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ARTICLE INFO ABSTRACT
Keywords: Electricity Consumption Profiles (ECPs) are crucial for operating and planning power distribution systems,
Load profiles especially with the increasing number of low-carbon technologies such as solar panels and electric vehicles.
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Traditional ECP modeling methods typically assume the availability of sufficient ECP data. However, in
practice, the accessibility of ECP data is limited due to privacy issues or the absence of metering devices.
Few-shot learning (FSL) has emerged as a promising solution for ECP modeling in data-scarce scenarios.
Nevertheless, standard FSL methods, such as those used for images, are unsuitable for ECP modeling because
(1) these methods usually assume several source domains with sufficient data and several target domains.
However, in the context of ECP modeling, there may be thousands of source domains, e.g., households with
a moderate amount of data, and thousands of target domains, e.g., households that ECP are required to be
modeled. (2) Standard FSL methods usually involve cumbersome knowledge transfer mechanisms, such as
pre-training and fine-tuning. To address these limitations, this paper proposes a novel FSL framework that
integrates Transformers with Gaussian Mixture Models (GMMs) for ECP modeling. The proposed approach is
fine-tuning-free, computationally efficient, and robust even with extremely limited data. Results show that our
method can accurately restore the complex ECP distribution with a minimal amount of ECP data (e.g., only
1.6% of the complete domain dataset) and outperforms state-of-the-art time series modeling methods in the
context of ECP modeling.

1. Introduction usually assume sufficient ECP training data exists in the target domains
(e.g., households that ECP are required to be modeled).

Electricity Consumption Profiles (ECPs) refer to the daily (or other In practice, access to ECP data in the target domain is often re-

specified periods) time series data of electricity usage, reflecting the
volatility of human energy consumption behavior. ECP modeling in-
volves understanding and modeling the complex distribution of ECP
data. This modeling has significant applications in the energy sector.
For instance, the modeled distribution of ECP for households or areas
can be used to generate additional ECP data, aiding in electricity
consumption prediction and load monitoring [1,2]. Understanding ECP
distribution is also valuable for anomaly detection, risk analysis, energy
supply, demand management, and energy system control [3-6]. With
the prevalence of deep learning (DL), models such as generative adver-
sarial networks (GANS), variational autoencoders (VAEs), diffusion, and
flow-based models are adopted for ECP distribution modeling [7-10].
However, these modeling approaches are relatively ’data-hungry’ and
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stricted due to several practical and regulatory constraints, including
(1) metering infrastructure failures, such as malfunctions in smart me-
ters or SCADA systems, which result in missing or corrupted time-series
data [11], (2) privacy regulations, which limit the granularity and du-
ration of data that Distribution System Operators (DSOs) are permitted
to access—for instance, under Germany’s digitalization framework, 15-
minute resolution operational data is only retained for seven days to
comply with privacy and data volume requirements [12,13], and (3)
scarcity of original data, particularly in emerging applications or newly
monitored regions, where historical ECP data is insufficient to train
and validate data intensive models [14]. Therefore, an ECP modeling
method that requires less data needs to be developed. In this paper,
a domain refers to the ECP data collected from a terminal metering
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Fig. 1. Modeling residential ECP distribution across many domains (households) using FSL. L, and L, are the numbers of source domains (i.e., households with
considerable data available) and target domains (i.e., households with limited data available), respectively.

device (e.g., in a residential household or building) that has a unique
electricity consumption pattern due to human behavior differences.

Few-shot learning (FSL) has emerged as a promising solution for
ECP modeling in data-scarce scenarios. As demonstrated in [15], even
with a limited number of samples, it is possible to calibrate distribu-
tions effectively for classification tasks. FSL has been widely applied
in images and audio generation [16,17]. This enlightens us to consider
applying FSL in ECP modeling within data-scarce scenarios. Neverthe-
less, unlike a standard FSL task in image generation, in which there are
usually several source domains with sufficient data and several target
domains, ECP modeling often involves thousands of source domains
(e.g., households) with moderate amounts of data and thousands of
target domains (e.g., households). Furthermore, DL-based FSL typically
requires model fine-tuning, which can be difficult to do effectively
across thousands of domains in tasks like ECP modeling. These chal-
lenges underscore the need for an FSL method specifically designed
for ECP modeling, as standard FSL methods may not suffice. Fig. 1
demonstrates the core idea of applying FSL for ECP modeling in this
paper.

Gaussian Mixture Models (GMMs) are widely applied across various
distribution modeling tasks, including ECP modeling [8]. The most
common way to estimate the parameters of GMMs is the Expectation—
maximization (EM) algorithm. The advantages of GMMs include (1)
they are lighter in computational complexity compared to DL models,
(2) it is a white-box model, and (3) similar to DL models, GMMs can
theoretically approximate any distribution by increasing the number
of components. Despite GMMSs’s advantages, GMMs as classical models
seem isolated from FSL tasks. Moreover, some prior works have used
DL model to predict mixture distribution parameters, which is called
the Mixture Density Network (MDN), for flexible, conditional density
estimation [18,19]. In this sense, combining the advantages of FSL,
MDN, and GMMs can be seen as a promising idea. Recent work [20,21]
has shown that it is possible to train a learner where one DL model is
used to predict the parameters of another DL model. This inspires us to
apply a DL model that can assist in the parameter estimation of GMMs
with limited samples as inputs. Additionally, given the advantages
of Transformers, such as their ability to capture dependencies and
effectively knowledge transfer [22], we select the Transformer as our
foundational DL architecture for GMM parameter estimation.

Inspired by the questions and insights described above, we propose
a novel FSL method for ECP modeling. First, we propose a Transformer
encoder architecture to acquire general knowledge from source do-
mains (e.g., households with considerable data available). Then, we
leverage this encoder to assist in the parameter estimation of GMMs in
the target domains (e.g., households with limited data available). We
interpret the knowledge learned from the source and target domains
as shifts in the mean and variance of the Gaussian components in
GMMs. To the best of our limited knowledge, this is the first research to
propose the FSL method for ECP distribution modeling in data-scarce
scenarios across thousands of source and target domains.! In summary,
the contributions of this paper are

1 The code and data of this project are available in Personal Repository and
TU Delft Repository.

» From the ECP modeling perspective, we propose a novel method
that requires significantly less data (e.g., less than 2% of the avail-
able dataset) to accurately model the complex ECP distribution.
This method effectively addresses the challenges associated with
ECP modeling in data-scarce scenarios.

From the FSL perspective, we propose an efficient method for
FSL tasks inspired by the MDN that combines a Transformer
encoder architecture and GMMs. Compared with standard FSL,
this method does not require fine-tuning in the target domain. To
do this, we replace gradient descent-based models training/tuning
with a significantly more efficient EM algorithm. As a result, the
proposed method is suitable for applications in the energy sector
and potentially extending to other Internet of Everything (IoE)
applications that involve numerous source and target domains
(terminal devices) [23].

2. Related work
2.1. Electricity consumption profile modeling

ECP modeling remains an active area of research in the energy
domain, as accurate ECP models are vital for a wide range of ap-
plications, including load pattern calibration for distribution system
reconfiguration [24-26], system operation optimization [27], system
risk analysis [3], and other related tasks.

There are two primary approaches to modeling ECP datasets: the
bottom-up and top-down approaches. The bottom-up approach builds
consumption models from individual components [28], such as specific
appliances (e.g., televisions, refrigerators). While this method can yield
high-fidelity results, it requires detailed contextual information, such
as the number of occupants, appliance types, and usage patterns,
which is often difficult to obtain or generalize. In contrast, the top-
down approach, which has gained greater popularity in both industry
and research, leverages consumption data directly from smart meters
(or similar metering devices) to develop data-driven models without
considering the specific physical details. Most popular statistical or
DL-based ECP modeling methods fall under the top-down category, as
they rely solely on observed consumption patterns rather than detailed
household-level features [29].

GMMs and Copula are widely used statistical methods for ECP mod-
eling. In [30], GMMs are employed to model system load, demonstrat-
ing that despite their computational efficiency, GMMs can accurately
capture the underlying load distribution. Similarly, in [31], the authors
show that the proposed t-Copula framework effectively models the
statistical properties of smart meter measurement datasets, highlighting
its versatility in representing complex consumption patterns.

