
I consulted.

¢ In cases where I have included excerpts from the work of others, I have consistently
provided proper source attributions. Aside from these quotations, the entirety of this
thesis represents my independent effort.

» T have acknowledged all significant sources of assistance.

¢ In cases where this thesis draws upon collaborative efforts with others, I have provided
a clear distinction between the contributions made by collaborators and my own
individual contributions.

17 November 2025

To My Mother, Nane Goli,
To My Father, Baba Goli,
To My Love, Jasmin Goli

ix

Everything that happens is a chance to move forward, to grow, to improve.

Ryan Holiday

Xiii

CONTENTS

Acknowledgments xvii
1 Introduction 1
1.1 Research Questions and Contributions 4

1.2 Thesis Outline & Publications 8

2 Data Parallelized Encodings 11
2.1 introduction L. Lo L Lo e e 11
2.1.1 Challenges and Contributions. 12

2.1.2 Outline. e 14

22 Fastlanes Lo 16
22.1 Many SIMDwidths Lo 16

2.2.2 Heterogeneous ISAs 17

2.2.3 Dealing with Sequential Data Dependencies 19

2.2.4 The Unified Transposed Layout. 23

23 Evaluation oL e 29
2.3.1 Micro-benchmarks L. 29

2.3.2 End-to-End Query Performance 31

24 relatedwork 34
2.5 conclusionand futurework. 39

3 ALP: Adaptive Lossless Floating-Point Compression 41
3.1 Introduction Lo e 42
3.2 Datasets Analysis. 44
3.2.1 IEEE 754 Doubles Representation 44

322 Datasets e e 45

3.2.3 Dataset Semanticso e 45

324 DataSimilarity. 45

3.2.5 Representing Doubles as Integers. 47

3.2.6 Unexploited Opportunities 49

33 ALP . . . e 53
331 Compression. 53

332 Adaptive Sampling 55

3.3.3 Decompression. e e e e e e 55

3.3.4 ALP,;: Compression for Real Doubles 56

34 Evaluation 57
34.1 CompressionRatio. 58

34.2 [De]compression Speed L 59

3.4.3 End-to-End Query Performance 63

3.4.4 Single Precision and Machine Learning Data 65

Xiv CONTENTS

35 RelatedWork.o 66
3.6 Discussion e e e 67
377 Conclusions 68
4 Data-Parallelized Encodings on GPU 71
4.1 Introduction 72
42 Background 74
4.2.1 GPUProgramming. e 74

4.2.2 Lightweight Compression using FastLanes 75

43 RelatedWork. 77
44 FastLanesonGPU 79
4.4.1 Initial Implementation 79

442 Micro-benchmarks 79

4.5 FastLanesonCrystal Lo Lo 84
45.1 FLS-GPU-opt 87

452 Discussion e e e e 89

4.6 Conclusions and Futurework. 90
46.1 Futureworko 91

5 Rethinking Light-weight Encodings for GPUs 93
5.1 Introduction 93
52 GPU e 95
53 G-ALP. e 97
54 Evaluation 100
54.1 MicroBenchmarks. 100

5.4.2 End-to-End Benchmarks 101

5.5 Related Work. 104
56 Conclusion. e 104
57 Futurework 105
6 FastLanes File Format 107
6.1 Introduction 107
6.1.1 Designldeaso 108

6.1.2 The FastLanes File Format 110

6.2 ExpressionEncoding. 111
6.2.1 Expression Operators. 111

6.2.2 FastLanes Expression Notation 115

6.2.3 Expression Detection. 115

6.3 FastLanes File Format 118
6.4 Evaluation 121
6.5 Related Work. 126
6.5.1 BtrBlocks 126

6.5.2 Encoding/Compression. 127

6.6 Discussion e 128

6.7 conclusion e e 129

CONTENTS XV

7 Conclusion & Future Work 131
7.1 Contributions. 131
72 Future Work e 137
Bibliography 141
Glossary 160
List of Publications 161

SIKS Dissertation Series 163

Xvii

ACKNOWLEDGMENTS

Peter: My first and foremost thanks go to Peter. Simply put, FastLanes would not have
been possible without him. I would like to thank Peter for being so generous in sharing his
knowledge, ideas, and time—whether after 12 PM, on weekends, during holidays, or
whenever I needed support. It felt amazing to have someone so consistently present for my
research. I learned a lot from Peter on many levels—both academic and personal—and I will
always be grateful to him.

I would also like to thank him for leading the CWI Database Group in a way that gave all of
us—and me personally—the opportunity to work on meaningful projects, the kind that can
genuinely make data processing more efficient and, hopefully, in some way, improve
people’s lives. Finally, thank you for giving me the opportunity—a postdoc position at
CWI—to further advance and promote FastLanes.

Daniel: I would like to thank my roommate, Daniel. It is because of Daniel that I connected
with the group, saw myself as part of it, and truly experienced what it meant to be part of
CWIL. I can’t think of a single day in the office when we didn’t laugh. Thank you for teaching
me Dutch language and culture, and for listening to me during tough times. You are the best
office mate I could ask for.

CWI: I would also like to thank everyone at CWI for making me feel so welcome and happy
during my time there. Special thanks to Laurens for being such a kind and cheerful
roommate—short but sweet! Thanks to Stefan for always being helpful and full of guidance.
I’'m grateful to everyone who contributed to the CWI group atmosphere: Dean, Tim, Gabor,
Hannes, Mark, Ilaria, Pedro, Madelon, Matheus, Nantia, Orson, Diego, Yimming, Simei,
Florian, Thijs (WebGPU expert), Thijs, Connor, and Stefano. I truly felt at home at CWI.
My Students: I want to thank the students I had the pleasure of supervising—they played a
significant role in the FastLanes journey.

Leonardo: Together with Peter and Lonardo, we created ALP and submitted a paper to
SIGMOD in less than two months. More than this major achievement, I enjoyed every
second of working with him—and the best possible outcome is that I now have a true friend.
Sharing a room with him makes L.324 the happiest place on Earth.

Thomas: Thomas created C3 and significantly contributed to FastLanes, especially in
handling multiple columns. We also had a lot of fun, particularly on our trip to Texel.
Ziya: A brilliant C++ developer and an algorithm genius. Thanks to him, we now have the
RealNest benchmark suite, which involved substantial work and thanks to him we know how
to compress nested data efficiently.

Raufs: Thanks to Raufs, we learned how to handle predicate pushdown in FastLanes. He is
one of the kindest people I've ever met, and we’ve shared many great moments—especially
playing table tennis.

Sven: The true GPU expert. I thoroughly enjoyed working with him, always laughing at
how the GPU works. He made a significant contribution in helping FastLanes find its way to
GPU processing.

XViii ACKNOWLEDGMENTS

Sebastiaan: My newest student, and without a doubt one of the most positive and
enthusiastic people I’'ve worked with. I truly enjoy collaborating with him and am confident
he will do just as great as my other students.

Paul: Thank you for making 1.324 an even happier place. We laughed a lot together, and
I’'m happy to see you’ve already surpassed my Dutch level!

Lotte: Thank you for your help with Dutch pronunciation and for our collaboration on GPU.
I really enjoyed working with you, and our early efforts significantly contributed to the GPU
side of FastLanes.

Reza: I am always grateful for the trip and the conversations we had over the course of
almost a month during the most critical part of my PhD. They helped me get through it.
Anastasia and Nadezhda: I would like to thank you for your support throughout my
PhD—especially for the headphone, which I used every single day of my PhD.

My Parents: I would like to thank my parents with all my heart. It is because of your
sacrifices that I had the opportunity to move to Amsterdam—to study, to live, and to work on
something I truly love. Thank you for all the support you gave me—every night through our
Skype calls, and throughout my PhD journey. It is very hard to put into words how much I
owe you. You are the best Mom and Dad I could ask for. I hope you are proud of me.

Ali: My big brother—thank you. Because of you, I never felt like I had moved to a new
country. Your constant support made it feel like home. I’'m especially grateful for all your
help during my Master’s thesis, which eventually led to my position at CWI. And thank you
for standing by me through the toughest times during my PhD. You are the best brother
anyone could ask for.

Amir: Thank you for paying my tuition fees and supporting me at such a critical time. I'm
also grateful for all the fun we had throughout my PhD—you made the journey lighter and
more joyful.

Omid: You are the coolest brother I could ask for! All the weekends we spent together, and
working side by side, kept me productive and gave me the stamina to push through the final
year of my PhD and bring this thesis to the finish line. But remember—you’re still my little
brother, and I'll always take care of you :D.

Jasmin: My last and biggest thanks go to you—my love. I wrote this thesis while being
with you—Iliterally by your side—and you supported me through the final and most
important steps of the journey. You cooked for me, encouraged me, and stood by me,
especially during the writing of this thesis and my final paper. Without your love, support,
and gentle push, I don’t know when I would have finished. Thank you for everything.

INTRODUCTION

File formats have evolved alongside computing, progressing from early text-based and
proprietary formats to highly efficient big data formats such as Apache Parquet [1], which
builds on decades of research in database storage and file format design. This evolution has
been driven by critical and evolving needs across different eras and use cases, including
compatibility with heterogeneous systems, human readability, support for hierarchical data,
efficient compression of large volumes of data, and adaptability to modern hardware,
including GPUs.

Early Computer Systems and Proprietary Formats (1950s-1960s). In the early days of
computing, each computer manufacturer developed proprietary file formats tailored to
specific hardware and software [2]. These formats were often undocumented and
incompatible across different systems [3].

Emergence of Standardized File Formats (1970s-1980s). As computing expanded into
business, academia, and government applications, the need for standardization became
evident, as organizations required efficient ways to exchange data between different
systems—something proprietary formats could not provide. One widely adopted solution
was ASCII text files, originally standardized in the 1960s, which became a common format
for storing and exchanging textual data across platforms in the following decades [4].
Building on this, Comma-Separated Values (CSV) gained popularity as a simple and
effective format for tabular data, particularly with the rise of database management systems
and early spreadsheet software.

PC Era (1980-1995) As personal computers became general-purpose tools for business and
administrative tasks, tabular file formats emerged as a foundation for everyday data
management. With affordable microcomputers such as the IBM PC becoming available to
businesses and individuals [5], computing power moved out of centralized IT departments
and into everyday workplaces. This shift empowered non-technical users—such as
accountants, office clerks, and small business owners—to perform tasks that had previously
required manual processing or specialized systems [6]. Common activities like inventory
tracking, payroll management, customer databases, and budgeting demanded reliable
mechanisms for storing and manipulating structured, tabular data [7]. This created a

2 1 INTRODUCTION

growing need for file formats capable of representing tabular information in a consistent and
accessible way.

To meet this demand, software developers created file formats specifically designed for
tabular data. Formats like dBASE’s .dbf and Microsoft Excel’s .x1s offered compact,
portable representations of tabular data that could be easily created, saved, edited, and
exchanged across applications [8, 9]. These formats stored data in a way that mirrored how
real-world information was organized—using rows and columns to represent entries and
attributes.

Internet Era and Hierarchical Formats (1995-2010) The rapid expansion of the internet
in the 1990s revolutionized how data was created, stored, and shared. Many applications,
such as e-commerce platforms, required nested data structures to efficiently manage
customer details, order histories, and product listings. However, existing formats like CSV,
plain text, dBASE’s .dbf, and Microsoft Excel’s .x1s files proved inadequate, as they
lacked features, like support for hierarchical relationships; or were not open standards.

To address these limitations, XML (Extensible Markup Language) and JSON (JavaScript
Object Notation) emerged as dominant solutions [10, 11]. XML, introduced in the late
1990s, provided a self-descriptive, hierarchical format for encoding data, but it was often
criticized for its verbosity and parsing complexity, leading to performance issues in
large-scale applications [12]. JSON, introduced in the early 2000s, became the preferred
alternative due to its lightweight, human-readable structure and seamless integration with
JavaScript-based environments. Unlike XML, JSON’s simplicity and efficiency made it
ideal for modern web applications [13].

By the early 2000s, data processing needs continued to evolve as organizations embraced
web-scale applications, cluster technologies, and early cloud-based services. This big data
era marked a transitional period that introduced new challenges in interoperability, schema
evolution, and binary data serialization across distributed systems. To meet these demands,
new formats emerged—bridging the gap between human-readable formats and scalable,
machine-friendly storage solutions.

Two early technologies from this era were Apache Avro [14] and RCFile (Record
Columnar File) [15]. Avro provided row-based serialization with built-in support for
schemas, schema evolution, and compact binary representation, making it a strong fit for
messaging and archival use cases within the Hadoop ecosystem. RCFile, on the other hand,
pioneered columnar storage within row groups, introducing performance optimizations
tailored for analytical workloads and influencing future formats such as ORC and

Parquet [15]. These innovations laid the foundation for scalable data infrastructure in the big
data and cloud computing era.

Cloud Computing Era (2010s-2020s) With the rise of big data and cloud computing,
specialized file formats such as Parquet [1] and ORC [16] have emerged to efficiently
manage massive datasets by optimizing storage, retrieval, and processing [17]. Parquet has
become the standard and offers a range of features missing in traditional formats like CSV,
JSON, and XML—namely, columnar storage, high compression ratios enabled by
heavyweight algorithms such as ZSTD, and row group skipping. A row group is a partition
of tabular data, and skipping enables filtering of unrelated data at the row group level using

min/max statistics.

Al + the End of Moore’s Law (2020s—Present) Over the past 25 years, hardware evolution
has slowed at the transistor level, marking the gradual end of Moore’s Law [18]. In response,
Compute architecture has become more diverse due to hardware specialization to support
specific workloads. CPUs have adopted increasingly wide SIMD instruction sets—from
128-bit SSE to 256-bit AVX, AVX?2, and eventually 512-bit AVX-512. Meanwhile, GPUs
have become central to modern computing—not only due to the rise of machine learning and
Al but also because of their suitability for accelerating OLAP workloads, real-time
analytics, and large-scale query processing [19, 20]. GPUs offer massive parallelism, high
memory bandwidth, and the ability to process large volumes of data concurrently [21].

Despite these advances, Parquet, the state of the art, remains rooted in design decisions from
an earlier era. Influenced by the Java Virtual Machine (JVM)—which historically lacked
native SIMD support! —Parquet cannot fully exploit SIMD acceleration [24]. Moreover, the
evolution of Parquet through versions 2 [25], 2.4.0 [26], and now early proposals for 3.0 [27]
has not—and does not plan to—incorporate optimizations for modern hardware. Even
variants like Grafana Tempo’s vParquet3 prioritize traceability and integration with
distributed tracing tools over hardware-level performance tuning [28]. Parquet remains
poorly suited to GPUs [29]. Its complex, branch-heavy decoding logic and layered
encodings—such as dictionary encoding combined with run-length encoding (RLE),
followed by general-purpose compression—introduce performance bottlenecks, including
warp divergence on GPUs and branch mispredictions on CPUs [24, 29]. Additionally, it
lacks support for fine-grained, vector-at-a-time decoding—essential for modern CPU
vectorized compressed execution [30]—as well as tile-based execution, the dominant model
in GPU-optimized academic systems [31].

These pressures—namely, better utilization of existing compute power in modern CPUs,
SIMD instructions, adaptation to the rise of Al and GPUs, and the need for a file format that
aligns with current execution models—create a design opportunity for a new file format. In
our view next-generation formats must be architected to align with modern CPU and GPU
capabilities, leveraging the parallelism of today’s hardware. They should incorporate
research advances like Multi-Column Compression (MCC) [32], which enables efficient
compression across multiple columns by exploiting inter-column relationships to further
compress data—overcoming historic weaknesses of columnar storage compared to
row-based formats. It should also adopt approaches like the Whitebox Compression

Model [33], that can address storage and processing issues by poor data design. For example,
it can split a column with values such as FastLanes25071994 into two columns—one with
FastLanes and one with 25071994—separating the string and numeric parts. This allows
the numeric portion to be fed into an integer compressor, improving compression efficiency,
and reducing entropy in the string part, e.g. enabling dictionary compression. Finally, they
should natively support novel compression schemes developed over the past decade,
enabling efficient encoding, decoding, and execution in the heterogeneous, Al-driven
workloads of today.

IThe Vector APIL, offering an almost-explicit SIMD interface, was only introduced in 2016 [22], and stable
auto-vectorization did not appear until 2012 [23].

4 1 INTRODUCTION

1.1 RESEARCH QUESTIONS AND CONTRIBUTIONS

FastLanes is a project initiated at CWI, intended as a foundation for the next generation of
big data file formats. In this thesis, we explore the design of this new file format, with a
particular focus on addressing the limitations of Parquet in the context of modern
hardware—not just by proposing new solutions, but by thoroughly investigating their
practical implications, including aspects such as code maintainability, which is often
overlooked in research. To achieve this, we implement all our algorithms in multiple
ways—purely from an engineering perspective—measuring the trade-offs between
performance and maintainability. Furthermore, we provide high-quality implementations
and open-source our entire codebase, making the results fully reproducible and accessible to
the community.

Arguably, the most important component of Parquet—and indeed any modern big data file
format—is the set of compression schemes used to compress the data, as they directly
impact both read (decompression) speed and storage size (compression ratio). Any
compressed data that is relevant to a query (i.e., not filtered out) must be
decompressed—either fully or partially, in the case of compressed execution—before it can
be processed, making decompression (almost?) an unavoidable step in query execution.
Therefore, our first objective is to investigate how the decompression speed of compression
schemes can be improved.

There are two broad categories of encodings to consider: lightweight compression (LWC)
schemes [34] and heavyweight compression (HWC) schemes. While HWCs are effective at
improving I/O throughput through high compression ratios, they are not well-optimized for
modern CPUs [35]. This is due to their block-based nature—these schemes often require
decoding large blocks at once, resulting in repeated movement of data between cache and
RAM: data is brought into cache, decoded, and then written back to RAM. In contrast, LWC
schemes can be decoded at a much finer granularity, following a decompression model
known as vectorized decoding [34]. Inspired by vectorized processing, this model operates
on small batches of data that are loaded into cache, decoded, and immediately processed
without unnecessary memory traffic.

Consequently, our focus is on LWCs. On CPUs, these schemes can be accelerated by
designing decoders that are SIMD-friendly, capable of decoding many values at once. Given
the importance of achieving fast decoding using SIMD instructions, we posed our first
research question:

Research Question 1: How can SIMD instructions be leveraged to accelerate the
decompression of lightweight compression schemes (LWCs)?

2Systems such as DuckDB, Procella, and Velox do not always decompress data in the scan operator. They support
compressed execution, where decompression is delayed until necessary. This is achieved using compressed vectors,
which, unlike regular vectors that hold batches of decoded data, store values in compressed form. For example, a
dictionary-compressed vector holds a pointer to the dictionary and a sequence of codes referencing its entries. The
dictionary indexes themselves are typically encoded and must be decoded, but full materialization of values is
avoided for as long as possible by pushing compressed vectors through the pipeline and operating directly on the
indexes.

1.1 RESEARCH QUESTIONS AND CONTRIBUTIONS 5

Research Question 1 is investigated in Chapter 2.

Chapter 2 investigates how lightweight encodings—such as bit-packing, run-length encoding
(RLE), frame-of-reference (FOR), and delta encoding—can be accelerated using SIMD
instructions. It explores key challenges, including the dependency chains inherent in delta
encoding and the heterogeneity of SIMD instruction sets across different architectures. To
address these challenges, the encodings are redesigned to be fully data-parallel, enabling
efficient use of SIMD instructions and significantly improving decompression performance.
Fully data-parallel encodings can be implemented in four different ways: (1) scalar code with
auto-vectorization, (2) compiler intrinsics, (3) explicit SIMD instructions, and (4) third-party
libraries such as XSIMD [36]. Scalar code relies on simple loops and readable constructs,
delegating vectorization to the compiler’s auto-vectorization mechanisms. While this
approach is the most portable, it heavily depends on compiler heuristics and may not always
yield optimal performance [37, 38]. Compiler intrinsics expose low-level SIMD instructions
through C/C++ functions that map directly to hardware operations (e.g., AVX or NEON),
offering more control than scalar code while maintaining some degree of portability [39].
Explicit SIMD programming involves writing platform-specific instructions—often through
intrinsics or even assembly—enabling maximum performance at the expense of portability
and maintainability [40]. Finally, third-party libraries such as XSIMD abstract away
low-level complexities while still leveraging SIMD optimizations under the hood, providing
a balanced trade-off between performance, readability, and cross-platform support [36].
Having considered these SIMD programming paradigms, we now pose the next question:
Research Question 2: Can data-parallel encodings be implemented in the most
maintainable way—namely, scalar code with auto-vectorization—Dby relying on compilers to
generate SIMD instructions, while still achieving maximum performance?

Research Question 2 is investigated in Chapter 2.

Chapter 2 investigates how our data-parallel layouts can be implemented. This chapter
demonstrates that it is entirely possible to implement fully data-parallel encodings using
scalar code with the auto-vectorization paradigm and still achieve the performance of
explicit SIMD, by redesigning the encodings to be extremely simple—consisting only of
straightforward instructions with no control flow or data dependencies. To validate this
claim, the chapter also presents an implementation of the same encodings using explicit
SIMD instructions and compares the two approaches. The results show that there is no
performance gap between scalar code with auto-vectorization and explicit SIMD. This
highlights that we can achieve the best of both worlds: maximum performance and high
maintainability using only scalar code.

There has been significant focus on data-parallelizing and implementing encoding schemes
such as Run-Length Encoding (RLE), Frame-of-Reference (FOR), Bit-Packing, Dictionary
Encoding, and Delta Coding for integer data types. However, floating-point data is also
becoming increasingly important in modern workloads [41]. Despite this, encoding schemes
tailored specifically for floating-point data have only recently begun to receive serious
attention. Existing techniques—starting with Gorilla [42] and continuing with the more
recent ELF [43]—have shown promising compression ratios on certain datasets. However,

6 1 INTRODUCTION

they fall significantly short in performance when compared to the lightweight schemes
integrated into FastLanes. Motivated by this gap, we decided to design a new compression
scheme for floating-point data from the ground up. We began by analyzing the properties of
real-world floating-point datasets, with the goal of identifying patterns in their complex
binary structure that could be exploited for both compression and high-performance,
data-parallel decoding. This leads us to our next research question:

Research Question 3: Is it possible to design a data-parallel encoding for floating-point
numbers that uses SIMD instructions to decode many values in parallel while achieving a
compression ratio comparable to heavyweight compressors (HWCs)?

Research Question 3 is addressed in Chapter 3.

Chapter 3 investigates the bit-level properties of floating-point values in real-world datasets
and how these properties can inform the design of a new SIMD-friendly encoding scheme
for floats. The chapter explores how vectorized decoding can be utilized to accelerate
decompression. It introduces a novel encoding format, ALP, which delivers superior
performance across all three key metrics of a compression scheme: encoding speed,
decoding speed, and compression ratio.

With a complete pool of data-parallelized lightweight compression schemes (LWCs)
implemented on the CPU, it becomes compelling to evaluate their performance on GPUs
and explore how they can be further optimized—especially given the fundamentally different
nature of GPU architectures. GPUs offer significantly higher parallelism but are constrained
by much smaller fast scratchpad memory (including registers and shared memory), in
contrast to the large caches available on CPUs. These architectural differences necessitate
rethinking how compression schemes are designed and executed. Given that one of the
primary goals of FastLanes is to support Al workloads—where GPU execution is
essential—this evaluation becomes even more critical. Therefore, we pose our next research
question:

Research Question 4: Do data-parallelized encodings, originally tailored for CPUs,
remain efficient on GPUs? What is their impact when integrated into query execution
engines on GPUs, and can they be further optimized?

Research Question 4 is addressed in Chapter 4.

Chapter 4 investigates how the data-parallel encodings proposed in Chapter 2 perform on
GPUs, leveraging warp-level parallelism. The chapter evaluates their performance both
when used solely for decoding and when integrated into a full query engine. It explores how
this baseline GPU implementation can be further optimized, particularly to address
bottlenecks unique to GPUs—most notably, limited local memory. To mitigate this, the
FastLanes API is redesigned to support more fine-grained decoding, enabling query engines
to maintain higher occupancy, even when executing multi-column queries that exert
significant pressure on local memory.

From our initial work on GPU, described in Chapter 4, we learned two key lessons. First,
data-parallel layouts that expose at least 32 independent tasks align well with the GPU’s
warp-based execution model, where each warp consists of 32 threads. Second, the original

1.1 RESEARCH QUESTIONS AND CONTRIBUTIONS 7

FastLanes API, which delivers 1024 values at a time, becomes a bottleneck on GPUs and
must be redesigned for finer granularity. With these insights, we extended our evaluation of

lightweight encodings on GPUs, focusing particularly on ALP. Our goal was to completely

rethink how such encodings should be optimized for GPU execution and investigate whether

the same encoding could be made performant on both CPU and GPU. This led us to pose the

following research question:

Research Question 5: How should LWCs be implemented on GPUs? What should their API
look like?

Research Question 5 is addressed in Chapter 5.

Chapter 5 builds upon the insights presented in Chapter 4 and explores the GPU
performance of ALP. After identifying its limitations, the chapter proposes two core
principles for GPU optimization: (1) all parts of the decoding process must be fully
data-parallelized, and (2) the decoding API should deliver one value at a time per thread to
minimize local memory pressure. The benefits of these ideas are demonstrated through
multi-column queries, where increased memory pressure on GPUs highlights the importance
of fine-grained and efficient decoding. These optimizations are presented as guidelines for
designing future GPU-friendly file formats.

While LWCs are highly efficient in terms of decompression speed they fall significantly
behind heavyweight compression schemes (HWCs) when it comes to compression ratio [44].
This observation motivates our next research question:

Research Question 6: Can data-parallel lightweight encodings be used to achieve better
compression ratios than heavyweight compressors (HWCs) while maintaining the key
advantages of lightweight encodings, such as support for compressed execution, fast
decoding, and vectorized processing?

Research Question 6 is addressed in Chapter 6.

Chapter 6 explores how the data-parallel LWCs proposed in Chapter 2 can be composed to
outperform heavyweight compression schemes (HWCs) in terms of compression ratio. To
achieve this, the chapter redesigns the overall compression model by introducing Expression
Encoding, which uses a small interpreted expression language to represent arbitrary
combinations of encodings. It further examines which combinations are necessary to
surpass HWCs in compression ratio on the PUBLIC_BI dataset.

With Expression Encoding established as the dominant compression model, the next natural
question is how to design a file format around it. This leads us to our final research
question—the last piece of the puzzle in building the file formats of the future:

Research Question 7: What could a file format built on the ideas from this thesis look
like?

Research Question 7 is addressed in Chapter 6.

Chapter 6 explores how a new compression model, expression encoding, can serve as the

8 1 INTRODUCTION

foundation for designing a future-ready file format that incorporates a wide range of
advanced, research-driven features such as MCC [32] into a single, cohesive file format.

1.2 TuEsis OUTLINE & PUBLICATIONS

Chapter 2 investigates how lightweight compression schemes (LWCs) can be fully
SIMDized through the careful design of data-parallelized layouts. This chapter is based on
the work presented in the following paper:

The FastLanes Compression Layout: Decoding 100 Billion Integers per
Second with Scalar Code

Azim Afroozeh and Peter Boncz

Published in the Proceedings of the VLDB Endowment, Vol. 16, No. 9,

pp. 2132-2144, 2023.

Presented at the International Conference on Very Large Data Bases (VLDB),
2023.

Chapter 3 investigates the design of a novel lightweight compression scheme (LWC) for
floating-point numbers that is fully data-parallelized and achieves a high compression ratio.
This chapter is based on the work presented in the following paper:

ALP: Adaptive Lossless Floating-Point Compression

Azim Afroozeh, Leonardo Kuffo, Peter Boncz

Published in the Proceedings of the ACM on Management of Data, Vol. 1,
No. 4, pp. 1-26.

Presented at the 2024 ACM SIGMOD/PODS Conference, Santiago, Chile

Chapter 4 investigates the performance of FastLanes data-parallel LWCs on GPUs and their
integration into Crystal [31], the state-of-the-art academic GPU database system. This
chapter is based on the work presented in the following paper:

Accelerating GPU Data Processing using FastLanes Compression

Azim Afroozeh, Charlotte Felius, Peter Boncz

Presented at ACM SIGMOD/PODS 2024, Santiago, Chile — Monday, June 10,
2024.

Published in the Proceedings of the 20th International Workshop on Data
Management on New Hardware (DaMoN), 2024.

Chapter 5 investigates the performance of FastLanes ALP on GPUs and how it can be
optimized, establishing guidelines for the design of other LWCs on GPU. This chapter is
based on the work presented in the following paper:

G-ALP: Rethinking Lightweight Encodings for GPUs

Sven Hepkema, Azim Afroozeh, Charlotte Felius, Peter Boncz, Stefan
Manegold

Submitted to the 21*" International Workshop on Data Management on New
Hardware (DaMoN), ACM SIGMOD/PODS 2025, Berlin, Germany — June 23,
2025.

1.2 Tuests OUTLINE & PUBLICATIONS 9

Chapter 6 investigates how lightweight compression schemes (LWCs) can be combined to
achieve higher compression ratios while preserving their performance benefits through a

novel compression model called expression encoding. It further presents the design and

implementation of the FastLanes File Format, which is built around this model and serves as

a foundation for the next generation of efficient and extensible big data file formats.

The FastLanes File Format

Azim Afroozeh, Peter Boncz

Submitted to the 571* International Conference on Very Large Data Bases
(VLDB), London, United Kingdom — September 1-5, 2025.

Chapter 7 concludes the thesis and shares our vision for the future of the FastLanes file
format.

11

DATA PARALLELIZED ENCODINGS

The open-source FastLanes project aims to improve big data formats, such as Parquet, ORC
and columnar database formats, in multiple ways. In this chapter, we significantly
accelerate decoding of all common Light-Weight Compression (LWC) schemes: DICT, FOR,
DELTA and RLE through better data-parallelism. We do so by re-designing the compression
layout using two main ideas: (i) generalizing the value interleaving technique in the basic
operation of bit-(un)packing by targeting a virtual 1024-bits SIMD register, (ii) reordering
the tuples in all columns of a table in the same Unified Transposed Layout that puts tuple
chunks in a common “04261537” order (explained in the chapter); allowing for maximum
independent work for all possible basic SIMD lane widths: 8, 16, 32, and 64 bits.

We address the software development, maintenance and future-proofness challenges of
increasing hardware diversity, by defining a virtual 1024-bits instruction set that consists of
simple operators supported by all SIMD dialects; and also, importantly, by scalar code. The
interleaved and tuple-reordered layout actually makes scalar decoding faster, extracting
more data-parallelism from today’s wide-issue CPUs. Importantly, the scalar version can be
fully auto-vectorized by modern compilers, eliminating technical debt in software caused by
platform-specific SIMD intrinsics.

Micro-benchmarks on Intel, AMD, Apple and AWS CPUs show that FastLanes accelerates
decoding by factors (decoding 40 values per CPU cycle). FastLanes can make queries faster,
as compressing the data reduces bandwidth needs, while decoding is almost free.

2.1 INTRODUCTION

Analytical data systems routinely employ columnar storage. This allows queries to skip
columns that they do not need, saving network, disk and memory bandwidth. Further,
columnar storage tends to be more compact than row storage, thanks to compression.

Vectorized execution is a broadly adopted design for query execution where computational
work in query expressions is performed on chunks of e.g., 1024 values called “vectors”, by
an expression interpreter that invokes pre-compiled functions that perform simple actions in
loops over these vectors (arrays), thus amortizing function call overhead over 1024 tuples

12 2 DaTA PARALLELIZED ENCODINGS

and allowing compilers to optimize these functions using techniques like loop-pipelining,
code motion and auto-vectorization: generation of SIMD instructions [45].

Vectorized decoding carries over these efficient properties when applied to decoding
compressed data. We focus on FOR, DICT, DELTA and RLE (resp. the Frame Of
Reference [46], Dictionary, Delta and Run Length encodings). Also, when a vectorized table
scan decompresses a vector, (compact) compressed data in RAM gets decompressed into an
uncompressed vector, which is a small array of 1024 values, that fits the CPU L1/L2 caches
and is immediately processed by the query pipeline, so it typically does not spill to RAM. As
such, decompression happens between RAM and CPU, reducing memory, network and disk
bandwidth consumption [47].

Parquet [1] also uses columnar encodings, albeit using a scheme that always applies DICT
and represents the dictionary codes in variable-sized runs using bit-packing or RLE. Such
variable-sized adaptivity hinders fast vectorized decoding [48], and the non-interleaved
bit-packing and classic RLE it uses do not expose the opportunities for data-parallelism
introduced by our techniques.

Compressed execution. We think scans in next-gen database systems should not
decompress columns eagerly to their SQL type, which often is a wide integer (e.g., a decimal
stored in 64-bits), but rather to the smallest type that makes the values processable by query
operators. Modern systems like Procella [49], Velox [50] and DuckDB [51] support
compressed vectors, where data is both randomly accessible yet still partially compressed:
e.g., a FOR-vector or a DICT-vector, where 1024 values are represented as uint8[1624],
accompanied by one uint64 base (FOR), resp. a pointer to a Dictionary. Such tight
representations unlock optimizations (e.g., SIMD) for operators higher in a pipeline, and
reduce the size of data structures, lessening (cache) memory pressure. It also causes best
case scan decoding performance, where one decompresses a vector to its smallest possible
lane-width, to become the common case.

FastLanes is a project initiated at CWI, intended as a foundation for next-generation big
data formats. It introduces a new layout for compressed columnar data that increases the
opportunities for data-parallel decoding, improving performance by factors. It does so in a
way that works across the heterogeneous and evolving Instruction Set Architectures (ISAs)
landscape, is future-proof, and minimizes technical debt by relying on scalar-only code.

2.1.1 CHALLENGES AND CONTRIBUTIONS

In the FastLanes project we are re-designing columnar storage to expose more independence
in data decoding, to make future query engines better at exploiting data-parallelism present
in modern hardware. We contribute solutions to six challenges in Table 1:

Many SIMD widths. In the course of 25 years, SIMD ISAs have widened by a factor 8.
Rather than taking the current widest SIMD ISA and proposing a data layout optimized for it,
we preempt further widening of SIMD registers and propose a layout optimized for a virtual
1024-bits register FLMM1024 that gets the best performance out of any existing ISA, and even
from scalar code. At the lowest level of bits, this means FastLanes applies an interleaved
bit-packed layout to 1024 bits; which distributes all logically subsequent e.g., 3-bit values
round-robin over 128 separate 8-bit lanes. On the implementation level, it leads to

2.1 INTRODUCTION 13

vectorized decoding functions that deliver a vector of 1024 tuples at-a-time, in sometimes as
little as 17 CPU cycles (an astonishing 70 values per CPU core cycle).

Heterogeneous ISAs. In order to deal with concurrently existing generations of x86 SIMD
hardware, as well as ARM, where AWS Gravitonl-3 and Apple M1-2 support 128-bits
NEON, and Graviton3 also supports SVE; and other ISAs for POWER and RISC-V, we
define a simple instruction set' on FLMM1024 that is easily supported by the common
denominator of all SIMD instruction sets. While it is out of scope in this chapter, we think
FLMM1024 instructions on the FastLanes layout can also map efficiently to GPUs and other
future data-parallel hardware (such as TPUs).

Decoding dependencies. Decoding RLE has an intrinsic control-dependency, as it needs a
loop for emitting repeated values; but SIMD does not support control-instructions. DELTA
decoding has an intrinsic data-dependency between subsequent values, which in SIMD are
located in adjacent lanes; yet instructions with lane-dependencies are much slower. We
tackle the latter problem by reordering the column using a technique we call "transposing”,
such that all lanes handle completely independent DELTA sequences. We then remap RLE
to a combination of DELTA and DICT encoding, that leverages this very efficient DELTA
decoding kernel.

Layouts that depend on lane-width. Previous work [53-60] studied data encodings in
isolation, but here we also look at the system context, i.e. table scans of multiple columns.
When the optimal layout depends on a specific lane-width (8, 16, 32, 64 bits), this is
problematic in that context. In table formats, different columns will store different value
distributions which get bit-packed using different bit-widths and get decoded into types that
fit different lane-widths. Our idea of transposing also runs into problems in this regard.
Naively applied, it would lead to different column reorderings inside the same table.
Therefore, we invented a very specific reordering of 1024 tuples that suits all possible
lane-widths. This we call the Unified Transposed Layout. The gist of this reordering is to
organize 1024 values in eight 8x16 transposed blocks, and to put these eight blocks in the
order “04261537”. We will explain why this order works well with any column-width.

Table 2.1: Challenges to efficient data-parallel decompression in big data formats, and how FastLanes tackles them.

Challenge ‘ FastLanes Solution
many SIMD widths target a virtual FastLanes FLMM1024 SIMD register
heterogenous ISAs FLMM1024 uses simple operators, present in all ISAs

decoding dependencies | reorder (transpose) columns to break dependencies

1 layout per lane-width | same Unified Transposed Layout for all lane-widths

keeping code portable | no intrinsics: use scalar code & auto-vectorization

LOAD/STORE-bound | vectorized execution & fused unpacking+decoding

Keeping code portable. The simple design of the FLMM1024 Fastlanes 1024-bits instruction

IThe idea is similar to [52] but as SIMD width interacts with data layout, we design for a concrete 1024-bits width.
Rather than trying to cover all ISAs in intrinsics, our simple FLMM1024 instruction set has a scalar implementation
that gets auto-vectorized.

14 2 DaTA PARALLELIZED ENCODINGS

set allows to implement it in scalar code that uses uint64 registers and operations. This
portability also allows low-end CPUs that do not support any SIMD and that may even have
32-bits registers and memory addressing (but where compilers emulate 64-bits arithmetic) to
also run FastLanes rather efficiently to their standard. On 64-bits CPUs, scalar FastLanes
code achieves SIMD-like acceleration when handling small lane-widths (i.e. 8-bits gets 8x
faster using 64-bits scalar). We find it remarkable that SIMD-friendly ideas like interleaving
and transposing accelerate our scalar code, rather than slow it down. Last but not least,
modern compilers can auto-vectorize our scalar code-path without loss of performance,
avoiding the need for SIMD intrinsics, thus reducing technical debt and further making
FastLanes future-proof.

Avoid getting LOAD/STORE-bound. We propose to use FastLanes decoding in vectorized
execution, where the compressed data is read from RAM and gets decoded into 1024-value
arrays, which are then processed from the CPU caches by the query pipeline. This reduces
memory traffic by the compression ratio (often 2-3x). Further, most CPU time will be spent
on the operators in the query pipeline, so scans run at much lower than the maximum
decoding speed, further reducing bandwidth pressure. Sequential scans will trigger memory
hardware prefetching, so good throughput can be reached. All this reduces the probability to
be LOAD bound.

However, as FastLanes decoding is much faster than previous LWC schemes, and can
achieve astonishing speeds, the decoding functions can become STORE bound, even when
storing just into L1 cache. We show that fusing our bit-unpacking kernels with the
decoding kernels for FOR/DELTA/RLE/DICT benefits performance, as this saves an
intermediate STORE+LOAD.

2.1.2 OUTLINE

The remainder of the chapter is organized as follows. In Section 2 we explain these
contributions in more detail, helped by a series of figures in visual language. First we
explain 1024-bits interleaved bit-unpacking. The Unified Transposed Layout of FastLanes is
motivated and explained around DELTA decoding. We further discuss efficient decoding of
RLE exploiting this foundation. We follow-up in Section 3 with an evaluation of
decompression performance of FastLanes bit-unpacking and DELTA and RLE decoding on
all major hardware platforms. We also perform an end-to-end query execution benchmark
based on Tectorwise [61] showing that using FastLanes decoding, instead of just an
uncompressed in-memory array scan, can make a query faster. In Section 4, we discuss
related work, covering the main differences between FastLanes and the state-of-the-art using
both explanatory figures and micro-benchmarks. We conclude the chapter and discuss future
work in Section 5.

15

2.1 INTRODUCTION

S: Number of SIMD lanes in a 1024 bit SIMD register = 1024/T
A

f Lane 127 ' e H Lane 1 ' Lane 0

383

127 257 256

511 _wmw mﬁ_ 513 385 _mmuio_ 512 384 _mmm

1023 _ _ 767 _ _ 641 _ 640

Figure 2.1: The 1024-bit interleaved layout. B 3 adjacent FLMM 1024 words (red boxes, shown top-down) store 1024 values. Black bars indicate bit-packed values with their
logical positions in the column: logically subsequent W 3-bit encoded values are round-robin spread into S 128 lanes of 7 8-bits. In the first word, only the first two bits
(yellow,pink) of the value at position 256 fit, so it is continued in the second word (blue bit). The value at position 640 is also split. This happens in all lanes.

16 2 DaTA PARALLELIZED ENCODINGS

VAL | an integer with a value VAL at position POS
POS
VAL .)) o
- A base containing an integer with a value VAL at position POS
VAL N/ VAL! A SIMD register with C SIMD lanes
| = S D
c-1] --- _/é__ 0 —>A SIMD lane with a value VAL at lane 0

An untilized SIMD Lane
--------------- Shows a broken data-dependency

ﬁ;» Shows a data-dependency at position POS within a data-dependency chain

POS A bit-packed value at position POS with 3-bit bit-pattern

—*VAL, Shows an add operation with a value VAL

Figure 2.2: Legenda for our visual explanations.

2.2 FAsTLANES

In order to explain the FastLanes compressed data layout, we make extensive use of
drawings in the visual language introduced in Figure 2.2. We now explain the main
FastLanes features in detail.

2.2.1 Many SIMD wipTHS

Over the past three decades, SIMD register widths in x86 CPUs have doubled three times
from MMX (64-bits) to SSE1-4 (128-bits 1999), AVX/AVX?2 (256-bits, 2008) and AVX512
(512-bits, 2015). A next doubling is not imminent, but we do see GPUs - and Apple CPUs -
adopting a 1024-bit cache-line, which facilitates such a move.

Existing SIMD decoding algorithms and their data layouts typically target a specific register
width. Consider the 4-way interleaved layout [54], which distributes bit-packed tuples
among 4 SIMD lanes. This layout avoids expensive cross-lane PERMUTE or BITSHUFFLE
instructions, needed if bits would be packed consecutively. While being efficient for
unpacking four 32-bits values CPUs on 128-bit SIMD registers, this layout does not have
enough parallelism for 256-bits or 512-bits registers. In response, the 8-way and 16-way
interleaved formats were proposed [62], which are all different.

To preempt changing data formats when some ISA starts to support a wider SIMD register,
FastLanes targets a still-not-existent register width, concretely 1024-bits.”> One should note
that as long as — expensive — lane-crossing operations are avoided, it is trivial to support data
layouts designed for a wider register without performance penalty on a thinner SIMD
register; just by using multiple identical thinner instructions working on adjacent data. The

2We could have picked 2048 or 4096 as well; we chose to be conservative as the layout chunk-size grows with
it: a chunk of 1024 W (bit-width) encoded values fit in exactly W FLMM1024 registers. Larger chunk-sizes
lead to worse compression ratios since the bit-width for bit-packing depends on the value-domain of a chunk
(an exception mechanism to remove outliers can help to contain this problem). They also lead to an increased
minimum vector-size, i.e. access granularity, imposed to the scan subsystem.

2.2 FasTLANES 17

reverse is not true: supporting thin layouts on wide registers typically leads to lack of parallel
work and unused lanes or expensive compensating actions such as PERMUTE and BITSHUFFLE.

Figure 2.1 shows the interleaved bit-packed layout in the example case of integers that can be
encoded in 3 bits (W=3). To maximize decoding performance we use the smallest
lane-width that fits that, i.e. 8-bits (7'=8), and therefore we have 128 ($=1024/T=128) lanes
in our FLMM1024 word. Note that bit-packing is a building block that is used in all encodings
and can optionally be combined with an exception-handling technique (such as

"Patching" [47]), to handle - in this case — infrequently occurring values that do not fit 3 bits.

FLMM1024* // A pointer to 1024-bit word memory.
FLMM1024 // A variable of size 1024-bit

// Load 1024 bits from memory address ADR
FLMM1024 LOAD<T>(FLMM1024* ADR);

// Store 1024 bits from REG into memory address ADR
void STORE<T>(FLMM1024* ADR, FLMM1024 REG);

// For all T-bit lanes i in REG, return (i & MASK) << N
FLMM1024 AND_LSHIFT<T>(FLMM1024 REG, uint<T> MASK, uint8 N);

// For all T-bit lanes i in REG, return (i & (MASK << N)) >> N
FLMM1024 AND_RSHIFT<T>(FLMM1024 REG, uint<T> MASK, uint8 N);

// For all T-bit lanes (a,b) in (A,B), return (a & b)
FLMM1024 AND<T>(FLMM1024 A, FLMM1024 B);

// For all T-bit lanes (a,b) in (A,B), return (a | b)
FLMM1024 OR<T>(FLMM1024 A, FLMM1024 B);

// For all T-bit lanes (a,b) in (A,B), return (a * b)
FLMM1024 XOR<T>(FLMM1024 A, FLMM1024 B);

// For all T-bit lanes (a,b) in (A,B), return (a + b)
FLMM1024 ADD<T>(FLMM1024 A, FLMM1024 B);

// For all T-bit lanes, return VAL
FLMM1024 SET<T>(uint<T> VAL);

Listing 1: FastLanes simple SIMD instruction set, with FLMM1024 1024-bit registers and T-bit lanes; T € {8,
16, 32, 64}. It can be trivially mapped onto any existing SIMD ISA, or to scalar code using uint64. ISAs with
narrower registers use multiple identical instructions over multiple registers and adjacent memory to simulate
1024-bit width.

2.2.2 HETEROGENEOUS ISAs

When new SIMD ISAs are introduced, we often see two kinds of asymmetries: (i) new
operators that did not exist in a thinner ISA are introduced, or (ii) a wider register is
introduced, but not all operators existing on thinner registers are (initially) supported on the
wider register. Data layouts that depend on these operators are then problematic to support

18 2 DaTA PARALLELIZED ENCODINGS

efficiently on all plausibly in-use hardware platforms, certainly for data systems that are
distributed as binaries (pre-compiled).

Recently, ISA heterogeneity has significantly increased as ARM CPUs have become popular
both on servers (AWS Graviton2,3) and with end-users such as data scientists (Apple M1,2);
which bring their own subsets of NEON as well as SVE.

In order to support heterogeneous ISAs, FastLanes only uses simple operators, such as
load/store, left/right-shift, and/or/xor, addition and set instructions; supported for all
lane-widths, T € {8, 16, 32, 64} as shown in Listing 1. This instruction set can be trivially
mapped to intrinsics in all previously mentioned thinner ISAs, just by using multiple
identical instructions on independent registers or adjacent memory locations, to reach the
1024-bit width of our virtual FLMM1024 register. The extreme example of this is our
Scalar_T64 code-path, which relies on 64-bits integers (uint64):

struct { uint64 val[16]; } FLMM1024; // 16*uint64 = FLMM1024

FLMM1024 AND<8>(FLMM1024 A, FLMM1024 B) {
FLMM1024 R;
for (int i = 0; i < 16; i++) R.val[i] = A.val[i] & B.val[i];
return R;

}

Listing 2: Example of a vectorized AND operation using FLMM1024. Each of the 16 uint64 values is processed
independently, modeling a 1024-bit SIMD register.

As a detail, we note that we combined the shift instructions with AND functionality. In
bit-packing, these two operations are typically followed by each other anyway, so in those
cases, the combined instruction is a shorthand. Another reason to introduce this shorthand is
our Scalar_T64 code-path that manipulates uint64 values. As shown above, we can support
for instance eight 8-bits lanes using instructions on uint64. However, shift instructions on
uint64 could transport bits from one lane into another, something that is guaranteed not to
happen in SIMD instructions. But, by performing the AND before shifting in such a way
that bits that would cross a lane are masked out, this problem can be prevented by
manipulating the (constant) mask value, at no additional cost.>

Figure 2.3 shows the implementation for unpacking 3-bit (W=3) codes into 8-bit (T'=8)
integers. Rather than writing such code by hand, we generate it statically for all | <W < 64,
T €{8,16,32,64} where W T (116 pre-compiled functions that each deliver a vector of 1024
values). Figure 2.4 shows the algorithm in action: in 10 instructions, 384 values are
unpacked. On this unpack kernel, Intel AVX512 CPUs get to the astonishing speed of 70
values per cycle = 140 billion values per second on one 2GHz core. Given 3-bits per value
this requires 52GB/s - close to RAM bandwidth limit. In reality, however, a query pipeline
spends at least a few cycles per value in its operators, so the pipeline runs 100x slower; but

3Note that cross-lane bit-spilling is also a risk in the ADD operator. However, as SIMD ISAs do not support
overflow detection, usage of SIMD ISAs for summations already requires the use of overflow prevention techniques
in order to ensure correctness. Hence for ADD we can assume that overflow does not happen.

2.2 FASTLANES 19

uint<8> MASK1 = (l1<<1)-1, MASK2 = (1<<2)-1, MASK3 = (1<<3)-1;
FLMM1024 rl, rO;

r® = LOAD<8>(in+0);

rl = AND_RSHIFT<8>(r®,0,MASK3); STORE<8>(out+0®,rl);

rl = AND_RSHIFT<8>(r0,3,MASK3); STORE<8>(out+l,rl);

rl = AND_RSHIFT<8>(r0®,6,MASK2);

r® = LOAD<8>(in+1); STORE (out+2,0R<8>(r1,
AND_LSHIFT<8>(r®,2,MASK1)));

rl = AND_RSHIFT<8>(r®,1,MASK3); STORE<8>(out+3,rl);

rl = AND_RSHIFT<8>(r0,4,MASK3); STORE<8>(out+4,rl);

rl = AND_RSHIFT<8>(r0®,7,MASK1);

r® = LOAD<8>(in+2); STORE (out+5,0R<8>(rl,
AND_LSHIFT<8>(r®,1,MASK2)));

rl = AND_RSHIFT<8>(r®,2,MASK3); STORE<8>(out+6,rl);

rl = AND_RSHIFT<8>(r0®,5,MASK3); STORE<8>(out+7,rl);

Figure 2.3: Interleaved bit-unpacking kernel in FLMM1024 SIMD for 78 and W3. We use code-generation to create
such implementations for all combinations of 7 and W (W T).

with this unpacking speed the decompressing scan is practically free.

2.2.3 DEALING WITH SEQUENTIAL DATA DEPENDENCIES

Dependencies between subsequent values are SIMD-unfriendly since adjacent values end up
in adjacent lanes. Figure 2.5a shows that the default layout (one value after the other) has this
problem. The additions needed for DELTA decoding are lane-crossing operators: suppose
the values in in Figure 2.5b are 32-bits, then adding the values at position 0 and position 1
correspond to different lanes (if e.g., positions 0-3 were loaded in a 128-bit SIMD register).
In these figures, the yellow boxes indicate base values. These bases provide entry-points to
start DELTA decoding. In FastLanes, we allow to start decoding with a granularity of 1024
tuples. Base values would be found in the header of a compressed columnar block. But,
rather than having one base per vector, Figure 2.5¢ shows the idea of having four bases. This
allows to start decoding at positions 0,4,8 and 12. It still does not solve the lane-crossing
problem, though. Figure 2.5d shows the "transposed" layout, that stores the values
out-of-order. The order for the first 16 values here is 0, 4, 8, 12, 1, 5,9, 13, 2, 6, 10, 14, 3, 7,
11, 15. Figure 2.5e show this leads to optimal 128-bits SIMD processing: only 4 additions
are needed.

We call this re-ordering a transposition because the idea is to cut up the value column in
SIMD register-sized chunks and put these chunks vertically under each other, as shown in
Figure 2.5f. In case of our 1024-bits FLMM1024 register, this means that this matrix has
exactly T rows and S columns; where T is the value (=lane) bit-width and S is the amount of
such values in a register.

We argue that changing the tuple order is not problematic in the database scan context.
Relational algebra is set-based and query operator semantics typically do not depend on
order, so if the tuples arrive perturbed from insertion order, they can usually be processed in
whatever order they arrive. Even if the order matters for the query result or operator

20 2 DaTA PARALLELIZED ENCODINGS

IIIIII\III -II!III\III II\III\III

383 | 255 127 257 129 256 128
ri= AND?RSHIFT<8>(r0,0,MASK3)

STORE<8>(out+0,r1) H
| 127 1 0
r1 = AND_RSHIFT<8>(ro0, 3, MASK3)

STORE<8>(out+1,r1) ! !

| 257 .. 129 128

r1 = AND_RSHIFT<8>(ro0,6, MASK2) !

