
 

Contents lists available at ScienceDirect

International Journal of Human - Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs  

Understanding trust toward human versus AI-generated health information 

through behavioral and physiological sensing

Xin Sun a, b,∗ iD, Rongjun Ma c iD, Shu Weid, e, Pablo Cesarb, f iD, Jos A. Bosch a, 

Abdallah El Alib, g,∗∗ iD
a University of Amsterdam, Amsterdam, The Netherlands
b Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands 
c Aalto University, Espoo, Finland
d University of Oxford, Oxford, United Kingdom
e Yale School of Medicine, New Haven, CT, United States
f Delft University of Technology, Delft, The Netherlands
g Utrecht University, Utrecht, The Netherlands

G R A P H I C A L A B S T R A C TH I G H L I G H T S

• Present two complementary studies: 

mixed-methods survey (N = 142) and 

lab study (N = 40) with eye-tracking 

and ECG/EDA sensing.

• Investigate trust in AI- and human-

generated health information, varying 

source, disclosed label, and information 

type.

• LLM-based information is trusted more 

than human information, while human-

labeled information is trusted more than 

AI labels.

• Gaze and physiology act as implicit trust 

factors: predict trust scores with 73 % 

and classify source with 65 % accuracy.

• Provide design considerations for trans­

parency labeling and trust calibration in 

LLM-powered health information inter­

faces.  
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A R T I C L E  I N F O

Dataset link: https://drive.google.com/drive/

folders/1gat5ZyRFCi5gd_vL3wRGG1KAvbmn_

s9x?usp=drive_link Supplementary Study 

Stimuli (Original data)
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A B S T R A C T

As AI-generated health information proliferates online and becomes increasingly indistinguishable from human-

sourced information, it becomes critical to understand how people trust and label such content, especially when 

the information is inaccurate. We conducted two complementary studies: (1) a mixed-methods survey (N=142) 

employing a 2 (source: Human vs. LLM) × 2 (label: Human vs. AI) × 3 (type: General, Symptom, Treatment) 

design, and (2) a within-subjects lab study (N=40) incorporating eye-tracking and physiological sensing (ECG, 

EDA, skin temperature). Participants were presented with health information varying by source-label combina­

tions and asked to rate their trust, while their gaze behavior and physiological signals were recorded. We found 

that LLM-generated information was trusted more than human-generated content, whereas information labeled as 

human was trusted more than that labeled as AI. Trust remained consistent across information types. Eye-tracking 

and physiological responses varied significantly by source and label. Machine learning models trained on these 

behavioral and physiological features predicted binary self-reported trust levels with 73 % accuracy and infor­

mation source with 65 % accuracy. Our findings demonstrate that adding transparency labels to online health 

information modulates trust. Behavioral and physiological features show potential to verify trust perceptions and 

indicate if additional transparency is needed.

Fig. 1. The hardware setup for presenting the text stimulus and collecting 

physiological signals, eye movement, and pupil dilation.

1 . Introduction

The internet has become a primary source of health informa­

tion (Cline and Haynes, 2001; Sillence et al., 2007), with 58.5 % of 

American adults (Wang et al., 2022) (survey in 2022) and 55 % of 

Europeans (Eurostat, 2022) (survey in 2022) using online sources for 

health-related searches. This shift has transformed how individuals ac­

cess and engage with health-related content. Online health resources 

encompass a broad range of digital tools, including professional medical 

websites (National Institutes of Health, 2023; MAYO CLINIC, 2023) and 

AI-driven tools like health chatbots powered by Large Language Models 

(LLMs) (Wu et al., 2023). These tools have made health information 

more accessible and convenient than ever, yet they also require users 

to make critical choices about which sources of the retrieved health in­

formation to trust (Liu et al., 2023; Sillence et al., 2005). These trust 

decisions directly influence health-related choices, many of which carry 

significant health risks (Wang et al., 2023; Marecos et al., 2024). As 

a result, understanding how different information sources shape trust 

perceptions has become increasingly critical (Bates et al., 2006). Some 

prior studies find that users tend to trust human-generated information 

more (Broom, 2005; Kerstan et al., 2023; Walker et al., 2024; Reis et al., 

2024), while other work suggests that people may prefer algorithmic 

or AI-generated judgments over human ones (Logg et al., 2019; Shekar 

et al., 2024). These mixed findings suggest that trust in online informa­

tion varies by source and context, and remains insufficiently understood, 

especially in LLM-powered health contexts. 