With the advancement of DL, an increasing number of DL-based
methods have been proposed for ECP modeling. Recent works [8,32]
have shown that the DL models excel at capturing the temporal cor-
relations of ECP, which is crucial for planning the necessary future
investment of flexible power distribution systems. With the prevalence
of DL, many deep generative models have been applied in ECP model-
ing. For instance, [10] utilized a diffusion model for high-resolution,
1-minute level ECP modeling. Additionally, [7,33] employed condi-
tional generative models to generate ECP data under varying weather
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Fig. 2. Our proposed method begins with 6, as the initial parameter of the
GMNMs. Let 6, be the optimal parameter for the target domain (or the estimated
parameter assuming a complete ECP dataset in the target domain). After
applying the z-step EM algorithm on limited target-domain data, we obtain
the estimated parameters 6,. If the GMMs converge on this limited data, we
achieve §,. Our method uses a Transformer to predict er such that 6, = ér+9,.

conditions and customer characteristics. In [34], a GAN-based model
is introduced to generate synthetic labeled load data, where labels
refer to corresponding appliance usage patterns. The generated data
closely resembled real-world labeled datasets and was effective for
downstream model training. Furthermore, work in [35] proposes a
hybrid VAE-GAN model to produce additional ECP data for smart home
energy management systems, demonstrating improved data fidelity and
utility.

However, we observe that current top-down ECP modeling methods
typically assume sufficient target domain data is available (i.e., assum-
ing sufficient training data for training a DL-based generative model).
In practice, however, scenarios with limited source data are common
in both industry and research, yet they are often overlooked in existing
studies. In other research domains, data generation under limited data
availability has recently become an active topic. For example, privacy-
preserving data generation aims to improve data utility when only
a small set of real samples is accessible, while ensuring that private
information cannot be reconstructed [36], and a variety of generative
approaches have been developed to address a similar challenge [37-
39]. In the energy sector, particularly for residential customers, data
are often sensitive and difficult to obtain due to privacy regulations and
metering limitations. Within this context, ECP modeling in data-scarce
scenarios remains an underexplored research problem in energy sector.
The method proposed in this paper provides an effective solution for
ECP modeling under data-scarce conditions, where current data-driven
methods remain unexplored.

2.2. Few-shot learning

Standard FSL focuses on learning a discriminative classifier for
tasks such as classification and detection [15,40-43]. For example,
in [44], few-shot classification is performed by measuring the sim-
ilarity between query samples and support samples through multi-
branch semantic alignment of their spatial feature maps. The work
in [45] introduces a semantic-guided augmentation technique that
leverages pretrained generative models to produce class-preserving
variant data, this approach yields improved end-task classification
performance by injecting realistic, semantically relevant diversity into
scarce datasets. Similarly, work in [46] propose an unsupervised few-
shot representation learning framework that jointly enforces geomet-
ric invariance and pairwise consistency. By combining rotation-based
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self-supervision with contrastive learning, their method yields more
discriminative and generalizable embeddings for downstream few-shot
classification.

ECP modeling, which involves modeling the distribution of ECP
data, is essentially an FSL generation task [23], and it has been ex-
tensively studied for data applications based on images, audio, and
text [16,21,47,48]. A typical FSL method usually involves pre-training
in the source domain and fine-tuning in the target domain [49]. This
procedure can easily lead to overfitting in the target domain during
fine-tuning. To address this, [50] proposed an elastic weight con-
solidation in the loss function to prevent overfitting. Similarly, [17]
introduced a cross-domain correspondence mechanism to improve the
diversity of model outputs and reduce overfitting. The work in [51]
proposed a method to adaptively preserve the knowledge learned in
the source domain, considering the target domain.

In addition to mitigating overfitting, a key challenge in FSL is how
to effectively extract meaningful information from a limited number of
target-domain samples. To address this, work in [52] proposed the Few-
Gen framework, which emphasizes label-discriminative representations
during the tuning process. This approach enables more efficient learn-
ing from limited samples when fine-tuning pretrained language models
(PLM). Beyond improving learning efficiency, another complementary
perspective is to enrich the information content available to the model.
The work in [53] introduced a retrieval-based FSL framework, where
similar samples from an external database are retrieved to augment the
target domain data. This augmentation provides additional context and
diversity, thereby enhancing the effectiveness of the fine-tuning process
of PLM. Moreover, in [54], the author demonstrates that applying
test-time training — where model parameters are temporarily updated
during inference using a loss function derived from in-context examples
— can significantly enhance the reasoning accuracy of PLM, achieving
improvements of up to 6x in certain cases.

Despite the prevalence of FSL data applications based on images,
audio, and other fields, its application to ECP modeling remains unex-
plored. Another significant challenge lies in the cumbersome nature of
pre-training and fine-tuning for the vast number of domains anticipated
in the energy sector. For instance, fine-tuning models individually for
thousands of households is impractical. Therefore, a more scalable FSL
method across domains for ECP modeling is required.

2.3. Mixture density network

The MDN framework uses a DL model to predict the parameters
(mixing weights, component means, and covariances) of a parame-
terized mixture distribution conditioned on inputs [18,55-57], and
MDNs for GMMs are typically trained by maximizing the conditional
log-likelihood [58]. Several recent works address practical MDN limi-
tations, for example, the work in [19] proposes a two-stage sampling-
and-fitting pipeline in which a sampling network generates diverse
hypotheses and a lightweight fitting network converts them into a
stable parametric mixture, mitigating model collapse and improving
likelihoods. The work in [59] shows that careful kernel design (a beta
kernel for normalized wind power) enforces bounded support and re-
duces boundary leakage. And the work in [60] extends MDNs to graph-
structured inputs by combining graph encoders with mixture-output
heads, yielding better likelihoods on stochastic epidemic simulations
and real-world regression tasks.

Despite these advances, integrating MDNs with FSL remains rela-
tively underexplored. In this paper, we bridge that gap by proposing an
MDN-inspired, Transformer-based estimator for GMM parameters that
is tailored to few-shot ECP modeling.
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the Transformer. The index represents the order of the flowchart.

3. Problem formulation
3.1. Preliminaries

In ECP modeling, a typical daily ECP sample consists of T discrete
time steps. For example, ECP data with a resolution of 60 min is
characterized by a T = 24 time step (one for each hour), making one
ECP sample a 24-dimensional point. Each dimension corresponds to a
specific value of active power consumption of a time step. In general,
the ECP dataset of kth domain (household) can be described as a

k _ gk y\NK _ k k \yNK
D = {x )L, = G xp OhLs

xf e R, €8]

where fo. is the active power consumption of ith ECP sample (day) and
kth domain at rth time step, x* = (x’]“‘., ,x;i) is the ith sample in kth
domain, N* is the number of samples (days) of kth domain. Therefore,
the ECP dataset from all domains can be expressed as

D={(D"}X . 2

where K is the number of domains (e.g., households).
3.2. Few-shot learning problem formulation

Assuming we have source domain collection S C D and target
domain collection 7 C D, where SN 7 = @. We aim to train a
Transformer f,, on S, where we have access to a moderate amount
of ECP data, denoted as N*s, for any k,-th domain in S. Our goal is
to generalize fj, to 7 to predict the parameters of GMMs with limited
access to the data. For example, we sample n* (n* is a number) ECP
samples from k,-th domain in 7" as input of f,,. We aim for the GMMs
with predicted parameters to represent the k,-th domain’s real ECP
distribution accurately.

4. Proposed FSL method

Standard FSL methods usually require two steps (1) pre-training,
which involves acquiring general knowledge, and (2) fine-tuning, which
involves acquiring domain-specific knowledge. Our proposed method
has similar processes but in reverse order. Fig. 2 shows the overall idea
of our method. Let 6, be the initial parameters of the GMMs, and 6, be
the optimal parameters of GMMs for a target domain (or the estimated
parameters of GMMs assuming having complete ECP dataset of this
domain). Our objective is to find the vector or in the parameter space
such that

0,=or+9,. 3

We write ¢ instead of 8 for simplicity. However, directly using a
Transformer to predict or can be difficult and unstable, as the distance
6, —6,|| in the parameter space of GMMs can be very large. To address
this issue, we propose an alternative method.
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Fig. 4. z-step EM algorithm (Within-domain Tuning) aims at learning target-
domain specific knowledge. x¥ is the input ECP samples of kth domain and
ith sample, in this process. J is the number of components of GMMs, each u
and X are the parameters of a Gaussian component in GMMs.

Algorithm 1 Within-domain Tuning of One Domain.

Require: Sampled ECP data {xf}:’: , C Dk, initial parameters 6,, fixed
weights w, iteration steps z.
1: Initialize § = 6,
2: fori=1to z do
3 E-step:
4: for j=1to J do
5 Compute the responsibility y;;:

_ Wjj\/‘(x,{C | 1 25
Z{:l w; J\/(X;C | pys X))

Vij

end for

M-step:

for j=1to J do
Update the mean p;:

k
_ Z?:l Vij X:C
==
Zf:l Yij

10: Update the covariance X :

© ®» N

J

nk k k T
s = Zi:l Yij(x,- - ﬂ/)(xi - I‘j)
J pr

X1

11: end for
12: end for

First, we perform the z-step EM algorithm on the target domain
data, which has a limited amount of data. Let 6, be the estimated
parameters of the GMMs after z-step EM as shown in Fig. 2. In this
process, we do not aim for the GMMs to converge on the target domain
data (reaching 6,), but instead, stop early to achieve an approximately
minimal ||er||. This step can be considered as fine-tuning in the target
domain, with early stopping to prevent overfitting. Second, we train a
Transformer encoder on the source domain to learn to predict ér. We
can then compute or by

or = oe + er. ()

In this process, ér represents the transferred knowledge from the source
domain, considering 6,, and oe captures the target-domain specific
knowledge. For convenience, we refer to the first process (z-step EM al-
gorithm) as Within-domain Tuning and the second process as Knowledge-
transfer Tuning.