383 0 257

r0 = LOAD<8>(in+1) 1

767‘ 639 511 ‘257640 512 384 |256

|383-641‘ 513 385

AND_LSHIFT<8>(r0,2 MASK1)))

l

OR<8>(r1, AND_LSHIFT<8>(ro0,2,MASK1))

383

STORE<8>(out+3,r1) N

383

257

256 |<-

Figure 2.4: Lines 3-8 of Listing 2 in action: ten FLMM1024 instructions bit-unpack the first 384 3-bits codes into
8-bit integers. The investment in interleaving of bits leads to perfectly sequential unpacked integers using few simple

instructions.

2.2 FASTLANES 21

2 IR 2 R 2t R 20 IR 20 IR 2 R 2
1/1]o0|7]e|2]a|3]6|[5]0][7][3][1]5
15|14 | 13| 12 | 11 | 10

tisd tiad g4l LgJ ‘L7J LsJ L3J LlJ

(a) Default DELTA layout with data dependencies on arrows.

- N
o O €O Q‘u.l

AIMM MMM MM e
76 | 75|74 74|67 |61/59|55 5246|4141 | 34/31 /30|25
15|14 | 13 | 12 | 11 | 10

tad tod tied t+4J t+eJ t+oJ t+3J t+5J

(b) The process of decoding DELTA-encoded data (green arrows).

74 55 41 25
12 8 4 0]
I | | I
2 9 2 9 2 9 2 9
L 22 IR Zuiut R 25 R il B 25l R Zaied R 2l B
1/1/0 06,24 0 6 50 03150
15 |14 | 13|12 | 11| 10| 9 8 7 6 5 4 3 2 1 0
A0 4,70 4,71 4,70 4,7 4,70 £, 4+,
(c) Example DELTA layout with multiple bases.
74 55|41 25
12| 8 4 0
=en R
2
v v ‘ v j| 2_| * * * *
16 6 1 2 |5 1 4 0 5/0/0 0,0
15| 11 7 3|1 10| 6 2 | 13| 9) 1|12 8 4 0
A A t A — 3}34 A A T A — 1:IF1_l
3— 1—

(d) Transposed data layout.

Figure 2.5: (a)—(d): Part 1 of the Transposed Data Layout illustrations.

22 2 DaTA PARALLELIZED ENCODINGS

74 5541 | 25

2 0
A y
1663"12510405"0
3l 2|1joffs|2]1]ofl3|2]1]off3]2]1]0
A
3 1.
(e) SIMD-friendly DELTA decoding on the transposed layout.
N: Number of tuples in a vector, N=1024
A
1023 | ... T(S-1)| ... 2T |2T-1| ... | T-1 | ... 2 1 0

T: BitWidth of a physical type, T = {8,16,32,64}

T(S-1)| ... 2T T 0

T(s-1)+1| .., | 2T+1 | T+1 1
T<

1023 ... | 3T-1|2T7-1| T-1

Y
S: Number of SIMD lanes in a 1024 bit SIMD register = 1024/T
(f) Transposed Layout: value order depends on widths S & 7.

Figure 2.5: (e)—(f): Remaining Transposed Data Layout illustrations. Idea: reorder column values to make data
dependencies SIMD-friendly.

2.2 FASTLANES 23

semantics, the original order could be restored or encoded in a selection vector. While the
presence of a selection vector can slow down operations, it can often be avoided: vectorized
query executors typically have an optimization where simple arithmetic operators (that
cannot raise errors) will ignore (identical) selection vectors on all parameters, if many tuples
are still in play, executing the operation on all values, at much lower per-value cost thanks to
full sequential access (and SIMD).

9. 12 8[4[0
2120, 0000
1
v Vv l v |2.| * * * *
15|11\ 731410 6(213/9|5(112/8|4|0
A A A | J A A A | J
3+ 1
3- 1-
(a) Reordering from Figurefigure 2.5d applied to a half-width column.
32|10
0
2
v | ¥
312|110 3/2|1|0 312/1|0 32|10
t I i I
3 1

(b) Eight independent operations are needed, but this layout provides only four—resulting in underutilized SIMD lanes.

Figure 2.6: The transposed layout and resulting value reordering, while effective for one data type, are not suited for
narrower types.

2.2.4 THE Un1F1ED TRANSPOSED LAYOUT

In our Transposed Layout, the order of the tuples depends on 7. This creates a problem for
database scans: relational tables consist of multiple columns and different columns will have
different widths. However, when we reorder tuples, we should use the same order for all
columns, because a scan needs to create a consistent stream of tuples.* Figure 2.6 shows that
when we apply the reordering from Figure 2.5d to a data type of half the width, there is not
enough independent work for the thinner type. In our example, the wide data-type was

4Even if a query processor would be able to work with column vectors that each have a different value order, e.g.,
by accompanying each with their own selection vector that restores order; this would likely carry performance
penalties due to the indirect memory access needed and reduce the applicability of our format to systems that
could do this. Therefore we enforce the ability to retrieve all column data in the same order.

24 2 DaTA PARALLELIZED ENCODINGS

(c) ..is also SIMD-friendly for

(a) This reordering is also SIMD-friendly for the wide type,(b) ~-applied to the thin type.. . ° "
but..
B 2 2 0) 2 0 0
I 7 I 3 I 5 I 1 I ify 5 1 1
nify
G 2 2
7 3 3
2
Unify, 5
0
7
[7 | 3 5 | 1 6 2 4 | 0 |
H i H i i H
H i H i i i
[1016|...|120| 56 (s|984|...| 88 | 24 p1000|. .. |104| 40 [s968|...| 72 | 8 ||1008|...|112| 48 |s976|...| 80 | 16 p992|...| 96 | 32 W 960|. 64| 0
f f f f f f f
i i i i i i N
[1017|...|121| 57 s|985|...| 89 | 25 p1001|... |105| 41 s 969|...| 73 | 9 p1009|...|113| 49 0977|...| 81 | 17 p993|...| 97 | 33 w961|. 65| 1
8 | o | o | o (]
i i i i i i A
- i i i i i B
i i i i i i f
: i : i : i i
l2023[. .. [127] 63 | 991 ... | 95 | 31 Wioo7|. .. |13d] 47 975 79 [45 05|, .. [119] 55 |\ 983|. .. | 87 | 23 §995|... [103] 39 Wo67]... | 71| 7
——— ' ' ' ' ' H
' H H H H H :
6t H H H H H H

(d) From the 64-bits transposed layout with 8x1 tiles of 8x16 values (upper right), we unify to 4x2 tiles for 32-bits types, then
to 2x4 for 16-bits and 1x8 for 8-bits, in 04261537 tile order. The final value order is 0,64...,960,32,96,..,992...,..,63,127,..,1023
(top-to-bottom, repeated right-to-left)

Base Vector

[]
= 1 0
T=64 I I . ¥ 3 v ’
[7 I 3 I 5 I 1 I 6 I 2 I 4 I 0]
1 1 [T 1 I T
1 J [
L 1
T
T=8
[Base vector | [Base vector |
T=32 —— [T=16 9 [
[7,3 | B | 6,2 | 4,0 | [7,3,5,1 | 6,2,4,0 | [7.3,5,1,6,2,4,0]
: ' —

(e) The 04261537 tile order is SIMD-friendly for all lane-widths. Note: the numbered blue-red boxes here are abbreviations for a
8x16 tile, and imply 8 SIMD ADD operations each during DELTA decoding. This layout benefits all encodings with dependencies
(i.e., also RLE).

Figure 2.7: Unified Transposed Layout: (a)-(c) idea of order unification, (d) how our unified approach arrives at the
04261537 order (blue) of 8x16 tiles (green) and the final value order (green), (e) how it provides data-parallelism
for all possible lane-widths. Notably, FastLanes does not only store each sequence of 1024 tuples permuted in this
reordering, but the individual columns are usually also encoded with some LWC scheme (DELTA, FOR, DICT,
RLE), which involves bit-packing using 1024-bit interleaving (Figure 1). So the eventual bit-sequences stored are
humanly hard to grasp. However, decoding the values requires only regular and astonishingly fast calculations that
are completely data-parallel.

2.2 FASTLANES 25

32-bits such that 4 values fit a 128-bits SIMD register. So when putting a column of 16-bits
integers in that order, we see that we only can take advantage of four lanes, instead of 8. In
this case, the problem can be solved by just using a different ordering, shown in

Figure 2.7a-c, that works well with columns of both widths.

Our Unified Transposed Layout provides a generic solution to this problem for all
lane-widths. The basic building block are transposed tiles of 8x16 values. We have eight
such tiles for each vector of 1024 tuples. For the widest 64-bits type, each row in the tile is
one FLMM1024 register, making it a suitable format to process one tile-at-a-time: for DELTA
decoding, the 8 rows are processed using 8 FLMM1024 ADD64. In case of 32-bits values,
however, one row occupies half a register, so we need to group two independently
processable tiles together in one register. This is done by taking the lower half of tiles 0-7
and placing them to the left, arriving at 4 rows of 2 tiles. This process repeats for 16-bits and
8-bits, arriving at a single row of 8 tiles in the 04261357 ordering (blue). The complete
value ordering for all 1024 tuples is shown in green.

One can ask if 04261357 is the only ordering (starting at 0) that is suitable for DELTA
decoding. We want to start at 0, because for 64-bits values we compute on data from one tile
at-a-time, starting at tile O; and for 64-bits data, the header thus holds bases for tile O only
(see Figure 2.7a-b with base values in yellow). Beyond starting at O, the second desirable
property is that for processing tiles in SIMD operations, we need the subsequent operations
to touch directly subsequent tile numbers in the same SIMD lane position.

Now the proof. Considering 16-bits values, where four tiles fit the SIMD register width, and
given that 0 is first; we see that 1 must be in fourth position (as it must be subsequent in
Oxxx— 1xxx). In fact, the only way to get subsequent numbers in the two halves of the
ordering is to have all even numbers first, and the odd numbers later. Now, considering
32-bits data types, where data from two tiles is processed at-a-time, the ordering should start
with 04. Because, if we would start with 02, then after 02— 13, the next SIMD operation
should be on 24, but tile 2 was already processed. The other even choice 06 runs out of
work, as after 06— 17 there is no tile 8. As the first pair is 04, the third pair must be 15, and
this fixes the second pair to 26 and the final pair to 37; so we arrive at 04261537 as the only
ordering with the desired properties. Figure 2.7e shows that for 8-bits types, DELTA
decoding processes: bases — 04261537 (drawn, as all layouts, right-to-left in our Figures).
For 16-bits types the processing order is: bases — 0426 — 1537. For 32-bits it is: bases —
04 — 15 — 26 — 37. For 64-bits: bases -0 —1— .. = 7.

FastLanes-RLE. Value sequences get Run Length Encoded in classic RLE as (value,length)
tuples. Decoding requires two nested loops: one that iterates over the tuples, and inside, one
that iterates over length; while writing out the value-s. A loop is by definition scalar, and the
inner loop will suffer from branch mispredictions on short lengths. The best SIMD
acceleration so far for RLE works when run-lengths are large, such that the uncompressed
run is very significantly larger than the SIMD register. In this case, one can set all lanes of a
SIMD register to the constant value, and reduce the amount of STORE instructions by the
amount of lanes [63].

We propose a new scheme called Fastlanes-RLE, that maps RLE to DELTA and supports
storage reordered in the Unified Transposed Layout. It targets systems like Velox [50] and
DuckDB [51], that prefer to represent decoded RLE as compact in-flight Dictionary vectors;
rather than full/eager decompressed vectors. The twist here is that the Dictionary is the Run

26 2 DaTA PARALLELIZED ENCODINGS

Value vector from RLE, and hence may contain duplicates. The Index Vector monotonically
increases by one, whenever a new run starts. FastLanes-RLE uses 16-bit indexes for vectors
with many short runs and 8-bits otherwise. These Index Vectors are DELTA encoded using
only 1-bit per value. Base storage in the 8-bit case can use 3-bit bit-packing, adding .375 bits
of storage per value, making the compression ratio better than classic RLE, up to average
run-lengths of 12. For longer average run-lengths, we should use 0-bit DELTA encoding,
that memsets the Index Vector to 0, and where the 1-s are inserted by an exception
mechanism (we will cover such mechanisms in follow-up work).

2.2 FASTLANES 27

15|14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

Run Values Run Lengths
3l2]1]o0 3210

(a) A decompressed vector and its classic RLE representation as two vectors: Run Values and Run Lengths.

Run Values

15|14 (13|12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

01,0/ 0 0|12/0|0|1 0 0 0|0 |00
5|14 |13|12 (1110 9 \ 8 | 7 | 6 | 5| 4| 3| 2|1 0 0

Delta Encoded Vector

(b) FastLanes-RLE, and how its Index Vector is DELTA encoded.

2,1, 0,0
- 12| 8 4 0
am I8 0 0 0 0
]
vV v l v |2—| * * * *
1,01 1/1/0,0|0 0 00O 0|O0|O
15 | 11 7 3 |14 | 10| 6 2 | 13| 9 5] 1|12 | 8 4 0
A A T A 3_: 3_| A A T A 1_: 1_|
3= 11—
3 S —p

(c) FastLanes-RLE reorders the Index Vector in Unified Transposed Layout: compatible with other columns and enabling fast
decoding.

Figure 2.8: FastLanes-RLE: a fast and compact encoding scheme targeting in-flight partially compressed vectors [50,
64]

2 DaTA PARALLELIZED ENCODINGS

28

T=8 T=28 T=16 T=32 T==64 —— Scalar.T64)
- J Scalar r
o0 et SIMD
DD e —— Auto-vectorized
25 4 " 1 e e F1
A/ n By e B R 2 et
0 S A | T e ettt PSS =N T J,\: .
Graviton2 Ly
50 A e
251 IA‘\'A‘{L/\T»A‘\{)\\»&\/ Mt
e TN .\o\!\.‘/\o\l\(/\&\f\‘\/\#\!\fﬂ/
N g P 0
Graviton3 Ly
° 50 A
B ST PR IS e \»f\/\/\.\/\/\/T\»K/J o L,
5% /)\f\ B S masme S0SSSSES00SERIDERINOINERIEREDEITSY :J/\.:TTJJJ//.
. Pasass=a san
@ \ [eeserssapease=ay MDD
£ joebe 0
= Ice Lake Ly
504 o)
21 iy e \/\/\/ L,
0 R prrrieran | e TN | RSO B e et e A AAAAAATN 0
Zen3 | N
50 4
. AANN
25 4 S R e g N R)é\ N \ort
PSS N
0 errrereay | rereme TN bty 0
Zen4 Ly
50 1
v e - /\/\/\/\/\/\/\/\/
% \\}I} s SN NS /\ ST \ !
PEPE A - Tt
M e | e | T oo PSS S Se S oS e Se Saunuaant: .
0 T ¥ T F + + T T T T T T T T T T T T T T 0
0 8 0 8 0 8 16 0 8 16 24 32 (HW 8 16 24 32 40 48 56 64
BitWidth(W'

Figure 2.9: Bit-unpacking performance of the 1024-bit interleaved layout. (1) Scalar_T64 uses 64-bit scalar registers as quasi-SIMD and beats naive Scalar up to 8x. (2)
clang++ auto-vectorizes Scalar perfectly, matching performance of explicit SIMD intrinsics. (3) Decoding can reach 70 tuples/cycle (T=8, W=1). Except in the leftmost
box here (tuples/cycle), lower is better in all Figures (cycles/tuple).

2.3 EVALUATION 29

2.3 EVALUATION

The C++ FastLanes library is released under a MIT license in open source and will be put in
github.com/cwida/FastLanes on Jan 7.
We now experimentally evaluate the following questions:

(Q1) What is the absolute speed of the proposed FastLanes 1024-bit interleaved
bit-unpacking?

(Q2) Does decoding performance scale with SIMD width, and how does it vary between
the platforms listed in Table 2.2?

(Q3) Can scalar code profit from 1024-bits interleaving and the Unified Transposed Layout?

(Q4) What is the performance of the scalar implementation, and how well does compiler
auto-vectorization compare with the use of explicit SIMD intrinsics?

(Q5) How does the proposed Unified Transposed Layout influence decoding performance,
specifically for LWC schemes with sequential dependencies, such as DELTA?

(Q6) What effect on end-to-end query performance could the adoption of FastLanes have?

We also investigate the performance benefits of potentially fusing the implementations of
bit-unpacking and decoding kernels. Note that in Section 2.4, we present additional
micro-benchmarks while comparing FastLanes with related work.

2.3.1 MICRO-BENCHMARKS

We implemented bit-unpacking and decoding into 7' {8,16,32,64} result columns in 4
different ways: Scalar, Scalar_T64, SIMD, and Auto-vectorized. The Scalar code
unpacks/decodes one uint7 value at-a-time. The Scalar_T64 implementation treats a
uint64 variable as a quasi-SIMD register consisting of 64/T lanes of T-bits.

Table 2.2: Hardware Platforms Used

Architecture [Scalar ISA |Best SIMD ISA CPU Model |Frequency

Intel Ice Lake |x86_64 AVX512 8375C 3.5GHz
AMD Zen3 x86_64 AVX2 (256-bits) [EPYC 7R13 |3.6 GHz
AMD Zen4 x86_64 AVX512 Ryzen9 7950X4.5 GHz

Apple M1 ARM64 |NEON (128-bits)|Apple M1 3.2 GHz
AWS Graviton2 | ARM64 NEON (128-bits)|Neoverse-N1 |2.5 GHz
AWS Graviton3|ARM64 INEON (128-bits)|modified 2.6 GHz
SVE (variable) |Neoverse-V1

We used clang++ for our experiments. To make sure that our scalar code is not
auto-vectorized, we explicitly disabled the auto-vectorizer for the Scalar and Scalar_T
implementations by using: -03 -mno-sse -fno-slp-vectorize -fno-vectorize.

The SIMD implementations use explicit SIMD intrinsics. Note that for ARM64, all SIMD
implementations are based on NEON instructions. This is because our experiments on
Graviton3 showed that SVE [65] is slower than NEON. Finally, the Auto-vectorized

github.com/cwida/FastLanes

30 2 DaTA PARALLELIZED ENCODINGS

implementation is the Scalar implementation, with the difference that auto-vectorization is
not disabled.

These micro-benchmarks aim to characterize pure CPU cost and decompress a single vector
30M times; hence all data is L1 resident. We report CPU cycles per value (lower is better!),
but for 7=8 bit-unpacking also the reverse: values per cycle (cycles per value there get close
to 0 and hard to discern). These measures make the results more meaningful to compare
across platforms than elapsed time, as our hardware comes from different frequency classes
(hi/mid/low end, consumer vs. server). We disabled CPU turbo scaling features where
present to make clock normalization stable.

Bit-unpacking. Figure 2.10 we see that the 1024-bits interleaving of packed data does not
even hinder Scalar decoding: performance is equal to the naive "horizontal"
(non-interleaved) bit-packed layout. But, only the interleaved layout provides the opportunity
of decoding multiple lanes in parallel seized by Scalar_T64, making it 8x faster than Scalar
on 8-bits values. As for (Q1), Figure 2.9 shows the high speed of FastLanes decoding:
thanks to SIMD it significantly outperforms Scalar across all platforms: 40x-70x for §8-bits,
to 3x-4x for 64-bits types. Regarding (Q2): we do see that Gravitons have weaker SIMD;
which especially shows for 64-bits types. Apple M1 also has just 128-bit NEON, but clearly
has more instruction level paralellism (ILP). Wider SIMD does not always equate more
performance: despite supporting AVX512, Zen4 is not faster than Zen3. This is expected if
the CPU executes one AVX512 instruction using two AVX2 (256-bits) units. The absence of
dependencies and the opportunities for data-parallelism that FastLanes code exposes, make
it profit from total CPU execution capability, which is the product of ILP and register width.
Figure 2.9 highlights that (1) Scalar_T64 is indeed % times faster than Scalar for different
T's (Q3); (2) clang++ can auto-vectorize our Scalar code, matching the performance of
explicit intrinsics — denoted SIMD (Q4); (3) FastLanes can decompress 70 tuples per cycle
for 8-bits types (Q1), where SIMD paralellism is maximal. Point (2) means that when
incorporating FastLanes in future systems, we recommend just using the Scalar code paths;
in fact for the kernels described in this chapter, just the Scalar_64 code is enough. This
result significantly enhances the future-proofness of FastLanes.

Unified Transposed Layout. We performed experiments for (Q5) regarding DELTA
decoding for all six hardware platforms. Figure 2.11 shows that the Unified Transposed
layout — the idea to reorder the tuples in order to break sequential dependencies — also
benefits our Scalar_T64 code-paths, that uses uint64 scalar registers as if they were
8x8-bits, 4x16-bits or 2x32-bits SIMD registers. In terms of scalar performance, M1 tops
Ice Lake clock-for-clock. Remarkably, Graviton and Zen3 are slower in scalar additions on 8-
and 16-bits numbers than on 32- and 64-bits. The Gravitons again show weak SIMD.
Performance can again be very high, like 40 tuples per cycle on the faster platforms for 8-bits
DELTA. Most DELTA decoding will be on the larger datatypes (32-, 64-bits), but
FastLanes-RLE (evaluated later) uses very fast on 1-bit decoding in a 16-bits lane.

As bit-unpacking and FastLanes decoding use dependency-free instructions, column
contents do not influence performance at all. Only the bit-width matters, hence we evaluate
all bit-widths.’

SRegarding (ordered) DELTA columns, we finally argue that subsequent query performance after decompression is
not likely to be affected even if the tuple order is left transposed, since the permutation caused by transposing is

2.3 EVALUATION 31

Fusing Bit-packing and Decoding. The 116 bit-unpacking kernels we generate for all
bit-packing widths W and unpacked type-widths 7 <W could possibly be fused with the
decoding kernel for DELTA, FOR, DICT and FastLanes-RLE in a single kernels that do both
unpacking and decoding. The benefit of fusing is that the STORE instructions that
bit-unpacking ends with, and the LOAD instructions that decoding starts with, are saved.
Figure 2.12 shows that fusing indeed improves the decompression speed.

In case of decoding into compressed vectors, fusing is not needed for DICT and FOR
(decoding is just bit-unpacking in that case — therefore we do not micro-benchmark these
schemes separately). For decoding DELTA into a compressed FOR vector, we can use
fusing; what is then needed is to keep MinMax stats per vector, and subtract Min from the
bases before decoding.

2.3.2 END-TO-END QUERY PERFORMANCE

We also ran a complete query pipeline, by integrating FastLanes in the experimental
Tectorwise [61] vectorized query processor. We created a table TAB with a single column
COL that has 10 %228 uint32 integer values (10GB), and benchmarked the query SELECT
SUM(COL) FROM TAB on our IceLake platform.

Figure 2.13 shows the performance of this query, depending on the domain of the values in
the column, which is uniform-randomly generated from the domain [0-2"). We run this
unmodified Tectorwise query, that reads COL from an uint32 array, and two modified
versions (FastLanes and Scalar) that scan a compressed COL — which gets bit-packed in W
bits per value. In all cases the data is RAM-resident. As for (Q6), we thus see that reading
from FastLanes typically makes a query faster, despite the decompression, because the
query needs less RAM-bandwidth. Parallel execution increases the RAM bottleneck: with 8
threads we see up to 7x end-to-end performance improvement vs. uncompressed (and 4x vs.
Scalar). FastLanes shifts the crossover point where queries get faster from data with a 4x
compression ratio (Scalar) to almost any data.

within a 1024-vector only, and hence localized, such that any column order is largely preserved.

2 DaTA PARALLELIZED ENCODINGS

32

3
—+— Scalar Horizontal

° T=8 T=16 T=32 —+— Scalar Interleaved T =164
= —— Scalar.T64 Interleaved
39 i i i
2
3
o
@
K3
ol
)

0

Figure 2.10: Horizontal vs. 1024-bit interleaved. Scalar bit-unpacking performance with 1024-bit interleaving is equal to the naive horizontal
layout (red = blue). The bit-interleaving approach allows Scalar_T64 (green) to get up to 8x faster (Ice Lake).

2.5 . .
N Graviton2 Graviton3 Ice Lake Zen3 Zen4
o 2.0 Scalar | | | -]
= ’ —+— SIMD
m 1.5 4 —— Auto-vectorized | | | |
g
m i T -
ES
) J
—"
T ; : : _
32 s 6 - i
BitWidth(W)

Figure 2.11: FastLanes DELTA decoding, for all bit-widths & platforms: very high performance for Auto-vectorized. Also, Scalar_T64
profits from data-parallelism in the Unified Transposed Layout, whereas Scalar cannot and can be 40x slower than SIMD.

0.8
- = = —+— Fused _

£ e i = —— bit-unpack+FOR T =064
5 0.6 4 i |
.”. \\/
N: ' PR PPN eV, VAVAY,
¢] | | 1 v
3
d ANV
"o T NN o o .

0.0 Crrtpt] | it [iy .

0 8 0 8 16 0 8 16 24 32 0 8 16 24 32 40 15 A -

BitWidth(W)

Figure 2.12: Fusing 1024-bit interleaved bit-unpacking with decoding (FOR) improves performance (Ice Lake).

33

2.3 EVALUATION

== Fastlanes Compressed

— 1T —— 2T —

== == Scalar Compressed ==== Uncompressed .

7N 7 \

v \
\

4T 8T !

16 24 32
BitWidth(W)

Figure 2.13: SELECT SUM(COL) FROM TAB runtime for various COL bit-widths and threads (T) on Ice Lake. The crossover point where decompressing scans (plots)
outperform plain array scans (horizontal lines), moves from a minimal compression ratio of 4x (~8bits) with Scalar decoding to just 25% compression (x~24bits) with
FastLanes. Note that with higher thread counts, the crossover point (thick stripes) moves right a bit, as RAM bandwidth gets scarcer. FastLanes can then improve end-to-end

performance up to 7x vs. uncompressed and 4x vs. scalar.

34 2 DaTA PARALLELIZED ENCODINGS

2.4 RELATED WORK

For more than two decades, researchers have been trying to use SIMD instructions to
improve the performance of database systems [66, 67]. Much of this effort has been made on
SIMDizing the compression and decompression of data [S3—-60]. Surveys of these
SIMDized compression schemes are [48, 63].

Bit-packing. Zukowski et al. propose to bit-pack 128 integers sequentially using the same
bit-width [47]. Schlegel et al. call this layout horizontal [57]. Willhalm et al. propose a
SIMDized bit-unpacking for the horizontal layout [68]. In addition to the horizontal layout,
Schlegel et al. propose the k-way vertical layout [57], where each of the k consecutive
bit-packed values are distributed among consecutive memory words. This vertical idea is
also called interleaved layout, and we use that terminology in this chapter. This distribution
allows to have bit-packed values in different SIMD lanes and avoids the extra PERMUTE
instruction, required in the horizontal layout. Lemire et al. use the 4-way vertical layout
(k=4) to SIMDize the bit-unpacking for 32-bit integers on CPUs with SSE registers [54].
Also, Habich ef al. use 8-way and 16-way vertical layouts for AVX?2 and AVX512
registers [62]. However, these layouts do not cover all challenges that have been discussed
earlier in Table 2.1: these layouts are tied to a specific SIMD-width, they do not address the
problem of sequential data dependencies in LWCs that work on the decoded data (such as
DELTA), and do not address the issue of different data type widths in relation to that.
Figure 2.14 shows that the 4-way layout becomes only slightly faster on AVX2 and AVX512
ISAs. On the other hand, the interleaved layout becomes respectively 2x and 4x faster on
AVX2 and AVXS512. This confirms that the 4-way layout cannot take advantage of wider
registers, while the 1024-bit interleaved layout can.

In addition to the bit-packed layouts that focus on decompression speed, there are other
bit-packed layouts that focus more on the filter scan. BitWeaving [69] and ByteSlice [70] are
two examples of such layouts. BitWeaving proposes two novel bit-packed data layouts: HBP
and VBP. These layouts allow using all the bit-parallelism of a SIMD register during the
filter scan. HBP is more focused on supporting efficient lookup operations, while VBP
provides a faster filter scan. ByteSlice tries to achieve both fast lookup and fast filter scan by
applying all the BitWeaving techniques in the byte-by-byte manner instead of bit-by-bit.
However, neither BitWeaving nor BitSlice provides a fast and efficient way to actually
decompress data. Polychroniou et al. propose a SIMDized bit-unpacking for the VBP
layout [71]. However, the reported performance of this layout is roughly 30x slower than our
1024-bit interleaved layout.

DELTA coding is an LWC that encodes a sequence of integers by replacing each integer
with its difference to its preceding integer [72]. DELTA is typically used on top of
bit-packing to reduce the number of bits required to represent values. While improving the
compression ratio, DELTA decoding becomes a bottleneck in combination with
bit-unpacking. Three approaches have been proposed to data-parallelize DELTA decoding:
vertical computation [73], horizontal computation [74] [75], and the SIMDized tree
computation [73]. Vertical computation is based on the SIMD SCATTER/GATHER instructions
with non-sequential access pattern. Unfortunately, these instructions are costly and do not
make decoding faster [73]. Horizontal computation reduces the complexity of DELTA
decoding from O(n) to log(n). This is achieved by using the SIMD SHIFT instructions.

2.4 RELATED WORK 35

0.8
—— AVX512 .
0.74 —— Avx2 4-Way | 1024-bit Interleaved

—— SSE

o
=~
1
1

Cycles per tuple

o o
[\ w
1 1
1 1
~
X

e
—_
1
1

o
o

0 8 16 24 32 0
BitWidth(W)

Figure 2.14: Bit-unpacking using the 4-way layout vs. 1024-bit interleaved layout, where 7' 32 (Ice Lake). The
4-way layout cannot take advantage of wide SIMD registers, with a performance penalty of 2x resp. 4x for AVX2
resp. AVX512.

However, these instructions do not exist in all ISAs, and it is costly to simulate them. Finally,
the tree approach is based on Guy et al.’s work [76] and also relies on SCATTER/GATHER
instructions [73].

The SIMD implementation of horizontal computation can be considered state-of-the-art [73].
This implementation depends on the SHIFT instruction that shifts bits together arbitrarily
times to the right. However, this instruction only exists for SSE registers. Zhang et

al. propose to extend this implementation to AVX-512 by simulating the SHIFT instruction
with two SET, and ALIGNR instructions [73]. This implementation needs 12 instructions for
every 16 integers. Compared to FastLanes, we can see that this SIMDization does not
address all the challenges mentioned earlier. First, data dependency still exists. Second,
these implementations are not designed to support all SIMD ISAs.

Rather than SIMDizing the decoding part of the naive DELTA layout, several studies have
focused on changing the data layout of DELTA. Lemire et al. [54] has proposed two
approaches: DM and D4. The key idea behind these two approaches is to keep deltas between
adjacent batches of values instead of adjacent values. As shown in Figure 2.15b, D4 subtracts
the values batch-wise, while DM (Figure 2.15c) subtracts the last value of the previous batch
with the next batch. Although D4 provides more data parallelization, the problem here is that
the DELTAs are bigger because they are the difference between more distant values. In D4,
the differences are 4x bigger, which reduces the compression factor typically by log,(4),
hence a factor 2. Unfortunately, to support ever wider SIMD registers, ever larger batches
are necessary, increasing this overhead.

Another layout proposed to mitigate the issue of data dependency is the four cursors

36

2 DaTA PARALLELIZED ENCODINGS

74 |55 41| 25
A 12840
2
—2 | I | |
2 0 0 0 0
r ¢ v v v * * * ‘
1(6 |6 0/ 4/0|5|1|2|5 00 |0|O0
15| 11| 7 3 |13| 9 5 1 (14 |10| 6 2 12| 8 4 0
A A A A A A A |
= 1=
33—
33—
3
3=
(a) Unified Transposed Layout. The vector can be bit-packed using 3 bits per value as the maximum delta is 6.
34 (31|30 25
o 3 2 1 0
e, b b
—
v v v ¥ 2 v % v %
9 14/15/19 /16 (15|18 /14 /1815|1116 0 | O |0 | O
15| 14 |13 |12 | 11| 10| 9 8 7 6 5] 4 S 2 1 0
A A A f 3J A A A f 1J
3— 1-
3= 1-
R -
(b) D4 data layout. The maximum delta is now 19. Therefore, 5 bits are required to bit-pack each value.
25
0
[
2 0
v v v) 4 1 £ I I 4
9 8|7 |7 15| 9 18 |12 9 6| 5|0
15| 14 |13 |12 | 11| 10| 9 8 7 6 5 4 S 2 1 0
A A A A T A A A A |
: ;
J

(c) DM data layout. The maximum delta is now 18. Therefore, 5 bits are required to bit-pack each value.

Figure 2.15: The Unified Transposed layout needs fewer bits than D4 and DM as it keeps DELTAs between subsequent

values.

2.4 RELATED WORK 37

Table 2.3: Summary of all proposed approaches for SIMD DELTA decoding. Decompression Cost is the number of
ADD instructions required to decode S values, while the Compression Overhead is the number of extra bits required.

Approach Decompression | Compression|Shortcoming
Cost Overhead

Scalar [72] S 0 Data dependent

Four Cursor [48]|S % Data dependent

Vertical [73] 2 0 Random access

Horizontal [74] |log$ 0 Not efficient

Tree [73] 2 0 Random access

D4 [54] 1 logS Compression ratio

DM [54] 2 log (SS=L-1) Compression ratio

Unified Trans- |1 % -

posed Layout

layout [48]. The key idea is to keep more base values, so we can decode more values in
parallel without dependencies. This layout was already shown in Figure 4c. Note that
although we cannot use SIMD instructions to decode these four values simultaneously, it
allows a wide-issue scalar CPU to achieve better ILP by working on four cursors inside one
same scalar loop.

Figure 2.16 shows the performance of the DELTA decoding methods summarized in

table 2.3. The performance of the horizontal methods is inconsistent, as important SIMD
instructions are not available for all register- and lane-width combinations. Four-cursor
improves Scalar a little. The Unified Transposed layout is by far fastest. It does increase the
amount of base values per vector: from 1 to S (the amount of lanes, 1024/T). The bit-packed
vector with deltas takes W*1024, and each base W bits, so the overhead is 1 bit per value.
But bases are ascending, so one could DELTA-encode all bases of consecutive vectors in a
row-group header. As each vector has T values per lane, and the sum of 7" W-bit values
needs W+log(T) bits, a DELTA-encoded base can be stored in W+log(T')+1 bits, where the
+1 is because these bases also need (uncompressed) bases. As 1024 main values need
1024/T bases, DELTA-encoding bases reduces base-overhead from 1 to (B+log(7")+1)/T bits
per value. For example, for the 7=64-bit data type, and DELTASs that fit W=7 bits, the extra
cost is:((7+log(64)+1)/64)=0.21 bit per value. So that turns W=7 bits per value into 7.21 bits
per value (3% overhead).

RLE has been shown to be useful in column-oriented databases [77]. Compared to other
LWCs, RLE is fundamentally different: While other LWCs represent the original data as a
sequence of small integers, RLE reduces the number of values required to represent the
original data. This makes it very challenging to data-parallelize RLE, as we are dealing with
a variable number of values. Nonetheless, there were several attempts to SIMDize RLE. The
encoding part of RLE has been SIMDized in [58-60]. For the decoding part of RLE,
Damme et al. propose a new implementation that could be considered the

state-of-the-art [63]. We discussed this scheme when we introduced FastLanes-RLE and call
it SIMDized RLE here.

Figure 2.17 shows that FastLanes-RLE is significantly faster than the other solutions, when

38 2 DaTA PARALLELIZED ENCODINGS

—*— Scalar
—v— Four Cursor
—<— SSE Horizontal
AVX512 horizontal
2.0 1 —— Unified Transposed Layout

Cycles per tuple
[
t
1

—_
o
1

-

8 16 32 64
BitWidth(W)

<
o
1

e
o

Figure 2.16: DELTA decoding on the Unified Transposed layout is 3x-40x faster than the alternatives (Ice Lake). Note
the AVX512 horizontal computation falls back to scalar for T 8 and T 16 as it requires the _mm512_alignr_epi
instruction.

runs are shorter than 333 (i.e. more than 3 runs in the 1024-value vectors we test on). This is
because of two reasons. First, the SIMDized RLE and Scalar suffer from branch miss
predictions. This happens in case of storing a new run, as there is a need to take another path
to load the new value, and the branch happens more frequently as there are more runs.
Second, the SIMDized RLE approach does not profit from the full width of a SIMD register.
This is because the next STORE instruction may overwrite most of the values stored by the
previous STORE instruction.

When introducing FastLanes-RLE, we already mentioned its compression ratio is better for
runs with an average length <12 (in Figure 2.17, for more than 80 runs in a vector), but
starts suffering for longer runs, as its Run Lengths require 1.375 bits per value (W=1 +
(1+log(16)+1)/16 for bases, since FastLanes-RLE relies on W=1, T=16 FastLanes-DELTA).
However, RLE compression ratio typically does not depend so much on Run Lengths as on
Run Values, certainly if these are strings. Also, our future work on cascading encodings (i.e.
compressing Run Values, and DELTA-bases) and exception handling schemes, will improve
the compression ratio of FastLanes-RLE, by moving to 0-bit DELTA storage with the 1-bits
as exceptions, for vectors with long runs.

2.5 CONCLUSION AND FUTURE WORK 39

2.0
—+— SIMDized RLE

%_ 1.5 —+— Scalar
2 . —<— FastLanes-RLE
o
a 1.0 1
wn
@
o
> 0.5 1
)

0.0 T T T

T T T
0 50 100 150 200 250
Average number of runs in a vector of 1024 values

Figure 2.17: RLE decoding: Scalar, vs SIMDized vs FastLanes-RLE (Ice Lake). FastLanes-RLE is much faster
except whith run lengths 333, i.e. at avg 3 runs in a 1024-value vector.

2.5 CONCLUSION AND FUTURE WORK

Current database systems only profit to a limited extent from what SIMD could

bring [67, 71, 78]. With stalling progress in CPU frequency and core counts, this is still an
opportunity for performance gains. In our vision, one needs to start by redesigning the basis
— data storage — to seize this opportunity. This is why FastLanes proposes a new data layout,
that creates opportunities for independent work on data-parallel hardware. Besides SIMD,
we remark that other popular data-parallel hardware includes GPUs and TPUs and that we
are in an age of further hardware innovation. The gist of FastLanes is that this age needs a
data format that takes away sequential decoding dependencies and that is why its key idea is
to reorder tuples in the special "04261357" 8x16 tiling order.

FastLanes can express all common LWC decoding methods in simple operations on a virtual
(and future-proof) 1024-bits register that can efficiently map to existing SIMD instruction
sets, as shown by our experiments on Intel, AMD, Apple and AWS hardware.

Rather than looking at value decoding in isolation, we look at it from a database systems
context, where decompression is part of a pipeline that should be in balance with hardware
resource limits, and where a column is not decoded fully in isolation, but incrementally
(vector-at-a-time), as the source of a query pipeline, that processes the data further, and
where the scan decodes multiple different columns. And, where decoding infrastructure is
part of a (vectorized) software subsystem [79], where code portability in an ever more
heterogeneous hardware environment is of paramount importance, to limit development
effort and technical debt.

FastLanes also has a scalar code-path, and the data-paralellism on compact data-types that it
exposes, even accelerates scalar decoding in comparison with naive bit-packed sequentially
stored data. A key result is that modern compilers can completely auto-vectorize this scalar
code-path, with no performance penalty compared to explicit SIMD intrinsics. This makes
FastLanes very portable.

The performance benefits of FastLanes start by providing much faster decompression: our
bit-unpacking followed by FOR and DELTA decompression improve over naive sequential
bit-packed layouts by often an order of magnitude (or more). We showed that RAM-resident

40 2 DaTA PARALLELIZED ENCODINGS

queries can get even faster on FastLanes-compressed data, when compared with direct
in-memory array scans.

Future Work. Our proposed kernels, such as FastLanes-RLE are not targeting full/eager
decompression, but rather partial decompression into compressed vector representations.
Such vector representations, that represent vectors of data in tight arrays that fit in a
lane-width that is much smaller than the fully decompressed value, unlock opportunities for
relational operators higher up in the pipeline to exploit compressed

execution [49-51, 64, 77, 80].

Research could establish whether the data-parallelism that FastLanes creates makes it also
suitable to efficiently scan and process data on widely-parallel hardware such as TPUs and
GPUs [81].

In FastLanes we aim not only to improve the speed of LWC decoding, but also the
compression ratio. We are researching the idea of cascading LWCs [82], where compression
methods are stacked on top of each other, and combined with various exception handling
schemes; with the ultimate goal of making general-purpose compression methods such as
zstd, Snappy and (even) LZ4 less necessary in big data formats; as their decoding speeds are
orders of magnitude slower than FastLanes, and holding back performance.

We leave an evaluation in a complete system on end-to-end benchmarks for future work. We
intend to integrate FastLanes in a complete open source future-proof big data file format.
Cascading compression implies that each logical column chunk gets stored in potentially
multiple recursively compressed physical sub-column-chunks, and this involves making and
evaluating many design decisions in row-group, data-chunk and meta-data organization.

41

ALP: ADAPTIVE LOSSLESS
FLOATING-POINT COMPRESSION

IEEE 754 doubles do not exactly represent most real values, introducing rounding errors in
computations and [de [serialization to text. These rounding errors inhibit the use of existing
lightweight compression schemes such as Delta and Frame Of Reference (FOR), but recently
new schemes were proposed: Gorilla, Chimp128, PseudoDecimals (PDE), Elf and Patas.
However, their compression ratios are not better than those of general-purpose compressors
such as Zstd; while [de]Jcompression is much slower than Delta and FOR.

We propose and evaluate ALP, that significantly improves these previous schemes in both
speed and compression ratio (Figure 3.1). We created ALP after carefully studying the
datasets used to evaluate the previous schemes. To obtain speed, ALP is designed to fit
vectorized execution. This turned out to be key for also improving the compression ratio, as
we found in-vector commonalities to create compression opportunities. ALP is an adaptive
scheme that uses a strongly enhanced version of PseudoDecimals [83] to losslessly encode
doubles as integers if they originated as decimals, and otherwise uses vectorized
compression of the doubles’ front bits. Its high speeds stem from our implementation in
scalar code that auto-vectorizes, using building blocks provided by our FastLanes

library [84], and an efficient two-stage compression algorithm that first samples row-groups
and then vectors.

42 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

°
— 1]
:03 10 E ALP Patas
= 0] PDE @ Chimp128
23 1 ELF Chimp
= 0 .
wo 104 @ Zstd @® Gorilla Py
£'S E
.% S] [
=) i o)
5.5 107 - 1x ® n
£ & E . 1.5X ,4:9®
8 n i ® ((‘.y),‘ 2.2X
[]
51072 5
= ;
2 —rr —————rT —————rT ——r
1073 1072 1071

Compression Speed
as Tuples per CPU Cycle (Log Scale)

Figure 3.1: Compression performance for all schemes (on Intel Ice Lake). Each dot is one dataset. ALP is 1-2 orders
of magnitude faster in [de]Jcompression than all competing schemes, while providing an excellent compression ratio.
The only one to achieve a compression ratio similar to ALP is Zstd, but it is slow and block-based (one cannot
skip through compressed data). EIf is inferior to Zstd on all performance metrics. The evaluation framework is
presented in Section 3.4.

3.1 INTRODUCTION

Data analytics pipelines manipulate floating-point numbers (64-bit doubles) more frequently
than classical enterprise database workloads, which typically rely on fixed-point decimals
(systems often store these as 64-bit integers). Floating-point data is also a natural fit in
scientific and sensor data; and can have a temporal component, yielding time series.
Analytical data systems and big data formats have adopted columnar compressed

storage [1, 49, 50, 85-87], where the compression in storage is either provided by
general-purpose or lightweight compression. Lightweight methods, also called "encodings",
exploit knowledge of the type and domain of a column. Examples are Frame Of Reference
(FOR), Delta-, Dictionary-, and Run Length Encoding (RLE) [88-90]. The first two are
used on high-cardinality columns and encode values as the addition of a small integer with
some fixed base value (FOR) or the previous value (Delta). These encodings also bit-pack
the small integers into just the necessary bits. However, with IEEE 754 doubles [91],
additions introduce rounding errors, making Delta and FOR unusable for raw floating-point
data. General-purpose methods used in big data formats are gzip, Zstd, Snappy and

LZA4 [92-94]. LZ4 and Snappy trade more compression ratio for speed, gzip the other way
round, with Zstd in the middle. The drawback of general-purpose methods is that they tend
to be slower than lightweight encodings in [de]compression; also, they force decompression
of large blocks for reading anything, preventing a scan from pushing down filters that could
skip compressed data.

Recently though, a flurry of new floating-point encodings were proposed: Gorilla [95],

3.1 INTRODUCTION 43

Chimp and Chimp128 [96], PseudoDecimals (PDE) [83], Patas [97] and Elf [43]. A
common idea in these is to use the XOR operator with a previous value in a stream of data;
as combining two floating-point values at the bit-pattern level using XOR provides
somewhat similar functionality to additions, without the problem of rounding errors. Chimp
does an XOR with the immediate previous value, whereas Chimp128 XORs with one value
that may be 128 places earlier in the stream — at the cost of storing a 7-bit offset to that value.
After the XOR, most bits are 0, and the Chimp variants only store the bit sequence that is
non-zero. Patas, introduced in DuckDB compression [97], is a version of Chimp128 that
stores non-zero byte-sequences rather than bit-sequences. Whereas Patas trades compression
ratio for faster decompression, Elf [43] does the opposite: it uses a mathematical formula to
zero more XOR bits and improve the compression ratio, at the cost of lower [deJcompression
speed. PDE is very different as it does not rely on XOR: it observes that many values that get
stored as floating-point were originally a decimal value and it endeavours to find that
original decimal value, and compress that.

While these floating-point encodings avoid the need to always decompress largish blocks, as
required by general-purpose compression, and thereby allow for predicate push-down in big
data formats [98], their [de]compression speed (as well as compression ratio) is not much
higher than that of general-purpose schemes [43]; in other words, these encodings are not
quite lightweight.

We introduce ALP, a lightweight floating-point encoding that is vectorized [30]: it encodes
and decodes arrays of 1024 values. It is implemented in dependency-free scalar code that
C++ compilers can auto-vectorize, such that ALP benefits from the high SIMD performance
of modern CPUs [99, 100]. In addition, ALP achieves much higher compression ratios than
the other encodings, thanks to the fact that vectorized compression does not work
value-at-a-time but can take advantage of commonalities among all values in one vector. Its
vectorized design also allows ALP to be adaptive without introducing space overhead:
information to base adaptive decisions on is stored once per vector rather than per value, and
thus amortized. While per-value adaptivity (e.g., Chimp[128] has four decoding modes)
needs control instructions (if-then-else) for every value, and can run into CPU branch
mispredictions, ALP’s per-vector adaptivity only needs control-instructions once per vector,
but vector [de]compression itself has very few data- or control dependencies, leading to
higher speeds.

Our main contributions are:

* astudy of the datasets that were used to motivate and evaluate the previous
floating-point encodings, leading to the new insights (e.g., many floating-point values
actually were originally generated as a decimal).

* the design of ALP, an adaptive scheme that either encodes a vector of values as
compressed decimals, or compresses only the front-part of the doubles, that holds the
sign, exponent, and highest bits of the fraction part of the double.

* an efficient two-level sampling scheme (happening respectively per row-group, and
per vector) to efficiently find the best method during compression.

* an open-source implementation of ALP in C++ that uses vectorized lightweight
compression that can cascade (e.g, use Dictionary-compression, but then also

44 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

compress the dictionary and the code columns, with Delta, RLE, FOR — such as
provided by [83, 84, 101]).

* an evaluation versus the other encodings on the datasets that were used when these
were proposed, showing that ALP is faster and compresses better (as summarized in
Figure 1).

3.2 DATASETS ANALYSIS

Compression methods achieve their best performance when they are capable of exploiting
properties of the data. However, the same methods could fail to achieve any compression if
the data lacks these exploitable properties. In this section we analyze a number of
floating-point datasets, aiming to uncover properties relevant to compression performance.
Furthermore, we are interested in analyzing these datasets from the point of view of
vectorized query processing, since big data format readers and scan subsystems of database
systems by now standardize on this methodology [87, 102]: they deliver vector-sized chunks
of data, and use decompression kernels that decompress one vector (e.g., 1024 values)
at-a-time.

We start by explaining in detail the IEEE 754 doubles representation in subsection 3.2.1.
Then, we introduce the analyzed datasets in subsections 3.2.2 and 3.2.3. Next, in subsection
3.2.4 we analyze the data similarities at the vector level. In subsection 3.2.5 we revisit
decimal-based encoding approaches and perform further analysis of these methods from a
vectorized point of view. Finally, in subsection 3.2.6 we elaborate on the compression
opportunities we found.

3.2.1 IEEE 754 DOUBLES REPRESENTATION

IEEE 754 [91] represents 64-bit doubles in 3 segments of bits (Figure 3.2): 1 bit for sign (0
for positive, 1 for negative), 11 bits for an exponent e (represents an unsigned integer from 0
to 2047) and 52 bits for the fraction (represents a summation of inverse powers of two; also
known as mantissa or significand) — which together represent a real number defined as:
(—1)%i8m x 2671023 5 (1 Y22 bsy ;277). This definition allows for up to 17 significant decimal
places of precision. However, it introduces errors in arithmetic (e.g. addition, multiplication)
and limitations on the integer part of numbers which we will discuss later on in this section.
The same standard also defines 32-bit floats (8 bits for exponent and 23 for mantissa).

mantissa / fraction / significand (52 bits)

exponent (11 bits)

sign

front / leading / highest bits trailing bits

Figure 3.2: IEEE 754 doubles bitwise representation.

3.2 DATASETS ANALYSIS 45

3.2.2 DATASETS

Table 3.1 presents an overview of the 30 datasets that we analyzed in detail in order to design
ALP: 18 of these datasets were previously analyzed and evaluated to develop Elf [43] and
Chimp [96], the other 12 were used to evaluate PDE [83]. We consider these 30 datasets to
be relevant because they capture a variety of distributions, and because they played a role in
the analysis, design and evaluation of competing floating-point encodings. Identifying new
properties, we gained important clues guiding the design of ALP. Finally, by using these
datasets we are able to perform a fair comparison between these methods and our new ALP
compression.

3.2.3 DATASET SEMANTICS

The first 13 datasets presented in Table 3.1 contain time series data. On these datasets, each
double value v;; is recorded further in time than value v;. The next 17 datasets are more
representative of doubles stored in classical database workloads; 12 of these non-time series
datasets are part of the Public BI Benchmark [103] a collection of the biggest Tableau Public
workbooks [104]. Note that all datasets are user-contributed data (non-synthetic).

The datasets have significant variety in their semantics. As presented in Table 3.1, 14
datasets contain doubles that represent monetary values (i.e., Exchange rates, public funds,
product prices, stocks and crypto-currencies). 4 of them represent coordinates (i.e., latitude
and longitude), 2 contain discrete counts stored as doubles and 1 contains computer storage
capacities. Finally, the other 10 datasets contain a variety of scientific measures (i.e.,
temperature, pressure, concentration, speed, degrees and energy). Some datasets share a
common prefix in their name followed by a number. This number represents the index of the
analyzed column in a dataset.

3.2.4 DATA SIMILARITY

The underlying temporal property of time series data has been shown to result in similar
values stored close-by [95, 96]. We can analyze similarity of doubles from two different
points of view: (i) their bitwise representation (IEEE 754 [91]) and (ii) their human-readable
representation.