Disclosed labeling of online information signals its source, but can 

also shape perceptions independently of the actual source, making it an 

essential dimension of understanding trust. Misleading labels or unclear 

sourcing may result in misinformation and poor health decisions (Desai 

et al., 2022; Marecos et al., 2024). Labeling is increasingly mandated 

by regulations, such as the European AI Act (El Ali et al., 2024). 

Research shows that disclosed labeling (e.g., with/without indicating AI 

involvement), can significantly influence trust independently when the 

information source is identical (Reis et al., 2024). In AI-powered tools, 

labeling plays a critical role, especially as users increasingly struggle 

to distinguish between human- and AI-generated content (Rathi et al., 

2025). In LLM-powered systems, the actual content source and the dis­

closed label can diverge, for example, AI-generated content may be 

labeled as human-authored. While prior research has independently ex­

amined the effects of information source (e.g., AI vs. human) (Walker 

et al., 2024; Johnson et al., 2023) and labeling (Reis et al., 2024; Rae, 

2024) on trust, there remains a critical gap in understanding how these 

two factors interact. Yet, both can significantly influence perceived trust 

in health information. This gap is especially important in high-stakes 

contexts like personal health, where trust directly influences individuals’ 

health decision-making and behavioral outcomes (Marecos et al., 2024). 

Our work addresses this need by manipulating the content source and its 

disclosed label jointly to investigate their combined effects on people’s 

trust perception in health information, particularly in the era of LLMs.

To understand such joint effects of information sources and disclosed 

labels on people’s perceived trust, we ask: (RQ1) How do the actual 

source, disclosed label, and type of personal health information 

influence people’s perceived trust in online health information?

To answer this research question, we employed a mixed-methods ap­

proach in Study 1 (see Fig. 2a). Specifically, we conducted an online 

crowdsourcing survey (N=142) using a 2 × 2 × 3 factorial design. 

Source (Human Professional vs. LLM) was treated as a between-subjects 

variable to minimize potential biases from participants directly compar­

ing human and AI sources. In contrast, Label (Human Professional vs. 

AI) and health-information Type (General vs. Symptom- vs. Treatment-

related) were within-subjects variables to enable a nuanced comparison 

of trust perceptions across different labeling and information types 

within the same participant. This mixed design balanced the reduction 

of cross-condition biases with the sensitivity of within-subject compar­

isons. Participants rated their perceived trust in the health information 

they received using standardized self-report scales, which served as our 

primary trust measure outcome.

Although self-reported measures we adopted for Study 1 are widely 

used due to their simplicity and directness, research by  Chen et al. 

(2021) and  Kohn et al. (2021) argues that self-reported trust measures 

are subjective, which makes them more vulnerable to biases like social 

desirability bias and the Initial Elevation phenomenon (Anvari et al., 

2023). These biases may compromise the reliability and validity of self-

reported trust assessments. With the growing use of sensing technologies 
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Fig. 2. Visual summary of the studies in this paper. (a) Study 1: Mixed-methods crowdsourcing survey study to measure perceived trust; (b) Study 2: Within-subjects 

lab study to measure perceived trust, as well as behavioral and physiological responses.