Another intuition behind the design of Expression (4) is that con-
structing or through or = oe + ér is easier than directly predicting or
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Fig. 5. Knowledge-transfer Tuning process. Sampled ECP samples are fed into the encoder together with corresponding 6, to predict ér. d(-) represents the date
embedding, which indicates the day of the year for x;, and p(-) represents the parameter information, indicating which Gaussian component of the GMMs u and
o belong to. We use the [Pad] token to align the shapes of inputs with different amounts r*.

with a Transformer. Direct prediction implicitly requires the Trans-
former to approximate the entire EM process, which is a complex
iterative procedure. In contrast, by decomposing or into a residual
term, the Transformer only needs to model the part of the EM pro-
cess from oe to or, resulting in a simpler learning task. The ablation
results in Section 6.1 further show how this design leads to improved
performance.

Fig. 3 summarizes how Within-domain Tuning and Knowledge-
transfer Tuning function during both training and inference. During
training, we randomly sample a batch of source domains from S.
Next, from these source domains, we randomly sample a small number
of ECP samples from each domain. These ECP samples are used in
Within-domain Tuning to obtain the corresponding 6, for each domain.
Subsequently, the ECP samples and 6, are fed into the encoder to
predict the er. The encoder is updated based on the loss described
in Section 4.3. During inference, we follow the same procedure but
use domain data from 7 to predict §, without loss computation and
parameter updating for the Transformer.

In the following sections, we provide a detailed explanation of the
Within-domain Tuning and Knowledge-transfer Tuning processes.

4.1. Within-domain tuning

This section demonstrates how 6, is obtained by Within-domain
Tuning. As mentioned before, Within-domain Tuning is essentially the
z-step EM algorithm of GMM on a small number of ECP samples.

In our method, we set the weights w of GMMs components to be
fixed during the EM iteration, following the simple rule

1 2 J

) yeees s 5)
J . J . J .
Zj:l-l Zj:lj Zj:lj

J J o
Su=Y -2, ©
i i Z j=1 J
where J represents the number of components of GMMs. In this
context, fixing the w will not obviously affect the expressiveness of the
GMMs, as expressiveness remains consistent (or could be enhanced) as
the number of components increases [61]. A detailed ablation of this
design choice is presented in Section 6.3. We fix w because we find
that a Gaussian component’s mean and covariance matrix are highly
sensitive to its weights. Therefore, fixing the weights helps stabilize the
entire learning process. For a similar reason, we apply the same initial
parameters 6, throughout the learning process.
We also set each Gaussian component to be spherical, meaning the
covariance matrix can be expressed as X = diag(c), where ¢ is a vector.

This method aligns the shapes of x, x4 (mean vector), and o, as xf and
u have the shape 1 x T. By setting the Gaussian components to be
spherical, the covariance matrix can also be expressed as a 1 x T vector
o, allowing us to treat x, u, and o as 1 x T shaped tokens for the input
and output of the Transformer, as shown in Fig. 4. In Section 6.5, we
further analyze how the covariance design influences the performance
of our method. Algorithm 1 shows how each component’s ;4 and ¢ are
computed in Within-domain Tuning. Finally, We propose the following
empirical expression to determine z in ECP modeling

z = int (eﬁ"k ) , ™

where n* is the number of ECP samples used in Within-domain Tuning,
p is a parameter, which is the result of empirical testing in S, int(-)
means the integer part of a value.

4.2. Knowledge-transfer tuning

This section demonstrates how to use a Transformer to predict er.
We adopt the encoder part of the Transformer for our model. Fig. 5
illustrates how ér is obtained in the Knowledge-transfer Tuning process.

We use a [Pad]? token to align the shapes of inputs with varying
sizes n*. The encoder’s parameters are updated based on the loss
function explained in Section 4.3. d(-), shown in Fig. 5, represents the
date information, which indicates the day of the year for x;, while
p(-) represents the parameter information, indicating which Gaussian
component of the GMMs y and o belong to.

Regarding the design of the encoder, we use RMSNorm, and we
do not use Positional Encoding (PE). Considering a set of samples
from the kth domain and assuming an iid® condition, the order of the
samples does not affect the distribution and corresponding parameters
of the GMMs. For instance, if n* = 20, incorporating PE would result
in 20! ~ 2.43 x 10'® possible arrangements, significantly expanding
the input space. Omitting PE reduces these 20! cases to 1 case, thus
enabling a much more efficient learning process. This is the key reason
that motivates us to use the Transformer encoder instead of other DL
architectures.

2 A [Pad] token is a special token added to sequences to ensure uniform
input sizes when handling data of varying lengths. It aligns shorter sequences
by padding them, enabling batch processing, and is ignored by the model
during computation.

3 iid stands for “independent and identically distributed”, meaning samples
are independent and drawn from the same probability distribution.
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Table 1
Summary of datasets used in experiments.

Data type Resolution Amount of domains

ECP-60 min 60 min 17,505 domains (households)
ECP-30 min 30 min 20,737 domains (households)
ECP-15 min 15 min 820 domains (households)
Solar 15 min 73 domains (households)
Transformer-level 15 min 447 domains (substations)

4.3. Loss design

Since GMMs are a white-box model, we can directly compute
the negative log-likelihood based on the predicted parameters of the
GMMs. The loss is defined as the negative log-likelihood. The loss
function is given by

N J
log £(D* | 6,,w) == )" log (Z w; N&E | p;, diag(aj))> , ®)
i=1 j=1
where w; € w is the fixed weight of the jth Gaussian component, N is
the number of data points in the domain, J is the number of Gaussian
components, N (xf | uj.diag(c;)) is the Gaussian probability density
function for the jth component with y; and o, D is the complete
domain dataset.

5. Experiments
5.1. Experiment setting

5.1.1. Data

The data used in Section 5.2 consists of ECP data with 60-minute,
30-minute, and 15-minute resolution from individual households in
the UK, Australia, Germany, USA, and the Netherlands. The dataset
includes approximately 20 thousand households in total. Due to varying
household data lengths, we sample 250 days of ECP data from each
household to create a domain. This ensures that each domain has an
equal amount of ECP data. To fully utilize all available data, if a
household has significantly more than 250 days of data, we sample
multiple times, treating each sampled set as an individual domain. We
carefully split the data into training, testing, and validation sets with a
ratio of 0.8, 0.1, and 0.1, ensuring that the augmented domain remains
within the same set. The dataset used in Section 5.3 includes 15-minute
resolution data from two sources: transformer-level* ECP and solar gen-
eration profiles. The transformer-level dataset contains ECP profiles for
commercial, residential, and mixed-use buildings (all in transformer-
level), while the solar generation dataset provides generation profiles
from individual households. Following the same preprocessing strategy,
we sample 250 days of data from each source domain to create a con-
sistent domain structure. These datasets are also divided into training,
validation, and testing sets using the same 0.8/0.1/0.1 ratio. Table 1
summarizes the datasets used in this study.

5.1.2. Experiment design

As discussed in Section 2.2, applying standard FSL methods as a
benchmark in our task is challenging. Upon careful consideration, we
identified time-series imputation as the most closely related task to
our own [62-64]. There are two differences between standard time-
series imputation and our method (1) the amount of data available for
modeling in our task is significantly smaller, often less than 10% of
the complete dataset, and (2) while time-series imputation requires pre-
serving the temporal order of samples, our method prioritizes modeling

4 To avoid ambiguity between “transformers” in deep learning and in power
systems, we use transformer-level to refer specifically to transformers in the
power grid.
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the overall distribution of the samples, with their sequential order being
less relevant. Given that time-series imputation is the closest task to our
own, we aim to provide a clear comparison of the advantages of our
proposed methods by selecting TimesNet [62], a popular model for time
series imputation, as our baseline for experiments in Sections 5.2 and
5.3. Unlike standard data imputation tasks where the model has access
to 80% to 50% of the complete time points, in this task, we provide
both our model and TimesNet with only 1.6% to 10% of the complete
time points during training. Our primary objective is to model the
distribution of ECP data rather than to impute missing data. Therefore,
to make the comparison fair, we also adjust TimesNet in this research
by employing Maximum Mean Discrepancy (MMD), which is defined
in Appendix, as the loss function to train TimesNet instead of Mean
Squared Error (MSE) loss used in the original paper [62], MMD is a
loss function without considering the sequential order. We employed
TimesNet to impute missing data, subsequently dividing the imputed
time series into ECP samples to compare their distribution against the
domain’s complete dataset. Similarly, we generated ECP samples from
predicted GMMs using our method to evaluate distribution differences
relative to the domain’s complete data. Additionally, to more com-
prehensively demonstrate the advantages of our proposed method in
FSL-based ECP distribution modeling, we benchmark it against popular
conditional generative models such as VAE, Flow-based model, and
Diffusion model in Sections 5.4 and 5.5.