Bitwise similarity. From a bitwise point of view, two double floating-point values are
considered similar if their sign, exponent and fraction parts are similar. Table 3.2:C9 and
C10 show the double exponent average and deviation per vector. We define a vector as
1024 consecutive values [30]. In most of the datasets, the exponent deviation is small,
particularly in time series data. These small deviations are reflected by the number of
leading 0-bits resulting from XORing the doubles with their previous value. When similar

]https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
2https://github.com/inﬂuxdata/influxdbz—sample—data
3https://www.kaggle.com/sudalairajkumar/daily—temperature—of—major—cities
4https://zenodo.org/record/3886895
Shttps://github.com/cwida/public_bi_benchmark
6https://gz.blockchair.com/bitcoin/transactions/
7https://data.humdata.org/dataset/wfp—food—prices
8https://www.kaggle.com/datasets/ehallmar/points—of—interest—poi—database
Shttps://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
https://github.com/influxdata/influxdb2-sample-data
https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://zenodo.org/record/3886895
https://github.com/cwida/public_bi_benchmark
https://gz.blockchair.com/bitcoin/transactions/
https://data.humdata.org/dataset/wfp-food-prices
https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

46

3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Table 3.1: Floating-Point Datasets

\ Name | \ Semantics | Source [N°of Values |
Air-Pressure[105] Barometric Pressure (kPa) NEON 137,721,453
Basel—templ Temperature (C°) meteoblue 123,480
Basel-wind' Wind Speed (Km/h) meteoblue 123,480
Bird-migration2 Coordinates (lat, lon) InfluxDB 17,964

% Bitcoin—plrice2 Exchange Rate (BTC-USD) InfluxDB 2,686
5 City-Temp? Temperature (F°) Udayton 2,905,887
o | Dew-Point-Temp[106] | Temperature (C°) NEON 5,413,914
E IR-bio-temp[107] Temperature (C°) NEON 380,817,839
= PM10-dust[108] Dust content in air (mg/m3) NEON 221,568
Stocks-DE* Monetary (Stocks) INFORE 43,565,658
Stocks-UK* Monetary (Stocks) INFORE 59,305,326
Stocks-USA* Monetary (Stocks) INFORE 282,076,179
Wind-dir[109] Angle Degree (0°-360°) NEON 198,898,762
Arade/4® Energy PBI Bench. 9,888,775
Blockchain-tr® Monetary (BTC) Blockchain 231,031
CMS/1° Monetary Avg. (USD) PBI Bench. 18,575,752
CMS/25° Monetary Std. Dev. (USD) PBI Bench. 18,575,752
CMS/9° Discrete Count PBI Bench. 18,575,752
- Food-prices7 Monetary (USD) WEFP 2,050,638
2 | Gov/10° Monetary (USD) PBI Bench. | 141,123,827
% Gov/26° Monetary (USD) PBI Bench. | 141,123,827
E Gov/30° Monetary (USD) PBI Bench. | 141,123,827
z Gov/31° Monetary (USD) PBI Bench. | 141,123,827
£ Gov/40° Monetary (USD) PBI Bench. | 141,123,827
Medicare/1° Monetary Avg. (USD) PBI Bench. 9,287,876
Medicare/9° Discrete Count PBI Bench. 9,287,876
NYC/29° Coordinates (lon) PBI Bench. 17,446,346
POI-lat® Coordinates (lat, in radians) Kaggle 424,205
POI-lon® Coordinates (lon, in radians) Kaggle 424,205
SD-bench’ Storage Capacity (GB) Kaggle 8,927

3.2 DATASETS ANALYSIS 47

doubles are XORed, the result typically has a high number of leading- and trailing-zero
bits [95, 110, 111]. However, in Table 3.2:C14 and C15, we see that the average number of
leading and trailing zeros bits after XORing is comparable between time series and non-time
series data. Hence, this similarity of values stored close-by is also present on non-time series
data; which is also reflected by the fact that Chimp and Chimp128 do really well on this
data [96]. Regardless of semantics, leading and trailing zero bits go down with lower
percentages of duplicates (Table 3.2:C6 non-unique values) and higher decimal precision
(Table 3.2:C2). For instance, in both datasets in which decimal precision reaches 20 digits
(i.e., POI-lat and POI-lon), the leading and trailing 0-bit average of XORed values is the
lowest.

Human-readable similarity. From a human perspective, two doubles are similar if their
orders of magnitude (exponent) and their visible decimal precision are similar. On our time
series datasets, the standard deviation of the magnitudes (Table 3.2:C8) is relatively small
(e.g., Stocks-USA, Dew-Point-Temp, Air-Pressure). In contrast, on non-time series data, this
measure is elevated for some datasets (e.g., Food-Prices, Gov/40, CMS/9), though never
extremely high when compared to the average magnitude (Table 3.2:C7).

Decimal precision varies between datasets (Table 3.2:C2 and C3). For instance, datasets that
contain geographic coordinates such as POI-lat and POI-lon can vary between 0 and 20
decimals of precision. On the other hand, datasets such as Medicare/9, SD-bench and
City-Temp contain values with just 1 decimal of precision. Despite these differences inside a
dataset, the deviation of this property is usually small from a vector perspective

(Table 3.2:C5). In fact, for 25 out of 30 datasets, the decimal precision deviation inside
vectors is smaller than 1. That means that most of the values inside a vector share the same
decimal precision.

Decimal-based encoding approaches such as PDE exploit these human-readable similarities
of doubles by trying to represent them as integers [83]. The more similar the decimal
precision and the orders of magnitude of doubles inside a block of values, the better
compression ratio can be achieved.

3.2.5 REPRESENTING DOUBLES AS INTEGERS

Representing double-precision floating-point values as integers is non-trivial. Take for
instance the number n 8.0605. At first glance, to encode n as an integer we could be
tempted to move the decimal point e spaces to the right until there are no decimals left (i.e.,
4 spaces). The latter can be achieved with the following procedure: Py, round(n x 10°).
Since one of the multiplication operands of P, is a double, we need to round the result to
obtain an integer. Then, we could conclude that we have reduced our double-precision
floating-point number into a 32-bit integer d 80605 (i.e., the result of P,,.) and another
32-bit integer representing the number of spaces e we moved the decimal point (i.e., a factor
of 10). Hence, from the encoded integer d result of P,,., and the number of spaces e we
moved the decimal point, we should be able to recover the original double by performing the
following procedure: Py, d x 107¢.

Executing this in a programming language will visually yield on screen the original number
8.0605. However, the exact bitwise representation of the original double has been lost in the
process. The correctness of the procedures fails to hold due to our number 8.0605 not being

48 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

areal double [112]. The real representation of the number 8.0605 as a double based on the
IEEE 754 definition is: 8.06049999999999933209 . To achieve lossless compression, this
has to be the exact result of our procedure P;... However, in our example Py, yields
8.0605000000000011084 . This is a consequence of the error introduced in the
multiplication by the inverse factor of 10 in P,,.. The latter turns out to be a double that does
not have an exact decimal representation either. Hence, 10~ is not 0.0001 but more
something like 0.000100000000000000002082. This error is introduced in the
multiplication, and reflected in the end result of the procedure Py,.. The P,,. procedure does
not suffer this problem since 10¢ has an exact double representation for e < 21.
Table 3.2:C11 depicts the percentage of doubles in each dataset that can be losslessly
represented by an integer d and an exponent e using the P,,. and P, procedures. But,
always using the visible precision of the doubles as the exponent e (e.g., for 0.0001, the
visible precision is 4; for 1.4297546, the visible precision is 7). This results in only 82.5%
of the values successfully encoded and decoded on average for all the datasets. However, in
some datasets, the success probability gets as low as 61.7%. We found the success of the
procedures P, and Py, to encode and decode the exact original doubles to depend on two
factors: (i) the real precision of the exponent e and (ii) the visible precision of the double n.

High exponents work for all values. Table 3.2:C12 shows the exponent e which leads to
the highest success-rate of P,,. and P;,. on each dataset. It is evident that higher exponents e
such as 14 and 16 are predominant, with an average of 95% successfully encoded values in
all of the datasets; and up to a rate of 99.9% in datasets such as SD-bench, Stocks-UK,
Medicare/9, Gov/31 and PM10-dust. The effectiveness of higher exponents stems from the
fact that the more we increase the exponent e the closer we can get to obtaining the real
double with the procedures. This is due to higher exponents e resulting in a more precise
inverse factor of 10 on P,.. For instance, 10~ represented as a double is equal to
1.00000000000000007771E~13. As a consequence, the result of P, is more accurate.
Furthermore, higher exponents are powerful because they are able to cover a wider range of
decimal precision. Moreover, as shown in Table 3.2:C13, when optimizing to use a different
exponent e per vector, we reach an average of 97.2% of successfully encoded values in all
the datasets. Based on these results, we question whether a different exponent e for each
value is needed — which is what PDE does.

However, by using higher exponents e the integers resulting from the procedure F,,. become
big (i.e., 64-bits). These high exponents that lead to big integers are not used by PDE since
they lead to a worse compression ratio than leaving the data uncompressed (because storing a
64-bit integer plus an exponent takes more space than a 64-bit double). Note that the doubles
in datasets such as NYC/29, POI-lat and POI-lon are only representable as big integers.

The 52-bit limit for integers. Exponent e 14 is the most successful in most of the datasets
to represent doubles as integers using P, and Py,.. This is due to the difference between the
exact value and the real value of 10~ !4 being too small to have an effect in Py, result.
However, there are two datasets in which even higher exponents e are needed (i.e., POI-lat,
POI-lon) because the visible precision of the double values inside those datasets on average
exceeds 14 (Table 3.2:C4). As we explain subsequently, when the order of magnitude of a
double n plus its visible decimal precision reaches 16, P, is prone to fail due to a limitation
of the IEEE 754 doubles.

3.2 DATASETS ANALYSIS 49

The multiplication inside P, yields a double due to having a double operand. Hence, before
rounding, our resulting integer d is a double. However, there is a known limitation to the
accuracy of the integer part of a double. Only the integers ranging from —233 to 2°3 can be
exactly represented in the integer part of a double number. Going beyond this threshold is
problematic. Between 2°3 and 2°*, only even integer numbers can be represented as doubles.
Similarly, between 234 and 2°3 only multiples of 4 can exist. Furthermore, doubles stop
having a decimal part after 23°. Hence, if a double multiplication yields a double higher than
233, results will be automatically rounded to the nearest existing double number. The latter
happens in P,,,. when the order of magnitude of the double plus the visible decimal precision
reaches 16. Hence, representing a number as an integer could be impossible in these cases
using Py, and Py,.. This is why POI-lat and POI-lon achieve a relatively low successful
encoding rate of 76.4% and 70.5% respectively. Also, this is why we stated earlier that 10¢
only has an exact double representation for e < 21.

3.2.6 UNEXPLOITED OPPORTUNITIES

All recently proposed competing floating-point encoding already exploit some of the
properties discussed in the previous subsections. However, there is room for substantial
improvement both in terms of compression ratio and [de]Jcompression speed.

Vectorizing Decimal Encoding. In subsection 3.2.5 we demonstrated that it is possible to
achieve near 100% success rate of our procedures P,,,. and Py, by using only one exponent
e for every vector. The current state-of-the-art Decimal-based approach PDE [83] embeds
the exponent e in every value. Hence, by exploiting this opportunity, compression ratio
could be improved.

Cutting trailing 0s with an extra multiplication. In subsection 3.2.5 we demonstrated that
high exponents e achieve the highest success rate on our procedures P, and Py, to store
doubles as integers. However, we also mentioned that using exponents such as 14 results in
64-bit integers being encoded. Despite this, we believe that using a unique exponent e per
vector opens the opportunity to encode big integers without instantly falling behind in
compression ratio against uncompressed values.

High exponents e in combination with low-precision decimals datasets (e.g., SD-bench,
City-Temp, Stocks-UK) result in 64-bit integers that contain tails of repeated trailing 0-digits
(e.g.,n~37.3 and e 14, yields P,,. 3730000000000000; n ~ 100.8333 and e 14, yields
P.ne 10083330000000000). These tails of repeated 0-digits will have the same length in
datasets with low magnitude variance and low decimal precision variance (e.g., SD-bench,
City-Temp, PM10-Dust). Cutting these tails with an extra multiplication with an inverse
factor of 10, namely f, results in a smaller integer that can be used to recover the 64-bit
integer with the inverse operation (i.e., a multiplication with a factor f of 10). Hence, we
can redefine P,,. and P, as follows:

ALP,,. round(n x 10¢ x 107/) 3.1)

ALPy,. dx 10/ x107¢ (3.2)

Based on the analysis done in subsection 3.2.5 one might fear that this new multiplication
with another inverse factor of 10 in ALP,,. could result in new rounding errors. However, the

50 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

error introduced by these inverse factors of 10 turns out to pose no problems. To illustrate,
with n =~ 8.0605, e 14 and f 10, ALP,,. and ALP,,. will execute as follows:

ALP,,,. round(8.06049999999999933209 x 10'* x 10710)

ALP,,. round(806049999999999.875 x 10~ '9)
ALP,,. round(80604.999999999985448) 80605 — d

ALP;,. 80605 x 10'0 x 10714
ALP,,. 8.06049999999999933209 n

In the third step of ALP,,,, the error introduced by 10710 is negligible for the resulting
integer d. Using this reducing factor f in the procedures is a way of taking advantage of the
high coverage and success rates of large exponents, without having to encode big integers d.
Note that this example is the same n we used at the beginning of subsection 3.2.5, which
could not be encoded by simply using e 4. Also, note how a tail composed of 9-digits can
also be reduced without any side-effect.

Limited Search Space. Until now, we have ignored the process of finding the exponent e for
our decimal-based encoding procedures ALP,,. and ALP,,.. The current state-of-art on
decimal-based encoding (i.e., PDE) performs a brute-force search for each value in a dataset
in order to find the exponent e. For our ALP procedures, an additional nested brute-force
search needs to be performed in order to find the best combination of exponent e and factor
f- We define the best combination as the one in which ALP,,. yields the smallest integer d
with which ALP,,. succeeds in recovering the original double n. This translates into a search
space of 253 possible exponent e and factor f combinations (given that f < e and

0 > e < 21). However, we have already discussed that most values inside a vector can be
encoded by using one single exponent. Furthermore, we have also mentioned that vectors
exhibit a low variance in their decimal precision and in their magnitudes. Hence, our
intuition was that the search space for the combination of exponent e and factor f can be
greatly reduced and that it should be done on a per-vector basis. In order to confirm this, we
computed the best combination for each vector in each dataset. For this experiment, the
search was performed on all the possible search space of 253 combinations for every vector.
Figure 3.3 shows that for most datasets a search space of 5 combinations is enough to obtain
the best combination among all vectors in the dataset. For some datasets such as Basel-wind,
Bird-migration, City-Temp, Wind-dir and IR-bio-temp, the entire search space is just one
combination.

Front-Bits Similarity. When the magnitude plus decimal precision exceeds 16, it is often
impossible to encode a double as an integer with our procedure ALF,,.. On such data,
decimal-based encoding would have to deal with integers bit-packed to more than 52 bits
(and similarly, Chimp variants would have to deal with trailing bit-strings of more than 52
bits). A basic observation is that such data is not very compressible in the first place (64-bit
data takes at least 52 bits); but nevertheless, compression may still be worthwhile.

We believe that the approach of a decimal-based encoding is not appropriate for such
compression-unfriendly data; and thus when encountering such data, our approach could

3.2 DATASETS ANALYSIS 51

Air-Pressure - = CMS/1
Basel-temp - CMS/25
Basel-wind - CMS/9

Bird-migration - == - Food-prices

Bitcoin-price =~ Gov/10

City-Temp - - Gov/26

§ Dew-Point-Temp - - Gov/30

8 IR-bio-temp - - Gov/31

S PM10-dust = - Gov/40
Stocks-DE - Medicare/1
Stocks-UK = - Medicare/9

Stocks-USA - NYC/29

Wind-dir - ~ POI-lat

Arade/4 - ~ POI-lon

Blockchain-tr - : : ~ SD-bench
0 50 100 O 50 100

Percentage of Vectors Covered

1st 2nd 3rd I 4th HEE 5th Other Combinations

Figure 3.3: Analysis of the best combinations of exponent e and factor f for each vector of 1024 values. For most
datasets, the best combination for any vector is found among a set of just 5 different combinations. For some
datasets, a single combination is always the best one.

adaptively switch to a different encoding strategy, that exploits regularities in the front-bits
in a vectorized manner. In Table 3.2:C10, even on these datasets (i.e., POI-lat, POI-lon) we
see that the exponent of the bitwise representation of a double exhibits a low variance. Data
with low variance can be compressed with lightweight integer encodings, such as RLE and
Dictionary — all building blocks provided by our FastLanes compression library [84].
Furthermore, based on the analysis of leading 0-bits from XOR-ing with the previous value
(Table 3.2:C14), on some of these datasets we should not limit this idea to just the exponent,
because the highest bits of the mantissa often are regular (if the data stems from a particular
value range).

3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

52

Table 3.2: Detailed metrics computed on the Datasets

Decimal Precision IEEE 754 Exponent Success of P,,. and P, Previous Value
. Values per Vector . .
Name | Max | Min | Non-Unique % | Avg. | Std. Dev. per Vector using one exponent ¢ per: XOR 0’s Bits
Avg. | Std. Dev. Avg. | Std. Dev. Value | Dataset | Vector Front | Trail.

Cl C2 | C3| C4 | CS5 c6 Cc7 Cc8 Cc9 Cl0 Cll Ci2 Ci3 Cil4 Cil5
Air-Pressure 5 0 49 | 03 | 74.7% 93.4 0.1 1021.5 0.0 63.2% | 14(99.4%) | 99.4% | 44.5 32.9
Basel-temp 11 5 6.3 | 04 | 26.2% 11.4 4.6 1025.5 1.0 64.3% | 14 (99.7%) | 99.7% | 14.0 2.6
Basel-wind 8 0 6.1 | 1.2 | 61.8% 7.1 4.1 1024.7 12.8 65.8% | 14(98.6%) | 98.6% | 14.2 3.1
Bird-migration 5 1 45 | 0.8 | 55.9% 26.6 6.0 1026.4 0.6 61.7% | 14 (93.8%) | 96.4% | 26.4 7.8
Bitcoin-price 4 1 39 | 04| 0.0% 19187.5 790.6 1037.0 0.0 84.2% | 14 (99.9%) | 99.9% | 20.6 1.0
City-Temp 1 0 0.9 | 0.3 | 60.3% 56.0 21.3 1028.3 1.6 67.3% | 14 (97.4%) | 97.4% | 15.8 11.0
Dew-Point-Temp | 3 0 2.8 1 03 | 19.3% 14.4 1.4 1026.0 1.1 80.2% | 14 (99.3%) | 99.3% | 16.8 1.5
IR-bio-temp 2 0 1.9 | 0.3 | 49.1% 12.7 4.2 1025.6 4.8 83.5% | 14 (99.3%) | 99.3% | 22.0 7.8
PM10-dust 3 0 2.8 1 0.2 | 93.7% 1.5 0.8 1016.1 1.2 88.8% | 14 (99.9%) | 99.9% | 40.5 38.3
Stocks-DE 3 0 24 105 | 89.2% 63.8 9.1 1027.8 0.3 84.2% | 14 (98.9%) | 99.1% | 24.9 5.8
Stocks-UK 2 0 1.2 | 0.6 | 88.1% 1593.7 317.1 1032.2 0.4 84.5% | 14 (99.9%) | 100.0% | 23.7 19.4
Stocks-USA 2 0 1.9 | 04 | 91.5% 146.1 11.7 1029.1 0.1 87.5% | 14 (98.6%) | 99.2% | 32.6 16.8
Wind-dir 2 0 19 [03| 3.9% 192.4 81.1 1029.8 1.2 90.0% | 14(99.5%) | 99.5% | 13.8 2.6
TS AVG. 39 | 05 0.5 | 54.9% 1646.7 96.3 1026.9 1.9 77.3% 94,8% 99.0% | 23.8 11.6
Arade/4 4 0 0.6 | 0.2% 738.4 389.8 1031.6 0.9 80.1% | 14 (99.5%) | 99.5% | 13.1 1.1
Blockchain-tr 4 0 0.6 | 0.6% | 638646.4 1.3E7 1031.8 12.5 76.3% | 14 (92.1%) | 92.3% 9.8 1.7
CMS/1 10 0 2.8 | 54.7% 97.0 110.0 1028.0 1.3 83.2% | 14 (98.5%) | 98.6% | 32.9 24.8
CMS/25 10 0 1.9 | 5.7% 12.6 19.2 984.1 179.1 68.0% | 14 (98.7%) | 98.7% 9.5 1.5
CMS/9 1 0 0.0 | 71.5% 235.7 908.5 1028.3 1.6 100.0% | 14 (99.9%) | 100.0% | 11.8 473
Food-prices 4 0 1.1 | 52.5% 6415.8 14656.8 1030.4 1.8 92.4% | 14 (99.2%) | 99.2% | 27.1 33.5
Gov/10 2 0 0.8 | 26.1% | 240153.6 1.6E7 873.5 298.8 90.5% | 14 (89.9%) | 95.9% | 13.8 18.8
Gov/26 2 0 0.0 | 99.5% 442.3 8036.8 4.6 11.9 100.0% | 14 (99.9%) | 100.0% | 63.7 63.8
Gov/30 2 0 0.3 | 89.7% | 10998.7 102748.6 115.6 170.6 98.6% | 14 (98.5%) | 99.4% | 56.6 57.1
Gov/31 2 0 0.1 | 96.0% 893.2 6288.2 69.9 57.4 99.1% | 14 (99.8%) | 99.9% | 60.6 60.9
Gov/40 2 0 0.0 | 99.1% 791.4 6650.9 12.1 18.7 99.9% | 14(99.8%) | 99.9% | 63.4 63.5
Medicare/1 10 0 2.9 | 41.3% 97.0 146.2 1028.0 1.6 83.2% | 14 (98.5%) | 98.6% | 25.2 16.6
Medicare/9 1 0 . 0.0 | 70.6% 235.7 1006.2 1028.3 1.7 100.0% | 14 (99.9%) | 100.0% | 11.3 47.1
NYC/29 13 0 | 129 | 03 | 51.0% -73.9 0.0 1029.0 0.0 93.7% | 14 (99.9%) | 100.0% | 38.9 23.2
POI-lat 20 0 | 159 |04 | 1.4% 0.6 0.4 1021.7 1.4 73.4% | 16 (74.1%) | 76.4% | 10.6 1.0
POI-lon 20 0 | 157 | 05| 0.8% -0.1 1.2 1022.0 4.0 64.6% | 16 (61.5%) | 70.5% 5.1 1.0
SD-bench 1 0 0.9 | 0.2 | 92.4% 446.0 521.5 1030.3 1.2 65.8% | 14(99.9%) | 100.0% | 17.4 15.8
NON-TS AVG. 64|00 | 42 | 0.7 | 50.2% | 52948.9 1745162.6 | 786.4 45.0 86.4% 95.1% 95.8% | 27.7 28.2
ALL AVG. 53,02 38 | 0.6 | 52.2% | 30717.9 988967.2 890.6 26.3 82.5% 95.0% 97.2% | 26.0 21.0

33 ALP 53

3.3 ALP

ALP is an adaptive lossless encoding designed to compress double-precision floating-point
data. ALP takes advantage of the opportunities discussed in subsection 3.2.6. Compression
and decompression are built upon the ALP,,. and ALP,,. procedures described in

section 3.2.6. Furthermore, ALP is able to adapt its encoding/decoding scheme if it
encounters high precision doubles by taking advantage of the similarity in the front-bits
uncovered in section 3.2.6. in both compression and decompression. In the following
subsections, we describe the key design aspects of ALP and how it implements adaptivity.

3.3.1 COMPRESSION

ALP compression is built upon the ALP,,, procedure (Formula 3.1). ALP tries to encode all
doubles n inside a vector v with the same exponent e and factor f. Inside the encoding, ALP
must verify that the procedures ALP,,, and ALP,,, yield the original double n. If the
original double n cannot be recovered, we treat the double as an exception. Algorithm 3.1
shows the pseudo-code for ALP encoding.

Vectorized Compression. ALP introduces the use of one exponent e and factor f for all
doubles inside the same vector. Note that PDE needs to store one exponent per value —
taking more space. Based on our empirical investigation, in order for this approach to be
successful we need to be able to use high exponents e. Hence, ALP does not limit the
encoded integers to int32 representations, but int64. Furthermore, ALP incorporates the
new idea of the factor f for reducing the trailing 0-digits, explored in subsection 3.2.6. After
multiplying with the factor, the resulting integer is small again and is then bit-packed
compactly, using the same number of bits for all values inside the same vector. The
exponent, factor and bit-width parameters do not use much space, as these parameters are
stored only once per vector (1024 doubles). The fact that all three parameters are the same
per-vector also means that the [de]compression work is regular and thus has no
control-instructions inside the loops, making them suitable for auto-vectorization.

Fast Rounding. The round operation is not supported in SIMD instruction sets. However,
ALP replaces the round function with a procedure (i.e. fast_double_round) that takes
advantage of the limitation of doubles to store exact integers of up to 52 bits, discussed earlier.
An algorithmic trick resulting from this limitation is that one can round a double by adding
and subtracting the following number: sweet, 2°! 252, In other words, we take the doubles
to the range in which they are not allowed to have a decimal part (between 252 and 2°%) and
are "automatically" rounded. For instance, to round a double n, fast_double_round will
2o as follows: nypungeq cast int64 (n sweet, — sweet,). This procedure is SIMD-friendly
since it only consists of one addition and one subtraction; operations supported by SIMD.
This rounding trick is also implemented in the Lua programming language. The use of
fast_double_round can be seen in Algorithm 3.1: Line 10.

Handling Exceptions. Values which fail to be encoded as decimals become exceptions.
Exceptions are stored uncompressed in a separate segment (i.e., exc_vec in Algorithm 3.1).
However, since our approach is vectorized, we cannot simply skip the exceptions in the
resulting vector of encoded values (i.e., encoded_vec in Algorithm 3.1). Hence, when
exceptions occur we store an auxiliary value in the encoded_vec (i.e., first_encoded in

O 00~ W LN =

54 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Algorithm 3.1: ALP Compression.

double i_F10 = {1.0, 0.1, 0.01, 0.001, ...};
double F10 = {1.0, 10.0, 100.0, 1000.0, ...};

// Adaptive search of exponent e and factor f in a vector
int e, f = ALP::ADAPTIVE_SAMPLING(input_vec, BEST_COMBINATIONS);

encoded_vec, exc_vec, = ALP::ENCODE([]() {

for (i = 0; i < VECTOR_SIZE; ++i){ // Encode the vector
double n = input_vec[i];
int64 d = fast_double_round(n * F10[e] * i_F10[f1); // ALP,,
encoded_vec[i] = d;
decoded_vec[i] = d * F10[f] * i_FlO[el; // ALP,,,

}

int exc_count = 0;

for (i = 0; i < VECTOR_SIZE; ++i) { // Find Exceptions
bool neq = (decoded_vec[i] !'= input_vec[i]);

[exc_count] = i;

exc_count += neq; // predicated comparison

}
int64 first_encoded = FIND_FIRST_ENCODED ();
for (i = 0; i < exc_count; ++i){ // Fetch Exceptions
encoded_vec| [i]] = first_encoded;
exc_vec| [i]] = input_vec[i];
}
3
FFOR (encoded_vec) ;

Algorithm 3.1 Line 20). This auxiliary value is the first successfully encoded d which is
obtained by the FIND_FIRST_ENCODED function in Algorithm 3.1: Line 20. Such value will
not affect negatively the bit-width of the encoded vector. Note that by searching for this value
after the encoding process we avoid an additional control statement in each iteration of the
main encoding loop. Further, we also need to store in another storage segment the position
in which each exception occurred within a vector (i.e., in Algorithm 3.1). For
v 1024, each exception has an overhead of 80 bits: 64 bits for the uncompressed value and
16 bits to store the exception position. Lines 15 to 25 in Algorithm 3.1 show the exception
handling process which is cleverly built to avoid control structures (i.e., if-then-else).

Fused Frame-Of-Reference (FFOR). By itself, ALP encoding does not compress the data.
Rather, it enables the use of lightweight integer compression to further encode its output.
Based on our study of data similarity in subsection 3.2.4, we decided to encode the yielded
integers using a Fused variant of the Frame-Of-Reference encoding available in the
FastLanes library called FFOR. FastLanes [84] proposes a new data layout to accelerate the
encoding and decoding of lightweight [de]compression methods with scalar code that
auto-vectorizes. FFOR fuses the implementation of bit-[un]packing with the FOR encoding
and decoding process into a single kernel that performs both processes. The FOR encoding
subtracts the minimum value of the integers in a vector; this will pick up on localized
doubles (inside a tight range) and reduce bits needed in the subsequent bit-packing. Fusing
saves a SIMD store and load instruction in between the subtraction and the bit-packing loop
(improving the performance). We note that it would also be possible to also fuse FFOR and
ALP; this is not done yet here, and could provide a performance boost, especially in
decoding.

However, there is some more headroom as a modern compression library (e.g., [83, 84])

33 ALP 55

could try multiple different integers encodings and also cascade these. For instance, if the
data is repetitive, one could use Dictionary coding, and compress the Dictionary with FFOR;
or use RLE and then separately encode Run Lengths and Run Values. If the data is
(somewhat) ordered, one could apply Delta encoding rather than FFOR to the Dictionary or
the Run Values.

3.3.2 ADAPTIVE SAMPLING

Our compression method does not perform a brute-force search for the exponent e and factor
f to use in a vector. Instead, to find the best e and f for a vector, we designed a novel
two-level sampling mechanism, inspired by the findings in subsection 3.2.6. Specifically,
from Figure 3.3, we conclude that there is a limited set of best combinations of exponent e
and factor f for the vectors in a dataset.

Our sampling mechanism goes as follows: on the first sampling level, ALP samples m
equidistant values from n equidistant vectors of a row-group. We define a row-group as a
set of w consecutive vectors of size v. The total number of values obtained from this first
sampling is equal to m x n. For each vector n; we find the best combination of exponent e
and factor f. This search is performed on the entire search space (i.e., 253 possible
combinations). The best combination is the one which minimizes the sum of the exceptions
size and the size of the bit-packed integers resulting from the encoded m values. This
process yields n combinations (one for each vector). From these n combinations we only
keep the k ones which appeared the most. If two combinations appeared the same amount of
times, we prioritize combinations with higher exponents and higher factors. It could be
possible that fewer combinations than k are yielded. If the same best combination is found in
every vector, there would only be 1 combination. Hence, we define during runtime a k’
which is smaller than or equal to k that represents the number of yielded combinations.
Once we have found the k” best combinations, we proceed to the second level of sampling.
The second level of sampling (Line 5 of Algorithm 3.1) samples s equidistant values from a
vector. Then, it tries to find the combination of exponent e and factor f which performs the
best on the s sampled values. However, this time, the search is performed only among the k’
best combinations found from the first sampling level. To further optimize the search, we
implemented a greedy strategy of early exit. If the performance of two consecutive
combinations, namely &}, and k,, is worse or equal to the performance of the combination &},
we stop the search and k; combination is selected to encode the entire vector. If k¥’ is equal to
1, this second sampling level is omitted for all the vectors inside the row-group.

The first level of sampling is the most computationally demanding process of our
compression scheme due to the large search space. However, it occurs only once per
row-group. Hence, the time spent is amortized into w x v encoded values. The second
sampling level happens once for each vector and it will only occur if k; 1. Hence, if the
sampling parameters (i.e., m,n,w,k and s) are tuned optimally, the second sampling level
will be skipped in datasets such as City-Temp or SD-bench, in which there exists only one
best combination for all the vectors in the dataset (Figure 3.3).

3.3.3 DECOMPRESSION
ALP decompression builds upon the ALP,,. procedure (Formula 3.2) to recover the original
doubles from a vector of integers d yielded by the encoding process. In order to do so, ALP

NN AN —

O 00 ~1\ W A LN —

W —=O

TS

16

oo

19

56 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Algorithm 3.2: ALP Decompression.
int e, f = ALP::READ_VECTOR_HEADER(input_vec);

int64_vec = UNFFOR(input_vec);
decoded_vec = ALP::DECODE([](int64_vec) {
for (i = 0; i < VECTOR_SIZE; ++i){
decoded_vec[i] = int64_vec[i] = F10[f] * i_F10[e]l }}); //ALP,,,
ALP: :PATCH(decoded_vec, exc_vec,)i

Algorithm 3.3: ALP,; Compression and Decompression.
// ENCODING //

p, DICT = ALP::RD::ADAPTIVE_SAMPLING(input_rowgroup);
left_vec, right_vec = ALP::RD::ENCODE([]() {
for (i = 0; i < VECTOR_SIZE; ++i){

double n = input_vec[i];

left_vec[i], right_vec[i] = ALP::RD::CUT(p);}
3
BITPACK(right_vec);
SKEWDICT_BITPACK(left_vec, DICT);

// DECODING //
p, DICT = ALP::RD::READ_ROWGROUP_HEADER() ;
left_vec = BITUNPACK_DECODEDICT(encoded_left_vec, DICT);
right_vec = BITUNPACK(encoded_right_vec);
decoded_vec = ALP::RD::DECODE([]() {
for (i = 0; i < VECTOR_SIZE; ++i){
intl6 left, int64 right = left_vec[i], right_vec[il];
decoded_vec[i] = ALP::RD::GLUE(left, right, p);}
1)

first reads from the vector header the unique exponent e and factor f used to encode the
vector. Then, ALP needs to reverse the FFOR integer encoding to recover each value. Values
encoded as exceptions are directly read from the exception segment alongside their position
on the original vector in order to correctly reconstruct it (i.e., patching). The pseudo-code
for ALP decoding is presented in Algorithm 3.2.

3.3.4 ALP,;: CoMPRESSION FOR REAL DOUBLES

During the first level of sampling ALP will detect whether the doubles in a row-group are
not compressible. In that case, ALP encoding would result in a high number of exceptions
and integers bigger than 2*%. Therefore, for such data, ALP changes its strategy to a different
encoding approach based on the analysis performed in subsection 3.2.6 which hinted to us
that even on these doubles, their front-bits tend to exhibit low variance. We named this
approach ALP,;, which stands for ALP for Real Doubles. ALP takes this decision at the
row-group level rather than the vector level, since we found no dataset in which the decimal
precision deviates on more than 3 decimals; hence taking this decision at a vector level
would neither be efficient nor effective. We believe that the data in 28 of the 30 datasets
analyzed originate as decimals and are thus not "real" doubles; however, we think that this is
representative of the majority of data people store in data systems as doubles. The encoding
and decoding of ALP,; are presented in Algorithm 3.3.

Encoding. The first level of sampling finds at a row-group level which is the smallest
position p > 48 where the highest 64-p front-bits still have low variance. Afterwards, it uses
this number p as the position to cut the bits of every double of that row-group in two parts

3.4 EVALUATION 57

(Line 6 of Algorithm 3.3). The right part is compressed using p-bits bit-packing (BP). The
position p is stored once per row-group (i.e., 8 bits of overhead per row-group, which can be
safely ignored). At first glance, this method does not achieve any compression, however, the
integers yielded from the left part are easily further compressible with integer lightweight
encoding methods. For the version of ALP presented here, we compress them using a fixed
method: skewed DICTIONARY+BP compression. A skewed dictionary is a DICTIONARY
encoding which tolerates exceptions. Here, exceptions are values not in the dictionary, and
these are stored as 16-bits values in an exception array, together with an array containing
16-bits exception positions. After sampling, we consider dictionaries of sizes 2% with b < 3
(i.e., just 1, 2, 4, or 8 values), and fill these with the most frequent values in the sample and
then choose the smallest dictionary size b 3 such that the exception percentage does not
exceed 10% (or else use b=3). We bit-pack the dictionary codes in b bits; and store the
dictionary as 16-bits values. Both BP and DICTIONARY encodings implementations are
available in our FastLanes library[113].

Decoding. The b bits dictionary-codes are bit-unpacked using a fast vectorized
bit-unpacking primitive (that does this for the entire vector of 1024 values in one go) and
(64-p) bits right parts of the doubles as well. Dictionary decompression requires one
memory load from the dictionary for every code; which is relatively expensive. In SIMD it
can be implemented with a gather instruction, but this is not supported on all CPU
architectures nor does this instruction tend to be fast; hence we do not use such an approach
(explicitly). Because we use small dictionaries of size <23 8 and the front-bits are
maximally 16-bits wide; we note that we could implement decoding by preloading the
dictionary (maximally 8x16-bits values) in a 128-bits SIMD register and then use a shuffle
instruction. However, the results presented in this chapter are based on purely scalar
dictionary decompression code, leaving space for improvement. Finally, we glue both parts
together by left-shifting p bits the dictionary-decoded front-bits, after applying exception
patching [99, 114] and adding in the decompressed right part (using vectorized SHIFT and
OR, fused together in a GLUE primitive seen in Line 18 of Algorithm 3.3). Notice again that
all operations are performed in a tight loop over arrays (vectorized query processing [86])
and the work is regular in nature such that C++ compilers get to very efficient code. Only the
exception patching has some data dependencies and random memory access, but it is
performed on a minority of the data only — limiting its performance effects.

3.4 EVALUATION

We experimentally evaluate ALP with respect to its compression ratio and [de]compression
speed using all analyzed datasets in Table 3.1 against six competing approaches for lossless
floating-point compression: Gorilla [95], Chimp / Chimp128 [96], Patas [97], EIf [43] and
PDE [83]. Furthermore, we also compare against one general-purpose compression
approach: Zstd [92]. To further test the robustness of ALP we tested its speed on different
hardware architectures which are described in Table 3.3 and using Auto-vectorized, Scalar
and SIMDized code. In subsection 3.4.3 we present end-to-end query speed benchmarks of
ALP on Tectorwise [61] to test its performance in a real system. Finally, in subsection 3.4.4

58 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Table 3.3: Hardware Platforms Used

[Architecture [Scalar ISA[Best SIMD ISA [CPU Model [Frequency|

Intel Ice Lake [x86_64 AVX512 8375C 3.5GHz
AMD Zen3 x86_64 AVX2 (256-bits) |[EPYC 7R13 |3.6 GHz
Apple M1 ARM64 |INEON (128-bits)|Apple M1 |3.2 GHz

AWS Graviton2

ARMO64

NEON (128-bits)

Neoverse-N1

2.5GHz

AWS Graviton3|ARM64 |NEON (128-bits)|modified 2.6 GHz

SVE (variable) [Neoverse-V1

we present a version of ALP for 32-bits floats and evaluate it on machine learning data.

Sampling Parameters. Based on Figure 3.3, we defined the maximum number of
combinations k as 5. The number of vectors w inside a row-group is fixed to 100 to
emulate the usual modern OLAP engines row-group sizes (e.g., DuckDB [87]). The size of
every vector v is fixed to 1024 to comfortably fit in the CPU cache [30]. On the first
sampling level, the number of vectors sampled per row-group m is set to 8, and the number
of values sampled per vector n is set to 32. Finally, on the second sampling level, the number
of values sampled per vector s, is set to 32. m, n and s were tuned during evaluation and
showed to yield a good trade-off between compression ratio and speed.

Algorithms Implementations. ALP is implemented in C++ and is available in our GitHub
repository!?. ALP uses the FastLanes library [113] to perform the lightweight encoding and
decoding on its output (i.e., FFOR, DICTIONARY, BP). Gorilla, Chimp, Chimp128 and Patas
were implemented in C++. Gorilla was implemented by ourselves, and the other
implementations were stripped from the DuckDB codebase [115] and adjusted to work as
standalone algorithms. Note that Gorilla is part of a closed-source Facebook system. On the
other hand, PDE and Elf'! benchmarks were carried out using code from the original
authors. Finally, we used Facebook’s implementation of Zstd in C [92], configured at the
default compression level (3).

3.4.1 CoMPRESSION RaTIO

Table 3.4 shows the compression ratios of all approaches measured in bits per value
(uncompressed, each value is a 64-bit double). In this experiment the algorithms compressed
all vectors in a dataset. The best-performing floating-point approach is marked in green.
ALP evidently stands out from the other floating-point encoding schemes in compression
ratio. ALP shows an average improvement of ~31% compared to PDE. When compared to
Gorilla, Patas, Chimp, and Chimp128, ALP is respectively ~49%, ~=39%, ~43% and ~24%
better. In time series datasets ALP achieves a ~33% and ~46% improvement over
Chimp128 and PseudoDecimals. Similarly, on non-time series data, ALP performs better
than both by a ~219% and ~21% on average. Elf is ALP’s most fierce competitor in terms of
compression ratio — excluding Zstd. On the other hand, Zstd is the only compression
algorithm that slightly takes the upper hand in compression ratio with 20.6 bits per value on

10https ://github.com/cwida/ALP
https://github.com/Spatio-Temporal-Lab/elf

https://github.com/cwida/ALP
https://github.com/Spatio-Temporal-Lab/elf

3.4 EVALUATION 59

average. Even so, ALP is slightly better than Zstd on time series data. One has to take into
account that Zstd has a much lower [de]compression speed and, being block-based, has the
disadvantage that one cannot optimally skip through compressed data. For instance, in
Zstd’s 256KB block-based compression, a system has to decompress 32 8KB vectors, even if
31 of those 32 vectors are not needed.

When ALP shines. ALP outperforms Chimp128 and Elf on datasets with fixed or low
decimal precision or with a low percentage of repeated values (e.g., Blockchain-tr, Arade-4,
Dew-Point-Temp, Bitcoin-price). In other words, ALP gets its best gains when the doubles
were generated from decimals. ALP performs better than Chimp128 in 27 out of 30 datasets,
and better than PDE in the same amount. In fact, ALP is at most 2 bits worse than
PseudoDecimals on CMS/9 and Medicare/9. Both these datasets contain mostly integers
encoded as doubles (Table 3.1). PDE benefits from such data since O bits are stored after
applying BP to the exponents output due to the exponents always being equal to 0.
Nevertheless, on these types of datasets Decimal-based encoding approaches are much better
than XORing approaches. When ALP encounters real doubles, ALP,; comes into the
equation. There are two datasets for which ALP failed to achieve any compression and
ALP,; encoding was used: POI-lat and POI-lon (marked with *). These datasets are
characterized by almost 0% of repeated values and a maximum decimal precision of 20
(Table 3.2:C2). In both datasets, these compression ratios achieved by ALP,; represent an
improvement over all the other floating-point compression approaches.

When ALP struggles. ALP struggles to keep up with both Elf and Chimp128 on datasets in
which the XORing process benefits from a high percentage of repeated values and the
decimal-based encoding process is hindered by a high variability in value precision. Those
datasets are: CMS/1, Medicare/1 and NYC/29. Despite ALP encoding also taking advantage
of similar data, the profit of Chimp128 / EIf when it can find an exactly equal value is much
higher than the profit that ALP can get. Nevertheless, on data with many duplicates, we
question whether floating-point encodings were the best decision in the first place. For
instance, due to the high percentage of repeated values we could plug-in a DICTIONARY
encoding before applying a floating-point encoding (or RLE, if the repeats are consecutive).
We in fact tried using DICTIONARY and then compressing the dictionary with ALP, allowing
it to achieve 33.1, 35.7 and 24.7 bits per value for CMS/1, Medicare/1 and NYC/29
respectively. The compression ratios that ALP is able to achieve by cascading compression
using another lightweight encoding (i.e., DICTIONARY or RLE) are shown in the penultimate
column of Table 3.4. By doing so, ALP even beats Zstd in compression ratios while still
retaining its advantages (higher speed, compatibility with predicate-pushdown).

3.4.2 [DE]COMPRESSION SPEED

We measured speed as the amount of tuples (i.e., values) that an algorithm is capable of
[de]-compressing in one CPU clock cycle. In order to do so we took a vector within each of
our datasets (i.e., 1024 values) and executed the [de]compression algorithms. The measure
tuples per cycle is then calculated as 1024 divided by the number of computing cycles the
process took. We chose one vector as the size of the experiment since every float compressor

we compare against is optimized to work over a small block of values at a time; except Zstd.

As such, we increased the size of the experiment for Zstd to one rowgroup (i.e. roughly 1

60 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Table 3.4: Compression ratio measured in Bits per Value. The smaller this metric, the more compression is achieved
(uncompressed data is 64 bits per value). ALP achieves the best performance in average (excluding zstd). *: ALP,;
was used.

Dataset | Gor. | Ch. fzhs Patas | PDE | EIf | ALP LZ{CP* Zstd
Air-Pressure | 24.7 [23.0 [193 | 279 | 302 | 10.5 | 16.5 | 11.9% || 8.7
Basel-Temp | 61.6 | 54.1 | 31.2 | 36.5 | 39.3 | 329 | 29.8 | 13.8% | 183
Basel-Wind | 63.2 | 54.7 | 384 | 489 | 35.1 | 34.5 | 29.8 | 10.3% || 14.6
Bird-Mig 487 | 419 | 263 | 359 | 352 | 199 | 20.1 | 19.84< || 21.0
Btc-Price 51.5 | 482 | 45.1 | 57.1 | 44.1 | 319 | 264 26.4 49.9
City-Temp 59.7 | 462 | 23.0 | 242 | 31.5 | 15.1 | 10.7 | 10.0% || 16.2
Dew-Temp | 562 | 51.8 | 32.6 | 39.0 | 295 | 17.7 | 13.5 13.5 20.9
Bio-Temp 519 | 463 | 189 | 229 | 234 | 13.0 | 10.7 10.7 14.5
PMI10-dust | 27.7 | 244 | 13.7 | 199 | 129 | 7.1 8.2 8.2 6.9
Stocks-DE | 46.9 | 429 | 13.6 | 20.8 | 25.1 | 123 | 11.0 11.0 9.4
Stocks-UK | 35.6 | 31.3 | 16.8 | 21.5 | 26.1 | 11.0 | 12.7 12.7 10.7
Stocks-USA | 37.7 | 350 | 122 | 192 | 26.1 | 88 | 7.9 7.9 7.8
Wind-dir 59.4 | 539 | 27.8 | 282 | 31.5 | 22.1 | 159 15.9 24.7
TS AVG. 48.1 | 42.6 | 245 | 309 | 30.0 | 182 | 16.4 13.2 17.2

Arade/4 58.1 | 55.6 | 49.0 | 59.1 | 33.7 | 30.8 | 24.9 249 33.8
Blockchain 65.5 | 583 | 532 | 626 | 39.1 | 39.2 | 36.2 36.2 38.3
CMS/1 37.8 | 34.8 | 282 | 36.8 | 40.7 | 254 | 357 | 33.14! || 245
CMS/25 65.4 | 59.5 | 572 | 70.1 | 63.9 | 48.6 | 41.1 | 27.1"¢ || 56.5
CMS/9 17.1 | 187 | 25.7 | 26.0 9.7 | 15.8 | 11.7 | 11.3% || 147
Food-prices | 40.8 | 28.0 | 24.7 | 283 | 254 | 16.8 | 23.7 23.7 16.6
Gov/10 58.1 | 45.7 | 342 | 359 | 356 | 30.1 | 31.0 31.0 27.4
Gov/26 24 23 | 93 16.2 0.9 4.2 0.4 0.2"% 0.2
Gov/30 103 | 89 | 129 | 193 8.2 8.0 7.5 6.2 42
Gov/31 5.7 50 | 104 | 17.1 2.8 54 3.1 2.5Me 1.5
Gov/40 2.7 26 | 94 16.4 1.2 4.3 0.8 0.5"% 0.4

Medicare/1 459 | 427 | 323 | 399 | 428 | 29.9 | 39.4 | 35.7%c || 28.7
Medicare/9 179 | 19.1 | 26.0 | 26.3 102 | 16.0 | 12.3 | 1139 || 14.9

NYC/29 30.8 | 29.6 | 28.7 | 38.8 | 69.3 | 32.6 | 40.4 | 2479 || 20.5
POI-lat 66.0 | 57.7 | 57.5 | 71.7 | 693 | 62.5 | 55.5% | 55.5% 48.1
POI-lon 66.1 | 63.4 | 63.1 | 759 | 69.2 | 68.7 | 56.4% | 56.4%* 53.1

SD-bench 51.1 | 457 | 19.2 | 23.0 | 30.6 | 184 | 162 | 12,04 || 11.8
NON-TS 37.7 | 340 | 31.8 | 39.0 | 32.5 | 269 | 25.7 231 23.3
ALL AVG. | 42.2 | 37.7 | 28.7 | 355 | 314 | 231 | 21.7 18.8 20.6

3.4 EVALUATION 61

Table 3.5: Average compression and decompression speed as tuples processed per computing cycle of all datasets
on the Ice Lake architecture.

Tuples per CPU Cycle (Higher is better)

Algorithm Compression ALPis Decompression ALP is
faster by: faster by:

ALP 0.487 - 2.609 -
Chimp 0.042 12x 0.039 66x
Chimp128 0.040 12x 0.040 65x
Elf 0.010 47x 0.012 215x
Gorilla 0.052 9x 0.047 55x
PDE 0.002 251x 0.387 7x
Patas 0.060 8x 0.157 17x
Zstd 0.035 14x 0.101 26x

MB of data). In order to correctly characterize CPU cost, we repeated this process 300K
times and averaged the result, to ensure all data is L1 resident. In this experiment, we prefer
the metric tuples per cycle over elapsed time since it is a more effective comparison method
across platforms. Furthermore, this metric makes Zstd speed measurements comparable
regardless of the input data size. This experiment was performed on Ice Lake.

Figure 3.1 shows the result of this experiment. ALP clearly outperforms every other
algorithm in both compression and decompression speed in every dataset; even being able to
achieve sub-cycle performance in decompression. This speed measurement also includes the
FFOR encoding and decoding in ALP. Table 3.5 shows the average amount of tuples per
cycle processed in compression and decompression for every algorithm along all datasets.
ALP is faster than all other approaches in both compression and decompression.

ALP is =7x faster than PDE; which is the second-best at decompression speed. However,
PDE is also the slowest at compression (251x slower than ALP) due to the brute force and
—per value- search for a viable exponent e to encode the doubles as integers. Furthermore,
ALP is ~8x faster than Patas, which is the second-best at compression speed. This was
expected since Patas is a single-case byte-aligned variant of Chimp optimized for decoding
speed. On the other hand, EIf speed under-performed against the other algorithms, with ALP
being ~47x times faster in encoding and ~215x faster in decoding. This was also expected
since Elf is a variant of Gorilla tailored to trade speed for more compression ratios. Hence,
the fact that ALP achieved higher compression ratios than Elf is remarkable. ALP is x55
faster than Gorilla at decompression since the latter has complex if-then-else (i.e. branch
mispredictions) and data dependencies that not only cause wait cycles, but also prevent
SIMD. Zstd resides in a middle position in that it achieves better compression speed than
PDE and Elf, and decompression speed only slower than Patas and PDE.

ALP on Different Architectures. In order to investigate the performance robustness of
ALP, we evaluated it on all currently mainstream CPU architectures, as described in

Table 3.3. CPU turbo-scaling features were disabled when available to allow for reliable
tuples-per-cycle measurements. In our presentation here we just show results for
decompression speed (due to space reasons) as this is the most performance-critical aspect

62 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

°
° : .
g % 204 “oe @® Auto-Vectorized
2> o Scalar
2 ; ® SIMDized
o 1.5 7
20
D 5y
qé 8 1.0 9 "08 $%9)
E g (-.. W .'k.‘
SE o8 6
S 505 - T I
a e LA (@O @0 (O L)
T T T T T
Graviton2 Graviton3 Ice Lake M1 Zen3

Architectures

Figure 3.4: Decompression speed measured in tuples per cycle on different architectures. Each dot represents the
decompression performance on a dataset in a different architecture.

for analytical database workloads. Furthermore, on each architecture we tested three
different implementations of our decoding procedure: SIMDized, Auto-vectorized and
Scalar. The SIMDized implementation uses explicit SIMD intrinsics. The Auto-vectorized
implementation is the Scalar implementation automatically vectorized by the C++ compiler.
Finally, the purely Scalar implementation is obtained when we explicitly disabled the
auto-vectorization of the C++ compiler by using the following flags: -03
-fno-slp-vectorize -fno-vectorize. Figure 3.4 shows the results of this experiment.
We can see how Auto-vectorized and SIMDized on Ice Lake yield the best performance
results. This is due to this platform having the widest SIMD register of all the platforms at
512-bits. We can also see that Gravitons have weak SIMD performance (compared to
Scalar). Furthermore, in every platform Auto-vectorization matches or surpasses Scalar
code. However, Zen3 auto-vectorized performance is hurt by the scalar code using the
built-in rounding function due to the lack of a SIMD instruction to perform the cast from
double to int64 in our fast rounding procedure.

