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 A B S T R A C T

Electricity Consumption Profiles (ECPs) are crucial for operating and planning power distribution systems, 
especially with the increasing number of low-carbon technologies such as solar panels and electric vehicles. 
Traditional ECP modeling methods typically assume the availability of sufficient ECP data. However, in 
practice, the accessibility of ECP data is limited due to privacy issues or the absence of metering devices. 
Few-shot learning (FSL) has emerged as a promising solution for ECP modeling in data-scarce scenarios. 
Nevertheless, standard FSL methods, such as those used for images, are unsuitable for ECP modeling because 
(1) these methods usually assume several source domains with sufficient data and several target domains. 
However, in the context of ECP modeling, there may be thousands of source domains, e.g., households with 
a moderate amount of data, and thousands of target domains, e.g., households that ECP are required to be 
modeled. (2) Standard FSL methods usually involve cumbersome knowledge transfer mechanisms, such as 
pre-training and fine-tuning. To address these limitations, this paper proposes a novel FSL framework that 
integrates Transformers with Gaussian Mixture Models (GMMs) for ECP modeling. The proposed approach is 
fine-tuning-free, computationally efficient, and robust even with extremely limited data. Results show that our 
method can accurately restore the complex ECP distribution with a minimal amount of ECP data (e.g., only 
1.6% of the complete domain dataset) and outperforms state-of-the-art time series modeling methods in the 
context of ECP modeling.
1. Introduction

Electricity Consumption Profiles (ECPs) refer to the daily (or other 
specified periods) time series data of electricity usage, reflecting the 
volatility of human energy consumption behavior. ECP modeling in-
volves understanding and modeling the complex distribution of ECP 
data. This modeling has significant applications in the energy sector. 
For instance, the modeled distribution of ECP for households or areas 
can be used to generate additional ECP data, aiding in electricity 
consumption prediction and load monitoring [1,2]. Understanding ECP 
distribution is also valuable for anomaly detection, risk analysis, energy 
supply, demand management, and energy system control [3–6]. With 
the prevalence of deep learning (DL), models such as generative adver-
sarial networks (GANs), variational autoencoders (VAEs), diffusion, and 
flow-based models are adopted for ECP distribution modeling [7–10]. 
However, these modeling approaches are relatively ’data-hungry’ and 
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usually assume sufficient ECP training data exists in the target domains 
(e.g., households that ECP are required to be modeled).

In practice, access to ECP data in the target domain is often re-
stricted due to several practical and regulatory constraints, including 
(1) metering infrastructure failures, such as malfunctions in smart me-
ters or SCADA systems, which result in missing or corrupted time-series 
data [11], (2) privacy regulations, which limit the granularity and du-
ration of data that Distribution System Operators (DSOs) are permitted 
to access—for instance, under Germany’s digitalization framework, 15-
minute resolution operational data is only retained for seven days to 
comply with privacy and data volume requirements [12,13], and (3) 
scarcity of original data, particularly in emerging applications or newly 
monitored regions, where historical ECP data is insufficient to train 
and validate data intensive models [14]. Therefore, an ECP modeling 
method that requires less data needs to be developed. In this paper, 
a domain refers to the ECP data collected from a terminal metering 
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Fig. 1. Modeling residential ECP distribution across many domains (households) using FSL. 𝐿𝑠 and 𝐿𝑡 are the numbers of source domains (i.e., households with 
considerable data available) and target domains (i.e., households with limited data available), respectively.
device (e.g., in a residential household or building) that has a unique 
electricity consumption pattern due to human behavior differences.

Few-shot learning (FSL) has emerged as a promising solution for 
ECP modeling in data-scarce scenarios. As demonstrated in [15], even 
with a limited number of samples, it is possible to calibrate distribu-
tions effectively for classification tasks. FSL has been widely applied 
in images and audio generation [16,17]. This enlightens us to consider 
applying FSL in ECP modeling within data-scarce scenarios. Neverthe-
less, unlike a standard FSL task in image generation, in which there are 
usually several source domains with sufficient data and several target 
domains, ECP modeling often involves thousands of source domains 
(e.g., households) with moderate amounts of data and thousands of 
target domains (e.g., households). Furthermore, DL-based FSL typically 
requires model fine-tuning, which can be difficult to do effectively 
across thousands of domains in tasks like ECP modeling. These chal-
lenges underscore the need for an FSL method specifically designed 
for ECP modeling, as standard FSL methods may not suffice. Fig.  1 
demonstrates the core idea of applying FSL for ECP modeling in this 
paper.

Gaussian Mixture Models (GMMs) are widely applied across various 
distribution modeling tasks, including ECP modeling [8]. The most 
common way to estimate the parameters of GMMs is the Expectation–
maximization (EM) algorithm. The advantages of GMMs include (1) 
they are lighter in computational complexity compared to DL models, 
(2) it is a white-box model, and (3) similar to DL models, GMMs can 
theoretically approximate any distribution by increasing the number 
of components. Despite GMMs’s advantages, GMMs as classical models 
seem isolated from FSL tasks. Moreover, some prior works have used 
DL model to predict mixture distribution parameters, which is called 
the Mixture Density Network (MDN), for flexible, conditional density 
estimation [18,19]. In this sense, combining the advantages of FSL, 
MDN, and GMMs can be seen as a promising idea. Recent work [20,21] 
has shown that it is possible to train a learner where one DL model is 
used to predict the parameters of another DL model. This inspires us to 
apply a DL model that can assist in the parameter estimation of GMMs 
with limited samples as inputs. Additionally, given the advantages 
of Transformers, such as their ability to capture dependencies and 
effectively knowledge transfer [22], we select the Transformer as our 
foundational DL architecture for GMM parameter estimation.

Inspired by the questions and insights described above, we propose 
a novel FSL method for ECP modeling. First, we propose a Transformer 
encoder architecture to acquire general knowledge from source do-
mains (e.g., households with considerable data available). Then, we 
leverage this encoder to assist in the parameter estimation of GMMs in 
the target domains (e.g., households with limited data available). We 
interpret the knowledge learned from the source and target domains 
as shifts in the mean and variance of the Gaussian components in 
GMMs. To the best of our limited knowledge, this is the first research to 
propose the FSL method for ECP distribution modeling in data-scarce 
scenarios across thousands of source and target domains.1 In summary, 
the contributions of this paper are

1 The code and data of this project are available in Personal Repository and 
TU Delft Repository.
2 
• From the ECP modeling perspective, we propose a novel method 
that requires significantly less data (e.g., less than 2% of the avail-
able dataset) to accurately model the complex ECP distribution. 
This method effectively addresses the challenges associated with 
ECP modeling in data-scarce scenarios.

• From the FSL perspective, we propose an efficient method for 
FSL tasks inspired by the MDN that combines a Transformer 
encoder architecture and GMMs. Compared with standard FSL, 
this method does not require fine-tuning in the target domain. To 
do this, we replace gradient descent-based models training/tuning 
with a significantly more efficient EM algorithm. As a result, the 
proposed method is suitable for applications in the energy sector 
and potentially extending to other Internet of Everything (IoE) 
applications that involve numerous source and target domains 
(terminal devices) [23].

2. Related work

2.1. Electricity consumption profile modeling

ECP modeling remains an active area of research in the energy 
domain, as accurate ECP models are vital for a wide range of ap-
plications, including load pattern calibration for distribution system 
reconfiguration [24–26], system operation optimization [27], system 
risk analysis [3], and other related tasks.

There are two primary approaches to modeling ECP datasets: the
bottom-up and top-down approaches. The bottom-up approach builds 
consumption models from individual components [28], such as specific 
appliances (e.g., televisions, refrigerators). While this method can yield 
high-fidelity results, it requires detailed contextual information, such 
as the number of occupants, appliance types, and usage patterns, 
which is often difficult to obtain or generalize. In contrast, the top-
down approach, which has gained greater popularity in both industry 
and research, leverages consumption data directly from smart meters 
(or similar metering devices) to develop data-driven models without 
considering the specific physical details. Most popular statistical or 
DL-based ECP modeling methods fall under the top-down category, as 
they rely solely on observed consumption patterns rather than detailed 
household-level features [29].

GMMs and Copula are widely used statistical methods for ECP mod-
eling. In [30], GMMs are employed to model system load, demonstrat-
ing that despite their computational efficiency, GMMs can accurately 
capture the underlying load distribution. Similarly, in [31], the authors 
show that the proposed t-Copula framework effectively models the 
statistical properties of smart meter measurement datasets, highlighting 
its versatility in representing complex consumption patterns.

With the advancement of DL, an increasing number of DL-based 
methods have been proposed for ECP modeling. Recent works [8,32] 
have shown that the DL models excel at capturing the temporal cor-
relations of ECP, which is crucial for planning the necessary future 
investment of flexible power distribution systems. With the prevalence 
of DL, many deep generative models have been applied in ECP model-
ing. For instance, [10] utilized a diffusion model for high-resolution, 
1-minute level ECP modeling. Additionally, [7,33] employed condi-
tional generative models to generate ECP data under varying weather 
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Fig. 2. Our proposed method begins with 𝜃𝑜 as the initial parameter of the 
GMMs. Let 𝜃𝑟 be the optimal parameter for the target domain (or the estimated 
parameter assuming a complete ECP dataset in the target domain). After 
applying the 𝑧-step EM algorithm on limited target-domain data, we obtain 
the estimated parameters 𝜃𝑒. If the GMMs converge on this limited data, we 
achieve 𝜃𝑝. Our method uses a Transformer to predict 𝑒𝑟 such that 𝜃𝑟 = 𝑒𝑟+𝜃𝑒.

conditions and customer characteristics. In [34], a GAN-based model 
is introduced to generate synthetic labeled load data, where labels 
refer to corresponding appliance usage patterns. The generated data 
closely resembled real-world labeled datasets and was effective for 
downstream model training. Furthermore, work in [35] proposes a 
hybrid VAE-GAN model to produce additional ECP data for smart home 
energy management systems, demonstrating improved data fidelity and 
utility.