5.1.3. Evaluation methods

Regarding the evaluation metrics, we use MMD, Kullback-Leibler
(KL) divergence, Wasserstein distance (WD), MSE of the mean, and
Kolmogorov-Smirnov (KS) distance to evaluate the distribution differ-
ences, following the methodologies outlined in [8,10]. A smaller value
of these metrics indicates better performance. These evaluation metrics
are also described in Appendix.

5.1.4. Hyperparameters and training

For the main experiments (detailed in Sections 5.2 and 5.3), we
trained our model using an NVIDIA V100 and an NVIDIA A10 GPU.
For the training process, we utilize cyclical learning rates [63], with the
highest and lowest learning rates set to le — 3 and le — 5, respectively.
The batch size is 128. Both our model and TimesNet have a similar
parameter scale, approximately 4.5 million parameters. The number
of components of the GMMs, J, is set to 6. The f in Expression (7)
set to 0.015. For the source domain, N*s is 250, while for the target
domain, n* ranges from 1 to 24 for 60-minute resolution, 1 to 48
for 30-minute resolution, and 1 to 96 for 15-minute resolution. The
Within-domain Tuning, which follows Algorithm 1, is performed in batch
(i.e., in parallel) during training. The z-step is computed according to
the expression (7). More detailed experimental settings can be found in
our repository.

5.2. Results of residential Electricity Consumption Profiles

In this section, we present and discuss the experimental results of
our proposed method applied to data of residential ECP. Fig. 6 presents
part of the experimental results on 60-minute resolution ECP data,
evaluated across varying values of n*r—the number of shots or sampled
ECP instances provided as model input. From Fig. 6 we can observe
that our method effectively captures residential electricity consumption
behavior volatility and restores the ECP distribution with minimal input
samples in almost all examples. In contrast, TimesNet MSE struggles
with volatile time series patterns, primarily generating ECP samples
in high-likelihood areas. Although TimesNet with MMD outperforms
TimesNet with MSE in generating more volatile patterns, it occasionally
fails to accurately capture the ECP distribution. For example, as shown
in the first row of Fig. 6(a), TimesNet MMD generates ECPs with smaller
peaks. Similarly, in the sixth row of Fig. 6(d), it fails to reproduce the
consumption patterns.
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Fig. 6. In each subfigure, every row represents the experimental results for a specific target domain (hourly resolution). Each row, from left to right, includes
(1) the complete ECP data of the domain, (2) the sampled ECP data used as input for our model and two TimesNets, (3) the ECP data generated from GMMs
whose parameters are predicted by our method, (4) results generated by TimesNet using MSE loss, and (5) results generated by TimesNet using MMD loss. The
color of the curves is related to the daily total electricity consumption, more intense red indicates higher daily consumption. n* denotes the number of sampled

ECPs used for ECP distribution modeling.

Table 2 provides a more quantitative summary of the comparison
across 12 experimental scenarios. The results clearly demonstrate that
our method consistently achieves lower metric values than the baseline
approaches in all cases, with the sole exception being the 32-shot
setting at 30-minute resolution, where the sampled real ECP data
performs marginally better.

Fig. 7 shows the comparison results of n* range from 1 to 24 of
60-minute resolution datasets, where it can be seen that the estimated
distribution from our method is closer to the original distribution,
especially when the number of shots 1 < n* < 14, compared to the
sampled ECP data, TimesNet MMD and TimesNet MSE.

5.3. Results of solar and transformer-level profiles

In the previous experiment, we primarily evaluated our method
using residential ECP. In this section, we extend the evaluation to the
solar and transformer-level datasets.

Fig. 8 presents a subset of the generation results for the solar
dataset. It is evident that our proposed method outperforms TimesNet
with MMD. TimesNet with MMD demonstrates inferior performance in
Fig. 8, which may be attributed to the difficulty of optimizing MMD
in high-dimensional settings. Although TimesNet with MSE appears to
generate more realistic solar profiles visually, it still fails to accurately
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MMD Comparison Results Table 2
1.0 sampled ECP Data Results of evaluation metrics of residential ECP.
Our Method Method MMD KL KS WD MSE.M

—+— TimesNet_MSE

>
|9
% 0.8 4-shot (60-minute resolution)
S —— TimesNet_ MMD Ny
o Sampled ECP 0.2434 0.9812 0.4244 0.4092 0.0392
3 0.6 0.10 TimesNet MSE 0.4938 13.419 0.4307 0.3544 0.0716
a 2t \ TimesNet MMD 0.0868 1.527 0.1912 0.3299 0.0337
% 0.05 \\ Our Method 0.0222 0.4177 0.1499 0.1530 0.0171
) \
s 05 \‘ 8-shot (60-minute resolution)
E 0.00 21015 20 24 Sampled ECP 0.1196 0.7277 0.3044 0.2999 0.0192
g 0.2 ‘\\ TimesNet MSE 0.6008 13.613 0.4241 0.3639 0.0316
é k| TimesNet MMD 0.0854 1.4935 0.1888 0.3267 0.0332
= 00 ey Our Method 0.0154  0.3535 01370  0.1330  0.0099
1 5 10 15 20 24 16-shot (60-minute resolution)
Number of Shot [-] Sampled ECP 0.0579 0.4885 0.2353 0.2084 0.0096
TimesNet MSE 0.6656 14.579 0.4366 0.3817 0.0255
Fig. 7. Comparison of MMD values in 60-minute resolution datasets. For each TimesNet MMD 0.0809 1.4251 0.1893 0.3228 0.0315
shot, we sample 100 target domains from 7 and compute the average MMD Our Method 0.0126 0.3496 0.1315 0.1272 0.0062

k!
values of n* (number of shots) from 1 to 24. 24-shot (60-minute resolution)

Sampled ECP 0.0371 0.3935 0.1985 0.1666 0.0058

TimesNet MSE 0.6960 15.332 0.4496 0.3942 0.0246
capture the underlying distribution of the original data based on the TimesNet MMD 0.0780 1.3695 0.1876 0.3194 0.0303
quantitative comparison of all methods in Table 3. Our Method 0.0116 0.3358 0.1253 0.1217 0.0046

Fig. 9 presents representative generation results for four types of 4-shot (30-minute resolution)

transformer-level ECP datasets: residential without photovoltaic (PV), Sampled ECP 0.1246 1.2658 0.4040 0.1460 0.0030
residential mixed with commercial, commercial, and residential with TimesNet MSE 0.2995 1.4999 0.3120 0.2191 0.0130
PV. As shown in Fig. 9, TimesNet struggles to replicate the original gz':i;l\:zol;ﬂMD g:gi?; g:iis;z g:i‘;ﬁ) 8:(1)3711 g:g(())ii

data distribution; specifically, TimesNet with MMD produces overly
volatile profiles, while TimesNet with MSE yields less dynamic yet
still unrealistic patterns. In contrast, our proposed method exhibits Sampled ECP 0.0570 0.8109 0.3987 0.1318 0.0014

. bust d istentl t listi 1 TimesNet MSE 0.2992 1.5017 0.3080 0.2125 0.0131
superior robustness and consistently generates realistic samples across TimesNet MMD 0.0890 0.4949 0.2279 0.0926 0.0052

all scenarios. Our Method 0.0367 0.3540 0.1776 0.0746 0.0007
From Table 3, we observe that although our method consistently

outperforms the TimesNets on both solar and transformer-level datasets,

8-shot (30-minute resolution)

16-shot (30-minute resolution)

. Sampled ECP 0.0324 0.6685 0.3036 0.1004 0.0008
the performance gap between our method and the sampled ECP is less TimesNet MSE 0.3003 1.4285 0.3088 0.2103 0.0131
significant, particularly in the solar dataset. We think this could be TimesNet MMD 0.0817 0.4887 0.2312 0.0943 0.0048
attributed to the limited availability of source domain data for these Our Method 0.0317 0.3957 0.1880 0.0779 0.0008
experiments (as summarized in Table 1). For residential ECP, the train- 32-shot (30-minute resolution)
ing set includes close to one thousand to tens of thousands of source Sampled ECP 0.0238 0.4811 0.2000 0.0721 0.0008
domain samples, allowing the model to be fully trained (especially TimesNet MSE 0.3021 1.4789 0.3112 0.2118 0.0132
for a data-hungry knowledge-transfer Tuning component). In contrast, TimesNet MMD 0.0757 0.5588 0.2352 0.0908 0.0046
the solar and transformer-level datasets contain only several dozen or Our Method 0.0284 03545 0.2002 0.0747 0.0006
a few hundred source domain samples, which may limit the model’s 4-shot (15-minute resolution)
genera]ization capability, Sampled ECP 0.2646 0.2871 0.2477 0.1145 0.0269
TimesNet MSE 0.5603 0.3700 0.3884 0.1285 0.0305
5.4. Comparison with conditional generative models EﬁzlzzoyMD g:‘z;;gls ‘1).32'?‘;(;7 g';:ii(; g%ii 822371&;