Kernel Fusion. We performed speed comparisons of our decompression between
FFOR+ALP as a fused kernel and as two separate kernels. The plot at the left of Figure 3.5
shows the result of this experiment. Fusing increases the decompression speed by a median
~40% (but for some datasets 6x). However, the vectors from our datasets used for this
experiment do not cover all the possible bit-widths that FFOR could use. The latter is a
known factor that may affect the performance of vectorized execution [101]. Hence, for
robustness purposes, we performed an additional comparison on synthetic integer vectors
generated with a specific vector bit-width from 0 to 52. Bit-widths from 52 to 64 are omitted
from this analysis since on these bit-widths ALP,; is used. The right plot of Figure 3.5 shows
the result of this experiment.

Sampling Overhead in Compression. ALP implements a two-level sampling mechanism
to find the correct encoding method and parameters, described in section 3.3.2. The first
level samples row-groups and the second level is done for every vector. We analyze the

3.4 EVALUATION 63

9.5 9.5

® Fused . * ® Fused
9.0 Non-Fused . * 9.0 [Non-Fused
8.5 8.5

o
T9
o &
oo
=1
A
gU
28 2 o, o
2&
=]
E5
o=
b
Rg

|
2
> 2 [N
o ? S /\
.c"’ - "0‘-0'1‘\00."-.-‘.01&.07. P o D U NP

. o o
0000 Tae,

)

T T T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Bitwidth of Vector

Datasets

Figure 3.5: Speed comparison of ALP decoding with and without fusing ALP and FFOR into one single kernel (Ice
Lake). Tests performed on our analyzed datasets (left) and on generated data with specific vector bit-width (right).
ALP benefits from fusing consistently with a ~40% decompression speed increase (and sometimes much more).

performance cost of the second sampling level, since it is on the performance-critical path of
ALP compression.

When the first level sampling yields only one potential combination (e.g., Bird-Migration,
Bitcoin-Price), there is 0 sampling overhead at a vector level for the entire row-group since
ALP already knows which combination of exponent and factor to use for all the vectors.
This occurs on ~=54% of the vectors in our datasets. However, when ALP has to perform the
second-level sampling, there is a non-negligible overhead at compression. From our
experiments, this overhead represents on average ~6% of the total compression time. The
latter is a trade-off for fast decompression; which in the context of analytical databases is a
more often-used operation than compression. This overhead is bounded by & factor and
exponent combinations, which was set to 5 in our evaluation. 22.9% and 20.0% of the
vectors tried 2 and 3 combinations respectively in search of the best one. Only 2.9% and
0.3% of the vectors tried 4 and 5 combinations respectively on the vector sample.

Finally, we have also found that the best combination yielded from a brute-force search on
the entire search space only improved compression ratio by less than 1% on average. Thus,
demonstrating the efficiency and portability of our fixed sampling parameters across all
datasets.

ALP,; speed. Doing a side-by-side comparison ALP,, is on average ~3x slower in
compression and ~4x slower in decompression than the main ALP encoding. In fact, the
two datasets in which ALP,; was used can be seen at the bottom of ALP green dots in Figure
3.1. Although ALP,; is still remarkably performant compared to the competitors, we deem
this speed reduction necessary to achieve compression on these types of doubles, which
present problems for every floating-point compression scheme. We believe there is room for
improvement since ALP,; encoding and decoding are not fused into one single kernel due to
current implementation limitations. However, given that [de]Jcompression in almost any
encoding gets faster at high compression ratios, this result is not surprising: ALP,; is used
when only low compression ratios can be achieved (maximum ~=1.2x).

3.4.3 END-TO-END QUERY PERFORMANCE

We benchmarked end-to-end query speed of ALP and the other floating-point compressors,
when integrated in the research system Tectorwise [61]. The difference with our
micro-benchmarks is that a complete dataset is decompressed by Tectorwise’s scan operator

64 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Table 3.6: End-to-end performance on City-Temp in the Tectorwise system, measured in Tuples per CPU cycle per
core. ALP is even faster than uncompressed, and extends its lead w.r.t. the micro-benchmarks. The competitors are
so CPU bound that they scale well in SCAN (=speed stays equal), while ALP and uncompressed drop speed when
running multi-core, due to scarce RAM bandwidth. But when doing query work (SUM), speed is lower, and scaling
is not an issue for ALP.

Tuples per CPU Cycle (Higher is Better)

Algorithm QUERY | THREADS

SCANI|1 [SCANI8 | SCAN[16 | SUMI|1 [SUM|8 | SUM[16 | COMP
ALP 1.337 1.074 0.882 0.233 0.230 0.234 0.147
Uncompressed | 0.565 [x2 slower [] | 0.408 0.350 0.197 [x1.2][] | 0.186 0.175 N/A
PDE 0.070 [x19 }] 0.071 0.071 0.058 [x4] 0.057 0.057 | 0.001 [x138 }]
Patas 0.067 [x20 }] 0.063 0.065 0.055 [x4] 0.055 0.055 0.039 [x4]
Gorilla 0.030 [x44]] 0.030 0.030 0.028 [x8] 0.027 0.027 0.023 [x7]
Chimp 0.021 [x64 |] 0.021 0.021 0.019 [x12] | 0.019 0.019 0.015 [x10 |]
Chimp128 0.028 [x47 |] 0.028 0.028 0.026 [x9] 0.026 0.026 0.019 [x8 |]
Zstd 0.044 [x31 |] 0.042 0.039 0.038 [x6 /] 0.037 0.035 0.014 [x11 /]

Gov/26 (0.4 bits/value on ALP) City-Temp (10.7 bits/value) Food-prices (23.7 bits/value) Blockchain-tr (36.2 bits/value) NYC/29 (40.4 bits/value)

Better]

CPU Cycles per Tuple

[Lower

ALP Unc. PDE Patas Gor.

Figure 3.6: End-to-end SUM query execution speed for 5 datasets in Tectorwise (Ice Lake) measured in CPU cycles
per Tuple. ALP is faster than all other schemes (even faster than uncompressed), while achieving perfect scaling
(=speed stays the same) when using multi-core. Results show that SCAN is virtually free if data is compressed with
ALP. PDE can’t compress NYC/29.

(SCAN), rather than only a small part. Also, in the SUM experiment, the scan operator feeds
data vector-at-a-time into an aggregation operator; using the vectorized query execution of
Tectorwise. We scaled all datasets up to 1 billion doubles by concatenation (8GB
uncompressed). We also test compression performance, which writes the compressed data.
This also writes extra meta-data for the compressed blocks, at the least byte-offsets where
they start, but for PDE and ALP also offsets where their exceptions start, as well as any other
compression parameters (like bit-width for bit-packing).

For presentation purposes, we picked five datasets with diverse characteristics, such as
magnitude, decimal precision, XORed 0’s bits, and compressability. These datasets are:
Gov/26, City-Temp, Food-Prices, Blockchain-tr and NYC/29. We benchmarked 3 queries:
COMPRESSION (COMP), SCAN and SUM (Aggregation). For SUM and SCAN we also
benchmarked the scaling of every algorithm when using multiple cores (up to 16). This
experiment was again carried out on Intel Ice Lake in a machine with 16 cores (32 SMT) and
256GB of RAM with a bandwidth of 18.75 Gibps. The reported results are the average of 32
executions of one query. Elf was not included in this analysis due to the lack of an
implementation in C++.

SUM and SCAN. Table 3.6 shows that in the single-threaded SCAN | 1 experiment, the

achieved 1.33 Tuples per CPU cycle is in line with the microbenchmarks shown in Figure 3.5
— though there is about a 25% drop in performance in the end-to-end situation compared to
these. We attribute this to: (i) the extra effort in reading block meta-data (not present in the

3.4 EVALUATION 65

micro-benchmarks), (ii) the interpretation cost of choosing and calling a decompression
function based on the meta-data (always the same and thus free of CPU branch
mispredictions in the micro-benchmarks) and (iii) the variable amount of exceptions present
in the entire dataset.

Given these extra activities in end-to-end, and just a 25% drop, we deem our
micro-benchmarks as representative of core decompression work achieved in end-to-end
situations. What is further striking is that SCAN and SUM on ALP is faster than on
uncompressed data, and the fact that ALP extends its performance lead over the competitors
in the end-to-end benchmarks, compared to the micro-benchmarks. Note, however, that the
micro-benchmark results were aggregated for all datasets (Table 3.5) so one should not
directly compare with these tables.

Regarding multi-threading, the performance metrics in Table 3.5 and Figure 3.6 are per-core,
hence equal performance would be perfect scaling. As all cores of the CPU get loaded,
per-core ALP SCAN performance slightly drops — which also happens for uncompressed.
This is caused by the query becoming RAM-bandwidth bound. However, in the SUM
experiment, there is additional summing work (although not much) and therefore the query
runs slower. As a result, ALP is able to scale perfectly while uncompressed is not.

Note that in Figure 3.6 the performance metric is reversed: lower is better. We present the
summing work in the SUM query (=SUM-SCAN, because SUM also scans) as the lower
part of the stacked bar: it is roughly 3 cycles per tuple. Figure 3.6 confirms our results
across the board: ALP is much faster end-to-end than the other compressors, even faster than
uncompressed, and scales well.

COMP. ALP again is the fastest when compressing (Table 3.6): it is x4 and x7 times faster
than the second and third-best algorithms in the City-Temp dataset (i.e. Patas, Gorilla) while
still maintaining distance from Zstd (x11 slower) and PDE (x138 slower). COMP end-to-end
performance is lower than in our micro-benchmarks. We attribute this to: (i) the extra effort
in storing meta-data, (ii) the variable amount of exceptions (which are rather costly at
compression time) and (iii) the first sampling phase which was not present in the
micro-benchmarks.

3.4.4 SINGLE PRECISION AND MACHINE LEARNING DATA

We have also ported ALP to 32-bits. Those of our double datasets with decimal precision
<10, can be properly represented as 32-bit floating-point numbers (all except POI’s, Basel’s,
Medicare/1, and NYC/29); and 32-bit ALP works on them. This leads to the same
compressed representation as in 64-bits (Table 3.4); but given that the uncompressed width
is 32-bits, the compression ratio is halved (and becomes ~1.77).

A currently relevant different kind of 32-bit floats are found in trained machine learning
models (i.e., the weights). However, these were created out of many multiplications and
additions, and hence tend to have high precision. Still, there will be commonalities in their
sign and exponent parts (IEEE 754) that ALP,; could take advantage of. Therefore, we also
ported ALP,; to 32-bits and benchmarked it on four different ML models, against those
competing schemes that have a version for 32-bit floats (i.e. Gorilla, Chimp, Chimp128,
Gorilla) as well as Zstd. The results of this experiment are in Table 3.7; with ALP,; for
32-bit floats achieving the best compression ratios out of all the other algorithms (28.1

66 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

Table 3.7: Compression ratios (bits/value) that ALP,;32 and its competitors achieved on machine learning models’
weights (32-bits floats). ALP,;32 achieved the best compression ratio.

Name Model Type Ear(:;ns. Gor. | Ch. ;:2118 Patas | ALP,; | Zstd
Dino-Vitb16 [117] Vision Transformer | 86,389,248 || 34.1 | 334 | 334 45.8 28.3 | 29.7
GPT2 [118] Text Generation 124,439,808 || 34.1 | 33.5 | 33.5 45.6 27.7 | 29.7
Grammarly-lg [119] | Text2Text 783,092,736 || 34.1 | 33.4 | 334 45.5 27.7 | 29.6
W2V Tweets Word2Vec 3,000 || 34.1 | 33.3 | 33.3 45.5 28.8 | 29.8

AVG. || 34.1 | 334 | 334 45.6 28.1 | 29.7

bits/value; ~212% of reduction). In fact, it is the only floating-point encoding to achieve
compression. Alternatively, model weights are usually quantised (i.e. lossy reduction of
precision) when deployed for inference[116]. However, if this is not desired or possible;
ALP,; thus can provide some useful lossless compression for ML.

3.5 RELATED WORK

The techniques developed for floating-point compression can be categorized mainly into
three groups: (i) Predictive schemes, (ii) XOR schemes and (iii) Integer encoding schemes.

Predictive Schemes were one of the first novel approaches designed to compress
floating-point data [85, 120, 121]; even in the context of geometry data [122, 123]. In these
approaches, a function is used to generate a predicted value based on patterns found within
the data prior to the value to encode. The idea behind this approach is that the predicted
value and the value to encode are similar enough such that an operation (usually ADD)
between their exponent and mantissas represented as integers yield a compressible chain of
bits. Ratanaworabhan et al. [110] demonstrated that such an operation could be a bitwise
XOR. Based on that, Burtscher and Ratanaworabhan developed FPC [111], which achieved
better compression ratios and speed compared to previous approaches.

XOR Schemes. Pelkomen et al. [95] re-evaluated the predictor function to obtain a similar
value to the value to encode. Their key idea was that in certain contexts such as time series,
using the immediate previous value works as well as using a predictor. This assumption
motivated the development of Gorilla. Gorilla compresses floats by doing a bitwise XOR
with the immediate previous value. Next, it encodes the resulting chain of bits as 0 in case of
a perfect XOR (i.e. equal values), otherwise, it encodes the resulting number of leading
zeros and significant bits. Gorilla is faster on [de]Jcompression than prediction schemes since
encoding and decoding are achieved using a simple XOR with the immediate previous value
instead of tuning and running a prediction function.

Gorilla Variants. Chimp [96] refined Gorilla by exploiting properties of the bit-chains
yielded by the XORing process in time series data. Chimp distinguishes four different
encoding modes based on the number of leading and trailing zeros of the XOR result to
optimize compression ratios. It was jointly developed with a variant called Chimp128 in
which the algorithm looks into the previous 128 values in order to find the most suitable
value to XOR at the expense of 7 additional bits to store the position of this value. This idea

3.6 DiscussioN 67

of looking among previous values for the XOR was first introduced by Bruno et al. [124].
Chimp128 proved to be substantially better than FPC, Gorilla and other general-purpose
compression schemes (e.g. Snappy, LZ4) in terms of compression ratio and speed [96].

In order to improve Chimp decompression speed, DuckDB Labs developed Patas [97]. The
goal was to get a variant of Chimp128 faster at [de]compression, which it achieves by its
design with a single encoding mode (fewer branch-mispredictions) and byte-aligned
bit-manipulation (less CPU work). Patas encodes for every value a block of 2 bytes
containing the 7 bits previous value index, the number of significant bytes and the number of
trailing zeros. Patas trades compression ratio for a ~75% speed improvement at
decompression time compared to Chimp128. In the context of analytical databases
decompression speed is important for obtaining fast query results. On the other hand, a
recently proposed XOR scheme called Elf [43] trades [de]Jcompression speed for
compression ratio by erasing bits from the mantissa at encoding time to make the XOR result
more compressible. Afterwards, it losslessly reconstructs the double at decoding. As seen
by our results, Elf gains ~19% in compression ratio over Chimp128 at the expense of ~4x
slower compression and decompression. In contrast to Patas and Elf, ALP improves
Chimp128 in all aspects.

While Chimp128 seemed to be clearly superior to Gorilla, our results show that it can
actually perform better than Chimp128 (and even EIf) in datasets with consecutive runs of
zeros (e.g. Gov/26, Gov/40). On this type of data Gorilla (and also Chimp) do not need the
extra 7-bits to make a reference to one of the past 128 values since the most optimal value to
XOR is always the previous one. Hence, Chimp128 is not always the best XOR-based
encoding. It does depend on the data characteristics.

Integer Encoding Schemes. Doubles can also be compressed by taking advantage of their
visible decimal representation [125]. PseudoDecimals [83] (PDE) formally introduces a
lossless approach to perform this encoding process. PDE tries to encode a double with a
division between an integer and an inverse factor of 10 under the assumption that the double
was generated from a DECIMAL. This is why we refer to this type of encoding as
Decimal-based encoding. ALP presents a strongly enhanced version of this approach
introducing the idea of using large exponents and mitigating the effects of those with an
additional multiplication that gets rid of trailing zeros. ALP is designed for vectorized
execution, and introduces an adaptive mechanism for high-precision decimals (i.e. ALP,;).
ALP prefers multiplication over division since division is an expensive operation in most
ISAs [126]. PDE and ALP have the advantage that their output is further compressible using
other lightweight encoding schemes such as DICTIONARY, RLE, FOR or DELTA [83, 84, 101].

3.6 DiscussioN

A striking feat of our study of datasets used for database compression of doubles is that out
of the 30 datasets our community uses for evaluating double compression, only the two POI
datasets would not better be represented as fixed-point decimals. In fact, most POI data
comes from GPS, which has an accuracy of a few meters, and the Earth’s diameter is
~12.750.000 meters (i.e., 8 digits, which corresponds to 28 bits). Indeed, when the POI-lat
and POI-lon values are converted back from radians by multiplying with /180 we observe
this precision in the data — but we think it would go too far to define a specific ALP mode

68 3 ALP: ApApPTIVE LOsSLESS FLOATING-POINT COMPRESSION

that deals with pi-multiplied data.

One may question why none of the datasets requires true double precision, nor is any all over
the place in terms of magnitude — doubles allow numbers as close to zero as 10739 and as
large as 10°%8. One interpretation could be that double is a catch-all type for two use cases:
storing measures for which a-priori little is known about their domain (min/max), or where
the magnitude is truly wide and/or variable. In the former use case, the actual data will tend
to have min/max locality, leading to low variance in the high bits (equal or close exponent
and highest mantissa bits). As the actual precision of actual values is limited by the
measurement method, one either sees “pseudo-decimals” where the lower digits (in 10-base)
are zero, or in the worst case, randomly filled in. The latter use case, high magnitude
variance, seems to be rare, though weights and activations in machine learning could be the
best example of this (not regarding large numbers, but numbers close to zero, i.e., highly
variable negative exponents). Such data demonstrated to be hard to compress, for any
scheme; and reducing their size is so crucial that it triggered the appearance of TensorFloat
(Google) and Bfloat16!2 (Nvidia). These new thin floats, developed with Machine Learning
hardware in mind, mostly cut down on mantissa and somewhat on exponent.

The use of doubles in scientific calculations is common; though researchers have criticized
the rounding errors produced [112], and proposed alternatives like unum and posit[127].
There are strong arguments for compressing doubles stored in big data formats and database
files: data gets smaller, reducing storage cost across the memory hierarchy, reducing also I/O
time, network transfer time and usage. We think that with the increased convergence of data
science and scientific computations there will be growing demand for doubles in databases,
and their compressed storage.

3.7 CONCLUSIONS

We have presented and evaluated ALP: a strongly enhanced version of Decimal-based
encoding with an adaptive fallback to front-bit compression if doubles have truly large
precision. ALP beats the competition in all relevant dimensions. Its compression ratio is
better than all recently proposed floating-point encodings, while being much faster in
[de]compression speed. Its compression ratio is only equalled by heavy-weight
general-purpose compression; but these methods have slow [de]Jcompression speeds and are
block-based: forcing database scans to fully compress a large block of data. In contrast, one
can skip through ALP-compressed data at the vector-level; allowing for efficient predicate
push-down. We think ALP will be a valuable encoding in cascading lightweight
compression formats [83, 84], and recall that in our evaluation it already beat zstd (18.8 vs.
20.6) when cascading on Dictionary and RLE.

We would like to stress that the key idea behind ALP is to design for vectorized execution; it
led us to analyze and uncover unexploited opportunities from a vector perspective in a
variety of datasets. Vectorized execution reduces computational cost (reducing loop-,
function call-, and load/store-overhead), brings out the best in compilers (vectorized code
triggers loop-centered optimizations including auto-vectorization), but also amortizes
storage (parameters such as exponent are stored once per-vector instead of per-value), allows
for per-vector adaptivity without reducing performance due to branch-mispredictions (as

2https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

3.7 CONCLUSIONS 69

happens in per-value adaptivity in e.g., the Chimp variants), and can take advantage of

in-vector data commonalities.
As for future work, we think that the implementation of ALP on massively parallel hardware
such as GPUs and TPUs could be fruitful.

71

DATA-PARALLELIZED ENCODINGS
oN GPU

We show that compression can be a win-win for GPU data processing: it not only allows to
store more data in GPU global memory, but can also accelerate data processing. We show
that the complete redesign of compressed columnar storage in FastLanes, with its fully
data-parallel bit-packing and encodings, also benefits GPU hardware. We micro-benchmark
the performance of FastLanes on two GPU architectures (Nvidia T4 and V100) and integrate
FastLanes in the Crystal GPU query processing prototype. Our experiments show that
FastLanes decompression significantly outperforms previous decompression methods in
micro-benchmarks, and can make end-to-end SSB queries up to twice faster compared to
uncompressed query processing — in contrast to previous work where GPU decompression
caused execution to slow down. We further discovered that an access granularity of
decoding vectors of 1024 values is too large for a single GPU warp due to register pressure.
We mitigate this here using mini-vectors — a future work question is how to further reduce
this granularity with minimal impact on efficiency.

72 4 DaTA-PARALLELIZED ENcoDINGS oN GPU

shared
memory +

| Global (can hold many ! Global (can hold many

1 Memory compressed blocks): Memory compressed blocks)

Global i.e. 11x larger) |,

i 1
HL
| ll decompressed
t block (32 bits,
HL
L

1

1

Figure 4.1: Three different ways of decompressing data on the GPU. Left shows that decompressing into global
memory (as typically done in GPU decompression) can cause very high memory bandwidth consumption. The
middle shows how vectorized decompression avoids spilling back to global memory, by directly processing the
decoded data. The rightmost shows how the pressure on GPU registers and shared memory (cache) can be reduced,
by (i) reducing the decoding batch size, and (ii) by decoding into thin (<32-bit) data types.

4.1 INTRODUCTION

The FastLanes project! is working towards a new analytical data format to better suit modern
workloads and modern hardware. In the first chapter on FastLanes, that describes its novel
and completely data-parallel columnar encodings, we showed its very high performance
using data-parallel SIMD instructions on CPUs [128].

In this chapter, we evaluate and optimize FastLanes decompression on GPUs. In the past
decades there has been a lot of research on database processing on GPUs and also numerous
start-ups; but database workloads have not migrated to GPUs yet; instead, a flood of ML
workloads have propelled GPUs to center stage in data centers. These workloads consume a
steady stream of data in ML training and inferencing, producing a growing call for data
formats that are compatible and performant on both CPUs and GPUs [129].

Data formats that are now ubiquitous in data lakes, such as Parquet and ORC, were originally
designed for use on CPUs [129]. While these formats harbor multiple good ideas (schemas,
statistics, columnar storage, compression, vectorized decoding) they have limitations that
hurt GPUs; particularly the fact that their column encodings do not compress data enough,
and therefore their data-pages are further compressed with general-purpose block-based
schemes (gzip, zstd, 1z4 or snappy), which are GPU-unfriendly.

Data compression is an attractive proposition for GPUs: they typically have smaller RAM
("global memory") than the host CPU machine, such that storing compressed data alleviates
a capacity bottleneck. Further, data is moved into the GPU over the PCle bus, so having to
move less data thanks to compression helps to reduce that bottleneck. But this hinges on the
capability of the GPU to efficiently decompress the data, ideally incrementally, when it is
processed. As the left picture in Figure 1 shows, however, block-based compression operates

!'github.com/cwida/FastLanes

4.1 INTRODUCTION 73

on a coarse granularity that is too large to fit into the shared memory (the on-die GPU
cache), whose size is typically just tens of KB, shared among 32 threads. Note that e.g.
parquet-mr typically creates pages of 1MB, that get (de)compressed as one block, which
exceed this size. This means that the uncompressed result of decompression must spill back
to GPU global memory, significantly increasing the memory bandwidth usage inside the
GPU, because the decompressed data is much larger than the compressed data. In the
depicted example, when a compressed column that takes 3 bits per value, is decompressed
into the standard 32-bit integer that GPUs manipulate; this will transfer in total 22x the
compressed bandwidth (3+32bits for decompressing, plus 32bits upon use). There are three
problems here: (i) decompression algorithms like 1z4 are essentially sequential (have many
control- and data-dependencies) and therefore run inefficiently on GPUs (ii) materializing
buffers of uncompressed data in global memory as depicted, wastes scarce global memory
capacity. (iii) transferring uncompressed data for processing (here SUM) into GPU kernels,
can make these bandwidth-bound.

In FastLanes we pursue cascading (recursive) application of column encodings (FOR,
DELTA, RLE, DICT) to remove the need for general-purpose compression like 1z4 for
getting good compression ratios [130]. FastLanes encodings are fully data-parallel, even
eliminating the sequential dependencies that are normally present in DELTA decoding and
RLE. This data-parallelism works great on CPU SIMD instructions but conceptually also fit
the SIMT GPU model, where 32 threads that make up a warp and execute the same
instructions in lockstep; without any data-dependencies between the threads. FastLanes
stores data in 1024-value vectors, where 32 or more adjacent values can be decompressed
completely independently of each other. We propose the integration of FastLanes decoding
in GPU data processing as depicted in the middle of Figure 1 using vectorized
decompression: decompression as the first step of data processing, where one vector of data
is decompressed into registers or shared memory and is directly consumed from there,
without spilling back to global memory.

In this chapter, we show that FLS-GPU decompressing a vector of 1024 values can easily be
too coarse-grained for GPUs. If each of the 32 threads in a warp decodes 32 values, these
should be stored in GPU registers or shared memory, in order not to spill into GPU global
memory. However, depending on the GPU architecture, this can already be close to the
average available registers per thread (see last row of Table 4.3). Worse, the consuming data
processing task (like a database query, or ML inferencing) typically needs multiple columns,
which increases memory pressure on registers and shared memory — which may also hold
e.g. lookup-tables. This then causes GPU register spilling, leading to increased memory
latency and/or a reduction of scheduled tasks, leading to GPU under-utilization. Therefore,
we developed GPU-specific optimizations (FLS-GPU-opt) that reduce register and shared
memory pressure. Key ideas are: (i) dividing a vector into mini-vectors and decompressing
mini-vector at-a-time; (ii) thinking beyond the standard 32-bits GPU data type and
simulating smaller data types; thus considering 16- and 8-bits data widths. We (iii) also
increased the block-width from 32 to 128 or even 256 in order to reduce scheduling overhead.

Our main contributions in this chapter are:

¢ Generating and Micro-benchmarking FLS-GPU code. We use a code generator to
generate the C++ FastLanes CPU encoding and decoding methods for all relevant

74 4 DaTA-PARALLELIZED ENcODINGS oN GPU

bit-widths statically at compile-time. This code generator was extended such that it
can generate CUDA code. We show that FLS-GPU outperforms the current
state-of-the-art GPU decompression algorithms GPU-FOR and GPU-DFOR by
performing micro-benchmarks where we decompress into global memory, shared
memory and GPU registers.

* Integrating and Optimizing FastLanes in Crystal. Further, FastLanes bit-unpacking
is integrated into Crystal [131]. To increase performance we tested compressed
execution, partitioning 1024-tuple vectors into mini-vectors, increasing the block size,
and the sorting of columns to simulate RLE and obtain a better compression ratio.
These optimizations enable to release pressure from registers and shared memory, and
are ultimately combined with optimizations proposed by Crystal-opt [132].

Outline. First, we discuss Crystal, Crystal-opt and Tile-based decompression: the fastest
state-of-the-art GPU academic database systems and decompression scheme respectively.
We also summarize the FastLanes layout that uses interleaved bit-packing and the
transposed layout to eliminate dependencies from the DELTA and RLE encodings. Then,
we discuss how we adapted FastLanes to be compatible with GPUs and we propose
optimizations to improve the performance of FastLanes on Crystal. Lastly, we discuss the
obtained results and share our findings and ideas for future work to further optimize
FastLanes for GPU-based data processing.

4.2 BACKGROUND

In this section, we shortly explain the GPU memory hierarchy and basic principles of CUDA.
In addition, the lightweight compression (LWC) algorithms used by FastLanes are briefly
explained, along with an explanation of the intrinsics of FastLanes en/decoding.

4.2.1 GPU PROGRAMMING

In this chapter we use CUDA for programming the GPU [133]. CUDA only works for
NVIDIA hardware, so in an increasing heterogeneous hardware landscape, a more portable
API such as Vulkan [134] could be considered. However, CUDA offers a more mature
toolchain and higher-level programming model; hence we use it for this initial study of
FastLanes on GPUs.

CUDA splits the written code in two parts: the device code, used to program the GPUs itself,
and the host code, which is CPU code. The host code takes care of initialization and
launching of the kernels in the program and allocating memory regions. The device code is
written as a sequential program, thus for a single thread, but executed for multiple threads at
once, a model known as Single-Instruction-Multiple-Threads (SIMT). CUDA virtualizes
physical hardware. A thread block in CUDA is a virtualized streaming multiprocessor (SM).
It is typically recommended to use at least 128 threads in a block, to limit scheduling
overhead.

Each SM contains cores, a register file, a warp scheduler, data caches, instruction buffers and
texture units. A SM can therefore be considered a whole machine on itself. Thread blocks
are launched on a single SM and are independent of each other, meaning that they run to
completion without preemption. A thread itself is a virtualized scalar processor which

4.2 BACKGROUND 75

contains its own registers. Threads are grouped into warps, which is the basic unit of
execution for a single SM. A warp is a unit that consists of 32 threads that all run concurrently
on a SM. All threads in a warp execute the same instruction when running a kernel. If the
kernel contains branches (if-then-else), thread divergence can occur if some threads take the
if- and other the else-branch. The threads must execute all instructions in lock-step, but the
instructions off the chosen paths become no-ops. This also affects while-loops: all threads
execute as long as the longest loop in the warp.

The memory hierarchy of a GPU differs significantly from the CPU memory hierarchy. In
the memory hierarchy of the GPU, each thread contains its own 32-bit registers. Next to the
amount of registers per thread, each thread contains its own local memory (1mem). Lmem is
not really a memory — its bytes are stored in the GPU main memory (global memory). The
name local memory refers to the memory where registers and other data from a thread is
spilled, when e.g. a thread exceeds the register limit. The main differences between 1lmem
and global memory however are (1) stores are always cached in L1 cache and (2) addressing
is resolved by the compiler itself. If the L1 cache is full, a line gets evicted to L2 cache or
DRAM. In this case, a store incurs multiple writes.

Each thread block contains its own shared memory which functions as a programmable L1
cache of usually a few tens of KB. Shared memory thus stores data which is accessible for
all threads within a thread block and gets wiped when a new block is executed.

Unlike the L1 cache, the L2 cache is shared among all SMs. There is global memory, which
is accessible to any thread at all times. Global memory is the main memory where data is
stored when loaded from the CPU into the GPU. The bandwidth to the GPU is typically a
few factors higher than main memory attached to a CPU (often using HBM technology).
Data is transferred using wide cache-lines (typically 128 bytes), and best access is achieved
if the threads in a warp load adjacent data (coalesced memory access).

Transferring data, and communication between host (CPU) and device (GPU) in general,
happens via the PCI/e bus. However, such I/O should be minimized where possible as the
PCl/e bandwidth is much lower than global memory bandwidth.

4.2.2 LiGHTWEIGHT COMPRESSION USING FASTLANES

This section explains state-of-the art approaches of different lightweight compression
schemes on the GPU. In addition, it explains how FastLanes internally works to provide
efficient en/de-codings for these lightweight schemes.

Common Lightweight Compression Methods. Analytical database systems make
extensive use of compression to reduce memory footprint when storing and accessing data.
However, general-purpose compression methods such as Snappy or LZ4 are computationally
expensive for decompression at runtime. Therefore, lightweight compression methods or
encodings such as Bit-packing, DICT, DELTA and Run-Length Encoding (RLE) are
typically used as a first step. Exploiting the fact that the the actual domain of data stored
close together is often much smaller than what their data type can represent, Bit-packing
allows to represent larger data types in fewer bits. It is typically the lowest-level encoding
applied to stored data. The other encodings work on top of bit-packing. DICT uses a
dictionary, holding unique values, and represents the original data as (bit-packed) integer
codes, which are positions in this dictionary. DELTA encoding exploits value locality, by

76 4 DaTA-PARALLELIZED ENcODINGS oN GPU

only storing the (bit-packed) difference between subsequent values. Note that during DELTA
decoding subsequent values are dependent on its predecessor (a data dependency). RLE
encoding, finally, is particularly effective on sorted data with lots of repeating values. It
encodes the repeating values in so-called run-1lengths. Note that decoding RLE requires a
loop over the run-length, which on GPUs can lead to thread divergence .

S: Number of SIMD lanes in a 1024 bit SIMD register = 1024/T
A

Lane 127 H H Lane 1 H Lane 0

383 | 255 127 257 | 129 256 128

767‘ 639 511 ;33 641‘ 513 385 257640‘ 512 384 255

1023 895 767 e 897 769 641 896 768 640

Figure 4.2: FastLanes bit-packs a vector by interleaving its values (vector positions in black below) over many lanes;
in this example 128 lanes of 8-bits [128]. On GPUs this leads to all threads in a warp accessing directly adjacent
lane data, which is the optimal memory access pattern.

FastLanes. FastLanes is an open-source library that provides lightweight encodings, in a
fully data-parallel manner. Even though its CPU source code is scalar, this property allows
compilers to auto-vectorize it into SIMD instructions, such as AVX512 on AMD and Intel,
and NEON or SVE on ARM. SIMD instruction on CPUs can execute an operation on
multiple data items, stored adjacently in 8-, 16, 32- or 64-bit lanes, in one instruction.

The first step in decoding is un-packing densely packed bits into 8-, 16-, 32- or 64-bits
(byte-addressable) integers. Standard bit-packing schemes, however, pack bits of adjacent
values tightly together right after each other. In principle, SIMD instructions can perfectly
support bit (un)packing as they support the required operations (AND, OR, SHIFT). The
problem here is that to produce the original value sequence with SIMD instructions, adjacent
values will reside in the same SIMD lane. To avoid this, interleaved bit-packing distributes
subsequent values round-robin over subsequent lanes. Thus, a data-parallel unpacking
kernel can produce subsequent values from subsequent lanes, without needing (expensive)
inter-lane data transfers.

After values have been bit-unpacked; they can be decoded using lightweight schemes like
DICT, RLE and DELTA. The latter two schemes have proven challenging for SIMD
instruction sets, because of the sequential dependencies in DELTA and the loops required to
decode RLE (SIMD does not support loops). For example, if we encode a column of [1, 2, 3,
4, 5]into [1, 1, 1, 1, 1] using DELTA, we can only restore the original values if we know the
predecessors of the value that we want to decode. To tackle this issue, FastLanes proposes
the Unified Transposed Layout that removes the data dependency by using a special
permuted order for the 1024 tuples in a vector (Figure 4.3 shows a simplified permuted order
for 16 tuples). Thanks to this, every lane produces independent running sums to perform
DELTA decoding. FastLanes further maps RLE coding to DELTA coding, to also make
RLE fully data-parallel [128].

4.3 RELATED WORK 77

74 55|41 25
12| 8 | 4 0
2o S S
2
\ A 4 * v :=_2_| v Vv ¥
1 66 | 3/1,2|5|1|0 0 5/{0/0|0|0
1511\ 7 3 |14 |10 6 2 | 13| 9 5 11|12 8 4 0
A A T A 3:=_3_| A A T A 1:=_1_|
=3 =

Figure 4.3: Transposed Layout of a 16-value vector for making DELTA decoding data-parallel[128]. Starting with a
base stored in a header (yellow), DELTA has to sum up all differences, a sequential task. By storing multiple bases,
and reordering the tuples in vector (small below numbers are positions) we can now execute this with four 4-way
SIMD additions. The FastLanes layout (that stores 1024 values, not 16) provides enough parallelism to let all GPU
threads in a warp do completely independent sums.

By removing all data dependencies, FastLanes achieves ultra-high performance [128]: up to
60 values per CPU cycle single-threaded. We think this is important, because in the
vectorized decompression model, most of the computational time should go in the data
processing (i.e. database query processing, or machine learning), and only a minority in
decompressing, if we want to alleviate a memory bottleneck and make data processing faster.
Ultra-fast decoding also facilitates our move towards cascading column encodings; that
implies multiple decoding kernels are invoked per column — this otherwise could become
expensive. As an example of cascading encoding, the thin integer codes arrays used in DICT,
as well as its dictionary array can be further encoded, e.g. using RLE or DELTA. The work
in BtrBlocks [130], which does not use data-parallel encodings, has established that
cascading lightweight encodings can achieve compression ratio’s comparable to Parquet
with LZ4. In ongoing work on FastLanes, that adopts cascading encoding, we have
confirmed this finding.

4.3 RELATED WORK

There has been only a modest amount of research into compression schemes for GPU-based
database systems. Fang et al. [135] implement nine compression schemes suitable for the
GPU. These schemes are divided between main schemes and auxiliary schemes. These
schemes include null-surpression (NS) of fixed and variable length, DICT, bitmap and RLE.
Auxiliary schemes include FOR, DELTA, SEP and SCALE. Shanbhag et al. [136] propose
GPU-FOR, GPU-DFOR, and GPU-RFOR where the latter two do respective DELTA and
RLE. None of the previous GPU compression schemes [135—-137] has changed the value
order (i.e. interleaving or transposing) to make decompression data-parallel.

Crystal. [131] is the current state-of-the-art academic GPU-based query processing
prototype [132]. It consists of hard-coded CUDA kernels implementing each of the SSB

78 4 DaTA-PARALLELIZED ENcODINGS oN GPU

benchmark queries [138]. To benefit from the parallelism provided by GPUs, Crystal adopts
a tile-based execution model. Here, a Tile consisting of 128 tuples is the basic a unit of
execution and is processed as a whole in a single thread block, which in its turn is partitioned
by the GPU into warps. Processing at the granularity of tiles aligns with the 128-byte GPU
cache lines and leads to reduced cache misses and coalesced memory accesses. Before
performing any operations, a tile of 128 values is loaded directly into the available registers
of each thread. Loading a tile enables coalesced memory access and loading into registers
avoids an extra pass to shared and global memory. Crystal is not a production system, since
all queries are hand-written. Other significant limitations are e.g. hard-coded parameters for
hash tables and the lack of support for data types other than 32-bits integers.

Crystal-opt. The authors in [132] pointed out that Crystal is memory-bound, and there is
room for improvement. Crystal (i)) loads unnecessary data from DRAM fif filter predicates
are selective and (ii) it bypasses the L1 cache which could be exploited for operating on
intermediate results [132]. In Crystal-opt, query performance is improved roughly 2x,
making it currently the fastest GPU-based query execution prototype for SSB queries. The
first optimization is predicated loads (PredLoad, essentially predicate push-down) that avoid
loading tuples from global memory that are already disqualified by a predicate. While such
an if-then-else test introduces GPU thread divergence, doing so for avoiding unnecessary
loads is a good trade-off. A somewhat less important optimization is to check whether an
entire tile has no more qualifying tuples. This is only beneficial if all threads in a warp can
be terminated early (a quite rare phenomenon). A second optimization to disable L1 cache
bypass on certain queries (manually), for those queries that profit from this (a manually
tuned decision).

Tile-Based Decompression. [136] introduced tile-based decompression to reduce memory
bandwidth consumption in Crystal data scans. Three new compression schemes are
introduced, based on the tile-based execution model that combine bit-packing and FOR:
GPU-FOR, GPU-DFOR and GPU-RFOR. The latter two denote DELTA and RLE,
respectively. Bit-unpacking in tile-based compression is a generic function that has bit-width
as a parameter. For any tuple, it loads two values, computes two shifts and two AND-masks
to apply to these values, and OR-s them together; which is a worst-case approach in terms of
bit-unpacking. In contrast, a typical CPU-based vectorized bit-unpacking function would be
templated by bit-width (rather than receive it as a dynamic parameter) and internally contain
a series of hard-coded LOAD-SHIFT-AND-STORE instructions (with occasional OR work,
only applied to those bit-sequences that cross a word boundary) to unpack all tuples in a
vector — which is computationally much more efficient than computing the shift amounts and
the masks for each tuple and always doing an OR. The authors argue that GPU
decompression is bandwidth-bound and thus such computational expense is of no
importance; an argument that in our view is only correct when compressing back into global
memory (leftmost Figure 1, which we recommend not to do). The Tile-Based
micro-benchmarks in [136] are decompressing into global memory — in this chapter we
re-do those micro-benchmarks using the alternatives of decompressing into registers and
into shared memory - where the query processor directly consumes it (middle of Figure 1:
vectorized decompression). Finally, the end-to-end SSB results reported in [136] are 35%
slower than running Crystal on uncompressed data; which is explained as something that

4.4 FastLANEs oN GPU 79

should be expected — however this chapter shows that SSB queries can get faster thanks to
compression. This comes in addition to the compression benefit of being able to store 2-4x
more data in GPU memory (and a reduction of the PCle bottleneck when data is moved into
the GPU).

4.4 FAsTLANES oN GPU

In this section, we explain our first implementation of FastLanes on the GPU, which is
available in our GitHub repository?. Moreover, we perform micro-benchmarks to test three
different approaches (global-to-global, global-to-shared and global-to-registers) to determine
which approach minimizes latency when decompressing data into memory.

4.4.1 INITIAL IMPLEMENTATION

FastLanes for CPUs leans into the Single Instruction Multiple Data (SIMD) capabilities of
CPUs to decode multiple values in one pass. GPUs, however, are based on the SIMT model.
To exploit the SIMT parallelism provided by GPUs, we assign a vector of 1024 values to a
block. Since we assign one warp per block, every thread in a warp decodes 32 values and
thus functions as a so-called lane in FastLanes. This means that at least 32 values are
decoded in parallel in every step within a warp, when decoded into 32-bit integers. Thanks
to use of interleaved bit-packing, this leads to coalesced memory access. Decoding into
1024 32-bits values still fits in GPU registers. We note that GPU systems so far focus on
32-bits data processing, since this is the native data type for GPUs. However, FastLanes has
the capability of achieving data-parallelism using scalar instructions, i.e., it can use 32-bits
instructions to decode 4x8bit and 2x16bit lanes per GPU thread. This capability can be used
in GPUs to decode into thinner data-types than 32-bits, reducing GPU shared memory and
register pressure; while at the same time performing 2x or 4x more operations per
instruction.

4.4.2 MICRO-BENCHMARKS

We use two different GPUs for our benchmarks: the Tesla T4 and Volta V100, from which
the exact specifications are shown in Table 4.3. We benchmark both FastLanes Bitpacking
(FLS-BP) and FastLanes DELTA (FLS-DELTA) using C++20, nvcc and CUDA 12.3 for the
implementation.

Measured execution time. In the micro-benchmarks we measure the execution from the
moment the data is loaded into global Memory of the SM. Loading data from and to the
CPU is thus not taken into account. Therefore, the PCl/e bandwidth is not a bottleneck in
any of the experiments. The measured time is thus from the time the kernel is executed, until
the execution is finished and the final results are written back to global memory. To measure
the execution time per kernel we make use of the Nvidia Nsight Compute CLI (ncu).

Global-to-Global Memory. The global-to-global scenario of this experiment is depicted
leftmost in Figure 4.1. A block or vector of compressed data is fetched from global memory.
It then is decompressed by using bit-unpacking or GPU-FOR decompression, and the

2https://github.com/cwida/FastLanesGPU

https://github.com/cwida/FastLanesGPU

80 4 DaTA-PARALLELIZED ENcODINGS oN GPU

Table 4.1: global-to-global decoding 3 to 32 bits (256M values)

GPU GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

T4 7.80 ms 5.89 ms 12.36 ms 6.05 ms
V100 1.60 ms 1.60 ms 1.77 ms 1.64 ms

Table 4.2: global-to-shared decoding of 3 to 32 bits (256M values)

GPU GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

T4 10.02 ms 2.42 ms 14.63 ms 4.16 ms
V100 1.22 ms 0.44 ms 1.90 ms 0.63 ms

decompressed data (1GB) is directly written back to global memory. We repeat this
experiment for every bit-width between 1 and 32. We bypass the L1 cache and make no use
of shared memory, but store the results directly in global memory. The results in Table 4.1
show that on the Tesla T4, FastLanes outperforms Tile-based for both bit-unpacking
(GPU-FOR vs FLS-BP) and DELTA decoding (GPU-DFOR vs FLS-DELTA). On the V100,
both FastLanes and Tile-based are memory bandwidth bound, hence they have an exactly
similar execution time.

Global-to-Shared Memory and SUM. We now fetch compressed data from global memory,
decompress the data to shared memory, and directly perform a SUM on the decompressed
data (middle of Figure 4.1). This aggregation is necessary to prevent the CUDA compiler
from optimizing away all computation. The result of this local aggregation in shared
memory is then written again to global memory, such that the aggregation value persists
between the execution of multiple blocks. This avoids two passes to global memory: first
decompressing and writing the data to global memory and then, when decompressing is
finished and all data is stored, fetching this data again from global memory to perform any
operations on the decompressed data.

Performing a “simple” aggregation now includes (1) an explicit allocation of shared memory
for every block and (2) an aggregation in each thread in the corresponding thread block and a
write to global memory for each block that is executed. Explicitly using shared memory
incurs overhead, especially for Tile-Based, since it otherwise only uses GPU registers.
However, if one stores intermediate results in registers (which is thread-local memory), this
intermediate result is not accessible by other threads. The aggregation in Tile-Based
ultimately requires 128 threads to each aggregate 4 values, which incurs 128 writes per 512
values to store the temporary result in shared memory. Finally, the final aggregation is
written back to global memory.

For FastLanes, global-to-shared works by decoding a vector of 1024 values using one warp,
such that each of the 32 threads decodes and directly aggregates 32 values. This results into
32 writes for the intermediate result into shared memory and one write to global memory for
each 1024 values. By avoiding to write the large uncompressed (32-bits) results back to
global memory, all kernels are now compute-bound. This reveals that FastLanes indeed is
computationally faster than Tile-based compression. A somewhat unexpected result on T4 is

4.4 FastLANEs oN GPU 81

Table 4.3: Specifications for Tesla T4 and Tesla V100 GPUs

Model T4 V100
Memory 16GB 16GB
Memory Bandwidth | 320.0 GB/s | 900.0 GB/s
L1 size (per SM) 96 KB 128 KB
L2 size 6 MB 6 MB
SM count 40 80
Max. Warps/SM 32 64
Max. Blocks/SM 16 32
Max. Threads/SM 1024 2048
Max. 32-bit reg/SM 65536 65536
Avg. registers/thread 64 32
Max. registers/thread 255 255

Table 4.4: global-to-shared memory + SUM with varying bit-width for Tile-based (GPU-FOR) and FastLanes
(FLS-BP)

GPU-FOR FLS-BP
Bits T4 V100 T4 V100

1 10.09ms 121ms 234ms 0.435ms
10.02ms 1.22ms 242ms 0.434 ms
10.09ms 1.22ms 245ms 0.436 ms
10.14ms 1.23ms 2.60ms 0.437 ms

oo A~ W

that the Tile-Based kernels are in fact slower than in the global-to-global benchmarks for
GPU-FOR and similar behavior is observed for GPU-DFOR on the V100 (1.77 vs 1.90 ms),
which is depicted in Table 4.2. This increase in compute can be attributed to the fact that
including a SUM is computationally intensive, and since GPU-DFOR seems compute bound
instead of memory bandwidth bound on both T4 and V100, this leads to deteriorating
performance on both GPUs.

In Table 4.4 we confirm that FastLanes is consistently 3-5x faster than Tile-Based in
global-to-shared decoding, for various bit-widths. Its kernels are compute-bound, as they
only read compressed data, and the execution time increases by adding an aggregation.
Increasing the data volume does not affect performance.

Global-to-Register. A third option is to directly store the output of the decompression in
GPU registers, as opposed to shared memory. In CUDA, scalar variables are stored in
registers by default by the compiler. Figure 4.4 shows the performance of FLS-BP for all
bit-widths (1-32), using all three approaches. The red line models what we think is the
computational cost of global-to-register. The solid black line (overall global-to-register time)
follows this line for lower bit-widths, but starts to follow a linearly increasing line that we
attribute to read cost from global memory. Note that the shared memory in V100 appears
faster than on T4 as its line is completely identical on V100 with global-to-register.
Global-to-global is at a constant distance from the read-cost, due to its additional cost for

82 4 DaTA-PARALLELIZED ENcoDINGS oN GPU

10
— Register --. Shared ... Global

[R R i
E |
: 6 ..
B
‘a | M
=)
A R R
o 2

0

0 5 s L i : 30
(a) Performance on T4
3.0

N
S}

N
o

Duration (ms)

o
33}

o
o

25 30

o
(&

10 15 20
(b) Performance on V100

Figure 4.4: Micro-benchmarks for FastLanes unpacking into 32-bits values. X-axis is the bit-width of the
compressed column (256M values). The red horizontal line is estimated computational cost of unpacking. The solid
black line (global-to-shared) shows the impact of read-bandwidth; the dotted line the impact of write-bandwidth
(global-to-global).

writing 1GB of data to global memory, which on V100 corresponds to the read-cost
measured at 32-bits.

Measuring Compute. For the next micro-benchmarks, where we aim to measure the "raw"
compute, we repeat the procedure described at the global-to-global memory benchmarks
with one modification: we write nothing back to global memory. However, if we write
nothing back to global memory the compiler optimizes everything away. Therefore, we trick
the compiler by implementing an if statement containing a STORE, which has an almost
100% probability to evaluate to false. Now, we are able to measure the compute with
increased precision. Note that the latency of fetching the compressed data from global
memory is still included in the execution time.

The results in Table 4.5 indicate that FLS-BP is around 3-4x faster compared to GPU-FOR,
and FLS-DELTA is around 4-5x faster then GPU-DFOR on a T4. On the V100, this
difference is around 2x for FLS-BP and GPU-FOR, and 3x for FLS-DELTA and
GPU-DFOR (Table 4.6). Also, on T4, FLS-BP is 2-3x faster then FLS-DELTA in terms of
compute, and the same phenomenon occurs for GPU-FOR and GPU-DFOR. For V100, the
difference for FLS-BP and FLS-DELTA is minimal, indicating that it is close to the
minimum compute. GPU-FOR is around 2x as fast compared to GPU-DFOR on V100.
Remarkably, in the global-to-global memory benchmarks the execution times of FLS-BP

4.4 FastLANEs oN GPU 83

Table 4.5: Measuring compute — thus no writes to global memory. Decoding of 3 to 32 bits (256M values) on
Tesla T4. Compute is the "raw" compute of each method, including fetching compressed data from global memory.
To-global are the values for T4 reported in Table 4.1, to highlight the difference with- and without writing back to
global memory

GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

compute 3.48 ms 0.98 ms 10.70 ms 2.49 ms
to-global 7.80 ms 5.89 ms 12.36 ms 6.05 ms

Table 4.6: Measuring compute — thus no writes to global memory. Decoding of 3 to 32 bits (256M values) on V100
GPU. Compute is the "raw" compute of each method, including fetching compressed data from global memory.
To-global are the values for V100 reported in Table 4.1, to highlight the difference with- and without writing back to
global memory

GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

compute 0.86 ms 0.43 ms 1.58 ms 0.45 ms
to-global 1.60 ms 1.60 ms 1.77 ms 1.64 ms

and FLS-DELTA are very similar. An explanation for the smaller difference between
global-to-global and solely compute for FLS-DELTA and GPU-DFOR is that the increased
compute hides the write latency to global memory.

Investigating Occupancy. To explore whether we can further optimize FLS-BP
global-to-shared and FLS-DELTA global-to-shared, we investigate the GPU utilization. We
found that both FLS-BP and FLS-DELTA suffer from low occupancies compared to
Tile-Based (Table 4.7). In addition, for both FLS-BP and FLS-DELTA the occupancy on
V100 is structurally lower.

The lower occupancy on V100 can attributed to the fact that for both T4 and V100 GPUs
there are 64k 32-bit registers available per SM, even though V100 provides double the
amount of maximum active threads per SM (Table 4.3). As a consequence, software
employed on the V100 suffers from high register pressure. Compiling with ptxas=-v
shows that FLS-BP uses at most 64 registers per thread. This leads to at most 64K/64 1024
active threads; which equals the maximum amount of 1024 active threads per SM on T4
(Table 4.3). On V100, this is below the maximum amount of 2048; which already leads to a
lower occupancy. This phenomenon is also visible in Table 4.7. However, the occupancy is
below 50% in all cases. This means that there are other factors that attribute to the low
occupancy. These are (i) there are too little blocks or warps launched per SM and (ii) the
required amount of shared memory per block is too high.