and recent interest in Human—Computer Interaction research to draw 

on physiological sensing for designing or evaluating interactive sys­

tems (Chiossi et al., 2024), several prior studies (Ajenaghughrure 

et al., 2020; Akash et al., 2018; Lim et al., 2022) argue that behav­

ioral and physiological data can provide a complementary perspective 

for understanding trust alongside self-reported measures. Behavioral 

patterns such as eye movements and physiological responses, as as­

sessed by Electrocardiogram (ECG) (Ajenaghughrure et al., 2020) and 

Electrodermal Activity (EDA) (Babaei et al., 2021), could reveal how in­

dividuals process information and make trust-related decisions in health 

contexts. For example, eye movement patterns, such as fixation dura­

tion and saccade behaviors, can indicate cognitive engagement with the 

information, while physiological responses like heart rate variability 

(HRV) (Ajenaghughrure et al., 2020; Tiwari et al., 2021; Ahmad and 

Alzahrani, 2023) and skin conductance levels (SCL) can reveal emo­

tional arousal and stress responses. These implicit measures may further 

help interpret user trust perceptions (Babaei et al., 2021; Ahmad and 

Alzahrani, 2023). Thus, exploring these behavioral and physiological in­

dicators can contribute to a more comprehensive understanding of trust 

formation in digital health contexts (Akash et al., 2018; Ajenaghughrure 

et al., 2020; Wang, 2018) and further, help develop strategies to enhance 

the trustworthiness of online health information, especially given the 

growing use of LLM-powered tools for health advice (Garg et al., 2023;

Lee et al., 2023; Biswas, 2023).

Building on RQ1, we adopt behavioral and physiological data as a 

complementary lens for understanding trust. We ask: (RQ2) Can be­

havioral and physiological signals be used to understand trust 

perceptions toward human- and AI-generated health information?

To address this research question, we conducted a laboratory study 

(Study 2, N = 40) using a 2 × 2 × 3 fully within-subjects design. We 

collected eye-tracking data (e.g., gaze patterns, pupil dilation) and phys­

iological signals (e.g., ECG, EDA, and skin temperature) to examine 

whether these implicit signals vary as manipulated by source and la­

bel. Additionally, we explored how these signals relate to participants’ 

self-reported trust perceptions. By allowing each participant to serve as 

their own control, this design minimized variability due to individual 

differences and maximized the robustness of condition-specific infer­

ences. Importantly, participants were not informed that labels could be 

intentionally mismatched with the actual source (i.e., cross-labeled) in 

both studies. This ensured that participants evaluated the health infor­

mation and its disclosed label as presented, without being influenced by 

a heightened awareness of potential labeling errors, thereby allowing 

us to more accurately assess their trust perceptions on both information 

itself and its labeling.

Online survey (Study 1) findings showed that the (actual) source of 

information significantly influenced trust perceptions, with participants 

displaying higher trust in LLM-generated health information compared 

with human professionals. Second, the labeling of the source played a 

crucial role: health information labeled as coming from human profes­

sionals led to significantly higher trust than information labeled as from 

AI, i.e., regardless of the actual source. Third, the type of health question 

did not significantly affect trust, alone or in interaction with label and 

source. Together, these observations suggested that perceived trust is 

not influenced by the nature of the health query, and that the source and 

labeling of the health information are the main determinants. The lab­

oratory study (Study 2) supported the survey findings, with additional 

insights: gaze features, such as fixation, saccade, and pupil diameter, var­

ied significantly based on the source and labeling of health information. 

Moreover, physiological features, such as heart rate variability (HRV, 

measured as the root mean square of successive differences, RMSSD) 

and skin temperature, differed when participants engaged with infor­

mation with different labels. These findings indicated that the source 

and labeling of health information influence both behavioral and phys­

iological responses. Further prediction tasks were performed based on 

behavioral and physiological data, yielding 0.35 𝑅2 for predicting trust 

scores and 73 % accuracy in classifying binary trust levels (high vs. low). 

Additionally, we achieved 65 % accuracy in classifying the source of 

health information. These results underscored the potential of leverag­

ing behavioral and physiological signals as complementary indicators 

to understand trust perception toward human vs. AI-generated health 

information.

Our exploratory work offers two primary contributions: (1) We pro­

vided empirical evidence showing that trust in online health information 

is influenced both by its actual source and disclosed label. (2) We found 

that trust perceptions in personal health information vary at behavioral 

and physiological levels, offering complementary insights beyond self-

reported trust and helping to identify discrepancies between the explicit 

(i.e., self-reported) and implicit trust-related responses. To our knowl­

edge, this is one of the few studies that combines physiological (e.g., 

HRV, skin temperature) and behavioral (e.g., gaze) signals to under­

stand trust in AI-generated health information. Our work highlights the 

importance of considering AI transparency labels when measuring trust 

International Journal of Human - Computer Studies 209 (2026) 103714 

3 



X. Sun, R. Ma, S. Wei et al.

in health information and the vulnerability of trust abuse due to mis­

labeling. It further opens the possibility of verifying trust perceptions 

and inferring if and when to apply transparency labels based on sensed 

behavioral and physiological data.