. . . s 8-shot (15-minute resolution)
In this section, we compare our proposed method with a conditional

VAE (CVAE), Flow-based model (CFlow) [7], and Diffusion model (CD- Sampled ECP 0.1394 0.2381 0.1920 0.0918 0.0089

. ] . ;i ; TimesNet MSE 0.5743 0.3111 0.3631 0.1267 0.0306
DPM) [10,65] using the 15-minute resolution residential ECP dataset TimesNet MMD 0.2089 13.9127 0.4351 0.3747 0.0085
described in Table 1. To ensure consistent experimental settings, we Our Method 0.0208 0.1730 0.1920 0.0992 0.0015

train four separate CVAE models conditioned on 4, 8, 16, and 32
ECP samples, respectively. Each conditional deep generative model is

16-shot (15-minute resolution)

Sampled ECP 0.0751 0.1859 0.1441 0.0692 0.0045
trained to generate a complete ECP dataset of the target domain. TimesNet MSE 0.6201 0.3129 0.2960 0.1323 0.0301
Table 4 presents a summary of evaluation metrics. As shown, our TimesNet MMD 0.1437 15.6473 0.4280 0.3869 0.0083
proposed method outperforms the other generative models across all Our Method 0.0205 0.1232 0.1340 0.0634 0.0016
metrics. Fig. 10 provides a qualitative comparison between the gener- 32-shot (15-minute resolution)
ation outputs of the methods. It can be observed that conditional deep Sampled ECP 0.0444 0.1760 0.1378 0.0561 0.0023
generative models exhibit similar behavior to TimesNet with MSE, often TimesNet MSE 0.6451 0.3879 0.3082 0.1406 0.0158
failing to capture volatile patterns in the time series. Instead, it tends TimesNet MMD 0.1342 15.2995 0.4183 0.4013 0.0130
Our Method 0.0201 0.1227 0.1237 0.0515 0.0015

to generate samples concentrated in high-probability regions.

In this experiment, we want to demonstrate two fundamental weak-
nesses of CVAE, CFlow, CDDPM or other standard conditional genera-
tive frameworks for the proposed generation task in this paper:

with input of shape 4 x 96) cannot generalize to a different

- Fixed-format conditioning: A conditional deep generative model, number of input samples (e.g., 8-shot) without retraining a new
for example CVAE, trained on a fixed input shape (e.g., 4-shot model. This restricts flexibility and reusability.
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Fig. 8. Similar to Fig. 6, in each subfigure, every row represents the experimental results for a specific target domain of solar generation profile data (15-minute
resolution). Each row, from left to right, shows: (1) the complete solar profile of the domain, (2) the sampled profiles used as input for our method and both
TimesNet models, (3) the profiles generated from GMMs with parameters predicted by our method, (4) TimesNet results trained with MSE loss, and (5) TimesNet
results trained with MMD loss. Curve color indicates total daily solar generation, where more intense red represents higher output. n* denotes the number of

sampled profiles used for distribution modeling.
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Fig. 9. Similar to Fig. 6, in each subfigure, every row represents the experimental results for a specific target domain of transformer-level ECP data (15-minute
resolution). In each subfigure, Row 1 shows transformer-level residential ECP without PV, Row 2 shows transformer-level residential mixed with commercial ECP,
Row 3 shows transformer-level commercial ECP, and Row 4 shows transformer-level residential ECP with PV. Each row compares the results of our method with
the benchmark models. Curve color reflects the total daily electricity consumption, where more intense red indicates higher consumption. n* denotes the number

of sampled profiles used for distribution modeling.

» Order sensitivity: The condition input is usually treated as a
matrix or tensor, meaning different permutations of the same set
of input samples result in different conditions. We conceptually
show the permutation cases of input tensors/matrixs in Fig. 11.
For instance, with 32 ECP samples (32-shot), there are 32! =~
8.2x 1033 possible orderings, all representing essentially the same

information. Learning under such redundancy adds significant
complexity and degrades performance.

As illustrated in Fig. 11, our method avoids these pitfalls by de-
sign. In the Within-domain Tuning stage, our method resembles an
EM algorithm, which is inherently order-invariant. Furthermore, in the
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Fig. 10. The generated results from our proposed method, CVAE, CFlow, and CDDPM. Each subfigure presents the experimental results of two target domains.
For fair comparison, we use the same input conditions and the model trained in Section 5.2. Similar to Fig. 6, curve color reflects the total daily electricity
consumption, where more intense red indicates higher demand. n* denotes the number of sampled profiles used for distribution modeling.
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Fig. 11. Illustration of order sensitivity in CVAE. Although the two input sets
contain the same ECP samples in different orders (Condition 1 vs. Condition
2), CVAE treats them as entirely different conditions. In contrast, our method
is order-invariant, interpreting all permutations of the same samples as a single
condition and producing consistent generations.

Knowledge-transfer Tuning stage (see Section 4.2), we explicitly remove
PE from the transformer to make the model order-invariant. As a result
of this design, in the case of 32-shot generation, where a conventional
conditional model must account for up to 32! ~ 8.2 x 10°* possible
orderings of the conditioning set, our method reduces this to 1 set.

In real-world scenarios, there is no explicit indexing of samples
(e.g., ECP sample 1, ECP sample 2) as depicted in Fig. 11. Instead,
each ECP sample i can be understood as representing a particular type
or pattern of electricity consumption. The ordering of these patterns
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introduces redundant information when used as conditions in a deep
generative model framework (while these different patterns are from
one domain). Our architectural choice ensures that our model gener-
alizes well regardless of the number or order of conditional samples,
which explains its superior performance compared to deep generative
models as benchmarks.

5.5. Comparison with classical fine-tuning

In this section, we compare our method with a classical fine-tuning
approach, in which a generative model is first trained on the source
domains and then fine-tuned on one target domain dataset [17,49,50].
For this experiment, we use an 8-shot CVAE model (as described in
Section 5.4, using 8 ECP samples as condition), fine-tuned using a small
learning rate (Ir = 0.00005). The 15-minute resolution ECP dataset is
used, and the experiment is conducted using an NVIDIA A10 GPU.

Fig. 12 illustrates how the generated ECPs evolve throughout the
fine-tuning process, gradually aligning with the distribution of the
original data. Fig. 13 shows how the MMD loss decreases over training
steps and elapsed time. Notably, although the CVAE surpasses our
method in performance after approximately 92 s of fine-tuning, our
method reaches an equivalent MMD of 0.0198 in only 0.021 s.

It is important to note that in this experiment, the batch size for our
method is set to 1. In practice, however, our approach can easily lever-
age larger batch sizes for parallel processing. In contrast, parallelizing
fine-tuning across thousands of domains (i.e., thousands of DL-based
generative models need to be trained and stored) is significantly more
complex and even impractical.

This result supports the argument made in Section 1 that one
of the key contributions of our proposed method is its efficiency.
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Fig. 12. The generation results of a CVAE model fine-tuned for a specific target domain. From left to right, it displays the original ECP data followed by the

CVAE-generated outputs after 0, 500, 1000, and 3000 fine-tuning steps.