Block Size. We benchmark different configurations for FLS-BP global-to-shared, to
investigate whether increasing block size improves the occupancy reported in Table 4.7.
However, Table 4.8 shows that although the execution time increases slightly for a block size
of 64, which is probably due to the reduction of scheduling overhead, both the theoretical
and achieved occupancy gradually decrease. The decrease of occupancy can be attributed to
the fact that we configure around 65kb (as pointed out by ncu) of shared memory at our

84 4 DaTA-PARALLELIZED ENcODINGS oN GPU

Table 4.7: Occupancy reported by ncu of both FastLanes and Tile-Based for bit-unpacking of 3 bits and DELTA
decoding. T indicates the maximum theoretical occupancy of this configuration, A indicates the achieved occupancy
during execution.

Method T4 T T4A VI00T V100A
GPU-FOR 100% 94.16% 100% 93.99%
FLS-BP 46.88% 44.67% 34.38% 16.09%

GPU-DFOR 100% 9594% 100% 96.15%
FLS-DELTA 21.88% 20.75% 17.19% 16.04%

Table 4.8: Micro-benchmarks for different configurations when decompressing 3 bits using FLS-BP. Both timing
and occupancy are reported. Occupancy T indicates theoretical occupancy, Occupancy A indicates achieved

n occupancy. Experiments are done on Tesla T4.

Configuration Exec. time Occupancy T Occupancy A

<32, 32> 2.42 ms 46.88% 44.67%
<64, 32> 2.24 ms 40.81% 43.75%
<128, 32> 2.33 ms 37.50% 34.63%
<256, 32> 3.49 ms 25.00% 24.63%

initial launch configuration for FLS-BP global-to-shared. This implies that it is not possible
to achieve a higher occupancy in our current implementation since we are limited by the
required amount of shared memory per block. It is therefore more favorable to use the
global-to-register approach, where shared memory usage will not become a bottleneck for
bit-unpacking.

4.5 FAsTLANES ON CRYSTAL

Our basic implementation of FastLanes on Crystal is referred to as FLS-GPU. In FLS-GPU
we integrate FastLanes with Crystal using vectorized decompression (shown in the second
scenario of Figure 4.1), where we decode the 1024 values using a block consisting of 32
threads, i.e. a single warp, such that each thread decodes 32 values. This approach is similar
FastLanes on CPUs and is thus trivial as a basic implementation. Crystal however uses
registers to store in-flight data. Relying on registers can be tricky, since the programmer
does not have explicit control over the placement of data into registers. To guarantee that
data resides in registers Crystal processes only 4 values per thread. Each thread in a warp
can operate on at least 32 32-bit registers on a V100 GPU, which means that registers can be
used for up to % — 1 7 columns in Crystal without a performance penalty.

When integrating FastLanes in Crystal, we choose to follow a similar approach which
resembles the global-to-register approach explained in section 4.4. This is more beneficial
since (i) profiling indicates that the occupancy is inevitably low due to shared memory usage
being a limiting factor for the global-to-shared version of FLS-BP and (ii) the
micro-benchmarks in Figure 4.4 show that the global-to-register approach is the most
performant for data that is bit-packed in small bit-widths.

4.5 FastLANES oN CRYSTAL 85

1 Crystal == Tile-Based == FLS-GPU

Time (ms)
- N N
(4] o (4]

-
o

o

Q1.1 Q2.1

Figure 4.5: End-to-end SSB query execution times (SF10) on Tesla T4. Naive FLS-GPU significantly improves
Q1.1 and generally performs better than Tile-Based decompression. Compared to Crystal however, there is still a
performance penalty.

End-to-end benchmarks. We now benchmark the integration of FastLanes
(de)compression in end-to-end queries, for which we use the Star Schema Benchmark (SSB)
[138] queries implemented in Crystal [131]. SSB is a modified form of the TPC-H
benchmark. Alongside integrating FastLanes in Crystal, we compare the benchmark
results against Crystal-opt [132] and Tile-based decompression integrated in Crystal as
reported in [136]. We only benchmark a single query from each different query family
(Q1.*%, Q2.*%, Q3.* and Q4.* resp.), such that we can compare the performance among
different types of queries within SSB. We chose to benchmark a scale-factor of 10 since this
will fit as a whole in global memory.

Figure 4.5 shows that for all queries, FLS-GPU performs better compared to Tile-Based.
However, except for Q1.1, FLS-GPU performs worse than baseline Crystal. This is because
FLS-GPU incurs extra operations for decompression, and its naive approach of unpacking 32
values per thread with a maximum of 1024 values per block leads does not leverage the
parallelism provided by GPUs.

Another unexpected result is the difference in behavior of FLS-GPU on the V100 and T4 as
observed in figure 4.5 and figure 4.6. In fact, on T4, FLS-GPU performs significantly better
than Tile-Based for all queries. On V100, however, Tile-Based outperforms FLS-GPU on
Q3.1 and Q4.1. To find an explanation for this behavior we investigate whether register
spilling or low occupancy cause this low performance. Specifically occupancy might be
problematic, since Table 4.7 already indicated very low occupancy rates for FLS-BP and
FLS-DELTA on a V100 GPU — which negatively affects performance.

Register Spilling. FLS-GPU unpacks 1024 values at a time, putting high pressure on
registers. Therefore, a possible cause of slowdown for FLS-GPU is register spilling. If the
spill is significant and the caches are full, this can cause a high slowdown (explained in
section 4.2.1). To determine if spilling occurs at compile time, we compile the queries with
the ‘-ptxas-options=-v’ flag. We found that no register spilling occurs at compile time
for both FLS-GPU and Tile-Based. However, for some queries, such as Q3.1 and Q4.1,
which includes large hash tables and multiple columns, FLS-GPU assigns up to 226 registers

86 4 DaTA-PARALLELIZED ENcODINGS oN GPU

— Crystal mm Tile-Based mm FLS-GPU

Q1.1 Q2.1 Q3.1 Q4.1

Figure 4.6: End-to-end SSB query execution times (SF10) on NVIDIA V100. Naive FLS-GPU still improves Q1.1
but generally performs worse compared to both Tile-Based decompression and Crystal.

Time (ms)
w £ (9]

N

-

Table 4.9: Occupancy for Q1.1, Q2.1, Q3.1 and Q4.1 using FLS-GPU. Both theoretical occupancy (0-T) and
achieved occupancy (0-A) are reported for both T4 and V100 GPUs.

Query O-TT4 O-AT4 O-TV10O0 O-A V100

QlL.1 50.00% 49.07% 37.50% 36.39%
Q2.1 50.00% 48.54% 25.00% 24.32%
Q3.1 25.00% 24.50% 12.50% 12.11%
Q4.1 25.00% 24.67% 12.50% 12.17%

per thread. This high amount of registers limits the number of threads (and thus warps) we
can execute concurrently on a SM, slowing down performance. Due to the high amount of
registers per thread, we obtain a low occupancy of 25% and even 12.50% for both queries on
T4 and V100 respectively (Table 4.9).

Low Occupancy. Increasing the occupancy will, in most cases, lead to better performance.
In its current form, FLS-GPU can only reach 50% of occupancy (Table 4.7 and Table 4.9),
since it assigns only 32 threads, i.e. one warp, to a single block. Since the block limits on T4
and V100 are 16 and 32 with corresponding warp limits of 32 and 64 respectively, the
highest theoretical occupancy we can achieve is 50% — assuming that register and shared
memory usage are no limiting factors. On V100, where there are on average only 32
registers per thread available (Table 4.3), we only reach a very low theoretical occupancy of
12.50% for Q3.1 and Q4.1. This low occupancy explains the bad performance of FLS-GPU
compared to Tile-Based on V100. To increase both theoretical and achieved occupancy, we
consider increasing the thread block size from 32 to 128 or 256 such that we will achieve the
maximum amount of blocks or warps that run concurrently on a SM.

However, only increasing the block size is not enough, as shown in Table 4.8. To achieve a
better occupancy we therefore need to (i) reduce the amount of shared memory we use per
block and/or (ii) decrease the amount of registers used per thread. Since FLS-GPU uses the
global-to-register approach, we already minimized the amount of shared memory used for

4.5 FasTLANES ON CRYSTAL 87

bit-unpacking. If we want to boil down shared memory usage even further, this would
require adapting the SSB queries in Crystal, which is out of scope. The second option is to
reduce the register usage by unpacking less values per thread. For example, we could unpack
8 values per thread using 128 threads per block, which still leads to a single block processing
1024 values. This form of scheduling almost resembles the Tile-based processing model,
which unpacks 4 values per thread for GPU-FOR and GPU-DFOR, using a total of 128
threads per tile (i.e. thread block). Another way to reduce the registers per thread is
compiling with the -maxregcount flag or using __launch_bounds () parameter to limit
the amount of registers per thread for all or specific kernels. Forcing a lower amount of
registers per thread however leads to register spilling, which becomes quickly very expensive
and reduces the overall performance. Therefore, we aim to process less values per thread to
reduce register pressure in a more natural way.

4.5.1 FLS-GPU-opT

The results in figure 4.5 and figure 4.6 show that FLS-GPU (green) only improves
performance over Crystal (yellow) in Q1.1. The reason why this happens is that the other
queries involve more columns and joins which require in-memory hash-tables. As a
consequence, the register pressure generated by FLS-GPU becomes too high in these queries.
The register pressure in combination with scheduling too few blocks per SM leads to a low
occupancy which in this case severely affects performance. Therefore, we started
considering methods to reduce the register pressure and increasing the thread block size,
moving to FLS-GPU-opt; depicted in the rightmost scenario of Figure 1. The optimized
version of FastLanes on Crystal, FLS-GPU-opt, addresses shortcomings of FLS-GPU while
leveraging GPU parallelism. This includes releasing pressure on registers by processing
mini-vectors and using compressed execution. In addition, FLS-GPU-opt achieves a better
compression ratio by using RLE for suitable SSB columns, such as 1lo_orderdate. Each of
the optimizations is briefly explained below.

Processing mini-vectors. To release pressure of registers and shared memory we partition a
vector of 1024 values into mini-vectors of 256 values. This means that each thread in a warp
now processes 8 values at-a-time, thus using 8 32-bit registers per column, a 4x reduction of
register pressure. Technically, this means that bit-unpacking logic is split over 4 FastLanes

unpack methods; each delivering 256 values. For bit-widths that are not multiples of 4-bits
this leads to some additional work if the unpacking does not start aligned on a 32-bits values,
but the extra effort is low.

Compressed Execution. While processing queries in Crystal, all SSB columns are handled
in-flight as 32-bit integer values. However, some columns of the SSB benchmark can be
encoded in significant smaller data types. Using smaller data types is beneficial to reduce
both the memory footprint and memory bandwidth. This however is not natural to GPUs,
since each register in a GPU spans one word, and each word consists of 32 bits. It is thus
convenient to decompress values into 32-bit integers to align with the word size. However,
decompressing values into 32 bits is inefficient if significantly less bits are needed. For
example, let’s assume that we are able to represent values of a column in 8-bits. We then can
partially decompress the bit-packed values into four 8-bit lanes in one 32-bit register, instead
of decompressing a single 8-bit value into 32 bits. This also allows us to directly operate on

88 4 DaTA-PARALLELIZED ENcODINGS oN GPU

Crystal mm Tile-Based == FLS-GPU-opt Crystal-opt FLS-GPU-128x8
25
» 20
E s
g 10
- 5
0
Q1.1 Q2.1 Q3.1 Q4.1
(a) Performance on T4
Crystal mwm Tile-Based mm FLS-GPU-opt Crystal-opt FLS-GPU-256x4
5
";4
E;
g2
i1
0
Q1.1 Q2.1 Q3.1 Q4.1

(b) Performance on V100

Figure 4.7: End-to-end SSB query execution times (SF10). Naive FLS-GPU significantly improves Q1.1; but it
generates too much register pressure in the other queries, which involve more columns and are hash-probe rather
than scan-bound. By reducing the decompression granularity with mini-vectors, using more threads per block and
simulating RLE, FLS-GPU-opt can match its performance nevertheless.

these values at the same time, within a single thread. Thus, we use some SIMD parallelism
with the GPU SIMT execution model. As a result, we are able to (i) fit more data into
registers which avoids spilling to L1 cache (ii) enhance more data-parallelism by performing
multiple operations at the same time and (iii) reduce bandwidth by a factor 4.

Predicate Pushdown. In real-world systems, columns that do not benefit from bit-packing
will not be compressed. Therefore, we leave the column extended_price uncompressed,
and we use the <PredLoad> predicate-pushdown optimization proposed by Crystal-opt
[132] to reduce bandwidth. Crystal-opt [132] showed that Crystal loads unnecessary data
from global memory and this affects performance.

Note that when using scans on compressed columns, such predicate-pushdown is impossible
(or, it would require random access to compressed data). Therefore, all compressed data
needs to be decompressed at least to shared memory, incurring global memory bandwidth.
Only if an entire vector or tile would have zero selected tuples, this step could be skipped.
This is similar to another optimization of Crystal-opt, which terminates a thread and
eventually a warp early if no tuple is selected. However, this is mostly beneficial for highly
selective queries, i.e. when a chunk of values does not satisfy any of the selection flags.
None of the SSb queries Q1.1, Q2.1, Q3.1 and Q4.1 benefit from this.

Simulating RLE. In the current port of FastLanes to GPU, we do not support RLE yet. The
SSB LINEORDER table is clustered on order, which means that it is quite

4.5 FasTLANES ON CRYSTAL 89

Table 4.10: Occupancy for Q2.1, Q3.1 and Q4.1 using FLS-GPU-128x8 for T4 and FLS-GPU-256x4 for V100.
Both theoretical occupancy (0-T) and achieved occupancy (0-A) are reported. Q1.1 is not included, since this
query already outperformed Crystal, Tile-Based and Crystal-opt significantly.

Query O-TT4 O-AT4 O-TV100 O-A V100

Q2.1 100.00% 93.23% 100% 92.25%
Q3.1 87.50% 81.49% 75.00% 68.90%
Q4.1 87.50% 80.92% 75.00% 67.75%

RLE-compressible, as all columns that contain order information, rather than lineitem
information, repeat on average four times. In the SSB queries tested here, this concerns the
lo_orderdate and lo_custkey columns. Lacking RLE, the compression ratio
FLS-GPU achieve is diminished to about 1.5x. In real-life datasets, such as public BI [130],
FastLanes can achieve a compression ratio of 8X. To mitigate the bad compression ratio,
partially caused by our lack of an RLE implementation, we decided in a separate experiment
to sort LINEORDER on columns lo_orderdate and lo_custkey. This allows to store
_orderdate in 8 bits instead of 16, and 1_custkey in 8 bits instead of 20 (real RLE would
reduce this even to 6 8 bits).

Larger Block Size. Table 4.9 indicates that the occupancy of FLS-GPU on both T4 and
V100 is low for all queries, but particularly for Q3.1 and Q4.1. To improve occupancy by
lowering register pressure, we now move to a 8-values-per-thread model, which we call
mini-vectors, as described above. Instead of only launching thread blocks consisting of 32
threads, we now increase the size to 128 threads per block for T4 to still decode 1024 values
per block (FLS-GPU-128x8). This allows to execute more warps concurrently while
reducing register pressure. For V100 however, there are even less registers available per
thread, leading to a higher register pressure. Therefore, we choose to use a
4-values-per-thread model, using 256 threads per block to decode 1024 values per block
(FLS-GPU-256x4). For these configurations, we also remove the predicate pushdown
optimization and instead compress all columns.

4.5.2 Di1scussioN

SSB Q1.1 is a simple scan with filter and aggregation. The roof-line analysis in [132]
already showed that this query is the most scan-bound — and thus stands to profit most from
compressed storage. The fact that Tile-Based compression is not able to improve
performance of this query is a missed opportunity, but explainable from the fact that its
encoding format lacks data-parallelism needed by GPUs. The interleaving of values in a
vector employed by FastLanes however allows Q1.1 to execute 2-3x faster, illustrated also in
Table 4.11. For Q1.1 the predicate-pushdown on extended_price provided FLS-GPU-opt
most of the additional gains over FLS-GPU. For the other queries, where FLS-GPU suffers
from too high register pressure, the FLS-GPU-opt benefits most from using mini-vectors.
Notably, we did not manage (yet) to make compression faster using the idea of compressed
execution, i.e. using data types smaller than 32-bits. The reason for this lack of success is as
of yet unclear, and there are still techniques we could try. We further think that more
complex encoding schemes, like RLE and DICT, which we so far have not implemented,

90 4 DaTA-PARALLELIZED ENcODINGS oN GPU

Table 4.11: On the scan-bound Q1.1 that stands to profit most from compressed scans, FLS-GPU shows strong
performance, which is significantly enhanced in FLS-GPU-opt.

Scheme SF1-T4 SF10-T4 SF1-V100 SF10-V100

Crystal 0.35 3.39 0.115 1.080
Crystal-opt 0.26 2.49 0.070 0.608
FLS-GPU 0.21 1.92 0.087 0.642
FLS-GPU-opt 0.139 1.19 0.057 0.335
could benefit from GPUs.

For Q3.1 we managed to increase the performance further by sorting LINEORDER on
lo_orderdate and lo_custkey to achieve a better compression ratio. The query
performance from FLS-GPU-opt goes from 8.17 ms to 7.54 ms on T4, and from 2.78 to 1.33
on V100. Specifically for the V100 GPU the performance increase is a factor of 2, which is
significant. For Q4.1, the improved compression ratio provided by sorting did not have a
significant impact. We do intend to re-benchmark FLS-GPU when RLE support is ready and
this sorting is no longer required.

Lastly, aiming to increase occupancy, we scheduled larger thread blocks. We found that for
the T4 high occupancy is achieved for thread blocks of 128 threads, that process
8-values-per-thread (Table 4.10). For Q2.1 this improved the execution time from 6.55 to
5.42ms, for Q3.1 from 7.54 to 6.40ms and for Q4.1 from 8.99 to 7.12 ms. For V100, we still
suffer from severe register pressure, and therefore were not able increase the occupancy with
the 128x8 format. Instead, we tried 256x4 to process even less values per thread. However,
register pressure remained problematic for the occupancy — only little performance
improvement is observed. We note though, that Q3.1 and Q4.1 which involve more columns
than the other two queries, also cause lower occupancy for Crystal itself.

4.6 ConcLUSIONS AND FUTURE WORK

In this chapter, we tested the data-parallel layout of FastLanes on GPUs. Both our
micro-benchmarks as well as end-to-end SSB query results show encouraging results. The
micro-benchmarks in section 4.4 showed that FLS-GPU outperforms Tile-Based decoding
by a factor of 3-4x for bit-unpacking against GPU-FOR and FLS-DELTA decoding against
GPU-DFOR. We also show in contrast to Tile-Based (which causes a 35% slowdown of
end-to-end queries), that the overhead incurred by FastLanes decompression in Crystal is
offset by reduced memory bandwidth; an important bottleneck for data processing on GPUs.
We also found drawbacks of the original 1024 tuples at-a-time decoding granularity of
FastLanes: this forced it to use at least 32 registers per thread - which are not always
available, or to store 1024 values on shared memory for each block. This proved to become a
bottleneck on more complex queries with a multiple columns to process. We addressed this
issue using the idea of mini-vectors and larger thread blocks, which perform FastLanes
decompression in four steps of each 256 or 128 values to reduce pressure on GPU registers
and shared memory, as well as the idea of decoding into thin data-types (8- and 16-bits). We
however experienced that register pressure on the V100 remains a challenge, and were not
able to significantly improve its execution time using a 256x4 configuration.

4.6 CoNCLUSIONS AND FUTURE WORK 91

FastLanes on GPUs is still in an early stage of development, and its more complex encoding
schemes (e.g. RLE) were not available yet in CUDA during these experiments. This causes
SSB experiments to experience lower compression ratio’s than are normally possible with
FastLanes. The experiments with an artificially enhanced compression ratio (by sorting the
LINEORDER table) already show that end-to-end query performance will further improve
once the FastLanes GPU implementation reaches greater maturity.

4.6.1 FUTURE WORK

Improving Mini-Vectors. In FastLanes, we bit-pack 1024 tuples using the interleaved
layout, which has as advantage that all 32 threads do the same decoding work (no divergence)
and have coalesced memory access. To support access using mini-vectors (we experimented
with 8 resp. 4 values per thread), for bit-widths other than multiples of 4 resp. 8, memory
access is not 32-bits aligned. In our experiments we used our original decoding methods and
mitigated by rounding up bit-widths to the closest higher multiple of 4 resp. 8, hurting
compression ratio and thus performance. This rounding up can be avoided by a proper
implementation for all bit-widths at some additional computational cost during decoding.

Reducing Mini-Vectors. The observed strong effects of register pressure make us consider
even smaller mini-vectors, and even the extreme approach of threads doing single-tuple
access. The trade-off here is increased computational overhead in decoding calls, for
invoking the decoding action appropriate for each mini-vector, as well as for interpreting
cascaded encodings. The decoding interpretation cost would in the extreme case be incurred
for each tuple. We note that the variability of data in-the-wild requires an interpreted
approach for decoding, as parameters and encodings used will vary between different parts
of a column.

Adding DELTA and RLE In this chapter, we mainly focused on bit-packing, as FastLanes
on GPU is still in a very conceptual phase of development, and the full set of basic
encodings had not yet been ported to CUDA (specifically DELTA/RLE and DICT). This is
an opportunity to further improve our results, since quite a few columns from the SSB
benchmark can be better compressed by RLE. We think that using RLE we can further speed
up SSB queries as the overall compression ratio would increase.

Compressed Execution. We observed that the performance bottleneck of SSB queries Q2.%,
Q3.*, and Q4.* are join probes. Therefore, memory latency is a significant cost, caused by
the random and non-coalesced nature of hash-lookups; which may only be alleviated by
caching (mainly in the L2 cache). While this problem appears to be unrelated to our main
topic of accelerating compressed scans from a novel big data format, we do think that the
idea of compressed execution (decompressing to thinner types) could allow to build smaller
hash tables (which are faster hash tables thanks to improved caching locality). Further, a
GPU data processing engine could potentially even squeeze in-flight data, by storing
multiple thin (e.g., 8- or 16-bit) values in a single 32-bit value, to reduce register or shared
memory pressure; thereby enabling higher kernel performance.

93

RETHINKING LIGHT-WEIGHT
Encopings FOR GPUs

This chapter introduces G-ALP, which optimizes the GPU implementation of ALP, the
state-of-the-art encoding scheme for floating-point data on CPUs, based on two core ideas.
First, all parts of the decoding process must be fully data-parallelized, regardless of how
insignificant they may be on CPUs. In the case of ALP, we fully data-parallelize exception
patching, which is applied to only 1% of the data. While this step is negligible on CPUs, it
becomes the main bottleneck on GPUs. Second, the decoding API must be as minimal as
possible, delivering one value at a time to absolutely minimize shared memory (sm-memory)
pressure, a highly scarce resource on GPUS, for users of G-ALP. We consider these two
optimizations as guidelines for future GPU optimizations of lightweight encodings and a
significant step toward extending the FastLanes file format, the next generation of file
Jformats, to GPUs. Furthermore, we extensively optimized G-ALP through a series of
microbenchmarks and evaluated its performance on an NVIDIA V100 GPU, demonstrating
superior performance compared to NVIDIA nvCOMP in both decoding and filtering queries,
especially under high local memory pressure, simulated by filtering over many columns.

5.1 INTRODUCTION

FastLanes is a project initiated at CWI, designed as a foundation for next-generation big
data formats. With release v0.1 [139], FastLanes provides an open-source, dependency-free
file format, implemented in C++. FastLanes is fully data-parallelized by utilizing the novel
1024-bit interleaved and Unified Transposed Layout [140], enabling fully data-parallel
decoding even with scalar code on the CPU. It significantly outperforms the state-of-the-art,
achieving an 80x speedup on the M1 processor compared to Parquet while also achieving a
40% better compression ratio.

Furthermore, we addressed the need for a data-parallel encoding for floating-point data by
incorporating our novel decoding scheme, ALP [141]. ALP encodes floating-point data by
mapping it to the integer domain while storing a small amount of metadata to convert
floating-point values to integers. This conversion consists of two multiplications and one
cast operation, which can be fully data-parallelized. The resulting integers are then further

94 5 RETHINKING LIGHT-WEIGHT ENCODINGS FOR GPUs

[y
o
N

10!

Normalized Throughput (Log-scale)

Compressor

Figure 5.1: Throughput of various encoders on a filter query on floating-point columns from the real-world
dataset PUBLIC_BI, measured in GB/s. Higher is better. The y-axis uses a logarithmic scale. All compressors
implemented by NVIDIA are prefixed with NV. G-ALP achieves a throughput more than 100x higher than the
baseline NV-Deflate. Additionally, the highly parallel compressed query execution of G-ALP enables a 14.8x
higher throughput compared to NVIDIA’s Thrust library, which does not use compression.

compressed using the FastLanes Frame of Reference (FFOR). We observed that
approximately one percent of double-precision values cannot be mapped to integers.
Therefore, we separate these values, referred to as exceptions, from the main data and
encode them separately using a patching mechanism [34]. This mechanism reinserts
exceptions during decoding with negligible overhead in terms of both compression ratio and
decoding speed, as exceptions occur very rarely. Combining ALP with FFOR and Exception
patching uses the Expression Encoding feature of Fastlanes, in which multiple light-weight
compression methods can be cascaded.

Designing a new analytical file format like FastLanes, should take into account Al
workloads, and therefore GPU based decoding and, to a lesser extent, encoding. Processing
highly compressed data on the GPU is particularly attractive, as GPUs typically have smaller
RAM (“global memory”) than the host CPU, meaning that storing compressed data
alleviates a capacity bottleneck. Furthermore, data is transferred to the GPU over the PCle
bus, so reducing the amount of data moved through compression also helps mitigate this
bottleneck. The experiences in this chapter with adapting ALP to GPUs in G-ALP illustrate
that GPUs can benefit strongly from small changes in compressed data-layouts. Therefore

5.2 GPU 95

we think that there are broader lessons to be learned from this chapter, and we intend to
apply these in the next versions of FastLanes, also for other compression methods.

In our initial work on extending FastLanes to the GPU [142], we demonstrated that
data-parallel encodings are key to utilizing the massive parallelism of the GPU. However, we
observed that our API, optimized for the vectorized execution model—the most widely
adopted execution model on the CPU—forces GPU kernels to materialize 32 values per
thread per column, which can easily become a bottleneck, as the amount of nearby high
throughput memory per thread (registers/shared memory/L1 cache) is significantly more
limited on the GPU compared to the CPU. Therefore, we adjusted the FastLanes API to
enable even more fine-grained decoding, allowing 16, 8, and 4 values per thread. We
observed that this modification was crucial for achieving high occupancy on SSB
benchmarks running on a state-of-the-art academic database, Crystal [31].

In this chapter, we introduce G-ALP, a GPU-friendly version of ALP with two
optimizations. First, we propose a novel data-parallelized layout for storing exceptions,
allowing the GPU to reinsert exceptions entirely in parallel. Second, we provide a flexible
API for delivering decoded values, ranging from one value at a time per thread—offering the
lowest possible number of materialized values to ensure minimal local memory usage for
any library using FastLanes—to 32 values at a time per thread, providing a more versatile
API with different granularities.

Contributions. Our main contributions are:

* A novel data layout for storing exceptions, fully data-parallel, enabling GPU threads to
reinsert exceptions in parallel.

* The design and implementation of G-ALP, a GPU-friendly version of ALP with a
data-parallel layout for exceptions and a novel API, enabling one-value-per-thread
processing to minimize pressure on users of G-ALP.

+ Open-sourcing the implementation of G-ALP!,
* An extensive set of microbenchmarks used to fully optimize G-ALP.

¢ An evaluation against nvCOMP, the state-of-the-art compression framework
developed by NVIDIA, demonstrating the superior performance of G-ALP in both
decoding and aggregation queries.

Outline. We begin by explaining key aspects of GPUs in Section 5.2. Next, we present the
design of G-ALP in Section 5.3, followed by our evaluation results in Section 5.4. We then
discuss related work, with an emphasis on nvCOMP, in Section 5.5. Finally, we conclude
our work in Section 5.6 and outline our vision in the future work section, Section 5.7.

5.2 GPU
In this section, first the general hardware structure of NVIDIA GPUs is described. The
section continues with an explanation of how instructions are issued and executed. The

Thttps://github.com/cwida/FastLanesGpu-Damon2025

96 5 RETHINKING LIGHT-WEIGHT ENCODINGS FOR GPUs

section concludes with how instruction-level parallelism (ILP) can be used to reduce the
impact of instruction latencies on performance.

SIMT. An NVIDIA GPU consists of a number of streaming multiprocessors (SM). Each
SM consists of warps. Warps consist of 32 threads. All threads in the same warp execute the
same instruction; NVIDIA calls this the single instruction, multiple threads (SIMT) model.
CUDA, NVIDIA’s GPU programming language, enables developers to program the GPU as
if they were programming a single, independent thread. However, because all threads within
a warp execute the same instruction, it is more clear to think of instructions executed by the
GPU as vector instructions [143].

Instruction pipelines. A SM contains a set of heterogeneous instruction pipelines. Each
pipeline only executes certain classes of instructions, such as memory instructions or
floating point arithmetic. Some classes of instructions can have multiple pipelines [143].
Warps themselves do not execute instruction, they issue these to the pipelines, which are
shared by multiple warps. This sharing of pipelines is somewhat comparable to
hyperthreading on CPUs. The SM’s warps are distributed among multiple instruction
issuers, each of which control access to a set of pipelines. Each clock cycle, the instruction
issuer picks a warp to issue an instruction [144]. When the warp is not able to issue an
instruction, the warp is considered stalled. A warp might not be able to issue an instruction
due to data hazards or structural hazards, then the warp needs to wait for the result of a
previously issued instruction to complete. When a warp stalls, the instruction issuer will
pick another, non-stalled warp to issue an instruction [144—-146].

Occupancy. SMs contain a fixed amount of resources that are shared among all warps. A
kernel might be programmed in such a way that the SM needs to allocate a large amount of
resources per warp. In that case the SM can disable some warps, lowering the occupancy,
the ratio of active warps. If the number of active warps is relatively low, there is a smaller
chance that the instruction issuer can find a non-stalled warp to issue an instruction and
saturate the pipelines. This can slow down the execution of kernels.

Hiding latency. Reading memory from the GPU’s RAM has high latency, in the order of
hundreds of cycles [144]. GPUs can bypass this latency by switching warps, executing
instructions from other warps while some of the warps are waiting for the results of their
memory access, this is called latency-hiding [147]. In some situations, the latency of a
memory access can be completely hidden, if there are enough other warps that are able to
issue instructions.

Instruction-level parallelism. Another way of hiding latency is by enabling warps to issue
instructions more often. By increasing ILP, a kernel’s instructions can contain less data
hazards and control hazards. Then, warps do not have to stall as often due to these hazards.
Because warps do not stall as often, the instruction issuer is more likely to be able to pick an
active, non-stalled warp, and saturate the instruction pipelines. ILP can be increased by
replacing branches with branchless code, by using different algorithms, or by processing
multiple values in parallel. ILP only helps when latency is a bottleneck, as when arithmetic
throughput or memory bandwidth is the bottleneck, the instruction pipelines are already
saturated [148].

5.3 G-ALP 97

5.3 G-ALP

G-ALP is a floating-point data compression scheme designed to optimize FastLanes ALP
(referred to as CPU-ALP) for GPUs, built upon two core ideas:

All parts of decoding on the GPU must be fully data-parallelized, even negligible ones.

For example, exception patching, which accounts for only one percent of the data, must also
be data-parallelized because GPUs perform poorly on any sequential workload, even at such
a small scale. In contrast, CPUs are designed to handle sequential workloads efficiently,
which is precisely what CPU-ALP is designed for.

The decoding API should decode one value per thread. By decoding only a single value
per thread for each kernel call, we minimize additional pressure on the local memory of
libraries using the FastLanes reader to an absolute minimum.

Overview. The encoding process of G-ALP is similar to CPU-ALP, with one key difference:
a data-parallel exception layout, which is explained later. In G-ALP, each set of 1024
floating-point values is considered a single encoding/decoding unit. During encoding, these
1024 floating-point values are mapped to integers, which are further compressed using FFOR,
along with metadata specifying how to cast these integers back to doubles, which is later
used during decoding. The decoding process follows FastLanes’ 1024-bit ISA [140], where
each lane corresponds to a separate thread. Conceptually, the decoding process on the GPU
can be visualized as 32 threads, each decoding one value at a time for 32 iterations, resulting
in a total of 32 x 32 1024 decoded values.

Data-Parallel Exception Layout. G-ALP stores exceptions in a fully data-parallel layout.
This is implemented as an additional step at the end of ALP encoding, where exceptions are
reordered into a data-parallel format.

The key idea behind this new layout is to provide each GPU thread, responsible for decoding
a specific lane in the CPU-ALP data-parallel layout (e.g., thread 0 handling values at
positions 0, 32, 960, 992), with direct access to all exceptions occurring in its lane in a single
location. This eliminates the need for each thread to traverse the entire exception list to
locate its exceptions, enabling fully parallel exception handling.

For each thread, after decoding a value, the next exception position is checked. If this
position corresponds to the current value being decoded, the thread returns the exception;
otherwise, it returns the decoded value.

For this data-parallel layout, we first store all exceptions for thread 0, corresponding to lane
0, which consists of positions 0, 32, 64, ..., 992 sequentially. Additionally, we store 16-bit
metadata consisting of two parameters:

» Offset — indicating where the exceptions for lane O start.

¢ Count — specifying how many exceptions this lane has.

The offset and count are essential to provide each thread with direct access to its own
exceptions without further computation. The offset can be as large as 1024, requiring 10 bits
in the worst-case scenario when all values are exceptions. Each lane can have a maximum of
32 exceptions, requiring only 5 bits to store the count. We use 16 bits to efficiently pack
these two parameters together.

98 5 RETHINKING LIGHT-WEIGHT ENCODINGS FOR GPUs

This process is repeated 31 more times for threads 1 to 31. Figure 5.2 illustrates this layout
by comparing the exception layouts of CPU-ALP and GPU-ALP, highlighting how this
design enables more efficient decoding on GPUs.

Compression Overhead. G-ALP introduces a compression overhead compared to ALP,
arising from the additional metadata required to make exception patching fully data-parallel.
This overhead is fixed at 16 x 32 512 bits per vector (1024 values), which translates to 0.5
bits per value. Considering that ALP encodes double-precision data using 21 bits, the
additional 0.5-bit overhead is negligible.

Decoding. Each thread is responsible for decoding values stored in its corresponding lane of
the FastLanes layout, ranging from O to 31. The decoding process for a value at position X in
the lane consists of the following steps:

1. Apply the frame-of-reference method to decode the integer at position X. This
involves generating the appropriate bitmask to extract the relevant bits, followed by a
right shift. If the bit-packed value spans two words, an if condition fetches the next
word and combines the bits.

2. Cast the decoded value to floating-point using a cast instruction.

3. Check whether the current value is an exception. If not, deliver the decoded
floating-point; otherwise, return the exception. To determine if a value is an exception,
compare the next exception position in the list with the position of the current value in
the lane. If they match, the value is an exception, and we move to the next exception.

4. Prefetch the next exception if the current value is an exception to ensure the data is
available for the next iteration.

5.3 G-ALP 99

0| 1 24 |25 | .. |30 (31| 1
32 33| .. |56 |57 | .. %
960 | 961 | ... | 984 | 985 990 | 991
992 | 993 1022(1023

e — -,

992 | 961 24 | 25 31
984 (1017 1023
1016

992 | 961 | 24 | 984 |1016| 25 [1017| 31 |1023

24 | 25 | 31 [961|984 | 992 |1016(1017|1023

Figure 5.2: Example of Data-Parallel Layout for Patching. 1) A vector of 1024 values consists of two components
for each value: the top box represents the position of the value within a vector, ranging from 0 to 1023, while
the bottom box is color-coded (red and green) to indicate whether the value is an exception, with red denoting an
exception. 2) The second part illustrates exceptions per lane, where each lane contains its own subset of exceptions.
3) The third part shows the actual storage format for exceptions. Exceptions are stored based on lane number,
starting with lane 0, followed by lane 1, and so on. Yellow boxes represent metadata consisting of offsets (shown by
arrows) that indicate the starting position of exceptions for each lane, as well as the number of exceptions denoted
in the box. This structure allows each thread to efficiently access its corresponding exception list. 4) Finally, for
comparison, we present the CPU layout of the same exception list, highlighting the structural differences between
the two layouts.

100 5 RETHINKING LIGHT-WEIGHT ENCODINGS FOR GPUs

5.4 EVALUATION

We conducted two sets of experiments: the first set consists of microbenchmarks to evaluate
the effects of possible design choices for optimizing ALP on the GPU, and the second set
benchmarks G-ALP against other compression schemes used for GPUs across three
important categories: scan throughput, compression ratio, and filter throughput.

Setup. All experiments were conducted on an AWS EC2 instance, p3.2xlarge, equipped
with an NVIDIA V100 16GB GPU, featuring compute capability 7.0 and based on the Volta
architecture, a data center-grade GPU. The code was compiled using NVCC 12.8 and
g++-12 as the host compiler. The version of nvCOMP used was 4.2.11. An older version of
g++ was chosen due to nvCOMP’s lack of support for newer g++ versions.

Data. To ensure a fair comparison, we selected double-precision columns from the Public
BI dataset [41], as there was no single-precision data type available, and cast them to
single-precision floats. We find PUBLIC_BI highly relevant, as it was also used in the
original design of ALP. Additionally, floating-point data columns that would be better suited
for compression with run-length encoding or ALP,4 were excluded from the evaluation.

Measurements. To measure throughput, we use two different approaches: Nsight Compute
Command Line Profiler 2025.1.1.0 for microbenchmarks and CUDA events for end-to-end
queries (Figure 5.1). CUDA events are the recommended method for measuring
multi-kernel end-to-end execution time [149] and are also used by NVIDIA to benchmark
nvCOMP [150].

Implementation. The experiments and implementation of G-ALP are open-sourced in our
repository?, which includes a FastLanes-compliant reader capable of decoding all FastLanes
encodings on GPUs. The nvCOMP code is not open source; however, we used its header
files and binaries, which are freely available from NVIDIA’s website>.

5.4.1 Micro BENCHMARKS

To measure the impact of our new one-value-at-a-time API, we benchmarked two versions of
G-ALP: the optimized version versus the naive version, each tested with two different
APIs—one-value-at-a-time and 32-values-at-a-time. The benchmark consists of a simple
filter query while increasing the number of columns from 1 to 10, thereby increasing local
memory pressure as more data needs to be materialized. The results are shown in Figure 5.4.
As seen in the figure, our new API maintains throughput close to that of a single-column
scan, even as the number of columns increases.

Furthermore, we examined achieved occupancy, as shown in Figure 5.5. When scanning
more than six columns, occupancy starts to decline, indicating that the compiler can no
longer reduce register usage and instead spills registers to higher-level caches. For a high
number of columns, the kernel’s performance depends on how efficiently the algorithm
utilizes the remaining active warps, relying on instruction-level parallelism rather than
occupancy to hide read latencies.

2https ://github.com/cwida/FastLanesGpu-Damon2025
3https://developer.nvidia.com/nvcomp

https://github.com/cwida/FastLanesGpu-Damon2025
https://developer.nvidia.com/nvcomp

5.4 EVALUATION 101

Throughput (32-bit values / cycle)

150
100
50 A G-ALP-Naive
@ G-ALP no prefetch
O G-ALP
0}
0 10 20 30 40 50

Exception count

Figure 5.3: Throughput of different implementations of G-ALP, reported in values per cycle, for varying numbers
of exceptions. Regardless of the exception count, G-ALP outperforms other implementations due to its data-parallel
exception patching and efficient prefetching of exceptions.

5.4.2 EnD-TO-END BENCHMARKS
To understand how different compressors perform in comparison to each other, we measure
their throughput under two queries:

1. Full decompression — measuring the absolute decoding time, where data is fully
written to global memory, simulating cases where G-ALP is forced to decode data
completely.

2. Filter — measuring the end-to-end time between decompressing data, and evaluating a
query on the decompressed data. For Thrust, GALP Naive, and GALP no separate
decompression kernel is required, as thrust does not use compression, and GALP
Naive and GALP can load compressed data directly. This simulates the performance
of G-ALP in a tile-based execution model, where our API can be used to process data
immediately after decoding instead of writing it to global memory. The filter
evaluates whether a certain value occurs in a column. A variation of the traditional
filter is performed, where not the row numbers are returned but simply a boolean
answer on whether the value occurs in the column. We choose this variation as it
requires no synchronization between threads, and also requires little write bandwidth.
This in turn allows us to isolate the performance of how fast kernels can load data.

u

102 5 RETHINKING LIGHT-WEIGHT ENCODINGS FOR GPUs

Alias
I G-ALP-Naive-32
I G-ALP-Naive-1
B G-ALP-32
[G-ALP-1

250

200

150

100

50

Throughput (32-bit values / cycle)

1 2 3 4 5 6 7 8 9 10
Number of columns scanned in parallel

Figure 5.4: Throughput of G-ALP using different APIs with varying numbers of columns (1 to 10). G-ALP with
a one-value-at-a-time approach is significantly faster than other implementations, as it requires fewer registers,
allowing the kernel to achieve higher occupancy when the number of columns scanned in parallel increases.

We include naive G-ALP, where we simply map the FastLanes 1024 ISA to CUDA, to
measure the extent to which our two optimizations: 1) data-parallel exception handling, and
2) one-value-at-a-time decoding API, accelerate the naive implementation of G-ALP.
Additionally, we compare against the encodings supported by the nvCOMP framework as the
current state-of-the-art in practice and use Thrust as a baseline to evaluate the performance
of G-ALP against Thrust when there is no compression, highlighting the impact of
compression on GPUs. The results are shown in Table 5.1. As can be seen, G-ALP
outperforms all competitors by a significant margin.

5.4 EVALUATION 103

— Alias

B G-ALP-Naive-32
I G-ALP-Naive-1
B G-ALP-32
@ G-ALP-1

0]
o

N
=}

Achieved Occupancy (%)
N
S

N
o

1 2 3 4 5 6 7 8 9 10
Number of columns scanned in parallel

Figure 5.5: Achieved occupancy for the same benchmark as Figure 5.4. When scanning more than six columns,
occupancy starts to decline, indicating that the compiler can no longer reduce register usage and instead spills
registers to higher-level caches. For a high number of columns, the kernel’s performance depends on how efficiently
the algorithm utilizes the remaining active warps, relying on instruction-level parallelism rather than occupancy to
hide read latencies.

Table 5.1: Throughput of different compressors for two queries: 1) Full decompression and 2) Filter. G-ALP

outperforms NVIDIA compressors, achieving an average speedup of 16 x for filter and 10x for full decompression.

G-ALP is faster in filter than in full decompression due to its tile-based execution model, where data is processed
immediately after decoding without being written to GPU memory. Interestingly, G-ALP is also 15x faster than
Thrust, which has no compression and therefore needs to load more data from GPU memory, highlighting the
win-win situation of fully data-parallel, one-value-at-a-time encodings on GPUs. Furthermore, G-ALP is on average
2x faster than naive G-ALP, demonstrating the potential for further optimizing lightweight encodings on GPUs.

Compressor Compression| Decompression Filter
Ratio Throughput (GB/s)| Throughput (GB/s)

G-ALP 5.68 399.92 1062.20
Naive G-ALP 6.31 332.05 608.98
NV-Bitcomp 4.29 52.22 49.05
NV-BitcompSparse 4.36 57.12 49.12
NV-Snappy 4.71 51.20 47.73
NV-GDeflate 3.89 27.19 24.26
NV-Deflate 3.94 6.85 6.86
NV-LZ4 4.86 60.93 56.61
NV-zstd 7.54 20.17 20.02
NV Average 4.80 39.38 40.67

[Thrust [151] [100 | n/a [7174 |

104 5 RETHINKING LIGHT-WEIGHT ENCODINGS FOR GPUs

5.5 RELATED WORK

We consider the NVIDIA nvCOMP compression framework [152—155] to be the most
relevant work related to G-ALP, as it is widely used in practice, with a total of 608,509
downloads as of the time of writing this chapter [156]. nvCOMP supports three data types:
integers, strings, and floats (16-bit). Its encoding pool for floating-point data consists of
several heavyweight compression schemes such as LZ4, Snappy, ZSTD, and Deflate, as well
as GPU-optimized formats like Bitcomp (proprietary and closed-source) and GDeflate.
GDeflate is a GPU-friendly variant of Deflate that introduces interleaved Huffman coding,
where codes are permuted into 32 partitions, though its details are vaguely explained [157].
This enables intra-threadblock parallelism, allowing GPU threads within a block to decode
different partitions simultaneously, similar to interleaved bit-packing in FastLanes, where
data is distributed across 32 lanes.

For LZ4, nvCOMP enhances its GPU-friendliness by breaking datasets into blocks and
compressing/decompressing each block using a thread block [153]. Within each thread
block, only a single warp is used to ensure efficient coordination among threads via
warp-level primitives.

Below, we compare nvCOMP to G-ALP:

Schema Selection. While providing a set of compression schemes, nvCOMP does not
automatically select the best scheme, leaving this decision to the user [155]. In contrast, the
FastLanes file format automatically chooses the most suitable compression scheme, with
G-ALP being selected only if the data is decimal-like [141].

APIL. nvCOMP provides two different APIs: a Low-Level API and a High-Level API [155].
The Low-Level API allows users to define the chunk size, enabling data to be compressed in
smaller chunks, where each compressed chunk can later be decompressed in parallel using
different thread blocks, with one thread block assigned to each compressed chunk. This
approach sacrifices compression ratio in favor of increased parallelism. The High-Level API
abstracts the chunk size selection from the user by automatically determining the optimal
chunk size. It then compresses the data as a whole, adding a header at the start of the
compressed data that contains information about the chosen nvCOMP compression scheme.
In contrast, G-ALP and FastLanes do not require additional decoding configurations to be
set by the user, making them easier to use. We provide similar support to the High-Level
API, allowing the entire dataset to be decoded and materialized in global memory.
Additionally, we introduce an even more fine-grained Low-Level API capable of delivering
decoded data that fits into registers, the fastest form of memory on the GPU.

5.6 CONCLUSION

General compression schemes have lost their popularity to type-specific encodings in
modern file formats designed for CPUs due to their block-based nature—often larger than
the cache for decompression—and their lack of data parallelism, preventing SIMDized
decoding. By proposing G-ALP, the GPU-optimized version of ALP, which focuses on
enforcing a data-parallel layout across all components, including less significant ones such
as the patching layout, we demonstrate that type-specific encodings like ALP, despite being
more complex than simpler schemes like FFOR, can also be a win-win solution for file

5.7 FUTURE WORK 105

formats used on GPUs. They offer better compression and are faster at decoding thanks to
data parallelism.

Additionally, we have shown that by fine-graining our API to its absolute minimal form—an
API capable of delivering one value per thread—we enable data delivery to libraries with
minimal pressure on local memory usage. This is highly beneficial for ML workloads and
databases that tend to process data from many columns and subsequently face local memory
pressure.

5.7 FUTURE WORK

FastLanes GPU Reader. G-ALP is a step forward toward developing a GPU reader for the
FastLanes file format. Through optimizing G-ALP, we learned that even optimizing a single
scheme requires significant effort, indicating that optimizing the entire file format for the
GPU would be highly demanding. Therefore, we leave the remaining work, such as
supporting additional data types (e.g., strings and nested data types) and integrating different
schemes, for future work.

GPU Diversity. We conducted all experiments on a single machine, as detailed in

Section 2.3. While it has similar capabilities to the most commonly used GPUs in the cloud,
we plan to extend our benchmarking to different types of GPUs to gain a broader perspective
on heterogeneous GPU architectures. This will enable us to design a more robust file format
that performs efficiently across all GPUs without significant performance cliffs on any
specific hardware.

New Benchmarks. To compare G-ALP with other compression schemes, we benchmarked
only scan throughput when the data is fully materialized in GPU RAM and aggregation over
a single column to evaluate the effect of the one-value-at-a-time API. While these
benchmarks provide insight into the performance of G-ALP compared to other schemes,
they are far from comprehensive. However, the lack of a standard benchmark or workload
for GPUs—similar to TPC-H for CPUs—makes this particularly challenging. We envision
the creation of a new set of queries, explicitly collected from real-world GPU use cases, to
better design and understand GPU file formats.

Other Floating-Point Data Types. Throughout this chapter, we focused on 32-bit
floating-point data. This choice was made to simplify the implementation, as the
data-parallel layout of floating-point values in FastLanes perfectly aligns with 32 lanes,
matching the GPU WARP model. In contrast, for double-precision (64-bit) data,
lane-to-thread mapping must be handled differently. We defer the implementation of G-ALP
for other floating-point types, such as 64-bit and 16-bit formats, to future work.

107

FASTLANES FILE FORMAT

This chapter introduces a new open-source big data file format, called FastLanes. It is
designed for modern data-parallel execution (SIMD or GPU), and evolves the features of
previous data formats such as Parquet, which are the foundation of data lakes, and which
increasingly are used in Al pipelines. It does so by avoiding generic compression methods
(e.g. Snappy) in favor of lightweight encodings, that are fully data-parallel. To enhance
compression ratio, it cascades encodings using a flexible expression encoding mechanism.
This mechanism also enables multi-column compression (MCC), enhancing compression by
exploiting correlations between columns, a long-time weakness of columnar storage. We
contribute a 2-phase algorithm to find encodings expressions during compression.

FastLanes also innovates in its API, providing flexible support for partial decompression,
facilitating engines to execute queries on compressed data. FastLanes is designed for
fine-grained access, at the level of small batches rather than rowgroups; in order to limit the
decompression memory footprint to fit CPU and GPU caches.

We contribute an open-source implementation of FastLanes in portable (auto-vectorizing)
C++. Our evaluation on a corpus of real-world data shows that FastLanes improves
compression ratio over Parquet, while strongly accelerating decompression, making it a
win-win over the state-of-the-art.

6.1 INTRODUCTION

The data formats Apache Parquet and ORC were designed in 2013, and quite similar designs
are used in modern analytical systems that have an own storage format, such as DuckDB and
Snowflake [51, 158]. Parquet is now the de-facto standard format for data lakes and "lake
houses" [159]. However, we argue that changes in hardware and workloads during the past
decade call for a re-design.

In the next decade, workloads of analytical data systems and data lakes will increasingly
include Al pipelines that perform training or inference [160]. In terms of hardware that runs
these workloads, CPUs have become quite diverse (not only x86, but also ARM and
RISC-V) and are evolving mostly in novel instructions (SIMD), while Al pipelines increase
the importance of GPU- or even TPU-based data processing. In order to efficiently process

108 6 FastLANES FILE FORMAT

| Parquet | BtrBlocks | FastLanes |
Heavy-Weight Compression methods | yes no no
data-parallel: SIMD/GPU-friendly | no no yes
cascading Light-Weight Compression | no yes yes
Multi-Column Compression methods | no no yes

compression methods

access granularity | IMB chunk | 64K rowgroup | 1K vector
can return compressed vectors | no no yes
read access API

Figure 6.1: Feature comparison of big data file formats. BtrBlocks introduced cascading Light-Weight Compression
to avoid the Heavy-Weight Compression (e.g. Zstd) used in e.g. Parquet, but its encodings are not data-parallel
(SIMD/GPU-friendly). FastLanes is fully data-parallel, can do vector-at-a-time decompression (small footprint),
introduces Multi-Column Compression & allows access to compressed vectors.

data on such hardware, algorithms need to harbor data parallelism, and specifically need to
consist of massive regular computation patterns with absence of data- and
control-dependencies. This imposes constraints on what algorithms a data format should
employ, e.g. Snappy is the antithesis of a data-parallel algorithm. Current data

formats [161, 162] were not designed with this in mind, and struggle to effectively use
SIMD and GPUs for decompressing data.