However, we observe that current top-down ECP modeling methods 
typically assume sufficient target domain data is available (i.e., assum-
ing sufficient training data for training a DL-based generative model). 
In practice, however, scenarios with limited source data are common 
in both industry and research, yet they are often overlooked in existing 
studies. In other research domains, data generation under limited data 
availability has recently become an active topic. For example, privacy-
preserving data generation aims to improve data utility when only 
a small set of real samples is accessible, while ensuring that private 
information cannot be reconstructed [36], and a variety of generative 
approaches have been developed to address a similar challenge [37–
39]. In the energy sector, particularly for residential customers, data 
are often sensitive and difficult to obtain due to privacy regulations and 
metering limitations. Within this context, ECP modeling in data-scarce 
scenarios remains an underexplored research problem  in energy sector. 
The method proposed in this paper provides an effective solution for 
ECP modeling under data-scarce conditions, where current data-driven 
methods remain unexplored.

2.2. Few-shot learning

Standard FSL focuses on learning a discriminative classifier for 
tasks such as classification and detection [15,40–43]. For example, 
in [44], few-shot classification is performed by measuring the sim-
ilarity between query samples and support samples through multi-
branch semantic alignment of their spatial feature maps. The work 
in [45] introduces a semantic-guided augmentation technique that 
leverages pretrained generative models to produce class-preserving 
variant data, this approach yields improved end-task classification 
performance by injecting realistic, semantically relevant diversity into 
scarce datasets. Similarly, work in [46] propose an unsupervised few-
shot representation learning framework that jointly enforces geomet-
ric invariance and pairwise consistency. By combining rotation-based 
3 
self-supervision with contrastive learning, their method yields more 
discriminative and generalizable embeddings for downstream few-shot 
classification.

ECP modeling, which involves modeling the distribution of ECP 
data, is essentially an FSL generation task [23], and it has been ex-
tensively studied for data applications based on images, audio, and 
text [16,21,47,48]. A typical FSL method usually involves pre-training 
in the source domain and fine-tuning in the target domain [49]. This 
procedure can easily lead to overfitting in the target domain during 
fine-tuning. To address this, [50] proposed an elastic weight con-
solidation in the loss function to prevent overfitting. Similarly, [17] 
introduced a cross-domain correspondence mechanism to improve the 
diversity of model outputs and reduce overfitting. The work in [51] 
proposed a method to adaptively preserve the knowledge learned in 
the source domain, considering the target domain.

In addition to mitigating overfitting, a key challenge in FSL is how 
to effectively extract meaningful information from a limited number of 
target-domain samples. To address this, work in [52] proposed the Few-
Gen framework, which emphasizes label-discriminative representations 
during the tuning process. This approach enables more efficient learn-
ing from limited samples when fine-tuning pretrained language models 
(PLM). Beyond improving learning efficiency, another complementary 
perspective is to enrich the information content available to the model. 
The work in [53] introduced a retrieval-based FSL framework, where 
similar samples from an external database are retrieved to augment the 
target domain data. This augmentation provides additional context and 
diversity, thereby enhancing the effectiveness of the fine-tuning process 
of PLM. Moreover, in [54], the author demonstrates that applying 
test-time training – where model parameters are temporarily updated 
during inference using a loss function derived from in-context examples 
– can significantly enhance the reasoning accuracy of PLM, achieving 
improvements of up to 6× in certain cases.

Despite the prevalence of FSL data applications based on images, 
audio, and other fields, its application to ECP modeling remains unex-
plored. Another significant challenge lies in the cumbersome nature of 
pre-training and fine-tuning for the vast number of domains anticipated 
in the energy sector. For instance, fine-tuning models individually for 
thousands of households is impractical. Therefore, a more scalable FSL 
method across domains for ECP modeling is required.

2.3. Mixture density network

The MDN framework uses a DL model to predict the parameters 
(mixing weights, component means, and covariances) of a parame-
terized mixture distribution conditioned on inputs [18,55–57], and 
MDNs for GMMs are typically trained by maximizing the conditional 
log-likelihood [58]. Several recent works address practical MDN limi-
tations, for example, the work in [19] proposes a two-stage sampling-
and-fitting pipeline in which a sampling network generates diverse 
hypotheses and a lightweight fitting network converts them into a 
stable parametric mixture, mitigating model collapse and improving 
likelihoods. The work in [59] shows that careful kernel design (a beta 
kernel for normalized wind power) enforces bounded support and re-
duces boundary leakage. And the work in [60] extends MDNs to graph-
structured inputs by combining graph encoders with mixture-output 
heads, yielding better likelihoods on stochastic epidemic simulations 
and real-world regression tasks.

Despite these advances, integrating MDNs with FSL remains rela-
tively underexplored. In this paper, we bridge that gap by proposing an 
MDN-inspired, Transformer-based estimator for GMM parameters that 
is tailored to few-shot ECP modeling. 
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Fig. 3. Training/inference process of one domain. 𝜃𝑟 = {𝜇𝑗 , 𝛴𝑗}𝐽𝑗=1 represents 
the predicted parameters of GMMs, 𝐰 is the weights of components, 𝑙(⋅) is the 
loss function. In the training process, 𝑘 ∈ . In the inference process, 𝑘 ∈  , 
and only 𝜃̂𝑟 is predicted without loss computation and parameter updating for 
the Transformer. The index represents the order of the flowchart.

3. Problem formulation

3.1. Preliminaries

In ECP modeling, a typical daily ECP sample consists of 𝑇  discrete 
time steps. For example, ECP data with a resolution of 60 min is 
characterized by a 𝑇 = 24 time step (one for each hour), making one 
ECP sample a 24-dimensional point. Each dimension corresponds to a 
specific value of active power consumption of a time step. In general, 
the ECP dataset of 𝑘th domain (household) can be described as a 
𝑘 = {𝐱𝑘𝑖 }

𝑁𝑘

𝑖=1 = {(𝑥𝑘1,𝑖,… , 𝑥𝑘𝑇 ,𝑖)}
𝑁𝑘

𝑖=1, 𝐱𝑘𝑖 ∈ R1×𝑇 , (1)

where 𝑥𝑘𝑡,𝑖 is the active power consumption of 𝑖th ECP sample (day) and 
𝑘th domain at 𝑡th time step, 𝐱𝑘𝑖 = (𝑥𝑘1,𝑖,… , 𝑥𝑘𝑇 ,𝑖) is the 𝑖th sample in 𝑘th 
domain, 𝑁𝑘 is the number of samples (days) of 𝑘th domain. Therefore, 
the ECP dataset from all domains can be expressed as 
 = {𝑘}𝐾𝑘=1, (2)

where 𝐾 is the number of domains (e.g., households).

3.2. Few-shot learning problem formulation

Assuming we have source domain collection  ⊂  and target 
domain collection  ⊂ , where  ∩  = ∅. We aim to train a 
Transformer 𝑓𝜃1 on , where we have access to a moderate amount 
of ECP data, denoted as 𝑁𝑘𝑠 , for any 𝑘𝑠-th domain in . Our goal is 
to generalize 𝑓𝜃1 to   to predict the parameters of GMMs with limited 
access to the data. For example, we sample 𝑛𝑘𝑡  (𝑛𝑘𝑡  is a number) ECP 
samples from 𝑘𝑡-th domain in   as input of 𝑓𝜃1. We aim for the GMMs 
with predicted parameters to represent the 𝑘𝑡-th domain’s real ECP 
distribution accurately.

4. Proposed FSL method

Standard FSL methods usually require two steps (1) pre-training, 
which involves acquiring general knowledge, and (2) fine-tuning, which
involves acquiring domain-specific knowledge. Our proposed method 
has similar processes but in reverse order. Fig.  2 shows the overall idea 
of our method. Let 𝜃𝑜 be the initial parameters of the GMMs, and 𝜃𝑟 be 
the optimal parameters of GMMs for a target domain (or the estimated 
parameters of GMMs assuming having complete ECP dataset of this 
domain). Our objective is to find the vector 𝑜𝑟 in the parameter space 
such that 
𝜃𝑟 = 𝑜𝑟 + 𝜃𝑜. (3)

We write 𝜃 instead of 𝜃 for simplicity. However, directly using a 
Transformer to predict 𝑜𝑟 can be difficult and unstable, as the distance 
‖𝜃𝑜−𝜃𝑟‖ in the parameter space of GMMs can be very large. To address 
this issue, we propose an alternative method.
4 
Fig. 4. 𝑧-step EM algorithm (Within-domain Tuning) aims at learning target-
domain specific knowledge. 𝑥𝑘𝑖  is the input ECP samples of 𝑘th domain and 
𝑖th sample, in this process. 𝐽 is the number of components of GMMs, each 𝜇
and 𝛴 are the parameters of a Gaussian component in GMMs.

Algorithm 1 Within-domain Tuning of One Domain.
Require: Sampled ECP data {𝐱𝑘𝑖 }𝑛

𝑘

𝑖=1 ⊂ 𝑘, initial parameters 𝜃𝑜, fixed 
weights 𝐰, iteration steps 𝑧.