Table 3
Results of evaluation metrics of solar and transformer data.
Method MMD KL KS WD MSE.M
4-shot (Solar)
Sampled ECP 0.1529 1.3643 0.5253 0.1180 0.0033
TimesNet MSE 0.5086 2.4618 0.6487 0.5039 0.0013
TimesNet MMD 0.4623 3.3739 0.7329 0.5806 0.0013
Our Method 0.0248 2.1398 0.3101 0.3930 0.0007
8-shot (Solar)
Sampled ECP 0.0722 0.9049 0.4161 0.0746 0.0012
TimesNet MSE 0.5311 2.1840 0.6188 0.5227 0.0013
TimesNet MMD 0.4719 3.5722 0.7270 0.5869 0.0013
Our Method 0.0241 1.7944 0.3119 0.3926 0.0006
16-shot (Solar)
Sampled ECP 0.0357 0.3924 0.308 0.0468 0.0008
TimesNet MSE 0.5318 2.1867 0.6157 0.5219 0.0013
TimesNet MMD 0.4592 3.4792 0.7193 0.5886 0.0013
Our Method 0.0237 1.6541 0.3127 0.3851 0.0006
32-shot (Solar)
Sampled ECP 0.0232 0.2931 0.1995 0.0314 0.0003
TimesNet MSE 0.5319 2.1879 0.6160 0.5183 0.0012
TimesNet MMD 0.4613 3.4200 0.7140 0.5942 0.0013
Our Method 0.0229 1.2608 0.3136 0.3746 0.0003
4-shot (Transformer-level)
Sampled ECP 0.2458 0.7612 0.2660 7.4889 0.0868
TimesNet MSE 0.5142 4.9043 0.3650 10.7955 0.2863
TimesNet MMD 0.1723 4.1651 0.2992 15.3859 0.0434
Our Method 0.0668 0.6101 0.1504 7.0274 0.0481
8-shot (Transformer-level)
Sampled ECP 0.1178 0.5991 0.2142 2.5204 0.0268
TimesNet MSE 0.5198 4.9047 0.3653 10.8114 0.2866
TimesNet MMD 0.1333 4.2887 0.2836 16.1775 0.0255
Our Method 0.0493 0.5210 0.1045 5.1290 0.0109
16-shot (transformer-level)
Sampled ECP 0.0584 0.5307 0.1112 3.2449 0.0079
TimesNet MSE 0.5188 4.9072 0.3656 10.8218 0.2857
TimesNet MMD 0.1289 4.0919 0.3171 16.4256 0.0304
Our Method 0.0402 0.5101 0.0556 2.2257 0.0018
32-shot (Transformer-level)
Sampled ECP 0.0272 0.4918 0.0527 1.4543 0.0042
TimesNet MSE 0.5184 4.9146 0.3666 10.9160 0.1288
TimesNet MMD 0.1224 4.3801 0.4293 22.7491 0.0361
Our Method 0.0398 0.4998 0.0479 2.1282 0.0015

By replacing conventional fine-tuning with batch EM, our framework
enables straightforward parallel learning of domain-specific knowledge
using PyTorch, making it a more practical and scalable solution in
multi-domain settings.

5.6. Interpretability analysis

In this section, we analyze how our method models the ECP of a
target domain, focusing on the Knowledge-transfer Tuning. Our goal is to
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Table 4
Evaluation metrics for CVAE vs. Our method vs. DDPM/Flow on 15-minute
resolution residential ECP.

Method MMD KL KS WD MSE.M
4-shot
CVAE 0.2868 0.3414 0.2441 0.2618 0.0761
Our Method 0.0238 0.2132 0.2145 0.1077 0.0019
CDDPM 0.1760 0.2911 0.4106 0.5484 0.0567
CFlow 0.4949 0.3684 0.2566 0.3906 0.0714
8-shot
CVAE 0.4089 0.3222 0.2888 0.2337 0.0528
Our Method 0.0208 0.1730 0.1920 0.0992 0.0015
CDDPM 0.1234 0.3048 0.3319 0.3680 0.0607
CFlow 0.8356 0.3772 0.6516 0.5345 0.0675
16-shot
CVAE 0.2443 0.3132 0.2071 0.2514 0.0809
Our Method 0.0205 0.1232 0.1340 0.0634 0.0016
CDDPM 0.0905 0.2883 0.3358 0.5902 0.0783
CFlow 0.4427 0.3635 0.4147 0.7274 0.0930
32-shot
CVAE 0.3167 0.3078 0.2330 0.2809 0.0740
Our Method 0.0201 0.1227 0.1237 0.0515 0.0015
CDDPM 0.1539 0.2956 0.3477 0.5230 0.0578
CFlow 0.4522 0.3719 0.2145 0.3033 0.0650
MMD
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Fig. 13. MMD over training time during fine-tuning. The orange curve shows
the evolution of the MMD as training progresses for CVAE. The x-axis indicates
both the training step and the corresponding training time. A dashed horizontal
line marks the MMD value of 0.0198 for reference. The red point and
annotation highlight the performance of Our Method, which achieves an MMD
of 0.0198 at just 0.021 s.

quantitatively and empirically assess its contribution to predicting the
vector er. While Within-domain Tuning is an interpretable EM algorithm
for GMMs, Knowledge-transfer Tuning acts as a black-box. We therefore
focus on understanding its role and impact on the method’s behavior.

Inspired by interpretability tools such as attention maps [66] and
feature importance measures [67], we measure the influence of each
individual input ECP sample on the output of Knowledge-transfer Tuning
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Fig. 15. Visualization of the interpretability experiment measuring |AL| for individual ECP samples. As depicted in Fig. 14, we sample six ECP samples and
mask one of them to compute |AL| (or |4] for simplicity). The heatmap on the left shows the change in |A£| when masking each sample, with higher values
indicating greater influence on the model output. The second and third columns display the specific ECP samples with the smallest and largest |AL|, respectively.
The rightmost column shows all sampled ECPs colored by their corresponding |AL]| in the heatmap.

using a similar way. Concretely, for each ECP sample in the input, we
mask it out, recompute the negative log-likelihood £ (using Eq. (8)),
and record the change

|AL| = 9

This |AL| (or |4| for simplification in Fig. 15) quantifies how
strongly each sample affects predicting the vector ¢, as a larger |AL|
indicating a larger effect of the sample on predicting the er. Fig. 14
illustrates the procedure for computing AL in our experiments.

We use the 60-minute resolution ECP dataset, as described in Table
1, for this experiment. Fig. 15 reveals how the pattern of each sampled
ECP influences the overall modeling quality via |AL|. We observe that
when an individual ECP sample exhibits a pattern that is substantially
different from the rest of the sampled set, its removal results in a
large difference in negative log-likelihood loss (i.e., high |AL]|). For
example, on the left side of Fig. 15, we present examples characterized
by relatively high variance in |AL|. In these cases, the ECP sample
associated with the largest |AL| typically deviates obviously from the
other samples, either in magnitude (e.g., exceptionally high or low
values) or temporal structure. Conversely, the right side of Fig. 15
shows cases with relatively low variance in |AL|. Here, even the sample
with the highest |AL| tends to exhibit a pattern similar to the remaining
samples, resulting in a smaller change in the |A£| when masked.

| Efull - Emasked [
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The analysis suggests that input ECP samples that are redundant
or similar to others have less impact on the model’s prediction, as
indicated by smaller changes in |AL| when removed. In contrast, unique
or highly informative samples have a larger impact.

6. Ablation study
6.1. Within-domain tuning and knowledge-transfer tuning

In this section, we evaluate the effectiveness of Within-domain Tun-
ing and Knowledge-transfer Tuning on our method’s performance. To
assess Within-domain Tuning, we conducted an experiment omitting
this component, where the Transformer encoder alone predicted or,
followed by 8, = or + 6,. For Knowledge-transfer Tuning, we examined
the effect of excluding the encoder’s PE by training a model with tradi-
tional absolute PE in the encoder [22]. All ablation experiments were
conducted at a similar scale of parameters, using compact models with
approximately 35,000 parameters. Remarkably, our method proved to
be still effective even with this reduced model size.

Fig. 16 shows MMD values for n* ranging from 1 to 24 and 1 to
48, comparing performance with and without Within-domain Tuning at
hourly and half-hourly resolutions. The results indicate performance
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Fig. 17. Comparison of without and with PE.

degradation without Within-domain Tuning, likely due to the substantial
parameter-space distance ||, — 6, | in GMMs, as discussed in Section 4.

Similarly, Fig. 17 displays MMD values across shot counts, com-
paring models with and without PE. The comparison shows that PE
introduces noise, reducing model accuracy. As noted in Section 4.2,
each ECP sample is treated as an independent, identical token in GMMs,
and PE disrupts this independence, thus hurting performance.

6.2. Quantifying the contribution of within-domain tuning and knowledge-
transfer tuning

In the previous section, we demonstrated how Within-domain Tuning
and Knowledge-transfer Tuning each improve the final result, but we
have not yet provided a quantitative evaluation of their respective
contributions to the loss in Eq. (8). Inspired by Shapley values from
game theory [68-70], we treat Within-domain Tuning (player 1) and
Knowledge-transfer Tuning (player 2) as two “players” in a collaborative
game. Let v(.S) denote the log-likelihood when only the set of players
S C {1,2} is applied. The Shapley value ¢; for each player i is then

S-S -D!
o= 3 %[ms U i) - v(S). ao
SC{L2]\ (i)
Since there are only two players, this simplifies to
@) = %[v({l})—v(ﬂ)]+%[u({1,2})—v({2})], an
@ = 2{o(2) - v@)] + 2 [0({1.2}) - 0({1D)]. 12)

Where, v({1,2}) is the full model value including both tuning stages,
v({1}) (resp. v({2})) is the loss using only Within-domain Tuning (resp.
Knowledge-transfer Tuning), and v(f) is the loss with neither component,
We follow common practice in Shapley value estimation and assume
v(@) = 0 in computation. The values ¢, and ¢, thus quantify the average
marginal contribution of each tuning stage to the final log-likelihood.
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In practice, evaluating all coalitions is trivial for two players, but
we may wish to average contributions over many target domains. We
therefore approximate the empirical Shapley value [71] by sampling
M random coalitions SV, ..., M) C (1,2} \ {i} across domains and
computing

%i[v(S('") U i) - o(s™)].