2 . Related work

2.1 . Trust in online health information seeking

Trust is a multifaceted psychological construct essential to both 

interpersonal and human-technology interactions. Mayer, Davis, and 

Schoorman’s integrative ABI model of trust (Mayer et al., 1995) defines 

trust as a willingness to be vulnerable to the actions of another party, 

based on the expectation that the party possesses the performance (abil­

ity), intends to do good (benevolence), and adheres to a set of principles 

that the trustor finds acceptable (integrity). Extending this concept to 

the digital age, (Lee and See, 2004, p. 51) define trust in technology as: 

“An attitude that an agent will achieve an individual’s goal in a situation 

characterized by uncertainty and vulnerability”.

In the context of health, trust is particularly important due to the 

sensitive nature of health information and its impact on health-related 

decision-making, which can have dire health consequences should it be 

incorrect (Wang et al., 2023; Marecos et al., 2024). Trust formation in 

health contexts is complex and influenced by both intrinsic and extrin­

sic factors, including individual characteristics such as prior knowledge, 

health literacy, and external cues, such as source credibility, interface 

design, as highlighted by  Vereschak et al. (2024). For instance, numer­

ous studies (Bates et al., 2006; Liu et al., 2023; Sillence et al., 2004;

Singal and Kohli, 2016; Dutta-Bergman, 2003; Lucassen and Schraagen, 

2010) have indicated that the credibility of the information source is 

crucial, the design (Fogg et al., 2001; Wathen and Burkell, 2002; Fogg 

et al., 2000; Flanagin and Metzger, 2007) and usability (Davis and Davis, 

1989) of the health-related tools can significantly affect trust. User 

prior experience such as familiarity levels (Sillence et al., 2019), and 

user expectations (Guo, 2022) also influence trust perceptions as well. 

Moreover, users increasingly expect transparency, ethical AI practices, 

and data privacy, which further complicate trust calibration (Friedman 

et al., 1999; Bansal and Warkentin, 2022; di Sciascio et al., 2020; Ul 

Haque et al., 2023).

To conceptually integrate the literature and these multi-level trust 

influences, we draw on the MATCH framework (Liao and Sundar, 2022), 

a model that systematically captures the trustworthiness cues in human-

AI communication. Unlike trust models that focus on either the trustee’s 

attributes (e.g., classic ABI model) or interface-level cues (e.g., MAIN 

model Sundar, 2007), the MATCH framework offers a more integrated 

account of how trust is formed in AI systems by collectively integrating 

content quality, interface design, and user heuristics.

Specifically, MATCH organizes trust into three components: (1) 

Model Attributes. This dimension, drawn directly from the ABI 

model (Mayer et al., 1995), refers to the perceived ability and compe­

tence of the system. In our context, it relates to users’ perceptions of 

the quality and reliability of the information itself. It echoes the prior 

work revealing that the intrinsic quality of the information itself plays 

a critical role in shaping trust (Flanagin and Metzger, 2000; Sbaffi and 

Rowley, 2017; Wathen and Burkell, 2002; Fogg et al., 2000; Metzger and 

Flanagin, 2013). (2) Afforded Cues. These are extrinsic signals such as 

formatting, interface design or interaction patterns. Prior work shows 

that even subtle interface features like transparency labels (Kizilcec, 

2016; Yin et al., 2024) or content layout (Johnson et al., 2015; Fogg 

et al., 2001; Wathen and Burkell, 2002; Fogg et al., 2000; Flanagin and 

Metzger, 2007) can significantly influence trust judgments. (3) Trust 

Heuristics. MATCH uniquely accounts for the mental shortcuts users ap­

ply under uncertainty (e.g., quickly assessing that information labeled as 

“human-generated” is more trustworthy, or that “AI-generated” content 

is less reliable). It is often shaped by prior experience, health literacy, or 

cognitive and affective responses collectively (Lee and See, 2004). In our 

work, we further interpret these heuristic processes through behavioral 

and physiological signals, such as gaze patterns that may reflect users’ 

implicit trust-related responses. 