Further, for efficient query processing after decompression, data needs to stay in
SIMD-friendly representations during execution. Modern query engines such as DuckDB,
Velox and Procella therefore added compressed execution capabilities, augmenting
vectorized query execution with new compressed vector classes, such as constant-vectors,
dictionary-vectors and FSST-vectors [49-51]. This trend calls for innovation in data format
APIs, to directly deliver compressed vectors from a table scan on request of an engine that
can handle this, by only partially decompressing data.

This chapter describes the FastLanes data format, marking its v0.1 release in open source. It
is designed to efficiently support modern analytics+Al workloads. Its main contribution is a
novel Expression Encoding mechanism, supported by an intricate segmented block layout,
enabling flexible cascaded encodings and multi-column compression. This allows it to
achieve excellent compression ratios while using only simple and ultra-fast data-parallel
encodings.

Outline. In Section 6.1.1, we describe our core ideas and in Section 6.1.2 outline the
FastLanes design. Section 6.2 explains Expression Encoding. Our novel segmented layout is
detailed in Section 6.3. We evaluate vs. Parquet, BtrBlocks and DuckDB in Section 6.4,
showing that FastLanes achieves state-of-the-art compression ratios at higher decompression
speed. Additional design decisions and related work are covered in resp. Section 6.6 and
Section 6.5. We conclude in Section 6.7 and outline future work in Section 7.2.

6.1.1 DEsIGN IDEAS

From Heavy- to Light-Weight Compression. A columnar layout typically reduces data
entropy over row storage, as it concentrates data belonging to the same distribution, making

6.1 INTRODUCTION 109

it more compressible. Heavy-Weight Compression (HWC) schemes, also referred to as
{general-purpose, block-based, type-agnostic} compression schemes, such as Snappy [163]
and Zstd [92], are used by default in Parquet to compress column chunks. While such
compression libraries provide good compression ratios, they are typically CPU-intensive,
making decompression considerably slower than accessing uncompressed data [35, 77]. In
contrast, Light-Weight Compression (LWC) schemes such as FFOR [140], Delta [140],
DICT [140], ALP [141], FastLanes-RLE [140], and FSST [164] are specifically
designed for certain data types and encode data by capturing simple compression patterns.
Unlike HWC schemes, it is possible to fully data-parallelize LWC decompression, which
makes LWC profit from wide SIMD CPU capabilities, accelerating them up to 64x, which
can make accessing compressed data even faster than uncompressed data [140].
Data-parallelism also helps GPU decoding performance, as it provides independent work
and interleaved memory access for all threads in a GPU warp [165]. However, when
considering compression ratio, rather than speed, a micro-benchmark on the Public BI
dataset shows that adding HWC schemes in ORC, on top of LWCs, improves the
compression ratio 3x [166] (ORC vs. ORC+Snappy). This means that using HWCs is
necessary in current big data formats.

Cascading LWC schemes. To achieve the same compression ratio as HWCs while
maintaining the speed of LWCs, Cascaded Compression, also known as {recursive,
composable} compression [48, 167, 168], has been implemented in BtrBlocks [44]. It
combines multiple LWCs to capture a wider range of data patterns. To illustrate how this
approach can improve the compression ratio, consider the array:

{'Cascading', 'Cascading', 'Cascading', 'Cascading', 'Cascading’,
'Cascading’', 'Compression', 'Compression'}

This array exhibits two patterns: repeated values and low entropy, which are well-suited for
{RLE, DICT} encodings. However, applying only DICT or RLE captures just one of these
patterns. By first applying DICT, the array is transformed into codes {6,0,0,0,0,0,1,1}
and dictionary {’Cascading’, ’Compression’}. Then, applying RLE turns the codes into
{{0,6},{1,233}, achieving better compression.

Multi-Column Compression (MCC) is a new category of compression schemes that takes
multiple columns into account, with the key idea that correlation between two columns can
be used to infer one column from another, thereby achieving a higher compression

ratio [32, 169—171]. Note that compressed columnar formats store columns independently
of each other, missing out on this opportunity — leading to the phenomenon that some tables
with strongly correlated columns can be more compact in the row-oriented RC format than
in Parquet. A simple example is when two columns are completely identical. Our MCC also
includes schemes that split one column into multiple sub-columns, which can be encoded
individually. For example, string values composed of names and numbers like
”Compression101” could be separated into two columns: one for strings and one for integers.
This enables further compression e.g., by applying integer-based specific encoding (such as
DELTA or FOR) on the suffix [172, 173].

Vectorized decoding carries over the efficient properties of vectorized execution [174] when
applied to decoding compressed data. When a vectorized table scan decompresses a vector,
the (compact) compressed data in RAM is decompressed into an uncompressed vector,

110 6 FastLANES FILE FORMAT

which is a small array of e.g., 1024 values that fits into the CPU’s L1 cache and is
immediately processed by the query pipeline, typically without spilling to RAM. As such,
decompression occurs only when the data arrives in the CPU for query processing, keeping
it small while in transport, reducing memory, network, and disk bandwidth

consumption [35]. Reading while decompressing FastLanes data was found faster than
reading uncompressed data (memcpy) [48], because of the reduced bandwidth needs plus
ultra-fast auto-vectorized decoding kernels (e.g., decoding 60 values in 1 CPU cycle). The
BtrBlocks format not only relies on older encodings that are not data-parallel, but also
performs decompression on the full rowgroup level, imposing a large memory footprint.
However, allowing fine-grained read access is to avoid overwhelming L1 CPU caches, and
even more pressingly, GPU cache and register space [165].

Compressed Execution LWCs (encodings) are more than just a technique to compress data;
they capture patterns that can also be used later to optimize query execution on this data.
The simplest example is constant encoding, which can tell the query engine that all
operations on this column could to be done once instead of on all the values in the column.
Modern systems like Procella [175], Velox [50], and DuckDB [51] support compressed
vectors, where data is both randomly accessible yet still might be encoded in e.g., DICT, FOR
or FSST. For example, the 1_tax column in the TPC-H benchmark is a decimal (18, 2),
which many systems would implement as a int64 because it can represent numbers of up to
18 digits, where internally the decimals are multiplied by 100 (due to decimal scale 2). Now
suppose, the actual data just contains values between .01 and 0.08 (i.e., integers 1-8).
Applying LWC, would typically compress such a column using FOR and bit-packing (BP) in
3 bits per value (FOR base 1; and differences 0-7). Whereas legacy systems would
decompress this column in their scan into its SQL type decimal (18,2) (i.e., int64), a
system like DuckDB can decompress it into a int8 (byte). This allows to use 8x thinner
SIMD lanes for decompression, accelerating decoding 8x; and also creates better chances for
exploiting SIMD in the query e.g. for comparisons or subsequent arithmetic operations, and
further, reduces memory pressure e.g. when the column is materialized in a join hash table.

6.1.2 THE FAsTLANES FILE FORMAT

FastLanes is a project initiated at CWI, designed as a foundation for next-generation big data
formats. In the first chapter on FastLanes [140], we focused on significantly improving data
decoding performance over the state-of-the-art by introducing a 1024-bit interleaved and
Unified Transposed Layout, enabling data-parallel decoding even with scalar code. In the
second chapter, we demonstrated that data-parallelized layouts are essential to fully exploit
GPU parallelism [165]. Additionally, we designed and implemented ALP [141], a new
vectorized and data-parallel encoding for floating-point data. In this chapter, we introduce
Expression Encoding and design and implement the FastLanes file format, with expression
encoding at its core.

In our Expression Encoding, relationships within a cascade of encodings for a single column,
or between different columns, are represented as a chain of operators. When reading, data in
the expression chain is decoded-bottom-up, but not necessarily fully until the end of the
chain. This allows modern query engines to choose to partially decode data, yielding
compressed vectors that query engines can exploit for compressed execution.

For the FastLanes file format we designed and implemented a novel Segmented Page Layout,

6.2 EXPRESSION ENCODING 111

that allows to store data encoded with any arbitrary nested encoding expressions, while
providing an efficient vectorized API to decode the data. This API allows for the fetching
and decoding of arbitrary vectors in case of random access or sequences of vectors in cases
of full vectorized scans. The segmented layout stores similar parts of encoded data, encoded
by an expression, in a single location, along with additional metadata for the encoded data;
essentially pointers to this encoded data at the granularity of a vector. Having all encoded
data of the same type in one place makes it ideal for recursive compression due to shared
types and data semantics. This also enables fine-grained access to the encoded data, at the
vector granularity. As a consequence, decoders can perform advanced predicate pushdown,
e.g., the base of FOR encoding, representing minimum values, can be evaluated first to skip
individual vectors in range queries.

Our main contributions are:

* An open-source, high-quality implementation of FastLanes (v0.1) in C++ with
absolutely zero code dependencies.

* The design of Expression Encoding, a novel compression model providing a unified
approach to cascaded encoding, MCC, compressed execution and vectorized decoding.

* A novel segmented layout to store any arbitrary expression-encoded data, enabling the
query engine to interpret underlying encoded data and apply further optimizations.

» The design of a Two-phase Expression Detection algorithm that identifies the optimal
expression among a wide pool of possible encoding expressions.

¢ An evaluation against other file formats on the Public BI dataset, demonstrating that
FastLanes achieves faster decompression and better compression ratios.

6.2 ExPrRESSION ENCODING

We first explain the operators that serve as the building blocks of Expression Encoding. We
then describe how to serialize an expression and its operators within a file format and how to
interpret a serialized expression during decoding at execution time. Finally, we outline the
process for identifying an optimal expression within a potentially infinite domain space, as
operators can be combined in any order.

6.2.1 EXPRESSION OPERATORS

Expression Encoding is similar to white-box compression models [172] or cascaded
encodings [44] in that it combines different primitives to achieve better compression.
However, operators in FastLanes Expression Encoding are neither simple functions with
single tasks, as in white-box compression models, nor entire LWCs, as in cascaded encoding.
An operator in FastLanes is a data structure that stores data in a compressed format and
transforms it to the next format during decoding. These transformations come from breaking
down LWCs into parts that are both reusable and efficient.

For example, the DICT operator in FastLanes maintains a pointer to a dictionary and a vector
of associated codes, replacing the codes with actual values only if needed. Furthermore, to
support vectorized execution and leverage data-parallel layouts, such as a Unified

112 6 FastLANES FILE FORMAT

Table 6.1: FastLanes operators, and the encoded data held by each. An operator is a vector of 1024 values in
an executable encoded layout. Encoding operators can be exploited for compressed execution. Take FFOR as an
example, which keeps the base separated from the bit-packed data. In the case of simple query predicates such as
addition, decoding can be delayed, and the value can be added only to the base. Multiple of these operators can
be combined in a chain, forming Encoding Expressions. For instance, FFOR can be combined with DICT to build
dictionary encoding with bit-packed codes.

ID | Operator Encoded Layout

0 | FFOR Bitpacked-data, Base, Bit-width

1 PATCH Data, Exceptions, Exception Positions
2 | DELTA Deltas, Bases

3 | ALP Data

4 | ALP_RD Left side data, Right side data

6 DICT Dictionary, Codes

7 | Transpose Transposed Data

8 | Cast Data

9 | FRLE RLE-values, Length

10 | CROSS RLE RLE-values, Indexes

11 | FSST Symbol Table, Compressed Strings

12 | FSST12 Symbol Table, Compressed Strings

13 | CONSTANT Single Value

14 | EQUALITY Data or Pointer to data

15 | EXTERNAL DICT | Dictionary, Pointer to another column

Transposed Layout or 1024-interleaved layout, each operator holds only 1024 values at a
time (a vector). All operations on data are performed in a tight loop over these 1024 values,
with consistent work patterns that enable compilers to auto-vectorize [140].

The operators used in FastLanes are summarized in Table 6.1 and are explained as follows:

FFOR. The FFOR operator stores data in a FOR vector, consisting of a base and a vector of
bit-packed data — it is Fused with bit-packing. This fusion eliminates a SIMD store and load
instruction between the addition resp. subtraction and bit-[unp]packing loop, improving
performance. Unlike BtrBlocks and DuckDB, we use only FFOR and avoid a separate
bit-packing operator, since the performance of FFOR decoding is almost identical to
bit-unpacking.

PATCH. The PATCH operator, inspired by Patched Encoding [35], addresses the vulnerability
of encodings such as FFOR and ALP to outliers, by keeping outliers separate from the main
vector and reintegrating them during full decompression. We do not fuse patching with
encoding operators like FFOR, as having a separate PATCH operator allows us to apply the
patching mechanism to enhance any other LWC or operator. For example, if a vector is 95
percent constant, we can still use constant encoding while storing exceptions separately. In
FastLanes, we implement only one variation of the possible options for patching, namely
{LinkedList (LL_PATCH) [35], SelectionVector (SL_PATCH) [48], Bitmap
(BM_PATCH) [48]}: SelectionVector patching, as SelectionVector is the only patching
technique capable of being data-parallelized on a GPU [176]. SelectionVector patching uses

6.2 EXPRESSION ENCODING 113

a separate array to store the positions of exceptions.

DELTA. The DELTA operator stores delta values in the Unified Transposed Layout[140] that
breaks data dependencies among values, accelerating the decoding of delta encoding with
scalar code that auto-vectorizes. Unlike BtrBlocks, which completely avoids delta encoding,
we argue that delta encoding is crucial for future file formats, particularly for encoding
(mostly) sorted data and, more importantly, for encoding offset arrays that are always sorted
and are necessary to represent any variable-size data (strings).

ALP. The ALP operator, used specifically for the DOUBLE and FLOAT data type, keeps data in
an ALP-encoded format and utilizes our own ALP [141], which significantly improves
previous DOUBLE schemes in both speed and compression ratio. ALP is designed for
vectorized execution and uses an enhanced version of PseudoDecimals [44] to encode
doubles as integers if they originated as decimals. Its high speed is due to our
implementation in scalar code that auto-vectorizes, using building blocks provided by our
FastLanes library [140], and an efficient two-stage compression algorithm that first samples
rowgroups and then vectors.

ALP_RD. is used to compress high precision values, by separating the front bits of a
float/double from the rest. These front bits are then compressed using primitives designed
for the INTEGER data type and, during decoding, are reassembled with the rest of the double
using the Glue operator.

Glue. The Glue operator combines two sources of bit-packed data, used to merge the front
bits and tail bits in ALP_RD encoding or in one-to-many mappings from MCC schemes.

DICT. The DICT operator stores data in a dictionary-encoded format, consisting of a
reference to a dictionary and a vector of codes. We support compressed dictionaries, using
either Cast and FSST; because dictionaries must allow random-access (note that e.g., ALP
and FFOR store data bit-packed, which does not allow random-access). We chose this
approach because otherwise dictionary decoding would become rather block-based: access
to dictionary-encoded data would then require to fully decode the dictionary first.

We also support a special Shuffle Dictionary, used only for fixed-size data types. It contains
the eight most repeated values and uses the SIMD shuflle instruction for decoding, as the
dictionary can be loaded into a single register. This dictionary is now only used to encode
front bits in ALP_RD.

EXTERNAL-DICT. This operator enables us to use "external codes", i.e. the codes from a
different column, with a different dictionary. This is useful to support column correlations
with a one-to-one mapping, where the codes of the two columns are the same, but their
dictionaries are different.!

Transpose. The Transpose operator is applied only during encoding, so the decoded
data remains in the Unified Transposed Layout (UTL) after decoding. FastLanes provides a
shareable selection vector: an array of 1024 integers containing the permutation of the UTL,
which vectorized query engines can put in front of vectors decoded by FastLanes to recover
the original ingested tuple order. The FastLanes decoder can also be requested to restore this

'We also experimented with the opposite idea: sharing a dictionary between columns with different codes — however
in our tests this did not improve compression ratio significantly.

114 6 FastLANES FILE FORMAT

order, performing a gather operation on this selection vector.

Cast. The Cast operator keeps values of a column in a different type from what is
specified in the schema, to a type which simplifies encoding and query execution. We
employ Cast in three scenarios: STRING to INTEGER, allowing query engines to benefit
from the SIMD-friendly, fixed-size properties of integers; DOUBLE to INTEGER, enabling the
use of the richer INTEGER encoding pool and allowing query engines to operate on integers
instead of floating-point data types; and INTEGER to a narrower INTEGER type (e.g., 64-bit
to 8-bit). The Cast is a useful end-point for compressed execution.

RLE. The RLE operator stores data in the FastLanes-RLE [140] compressed format, which
consists of two vectors: one for repeated values and another for indexes pointing to these
repeated values. For full decoding, the RLE values are placed in their correct positions using
the indexes. Note that FastLanes-RLE maps RLE to dictionary encoding and applies delta
encoding to the indexes. This enables the use of a Unified Transposed Layout to break data
dependencies among values, accelerating the decoding of RLE encoding with scalar code
that auto-vectorizes.

FSST. The FSST operator compresses a vector of STRING data using FSST [164], a
lightweight compression scheme with decompression and compression speeds comparable
to, or better than, the best speed-optimized compression methods, such as LZ4. FSST uses a
static symbol table (stored in the rowgroup header) that enables random access to individual
compressed strings, allowing for query processing directly on compressed data.

FSST12 is an alternative version of FSST that uses 12-bit instead of 8-bit codes [177],
allowing it to encode up to 4,096 symbols (each up to 8 bytes long). The larger dictionary
allows FSST12 to obtain better compression ratios than FSST on distributions with more
entropy; but comes at the cost of a large CPU cache footprint. For instance, JSON and XML
benefit more from FSST12.

Cross RLE. The motivation behind this operator is that our data-parallel RLE is very fast
but introduces a 128-byte overhead per vector. For a rowgroup of size 64 x 1024 with very
few RLE values, this overhead becomes significant (§KB). To address this issue, we
introduce the Cross RLE operator, which applies classical run-length encoding across an
entire rowgroup. The main challenge for Cross RLE is efficiently supporting vectorized
decoding on the Unified Transposed Layout. To overcome this, we implement the decoding
in two steps: first, we traverse the RLE lengths to identify the initial value belonging to the
vector currently being decoded, and then we proceed with standard RLE decoding. An
additional mapping is performed to correctly decompress into unified transposed layout, but
this step is only needed at the boundaries of RLE stretches, adding low overhead.

6.2 EXPRESSION ENCODING 115

6.2.2 FASTLANES EXPRESSION NOTATION

To store and represent expressions we use a modified form of Reverse Polish Notation (RPN),
that separates operators and operands into two distinct RPN-style (postfix order)
sub-expressions:

1. Operators: Stored as integers, with each operator assigned a unique ID.

2. Operands: Stored as integers representing either a column or a segment within a data
page in FastLanes (Segments are discussed in greater detail in Section 2.2).

Whereas standard RPN requires (string) parsing to tokenize operators and operands, our
approach directly stores operators and operands as integers. This design aims to minimize
the overhead of interpretation at runtime, while also using little space for expressions. Each
operator is uniquely identified based on its type. For example, the FFOR operator has distinct
IDs for each data type it supports, further reducing the need to interpret the operator’s data
type. Thus, FFOR_UINTS is the version of FFOR that operates on 8-bit data, different from
FFOR_UINT16, for 16-bit data.

Decoding interpretation consists of initializing a chain of physical expressions, by reading
the operator and operand arrays from a column descriptor inside the rowgroup file-footer.
These physical expressions are initialized by (i) looking up function pointers from operand
IDs, and (ii) binding parameters by looking up values and offsets in the column descriptor,
which contains encoding parameters such as e.g. the bit-width for bit[un]packing in FFOR, as
well as segment descriptions that point to raw bytes in the rowgroup. Execution of
[en/de]codingthen calls these functions in the physical expressions one after the other.

6.2.3 EXPRESSION DETECTION

Expression Encoding enables a file format to encode data using any combination of
operators. This flexibility introduces a challenge in identifying suitable expressions that
achieve both fast decompression and high compression ratios for a given table, as the search
space is infinite. We address this challenge with a two-phase approach for expression
selection: a rule-based phase for detecting relationships between columns and determining
the appropriate type for each column, followed by a sample-based encoding phase that
selects an expression from a predetermined pool of expressions.

Rule-Based Operator Selector. The process of operator selection or expression creation
begins by applying rules in the order they are defined. The FastLanes v0.1 rule set consists
of the following:

1. Constant: We first identify constant columns where all values are identical. These
columns are represented by an expression with only one operator, CONSTANT. The constant
value is not stored directly; instead, the Min-Max information in the rowgroup footer is used
to retain this value. This decision allows the reader to use this column in a query without
fetching any data.

2. Equality: We check for equality columns where the values in two columns are (almost)
completely identical row-by-row. In this case, the second column is encoded with an
expression consisting of only one operator, EQUAL, and as operand a {column-id}.

3. String as Numerical: It is not uncommon for database users to select a string type as a
fallback data type for a column that contains mostly numerical data [103]. Converting these

116 6 FastLANES FILE FORMAT

strings to numerical types, such as integers or doubles, improves compression efficiency, as
numerical data compresses better than strings (as shown in Section 2.3), and simplifies
processing since numerical data is fixed-size, making it suited for SIMD instructions. This
rule first detects such columns and then selects the appropriate numerical type. A CAST
operator is added to the expression to retrieve the original type if necessary.

4. Double as Integer: Similar to ”String as Numerical,” this rule aims to select a more
efficient data type when possible, particularly for double columns that consistently have a
zero after the decimal point. A CAST operator is added to the expression to retrieve the
original type if necessary.

5. Narrower Types for Integer: Similar to ”String as Numerical” and "Double as Integer,”
this rule aims to select a more efficient data type when possible, particularly a narrower
integer data type. The narrowest integer type is determined based on the number of bits
required to represent the maximum value. A CAST operator is added to the expression to
retrieve the original type if necessary.

6. One-to-One Map: In a one-to-one correlation, a specific value ”X” in one column is
always associated with a single specific value ”Y” in another column. In this case, the first
column proceeds to the second phase to determine the best expression, with the caveat that
only expressions with a dictionary as the root are considered. For the other column, we store
only a reference to the dictionary column, and the expression selection stops here by
choosing EXTERNAL_DICTIONARY.

Sampling-Based Encoding. After the Rule-Based Operator Selector, three categories of
columns — constant, equal, and one-to-one map — are removed from the pipeline for choosing
the optimal expression. For the remaining columns, we use a sampling-and-try approach to
select the best encoding expression from a limited predefined expression pool, shown in
Table 6.2. This pool consists of expressions we derived from trying a large set of
combinations of encodings on the Public BI datasets; where we kept those encoding
expressions that ended up being the best for some column.

We call our sampling method three-way: FastLanes simply takes the first, last and middle
vector (each of 1024 values) in the rowgroup and tries compressing this limited data with all
encoding expressions in our pool for that datatype. The key intuition behind this sampling
strategy is that many tables exhibit locality, while gradually changing the data distribution
throughout the rowgroup.

Figure 6.2 shows a benchmark of compression ratio achieved on the Public BI dataset using
two sampling strategies and various sample sizes; where 100% compression ratio was
achieved by choosing the best encoding expression after measuring the compression ratio on
all vectors of the rowgroup (i.e., no sampling). The sequential strategy uses a front-biased
strategy, whereas the three-way strategy recursively applies a binary-search approach: after
sampling the first and last vector, it incrementally probes the middle of the largest
unexplored space. We see that this strategy, after just three vectors (hence: three-way)
achieves more than 99% accuracy in terms of compression ratio, comparing quite favorably
to front-biased sampling.

6.2 EXPRESSION ENCODING 117

|[Expression (where X € {08,16,32}) |[Count|Popularity (%)

string columns
CROSS_RLE_STR 210 9.17%
FSST_DICT_STR_FFOR_SLPATCH_UX 191 8.34%
FSST_DICT_STR_FFOR_UX 166 7.25%
CONSTANT_STR 81 3.54%
EXTERNAL_FSST_DICT_STR_UX 41 1.79%
FSST_DELTA_SLPATCH 33 1.44%
FSST_DELTA 21 0.92%
FSST12_DICT_STR_FFOR_SLPATCH_UX 8 0.35%
FSST12_DELTA_SLPATCH 7 0.31%
RLE_STR_SLPATCH_UX 2 0.09%
FSST12_DELTA 2 0.09%
RLE_STR_UX 1 0.04%
numeric columns
CONSTANT_INTEGER 334 14.59%
FFOR_SLPATCH_INTEGER 227 9.92%
DICT_INTEGER_FFOR_SLPATCH_UX 210 9.17%
DICT_INTEGER_FFOR_UX 190 8.30%
CROSS_RLE_INTEGER 121 5.29%
FFOR_INTEGER 47 2.05%
EXTERNAL_DICT_INTEGER_UX 24 1.05%
RLE_INTEGER_UX 15 0.66%
RLE_INTEGER_SLPATCH_UX 3 0.13%
floating-point columns
ALP_DBL 87 3.80%
DICT_DBL_FFOR_SLPATCH_UX 38 1.66%
RLE_DBL_UX 30 1.31%
DICT_DBL_FFOR_UX 28 1.22%
CONSTANT_DBL 18 0.79%
ALP_RD_DBL 17 0.74%
EXTERNAL_DICT_DBL_UX 12 0.52%
CROSS_RLE_DBL 2 0.09%
RLE_DBL_SLPATCH_UX 1 0.04%
correlated columns
EQUALITY | 56] 2.45%

Table 6.2: The FastLanes v0.1 Expression Pool: Sorted by Category & Popularity in being chosen in en-
coding the Public BI benchmark. For string columns, run-length encoding with long stretches dominates
(CROSS_RLE_STR), and second most effective are FSST-compressed dictionary encoding with exceptions
(FSST_DICT_STR_FFOR_SLPATCH_UX). This pool was chosen by exhaustive testing of a wide spectrum of
expressions encodings on Public BI, and retaining the winners.

118 6 FastLANES FILE FORMAT

99

Accuracy (%)

84
—e— Three-way
—e— Sequential

79

1 3 7 16 32 64
Number of Vectors

Figure 6.2: Compression ratio accuracies of Sequential and Three-Way sampling methods. Three-way sampling,
vectors at positions 0, 32, and 64 achieve more than 99% accuracy.

6.3 FAsTLANES FILE FORMAT

In this section, we first explain the file format from a high-level perspective, beginning with
the rowgroup, then moving to the column chunk, and finally delving down to the segment,
the fundamental building block of the FastLanes file format. We also demonstrate how
segments are used to store the encoded data of an expression. Additionally, we provide a
detailed example of how a table is stored in the FastLanes format.

File Format Overview. The FastLanes file format consists of two main components: the
footer and the data. The footer, in v0.1 still stored in JSON format (though this will change
in a later version), contains all the necessary information to access, decode, and decrypt the
data, along with statistics such as Min-Max values. The data itself is stored in a binary
format after being expression-encoded. We propose storing the footer metadata separately
from the data — e.g., in different files or objects within an S3 bucket in cloud storage — query
engines can process metadata first, possibly from a cache or catalog that consolidates
metadata for many rowgroups, enabling optimizations like projection pushdown and zone
map filtering that avoid accessing data files unnecessarily.

Rowgroup. FastLanes first divides a table horizontally into smaller mini-tables called
rowgroups. Each rowgroup stores records using the PAX layout [178], which keeps the
attribute values of each record together in the same file, while the attributes themselves are
stored in a DSM (columnar) layout [179, 180]. All decisions in FastLanes, such as
expression detection, are made on a per-rowgroup basis, allowing for more fine-grained
tuning and adaptability to data, rather than applying a single expression to an entire column.
Additionally, we store statistics for each rowgroup, such as Min and Max values, enabling
the ability to skip entire rowgroups for range queries. The size of a rowgroup in FastLanes is
a fixed number of records, similar to ORC, and is always a multiple of 1024. This design
ensures compatibility with data-parallel encodings [140], as these encodings require
1024-value batches to fully leverage SIMD registers or all threads within a GPU warp [165].
In contrast, Parquet uses fixed physical sizes for rowgroups, resulting in a variable number of

6.3 FasTLANES FILE FORMAT 119

{ "Rowgroup size in terms of number of vectors": 2,

"Rowgroup binary size": 26,

"Rowgroup offset within binary file": 0,

"Rowgroup ID": "O0",

"Column Descriptors": ["Explained below"] }
Figure 6.3: Row-group Descriptor in JSON format for the first row-group in Table 6.7, stored separately from the
row-group binary data. This row-group contains two vectors and is located at an offset of O bytes in the binary

FastLanes file format, with a size of 26 bytes. To retrieve this row-group, 26 bytes starting from offset 0 need to be
loaded.

{ "type": "STRING",
"Column offset": 0,
"Column binary size": 23,
"Expression": "DICT_FFOR_UINT8"],
"Column Index": O,
"Segments Descriptors": ["Explained below"], }

Figure 6.4: Column Descriptor for the first column in Table 6.7, stored within the row-group descriptor depicted
above. The Expression for decoding and encoding code ("DICT_FFOR_UINTS8") gets mapped to an array of
operators and an array of operands, a form a Reverse Polish Notation.

{ "Entrypoint offset": 16,
"Entrypoint binary size": 2,
"Data offset": 18,
"Data binary size": 2 }

Figure 6.5: Segment Descriptor for the segment that stores bases for FFOR. The entry point array is of size 2, as
each entry point is a 8-bit unsigned integer. There are two entry points needed, since the row-group size is 2 vectors.
The size of the data is 2 bytes: 1 byte for each 8-bits base (1 byte).

records.

Rowgroup Descriptor. Each rowgroup in the FastLanes file format is associated with a
descriptor in the footer. This descriptor includes the size of the rowgroup (in terms of the
number of vectors), along with the size and offset specifying where the rowgroup starts in the
binary data and the number of subsequent bytes it occupies. The descriptor enables the query
engine to fetch only the relevant bytes from the binary file, skipping unnecessary rowgroups
through zonemap filtering. Additionally, it contains an array of column descriptors, which
are explained later. An example of a rowgroup descriptor is shown in Figure 6.3.

Column Chunk. Within each rowgroup, there is exactly one column chunk per column,
storing the data of that column in a columnar format after being expression-encoded. By
keeping all data of a column in a contiguous location, this setup enables query engines to
perform projection pushdown, allowing them to load only the columns relevant to the query
instead of loading all columns.

Column Chunk Descriptor. For every ColumnChunk in a FastLanes rowgroup, there is a
corresponding descriptor in the footer. This descriptor includes the type defined by the
schema, segment descriptors (explained later), the size and offset indicating where the
column starts in the binary data, and the number of subsequent bytes belonging to the

120 6 FastLANES FILE FORMAT

I v

offset to vec 0 offset to vec 1 100 101
IS J\. J

[T Y Y

vec 0 vec 1

Figure 6.6: Example segment storing the bases of the FFOR expression of the ID column with a row-group size of
2 vectors. The segment holds bases for 2 vectors {100, 101}, with an entry point array at the start that points to
the base of each vector to enable vectorized decoding. Storing bases in one location allows further compression
of these bases, e.g., with FFOR. Bases can also be exploited in queries (e.g., ID>101) to skip vectors to provide
per-vector min-max stats.

Rowgroup | Vector | RowID Name | Institude | ID | Alias Col Name Name Institude D Alias
N. N. N. _ _ Type String String Integer String
g g 2 ﬁ%ce gai 123 ﬁ%ce offset 0 23 23 25

ice ice -
= z S, 23 0 2 0

0 0 2 Alice CWI 100 | Alice 1zel
0 0 3 AECE oW 100 Alice Expression| orctronary_rror uints | CONSTANT |EXTERNAL DICT| EQUALITY
0 0 4 | Bob owT 101] Bob | | Metadata CHTY
0 0 5 Bob cwI 101| Bob Segments ? o ? 1
0 0 6 Bob CwI 101| Bob
0 0 7 | Bob [101] Bob fo. 11] 14, &1 | (25, 2)
0 1 8 Bob [101| Bob [5. 11 | (20, 2]
0 1 9 Bob CWI 101| Bob (12, 2] | [14, 2]
0 1 10 Bob cwI 101] Bob (16, 2] | [1s, 2]
0 1 11 | Bob cwI 101| Bob [20, 21| [22, 2]
0 1 12 Alice CwI 100 | Alice
0 1 13 Alice CWI 100 | Alice
0 1 14 | Alice CWI 100 | Alice
0 1 15 |Alice CWI 100 | Alice

Ity Point B sitwidth

B Dictionary (Name) offset

_ Bitpacked Array [] Dictionary (ID)
I cse

Figure 6.7: FastLanes file layout for a table with columns Name, Institute, and ID. In gray we also draw inexistent
columns rowgroup, vector and rowld, indicating which row belongs to which rowgroup and vector. We reduced the
rowgroup size to 2 vectors of size 8 (v0.1 defaults are 64x1024). The footer is shown in top right, with required
fields Col Name; Type; Offset, representing the binary offset of this column in the rowgroup; Size, allowing to
compute the end of the column chunk; Expression, specifying the encoding-expression of this column; Metadata
and Segments, an array of two byte ranges [offset, size]. The first range specifies where the segment "entry point”
array (with one entry point per vector) starts within this column chunk and its size, while the second range specifies
where the segment data starts and its size. We assign a color to each column, which is also applied to the raw bytes
in the FastLanes binary data, depicted in the bottom right. Each box represents one byte, tagged below with a color
that matches the legend, and a byte position in gray. FastLanes used Dictionary_FFOR_UINTS8 encoding for the
Name column, as the values come from a small domain. Constant encoding is used for the Institute column, as all
values are equal. One-to-One Mapping is selected for the ID column, since it completely correlated with the Name
column. Finally, the Alias column is compressed using Equality, as it is a copy of Name. For the first column in the
binary format, there are a total of five segments: (1) one for bytes of dictionary values ("Alice" and "Bob"), (2) one
for offsets of strings stored in the first segment ("0,5"), (3) one for the bit-packed array, which in this case requires
two bytes as the 16 values can be represented in 1 byte, (4) one for the base values (0 and 0), and (5) one for bit
widths (1 and 1). For Institute there is no segment, as the constant ("CWI") is stored in the metadata. For ID, we
store only the dictionary with one segment consisting of values [100, 101].

column. These details enable the query engine to access relevant columns while skipping
unnecessary ones, an optimization known as projection pushdown. The descriptor also
includes the column index and statistics, such as the maximum value. An example of a
column descriptor is shown in Figure 6.4.

Segment. A segment stores encoded data of the same nature—data that has the same role in

6.4 EVALUATION 121

encoding and shares the same type—resulting from encoding a column chunk (multiple
vectors) through the expression encoder. It enables fine-grained access to this encoded data
(at the granularity of a vector at a time, 1024 values) to support vectorized decoding. Each
segment achieves this by storing an additional entry points array alongside the data itself,
which keeps track of the offset to the start of the data for each vector. Note that the segment
stores data from the assigned source consecutively after this entry points array.

Segment Descriptor. For each segment in the file format, there will be a descriptor in the file
footer containing two key pieces of information: the entry point offset and size, and the data
offset and size. These fields determine the exact location and extent of each segment within
the binary data file. An example of segment descriptor is shown in the middle of Figure 6.5

6.4 EVALUATION

Hardware. We conducted all experiments on an EC2 instance i4i_4xlarge, with Intel
Xeon (Ice Lake) CPU, 16 vCPUs and 128 GiB RAM. FastLanes is portable accross multiple
operating systems and compilers, and we have previously evaluated its encodings also on
Apple and Graviton ARM hardware [140]; however, BtrBlocks depends on x86 intrinsics,
which is why we chose this platform. Data Formats. FastLanes v0.1 is released under an

MIT license in our GitHub repository?. All experiments are released separately in a
dedicated repository>. For Parquet, there are several open-source implementations; we use
the implementation in DuckDB v1.2 [181], as it employs the latest Parquet encodings [182]
and is widely used for writing Parquet files. We compare two variants of Parquet:
Parquet+Snappy, widely used in practice, and Parquet+Zstd, which offers the best
compression ratio. For BtrBlocks, we use the original implementation provided by the
authors of BtrBlocks [183], run with its default settings at cascading level 2.

We also evaluate DuckDB’s native format. Note that DuckDB does not provide any API to
directly determine the storage size occupied by a table, making it challenging to accurately
measure DuckDB’s compression performance. We replicate each sample dataset until the
number of samples reaches at least 10 and is a multiple of 1024 x 120, as DuckDB begins
compressing data only when a rowgroup size reaches 1024 x 120. This setup ensures that
the resulting files are sufficiently large, minimizing inaccuracies caused by DuckDB’s
storage being allocated in fixed increments of 256 KB, thus allowing a fair evaluation of its
compression performance.

Data. We chose data from the PUBLIC_BI [103, 104] benchmark as a basis to design and
compare FastLanes against other file formats, and also used it to identify the expressions
encodings (see Section 6.2.3). The PUBLIC_BI dataset is particularly relevant because it
captures a wide variety of data distributions, is derived from real-world datasets, and has
previously been used in the analysis, design, and evaluation of other encoding schemes such
as ALP, FSST, White-Box Compression, C3, Chimp, Chimpl28.

We used 36 datasets from PUBLIC_BI, summarized in Table 6.3, consisting of 2,289
columns. For consistency, we only considered the first table from each dataset to ensure

2https ://github.com/cwida/FastLanes
3https://github.com/cwida/fastlanes-v1db2025

https://github.com/cwida/FastLanes
https://github.com/cwida/fastlanes-vldb2025

122 6 FastLANES FILE FORMAT

equal-sized samples, as datasets vary in the number of tables. An exception was made for
datasets with very few records, such as TrainsUK1, where we used Table 2 instead of Table
1.

Additionally, for datasets with similar schemas, such as Redfinl, Redfin2, Redfin3, and
Redfin4, only the first dataset was included to avoid the effect of redundant tables on the
results. For all experiments in this section, we selected 65,536 records (64 vectors) from
each table to ensure fair benchmarking, as BtrBlocks also uses this number as the rowgroup
size. Exceptions were made for the datasets CommonGovernment, Generico, and
USCensus, where only 32,768 rows were used, as including 65,536 rows would result in file
sizes exceeding 100MB.

Compression ratio. Table 6.3 summarizes the compression ratios for all evaluated file
formats. All ratios are reported relative to FastLanes, where positive values indicate the
percentage by which FastLanes compresses data more effectively, and negative values
indicate the percentage by which another format compresses better than FastLanes. As
shown, FastLanes achieves the highest compression ratio among all evaluated file formats.
Parquet+Zstd is the closest competitor, compressing only 2% less efficiently than FastLanes.
In contrast, the commonly used default, Parquet+Snappy, results in 40% more data
compared to FastLanes.

Decoding and Encoding Speed. Next, we evaluate the decoding and encoding speed of all
file formats. The results are shown in Table 6.4. FastLanes is faster on all datasets and, on

average, is 43 times faster than Parquet+Snappy, 44 times faster than Parquet+ZSTD, 7 times
faster than BtrBlocks, and 29 times faster than DuckDB.

Regarding encoding speed, we note that the FastLanes v0.1 code path is extremely basic and
no effort whatsoever has been made to make it fast. With all optimization still on the table,
we note it is already faster than BtrBlocks.

Random access. Next, we evaluate the random access time of all file formats. To do so, we
execute the following query: "SELECT * FROM read_parquet() LIMIT 1 OFFSET 0"
in DuckDB to retrieve only the first row from a Parquet file. For BtrBlocks, we fully
decompress the entire block. While this could be optimized further by decoding only the
first element of the last recursion of BtrBlocks, this is not possible as it would require a
complete reimplementation of BtrBlocks with a new API that supports this.

The results are shown in Table 6.5. FastLanes takes 0.14 milliseconds to retrieve the first
value from all datasets, making it 315 times faster than Parquet+Snappy, 416 times faster
than Parquet+ZSTD, 800 times faster than BtrBlocks, and 5 times faster than DuckDB.
DuckDB is the closest to FastLanes in performance. This benchmark demonstrates that
block-based compression methods are extremely inefficient for random access, as they
require decompressing the entire block to access a single value. In contrast, the vectorized
decoding model used in both FastLanes and DuckDB provides a good balance between
compression ratio and small enough block sizes to enable efficient tuple retrieval.

SIMD. To evaluate in howfar fully data-parallelized encodings improve with SIMD, we
benchmark the total decoding time of FastLanes on Intel Ice Lake using three different
compilation flags: -03, -03 -mavx2, and -03 -mavx512dg.

The results are shown in Table 6.6. As observed, AVX512 improves decoding time by nearly

6.4 EVALUATION 123

Table 6.3: Compression ratios of file formats relative to FastLanes. Positive percentages indicate better compression
performance by FastLanes, while negative ones show superior performance by other formats. FastLanes achieves the
highest overall compression ratio, closely followed by Parquet+Zstd (2% less efficient). The default Parquet+Snappy
format results in 40% larger compressed data.

Table CSv FastLanes Parquet BtrBlocks| DuckDB
Name V0.1 Snappy Zstd [183] v1.2
Arade 5.44 0.90 +92.00% |+82.00% | +17.00% | +22.00%
Bimbo 2.72 0.31 +108.00% | +42.00% | -2.00% | +82.00%
CMSpr | 14.02 2.86 +43.00% [+10.00%| +11.00% | +63.00%
CityM 22.98 8.53 +14.00% |-21.00% | +16.00% | +39.00%
Commo| 25.20 222 -8.00% |-39.00% | +3.00% |+103.00%
Corpo 11.62 2.40 +7.00% | -24.00% | +88.00% | +57.00%
Eixo 52.56 4.50 +18.00% | -21.00% | +15.00% | +64.00%
Euro2 12.97 5.10 -9.00% |-39.00% | +21.00% | +10.00%
Food 2.01 0.48 +15.00% |-10.00% | -18.00% | -20.00%
Gener 18.34 0.86 +50.00% | -24.00% | -8.00% | +83.00%
HashT 82.52 15.85 +51.00% | -4.00% | +55.00% |+103.00%
Hatre 23.19 8.63 +13.00% | -23.00% | +21.00% | +41.00%
IGloc 5.26 1.58 +24.00% | +6.00% | -5.00% | +21.00%
MLB 11.41 2.11 +73.00% | +4.00% | +3.00% | +84.00%
MedPa 15.30 3.56 +33.00% | +7.00% | +14.00% | +67.00%
Medic 13.03 3.28 +29.00% | +9.00% | +7.00% | +27.00%
Motos 36.94 1.76 +57.00% |-24.00% | -9.00% |+150.00%
Mulhe 54.61 4.56 +18.00% | -21.00% | +14.00% | +68.00%
NYC 39.54 3.70 -11.00% | -31.00% | +26.00% | +66.00%
PanCr 15.02 3.25 +42.00% | +6.00% | +7.00% | +59.00%
Physi 15.30 3.53 +34.00% | +8.00% | +16.00% | +64.00%
Provi 15.30 3.52 +37.00% [+13.00% | +13.00% | +64.00%
RealE 17.57 3.61 +63.00% [+10.00% | +23.00% | +39.00%
Redfi 29.31 8.17 +13.00% | +1.00% | +13.00% | +55.00%
Renta 65.94 12.49 +22.00% | +8.00% | +18.00% | +46.00%
Roman | 21.07 8.16 +11.00% | -28.00% | +19.00% | +50.00%
Salar 48.65 8.45 +4.00% | -8.00% | +20.00% | +72.00%
Table 17.42 0.49 -23.00% | -47.00% | -11.00% |+209.00%
Taxpa 15.28 3.49 +38.00% [+13.00% | +19.00% | +68.00%
Telco 47.41 17.20 |+121.00% |+54.00%| +3.00% | +59.00%
Train 19.93 2.62 +95.00% [+38.00% | +5.00% |+134.00%
Train 19.87 2.96 +67.00% | -0.00% | +15.00% | +85.00%
USCen | 54.63 3.44 +72.00% [+13.00%| +6.00% |+147.00%
Uberl 54.52 4.59 +17.00% |-22.00% | +12.00% | +65.00%
Wins 56.19 11.80 +87.00% [+30.00% | +13.00% | +76.00%
YaleL 16.96 1.10 +14.00% | -14.00% | +25.00% |+122.00%
Total |980.03mg|172.05(mg)| +41.00% | +2.00% | +18.00% | +66.00%

124 6 FastLANES FILE FORMAT

Table 6.4: Decoding/encoding throughput of file formats, based on the number of rowgroups decoded/encoded per
second.

File Format Total Decoding Decoding Total Encoding Encoding

Time (ms) (rowgroup/s) Time (ms) (rowgroup/s)
FastLanes 16.32 61.27 81341.63 0.012
Parquet+Snappy 712.55 1.40 5867.07 0.17
Parquet+Zstd 731.45 1.37 6927.52 0.14
BtrBlocks 115.43 8.66 111091.39 0.009
DuckDB 483.45 2.07 20347.82 0.05

Table 6.5: Random access time comparison across different file formats. The result is presented in terms of the
millisecond taken by FastLanes and how many times FastLanes is faster than others. FastLanes achieves the fastest
access time. The results highlight the inefficiency of block-based compression for random access and the advantage
of vectorized decoding in balancing compression ratio and retrieval speed.

Table | FastLanes Parquet BtrBlocks | DuckDB
Name V0.1 Snappy | Zstd [183] vl2

| Total | 0.14053 | 315.62x | 413.66x | 813.57x | 5.96x |

40%. To further emphasize the necessity of next-generation file formats for data-parallel
encodings, we repeat the same benchmark for Parquet+Zstd, Parquet+Snappy, and BtrBlocks.
The observed performance gain is negligible. While BtrBlocks uses explicit SIMD
instructions, it employs non-fully data-parallel layouts, which limit its ability to benefit from
AVX512, as clearly shown in Table 6.6. This benchmark clearly demonstrates the
importance of fully data-parallel encodings.

Expression Pool. To measure the effect of each expression in our pool, we conducted an
experiment where we measured the impact of each expression encoding included, compared
to when it was removed from the pool. The results indicate how much an expression
practically improves the compression ratio performance and decompression time of
FastLanes*

The results are shown in Table 6.7. Dictionary encoding has the most significant impact
on the compression ratio, improving it by 40%, followed by DELTA decoding, which
improves it by 6%. Based on these results, we address the following questions, which could
serve as guidelines for future file formats, including FastLanes.

Exception Handling. Despite its proven benefits [35, 184], almost all new file formats, such
as BtrBlocks, DuckDB’s native file format, and Nimble from Meta, avoid supporting any
exception handling mechanism. The PATCH operator, which handles exceptions, improves
the compression ratio by 2.5% in the presence of all schemes, demonstrating its significance.
We consider patching a first-class citizen in FastLanes, though we notice that it has
considerably slowed down decompression.

FSST. FSST12 and FSST work similarly, with the key difference that FSST12 uses 12-bit

4This micro-benchmark was conducted on an Apple MacBook Pro M4.

6.4 EVALUATION 125

Table 6.6: Total decoding time of FastLanes, Parquet, and BtrBlocks on Intel Ice Lake using different SIMD
compilation flags. AVX512 improves decoding time by nearly 40% on FastLanes, demonstrating the efficiency of
data-parallelized encodings. In contrast, the performance gains for Parquet+Zstd, Parquet+Snappy, and BtrBlocks
are negligible. BtrBlocks only works on machines with AVX2/AVX512 instruction sets.

ISA FastLanes Parquet+Snappy Parquet+Zstd BtrBlocks
Time(ms) ‘ Speedup | Time(ms) ‘ Speedup | Time(ms) ‘ Speedup | Time(ms) ‘ Speedup
SSE 23.16 - 2110.27 - 2152.29 - x %
AVX2 18.96 22.10% | 2057.16 2.58% 2167.52 -0.70% 113.09 -
AVX512 16.32 41.87% | 2070.90 1.90% 2197.58 -2.06% 115.43 -2.07%

Table 6.7: Improvement brought by adding each scheme to the pool compared to having it removed. Usefulness is a
mix of impact on compression ratio, decompression speed (and code complexity - but this is harder to quantify).

Expression Compression | Decompression

Ratio Speed
Dictionary +42.36% +44.19%
DELTA +5.92% -1.91%
Equality +4.70% +2.66%
ALP +4.36% -7.28%
FSST +3.86% +3.84%
Patch +2.51% -7.11%
FFOR +1.30% +4.48%
One-to-One Map +1.17% +9.47%
FSST12 +0.84% +2.62%
Cast +0.78% +10.16%
RLE +0.69% +6.65%
CROSS RLE +0.65% +16.27%
ALP RD +0.57% -2.30%
Frequency +0.09% +2.06%
Constant +0.00% +2.92%

symbols, allowing it to capture 16 times more symbols at the cost of 4-bit longer codes. This
raises the question: do future file formats need FSST, FSST12, or both?

By looking at the table, FSST improves the compression ratio by almost 4%, which is
significant, while FSST12 contributes only 1%, which is still meaningful. Despite not
having as much impact as FSST, a detailed analysis shows that FSST12 performs very well
on long string columns, making our file format more future-proof for handling long strings.
Therefore, we support both FSST12 and FSST in FastLanes.

Frequency. BtrBlocks argues for using frequency encoding, which considers the most
commonly used value as a default and stores only values that do not match the most frequent
one. In a sense, it is similar to constant encoding with exceptions.

Our analysis, summarized in Table 6.7, shows that this scheme brings only a 0.05%
improvement, which is very insignificant compared to the complexity it adds to the file

126 6 FastLANES FILE FORMAT

format. Therefore, in FastLanes, we do not support the Frequency encoding.

MCC. MCC schemes, including Equality with (4.7%, 2.6%), One-to-One Mapping with
(1.2%, 9.47%), and Cast with (0.78%, 10.16%), bring an overall improvement of
approximately (8%, 20%) to the compression ratio and decoding speed of FastLanes, which
is very significant. Therefore, we support MCC schemes as a first-class citizen of FastLanes
and continue to explore further improvements to our MCC schemes.

6.5 RELATED WORK

Today, there are multiple open columnar [185] file formats, including Parquet [1],

RCFile [15], ORC [16], BtrBlocks [44], DuckDB [51, 186], Albis [187], Carbon [188],
DataBlocks [189], Artus [175], Capacitor [190], LanceDB [191], Bullion [160], and
Nimble [160]. These formats have been analyzed and surveyed in [48, 161, 162, 192]. In
this section, we review BtrBlocks as the current state-of-the-art file format, the first (and
only) to implement cascaded encoding. We also examine studies within the database context,
focusing specifically on Cascaded Encoding and Multi-Column Compression (MCC).

6.5.1 BrrRBLOCKS

BtrBlocks implements cascaded compression through recursion, where an entire column
chunk is compressed recursively using multiple lightweight compression schemes (LWCs).
Here we highlight some key reasons FastLanes provides advantages over BtrBlocks.

Block-Based Compression: Despite using LWCs that could potentially support vectorized
decoding, BtrBlocks’ cascading compression reverts to a coarse-grained approach. This is
due to the recursive nature of the implementation, which requires an entire rowgroup
(64*1024 values) to be fully [de]compressed multiple times for each LWC used in a
combination. One could argue that the size 64*1024 could be reduced to one vector of 1024,
and that repeating the process of recursive decompression for each vector could support
vectorized decoding. However, this approach is not feasible because, for example, the crucial
dictionary encoding code-path would then get executed separately for each vector, resulting
in a separate dictionary being stored for each vector. This could lead to dictionaries with
potentially repeated values across vectors and significantly worse compression ratios.

No Compressed Execution Support: BtrBlocks always completely decompresses values.
While one could extend its cascaded decoding to support compressed execution, this would
only provide a limited form by skipping decoding of the final recursion level. This limitation
arises from the recursive nature of its implementation, where lower levels of encoding
remain opaque and can only be accessed after full decoding.

Not Fully Data-Parallelized: BtrBlocks relies on 128-bit interleaved bit-packing provided
by the FastPFOR library. At best, a 128-bit interleaved layout can only use a SIMD register
of width 128 bits or only 4 threads of a 32-threaded warp — and there is no BtrBlock GPU
decoder yet.

Missing Schemes: The BtrBlocks scheme pool lacks three critical schemes: ALP,
Patching, and Delta encoding. ALP is a state-of-the-art encoding for floating-point data
and an essential LWC scheme to achieve better compression ratios than Zstd. Delta

6.5 RELATED WORK 127

encoding is crucial in niche domains (e.g., timeseries data) but is also a useful component
for encoding offsets needed for string storage.