We use the transformer-level dataset (described in Table 1) for
the experiments in this section. Specifically, we sample M = 2,000
coalitions® from the target domains to compute the empirical Shapley
values.

Table 5 presents the results. A higher Shapley value indicates a
greater contribution of the corresponding player to the overall model
performance. Interestingly, we observe that as the number of shots
(i.e., sampled ECPs) increases, the contribution of Within-domain Tuning
(¢,) also increases. In parallel, the full model value (v({1,2})) improves
as well. This trend may suggest that the effectiveness of the EM al-
gorithm, which is essentially the Within-domain Tuning, improves with
more available data, thereby yielding greater contribution to the final
estimation.

a[ = (13)

6.3. Affects of the number of Gaussian components

In the previous sections, we primarily evaluated the impact of
Within-domain Tuning and Knowledge-transfer Tuning on the perfor-
mance of our proposed method. In this section, we shift our focus to

5 Note: a coalition refers to a subset of players (not domains) under a
specific game environment (sampled data from the domain), thus, a single
domain can be used multiple times for sampling coalitions.
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Table 5 Table 6
Empirical Shapley value by number of shots. Evaluation metrics for GMM with different weight settings.
Number of Shots @, (Player 1) @, (Player 2) v({1,2}) (Both) Method MMD KL KS WS MSE.M
4-shot 3.8329 58.9010 62.7339 4-shot
8-shot 13.0924 53.5519 66.6443 Fixed Weights 00742 06925 02124 84516  0.0703
16-shot 31.3918 36.0309 67.4227 Learnable Weight 00794  0.6255  0.2247  7.2000  0.0678
32-shot 36.4258 34.0081 70.4339 Random Weights 1 0.0870  0.7800  0.2311 8.4396  0.0808
Note: ¢,, ¢,, and v({1,2}) denote the Shapley (i.e., log-likelihood) value of Within- Random Weights 2 0.0719 0.7445 0.2286 7.6008 0.0654
domain Tuning, Knowledge-transfer Tuning, and their joint coalition, respectively. 8-shot
Fixed Weights 0.0665 0.6000 0.1580 6.3096 0.0450
a 0.09 4 Learnable Weight 0.0678 0.5815 0.1575 5.7924 0.0433
c T —e— 1 component Random Weights 1 0.0864 0.5770 0.1696 6.1044 0.0584
8 008 2 component Random Weights 2 0.0679 0.6280 0.1775 6.4868 0.0405
o —e— 4 component 16-shot
] 0.07 1 —e— 8 component
IR Fixed Weights 0.0516 0.5740 0.1002 3.2734 0.0164
o Learnable Weight 0.0475 0.5556 0.1180 3.2092 0.0109
= 0.06 1 Random Weights 1 0.0626 0.5715 0.1085 3.3307 0.0166
] Random Weights 2 0.0466 0.5673 0.0971 3.3450 0.0103
S 0.05 1
= 32-shot
S 0.04 Fixed Weights 0.0452 0.0519 0.0582 2.1822 0.0029
I Learnable Weight 0.0420 0.0522 0.6019 2.2137 0.0037
X 0.03 -+ ; + he Random Weights 1 0.0585 0.0538 0.6056 2.2086 0.0033
g 4 8 16 32 Random Weights 2 0.0564 0.0595 0.1637 2.2672 0.0028

Number of Shots [-]

Fig. 18. MMD values of the proposed method evaluated with 1, 2, 4, and 8
Gaussian components across 4, 8, 16, and 32 shots.

investigating how the number of Gaussian components in the GMM
affects the overall performance.

This experiment is conducted on the transformer-level dataset, as
described in Table 1. To ensure a fair comparison, we train models with
varying numbers of Gaussian components—specifically 1, 2, 4, and 8,
while maintaining approximately the same total number of parameters
(around 4.5 million). This allows us to isolate the effect of the number
of components on the model’s performance. For each configuration, we
sample across all target domains once and compute the average MMD
to evaluate performance.

Fig. 18 presents the MMD values for the proposed method across
different component settings and shot numbers (4, 8, 16, and 32). As
observed in Fig. 18, MMD decreases consistently with an increase in
both the number of Gaussian components and the number of shots. This
trend suggests that increasing the number of components enhances the
expressiveness of the GMMs, enabling it to capture more complex time-
series patterns and thereby improving the quality of the generated ECP
data.

6.4. Effects of Gaussian component weights

In Section 4.1, we manually fixed the Gaussian mixture weights
using Expression (5). However, the choice of mixture weights may
influence the generative performance of the model. In this section, we
investigate how different weight configurations affect the results.

The experiment is conducted on the transformer-level dataset de-
scribed in Table 1. To reduce computational cost, we train a series of
smaller models, each containing approximately 450 K parameters. Four
different weight settings are compared, (1) fixed weights determined
by Eq. (5), (2) learnable weights treated as trainable parameters of
the model, and (3) two configurations of randomly initialized fixed
weights.® The number of Gaussian components is fixed to 4 for all
experiments.

6 The two sets of random weights are initialized as {0.29,0.27,0.31,0.13}
and {0.09,0.27,0.41,0.23}, rounded to two decimal places.
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Table 6 reports the performance of different weight configurations.
From these results, we observe that under the same number of compo-
nents and the same ECP modeling context, the choice of weight setting
does not lead to substantial performance differences. Though, theoret-
ically, the learnable weight (weight setting two) should provide more
flexibility to the method. We think a possible explanation is similar to
the design of diffusion models [72], in which the noise-adding schedule
is typically fixed, and making it learnable does not consistently improve
generation quality. In our case, a slightly different weight assignment
may induce large changes in the mean and covariance of each Gaus-
sian component. Consequently, the additional flexibility of learnable
weights may be offset by the instability it introduces, which disrupts
the optimization of means and covariances during training.

6.5. Effects of covariance design

In Section 4.1, we assumed a diagonal covariance matrix for each
Gaussian component. While computationally efficient, this assumption
may restrict the expressiveness of the model. In this section, we investi-
gate whether introducing additional flexibility in covariance modeling
can improve generative performance.

Directly learning a full covariance matrix would lead to a large
number of trainable parameters and deviates significantly from our
initial model design. Instead, we introduce a structured and scalable
parameterization that allows us to control the degree of covariance
flexibility. In the original setting, we learn a vector ¢ and define the
covariance of each Gaussian component as * = diag(s). Here, we extend
this formulation by parameterizing the covariance using a low-rank
approximation [73] as

X=U"U +al, 14)

where ¥ € RT*T 4 > 0 is a small scalar, and U € R'**T with

representing a set of learned basis vectors. By increasing

Orank
the rank, we can gradually enhance the flexibility of the covariance

model without directly learning a full 7 x T matrix (which corresponds
to rank = T), thereby enabling finer—grained control and analysis of
covariance structure.

The experiment is conducted on the transformer-level dataset de-
scribed in Table 1. We train a series of models with different rank values
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Table 7
Evaluation metrics for GMM with different ranks.
Method MMD KL KS WD MSE.M
4-shot
Original Setting 0.0681 0.6335 0.1566 7.3467 0.0497
Rank 2 0.0957 0.6229 0.2864 8.6191 0.0611
Rank 3 0.1091 0.7148 0.3254 9.7281 0.0679
Rank 5 0.1101 0.7758 0.3092 10.6939 0.0695
Rank 10 0.1149 0.8070 0.3187 10.7284 0.0709
32-shot
Original Setting 0.0439 0.5886 0.1086 5.2426 0.0103
Rank 2 0.0664 0.6623 0.2070 6.2439 0.0303
Rank 3 0.0653 0.6546 0.2082 6.2404 0.0241
Rank 5 0.0692 0.7033 0.2687 6.5019 0.0321
Rank 10 0.0713 0.7203 0.2723 6.9416 0.0573

of approximately the same amount of paramters (around 1.8 million)
and test the 4-shot and 32-shot scenarios.

Table 7 presents the evaluation metrics for GMMs with different
covariance ranks. Interestingly, the original configuration (diagonal
covariance) consistently yields the best overall performance in both 4-
shot and 32-shot experiments. This result may seem counterintuitive
at first, as one might expect models with greater expressiveness to
better match the distribution. However, we attribute this outcome to
two main factors. First, the nature of the problem setting. The target
domain is data-limited, requiring the model to perform inference under
few-shot conditions. For example, in the 4-shot case, only 4 x 96 =
384 observed values are available at inference time. In contrast, a
GMM with k components requires predicting k£ x (96 + rank x 96)
parameters, meaning the parameter space expands with the covariance
rank. When the number of learnable parameters largely exceeds the
number of available observations, the model becomes more prone to
unstable. Second, challenges in Within-Domain Tuning. Similarly, the EM
algorithm must estimate a significantly larger number of parameters
with limited data, potentially decreasing the robustness of the Within-
Domain Tuning process. In such circumstances, a simpler covariance
structure — such as the diagonal form — provides better generalization,
particularly in the context of residential ECP modeling in this study.