1: Initialize 𝜃 = 𝜃𝑜
2: for 𝑖 = 1 to 𝑧 do
3:  E-step:
4:  for 𝑗 = 1 to 𝐽 do
5:  Compute the responsibility 𝛾𝑖𝑗 :

𝛾𝑖𝑗 =
𝑤𝑗  (𝐱𝑘𝑖 ∣ 𝝁𝑗 ,𝜮𝑗 )

∑𝐽
𝑙=1 𝑤𝑙  (𝐱𝑘𝑖 ∣ 𝝁𝑙 ,𝜮𝑙)

6:  end for
7:  M-step:
8:  for 𝑗 = 1 to 𝐽 do
9:  Update the mean 𝝁𝑗 :

𝝁𝑗 =
∑𝑛𝑘

𝑖=1 𝛾𝑖𝑗 𝐱
𝑘
𝑖

∑𝑛𝑘
𝑖=1 𝛾𝑖𝑗

10:  Update the covariance 𝜮𝑗 :

𝜮𝑗 =
∑𝑛𝑘

𝑖=1 𝛾𝑖𝑗 (𝐱
𝑘
𝑖 − 𝝁𝑗 )(𝐱𝑘𝑖 − 𝝁𝑗 )⊤
∑𝑛𝑘

𝑖=1 𝛾𝑖𝑗
11:  end for
12: end for

First, we perform the 𝑧-step EM algorithm on the target domain 
data, which has a limited amount of data. Let 𝜃𝑒 be the estimated 
parameters of the GMMs after 𝑧-step EM as shown in Fig.  2. In this 
process, we do not aim for the GMMs to converge on the target domain 
data (reaching 𝜃𝑝), but instead, stop early to achieve an approximately 
minimal ‖𝑒𝑟‖. This step can be considered as fine-tuning in the target 
domain, with early stopping to prevent overfitting. Second, we train a 
Transformer encoder on the source domain to learn to predict 𝑒𝑟. We 
can then compute 𝑜𝑟 by 

𝑜𝑟 = 𝑜𝑒 + 𝑒𝑟. (4)

In this process, 𝑒𝑟 represents the transferred knowledge from the source 
domain, considering 𝜃𝑒, and 𝑜𝑒 captures the target-domain specific 
knowledge. For convenience, we refer to the first process (𝑧-step EM al-
gorithm) as Within-domain Tuning and the second process as Knowledge-
transfer Tuning.

Another intuition behind the design of Expression (4) is that con-
structing 𝑜𝑟 through 𝑜𝑟 = 𝑜𝑒 + 𝑒𝑟 is easier than directly predicting 𝑜𝑟
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Fig. 5.  Knowledge-transfer Tuning process. Sampled ECP samples are fed into the encoder together with corresponding 𝜃𝑒 to predict 𝑒𝑟. 𝑑(⋅) represents the date 
embedding, which indicates the day of the year for 𝑥𝑖, and 𝑝(⋅) represents the parameter information, indicating which Gaussian component of the GMMs 𝜇 and 
𝜎 belong to. We use the [Pad] token to align the shapes of inputs with different amounts 𝑛𝑘.
with a Transformer. Direct prediction implicitly requires the Trans-
former to approximate the entire EM process, which is a complex 
iterative procedure. In contrast, by decomposing 𝑜𝑟 into a residual 
term, the Transformer only needs to model the part of the EM pro-
cess from 𝑜𝑒 to 𝑜𝑟, resulting in a simpler learning task. The ablation 
results in Section 6.1 further show how this design leads to improved 
performance. 

Fig.  3 summarizes how Within-domain Tuning and Knowledge-
transfer Tuning function during both training and inference. During 
training, we randomly sample a batch of source domains from . 
Next, from these source domains, we randomly sample a small number 
of ECP samples from each domain. These ECP samples are used in 
Within-domain Tuning to obtain the corresponding 𝜃𝑒 for each domain. 
Subsequently, the ECP samples and 𝜃𝑒 are fed into the encoder to 
predict the 𝑒𝑟. The encoder is updated based on the loss described 
in Section 4.3. During inference, we follow the same procedure but 
use domain data from   to predict 𝜃̂𝑟 without loss computation and 
parameter updating for the Transformer.

In the following sections, we provide a detailed explanation of the 
Within-domain Tuning and Knowledge-transfer Tuning processes.

4.1. Within-domain tuning

This section demonstrates how 𝜃𝑒 is obtained by Within-domain 
Tuning. As mentioned before, Within-domain Tuning is essentially the 
𝑧-step EM algorithm of GMM on a small number of ECP samples.

In our method, we set the weights 𝐰 of GMMs components to be 
fixed during the EM iteration, following the simple rule 

𝐰 =
[

𝑤1,… , 𝑤𝑖,… , 𝑤𝐽
]

=

[

1
∑𝐽

𝑗=1 𝑗
, 2
∑𝐽

𝑗=1 𝑗
,… , 𝐽

∑𝐽
𝑗=1 𝑗

]

, (5)
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= 1, (6)

 where 𝐽 represents the number of components of GMMs. In this 
context, fixing the 𝐰 will not obviously affect the expressiveness of the 
GMMs, as expressiveness remains consistent (or could be enhanced) as 
the number of components increases [61]. A detailed ablation of this 
design choice is presented in Section 6.3. We fix 𝐰 because we find 
that a Gaussian component’s mean and covariance matrix are highly 
sensitive to its weights. Therefore, fixing the weights helps stabilize the 
entire learning process. For a similar reason, we apply the same initial 
parameters 𝜃𝑜 throughout the learning process.

We also set each Gaussian component to be spherical, meaning the 
covariance matrix can be expressed as 𝛴 = diag(𝜎), where 𝜎 is a vector. 
5 
This method aligns the shapes of 𝑥, 𝜇 (mean vector), and 𝜎, as 𝑥𝑘𝑖  and 
𝜇 have the shape 1 × 𝑇 . By setting the Gaussian components to be 
spherical, the covariance matrix can also be expressed as a 1×𝑇  vector 
𝜎, allowing us to treat 𝑥, 𝜇, and 𝜎 as 1 × 𝑇  shaped tokens for the input 
and output of the Transformer, as shown in Fig.  4. In Section 6.5, we 
further analyze how the covariance design influences the performance 
of our method. Algorithm 1 shows how each component’s 𝜇 and 𝜎 are 
computed in Within-domain Tuning. Finally, We propose the following 
empirical expression to determine 𝑧 in ECP modeling 

𝑧 = int
(

𝑒𝛽𝑛
𝑘
)

, (7)

where 𝑛𝑘 is the number of ECP samples used in Within-domain Tuning, 
𝛽 is a parameter, which is the result of empirical testing in , int(⋅)
means the integer part of a value.

4.2. Knowledge-transfer tuning

This section demonstrates how to use a Transformer to predict 𝑒𝑟. 
We adopt the encoder part of the Transformer for our model. Fig.  5 
illustrates how 𝑒𝑟 is obtained in the Knowledge-transfer Tuning process.

We use a [Pad]2 token to align the shapes of inputs with varying 
sizes 𝑛𝑘. The encoder’s parameters are updated based on the loss 
function explained in Section 4.3. 𝑑(⋅), shown in Fig.  5, represents the 
date information, which indicates the day of the year for 𝑥𝑖, while 
𝑝(⋅) represents the parameter information, indicating which Gaussian 
component of the GMMs 𝜇 and 𝜎 belong to.

Regarding the design of the encoder, we use RMSNorm, and we 
do not use Positional Encoding (PE). Considering a set of samples 
from the 𝑘th domain and assuming an iid3 condition, the order of the 
samples does not affect the distribution and corresponding parameters 
of the GMMs. For instance, if 𝑛𝑘 = 20, incorporating PE would result 
in 20! ≈ 2.43 × 1018 possible arrangements, significantly expanding 
the input space. Omitting PE reduces these 20! cases to 1 case, thus 
enabling a much more efficient learning process. This is the key reason 
that motivates us to use the Transformer encoder instead of other DL 
architectures.

2 A [Pad] token is a special token added to sequences to ensure uniform 
input sizes when handling data of varying lengths. It aligns shorter sequences 
by padding them, enabling batch processing, and is ignored by the model 
during computation.

3 iid stands for ‘‘independent and identically distributed’’, meaning samples 
are independent and drawn from the same probability distribution.
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Table 1
Summary of datasets used in experiments.
 Data type Resolution Amount of domains  
 ECP-60 min 60 min 17,505 domains (households) 
 ECP-30 min 30 min 20,737 domains (households) 
 ECP-15 min 15 min 820 domains (households)  
 Solar 15 min 73 domains (households)  
 Transformer-level 15 min 447 domains (substations)  

4.3. Loss design

Since GMMs are a white-box model, we can directly compute 
the negative log-likelihood based on the predicted parameters of the 
GMMs. The loss is defined as the negative log-likelihood. The loss 
function is given by 

log(𝑘 ∣ 𝜃̂𝑟,𝐰) = −
𝑁
∑

𝑖=1
log

( 𝐽
∑

𝑗=1
𝑤𝑗 (𝐱𝑘𝑖 ∣ 𝜇𝑗 , diag(𝜎𝑗 ))

)

, (8)

where 𝑤𝑗 ∈ 𝐰 is the fixed weight of the 𝑗th Gaussian component, 𝑁 is 
the number of data points in the domain, 𝐽 is the number of Gaussian 
components,  (𝐱𝑘𝑖 ∣ 𝜇𝑗 , diag(𝜎𝑗 )) is the Gaussian probability density 
function for the 𝑗th component with 𝜇𝑗 and 𝜎𝑗 , 𝑘 is the complete 
domain dataset.

5. Experiments

5.1. Experiment setting

5.1.1. Data
The data used in Section 5.2 consists of ECP data with  60-minute, 

30-minute, and 15-minute resolution from individual households in 
the UK, Australia, Germany,  USA, and the Netherlands. The dataset 
includes approximately 20 thousand households in total. Due to varying 
household data lengths, we sample 250 days of ECP data from each 
household to create a domain. This ensures that each domain has an 
equal amount of ECP data. To fully utilize all available data, if a 
household has significantly more than 250 days of data, we sample 
multiple times, treating each sampled set as an individual domain. We 
carefully split the data into training, testing, and validation sets with a 
ratio of 0.8, 0.1, and 0.1, ensuring that the augmented domain remains 
within the same set.  The dataset used in Section 5.3 includes 15-minute 
resolution data from two sources: transformer-level4 ECP and solar gen-
eration profiles. The transformer-level dataset contains ECP profiles for 
commercial, residential, and mixed-use buildings (all in transformer-
level), while the solar generation dataset provides generation profiles 
from individual households. Following the same preprocessing strategy, 
we sample 250 days of data from each source domain to create a con-
sistent domain structure. These datasets are also divided into training, 
validation, and testing sets using the same 0.8/0.1/0.1 ratio. Table  1 
summarizes the datasets used in this study.