Hardcoded: Btrblocks implements cascaded compression with hardcoded configurations.
For example, in all cascades involving dictionary encoding, uint32 is always used for codes.
In contrast, the FastLanes implementation of cascaded encoding allows a expressions of any
combination of operators; and even though we limit the space of possibilities with an
expression pool, it offers multiple variants for dictionary codes. In FastLanes, dictionary
codes are typically further compressed with FFOR. Note that in the FFOR of FastLanes the
bit-width is a parameter that gets stored in a column segment, hence it can vary from vector
to vector.

Dependencies: the BtrBlocks implementation relies on several external dependencies,
which complicates its use in practical systems. We argue that a file format should be
implemented with zero external dependencies, following the DuckDB and SQLite
implementation model, making it usable as an embeddable library for any query execution
engine.

6.5.2 ENcODING/COMPRESSION.

Encoding/compression is frequently studied in database systems, with a focus on improving
decoding speed [35, 71, 75, 140, 184, 193-203], optimizing encoding/compression
selection [204, 205], enhancing compression ratios [173, 206-211], integrating compression
with query execution [173, 212-219], evaluating predicates on encoded

data [69, 70, 220, 221], and GPU encoding/compression [168]. HWC schemes, such as
Zstd [92], Snappy [163], and LZ4 [93], are the default in most open file formats. Several
LWC schemes have also been developed to encode specific data types, such as

DOUBLE [43, 44, 95-97, 110, 122, 124, 141], INTEGER [46, 48, 75, 140, 184], and

STRING [73, 164, 222]. Grammar-based compression schemes like Sequitur [223],
Re-Pair [224], and GLZA [225] have been proposed to compress data by building a
context-free grammar for it. However, these grammar-based schemes are generally
unsuitable for file formats due to their slower decompression speeds [164].

Cascaded Encoding. Fang et al. [168] propose cascaded encoding, which combines LWC
schemes to improve compression ratios. Damme et al. classify LWC schemes into logical
and physical compression categories and study how well they can be combined [226, 227].
However, their work is limited to integer columns and combinations of at most two LWC
schemes. Afroozeh et al. [48, 167] propose a Composable Compression Model that
decomposes LWC schemes into several efficient functions that can later be used to construct
more complex encodings, though this work focuses on decoding speed rather than
compression ratios. BtrBlocks [44] implements cascaded encoding recursively, while
Nvidia’s nvCOMP [228] applies cascaded encoding recursively for GPUs, though it is
limited to a single variation of [DICT, RLE, BITPACK].

Multi-Column Compression. White-box Compression [172] proposes a conceptual
model that represents logical columns in tabular data as an openly defined function over
some physically stored columns, allowing the query optimizer to enable optimizations such
as improved filter predicate pushdown during query execution. PIDS [173] identifies
common patterns in string attributes using an unsupervised approach and uses the

128 6 FastLANES FILE FORMAT

discovered patterns to split each attribute into sub-attributes. These sub-attributes can then
be encoded individually, which enables future engines to push down many query operators
to sub-attributes, thereby minimizing I/O and potentially costly comparisons, resulting in
faster execution of query operators. C3 [32] proposes six MCC schemes—Equality,
1TolDict, 1toNDict, Numerical, DFOR, SharedDic —to address a key limitation
of column stores relative to row stores, namely that they compress attributes of each record
in isolation. Corra [170], similar to C3, looks for column correlation for compression and
proposes the same compression schemes under different names with the same compression
ratio.Virtual [171] implements Corra in Python on top of Parquet. Expression
encoding extends and integrates the concepts of White-box Compression, PIDS, and
C3 by proposing a unified framework that allows future file formats to fully leverage MCC
schemes.

6.6 DiscussioN

In this section, we discuss two layout strategies — Unified Transposed Layout within a vector
and Segmented Page Layout within a page — as these are fundamental decisions for future
file formats.

Unified Transposed Layout. We use the Unified Transposed Layout (UTL) [140] as an
option rather than as the default. Although this layout enables complete data-parallelism for
FastLanes-RLE and Delta schemes, its effect to permute the order of the tuples in a vector
may sometimes not be desirable — though the original order can always be restored, this
comes at an overhead. However, we argue that the substantial compression ratios achieved
by FastLanes-RLE and DELTA make these schemes essential, making the UTL a valuable
option for efficient data-parallelized decoding [140] in contexts where high compression
ratios are a priority.

We address a common point of confusion regarding the applicability of the Unified
Transposed Layout to variable-sized data, such as String or List. We find it can be used
without problem, as variable-sized data are always accompanied by an offset array — a
fixed-size vector of 1024 values to which we apply the UTL.

Vectorized Page Layout. An alternative to the segmented page layout for storing the result
of an expression in a file is the vectorized page layout, where all encoded data of an
expression for a vector are stored sequentially in one place. We have chosen the segmented
page layout over the vectorized page layout for three main reasons: Supporting structs in a
vectorized page layout can lead to filling the cache with unnecessary data during reading,
particularly when only subfields of a struct are required. The segmented page layout allows
for additional query optimizations by enabling query engines to access relevant data in a
single location, such as the bases in FFOR, which effectively serve as vector-based zone
maps [229], specifically the minimums of each vector. Collecting data with similar
properties in one segment allows for further compression in a single pass. Although we
currently avoid compressing these segments, having this option remains beneficial for
compression-sensitive workloads where achieving a high compression ratio is a priority.

6.7 CONCLUSION 129

6.7 CONCLUSION

Popular big data file formats only partially benefit from the full compression potential of
Light-Weight Compression (LWC) schemes [44, 48], missing opportunities for compressed
execution, cascaded compression and multi-column compression. The latter two issues
affect compression ratio and make the use of Heavy-Weight Compression (HWC) methods
necessary, even though these are SIMD and GPU unfriendly. This is why FastLanes
introduces Expression Encoding, paired with a intricate segmented page design, that
enables fine-grained and efficient decoding of cascading LWC schemes.

With this chapter, we release a high-quality open-source C++ implementation of FastLanes
v0.1. Designing a data format requires a lot of effort and getting many details right. We
think this release is a major contribution.

Our evaluation of FastLanes versus Parquet, BtrBlocks and the DuckDB format shows that
HWCs can now be avoided without sacrificing any compression ratio, and very significantly
improving decoding speed; while offering efficient fine-grained data access as well as novel
opportunities for compressed execution.

131

ConNcLusION & FUTURE WORK

7.1 CONTRIBUTIONS
Let us briefly recap the research questions posed in Section 1.1.

* Research Question 1: How can SIMD instructions be leveraged to accelerate the
decompression of LWCs?

Research Question 2: Can data-parallel encodings be implemented in the most
maintainable way—namely, scalar code with auto-vectorization—by relying on
compilers to generate SIMD instructions, while still achieving maximum
performance?

L]

Research Question 3: Is it possible to design a data-parallel encoding for
floating-point numbers that uses SIMD instructions to decode many values in parallel
while achieving a compression ratio comparable to heavyweight compressors
(HWCs)?

Research Question 4: Do data-parallelized encodings, originally tailored for CPUs,
remain efficient on GPUs? What is their impact when integrated into query execution
engines on GPUs, and can they be further optimized?

Research Question 5: How should LWCs be implemented on GPUs? What should
their API look like?

Research Question 6: Can data-parallel lightweight encodings be used to achieve
better compression ratios than heavyweight compressors (HWCs) while maintaining
the key advantages of lightweight encodings, such as support for compressed
execution, fast decoding, and vectorized processing?

¢ Research Question 7: What could a file format built on the ideas from this thesis
look like?

132 7 ConcrLusioN & FUTURE WORK

The contributions addressing these questions are summarized below.

The Novel 1024-bit Interleaved Layout. We designed and implemented a novel 1024-bit
interleaved layout for bit-packing. The core idea is to reorganize the layout of bit-packed
data such that, during bit-unpacking, each value is already placed in its correct SIMD lane.
This is achieved by distributing the bit-packed values across lanes rather than storing them
sequentially. The layout enables efficient bit-unpacking by leveraging the SIMD capabilities
of any architecture and instruction set (ISA), while relying solely on scalar code that can be
fully auto-vectorized by modern compilers. We show that this approach achieves
performance on par with explicit SIMD implementations and is overall faster than any
existing bit-packed layout.

The Novel Unified Transposed Layout. We designed and implemented the Novel Unified
Transposed Layout to address the data-dependency challenge of delta encoding. Our layout
applies a two-step strategy. First, it transposes the values to ensure that data with mutual
dependencies are placed within the same SIMD lane, rather than being spread across lanes.
This eliminates inter-lane dependencies and allows each SIMD lane to operate independently.
Second, it unifies the transposed layout across data types of varying widths (from 8-bit to
64-bit). Since wider types, such as 64-bit values, require fewer SIMD lanes to fill a register
(e.g., 8x64-bit vs. 64x8-bit for AVX-512), we designed a single consistent transposition
pattern that works efficiently across all types. We show that this approach achieves
performance on par with explicit SIMD implementations and significantly outperforms all
existing delta encoding layouts.

The Novel FastLanes RLE. We designed FastLanes RLE, a novel variant of Run-Length
Encoding that resolves the inherent data dependency challenges of traditional RLE. Our
approach conceptually maps RLE to a form of dictionary encoding, where duplicate values
are retained in the dictionary, and the input is encoded using index codes that reference this
dictionary. A key property of this design is that the indices increase only when a new run
begins, making them highly compressible using delta encoding—since the maximum delta is
always 1. Our implementation demonstrates that FastLanes RLE significantly outperforms
existing SIMD-optimized RLE solutions and achieves performance on par with explicit
SIMD implementations.

The FastLanes Frame-of-Reference (FFOR). We designed and implemented the FFOR
primitive, which fully optimizes the classic Frame-of-Reference (FOR) encoding. While
traditional FOR implementations typically require two separate function calls—one for
bit-unpacking and another for adding the base—FastLanes FFOR fuses these steps into a
single function. It adds the base directly to the unpacked value within the generated code.
This implementation allows the addition to occur while the data remains in registers,
eliminating one load and one store instruction—both of which are common bottlenecks in
high-performance, fully data-parallel implementations such as those in FastLanes. Our
evaluation shows that FFOR significantly outperforms existing SIMD-optimized FOR
implementations and matches the performance of explicit SIMD code.

These four contributions—1) the Novel 1024-bit Interleaved Layout, 2) the Novel Unified
Transposed Layout, 3) the Novel FastLanes RLE, and 4) the FastLanes Frame-of-Reference
(FFOR)—emerged from our efforts to answer Research Questions 1 and 2.

7.1 CONTRIBUTIONS 133

We conclude that the answer to Research Question 1 is: lightweight compression schemes
(LWCs) can be significantly optimized using SIMD instructions. This is made possible by
carefully redesigning the decoding logic with hardware-awareness in mind, specifically by:
(1) eliminating branches to ensure consistent control flow, (2) structuring the data layout to
exploit repetitive patterns, (3) using sequential access patterns to ensure data is already in
cache and not bottlenecked by cache-to-RAM latency, (4) providing enough data to fully
saturate the available parallelism, and (5) eliminating dependencies across SIMD lanes. The
achieved acceleration is independent of the ISA and works on both x86 architectures—with
SSE, AVX, and AVX-512—and ARM architectures—with NEON and SVE SIMD
instructions.

We conclude that the answer to Research Question 2 is yes: lightweight compression
schemes (LWCs) can be implemented in a highly maintainable way using scalar code,
relying on compiler auto-vectorization. This is achievable through a careful redesign of the
encoding layout to ensure that the decoding logic remains simple and free of control-flow
complexity, which can inhibit vectorization. Furthermore, our design avoids relying on
AVX-512-specific instructions that, while beneficial on supported CPUs, introduce
significant performance cliffs on architectures without AVX-512 support.

Discussion on what programming paradigm we should choose for SIMD-friendly
schemes. Out of the four paradigms described in Section 2—scalar code with
auto-vectorization, compiler intrinsics, third-party libraries, and explicit SIMD
intrinsics—we have implemented and benchmarked only the scalar code with
auto-vectorization and the explicit SIMD versions. The performance of the scalar code
proved so convincing—matching the speed of explicit SIMD, the most performant
paradigm—while offering superior readability and maintainability, that we concluded the
other two approaches were not even necessary to benchmark for FastLanes up to

version v0.1. However, both compiler intrinsics and third-party libraries remain promising
avenues for future work, particularly in cases where our current approach falls short. This
could especially apply to more complex compression schemes.

Discussion on How to Generate Scalar Code. One topic we did not address in the design
and implementation of SIMD-friendly encoding is the alternative to using Python scripts for
generating highly efficient code: using template programming to let the compiler generate
these functions. Both options have their pros and cons. Generating code with Python scripts
is harder to debug, as it requires extra steps to validate the generated code, while template
programming keeps everything within C++, allowing us to use all the features of IDEs to
inspect and check the syntax of the code. On the other hand, generated code compiles faster,
whereas templates force the compiler to generate these functions on every new build. We
argue—and ultimately chose—to use Python scripts, since the code only needs to be
generated once and can be reused many times, avoiding repeated overhead during
compilation. With a bit of extra effort maintaining the Python generator, we save compiler
time on every new build.

ALP. To answer Research Question 3, we designed and implemented ALP, a novel
lightweight compression scheme for floating-point data. ALP adapts to the two prevalent
types of floating-point data: decimal and high-precision. For decimal data, it maps values to
integers and applies FastLanes FFOR to fully data-parallelize the encoding. For

134 7 ConcrLusioN & FUTURE WORK

high-precision data, ALP focuses on compressing the leftmost bits, as the rightmost bits are
essential for maintaining precision. It leverages our 8-entry dictionary encoding to compress
the left bits efficiently. ALP achieves compression ratios comparable to or better than
heavyweight compression schemes, while being an order of magnitude faster.

We conclude that the answer to Research Question 3 is yes: although the representation of
floating-point numbers is complex, we observe that—at the granularity of vectors (i.e.,
batches of 1024 values)—floating-point data often exhibits exploitable patterns for
compression. In particular, when the data represents decimal-like values, most values fall
within a narrow range; and for high-precision data, the leftmost bits tend to come from a
small domain. These insights were key to the design of ALP, which leverages this structure
to enable efficient, data-parallel compression of floating-point values.

Discussion of ALP for High-Precision Data. While ALP is one of the few schemes
capable of achieving any compression on high-precision floating-point values, as shown in
Chapter 3, the results are often far from desirable. Saving just a few bits per 64- or 32-bit
value typically has minimal impact—especially when weighed against the added complexity
of encoding and decoding, particularly on GPUs [176]. In machine learning pipelines,
high-precision values often result from feature engineering or system defaults rather than a
strict need for such granularity [230]. Moreover, for many ML models—such as decision
trees and neural networks—reducing precision (e.g., from float64 to float32 or even
quantized formats) has little effect on predictive performance [231, 232].

This raises the question: why not compress them using a lossy approach? One option is to
apply quantization to high-precision floating-point values [233, 234]. Techniques such as
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) can retain model
accuracy while significantly reducing memory and compute costs [235, 236]. Another
approach is to adopt recent work from CWI, such as LEP [237]—a lossy variant of ALP.
Compared to linear quantization, LEP tunes parameters per vector rather than globally and
filters out outliers using exceptions, achieving significantly higher compression than ALP.
While ALP remains a lightweight option when we must retain full precision, we
acknowledge that in many cases, quantization or lossy floating-point compression is likely
the more suitable choice.

Benchmarking Data-Parallel Encodings on GPU. We benchmarked FastLanes
data-parallel lightweight compression schemes (LWCs)—originally designed for CPUs—on
GPUs by mapping the 32-way parallelism of FastLanes (for int32 data types) such that
each SIMD lane is assigned to a single thread. We observed that data-parallel encodings
naturally lead to coalesced memory accesses, which are essential for maximizing throughput
on GPUs. Compared to tile-based decoding [238], our approach yielded superior
performance. We further analyzed the performance of FastLanes layouts when scanning
multiple columns and found a sharp performance drop when more than one column was
involved. This was due to excessive shared memory allocation per thread, leading to
significantly reduced occupancy. To address this, we experimented with lowering the
number of values decoded per thread from 32 to 16, 8, and eventually 4. The results showed
that reducing per-thread memory pressure increased occupancy and improved performance.
We conclude that the answer to Research Question 4 is yes: data-parallel layouts are more
efficient than non-data-parallel approaches, primarily due to their memory access patterns.

7.1 CONTRIBUTIONS 135

However, these layouts do not perform well when scanning multiple columns simultaneously,
as the memory pressure becomes significant—each column requires 1024 values to be
materialized, which quickly exhausts shared memory or GPU registers. This limitation can
be addressed by making the decoding API more fine-grained, reducing the number of values
decoded per thread, thus increasing occupancy and enabling better performance in
multi-column query scenarios.

G-ALP. We designed and implemented G-ALP, the GPU-optimized version of ALP,
incorporating two key optimizations. First, we data-parallelized the exception patching
phase by sorting exceptions—i.e., values that cannot be mapped to integers—by thread ID,
allowing each thread to directly access the exceptions for the lane it is responsible for,
without traversing the entire exception list. Second, we redesigned the decoding API to
return a single value per thread, instead of decoding 32 values at once. This significantly
reduces shared memory pressure and improves occupancy. G-ALP demonstrates superior
performance compared to both the naive implementation of ALP and the compression
schemes in nvCOMP, the state-of-the-art GPU compression library from industry.

Lessons Learned from Designing and Implementing GALP. GALP is the story of what
ultimately worked. We experimented with many different configurations and
implementations of G-ALP, which are further documented in [176]. From working with
GPUs, we learned that optimizing an encoding scheme for the GPU is significantly more
difficult and time-consuming than on the CPU—but it is achievable. As a result, a fully
GPU-based reader for FastLanes was not completed within the scope of this thesis and may
require at least one more PhD thesis to fully mature, given how sensitive and complex GPU
optimization can be. Nevertheless, it remains a highly interesting and promising direction
for future work.

We conclude that the answer to Research Question 5 is yes: lightweight compression
schemes (LWCs) on GPUs must be fully data-parallel—even in their smallest
components—because any sequential operation can quickly become the performance
bottleneck. Furthermore, their APIs must support and be efficient for a one-value-per-thread
execution model to minimize memory pressure and maximize occupancy.

Expression Encodings. We designed and implemented the Expression Encoding
compression model, which combines our fully data-parallelized lightweight encodings
(LWCs) and represents each combination using a compact syntax that is interpreted at
runtime—once per row group, and therefore amortized. This syntax can express
intra-column encoding pipelines, inter-column relationships, cascaded encodings, and even
whitebox compression strategies. Expression Encoding achieves a better compression ratio
than the Parquet file format with Zstd, as demonstrated by compressing samples from the
public_bi dataset. Additionally, we propose a novel compression API that delivers
compressed vectors directly to the query execution engine.

Lessons Learned from the Implementation of the Hard-Coded Variant of Expression
Encoding. We initially implemented Expression encoding in a fully hardcoded manner,
meaning that different combinations were explicitly represented in the code without any
interpretation layer. While this approach worked for single-column encoding, its static
nature proved inadequate for MCC, where dynamic information—such as references to

136 7 ConcrLusioN & FUTURE WORK

correlated columns, which can be of any number—needs to be encoded in the file format and
cannot be hardcoded.

From this experience, we learned the importance of flexibility in Expression encoding and
reimplemented it with a more dynamic, fully interpretable design to make it future-proof and
adaptable to more complex use cases like MCC. Thanks to this interpretive layer, we believe
we can now more easily adapt to future advancements in the compression field by supporting
additional code paths and tokens.

Segmented Page Layout. To support Expression Encoding in the storage level, we
introduce a new page layout capable of storing the encoded output of each expression in a
vectorized manner—meaning the query engine can decode or encode each batch
independently. This is achieved using an offset array that points to the encoded data of each
vector. The design is aligned with the vectorized execution paradigm, where scan operators
process data in vectors.

The above two contributions—1) Expression Encodings and 2) Segmented Page
Layout—emerged from our efforts to answer Research Questions 5 and 6.

We conclude that the answer to Research Question 6 is yes: by compressing small and
specific opportunities in simple ways—rather than using overgeneralized schemes that
attempt to capture all patterns with a single, complex decoding process, as is common in
heavyweight compression—it is indeed possible to achieve the best of both worlds: highly
compressed data with fast decoding, and data that remains executable in its encoded form.

FastLanes File Format. We designed and implemented the FastLanes File Format from
scratch, with expression encoding, segmented page layout, and data-parallelized encodings
at its core. It brings together all the research we have done so far into a single
specification—a major step toward the features of next-generation file formats.

We conclude that the answer to Research Question 7 is: future file formats should be
designed with the following principles in mind:

1. They should be composed of fully data-parallel encodings that are efficient on both
CPUs and GPUs.

2. They should adopt Expression Encoding to support cascaded encodings, multi-column
compression (MCC), and white-box compression within a unified compression model.

3. They should employ a Segmented Page Layout to encode and decode small batches of
data independently, enabling vectorized decoding and avoiding the limitations of
block-based formats.

4. They should provide flexible decoding APIs—an arbitrary compressed vector API for
CPUs and a one-value-per-thread API for GPUs.

Lessons Learned from the Design and Implementation of FastLanes. We started the
design of FastLanes as a simple master’s thesis project, but it took nine months just to design
and benchmark SIMDized bit-packing and an early version of data-parallel delta encoding.
Soon, we realized there was much more to optimize, which led to the development of this
thesis—ultimately taking more than four years. We learned that designing a comprehensive

7.2 FuTurRE WORK 137

file format is an exhaustive task, and we hope this work serves as a foundation for continued
research and development in this area.

Open Source. Our final—and perhaps most impactful—contribution is that we
open-sourced all our code and implementations at
https://github.com/cwida/FastLanes and https://github.com/cwida/ALP.
From the very beginning, guided by the engineering mindset fostered at CWI, we placed
strong emphasis on code quality and followed best software development practices—an
approach often overlooked in academic research. This high standard of implementation
enabled ALP to be integrated into DuckDB with minimal modifications and contributed to it
winning the Best Paper Award for Reproducibility.

7.2 FUTURE WORK

In this section, we outline several key areas for future work that could extend and enhance
the FastLanes file format.

Adoption. The biggest question for the future of FastLanes is how to replace Parquet so that
all OLAP databases can benefit from FastLanes’ innovations. This task is extremely
difficult—multiple new file formats have attempted and failed to achieve it, most notably
ORGC, as well as newer versions of Parquet itself. We believe the core reason lies in the
widespread adoption of Parquet version 1, coupled with the fact that many databases have
heavily optimized and deeply integrated their own implementations of Parquet into their
execution engines—each with its own custom reader and writer. For these systems,
supporting and implementing additional file formats is extremely costly, often requiring
large teams of engineers to maintain.

This fragmentation stems from Parquet’s decision to provide only a specification rather than
a single reference implementation. In this light, having a single shared implementation
sounds promising as a way to encourage adoption of FastLanes—but it comes with its own
set of challenges. The most significant is that OLAP databases are implemented in a variety
of programming languages—ranging from Rust and Go to C++ and others. As a result, the
obvious question becomes: how can we adopt FastLanes across a wide range of engines,
each written in a different language?

Machine Learning Data. Several file formats have emerged to address the needs of
machine learning data workloads, including Bullion [160], which tackles the complexities of
data compliance, optimizes the encoding of long-sequence sparse features, and efficiently
manages wide-table projections. Nimble [239], a columnar file format developed by Meta, is
designed for very wide tables commonly found in machine learning training datasets.
LanceDB [191], another columnar data format, is optimized for machine learning workloads,
offering high-performance random access and efficient handling of complex data types,
including images and videos.

However, these file formats lack some of the key advantages that FastLanes
provides—namely, achieving the highest compression ratios while delivering the fastest
decoding times. This raises the following question: how can we extend FastLanes to support
nested data types, as well as wide and sparse data—characteristic of machine learning
workloads—while maintaining its OLAP-optimized core? More specifically, can we support

https://github.com/cwida/FastLanes
https://github.com/cwida/ALP

138 7 ConcrLusioN & FUTURE WORK

both OLAP and ML workloads in a single, unified format?

File Footer. For simplicity, we initially used JSON for the FastLanes v0.1 footer. While
functional, this approach introduces unnecessary parsing and storage overhead. These
drawbacks become increasingly problematic as data size and metadata grow.

To address these limitations, we are exploring alternative solutions such as FlatBuffers or
using the FastLanes file format itself to store the footer. FlatBuffers offer an efficient binary
representation, though they lack native support for compression. The FastLanes format,
however, includes built-in compression, which becomes important if the footer size grows
significantly. Using FastLanes to encode the footer would also eliminate an external
dependency.

It is also worth noting that Parquet uses Apache Thrift to encode its metadata, which
serializes the entire metadata structure in one go. This design becomes inefficient when only
a small subset of metadata is needed—especially in AI workloads where tables may contain
as many as 17,000 columns [160], leading to the decoding of metadata for many
unnecessary columns.

Therefore, this remains an open area for future work: what is the most efficient way to
represent metadata in the FastLanes file format—and, more broadly, in the next generation of
big data file formats?

Expression Encoding on GPU. The state-of-the-art encoding model on GPU, tile-based
decoding [240], proposes decoding data in small batches—called tiles—within a GPU’s
shared memory to avoid transferring data back to global memory, which is a primary
bottleneck in GPU performance. Additionally, it supports cascaded encoding limited to FOR,
DELTA, and RLE, with both the value and length arrays further bit-packed. Expression
Encoding aligns with the concept of decoding a batch of data that fits in shared memory,
while offering more cascaded combinations capable of achieving better compression ratios
than Zstd, and supporting compressed tiles similar to compressed vectors in DuckDB [51]
and Velox [50].

We speculate that a CUDA implementation of FastLanes could bring significantly higher
decoding speeds and improved compression ratios to the GPU processing ecosystem. Initial
results look promising [165]; however, as we learned from G-ALP—even optimizing an
already data-parallel encoding on the CPU is challenging on the GPU—implementing
expression encoding on GPU requires substantial effort and may involve novel techniques
and new design decisions. This raises a clear question for the future development of
FastLanes: how can we implement expression encoding efficiently on GPU?

Schema Evolution. Future file formats should support schema evolution. Parquet currently
offers a limited form of schema evolution for changing types within a column [241],
allowing only the promotion of a few specific types, rather than broader support for other
data types. We believe that Expression Encoding enables file formats to support this
feature seamlessly, thanks to the type information included in each expression. Storing the
footer in a separate place allows to include new types and new columns by modifying, resp.
generating new expressions in the footer, without having to rewrite existing rowgroup data.

Encryption. We believe that our proposed Expression Encoding is a perfect match for
supporting encryption in a vectorized manner, in contrast to encryption in Parquet, which is
block-based. In our vision, encryption becomes just one more operator at the end of an

7.2 FuTurRE WORK 139

expression—responsible for [en/de]crypting the compressed vector of an expression. This
remains an open area for future work: how effective is vectorized encryption in practice, and
how well does it integrate with expression encoding?

Tunable Rowgroup Size. The rowgroup size in FastLanes is always a multiple of 1024
records. We initially set the rowgroup size to 64 x 1024 vectors. However, we envision
rowgroup size as a tunable parameter that can be adjusted to balance compression ratio,
memory footprint, and metadata size. For example, if a rowgroup contains nested data
types—such as lists with an average length of 10, which is common [242]—and FSST is
used for strings within these lists, the FSST symbol table becomes 10 times less likely to
capture sub-patterns effectively due to exposure to a higher diversity of strings. Therefore,
we leave this as future work: what is the best rowgroup size, and how can it be determined?

Nested Data Types Nested data types—such as structs, lists, and maps—are widely used
and natively supported by open big data file formats like Apache Parquet. Recent work at
CWTI on real-world JSON datasets [243] suggests that applying LWC schemes to flattened
nested data types, which resemble columns, is less effective for compression than using
HWC schemes. However, new nesting-specific encodings [242], such as "list dictionary"
encoding—which assigns a single code to an entire list of values, rather than to individual
values within the list—could significantly reduce this gap.

This leaves us with an open question: how can we support nesting-specific encodings within
FastLanes’ expression encoding compression model?

Predicate Pushdown Recent work at CWI proposes data-parallel predicate evaluation using
bitmaps as the underlying data structure, rather than traditional selection vectors [244]. This
approach enables faster intersection operations between selection structures by reducing
them to a few SIMD bitwise AND operations on bitmap datasets—for example, two AVX-512
instructions. The work also explores how this technique can be applied directly to
LWC-encoded data without requiring full decompression.

We clearly envision supporting this model in FastLanes and further investigating how to
extend it to compressed vectors of expression-encoded data—rather than just LWC-encoded
data. Therefore, we raise the following question as future work: how can bitmap-based,
data-parallel predicate evaluation be integrated with the more sophisticated expression
encoding pipeline in FastLanes, where data flows through multiple layers of encodings?

141

BIBLIOGRAPHY

URLs in this thesis have been archived on Archive.org. Their link target in digital editions
refers to this timestamped version.

REFERENCES
[1] Apache Software Foundation. Apache parquet. http://parquet.apache.org/,
2023. Version 1.12.3 or later.

[2] J. A. N. Lee. The History of Computing. Springer, 2008.
[3] C. G. Bell. The evolution of digital computers. Scientific American, 1970.

[4] American National Standard Code for Information Interchange (ASCII). American
National Standards Institute (ANSI), 1963.

[5] IBM. The ibm personal computer: Launch announcement (1981), 1981. Accessed
April 2025.

[6] Paul E. Ceruzzi. A History of Modern Computing. MIT Press, Cambridge, MA, 2nd
edition, 2003.

[7] Martin Campbell-Kelly and William Aspray. Computer: A History of the Information
Machine. Westview Press, Boulder, CO, 2nd edition, 2004.

[8] dBASE LLC. A brief history of dbase, 2003. Accessed April 2025.

[9] Excel Dimensions. Microsoft excel’s history from 1982 until today, 2022. Accessed
April 2025.

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau.
Extensible markup language (xml) 1.0 specification. World Wide Web Consortium
(W3C), 1998.

[11] Douglas Crockford. The application/json media type for javascript object notation
(json). Internet Engineering Task Force (IETF), 2006.

[12] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an internet-scale xml
dissemination service. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, VLDB ’04, page 612-623. VLDB Endowment,
2004.

[13] Michael Stonebraker and Andrew Pavlo. What goes around comes around... and
around... SIGMOD Rec., 53(2):21-37, July 2024.

http://parquet.apache.org/

142 BIBLIOGRAPHY

[14] Apache Software Foundation. Apache avro. https://avro.apache.org, 2009.
Version 1.0 released in 2009.

[15] Yonggiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and
Zhiwei Xu. Rcfile: A fast and space-efficient data placement structure in
mapreduce-based warehouse systems. In Proceedings of the 27th International
Conference on Data Engineering (ICDE), pages 1199-1208, Hannover, Germany,
2011. IEEE Computer Society.

[16] Apache. Apache orc, 2023. https://orc.apache.org/.

[17] J. Dean and S. Ghemawat. Bigtable: A distributed storage system for structured data.
In OSDI, 2006.

[18] Wikipedia contributors. Moore’s law.
https://en.wikipedia.org/wiki/Moore%27s_law, 2025. Accessed:
2025-04-11.

[19] Bingsheng He, Ruoyuan Fang, et al. Relational query co-processing on graphics
processors. In VLDB, 2009.

[20] You Wu et al. Design and evaluation of an efficient gpu-aware storage system. In
SIGMOD, 2014.

[21] Sebastian Bref et al. Gpu-accelerated database systems: Survey and open challenges.
In SIGMOD, 2018.

[22] OpenJDK. Jep 338: Vector api (incubator), 2020. Introduced in Java 16, this JEP
adds an incubating API for expressing vector computations that reliably compile to
SIMD instructions at runtime. Accessed: 2025-04-09.

[23] JDK-6340864: Implement vectorization optimizations in HotSpot Server Compiler.
Oracle Java Bug Database, 2012. Introduced HotSpot auto-vectorization based on
SLP (Larsen & Amarasinghe). Resolved in JDK 7u40 (2013) and JDK 8.

[24] Azim Afroozeh. The limitations of parquet in simd and parallel processing. Master’s
thesis, Vrije Universiteit Amsterdam, 2020.

[25] Apache Software Foundation. Apache parquet format documentation - version 2.
https://github.com/apache/parquet-format, 2018. Accessed: 2025-04-11.

[26] Apache Software Foundation. Apache parquet 2.4.0 release notes.
https://github.com/apache/parquet-format/blob/master/CHANGES.
md#version-240, 2017. Accessed: 2025-04-11.

[27] Apache Parquet Developer Mailing List. Discussion thread: Proposal for parquet 3.0.
https:
//lists.apache.org/thread/5jyhzkwyrjk9z52g0b49g31ygnz73gxo, 2024.
Accessed: 2025-04-11.

https://avro.apache.org
https://orc.apache.org/
https://en.wikipedia.org/wiki/Moore%27s_law
https://github.com/apache/parquet-format
https://github.com/apache/parquet-format/blob/master/CHANGES.md#version-240
https://github.com/apache/parquet-format/blob/master/CHANGES.md#version-240
https://lists.apache.org/thread/5jyhzkwyrjk9z52g0b49g31ygnz73gxo
https://lists.apache.org/thread/5jyhzkwyrjk9z52g0b49g31ygnz73gxo

REFERENCES 143

[28] Grafana Labs. Grafana tempo 2.3 release notes.
https://grafana.com/docs/tempo/latest/release-notes/v2-3/, 2024.
Accessed: 2025-04-11.

[29] Xiao Zeng and Others. Optimizing data formats for modern cpu architectures.
Proceedings of the VLDB Endowment, 17:148-160, 2023.

[30] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining
query execution. In Cidr, volume 5, pages 225-237, 2005.

[31] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental
performance characteristics of gpus and cpus for database analytics. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
SIGMOD 20, page 1617-1632, 2020.

[32] T Glass. C3: Compressing correlated columns. Master’s thesis, centrum wiskunde &
informatica, 2023.

[33] Bogdan Guita, Diego Tomé, and Peter Boncz. White-box compression: Learning and
exploiting compact table representations. 01 2020.

[34] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu cache
compression. In 22nd International Conference on Data Engineering (ICDE’06),
pages 59-59, 2006.

[35] Marcin Zukowski, Sdndor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-cpu
cache compression. In Proceedings of the 22nd International Conference on Data
Engineering (ICDE), pages 59-59, Atlanta, GA, USA, 2006. IEEE Computer Society.

[36] xtensor team. Xsimd: C++ wrappers for simd intrinsics, 2024.
https://github.com/xtensor-stack/xsimd.

[37] LLVM Project. Auto-vectorization in llvm, 2023.
https://11lvm.org/docs/Vectorizers.html.

[38] GNU Compiler Collection. Gece auto-vectorization, 2023.
https://gcc.gnu.org/projects/tree-ssa/vectorization.html.

[39] Intel Corporation. Intel intrinsics guide, 2024. https://www.intel.com/
content/www/us/en/docs/intrinsics-guide/index.html.

[40] Agner Fog. Optimizing software in c++: An optimization guide for windows, linux
and mac platforms, 2022. https://www.agner.org/optimize/.

[41] CWI DA. Public bi benchmark, 2025.

[42] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proc. VLDB Endow., 8(12):1816-1827, 2015.

https://grafana.com/docs/tempo/latest/release-notes/v2-3/
https://github.com/xtensor-stack/xsimd
https://llvm.org/docs/Vectorizers.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.agner.org/optimize/

144

BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. Elf: Erasing-based lossless
floating-point compression. Proceedings of the VLDB Endowment, 16(7):1763—-1774,
2023.

Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
Btrblocks: Efficient columnar compression for data lakes. Proc. ACM Manag. Data,
1(2), jun 2023.

Peter A. Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining
query execution. In CIDR, 2005.

Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing relations and
indexes. In Proceedings of the 14th International Conference on Data Engineering
(ICDE), pages 370-379, Orlando, FL, USA, 1998. IEEE Computer Society.

Marcin Zukowski, Sdndor Héman, Niels Nes, and Peter A. Boncz. Super-scalar
RAM-CPU cache compression. In Proceedings of the 22nd International Conference
on Data Engineering (ICDE), pages 59-70, Atlanta, GA, USA, April 2006. IEEE.

A Afroozeh. Towards a new file format for big data: Simd-friendly composable
compression. Master’s thesis, centrum wiskunde & informatica, 2020.

Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew McCormick,
Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar Mittal,

Roee Aharon Ebenstein, Nikita Mikhaylin, Hung ching Lee, Xiaoyan Zhao,
Guanzhong Xu, Luis Antonio Perez, Farhad Shahmohammadi, Tran Bui, Neil McKay,
Vera Lychagina, and Brett Elliott. Procella: Unifying serving and analytical data at
youtube. PVLDB, 12(12):2022-2034, 2019.

Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka, Krishna
Pai, Wei He, and Biswapesh Chattopadhyay. Velox: meta’s unified execution engine.
Proceedings of the VLDB Endowment, 15(12):3372-3384, 2022.

Mark Raasveldt and Hannes Miihleisen. Duckdb: an embeddable analytical database.
In Proceedings of the 2019 International Conference on Management of Data, pages
1981-1984, Amsterdam, Netherlands, 2019. ACM.

Annett Ungethiim, Johannes Pietrzyk, Patrick Damme, Alexander Krause, Dirk
Habich, Wolfgang Lehner, and Erich Focht. Hardware-oblivious SIMD parallelism
for in-memory column-stores. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org, 2020.

Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and
Paramjit S. Oberoi. Simd-based decoding of posting lists. In Proceedings of the 20th
ACM International Conference on Information and Knowledge Management, CIKM
11, page 317-326, New York, NY, USA, 2011. Association for Computing
Machinery.

REFERENCES 145

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Daniel Lemire and Leonid Boytsov. Decoding billions of integers per second through
vectorization. Software: Practice and Experience, 45, 01 2015.

Jeff Plaisance, Nathan Kurz, and Daniel Lemire. Vectorized vbyte decoding. ArXiv,
2015.

Wayne Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-yun Nie, Hongfei
Yan, and Ji-Rong Wen. A general simd-based approach to accelerating compression
algorithms. ACM Transactions on Information Systems, 33, 02 2015.

Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. Fast integer compression
using SIMD instructions. In Proceedings of the 6th International Workshop on Data
Management on New Hardware (DaMoN), pages 34—40, Indianapolis, IN, USA, June
2010. ACM.

Annett Ungethiim, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolfgang
Lehner. Conflict detection-based run-length encoding: AVX-512 CD instruction set
in action. In Proceedings of the 34th IEEE International Conference on Data
Engineering Workshops (ICDEW), pages 96—101, Paris, France, April 2018. IEEE.

Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, and Wolfgang Lehner. Beyond
straightforward vectorization of lightweight data compression algorithms for larger
vector sizes. In Grundlagen von Datenbanken, 2018.

Florian Lemaitre, Arthur Hennequin, and Lionel Lacassagne. How to speed
connected component labeling up with simd rle algorithms. In Proceedings of the
2020 Sixth Workshop on Programming Models for SIMD/Vector Processing,
WPMVP’20, New York, NY, USA, 2020. Association for Computing Machinery.

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. Everything you always wanted to know about compiled and vectorized
queries but were afraid to ask. Proceedings of the VLDB Endowment,
11(13):2209-2222, 2018.

Dirk Habich, Patrick Damme, Annett Ungethiim, and Wolfgang Lehner. Make larger
vector register sizes new challenges? lessons learned from the area of vectorized
lightweight compression algorithms. In Proceedings of the Workshop on Testing
Database Systems, DBTest’ 18, New York, NY, USA, 2018. Association for
Computing Machinery.

Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
Lightweight data compression algorithms: An experimental survey (experiments and
analyses). In EDBT, 2017.

Richard Michael Grantham Wesley and Pawel Terlecki. Leveraging compression in
the tableau data engine. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’ 14, page 563-573, New York, NY,
USA, 2014. Association for Computing Machinery.

146

BIBLIOGRAPHY

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole,
Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez,
Nathanaél Prémillieu, Alastair Reid, Alejandro Rico, and Paul Walker. The ARM
scalable vector extension. CoRR, abs/1803.06185, 2018.

Harald Lang, Linnea Passing, Andreas Kipf, Peter Boncz, Thomas Neumann, and
Alfons Kemper. Make the most out of your simd investments: counter control flow
divergence in compiled query pipelines. The VLDB Journal, 29(2):757-774, May
2020.

Jingren Zhou and Kenneth A. Ross. Implementing database operations using simd
instructions. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD 02, page 145-156, New York, NY, USA, 2002.
Association for Computing Machinery.

Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip
vector processing units. Proc. VLDB Endow., 2(1):385-394, aug 2009.

Yinan Li and Jignesh M. Patel. Bitweaving: Fast scans for main memory data
processing. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD 13, page 289-300, New York, NY, USA, 2013.
Association for Computing Machinery.

Zigiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. Byteslice: Pushing the envelope of
main memory data processing with a new storage layout. In Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 31-46, Melbourne, Victoria, Australia, 2015. ACM.

Orestis Polychroniou and Kenneth A. Ross. Efficient lightweight compression
alongside fast scans. In Proceedings of the 11th International Workshop on Data
Management on New Hardware, DaMoN’ 15, New York, NY, USA, 2015. Association
for Computing Machinery.

Wee Keong Ng and Chinya V. Ravishankar. Block-oriented compression techniques
for large statistical databases. IEEE Trans. on Knowl. and Data Eng., 9(2):314-328,
March 1997.

Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kaminsky, Kimberly
Keeton, and Andrew Pavlo. Order-preserving key compression for in-memory search
trees. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD °20, page 1601-1615, New York, NY, USA, 2020.
Association for Computing Machinery.

W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Commun. ACM,
29(12):1170-1183, dec 1986.

REFERENCES 147

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Daniel Lemire, Leonid Boytsov, and Nathan Kurz. Simd compression and the
intersection of sorted integers. Softw. Pract. Exper., 46(6):723-749, jun 2016.

Guy E. Blelloch. Prefix sums and their applications. Carnegie Mellon University,
Kilthub Repository, May 2004. Originally published as CMU-CS-90-190 in 1990.

Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and
execution in column-oriented database systems. In Surajit Chaudhuri, Vagelis
Hristidis, and Neoklis Polyzotis, editors, Proceedings of the ACM SIGMOD, pages
671-682. ACM, 2006.

Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking SIMD
vectorization for in-memory databases. In Timos K. Sellis, Susan B. Davidson, and
Zachary G. Ives, editors, ACM SIGMOD, pages 1493-1508. ACM, 2015.

Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. Data blocks: Hybrid oltp and olap on compressed storage using
both vectorization and compilation. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD 16, page 311-326, New York, NY,
USA, 2016. Association for Computing Machinery.

Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. The
implementation and performance of compressed databases. SIGMOD Rec.,
29(3):55-67, sep 2000.

Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. Tile-based
lightweight integer compression in gpu. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22, page 1390-1403, New York, NY,
USA, 2022. Association for Computing Machinery.

Vijayshankar Raman and Garret Swart. How to wring a table dry: Entropy
compression of relations and querying of compressed relations. In Proceedings of the
32nd International Conference on Very Large Data Bases, VLDB ’06, page 858—869.
VLDB Endowment, 2006.

Adnan Alhomssi Maximilian Kuschewski, David Sauerwein and Viktor Leis.
Btrblocks: Efficient columnar compression for data lakes. In Proceedings of the 2023
ACM SIGMOD international conference on Management of data. Association for
Computing Machinery, 2023. In press. Accessed on: 2023-04-13.

Azim Afroozeh and Peter Boncz. The fastlanes compression layout: Decoding >
100 billion integers per second with scalar code. Proc. VLDB Endow.,
16(9):2132-2144, jul 2023.

Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and
execution in column-oriented database systems. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 671-682, 2006.

148

BIBLIOGRAPHY

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]
[94]

[95]

[96]

[97]

(98]

[99]

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-cpu
cache compression. In 22nd International Conference on Data Engineering
(ICDE’06), pages 59-59. IEEE, 2006.

Mark Raasveldt and Hannes Miihleisen. Duckdb: an embeddable analytical database.
In Proceedings of the 2019 International Conference on Management of Data, pages
1981-1984, 2019.

Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing relations and
indexes. In Proceedings 14th International Conference on Data Engineering, pages
370-379. IEEE, 1998.

Vijayshankar Raman and Garret Swart. How to wring a table dry: Entropy
compression of relations and querying of compressed relations. In Proceedings of the
32nd international conference on Very large data bases, pages 858-869. Citeseer,
2006.

Mark A Roth and Scott J Van Horn. Database compression. ACM Sigmod Record,
22(3):31-39, 1993.

IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008), pages 1-84, 2019.

Yann Collet. Zstandard - fast real-time compression algorithm, 2015. Accesed on:
2023-04-13.

Yann Collet. Lz4 - extremely fast compression, 2014. Accesed on: 2023-04-13.

Seungyeon Lee, Jusuk Lee, Yongmin Kim, Kicheol Park, Jiman Hong, and Junyoung
Heo. Efficient scheme for compressing and transferring data in hadoop clusters. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, pages
1256-1263, 2020.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 8(12):1816-1827, 2015.

Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. Chimp:
efficient lossless floating point compression for time series databases. Proceedings of
the VLDB Endowment, 15(11):3058-3070, 2022.

DuckDB Labs. Patas compression: Variation on chimp, 2022. Accessed on:
2023-04-13.

Boudewijn Braams. Predicate pushdown in parquet and apache spark. MSc thesis,
2018.

Daniel Lemire and Leonid Boytsov. Decoding billions of integers per second through
vectorization. Software: Practice and Experience, 45(1):1-29, 2015.

REFERENCES 149

[100] Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, and Wolfgang Lehner. Beyond
straightforward vectorization of lightweight data compression algorithms for larger
vector sizes. In Grundlagen von Datenbanken, pages 71-76, 2018.

[101] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
Lightweight data compression algorithms: An experimental survey (experiments and
analyses). In EDBT, pages 72-83, 2017.

[102] Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A Boncz, Thomas Neumann,
and Alfons Kemper. Data blocks: Hybrid oltp and olap on compressed storage using
both vectorization and compilation. In Proceedings of the 2016 International
Conference on Management of Data, pages 311-326, 2016.

[103] Public bi benchmark. https://github.com/cwida/public_bi_benchmark,
2019. Accessed on: 2023-04-13.

[104] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor Leis,
Tobias Miihlbauer, Thomas Neumann, and Manuel Then. Get real: How benchmarks
fail to represent the real world. In Proceedings of the 2018 Workshop on Testing
Database Systems (DBTest 2018), pages 1-6, Houston, TX, USA, 2018. Association
for Computing Machinery.

[105] National Ecological Observatory Network (NEON). Barometric pressure
(dp1.00004.001), 2021.

[106] National Ecological Observatory Network (NEON). Relative humidity above water
on-buoy (dp1.20271.001), 2021.

[107] National Ecological Observatory Network (NEON). Ir biological temperature
(dp1.00005.001), 2021.

[108] National Ecological Observatory Network (NEON). Dust and particulate size
distribution (dp1.00017.001), 2021.

[109] National Ecological Observatory Network (NEON). 2d wind speed and direction
(dp1.00001.001), 2021.

[110] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. Fast lossless compression of
scientific floating-point data. In Data Compression Conference (DCC’06), pages
133-142, Snowbird, Utah, USA, 2006. IEEE, IEEE.

[111] Martin Burtscher and Paruj Ratanaworabhan. Fpc: A high-speed compressor for
double-precision floating-point data. IEEE transactions on computers, 58(1):18-31,
2008.

[112] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM computing surveys (CSUR), 23(1):5-48, 1991.

[113] Fastlanes, 2023. Accesed on: 2023-04-13.

https://github.com/cwida/public_bi_benchmark

150 BIBLIOGRAPHY

[114] Azim Afroozeh and P Boncz. Towards a new file format for big data: Simd-friendly
composable compression, 2020.

[115] Mark Raasveldt and Hannes Muehleisen. Duckdb, 2019. Accesed on: 2023-04-13.

[116] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y
Fu, Zhigiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al.
High-throughput generative inference of large language models with a single gpu.
arXiv preprint arXiv:2303.06865, 2023.

[117] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers. CoRR, abs/2104.14294, 2021.

[118] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners.
https://openai.com/research/language-unsupervised, 2019. OpenAl
Blog.

[119] Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop Kang. Coedit: Text editing by
task-specific instruction tuning. arXiv preprint arXiv:2305.09857, May 2023.

[120] Vadim Engelson, Peter Fritzson, and Dag Fritzson. Lossless compression of
high-volume numerical data from simulations, 2000.

[121] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point
data. IEEE transactions on visualization and computer graphics, 12(5):1245-1250,
2006.

[122] Nathaniel Fout and Kwan-Liu Ma. An adaptive prediction-based approach to lossless
compression of floating-point volume data. /IEEE Transactions on Visualization and
Computer Graphics, 18(12):2295-2304, 2012.

[123] Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. Lossless compression of
predicted floating-point geometry. Computer-Aided Design, 37(8):869-877, 2005.

[124] Andrea Bruno, Franco Maria Nardini, Giulio Ermanno Pibiri, Roberto Trani, and
Rossano Venturini. Tsxor: A simple time series compression algorithm. In String
Processing and Information Retrieval: 28th International Symposium, SPIRE 2021,
Lille, France, October 4-6, 2021, Proceedings, volume 12944 of Lecture Notes in
Computer Science, pages 217-223, Lille, France, 2021. Springer.

[125] Aliaksandr Valialkin. Victoriametrics: achieving better compression than gorilla for
time series data. https://faun.pub/
victoriametrics-achieving-better-compression-for-time-series-data-than-gor
2019. Accesed on: 2023-04-13.

[126] Agner Fog et al. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for intel, amd and via cpus. Copenhagen University
College of Engineering, 93:110, 2011.

https://openai.com/research/language-unsupervised
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932

REFERENCES 151

[127] John L Gustafson and Isaac T Yonemoto. Beating floating point at its own game:
Posit arithmetic. Supercomputing frontiers and innovations, 4(2):71-86, 2017.

[128] Azim Afroozeh and Peter Boncz. The fastlanes compression layout: Decoding> 100
billion integers per second with scalar code. Proceedings of the VLDB Endowment,
16(9):2132-2144, 2023.

[129] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. An empirical evaluation of columnar storage formats. arXiv
preprint arXiv:2304.05028, 2023.

[130] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
Btrblocks: Efficient columnar compression for data lakes. Proc. ACM SIGMOD,
1(2):118:1-118:26, 2023.

[131] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental
performance characteristics of gpus and cpus for database analytics. In Proceedings
of the 2020 ACM SIGMOD international conference on Management of data, pages
1617-1632, 2020.

[132] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. Gpu
database systems characterization and optimization. Proceedings of the VLDB
Endowment, 17(3):441-454, 2023.

[133] David Luebke. Cuda: Scalable parallel programming for high-performance scientific
computing. In 2008 5th IEEE international symposium on biomedical imaging: from
nano to macro, pages 836-838. IEEE, 2008.

[134] Johannes Unterguggenberger, Bernhard Kerbl, and Michael Wimmer. Vulkan all the
way: Transitioning to a modern low-level graphics API in academia. Comput. Graph.,
111:155-165, 2023.

[135] Wenbin Fang, Bingsheng He, and Qiong Luo. Database compression on graphics
processors. Proceedings of the VLDB Endowment, 3(1-2):670-680, 2010.

[136] Anil Shanbhag, Bobbi W Yogatama, Xiangyao Yu, and Samuel Madden. Tile-based
lightweight integer compression in gpu. In Proceedings of the 2022 International
Conference on Management of Data, pages 1390-1403, 2022.

[137] Eyal Rozenberg and Peter Boncz. Faster across the pcie bus: a gpu library for
lightweight decompression: including support for patched compression schemes. In
Proceedings of the 13th International Workshop on Data Management on New
Hardware, pages 1-5, 2017.

[138] Patrick E O’Neil, Elizabeth J O’Neil, and Xuedong Chen. The star schema
benchmark (ssb). Pat, 200(0):50, 2007.

[139] Azim Afroozeh. Fastlanes v0.1, 2025. Accessed: 2025-03-07.