7. Discussion

In Sections 5.2 and 5.3, we compare the proposed FSL method with
several benchmarks. We show that the proposed method has better
performance than other benchmarks. However, We observe that the
superiority of our method is much more pronounced in the experi-
ments of Section 5.2, whereas the improvements in Section 5.3 are
comparatively weaker. This discrepancy may be primarily explained
by the amount of source-domain knowledge that can be transferred.
In Section 5.2, the transformer is trained on thousands to tens of
thousands of source domains, enabling it to acquire rich and diverse
domain knowledge. In contrast, in Section 5.3, only a few hundred
source domains are available. Such a limited source-domain dataset
constrains the diversity of learned representations and thus leads to
a relatively smaller performance gain. A potential solution to this
limitation is to train a foundation model using external data sources,
thereby allowing the model to learn a broader spectrum of domain-
invariant patterns. For example, acquiring additional historical solar
datasets and pre-training the transformer on them may help extract
universal characteristics of solar generation, which can then be trans-
ferred effectively to the target domains. However, we think it is crucial
that the external datasets share common statistical patterns with the
target domains, otherwise, the transferred knowledge may be irrelevant
or even detrimental to the final performance due to negative transfer.

Additionally, in Section 5.2 and Fig. 7, we show that when a small
number of samples are available (e.g., n*r > 1), the MMD of the
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modeled ECP distribution is significantly closer to the ground truth than
the benchmarks (TimesNets). However, we did not explicitly explain
why the performance remains less effective when only a single sample
is available (i.e., n* = 1). We think this is because, under extreme
data scarcity, it becomes difficult for both steps — Within-domain Tuning
and Knowledge-transfer Tuning - to infer a representative pattern of
the target domain. Due to the high variability of residential ECP data,
a single daily profile can correspond to many different underlying
consumption behaviors. As discussed in Section 6.2 and illustrated in
Fig. 15, some ECP samples are more informative and distinguishable
than others, contributing more to the predicted GMM parameters.
When only one sample is available, the probability of observing such
an informative profile decreases, making it challenging for the model
to infer the underlying distribution accurately.

Moreover, In Section 6, we conduct a broad ablation study to exam-
ine the contribution of different components of the proposed method.
Regarding Within-domain Tuning (z-step EM), Fig. 16 shows a clear
performance gap between models with and without this refinement,
demonstrating its effectiveness. For Knowledge-transfer Tuning, Fig. 17
illustrates that adding PE can degrade performance as the number
of shots increases, since additional shots introduce more noisy PE
information into the learning process. For the number of Gaussian
components, Fig. 18 shows that increasing the number of components
consistently improves performance, indicating that the added expres-
siveness helps capture more complex ECP patterns. Regarding Gaussian
mixture weights, Table 6 compares fixed weights, randomly selected
fixed weights, and learnable weights. We observe no significant per-
formance difference across these settings. As discussed in Section 6.4,
this is likely because the additional flexibility of learnable weights
introduces instability, as a small perturbations in the weights can
result in large changes in the means and covariances of the Gaussian
components, offsetting any potential gain. Finally, we tested covariance
matrices with a increasing expressiveness by varying the rank in Eq.
(14). As shown in Table 7, higher-rank covariances do not outperform
the diagonal baseline. As discussed in Section 6.5, when the number of
learnable parameters becomes large relative to the available observa-
tions, both Knowledge-transfer Tuning and Within-domain Tuning become
less robust. In contrast, increasing the number of Gaussian components
does not harm stability, because each component remains an isotropic
Gaussian that can be reliably learned even under few-shot conditions.
Thus, we think increasing rank is a less stable approach than increasing
the number of mixture components, given the current data scale.

Finally, in Section 5.6, we present an interpretability analysis of the
proposed method. In Section 5.4, we compare the proposed method
with several conditional generative model benchmarks and demon-
strate its advantages in few-shot ECP generation by leveraging Trans-
former’s modeling ability and removing PE. In Section 5.5, we further
compare our method with fine-tuning baselines to show its efficiency
in terms of required time. As mentioned in Section 1, data scarcity
is widespread in energy systems due to metering errors and privacy
restrictions. The proposed method is therefore particularly beneficial
for consumption and generation profile modeling under limited data,
and can support a range of higher-level tasks. For example, the gener-
ated data can be used to train downstream deep learning models or to
support system-level analyzes. Moreover, given the rapid deployment of
IoT-based measurement infrastructures, our method has the potential to
be applied to other domains with similar data scarcity challenges, such
as water consumption, heat demand, or smart-building sensor data.

However, we note that although the current method sufficiently
meets the experimental requirements of the study, it remains con-
strained by certain assumptions, such as Gaussianity and the use of
fixed covariance structures. These assumptions may limit its perfor-
mance in domains that demand higher model expressiveness. Looking
forward, we believe that two challenges should be addressed simultane-
ously to further improve few-shot ECP modeling, (1) the development
of a more advanced domain knowledge transfer framework, potentially
in the form of a foundation model, and (2) the use of more expressive
distribution modeling techniques, such as copula-based representations,
to better capture complex statistical dependencies.
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8. Conclusion

In this paper, we proposed an FSL method for ECP modeling that
combines a Transformer encoder with Gaussian Mixture Models. We
evaluated the proposed method on five datasets: the 15-minute ECP
dataset, 30-minute ECP dataset, 60-minute ECP dataset, 15-minute
solar generation profile, and 15-minute transformer-level ECP dataset.
The results show that our method outperforms benchmark models such
as CVAE, CFLOW, CDDPM, and TimesNet in terms of distributional
metrics (MMD, KL, KS, WD, MSE.A), and can accurately estimate the
original ECP distribution using only a small portion of the dataset
(e.g., as little as 1.6% of the complete domain dataset).

Furthermore, we compared our method with a general DL-based
generative model and demonstrated that our proposed approach is
order-invariant, which contributes to its superior performance compared
to CVAE. We also showed that our method is significantly more effi-
cient than the classical fine-tuning mechanism. By replacing gradient
descent-based model training/tuning for the target domain with EM
in batch, our method achieved a speedup of thousands to potentially
more than thousands of times. As a result, the proposed method is highly
scalable and well-suited for applications involving thousands or even
millions of domains.

We also provided interpretability and ablation studies to analyze the
behavior of the framework. These results demonstrate how individual
ECP samples influence GMM parameter estimation, and show that the
effectiveness of Within-domain Tuning, removal of PE, and a lightweight
GMM structure forms a stable and effective design. Increasing the
number of Gaussian components improves expressiveness, whereas
increasing covariance rank offers no benefit under few-shot conditions.

Looking ahead, the framework’s Gaussian assumptions may limit its
expressiveness for highly skewed or heavy-tailed loads. Future work in-
cludes integrating more advanced distribution models such as copulas,
and exploring foundation-model-level pretraining to enhance transfer-
ability under extreme data scarcity. Beyond energy systems, the method
can also benefit other IoT domains with limited observations, such as
water usage, heat demand, and smart-building sensing.
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Appendix

Multi-Kernel Maximum Mean Discrepancy . The MMD, or specifi-
cally, Multi-Kernel MMD (MK-MMD), is defined as

ZZHXM

I#/ p=

ke, x)
i=1 j=

N P

T L A

i

where k, denotes the pth kernel function (Gaussian kernel), x; ~ O
are ECP samples drawn from the original dataset (target domain), and
x;. ~ G are ECP samples generated from the modeled GMMs. We use
an equal number of samples from both distributions, denoted as N. All
kernels are equally weighted in this formulation.

Kullback-Leibler Divergence (KL). For two probability densities p(x)
and ¢(x), the KL divergence is defined as

Do |l q>=/ (x)log("( ;) dx.

In practice, we approximate the integral empirically over samples from
p and q.

Wasserstein Distance (WD). Given distributions P and Q, the 1-
Wasserstein distance is

= inf X —y|ldz(x,y),
it /Rdedu yll dx(x.y)

where I1(P, Q) denotes all joint distributions with marginals P and Q.
In experiments, the distance is computed using empirical samples from
each distribution.

Kolmogorov-Smirnov Distance (KS). For empirical CDFs Fp(x) of real
samples and Fy(x) of generated samples,

MK-MMD?(Q, G) =
N(N

2
N2

(15)

=

N(N

(16)

W(P,Q) a7

Dys(P,Q) = sup|Fp(x) — Fy(x)|. 18)

MSE of Autocorrelation (MSE.A). Let R(Q) and R(G) denote the

empirical autocorrelation vectors computed from the original and gen-

erated datasets, respectively. The metric is defined as
1 . 2

MSE.A = > (R(0) - R(G))",

t=1
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where T is the maximum lag considered. A smaller value indicates that
the temporal correlation structure of the generated data better matches
the real data.
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