5.1.2. Experiment design
As discussed in Section 2.2, applying standard FSL methods as a 

benchmark in our task is challenging. Upon careful consideration, we 
identified time-series imputation as the most closely related task to 
our own [62–64]. There are two differences between standard time-
series imputation and our method (1) the amount of data available for 
modeling in our task is significantly smaller, often less than 10% of 
the complete dataset, and (2) while time-series imputation requires pre-
serving the temporal order of samples, our method prioritizes modeling 

4 To avoid ambiguity between ‘‘transformers’’ in deep learning and in power 
systems, we use transformer-level to refer specifically to transformers in the 
power grid.
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the overall distribution of the samples, with their sequential order being 
less relevant. Given that time-series imputation is the closest task to our 
own, we aim to provide a clear comparison of the advantages of our 
proposed methods by selecting TimesNet [62], a popular model for time 
series imputation, as our baseline  for experiments in Sections 5.2 and
5.3. Unlike standard data imputation tasks where the model has access 
to 80% to 50% of the complete time points, in this task, we provide 
both our model and TimesNet with only 1.6% to 10% of the complete 
time points during training. Our primary objective is to model the 
distribution of ECP data rather than to impute missing data. Therefore, 
to make the comparison fair, we also adjust TimesNet in this research 
by employing Maximum Mean Discrepancy (MMD), which is defined 
in Appendix, as the loss function to train TimesNet instead of Mean 
Squared Error (MSE) loss used in the original paper [62], MMD is a 
loss function without considering the sequential order. We employed 
TimesNet to impute missing data, subsequently dividing the imputed 
time series into ECP samples to compare their distribution against the 
domain’s complete dataset. Similarly, we generated ECP samples from 
predicted GMMs using our method to evaluate distribution differences 
relative to the domain’s complete data. Additionally, to more com-
prehensively demonstrate the advantages of our proposed method in 
FSL-based ECP distribution modeling, we benchmark it against popular 
conditional generative models such as VAE, Flow-based model, and 
Diffusion model in Sections 5.4 and 5.5. 

5.1.3. Evaluation methods
Regarding the evaluation metrics, we use MMD, Kullback–Leibler 

(KL) divergence, Wasserstein distance (WD), MSE of the mean, and 
Kolmogorov–Smirnov (KS) distance to evaluate the distribution differ-
ences, following the methodologies outlined in [8,10]. A smaller value 
of these metrics indicates better performance. These evaluation metrics 
are also described in Appendix.

5.1.4. Hyperparameters and training
For the main experiments (detailed in Sections 5.2 and 5.3), we 

trained our model using an NVIDIA V100 and an NVIDIA A10 GPU. 
For the training process, we utilize cyclical learning rates [63], with the 
highest and lowest learning rates set to 1𝑒 − 3 and 1𝑒 − 5, respectively. 
The batch size is 128. Both our model and TimesNet have a similar 
parameter scale, approximately 4.5 million parameters. The number 
of components of the GMMs, 𝐽 , is set to 6. The 𝛽 in Expression (7) 
set to 0.015. For the source domain, 𝑁𝑘𝑠  is 250, while for the target 
domain, 𝑛𝑘𝑡  ranges from 1 to 24 for 60-minute resolution, 1 to 48 
for 30-minute resolution, and 1 to 96 for 15-minute resolution. The
Within-domain Tuning, which follows Algorithm 1, is performed in batch 
(i.e., in parallel) during training. The 𝑧-step is computed according to 
the expression (7). More detailed experimental settings can be found in 
our repository.

5.2. Results of residential Electricity Consumption Profiles

In this section, we present and discuss the experimental results of 
our proposed method applied to  data of residential ECP. Fig.  6 presents 
part of the experimental results on 60-minute resolution ECP data, 
evaluated across varying values of 𝑛𝑘𝑡—the number of shots or sampled 
ECP instances provided as model input. From Fig.  6 we can observe 
that our method effectively captures residential electricity consumption 
behavior volatility and restores the ECP distribution with minimal input 
samples in almost all examples. In contrast, TimesNet MSE struggles 
with volatile time series patterns, primarily generating ECP samples 
in high-likelihood areas. Although TimesNet with MMD outperforms 
TimesNet with MSE in generating more volatile patterns, it occasionally 
fails to accurately capture the ECP distribution. For example, as shown 
in the first row of Fig.  6(a), TimesNet MMD generates ECPs with smaller 
peaks. Similarly, in the sixth row of Fig.  6(d), it fails to reproduce the 
consumption patterns.
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Fig. 6. In each subfigure, every row represents the experimental results for a specific target domain (hourly resolution). Each row, from left to right, includes 
(1) the complete ECP data of the domain, (2) the sampled ECP data used as input for our model and two TimesNets, (3) the ECP data generated from GMMs 
whose parameters are predicted by our method, (4) results generated by TimesNet using MSE loss, and (5) results generated by TimesNet using MMD loss. The 
color of the curves is related to the daily total electricity consumption, more intense red indicates higher daily consumption. 𝑛𝑘𝑡  denotes the number of sampled 
ECPs used for ECP distribution modeling.
Table  2 provides a more quantitative summary of the comparison 
across 12 experimental scenarios. The results clearly demonstrate that 
our method consistently achieves lower metric values than the baseline 
approaches in all cases, with the sole exception being the 32-shot 
setting at 30-minute resolution, where the sampled real ECP data 
performs marginally better.

Fig.  7 shows the comparison results of 𝑛𝑘𝑡  range from 1 to 24 of 
60-minute resolution datasets, where it can be seen that the estimated 
distribution from our method is closer to the original distribution, 
especially when the number of shots 1 < 𝑛𝑘𝑡 ≤ 14, compared to the 
sampled ECP data, TimesNet MMD and TimesNet MSE.
7 
5.3. Results of solar and transformer-level profiles

In the previous experiment, we primarily evaluated our method 
using residential ECP. In this section, we extend the evaluation to the 
solar and transformer-level datasets.

Fig.  8 presents a subset of the generation results for the solar 
dataset. It is evident that our proposed method outperforms TimesNet 
with MMD. TimesNet with MMD demonstrates inferior performance in 
Fig.  8, which may be attributed to the difficulty of optimizing MMD 
in high-dimensional settings. Although TimesNet with MSE appears to 
generate more realistic solar profiles visually, it still fails to accurately 
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Fig. 7. Comparison of MMD values in 60-minute resolution datasets. For each 
shot, we sample 100 target domains from   and compute the average MMD 
values of 𝑛𝑘𝑡  (number of shots) from 1 to 24.

capture the underlying distribution of the original data based on the 
quantitative comparison of all methods in Table  3.

Fig.  9 presents representative generation results for four types of 
transformer-level ECP datasets: residential without photovoltaic (PV), 
residential mixed with commercial, commercial, and residential with 
PV. As shown in Fig.  9, TimesNet struggles to replicate the original 
data distribution; specifically, TimesNet with MMD produces overly 
volatile profiles, while TimesNet with MSE yields less dynamic yet 
still unrealistic patterns. In contrast, our proposed method exhibits 
superior robustness and consistently generates realistic samples across 
all scenarios.

From Table  3, we observe that although our method consistently 
outperforms the TimesNets on both solar and transformer-level datasets,
the performance gap between our method and the sampled ECP is less 
significant, particularly in the solar dataset. We think this could be 
attributed to the limited availability of source domain data for these 
experiments (as summarized in Table  1). For residential ECP, the train-
ing set includes close to one thousand to tens of thousands of source 
domain samples, allowing the model to be fully trained (especially 
for a data-hungry knowledge-transfer Tuning component). In contrast, 
the solar and transformer-level datasets contain only several dozen or 
a few hundred source domain samples, which may limit the model’s 
generalization capability. 

5.4. Comparison with conditional generative models

In this section, we compare our proposed method with a conditional 
VAE (CVAE), Flow-based model (CFlow) [7], and Diffusion model (CD-
DPM) [10,65] using the 15-minute resolution residential ECP dataset 
described in Table  1. To ensure consistent experimental settings, we 
train four separate CVAE models conditioned on 4, 8, 16, and 32 
ECP samples, respectively. Each conditional deep generative model is 
trained to generate a complete ECP dataset of the target domain.

Table  4 presents a summary of evaluation metrics. As shown, our 
proposed method outperforms the other generative models across all 
metrics. Fig.  10 provides a qualitative comparison between the gener-
ation outputs of the methods. It can be observed that conditional deep 
generative models exhibit similar behavior to TimesNet with MSE, often 
failing to capture volatile patterns in the time series. Instead, it tends 
to generate samples concentrated in high-probability regions.

In this experiment, we want to demonstrate two fundamental weak-
nesses of CVAE, CFlow, CDDPM or other standard conditional genera-
tive frameworks for the proposed generation task in this paper:

• Fixed-format conditioning: A conditional deep generative model
for example CVAE, trained on a fixed input shape (e.g., 4-shot 
8 
Table 2
Results of evaluation metrics of residential ECP.
 Method MMD KL KS WD MSE.M 

4-shot (60-minute resolution)
 Sampled ECP 0.2434 0.9812 0.4244 0.4092 0.0392  
 TimesNet MSE 0.4938 13.419 0.4307 0.3544 0.0716  
 TimesNet MMD 0.0868 1.527 0.1912 0.3299 0.0337  
 Our Method 0.0222 0.4177 0.1499 0.1530 0.0171 

8-shot (60-minute resolution)
 Sampled ECP 0.1196 0.7277 0.3044 0.2999 0.0192  
 TimesNet MSE 0.6008 13.613 0.4241 0.3639 0.0316  
 TimesNet MMD 0.0854 1.4935 0.1888 0.3267 0.0332  
 Our Method 0.0154 0.3535 0.1370 0.1339 0.0099 

16-shot (60-minute resolution)
 Sampled ECP 0.0579 0.4885 0.2353 0.2084 0.0096  
 TimesNet MSE 0.6656 14.579 0.4366 0.3817 0.0255  
 TimesNet MMD 0.0809 1.4251 0.1893 0.3228 0.0315  
 Our Method 0.0126 0.3496 0.1315 0.1272 0.0062 

24-shot (60-minute resolution)
 Sampled ECP 0.0371 0.3935 0.1985 0.1666 0.0058  
 TimesNet MSE 0.6960 15.332 0.4496 0.3942 0.0246  
 TimesNet MMD 0.0780 1.3695 0.1876 0.3194 0.0303  
 Our Method 0.0116 0.3358 0.1253 0.1217 0.0046 