Grounded in the MATCH model, this work examines how both source 

information taps into model attributes, how labeling functions as an 

afforded trustworthiness cue, and how behavioral and physiological sig­

nals reflect user cognitive heuristic and affective processing of health 

information toward the trust-related judgments. While existing studies 

have investigated trust in AI- vs. human-generated content, few have 

systematically decoupled the actual source from the disclosed label to 

assess their independent and combined effects. Our exploration builds 

on the MATCH model and extends prior work by isolating and manipu­

lating both information source and labeling disclosure, allowing us to 

explore how these cues interact and shape trust formation in online 

health information seeking contexts.

2.2 . Source and label transparency in the age of LLMs

The internet has become a vital resource for health informa­

tion (Cline and Haynes, 2001), with websites like WebMD (WebMD, 

n.d.) and Mayo Clinic (MAYO CLINIC, 2023) providing expert-curated 

content. The rise of LLMs like ChatGPT (OpenAI, n.d.) has revolutionized 

access to online health information by offering conversational interac­

tions to health queries (Dalton et al., 2022). Trust in these LLM-powered 

tools is influenced by various factors (Rheu et al., 2020), including the 

perceived credibility of their responses, clarity of information, trans­

parency about how the information is generated (El Ali et al., 2024), and 

users’ familiarity and experiences using such AI technologies (Bickmore 

et al., 2005). Among these, information source (e.g., human-authored 

vs. AI-generated) plays a critical role in shaping trust. Research (Hesse 

et al., 2005; Bates et al., 2006; Lucassen and Schraagen, 2010) has 

shown that trust is significantly affected by the perceived credibility of 

information source. While LLMs have been effective in providing health 

information (Bickmore et al., 2005; Carlbring et al., 2023), concerns 

remain about their credibility and reliability. Although human profes­

sionals are traditionally viewed as authoritative and trustworthy due to 

their expertise (Kerstan et al., 2023; Broom, 2005), studies like  Logg 

et al. (2019) showed that users may trust AI for specific tasks, and 

Shekar et al. (2024) indicated that people overtrust AI-generated medi­

cal responses. However, other research (Reis et al., 2024; Kerstan et al., 

2023) highlighted people’s preferences for human-generated health ad­

vice, suggesting that trust varies based on context. Additionally,  Montag 

et al. (2023) found that trust in humans and AI may not be directly asso­

ciated, suggesting people have distinct trust mechanisms for each. These 

varied trust levels underscore the complexity of trust formation toward 

information from human and AI sources.

Labeling of information sources plays an additional key factor in 

shaping trust perceptions in the era of LLMs.  Jakesch et al. (2019) 

demonstrated that users perceive content as less trustworthy when it 

is labeled as AI-generated, even when the content quality is identical, 

which indicates that labeling influences how users perceive trustworthi­

ness. Similarly,  Reis et al. (2024) found that perceived AI involvement 

significantly impacts trust in digital medical advice, as participants in 

their study were less willing to follow health advice when they believed 

it was generated by AI rather than a human expert. Studies by  Walker 

et al. (2024) and Kerstan et al. (2023) have also shown that people tend 

to trust advice more when it comes from human professionals rather 

than from LLMs, especially when the source is explicitly stated.  Yin et al. 

(2024) found that while AI can create a sense of being heard, labeling 

content as AI-generated can reduce its perceived impact. These findings 

underscore how labels can significantly impact trust, even when AI per­

forms tasks effectively. Furthermore, Scharowski et al. (2023) explores 

the potential for AI certification labels (e.g., “Digital Trust Label” by the 

2023 Swiss Digital Initiative), and finds that such labels can mitigate 

data-related concerns surfaced by end-users such as data protection and 

privacy, however this came at the cost of other concerns such as model 

performance, which poses its own challenges. Nevertheless, these works 

International Journal of Human - Computer Studies 209 (2026) 103714 

4 



X. Sun, R. Ma, S. Wei et al.

highlight that transparent communication about how AI systems oper­

ate and the data sources they use can further enhance or maintain trust 

among users (Kizilcec, 2016; Logg et al., 2019).