152 BIBLIOGRAPHY

[140] Azim Afroozeh and Peter Boncz. The fastlanes compression layout: Decoding >
100 billion integers per second with scalar code. Proc. VLDB Endow.,
16(9):2132-2144, jul 2023.

[141] Azim Afroozeh, Leonardo X. Kuffo, and Peter Boncz. Alp: Adaptive lossless
floating-point compression. Proc. ACM Manag. Data, 1(4), dec 2023.

[142] Azim Afroozeh, Lotte Felius, and Peter Boncz. Accelerating gpu data processing
using fastlanes compression. In Proceedings of the 20th International Workshop on
Data Management on New Hardware, DaMoN 24, New York, NY, USA, 2024.
Association for Computing Machinery.

[143] Vasily Volkov and James W Demmel. Benchmarking gpus to tune dense linear
algebra. In SC’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1-11. IEEE, 2008.

[144] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. Dissecting
the nvidia volta gpu architecture via microbenchmarking, 2018.

[145] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen Chu.
Benchmarking and dissecting the nvidia hopper gpu architecture, 2024.

[146] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. Dissecting
the nvidia turing t4 gpu via microbenchmarking, 2019.

[147] NVIDIA. Cuda c++ programming guide, 2025. NVIDIA Documentation.

[148] Vasily Volkov. Understanding Latency Hiding on GPUs. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2016.

[149] NVIDIA. How to implement performance metrics in cuda c/c++, 2025. NVIDIA
Documentation.

[150] NVIDIA. nvcomp benchmarks, 2025.
[151] NVIDIA. Thrust documentation, 2025. NVIDIA Documentation.

[152] NVIDIA. nvcomp v2.0.0 now available with new compressors, 2025. NVIDIA
Developer Blog.

[153] NVIDIA. Optimizing data transfer using lossless compression with nvcomp, 2025.
NVIDIA Developer Blog.

[154] NVIDIA. Using fully redesigned batch api and performance optimizations in nvcomp
v2.1.0, 2025. NVIDIA Developer Blog.

[155] NVIDIA. Accelerating lossless gpu compression with new flexible interfaces in
nvidia nvcomp, 2025. NVIDIA Developer Blog.

[156] NVIDIA. nvcomp: Gpu-accelerated compression library, 2025. Available on
conda-forge.

REFERENCES 153

[157] NVIDIA. Gdeflate: Gpu-optimized lossless compression, 2025. NVIDIA
Documentation.

[158] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng
Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter
Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. The snowflake
elastic data warehouse. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD 16, page 215-226, New York, NY, USA, 2016.
Association for Computing Machinery.

[159] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. Lakehouse: A new
generation of open platforms that unify data warehousing and advanced analytics. In
CIDR, 2021.

[160] Gang Liao, Ye Liu, Jianjun Chen, and Daniel J. Abadi. Bullion: A column store for
machine learning. arXiv preprint arXiv:2404.08901, 2024.

[161] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. An empirical evaluation of columnar storage formats, 2023.

[162] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. A deep dive
into common open formats for analytical dbmss. Proc. VLDB Endow.,
16(11):3044-3056, aug 2023.

[163] Google. Snappy - a fast compressor/decompressor, 2014. Accesed on: 2023-12-04.

[164] Peter Boncz, Thomas Neumann, and Viktor Leis. Fsst: Fast random access string
compression. Proc. VLDB Endow., 13(12):2649-2661, jul 2020.

[165] Azim Afroozeh and Peter Boncz. Fastlanes on gpu: Analysing data-parallelized
compression schemes. In -, pages —, -, 2023. -.

[166] Azim Afroozeh. Fastlanes end-to-end script, 2024. Accessed: 2024-11-29.

[167] Azim Afroozeh and Peter Boncz. Fastlanes: A simd-friendly composable
compression library. In -, pages —, -, 2021. DBDBD.

[168] Wenbin Fang, Bingsheng He, and Qiong Luo. Database compression on graphics
processors. Proc. VLDB Endow., 3(1-2):670-680, sep 2010.

[169] Xi Lyu, Andreas Kipf, Pascal Pfeil, Dominik Horn, Jana Giceva, and Tim Kraska.
Corbit: Leveraging correlations for compressing bitmap indexes. In Proceedings of
the Fifth International Workshop on Applied Al for Database Systems and
Applications (AIDB 2023), volume 3462 of CEUR Workshop Proceedings, pages
1-10, Vancouver, Canada, 2023. CEUR-WS.org.

[170] Hanwen Liu, Mihail Stoian, Alexander van Renen, and Andreas Kipf. Corra:
Correlation-aware column compression, 2024.

154

BIBLIOGRAPHY

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Mihail Stoian, Alexander van Renen, Jan Kobiolka, Ping-Lin Kuo, Josif Grabocka,
and Andreas Kipf. Lightweight correlation-aware table compression. In NeurlPS
2024 Third Table Representation Learning Workshop, 2024.

Bogdan Ghita, Diego G. Tomé, and Peter A. Boncz. White-box compression:
Learning and exploiting compact table representations. In Proceedings of the 2020
Conference on Innovative Data Systems Research (CIDR), page 23, Amsterdam, The
Netherlands, 2020. Very Large Data Base Endowment.

Hao Jiang, Chunwei Liu, Qi Jin, John Paparrizos, and Aaron J. Elmore. Pids:
Attribute decomposition for improved compression and query performance in
columnar storage. Proc. VLDB Endow., 13(6):925-938, feb 2020.

Peter Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining
query execution. In Proceedings of the 2005 Conference on Innovative Data Systems
Research (CIDR), pages 225-237, Asilomar, CA, USA, 2005. Very Large Data Base
Endowment.

Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mccormick,
Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar Mittal, Roee
Ebenstein, Nikita Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony Xu, Luis Perez,
Farhad Shahmohammadi, Tran Bui, Neil McKay, Selcuk Aya, Vera Lychagina, and
Brett Elliott. Procella: Unifying serving and analytical data at youtube. Proc. VLDB
Endow., 12(12):2022-2034, aug 2019.

S Hepkema. Fastlanes on gpu. Master’s thesis, centrum wiskunde & informatica,
2025.

cwida. Fast static symbol table (fsst). https://github.com/cwida/fsst, 2023.
Accessed: 2025-02-25.

Anastasia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. Weaving
relations for cache performance. Proceedings of the VLDB Endowment,
27(3):169-180, September 2001.

Marcin Zukowski, Niels Nes, and Peter Boncz. Dsm vs. nsm: Cpu performance
tradeoffs in block-oriented query processing. In Proceedings of the 4th International
Workshop on Data Management on New Hardware, DaMoN ’08, page 47-54, New
York, NY, USA, 2008. Association for Computing Machinery.

George P. Copeland and Setrag N. Khoshafian. A decomposition storage model. In
Proceedings of the 1985 ACM SIGMOD International Conference on Management of
Data, SIGMOD 85, page 268-279, New York, NY, USA, 1985. Association for
Computing Machinery.

DuckDB. Announcing duckdb 1.20, February 2025. Accessed: 2025-02-25.

DuckDB. Parquet encodings, January 2025. Accessed: 2025-02-25.

https://github.com/cwida/fsst

REFERENCES 155

[183] Maximilian Kuschewski and contributors. Btrblocks: Efficient columnar compression
for data lakes, 2023. GitHub repository, accessed on February 18, 2025.

[184] Daniel Lemire and Leonid Boytsov. Decoding billions of integers per second through
vectorization. Software: Practice and Experience, 45(1):1-29, 2015.

[185] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel
Madden. The Design and Implementation of Modern Column-Oriented Database
Systems, volume 3. Now Publishers Inc., Cambridge, MA, USA, 2013.

[186] Mark Raasveldt. Lightweight compression in duckdb.
https://duckdb.org/2022/10/28/1ightweight-compression.html, 2022.
Accesed on: 2023-04-13.

[187] Animesh Kr Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schiipbach, and Bernard
Metzler. Albis: High-performance file format for big data systems. In Proceedings of
the USENIX Annual Technical Conference (USENIX ATC), pages 561-574, Boston,
MA, USA, 2018. USENIX Association.

[188] Apache. Apache carbondata, 2023. https://carbondata.apache.org/.

[189] Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. Data blocks: Hybrid oltp and olap on compressed storage using
both vectorization and compilation. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, page 311-326, New York, NY,
USA, 2016. Association for Computing Machinery.

[190] Mosha Pasumansky. Inside Capacitor, BigQuery’s Next-Generation Columnar
Storage Format. https://cloud.google.com/blog/products/bigquery/
inside-capacitor-bigquerys-next-generation-columnar-storage-format,
2023. Accessed: 2023-10-10.

[191] LanceDB Developers. Lancedb: A modern vector database.
https://github.com/lancedb/lancedb, 2024. Accessed: 2024-11-29.

[192] Todor Ivanov and Matteo Pergolesi. The impact of columnar file formats on
sql-on-hadoop engine performance: A study on orc and parquet. Concurrency and
Computation: Practice and Experience, 32, 09 2019.

[193] Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie,
Hongfei Yan, and Ji-Rong Wen. A general simd-based approach to accelerating
compression algorithms. ACM Trans. Inf. Syst., 33:15:1-15:28, 2015.

[194] Andrew Trotman and Jimmy Lin. In vacuo and in situ evaluation of simd codecs. In
Proceedings of the 21st Australasian Document Computing Symposium, ADCS 16,
page 1-8, New York, NY, USA, 2016. Association for Computing Machinery.

[195] Daniel Lemire and Christoph Rupp. Upscaledb: Efficient integer-key compression in
a key-value store using simd instructions. Information Systems, 66:13-23, 2017.

https://duckdb.org/2022/10/28/lightweight-compression.html
https://carbondata.apache.org/
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://github.com/lancedb/lancedb

156

BIBLIOGRAPHY

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

Dirk Habich, Patrick Damme, Annett Ungethiim, and Wolfgang Lehner. Make larger
vector register sizes new challenges? lessons learned from the area of vectorized
lightweight compression algorithms. In Proceedings of the Workshop on Testing
Database Systems, DBTest’ 18, New York, NY, USA, 2018. Association for
Computing Machinery.

Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. Fast integer compression
using simd instructions. In Proceedings of the Sixth International Workshop on Data
Management on New Hardware, DaMoN ’10, page 34-40, New York, NY, USA,
2010. Association for Computing Machinery.

Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and
Paramjit S. Oberoi. Simd-based decoding of posting lists. In Proceedings of the 20th
ACM International Conference on Information and Knowledge Management, CIKM
"11, page 317-326, New York, NY, USA, 2011. Association for Computing
Machinery.

Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip
vector processing units. Proc. VLDB Endow., 2(1):385-394, aug 2009.

Maximilian Ungethum and Example Another Author. A title of the paper. In
Proceedings of the 10th International Conference on Example Research (ICER 2018),
pages 123—134, Berlin, Germany, 2018. Springer.

Jianguo Wang, Chunbin Lin, Ruining He, Moojin Chae, Yannis Papakonstantinou,
and Steven Swanson. Milc: Inverted list compression in memory. Proc. VLDB
Endow., 10(8):853-864, apr 2017.

Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Suleyman S.
Demirsoy, and Kai-Uwe Sattler. Fast & strong: The case of compressed string
dictionaries on modern cpus. In Proceedings of the 15th International Workshop on
Data Management on New Hardware, DaMoN’ 19, New York, NY, USA, 2019.
Association for Computing Machinery.

Florian Lemaitre, Arthur Hennequin, and Lionel Lacassagne. How to speed
connected component labeling up with simd rle algorithms. In Proceedings of the
2020 Sixth Workshop on Programming Models for SIMD/Vector Processing,
WPMVP’20, New York, NY, USA, 2020. Association for Computing Machinery.

Martin Boissier and Max Jendruk. Workload-driven and robust selection of
compression schemes for column stores. In Proceedings of the 22nd International
Conference on Extending Database Technology (EDBT), pages 674—677, Lisbon,
Portugal, 2019. OpenProceedings.org.

Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A. Chien, Jihong Ma, and Aaron J.
Elmore. Good to the last bit: Data-driven encoding with codecdb. In Proceedings of
the 2021 International Conference on Management of Data, SIGMOD ’21, page
843-856, New York, NY, USA, 2021. Association for Computing Machinery.

REFERENCES 157

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

Mark A. Roth and Scott J. Van Horn. Database compression. SIGMOD Rec.,
22(3):31-39, sep 1993.

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query
processing with optimized document ordering. In Proceedings of the 18th
International World Wide Web Conference (WWW 2009), pages 401-410, Madrid,
Spain, 2009. Association for Computing Machinery.

Vijayshankar Raman and Garret Swart. How to wring a table dry: Entropy
compression of relations and querying of compressed relations. In Proceedings of the
32nd International Conference on Very Large Data Bases, pages 858-869, Seoul,
Korea, 2006. Citeseer, VLDB Endowment.

Ingo Miiller, Cornelius Ratsch, and Franz Firber. Adaptive string dictionary
compression in in-memory column-store database systems. In Proceedings of the
17th International Conference on Extending Database Technology (EDBT), pages
283-294, Athens, Greece, 2014. OpenProceedings.org.

Yihao Liu, Xinyu Zeng, and Huanchen Zhang. Leco: Lightweight compression via
learning serial correlations, 2023.

Jiujing Zhang, Zhitao Shen, Shiyu Yang, Lingkai Meng, Chuan Xiao, Wei Jia, Yue Li,
Qinhui Sun, Wenjie Zhang, and Xuemin Lin. High-ratio compression for
machine-generated data. Proc. ACM Manag. Data, 1(4), dec 2023.

Feng Zhang, Weitao Wan, Chenyang Zhang, Jidong Zhai, Yunpeng Chai, Haixiang Li,
and Xiaoyong Du. Compressdb: Enabling efficient compressed data direct processing
for various databases. In Proceedings of the 2022 International Conference on
Management of Data, SIGMOD 22, page 1655-1669, New York, NY, USA, 2022.
Association for Computing Machinery.

Linus Heinzl, Ben Hurdelhey, Martin Boissier, Michael Perscheid, and Hasso Plattner.
Evaluating lightweight integer compression algorithms in column-oriented
in-memory dbms. In Proceedings of the 11th International Workshop on Accelerating
Analytics and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS 2021), pages 26-36, Copenhagen, Denmark, 08 2021. ADMS
Workshop Organizers.

Patrick Damme, Annett Ungethiim, Johannes Pietrzyk, Alexander Krause, Dirk
Habich, and Wolfgang Lehner. Morphstore: Analytical query engine with a holistic
compression-enabled processing model. Proc. VLDB Endow., 13(12):2396-2410, jul
2020.

Richard Michael Grantham Wesley and Pawel Terlecki. Leveraging compression in
the tableau data engine. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’ 14, page 563-573, New York, NY,
USA, 2014. Association for Computing Machinery.

158

BIBLIOGRAPHY

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and
execution in column-oriented database systems. In Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data, SIGMOD 06, page

671-682, New York, NY, USA, 2006. Association for Computing Machinery.

Carsten Binnig, Stefan Hildenbrand, and Franz Farber. Dictionary-based
order-preserving string compression for main memory column stores. In Proceedings
of the 2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD 09, page 283-296, New York, NY, USA, 2009. Association for Computing
Machinery.

Juliana Hildebrandt, Dirk Habich, Patrick Damme, and Wolfgang Lehner.
Compression-aware in-memory query processing: Vision, system design and beyond.

In Proceedings of the International Workshop on In-Memory Data Management and
Analytics (IMDM), pages 40-56, Venice, Italy, 03 2017. Springer.

Leon Windheuser, Christoph Anneser, Huanchen Zhang, Thomas Neumann, and
Alfons Kemper. Adaptive compression for databases. In Proceedings of the 27th
International Conference on Extending Database Technology (EDBT), pages
143-149, Paestum, Italy, 03 2024. OpenProceedings.org.

Yinan Li, Jianan Lu, and Badrish Chandramouli. Selection pushdown in column
stores using bit manipulation instructions. Proc. ACM Manag. Data, 1(2), jun 2023.

Martin Prammer and Jignesh M. Patel. Rethinking the encoding of integers for scans
on skewed data. Proc. ACM Manag. Data, 1(4), dec 2023.

Bhavik Nagda. CHuff: Conditional Huffman String Compression. PhD thesis,
Massachusetts Institute of Technology, 2021.

C.G. Nevill-Manning and I.H. Witten. Linear-time, incremental hierarchy inference
for compression. In Proceedings of the Data Compression Conference (DCC), pages
3-11, Snowbird, UT, USA, 1997. IEEE Computer Society.

N.J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of
the IEEE, 88(11):1722-1732, 2000.

Kennon J. Conrad and Paul R. Wilson. Grammatical ziv-lempel compression:
Achieving ppm-class text compression ratios with 1z-class decompression speed. In
Proceedings of the 2016 Data Compression Conference (DCC), page 586, Snowbird,
UT, USA, 2016. IEEE Computer Society.

Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
Lightweight data compression algorithms: An experimental survey (experiments and
analyses). In Proceedings of the 20th International Conference on Extending
Database Technology (EDBT), pages 72—-83, Venice, Italy, 2017.
OpenProceedings.org.

REFERENCES 159

[227] Patrick Damme, Annett Ungethiim, Juliana Hildebrandt, Dirk Habich, and Wolfgang
Lehner. From a comprehensive experimental survey to a cost-based selection strategy

for lightweight integer compression algorithms. ACM Trans. Database Syst., 44(3),
jun 2019.

[228] NVIDIA. nvcomp. https://github.com/NVIDIA/nvcomp, 2023. Accessed on:
2023-4-12.

[229] Guido Moerkotte. Small materialized aggregates: A light weight index structure for
data warehousing. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB), pages 476487, New York, NY, USA, 1998. Morgan Kaufmann.

[230] Quix.io. The anatomy of a machine learning pipeline. Online; accessed 2025-04-11,
2022. https:
//quix.io/blog/the-anatomy-of-a-machine-learning-pipeline.

[231] Harsh Mittal and Ankit Suresh. Studying the effect of bitwidth reduction on decision
forest classifiers. arXiv preprint arXiv:2106.14340, 2021.

[232] Paulius Micikevicius, Sharan Narang, Jonah Alben, et al. Mixed precision training.
arXiv preprint arXiv:1710.03740, 2018.

[233] Amir Gholami, Sehoon Kim, Zhen Dong Yao, et al. A survey of quantization methods
for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2021.

[234] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[235] Ron Banner, Yaniv Nahshan, and Daniel Soudry. Post training 4-bit quantization of
convolutional networks for rapid-deployment. arXiv preprint arXiv:1810.05723,
2018.

[236] Ofir Zafrir, Guy Boudoukh, Peter 1zsak, and Moshe Wasserblat. Q8bert: Quantized
8bit bert. arXiv preprint arXiv:1910.06188, 2019.

[237] Elena Krippner. Rethinking vector embeddings search for analytical database systems.
Master’s thesis, Augsburg University, Augsburg, Germany, October 2024. Master’s
thesis in the Elite Graduate Program in Software Engineering.

[238] Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. Tile-based
lightweight integer compression in gpu. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22, page 1390-1403, New York, NY,
USA, 2022. Association for Computing Machinery.

[239] Facebook Incubator Team. Nimble: A columnar file format for feature engineering.
https://github.com/facebookincubator/nimble, 2024. GitHub Repository.

[240] Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. Tile-based
lightweight integer compression in gpu. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD 22, page 1390-1403, New York, NY,
USA, 2022. Association for Computing Machinery.

https://github.com/NVIDIA/nvcomp
https://quix.io/blog/the-anatomy-of-a-machine-learning-pipeline
https://quix.io/blog/the-anatomy-of-a-machine-learning-pipeline
https://github.com/facebookincubator/nimble

160 GLOSSARY

[241] Apache Iceberg. Apache iceberg specification - writer requirements, 2023. Accessed:
2023-11-01.

[242] Ziya Mukhtarov. Nested data-type encodings in fastlanes. Master’s thesis, Technical
University of Munich, 2024.

[243] CWI Database Architectures Group. Realnest - a collection of nested data from
real-world datasets, 2024.

[244] Raufs Dunamalijevs. Predicate pushdown in fastlanes. Msc thesis, Universiteit van
Amsterdam, 2024. Supervisors: Azim Afroozeh, Peter Boncz, and Balder ten Cate.

161

Li1ST OF PUBLICATIONS

[1. Azim Afroozeh, Peter Boncz: "The FastLanes Compression Layout: Decoding >100 Billion
Integers per Second with Scalar Code." Proceedings of the VLDB Endowment, 16(9),
2132-2144, 2023.

[2. Azim Afroozeh, Leonardo Kuffé Rivero, Peter Boncz: "ALP: Adaptive Lossless Floating-Point
Compression." Proceedings of the ACM on Management of Data, 1(4), 1-26, 2023.

[3. Azim Afroozeh, L. Felius, Peter Boncz: "Accelerating GPU Data Processing using FastLanes
Compression." Proceedings of the 20th International Workshop on Data Management on New
Hardware, 2024.

@ 4. Azim Afroozeh, Peter Boncz: "The FastLanes File Format." Proceedings of the VLDB
Endowment, 18(11), 46294643, 2025.

3 5. Sven Hepkema, Azim Afroozeh, Charlotte Felius, Peter Boncz, Stefan Manegold: "G-ALP:
Rethinking Light-weight Encodings for GPUs." DaMoN ’25: Proceedings of the 21st
International Workshop on Data Management on New Hardware, Article No. 11, 1-10, 2025.

[Included in this thesis.

163

2016 01
02

03

04
05

06
07

08
09
10
11
12
13

14
15

16

17
18
19
20
21

22
23
24

25

SIKS DISSERTATION SERIES

Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through
decision support: prescribing a better pill to swallow

Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge
Worker Support

Laurens Rietveld (VUA), Publishing and Consuming Linked Data

Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Containment and an
Application in Explaining Missing Answers

Michel Wilson (TUD), Robust scheduling in an uncertain environment

Jeroen de Man (VUA), Measuring and modeling negative emotions for virtual
training

Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social
Networks from Unstructured Data

Archana Nottamkandath (VUA), Trusting Crowdsourced Information on Cultural
Artefacts

George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
Anne Schuth (UvA), Search Engines that Learn from Their Users

Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent
Systems

Nana Baah Gyan (VUA), The Web, Speech Technologies and Rural Development
in West Africa - An ICT4D Approach

Ravi Khadka (UU), Revisiting Legacy Software System Modernization

Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,
Algorithms and Experiments

Guangliang Li (UvA), Socially Intelligent Autonomous Agents that Learn from
Human Reward

Berend Weel (VUA), Towards Embodied Evolution of Robot Organisms

Albert Merofio Pefiuela (VUA), Refining Statistical Data on the Web

Julia Efremova (TU/e), Mining Social Structures from Genealogical Data

Daan Odijk (UvA), Context & Semantics in News & Web Search

Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:
Automatic Analysis of Player Behavior in the Interactive Tag Playground

Grace Lewis (VUA), Software Architecture Strategies for Cyber-Foraging Systems
Fei Cai (UvA), Query Auto Completion in Information Retrieval

Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An
Iterative and data model independent approach

Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching
and Browsing Behavior

164

LisT oF PuBLICATIONS

26

27
28

29

Dilhan Thilakarathne (VUA), In or Out of Control: Exploring Computational
Models to Study the Role of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy Management Domains

Wen Li (TUD), Understanding Geo-spatial Information on Social Media
Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on
epidemic prediction and control

Nicolas Honing (TUD), Peak reduction in decentralised electricity systems -
Markets and prices for flexible planning

30 Ruud Mattheij (TiU), The Eyes Have It

31 Mohammad Khelghati (UT), Deep web content monitoring

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks
for Crisis Organisations

33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning from just one
example

34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicitation, Analysis,
and Enactment

35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization, Classification
and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction
behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computa-
tional inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art &
Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal
Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design

41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing
Institutional Design and Enactment Governance

42 Spyros Martzoukos (UvA), Combinatorial and Compositional Aspects of Bilin-
gual Aligned Corpora

43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management:
From Theory to Practice

44 Thibault Sellam (UvA), Automatic Assistants for Database Exploration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy

47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation
networks

48 Tanja Buttler (TUD), Collecting Lessons Learned

49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic
Analysis

50 Yan Wang (TiU), The Bridge of Dreams: Towards a Method for Operational
Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime

LisT oF PUBLICATIONS 165

02
03
04
05
06
07
08
09

10
11

12
13

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

30

Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks
using Argumentation

Dani€l Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach
with Autonomous Products and Reconfigurable Manufacturing Machines
Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store

Mahdieh Shadi (UvA), Collaboration Behavior

Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
Roel Bertens (UU), Insight in Information: from Abstract to Anomaly

Rob Konijn (VUA), Detecting Interesting Differences:Data Mining in Health
Insurance Data using Outlier Detection and Subgroup Discovery

Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspec-
tive on Variation in Text

Robby van Delden (UT), (Steering) Interactive Play Behavior

Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter
#anticipointment

Sander Leemans (TU/e), Robust Process Mining with Guarantees

Gijs Huisman (UT), Social Touch Technology - Extending the reach of social
touch through haptic technology

Shoshannah Tekofsky (TiU), You Are Who You Play You Are: Modelling Player
Traits from Video Game Behavior

Peter Berck (RUN), Memory-Based Text Correction

Aleksandr Chuklin (UvA), Understanding and Modeling Users of Modern Search
Engines

Daniel Dimov (UL), Crowdsourced Online Dispute Resolution

Ridho Reinanda (UvA), Entity Associations for Search

Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in
Information Retrieval

Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing:
The Role of Perceived Benefits, Costs and Visibility

Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming
(A Play on Worlds)

Sara Magliacane (VUA), Logics for causal inference under uncertainty

David Graus (UvA), Entities of Interest — Discovery in Digital Traces

Chang Wang (TUD), Use of Affordances for Efficient Robot Learning

Veruska Zamborlini (VUA), Knowledge Representation for Clinical Guidelines,
with applications to Multimorbidity Analysis and Literature Search

Merel Jung (UT), Socially intelligent robots that understand and respond to
human touch

Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social
Robots: People’s Preferences, Perceptions and Behaviors

John Klein (VUA), Architecture Practices for Complex Contexts

Adel Alhuraibi (TiU), From IT-BusinessStrategic Alignment to Performance: A
Moderated Mediation Model of Social Innovation, and Enterprise Governance of
™

Wilma Latuny (TiU), The Power of Facial Expressions

166

LisT oF PuBLICATIONS

31 Ben Ruijl (UL), Advances in computational methods for QFT calculations

32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives

33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documenta-
tion: A Model of Computer-Mediated Activity

34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics

35 Martine de Vos (VUA), Interpreting natural science spreadsheets

36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-
throughput Imaging

37 Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser Adaptation Frame-
work that Enables Control over Privacy

38 Alex Kayal (TUD), Normative Social Applications

39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and
compressive sensing methods to increase noise robustness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of
Human Control in Relation to Emotions, Desires and Social Support For applica-
tions in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental
Processes and a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with
applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics
in Agile Requirements Engineering

45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement

46 Jan Schneider (OU), Sensor-based Learning Support

47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration

48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations

02 Felix Mannhardt (TU/e), Multi-perspective Process Mining

03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,
Model-Driven Development of Context-Aware Applications, and Behavior Pre-
diction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in
Data-Centric Engineering Tasks

05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of the Information
Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-
Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior
change through intelligent technology

11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented Collaborative

Networks

LisT oF PUBLICATIONS 167

12 Xixi Lu (TU/e), Using behavioral context in process mining

13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future

14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal Gabor Filters

15 Naser Davarzani (UM), Biomarker discovery in heart failure

16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group
of children

17 Jianpeng Zhang (TU/e), On Graph Sample Clustering

18 Henriette Nakad (UL), De Notaris en Private Rechtspraak

19 Minh Duc Pham (VUA), Emergent relational schemas for RDF

20 Manxia Liu (RUN), Time and Bayesian Networks

21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing
scenario-based serious games

22 FEric Fernandes de Mello Aradjo (VUA), Contagious: Modeling the Spread of
Behaviours, Perceptions and Emotions in Social Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-
Autonomous Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections

26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational
Messages for Behavior Change Technology

27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable Software
Analysis

28 Christian Willemse (UT), Social Touch Technologies: How they feel and how
they make you feel

29 Yu Gu (TiU), Emotion Recognition from Mandarin Speech

30 Wouter Beek (VUA), The "K" in "semantic web" stands for "knowledge": scaling
semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A

graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for
Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on Databases:
Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data

05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming Data

06 Chris Dijkshoorn (VUA), Nichesourcing for Improving Access to Linked Cultural
Heritage Datasets

07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms

08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Pro-
cesses

09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy efficiency in
software systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and

Prediction

168 List oF PuBLICATIONS

11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behav-
ioral Engagement in MOOCs

12 Jacqueline Heinerman (VUA), Better Together

13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content
Generation

14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behav-
ior & Improving Learning Outcomes in Massive Open Online Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially
Observable Environments

16 Guangming Li (TU/e), Process Mining based on Object-Centric Behavioral
Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication

19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents

20 Chide Groenouwe (UU), Fostering technically augmented human collective
intelligence

21 Cong Liu (TU/e), Software Data Analytics: Architectural Model Discovery and
Design Pattern Detection

22 Martin van den Berg (VUA),Improving IT Decisions with Enterprise Architecture

23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification

24 Anca Dumitrache (VUA), Truth in Disagreement - Crowdsourcing Labeled Data
for Natural Language Processing

25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic) image description

26 Prince Singh (UT), An Integration Platform for Synchromodal Transport

27 Alessandra Antonaci (OU), The Gamification Design Process applied to (Massive)
Open Online Courses

28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare
airline pilots for critical situations

29 Daniel Formolo (VUA), Using virtual agents for simulation and training of social
skills in safety-critical circumstances

30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems

31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in Robotics

32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence
in Games

33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning in Artificial
Neural Networks

34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain Network Features
for Classification of Epilepsy and PNES

35 LisaFacey-Shaw (OU), Gamification with digital badges in learning programming

36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to Master Complex
Skills

37 Jian Fang (TUD), Database Acceleration on FPGAs

38 Akos Kadar (OU), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour

LisT oF PUBLICATIONS 169

02
03
04
05
06
07
08
09

10
11

12

13

14
15

16
17

18
19
20
21
22
23
24

25
26

27

28

Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic
Graphical Models

Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language
Understanding

Maarten van Gompel (RUN), Context as Linguistic Bridges

Yulong Pei (TU/e), On local and global structure mining

Preethu Rose Anish (UT), Stimulation Architectural Thinking during Require-
ments Elicitation - An Approach and Tool Support

Wim van der Vegt (OU), Towards a software architecture for reusable game
components

Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree
Search

Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital
Humanities Research

Alifah Syamsiyah (TU/e), In-database Preprocessing for Process Mining
Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMeth-
ods for Long-Tail Entity Recognition Models

Ward van Breda (VUA), Predictive Modeling in E-Mental Health: Exploring
Applicability in Personalised Depression Treatment

Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing
Evolutionary Algorithms for Genetic Programming

Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
Konstantinos Georgiadis (OU), Smart CAT: Machine Learning for Configurable
Assessments in Serious Games

Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling

Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feedback from Multi-
modal Experiences

Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with
Uncertainties: Electricity Markets in Renewable Energy Systems

Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
Albert Hankel (VUA), Embedding Green ICT Maturity in Organisations
Karine da Silva Miras de Araujo (VUA), Where is the robot?: Life as it could be
Maryam Masoud Khamis (RUN), Understanding complex systems implementation
through a modeling approach: the case of e-government in Zanzibar

Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to
studying writing processes using keystroke logging

Lenin da Nébrega Medeiros (VUA/RUN), How are you feeling, human? Towards
emotionally supportive chatbots

Xin Du (TU/e), The Uncertainty in Exceptional Model Mining

Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based
mixed-Integer opTimization

Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational
context

Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training
complex skills with augmented reality

170

LisT oF PuBLICATIONS

29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference

30 Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst

31 Gongjin Lan (VUA), Learning better — From Baby to Better

32 Jason Rhuggenaath (TU/e), Revenue management in online markets: pricing and
online advertising

33 Rick Gilsing (TU/e), Supporting service-dominant business model evaluation in
the context of business model innovation

34 Anna Bon (UM), Intervention or Collaboration? Redesigning Information and
Communication Technologies for Development

35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social

Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice
Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning
analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems

06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with
a social robot

07 Armel Lefebvre (UU), Research data management for open science

08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on
Computational Thinking

09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and
Non-Verbal Robots to Promote Children’s Collaboration Through Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision

12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs

13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and
Facilitating Predictability for Engagement in Learning

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource
Re-Configurations through the Business Services Paradigm

16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues

17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues
using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools
and Formal Systems - Facilitating the Construction of Bayesian Networks and
Argumentation Frameworks

19 Roberto Verdecchia (VUA), Architectural Technical Debt: Identification and
Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure
Bias in Recommender Systems

21 Pedro Thiago Timb6 Holanda (CWI), Progressive Indexes

22 Sihang Qiu (TUD), Conversational Crowdsourcing

LisT oF PUBLICATIONS 171

23 Hugo Manuel Proenca (UL), Robust rules for prediction and description

24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Processing

25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining Al
and Self-Adaptation to Create Adaptive E-Health Mobile Applications

26 Benno Kruit (CWI/VUA), Reading the Grid: Extending Knowledge Bases from
Human-readable Tables

27 Jelte van Waterschoot (UT), Personalized and Personal Conversations: Designing
Agents Who Want to Connect With You

28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate Entrepreneur-
ship Programs

2022 01 Judith van Stegeren (UT), Flavor text generation for role-playing video games

02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A
Deep Learning Journey

03 Aliel Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement
Learning For Personalized Healthcare

04 Unal Aksu (UU), A Cross-Organizational Process Mining Framework

05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-
Parameterization

06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time
Bidding

07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic Co-
located Collaboration Analytics

08 Maikel L. van Eck (TU/e), Process Mining for Smart Product Design

09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven Human-
Machine Approach

10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative
Search Engines

11 Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quantitative
approach to studying preschoolers’ engagement with robots and tasks during
second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases

13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowledge Graphs:
Opportunities, Challenges, and Methods for Learning on Real-World Heteroge-
neous and Spatially-Oriented Knowledge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms

15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning using Process
Mining

16 Pieter Gijsbers (TU/e), Systems for AutoML Research

17 Laura van der Lubbe (VUA), Empowering vulnerable people with serious games
and gamification

18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and Video Game
Personalisation

19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and Standardisation

20 Fakhra Jabeen (VUA), Dark Side of the Digital Media - Computational Analysis

of Negative Human Behaviors on Social Media

172

LisT oF PuBLICATIONS

21

22

23

24

25

26

27

28
29

30
31

32
33

34

35

Seethu Mariyam Christopher (UM), Intelligent Toys for Physical and Cognitive
Assessments

Alexandra Sierra Rativa (TiU), Virtual Character Design and its potential to
foster Empathy, Immersion, and Collaboration Skills in Video Games and Virtual
Reality Simulations

Ilir Kola (TUD), Enabling Social Situation Awareness in Support Agents
Samaneh Heidari (UU), Agents with Social Norms and Values - A framework for
agent based social simulations with social norms and personal values

Anna L.D. Latour (UL), Optimal decision-making under constraints and uncer-
tainty

Anne Dirkson (UL), Knowledge Discovery from Patient Forums: Gaining novel
medical insights from patient experiences

Christos Athanasiadis (UM), Emotion-aware cross-modal domain adaptation in
video sequences

Onuralp Ulusoy (UU), Privacy in Collaborative Systems

Jan Kolkmeier (UT), From Head Transform to Mind Transplant: Social Interac-
tions in Mixed Reality

Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays
Konstantinos Traganos (TU/e), Tackling Complexity in Smart Manufacturing
with Advanced Manufacturing Process Management

Cezara Pastrav (UU), Social simulation for socio-ecological systems

Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid Congestion
Management

Nimat Ullah (VUA), Mind Your Behaviour: Computational Modelling of Emotion
& Desire Regulation for Behaviour Change

Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relationship: Interaction
Design Patterns for a Sustainable Interaction

2023

01
02

03

04

05

06

07

08

09
10

Bojan Simoski (VUA), Untangling the Puzzle of Digital Health Interventions
Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What our bodies can
tell us about the whereabouts of our thoughts

Shabnam Najafian (TUD), User Modeling for Privacy-preserving Explanations
in Group Recommendations

Gineke Wiggers (UL), The Relevance of Impact: bibliometric-enhanced legal
information retrieval

Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms for Large-Scale
Real-Valued Optimization, Including Real-World Medical Applications
Antoénio Pereira Barata (UL), Reliable and Fair Machine Learning for Risk
Assessment

Tianjin Huang (TU/e), The Roles of Adversarial Examples on Trustworthiness of
Deep Learning

Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learning

Xu Wang (VUA), Scientific Dataset Recommendation with Semantic Techniques
Dennis J.N.J. Soemers (UM), Learning State-Action Features for General Game
Playing

LisT oF PUBLICATIONS 173

11 Fawad Taj (VUA), Towards Motivating Machines: Computational Modeling
of the Mechanism of Actions for Effective Digital Health Behavior Change
Applications

12 Tessel Bogaard (VUA), Using Metadata to Understand Search Behavior in Digital
Libraries

13 Injy Sarhan (UU), Open Information Extraction for Knowledge Representation

14 Selma Causevi¢ (TUD), Energy resilience through self-organization

15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning Tractable Proba-
bilistic Graphical Models

16 Peter Blomsma (TiU), Building Embodied Conversational Agents: Observations
on human nonverbal behaviour as a resource for the development of artificial
characters

17 Meike Nauta (UT), Explainable Al and Interpretable Computer Vision — From
Oversight to Insight

18 Gustavo Penha (TUD), Designing and Diagnosing Models for Conversational
Search and Recommendation

19 George Aalbers (TiU), Digital Traces of the Mind: Using Smartphones to Capture
Signals of Well-Being in Individuals

20 Arkadiy Dushatskiy (TUD), Expensive Optimization with Model-Based Evolu-
tionary Algorithms applied to Medical Image Segmentation using Deep Learning

21 Gerrit Jan de Bruin (UL), Network Analysis Methods for Smart Inspection in the
Transport Domain

22 Alireza Shojaifar (UU), Volitional Cybersecurity

23 Theo Theunissen (UU), Documentation in Continuous Software Development

24 Agathe Balayn (TUD), Practices Towards Hazardous Failure Diagnosis in Machine
Learning

25 Jurian Baas (UU), Entity Resolution on Historical Knowledge Graphs

26 Loek Tonnaer (TU/e), Linearly Symmetry-Based Disentangled Representations
and their Out-of-Distribution Behaviour

27 Ghada Sokar (TU/e), Learning Continually Under Changing Data Distributions

28 Floris den Hengst (VUA), Learning to Behave: Reinforcement Learning in
Human Contexts

29 Tim Draws (TUD), Understanding Viewpoint Biases in Web Search Results

2024 01 Daphne Miedema (TU/e), On Learning SQL: Disentangling concepts in data
systems education

02 Emile van Krieken (VUA), Optimisation in Neurosymbolic Learning Systems

03 Feri Wijayanto (RUN), Automated Model Selection for Rasch and Mediation
Analysis

04 Mike Huisman (UL), Understanding Deep Meta-Learning

05 Yiyong Gou (UM), Aerial Robotic Operations: Multi-environment Cooperative
Inspection & Construction Crack Autonomous Repair

06 Azga Nadeem (TUD), Understanding Adversary Behavior via XAl: Leveraging
Sequence Clustering to Extract Threat Intelligence

07 Parisa Shayan (TiU), Modeling User Behavior in Learning Management Systems

174

LisT oF PuBLICATIONS

08

09
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

34

Xin Zhou (UvA), From Empowering to Motivating: Enhancing Policy Enforce-
ment through Process Design and Incentive Implementation

Giso Dal (UT), Probabilistic Inference Using Partitioned Bayesian Networks
Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Semantic Publishing
in Science

withdrawn

Peide Zhu (TUD), Towards Robust Automatic Question Generation For Learning
Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid Intelligence
Larissa Capobianco Shimomura (TU/e), On Graph Generating Dependencies and
their Applications in Data Profiling

Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs for Interrelating
the Gut Microbiome and Mental Health

Arthur Barbosa Camara (TUD), Designing Search-as-Learning Systems
Razieh Alidoosti (VUA), Ethics-aware Software Architecture Design

Laurens Stoop (UU), Data Driven Understanding of Energy-Meteorological
Variability and its Impact on Energy System Operations

Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance Checking: Iden-
tifying and Understanding Patterns of Anomalous Behavior

Ritsart Anne Plantenga (UL), Omgang met Regels

Federica Vinella (UU), Crowdsourcing User-Centered Teams

Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM for Knowledge-
Intensive Processes with Controllable Dynamic Contexts

Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits Improves
Robot Evolution

Nirmal Roy (TUD), Exploring the effects of interactive interfaces on user search
behaviour

Alisa Rieger (TUD), Striving for Responsible Opinion Formation in Web Search
on Debated Topics

Tim Gubner (CWI), Adaptively Generating Heterogeneous Execution Strategies
using the VOILA Framework

Lincen Yang (UL), Information-theoretic Partition-based Models for Interpretable
Machine Learning

Leon Helwerda (UL), Grip on Software: Understanding development progress of
Scrum sprints and backlogs

David Wilson Romero Guzman (VUA), The Good, the Efficient and the Inductive
Biases: Exploring Efficiency in Deep Learning Through the Use of Inductive
Biases

Vijanti Ramautar (UU), Model-Driven Sustainability Accounting

Ziyu Li (TUD), On the Utility of Metadata to Optimize Machine Learning
Workflows

Vinicius Stein Dani (UU), The Alpha and Omega of Process Mining

Siddharth Mehrotra (TUD), Designing for Appropriate Trust in Human-Al
interaction

Robert Deckers (VUA), From Smallest Software Particle to System Specification
- MuDForM: Multi-Domain Formalization Method

LisT oF PUBLICATIONS 175

35 Sicui Zhang (TU/e), Methods of Detecting Clinical Deviations with Process
Mining: a fuzzy set approach

36 Thomas Mulder (TU/e), Optimization of Recursive Queries on Graphs

37 James Graham Nevin (UvA), The Ramifications of Data Handling for Computa-
tional Models

38 Christos Koutras (TUD), Tabular Schema Matching for Modern Settings

39 Paola Lara Machado (TU/e), The Nexus between Business Models and Operating
Models: From Conceptual Understanding to Actionable Guidance

40 Montijn van de Ven (TU/e), Guiding the Definition of Key Performance Indicators
for Business Models

41 Georgios Siachamis (TUD), Adaptivity for Streaming Dataflow Engines

42 Emmeke Veltmeijer (VUA), Small Groups, Big Insights: Understanding the
Crowd through Expressive Subgroup Analysis

43 Cedric Waterschoot (KNAW Meertens Instituut), The Constructive Conundrum:
Computational Approaches to Facilitate Constructive Commenting on Online
News Platforms

44 Marcel Schmitz (OU), Towards learning analytics-supported learning design

45 Sara Salimzadeh (TUD), Living in the Age of Al: Understanding Contextual
Factors that Shape Human-AI Decision-Making

46 Georgios Stathis (Leiden University), Preventing Disputes: Preventive Logic,
Law & Technology

47 Daniel Daza (VUA), Exploiting Subgraphs and Attributes for Representation
Learning on Knowledge Graphs

48 TIoannis Petros Samiotis (TUD), Crowd-Assisted Annotation of Classical Music
Compositions

2025 01 Max van Haastrecht (UL), Transdisciplinary Perspectives on Validity: Bridging

the Gap Between Design and Implementation for Technology-Enhanced Learning
Systems

02 Jurgen van den Hoogen (JADS), Time Series Analysis Using Convolutional
Neural Networks

03 Andra-Denis Ionescu (TUD), Feature Discovery for Data-Centric Al

04 Rianne Schouten (TU/e), Exceptional Model Mining for Hierarchical Data

05 Nele Albers (TUD), Psychology-Informed Reinforcement Learning for Situated
Virtual Coaching in Smoking Cessation

06 Daniél Vos (TUD), Decision Tree Learning: Algorithms for Robust Prediction
and Policy Optimization

07 Ricky Maulana Fajri (TU/e), Towards Safer Active Learning: Dealing with
Unwanted Biases, Graph-Structured Data, Adversary, and Data Imbalance

08 Stefan Bloemheuvel (TiU), Spatio-Temporal Analysis Through Graphs: Predictive
Modeling and Graph Construction

09 Fadime Kaya (VUA), Decentralized Governance Design - A Model-Based
Approach

10 Zhao Yang (UL), Enhancing Autonomy and Efficiency in Goal-Conditioned

Reinforcement Learning

176

LisT oF PuBLICATIONS

11

12
13

14

15
16

17

18

19
20

21

22

23

24

25

26
27

28

29

30

31

32
33

34
35

Shahin Sharifi Noorian (TUD), From Recognition to Understanding: Enriching
Visual Models Through Multi-Modal Semantic Integration

Lijun Lyu (TUD), Interpretability in Neural Information Retrieval

Fuda van Diggelen (VUA), Robots Need Some Education: on the complexity of
learning in evolutionary robotics

Gennaro Gala (TU/e), Probabilistic Generative Modeling with Latent Variable
Hierarchies

Michiel van der Meer (UL), Opinion Diversity through Hybrid Intelligence
Monika Grewal (TU Delft), Deep Learning for Landmark Detection, Segmenta-
tion, and Multi-Objective Deformable Registration in Medical Imaging

Matteo De Carlo (VUA), Real Robot Reproduction: Towards Evolving Robotic
Ecosystems

Anouk Neerincx (UU), Robots That Care: How Social Robots Can Boost
Children’s Mental Wellbeing

Fang Hou (UU), Trust in Software Ecosystems

Alexander Melchior (UU), Modelling for Policy is More Than Policy Modelling
(The Useful Application of Agent-Based Modelling in Complex Policy Processes)
Mandani Ntekouli (UM), Bridging Individual and Group Perspectives in Psy-
chopathology: Computational Modeling Approaches using Ecological Momen-
tary Assessment Data

Hilde Weerts (TU/e), Decoding Algorithmic Fairness: Towards Interdisciplinary
Understanding of Fairness and Discrimination in Algorithmic Decision-Making
Roderick van der Weerdt (VUA), IoT Measurement Knowledge Graphs: Con-
structing, Working and Learning with IoT Measurement Data as a Knowledge
Graph

Zhong Li (UL), Trustworthy Anomaly Detection for Smart Manufacturing
Kyana van Eijndhoven (TiU), A Breakdown of Breakdowns: Multi-Level Team
Coordination Dynamics under Stressful Conditions

Tom Pepels (UM), Monte-Carlo Tree Search is Work in Progress

Danil Provodin (JADS, TU/e), Sequential Decision Making Under Complex
Feedback

Jinke He (TU Delft), Exploring Learned Abstract Models for Efficient Planning
and Learning

Erik van Haeringen (VUA), Mixed Feelings: Simulating Emotion Contagion in
Groups

Myrthe Reuver (VUA), A Puzzle of Perspectives: Interdisciplinary Language
Technology for Responsible News Recommendation

Gebrekirstos Gebreselassie Gebremeskel (RUN), Spotlight on Recommender
Systems: Contributions to Selected Components in the Recommendation Pipeline
Ryan Brate (UU), Words Matter: A Computational Toolkit for Charged Terms
Merle Reimann (VUA), Speaking the Same Language: Spoken Capability
Communication in Human-Agent and Human-Robot Interaction

Eduard C. Groen (UU), Crowd-Based Requirements Engineering

Urja Khurana (VUA), From Concept To Impact: Toward More Robust Language
Model Deployment

List oF PUBLICATIONS 177

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

Anna Maria Wegmann (UU), Say the Same but Differently: Computational
Approaches to Stylistic Variation and Paraphrasing

Chris Kamphuis (RUN), Exploring Relations and Graphs for Information Retrieval
Valentina Maccatrozzo (VUA), Break the Bubble: Semantic Patterns for Serendip-
ity

Dimitrios Alivanistos (VUA), Knowledge Graphs & Transformers for Hypothesis
Generation: Accelerating Scientific Discovery in the Era of Artificial Intelligence
Stefan Grafberger (UvA), Declarative Machine Learning Pipeline Management
via Logical Query Plans

Mozhgan Vazifehdoostirani (TU/e), Leveraging Process Flexibility to Improve
Process Outcome - From Descriptive Analytics to Actionable Insights
Margherita Martorana (VUA), Semantic Interpretation of Dataless Tables: a
metadata-driven approach for findable, accessible, interoperable and reusable
restricted access data

Krist Shingjergji (OU), Sense the Classroom - Using Al to Detect and Respond
to Learning-Centered Affective States in Online Education

Robbert Reijnen (TU/e), Dynamic Algorithm Configuration for Machine Schedul-
ing Using Deep Reinforcement Learning

Anjana Mohandas Sheeladevi (VUA), Occupant-Centric Energy Management:
Balancing Privacy, Well-being and Sustainability in Smart Buildings

Ya Song (TU/e), Graph Neural Networks for Modeling Temporal and Spatial
Dimensions in Industrial Decision-making

Tom Kouwenhoven (UL), Collaborative Meaning-Making. The Emergence of
Novel Languages in Humans, Machines, and Human-Machine Interactions

Evy van Weelden (TiU), Integrating Virtual Reality and Neurophysiology in
Flight Training

Selene Bdez Santamaria (VUA), Knowledge-centered conversational agents with
a drive to learn

Lea Krause (VUA), Contextualising Conversational Al

Jiaxu Zhao (TU/e), Understanding and Mitigating Unwanted Biases in Generative
Language Models

Qiao Xiao (TU/e), Model, Data and Communication Sparsity for Efficient Training
of Neural Networks

Gaole He (TUD), Towards Effective Human-AI Collaboration: Promoting Ap-
propriate Reliance on Al Systems

Go Sugimoto (VUA), MISSING LINKS Investigating the Quality of Linked Data
and its Tools in Cultural Heritage and Digital Humanities

Sietze Kai Kuilman (TUD), Al that Glitters is Not Gold: Requirements for
Meaningful Control of Al Systems

Wijnand van Woerkom (UU), A Fortiori Case-Based Reasoning: Formal Studies
with Applications in Artificial Intelligence and Law

Syeda Amna Sohail (UT), Privacy-Utility Trade-Off in Healthcare Metadata
Sharing and Beyond: A Normative and Empirical Evaluation at Inter and Intra
Organizational Levels

178

LisT oF PuBLICATIONS

58 Junhan Wen (TUD), "From iMage to Market": Machine-Learning-Empowered
Fruit Supply

59 Mohsen Abbaspour Onari (TU/e), From Explanation to Trust: Modeling and
Measuring Trust in Explainable Decision Support

60 Marcel Jurriaan Robeer (UU), Beyond Trust: A Causal Approach to Explainable
Al in Law Enforcement

61 Shuai Wang (VUA), Links in Large Integrated Knowledge Graphs: Analysis,
Refinement, and Domain Applications

62 Khaleel Asyraaf Mat Sanusi (OU), Augmenting a learning model within immersive
learning environments for psychomotor skills

63 Rashid Zaman (TU/e), Online Conformance Checking on Degraded Data

64 Jens d’Hondt (TU/e), Effective and Efficient Multivariate Similarity Search

65 Aswin Balasubramaniam (UT), Disentangling Runner Drone Interaction Poten-
tialities

2026 01 Pei-Yu Chen (TUD), Human-Agent Alignment Dialogues: Eliciting User Infor-

mation at Runtime for Personalized Behavior Support

02 Hezha Hassan Mohammedkhan (TiU), Estimating Body Measurements of Chil-
dren from 2D Images: Towards the Automatic Detection of Malnutrition

03 Kyriakos Psarakis (TUD), Democratizing Scalable Cloud Applications: Transac-
tional Stateful Functions on Streaming Dataflows

04 Boyu Xu (UU), Exploring Indirect Relations Between Topics in Neuroscience
Literature Using Augmented Reality to Inform Experimental Design

05 Koen Minartz (TU/e), Stochastic Simulation with Geometric Deep Generative
Models

06 Azim Afroozeh (CWI, VUA), FastLanes: A Next-Gen File Format

07 Ines Blin (VUA), Narrative Understanding with Knowledge Graphs