4-shot (30-minute resolution)
 Sampled ECP 0.1246 1.2658 0.4040 0.1460 0.0030  
 TimesNet MSE 0.2995 1.4999 0.3120 0.2191 0.0130  
 TimesNet MMD 0.0896 0.5281 0.2448 0.0972 0.0055  
 Our Method 0.0607 0.4922 0.2800 0.1214 0.0015 

8-shot (30-minute resolution)
 Sampled ECP 0.0570 0.8109 0.3987 0.1318 0.0014  
 TimesNet MSE 0.2992 1.5017 0.3080 0.2125 0.0131  
 TimesNet MMD 0.0890 0.4949 0.2279 0.0926 0.0052  
 Our Method 0.0367 0.3540 0.1776 0.0746 0.0007 

16-shot (30-minute resolution)
 Sampled ECP 0.0324 0.6685 0.3036 0.1004 0.0008 
 TimesNet MSE 0.3003 1.4285 0.3088 0.2103 0.0131  
 TimesNet MMD 0.0817 0.4887 0.2312 0.0943 0.0048  
 Our Method 0.0317 0.3957 0.1880 0.0779 0.0008 

32-shot (30-minute resolution)
 Sampled ECP 0.0238 0.4811 0.2000 0.0721 0.0008  
 TimesNet MSE 0.3021 1.4789 0.3112 0.2118 0.0132  
 TimesNet MMD 0.0757 0.5588 0.2352 0.0908 0.0046  
 Our Method 0.0284 0.3545 0.2002 0.0747 0.0006 

4-shot (15-minute resolution)
 Sampled ECP 0.2646 0.2871 0.2477 0.1145 0.0269  
 TimesNet MSE 0.5603 0.3700 0.3884 0.1285 0.0305  
 TimesNet MMD 0.2461 13.5407 0.4340 0.3725 0.0078  
 Our Method 0.0238 0.2132 0.2145 0.1077 0.0019 

8-shot (15-minute resolution)
 Sampled ECP 0.1394 0.2381 0.1920 0.0918 0.0089  
 TimesNet MSE 0.5743 0.3111 0.3631 0.1267 0.0306  
 TimesNet MMD 0.2089 13.9127 0.4351 0.3747 0.0085  
 Our Method 0.0208 0.1730 0.1920 0.0992 0.0015 

16-shot (15-minute resolution)
 Sampled ECP 0.0751 0.1859 0.1441 0.0692 0.0045  
 TimesNet MSE 0.6201 0.3129 0.2960 0.1323 0.0301  
 TimesNet MMD 0.1437 15.6473 0.4280 0.3869 0.0083  
 Our Method 0.0205 0.1232 0.1340 0.0634 0.0016 

32-shot (15-minute resolution)
 Sampled ECP 0.0444 0.1760 0.1378 0.0561 0.0023  
 TimesNet MSE 0.6451 0.3879 0.3082 0.1406 0.0158  
 TimesNet MMD 0.1342 15.2995 0.4183 0.4013 0.0130  
 Our Method 0.0201 0.1227 0.1237 0.0515 0.0015 

with input of shape 4 × 96) cannot generalize to a different 
number of input samples (e.g., 8-shot) without retraining a new 
model. This restricts flexibility and reusability.
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Fig. 8.  Similar to Fig.  6, in each subfigure, every row represents the experimental results for a specific target domain of solar generation profile data (15-minute 
resolution). Each row, from left to right, shows: (1) the complete solar profile of the domain, (2) the sampled profiles used as input for our method and both 
TimesNet models, (3) the profiles generated from GMMs with parameters predicted by our method, (4) TimesNet results trained with MSE loss, and (5) TimesNet 
results trained with MMD loss. Curve color indicates total daily solar generation, where more intense red represents higher output. 𝑛𝑘𝑡  denotes the number of 
sampled profiles used for distribution modeling.
Fig. 9. Similar to Fig.  6, in each subfigure, every row represents the experimental results for a specific target domain of transformer-level ECP data (15-minute 
resolution). In each subfigure, Row 1 shows transformer-level residential ECP without PV, Row 2 shows transformer-level residential mixed with commercial ECP, 
Row 3 shows transformer-level commercial ECP, and Row 4 shows transformer-level residential ECP with PV. Each row compares the results of our method with 
the benchmark models. Curve color reflects the total daily electricity consumption, where more intense red indicates higher consumption. 𝑛𝑘𝑡  denotes the number 
of sampled profiles used for distribution modeling.
• Order sensitivity: The condition input is usually treated as a 
matrix or tensor, meaning different permutations of the same set 
of input samples result in different conditions. We conceptually 
show the permutation cases of input tensors/matrixs in Fig.  11. 
For instance, with 32 ECP samples (32-shot), there are 32! ≈
8.2×1033 possible orderings, all representing essentially the same 
9 
information. Learning under such redundancy adds significant 
complexity and degrades performance.

As illustrated in Fig.  11, our method avoids these pitfalls by de-
sign. In the Within-domain Tuning stage, our method resembles an 
EM algorithm, which is inherently order-invariant. Furthermore, in the
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Fig. 10.  The generated results from our proposed method, CVAE, CFlow, and CDDPM. Each subfigure presents the experimental results of two target domains. 
For fair comparison, we use the same input conditions and the model trained in Section 5.2. Similar to Fig.  6, curve color reflects the total daily electricity 
consumption, where more intense red indicates higher demand. 𝑛𝑘𝑡  denotes the number of sampled profiles used for distribution modeling.
Fig. 11. Illustration of order sensitivity in CVAE. Although the two input sets 
contain the same ECP samples in different orders (Condition 1 vs. Condition 
2), CVAE treats them as entirely different conditions. In contrast, our method 
is order-invariant, interpreting all permutations of the same samples as a single 
condition and producing consistent generations.

Knowledge-transfer Tuning stage (see Section 4.2), we explicitly remove 
PE from the transformer to make the model order-invariant. As a result 
of this design, in the case of 32-shot generation, where a conventional 
conditional model must account for up to 32! ≈ 8.2 × 1033 possible 
orderings of the conditioning set, our method reduces this to 1 set.

In real-world scenarios, there is no explicit indexing of samples 
(e.g., ECP sample 1, ECP sample 2) as depicted in Fig.  11. Instead, 
each ECP sample 𝑖 can be understood as representing a particular type 
or pattern of electricity consumption. The ordering of these patterns 
10 
introduces redundant information when used as conditions in a  deep 
generative model framework (while these different patterns are from 
one domain). Our architectural choice ensures that our model gener-
alizes well regardless of the number or order of conditional samples, 
which explains its superior performance compared to  deep generative 
models as benchmarks.

5.5. Comparison with classical fine-tuning

In this section, we compare our method with a classical fine-tuning 
approach, in which a generative model is first trained on the source 
domains and then fine-tuned on one target domain dataset [17,49,50]. 
For this experiment, we use an 8-shot CVAE model (as described in 
Section 5.4, using 8 ECP samples as condition), fine-tuned using a small 
learning rate (lr = 0.00005). The 15-minute resolution ECP dataset is 
used, and the experiment is conducted using an NVIDIA A10 GPU.

Fig.  12 illustrates how the generated ECPs evolve throughout the 
fine-tuning process, gradually aligning with the distribution of the 
original data. Fig.  13 shows how the MMD loss decreases over training 
steps and elapsed time. Notably, although the CVAE surpasses our 
method in performance after approximately 92 s of fine-tuning, our 
method reaches an equivalent MMD of 0.0198 in only 0.021 s.

It is important to note that in this experiment, the batch size for our 
method is set to 1. In practice, however, our approach can easily lever-
age larger batch sizes for parallel processing. In contrast, parallelizing 
fine-tuning across thousands of domains (i.e., thousands of DL-based 
generative models need to be trained and stored) is significantly more 
complex and even impractical.

This result supports the argument made in Section 1 that one 
of the key contributions of our proposed method is its efficiency. 
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Fig. 12. The generation results of a CVAE model fine-tuned for a specific target domain. From left to right, it displays the original ECP data followed by the 
CVAE-generated outputs after 0, 500, 1000, and 3000 fine-tuning steps.
Table 3
Results of evaluation metrics of solar and transformer data.
 Method MMD KL KS WD MSE.M 

4-shot (Solar)
 Sampled ECP 0.1529 1.3643 0.5253 0.1180 0.0033  
 TimesNet MSE 0.5086 2.4618 0.6487 0.5039 0.0013  
 TimesNet MMD 0.4623 3.3739 0.7329 0.5806 0.0013  
 Our Method 0.0248 2.1398 0.3101 0.3930 0.0007 

8-shot (Solar)
 Sampled ECP 0.0722 0.9049 0.4161 0.0746 0.0012  
 TimesNet MSE 0.5311 2.1840 0.6188 0.5227 0.0013  
 TimesNet MMD 0.4719 3.5722 0.7270 0.5869 0.0013  
 Our Method 0.0241 1.7944 0.3119 0.3926 0.0006 

16-shot (Solar)
 Sampled ECP 0.0357 0.3924 0.308 0.0468 0.0008  
 TimesNet MSE 0.5318 2.1867 0.6157 0.5219 0.0013  
 TimesNet MMD 0.4592 3.4792 0.7193 0.5886 0.0013  
 Our Method 0.0237 1.6541 0.3127 0.3851 0.0006 

32-shot (Solar)
 Sampled ECP 0.0232 0.2931 0.1995 0.0314 0.0003 
 TimesNet MSE 0.5319 2.1879 0.6160 0.5183 0.0012  
 TimesNet MMD 0.4613 3.4200 0.7140 0.5942 0.0013  
 Our Method 0.0229 1.2608 0.3136 0.3746 0.0003 

4-shot (Transformer-level)
 Sampled ECP 0.2458 0.7612 0.2660 7.4889 0.0868  
 TimesNet MSE 0.5142 4.9043 0.3650 10.7955 0.2863  
 TimesNet MMD 0.1723 4.1651 0.2992 15.3859 0.0434  
 Our Method 0.0668 0.6101 0.1504 7.0274 0.0481 

8-shot (Transformer-level)
 Sampled ECP 0.1178 0.5991 0.2142 2.5204 0.0268  
 TimesNet MSE 0.5198 4.9047 0.3653 10.8114 0.2866  
 TimesNet MMD 0.1333 4.2887 0.2836 16.1775 0.0255  
 Our Method 0.0493 0.5210 0.1045 5.1290 0.0109 

16-shot (transformer-level)
 Sampled ECP 0.0584 0.5307 0.1112 3.2449 0.0079  
 TimesNet MSE 0.5188 4.9072 0.3656 10.8218 0.2857  
 TimesNet MMD 0.1289 4.0919 0.3171 16.4256 0.0304  
 Our Method 0.0402 0.5101 0.0556 2.2257 0.0018 

32-shot (Transformer-level)
 Sampled ECP 0.0272 0.4918 0.0527 1.4543 0.0042  
 TimesNet MSE 0.5184 4.9146 0.3666 10.9160 0.1288  
 TimesNet MMD 0.1224 4.3801 0.4293 22.7491 0.0361  
 Our Method 0.0398 0.4998 0.0479 2.1282 0.0015 

By replacing conventional fine-tuning with batch EM, our framework 
enables straightforward parallel learning of domain-specific knowledge 
using PyTorch, making it a more practical and scalable solution in 
multi-domain settings. 

5.6. Interpretability analysis

In this section, we analyze how our method models the ECP of a 
target domain, focusing on the Knowledge-transfer Tuning. Our goal is to 
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Table 4
Evaluation metrics for CVAE vs. Our method vs. DDPM/Flow on 15-minute 
resolution residential ECP.
 Method MMD KL KS WD MSE.M 

4-shot

 CVAE 0.2868 0.3414 0.2441 0.2618 0.0761  
 Our Method 0.0238 0.2132 0.2145 0.1077 0.0019 
 CDDPM 0.1760 0.2911 0.4106 0.5484 0.0567  
 CFlow 0.4949 0.3684 0.2566 0.3906 0.0714  

8-shot

 CVAE 0.4089 0.3222 0.2888 0.2337 0.0528  
 Our Method 0.0208 0.1730 0.1920 0.0992 0.0015 
 CDDPM 0.1234 0.3048 0.3319 0.3680 0.0607  
 CFlow 0.8356 0.3772 0.6516 0.5345 0.0675  

16-shot

 CVAE 0.2443 0.3132 0.2071 0.2514 0.0809  
 Our Method 0.0205 0.1232 0.1340 0.0634 0.0016 
 CDDPM 0.0905 0.2883 0.3358 0.5902 0.0783  
 CFlow 0.4427 0.3635 0.4147 0.7274 0.0930  

32-shot

 CVAE 0.3167 0.3078 0.2330 0.2809 0.0740  
 Our Method 0.0201 0.1227 0.1237 0.0515 0.0015 
 CDDPM 0.1539 0.2956 0.3477 0.5230 0.0578  
 CFlow 0.4522 0.3719 0.2145 0.3033 0.0650  

Fig. 13. MMD over training time during fine-tuning. The orange curve shows 
the evolution of the MMD as training progresses for CVAE. The 𝑥-axis indicates 
both the training step and the corresponding training time. A dashed horizontal 
line marks the MMD value of 0.0198 for reference. The red point and 
annotation highlight the performance of Our Method, which achieves an MMD 
of 0.0198 at just 0.021 s.

quantitatively and empirically assess its contribution to predicting the 
vector 𝑒𝑟. While Within-domain Tuning is an interpretable EM algorithm 
for GMMs, Knowledge-transfer Tuning acts as a black-box. We therefore 
focus on understanding its role and impact on the method’s behavior.

Inspired by interpretability tools such as attention maps [66] and 
feature importance measures [67], we measure the influence of each 
individual input ECP sample on the output of Knowledge-transfer Tuning
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Fig. 14. Illustration of the |𝛥| computation for interpretability. Given a set of sampled ECPs (top left), each profile is sequentially masked (bottom left) and fed 
into the pre-trained transformer model. The model outputs (parameters of) two GMMs (GMM-1, GMM-2), from which we compute the negative log-likelihood 
using Eq.  (8). The absolute difference between these two likelihoods (|𝛥|) quantifies the effect of each individual ECP profile on the predicted vector 𝑒𝑟.
Fig. 15. Visualization of the interpretability experiment measuring |𝛥| for individual ECP samples. As depicted in Fig.  14, we sample six ECP samples and 
mask one of them to compute |𝛥| (or |𝛥| for simplicity). The heatmap on the left shows the change in |𝛥| when masking each sample, with higher values 
indicating greater influence on the model output. The second and third columns display the specific ECP samples with the smallest and largest |𝛥|, respectively. 
The rightmost column shows all sampled ECPs colored by their corresponding |𝛥| in the heatmap.
using a similar way. Concretely, for each ECP sample in the input, we 
mask it out, recompute the negative log-likelihood  (using Eq.  (8)), 
and record the change 
|𝛥| = |full − masked|. (9)

This |𝛥| (or |𝛥| for simplification in Fig.  15) quantifies how 
strongly each sample affects predicting the vector 𝑒𝑟, as a larger |𝛥|
indicating a larger effect of the sample on predicting the 𝑒𝑟. Fig.  14 
illustrates the procedure for computing 𝛥 in our experiments.

We use the 60-minute resolution ECP dataset, as described in Table 
1, for this experiment. Fig.  15 reveals how the pattern of each sampled 
ECP influences the overall modeling quality via |𝛥|. We observe that 
when an individual ECP sample exhibits a pattern that is substantially 
different from the rest of the sampled set, its removal results in a 
large difference in negative log-likelihood loss (i.e., high |𝛥|). For 
example, on the left side of Fig.  15, we present examples characterized 
by relatively high variance in |𝛥|. In these cases, the ECP sample 
associated with the largest |𝛥| typically deviates obviously from the 
other samples, either in magnitude (e.g., exceptionally high or low 
values) or temporal structure. Conversely, the right side of Fig.  15 
shows cases with relatively low variance in |𝛥|. Here, even the sample 
with the highest |𝛥| tends to exhibit a pattern similar to the remaining 
samples, resulting in a smaller change in the |𝛥| when masked.
12 
The analysis suggests that input ECP samples that are redundant 
or similar to others have less impact on the model’s prediction, as 
indicated by smaller changes in |𝛥| when removed. In contrast, unique 
or highly informative samples have a larger impact. 

6. Ablation study

6.1. Within-domain tuning and knowledge-transfer tuning

In this section, we evaluate the effectiveness of Within-domain Tun-
ing and Knowledge-transfer Tuning on our method’s performance. To 
assess Within-domain Tuning, we conducted an experiment omitting 
this component, where the Transformer encoder alone predicted 𝑜𝑟, 
followed by 𝜃̂𝑟 = 𝑜𝑟 + 𝜃𝑜. For Knowledge-transfer Tuning, we examined 
the effect of excluding the encoder’s PE by training a model with tradi-
tional absolute PE in the encoder [22]. All ablation experiments were 
conducted at a similar scale of parameters, using compact models with 
approximately 35,000 parameters. Remarkably, our method proved to 
be still effective even with this reduced model size.

Fig.  16 shows MMD values for 𝑛𝑘𝑡  ranging from 1 to 24 and 1 to 
48, comparing performance with and without Within-domain Tuning at 
hourly and half-hourly resolutions. The results indicate performance 
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Fig. 16. Comparison of with and without Within-domain Tuning.
Fig. 17. Comparison of without and with PE.
𝜑

degradation without Within-domain Tuning, likely due to the substantial 
parameter-space distance ‖𝜃𝑜 − 𝜃𝑟‖ in GMMs, as discussed in Section 4.

Similarly, Fig.  17 displays MMD values across shot counts, com-
paring models with and without PE. The comparison shows that PE 
introduces noise, reducing model accuracy. As noted in Section 4.2, 
each ECP sample is treated as an independent, identical token in GMMs, 
and PE disrupts this independence, thus hurting performance.

6.2. Quantifying the contribution of within-domain tuning and knowledge-
transfer tuning

In the previous section, we demonstrated how Within-domain Tuning
and Knowledge-transfer Tuning each improve the final result, but we 
have not yet provided a quantitative evaluation of their respective 
contributions to the loss in Eq.  (8). Inspired by Shapley values from 
game theory [68–70], we treat Within-domain Tuning (player 1) and
Knowledge-transfer Tuning (player 2) as two ‘‘players’’ in a collaborative 
game. Let 𝑣(𝑆) denote the log-likelihood when only the set of players 
𝑆 ⊆ {1, 2} is applied. The Shapley value 𝜑𝑖 for each player 𝑖 is then 

𝜑𝑖 =
∑

𝑆⊆{1,2}⧵{𝑖}

|𝑆|! (2 − |𝑆| − 1)!
2!

[

𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)
]

. (10)

Since there are only two players, this simplifies to
𝜑1 =

1
2

[

𝑣({1}) − 𝑣(∅)
]

+ 1
2

[

𝑣({1, 2}) − 𝑣({2})
]

, (11)

𝜑2 =
1
2

[

𝑣({2}) − 𝑣(∅)
]

+ 1
2

[

𝑣({1, 2}) − 𝑣({1})
]

. (12)

Where, 𝑣({1, 2}) is the full model value including both tuning stages, 
𝑣({1}) (resp. 𝑣({2})) is the loss using only Within-domain Tuning (resp.
Knowledge-transfer Tuning), and 𝑣(∅) is the loss with neither component, 
We follow common practice in Shapley value estimation and assume 
𝑣(∅) = 0 in computation. The values 𝜑1 and 𝜑2 thus quantify the average 
marginal contribution of each tuning stage to the final log-likelihood.
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In practice, evaluating all coalitions is trivial for two players, but 
we may wish to average contributions over many target domains. We 
therefore approximate the empirical Shapley value [71] by sampling 
𝑀 random coalitions 𝑆(1),… , 𝑆(𝑀) ⊆ {1, 2} ⧵ {𝑖} across domains and 
computing 

̂𝑖 =
1
𝑀

𝑀
∑

𝑚=1

[

𝑣
(

𝑆(𝑚) ∪ {𝑖}
)

− 𝑣
(

𝑆(𝑚))
]

. (13)

We use the transformer-level dataset (described in Table  1) for 
the experiments in this section. Specifically, we sample 𝑀 = 2, 000
coalitions5 from the target domains to compute the empirical Shapley 
values.

Table  5 presents the results. A higher Shapley value indicates a 
greater contribution of the corresponding player to the overall model 
performance. Interestingly, we observe that as the number of shots 
(i.e., sampled ECPs) increases, the contribution of Within-domain Tuning
(𝜑̂1) also increases. In parallel, the full model value (𝑣({1, 2})) improves 
as well. This trend may suggest that the effectiveness of the EM al-
gorithm, which is essentially the Within-domain Tuning, improves with 
more available data, thereby yielding greater contribution to the final 
estimation.

6.3. Affects of the number of Gaussian components

In the previous sections, we primarily evaluated the impact of
Within-domain Tuning and Knowledge-transfer Tuning on the perfor-
mance of our proposed method. In this section, we shift our focus to 

5 Note: a coalition refers to a subset of players (not domains) under a 
specific game environment (sampled data from the domain), thus, a single 
domain can be used multiple times for sampling coalitions.



W. Xia et al. International Journal of Electrical Power and Energy Systems 175 (2026) 111575 
Table 5
Empirical Shapley value by number of shots.
 Number of Shots 𝜑̂1 (Player 1) 𝜑̂2 (Player 2) 𝑣({1, 2}) (Both) 
 4-shot 3.8329 58.9010 62.7339  
 8-shot 13.0924 53.5519 66.6443  
 16-shot 31.3918 36.0309 67.4227  
 32-shot 36.4258 34.0081 70.4339  
Note: 𝜑̂1, 𝜑̂2, and 𝑣({1, 2}) denote the Shapley (i.e., log-likelihood) value of Within-
domain Tuning, Knowledge-transfer Tuning, and their joint coalition, respectively.

Fig. 18. MMD values of the proposed method evaluated with 1, 2, 4, and 8 
Gaussian components across 4, 8, 16, and 32 shots.

investigating how the number of Gaussian components in the GMM 
affects the overall performance.

This experiment is conducted on the transformer-level dataset, as 
described in Table  1. To ensure a fair comparison, we train models with 
varying numbers of Gaussian components—specifically 1, 2, 4, and 8, 
while maintaining approximately the same total number of parameters 
(around 4.5 million). This allows us to isolate the effect of the number 
of components on the model’s performance. For each configuration, we 
sample across all target domains once and compute the average MMD 
to evaluate performance.

Fig.  18 presents the MMD values for the proposed method across 
different component settings and shot numbers (4, 8, 16, and 32). As 
observed in Fig.  18, MMD decreases consistently with an increase in 
both the number of Gaussian components and the number of shots. This 
trend suggests that increasing the number of components enhances the 
expressiveness of the GMMs, enabling it to capture more complex time-
series patterns and thereby improving the quality of the generated ECP 
data. 

6.4. Effects of Gaussian component weights

In Section 4.1, we manually fixed the Gaussian mixture weights 
using Expression (5). However, the choice of mixture weights may 
influence the generative performance of the model. In this section, we 
investigate how different weight configurations affect the results.

The experiment is conducted on the transformer-level dataset de-
scribed in Table  1. To reduce computational cost, we train a series of 
smaller models, each containing approximately 450 K parameters. Four 
different weight settings are compared, (1) fixed weights determined 
by Eq.  (5), (2) learnable weights treated as trainable parameters of 
the model, and (3) two configurations of randomly initialized fixed 
weights.6 The number of Gaussian components is fixed to 4 for all 
experiments.

6 The two sets of random weights are initialized as {0.29, 0.27, 0.31, 0.13}
and {0.09, 0.27, 0.41, 0.23}, rounded to two decimal places.
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Table 6
Evaluation metrics for GMM with different weight settings.
 Method MMD KL KS WS MSE.M 

4-shot

 Fixed Weights 0.0742 0.6925 0.2124 8.4516 0.0703  
 Learnable Weight 0.0794 0.6255 0.2247 7.2900 0.0678  
 Random Weights 1 0.0870 0.7800 0.2311 8.4396 0.0808  
 Random Weights 2 0.0719 0.7445 0.2286 7.6008 0.0654 

8-shot

 Fixed Weights 0.0665 0.6000 0.1580 6.3096 0.0450  
 Learnable Weight 0.0678 0.5815 0.1575 5.7924 0.0433  
 Random Weights 1 0.0864 0.5770 0.1696 6.1044 0.0584  
 Random Weights 2 0.0679 0.6280 0.1775 6.4868 0.0405 

16-shot

 Fixed Weights 0.0516 0.5740 0.1002 3.2734 0.0164  
 Learnable Weight 0.0475 0.5556 0.1180 3.2092 0.0109  
 Random Weights 1 0.0626 0.5715 0.1085 3.3307 0.0166  
 Random Weights 2 0.0466 0.5673 0.0971 3.3450 0.0103 

32-shot

 Fixed Weights 0.0452 0.0519 0.0582 2.1822 0.0029  
 Learnable Weight 0.0420 0.0522 0.6019 2.2137 0.0037  
 Random Weights 1 0.0585 0.0538 0.6056 2.2086 0.0033  
 Random Weights 2 0.0564 0.0595 0.1637 2.2672 0.0028 

Table  6 reports the performance of different weight configurations. 
From these results, we observe that under the same number of compo-
nents and the same ECP modeling context, the choice of weight setting 
does not lead to substantial performance differences. Though, theoret-
ically, the learnable weight (weight setting two) should provide more 
flexibility to the method. We think a possible explanation is similar to 
the design of diffusion models [72], in which the noise-adding schedule 
is typically fixed, and making it learnable does not consistently improve 
generation quality. In our case, a slightly different weight assignment 
may induce large changes in the mean and covariance of each Gaus-
sian component. Consequently, the additional flexibility of learnable 
weights may be offset by the instability it introduces, which disrupts 
the optimization of means and covariances during training.

6.5. Effects of covariance design

In Section 4.1, we assumed a diagonal covariance matrix for each 
Gaussian component. While computationally efficient, this assumption 
may restrict the expressiveness of the model. In this section, we investi-
gate whether introducing additional flexibility in covariance modeling 
can improve generative performance.

Directly learning a full covariance matrix would lead to a large 
number of trainable parameters and deviates significantly from our 
initial model design. Instead, we introduce a structured and scalable 
parameterization that allows us to control the degree of covariance 
flexibility. In the original setting, we learn a vector 𝜎 and define the 
covariance of each Gaussian component as 𝛴 = diag(𝜎). Here, we extend 
this formulation by parameterizing the covariance using a low-rank 
approximation [73] as 
𝛴 = 𝑈⊤𝑈 + 𝑎𝐼, (14)

where 𝛴 ∈ R𝑇×𝑇 , 𝑎 > 0 is a small scalar, and 𝑈 ∈ R𝑟𝑎𝑛𝑘×𝑇  with 

𝑈 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎1
𝜎2
⋮

𝜎rank

⎤

⎥

⎥

⎥

⎥

⎦

 representing a set of learned basis vectors. By increasing 

the 𝑟𝑎𝑛𝑘, we can gradually enhance the flexibility of the covariance 
model without directly learning a full 𝑇 ×𝑇  matrix (which corresponds 
to 𝑟𝑎𝑛𝑘 = 𝑇 ), thereby enabling finer–grained control and analysis of 
covariance structure.

The experiment is conducted on the transformer-level dataset de-
scribed in Table  1. We train a series of models with different rank values 
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Table 7
Evaluation metrics for GMM with different ranks.
 Method MMD KL KS WD MSE.M 

4-shot

 Original Setting 0.0681 0.6335 0.1566 7.3467 0.0497 
 Rank 2 0.0957 0.6229 0.2864 8.6191 0.0611  
 Rank 3 0.1091 0.7148 0.3254 9.7281 0.0679  
 Rank 5 0.1101 0.7758 0.3092 10.6939 0.0695  
 Rank 10 0.1149 0.8070 0.3187 10.7284 0.0709  

32-shot

 Original Setting 0.0439 0.5886 0.1086 5.2426 0.0103 
 Rank 2 0.0664 0.6623 0.2070 6.2439 0.0303  
 Rank 3 0.0653 0.6546 0.2082 6.2404 0.0241  
 Rank 5 0.0692 0.7033 0.2687 6.5019 0.0321  
 Rank 10 0.0713 0.7203 0.2723 6.9416 0.0573  

of approximately the same amount of paramters (around 1.8 million) 
and test the 4-shot and 32-shot scenarios.

Table  7 presents the evaluation metrics for GMMs with different 
covariance ranks. Interestingly, the original configuration (diagonal 
covariance) consistently yields the best overall performance in both 4-
shot and 32-shot experiments. This result may seem counterintuitive 
at first, as one might expect models with greater expressiveness to 
better match the distribution. However, we attribute this outcome to 
two main factors. First, the nature of the problem setting. The target 
domain is data-limited, requiring the model to perform inference under 
few-shot conditions. For example, in the 4-shot case, only 4 × 96 =
384 observed values are available at inference time. In contrast, a 
GMM with 𝑘 components requires predicting 𝑘 × (96 + rank × 96)
parameters, meaning the parameter space expands with the covariance 
rank. When the number of learnable parameters largely exceeds the 
number of available observations, the model becomes more prone to 
unstable. Second, challenges in Within-Domain Tuning. Similarly, the EM 
algorithm must estimate a significantly larger number of parameters 
with limited data, potentially decreasing the robustness of the Within-
Domain Tuning process. In such circumstances, a simpler covariance 
structure – such as the diagonal form – provides better generalization, 
particularly in the context of residential ECP modeling in this study.

7. Discussion

In Sections 5.2 and 5.3, we compare the proposed FSL method with 
several benchmarks. We show that the proposed method has better 
performance than other benchmarks. However, We observe that the 
superiority of our method is much more pronounced in the experi-
ments of Section 5.2, whereas the improvements in Section 5.3 are 
comparatively weaker. This discrepancy may be primarily explained 
by the amount of source-domain knowledge that can be transferred. 
In Section 5.2, the transformer is trained on thousands to tens of 
thousands of source domains, enabling it to acquire rich and diverse 
domain knowledge. In contrast, in Section 5.3, only a few hundred 
source domains are available. Such a limited source-domain dataset 
constrains the diversity of learned representations and thus leads to 
a relatively smaller performance gain. A potential solution to this 
limitation is to train a foundation model using external data sources, 
thereby allowing the model to learn a broader spectrum of domain-
invariant patterns. For example, acquiring additional historical solar 
datasets and pre-training the transformer on them may help extract 
universal characteristics of solar generation, which can then be trans-
ferred effectively to the target domains. However, we think it is crucial 
that the external datasets share common statistical patterns with the 
target domains, otherwise, the transferred knowledge may be irrelevant 
or even detrimental to the final performance due to negative transfer.

Additionally, in Section 5.2 and Fig.  7, we show that when a small 
number of samples are available (e.g., 𝑛𝑘𝑡 > 1), the MMD of the 
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modeled ECP distribution is significantly closer to the ground truth than 
the benchmarks (TimesNets). However, we did not explicitly explain 
why the performance remains less effective when only a single sample 
is available (i.e., 𝑛𝑘𝑡 = 1). We think this is because, under extreme 
data scarcity, it becomes difficult for both steps – Within-domain Tuning
and Knowledge-transfer Tuning – to infer a representative pattern of 
the target domain. Due to the high variability of residential ECP data, 
a single daily profile can correspond to many different underlying 
consumption behaviors. As discussed in Section 6.2 and illustrated in 
Fig.  15, some ECP samples are more informative and distinguishable 
than others, contributing more to the predicted GMM parameters. 
When only one sample is available, the probability of observing such 
an informative profile decreases, making it challenging for the model 
to infer the underlying distribution accurately.

Moreover, In Section 6, we conduct a broad ablation study to exam-
ine the contribution of different components of the proposed method. 
Regarding Within-domain Tuning (𝑧-step EM), Fig.  16 shows a clear 
performance gap between models with and without this refinement, 
demonstrating its effectiveness. For Knowledge-transfer Tuning, Fig.  17 
illustrates that adding PE can degrade performance as the number 
of shots increases, since additional shots introduce more noisy PE 
information into the learning process. For the number of Gaussian 
components, Fig.  18 shows that increasing the number of components 
consistently improves performance, indicating that the added expres-
siveness helps capture more complex ECP patterns. Regarding Gaussian 
mixture weights, Table  6 compares fixed weights, randomly selected 
fixed weights, and learnable weights. We observe no significant per-
formance difference across these settings. As discussed in Section 6.4, 
this is likely because the additional flexibility of learnable weights 
introduces instability, as a small perturbations in the weights can 
result in large changes in the means and covariances of the Gaussian 
components, offsetting any potential gain. Finally, we tested covariance 
matrices with a increasing expressiveness by varying the rank in Eq. 
(14). As shown in Table  7, higher-rank covariances do not outperform 
the diagonal baseline. As discussed in Section 6.5, when the number of 
learnable parameters becomes large relative to the available observa-
tions, both Knowledge-transfer Tuning and Within-domain Tuning become 
less robust. In contrast, increasing the number of Gaussian components 
does not harm stability, because each component remains an isotropic 
Gaussian that can be reliably learned even under few-shot conditions. 
Thus, we think increasing rank is a less stable approach than increasing 
the number of mixture components, given the current data scale.

Finally, in Section 5.6, we present an interpretability analysis of the 
proposed method. In Section 5.4, we compare the proposed method 
with several conditional generative model benchmarks and demon-
strate its advantages in few-shot ECP generation by leveraging Trans-
former’s modeling ability and removing PE. In Section 5.5, we further 
compare our method with fine-tuning baselines to show its efficiency 
in terms of required time. As mentioned in Section 1, data scarcity 
is widespread in energy systems due to metering errors and privacy 
restrictions. The proposed method is therefore particularly beneficial 
for consumption and generation profile modeling under limited data, 
and can support a range of higher-level tasks. For example, the gener-
ated data can be used to train downstream deep learning models or to 
support system-level analyzes. Moreover, given the rapid deployment of 
IoT-based measurement infrastructures, our method has the potential to 
be applied to other domains with similar data scarcity challenges, such 
as water consumption, heat demand, or smart-building sensor data.

However, we note that although the current method sufficiently 
meets the experimental requirements of the study, it remains con-
strained by certain assumptions, such as Gaussianity and the use of 
fixed covariance structures. These assumptions may limit its perfor-
mance in domains that demand higher model expressiveness. Looking 
forward, we believe that two challenges should be addressed simultane-
ously to further improve few-shot ECP modeling, (1) the development 
of a more advanced domain knowledge transfer framework, potentially 
in the form of a foundation model, and (2) the use of more expressive 
distribution modeling techniques, such as copula-based representations, 
to better capture complex statistical dependencies.
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8. Conclusion

In this paper, we proposed an FSL method for ECP modeling that 
combines a Transformer encoder with Gaussian Mixture Models. We 
evaluated the proposed method on five datasets: the 15-minute ECP 
dataset, 30-minute ECP dataset, 60-minute ECP dataset, 15-minute 
solar generation profile, and 15-minute transformer-level ECP dataset. 
The results show that our method outperforms benchmark models such 
as CVAE, CFLOW, CDDPM, and TimesNet in terms of distributional 
metrics (MMD, KL, KS, WD, MSE.A), and can accurately estimate the 
original ECP distribution using only a small portion of the dataset 
(e.g., as little as 1.6% of the complete domain dataset).

Furthermore, we compared our method with a general DL-based 
generative model and demonstrated that our proposed approach is
order-invariant, which contributes to its superior performance compared 
to CVAE. We also showed that our method is significantly more effi-
cient than the classical fine-tuning mechanism. By replacing gradient 
descent-based model training/tuning for the target domain with EM 
in batch, our method achieved a speedup of thousands to potentially 
more than thousands of times. As a result, the proposed method is highly 
scalable and well-suited for applications involving thousands or even 
millions of domains.

We also provided interpretability and ablation studies to analyze the 
behavior of the framework. These results demonstrate how individual 
ECP samples influence GMM parameter estimation, and show that the 
effectiveness of Within-domain Tuning, removal of PE, and a lightweight 
GMM structure forms a stable and effective design. Increasing the 
number of Gaussian components improves expressiveness, whereas 
increasing covariance rank offers no benefit under few-shot conditions.

Looking ahead, the framework’s Gaussian assumptions may limit its 
expressiveness for highly skewed or heavy-tailed loads. Future work in-
cludes integrating more advanced distribution models such as copulas, 
and exploring foundation-model–level pretraining to enhance transfer-
ability under extreme data scarcity. Beyond energy systems, the method 
can also benefit other IoT domains with limited observations, such as 
water usage, heat demand, and smart-building sensing.
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Appendix

Multi-Kernel Maximum Mean Discrepancy . The MMD, or specifi-
cally, Multi-Kernel MMD (MK-MMD), is defined as 

MK-MMD2(O,G) = 1
𝑁(𝑁 − 1)

𝑁
∑

𝑖≠𝑗

𝑃
∑

𝑝=1
𝑘𝑝(𝑥𝑖, 𝑥𝑗 )

− 2
𝑁2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑃
∑

𝑝=1
𝑘𝑝(𝑥𝑖, 𝑥′𝑗 )

+ 1
𝑁(𝑁 − 1)

𝑁
∑

𝑖≠𝑗

𝑃
∑

𝑝=1
𝑘𝑝(𝑥′𝑖 , 𝑥

′
𝑗 ),

(15)

where 𝑘𝑝 denotes the 𝑝th kernel function (Gaussian kernel), 𝑥𝑖 ∼ O
are ECP samples drawn from the original dataset (target domain), and 
𝑥′𝑗 ∼ G are ECP samples generated from the modeled GMMs. We use 
an equal number of samples from both distributions, denoted as 𝑁 . All 
kernels are equally weighted in this formulation.
Kullback–Leibler Divergence (KL). For two probability densities 𝑝(𝐱)
and 𝑞(𝐱), the KL divergence is defined as 

𝐷KL(𝑝 ∥ 𝑞) = ∫ 𝑝(𝐱) log
(

𝑝(𝐱)
𝑞(𝐱)

)

𝑑𝐱. (16)

In practice, we approximate the integral empirically over samples from 
𝑝 and 𝑞.
Wasserstein Distance (WD). Given distributions 𝑃  and 𝑄, the 1-
Wasserstein distance is 

𝑊 (𝑃 ,𝑄) = inf
𝜋∈𝛱(𝑃 ,𝑄)∫R𝑑×R𝑑

‖𝐱 − 𝐲‖ 𝑑𝜋(𝐱, 𝐲), (17)

where 𝛱(𝑃 ,𝑄) denotes all joint distributions with marginals 𝑃  and 𝑄. 
In experiments, the distance is computed using empirical samples from 
each distribution.
Kolmogorov–Smirnov Distance (KS). For empirical CDFs 𝐹𝑃 (𝐱) of real 
samples and 𝐹𝑄(𝐱) of generated samples, 

𝐷KS(𝑃 ,𝑄) = sup
𝐱

|

|

𝐹𝑃 (𝐱) − 𝐹𝑄(𝐱)|| . (18)

MSE of Autocorrelation (MSE.A). Let 𝑅(O) and 𝑅(G) denote the 
empirical autocorrelation vectors computed from the original and gen-
erated datasets, respectively. The metric is defined as 

MSE.A = 1
𝑇

𝑇
∑

𝑡=1

(

𝑅𝑡(O) − 𝑅𝑡(G)
)2 , (19)

where 𝑇  is the maximum lag considered. A smaller value indicates that 
the temporal correlation structure of the generated data better matches 
the real data.
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