As AI becomes more integral to health contexts, this work specifically 

explores the influence of source and labeling as critical extrinsic cues on 

trust in health information, offering insights for designing trustworthy 

LLM-powered health systems. Framed through the MATCH model (Liao 

and Sundar, 2022), these effects reflect how users interpret afforded cues 

(e.g., disclosure labels) and model attributes (e.g., inferred competence 

or benevolence of a human vs. AI source) when assessing trust. Labels 

operate as an interface-level factor that invokes trust heuristics, partic­

ularly under conditions of uncertainty. These trust dynamics highlight 

the importance of carefully designing how source and authorship are 

communicated in AI-powered health systems.

2.3 . Behavioral and physiological signals for understanding trust perception

Traditional research on trust perception has heavily relied on self-

reported assessments; however, many studies (Chen et al., 2021; Kohn 

et al., 2021) suggest behavioral and physiological signals may add a rele­

vant layer of information. Integrating these implicit measures helps offer 

a complementary understanding of trust in human and LLM-generated 

health information. For example, research by  Holmqvist et al. (2011) 

shows that eye movement metrics like fixation, saccade, and pupil dila­

tion provide insights into cognitive load and attention allocation during 

information processing. While these physiological indicators do not 

directly measure trust, they may reflect how users cognitively and affec­

tively engage with content they perceive as more important, credible, 

or challenging. For instance, increased pupil dilation, linked to higher 

cognitive load (Ahmad et al., 2020) and emotional arousal, may suggest 

deeper cognitive processing, which may co-occur when individuals are 

evaluating information for trustworthiness or making health-related de­

cisions. Although the relationship between trust, cognitive, and affective 

responses is complex, monitoring these signals may help identify mo­

ments of increased scrutiny or hesitation, offering indirect cues about 

trust-related states. As an example of such research,  Ji et al. (2024, 

2023) demonstrated that physiological signals, such as electrodermal 

activity, blood volume pulse, and gaze, vary meaningfully across differ­

ent information processing activities (e.g., reading, speaking, listening) 

during information-seeking tasks. Moreover, prior work has used be­

havioral data to explore how people engage with online news content, 

particularly in the context of misinformation. For instance, Abdrabou 

et al. (2023) found that gaze and mouse movement patterns could help 

distinguish between user exposure to real versus fake news, achieving 

moderate accuracy in identifying subconscious engagement with misin­

formation. Similarly,  Sü et al. (2021) showed that eye-tracking data 

reflected differences in how users read and process true versus false 

news articles, suggesting that such behavioral signals can offer a com­

prehensive understanding of how people implicitly respond to varying 

degrees of information credibility. Studies (Lu and Sarter, 2019; Wang, 

2018; Kohn et al., 2021; Holmqvist et al., 2011; Sevcenko et al., 2022;

Ayres et al., 2021) demonstrate that distinct gaze patterns are linked to 

trust levels, with higher fixation counts and longer duration typically 

indicating focused attention, greater cognitive engagement, and trust in 

the information. Saccades, characterized by the frequency and length 

of eye movements between fixations, often signal information verifi­

cation processes (Lu and Sarter, 2019; Wang and Stern, 2001; Wang, 

2019). These findings suggest that these multimodal implicit signals can 

be sensitive indicators of user cognitive effort and engagement, offering 

potential to infer user states such as trust or uncertainty in information 

processing contexts. 

Physiological features such as ECG (Ajenaghughrure et al., 2020), 

EDA (Babaei et al., 2021), and skin temperature (Ahmad and Alzahrani, 

2023) can be useful for understanding implicit responses related to 

trust. Heart Rate Variability (HRV), derived from ECG, reflects the level 

of stress and cognitive dissonance, with higher HRV indicating lower 

physiological arousal which is associated with relaxation, comfort, and 

higher trust levels (Tiwari et al., 2021; Kim et al., 2018; Thielmann 

et al., 2022). EDA measures, including Skin Conductance Level (SCL) 

and Skin Conductance Response (SCR) are similarly tied to emotional 

arousal, where lower conductance is used to infer greater comfort and 

trust (Babaei et al., 2021; Wang, 2018; Ahmad and Alzahrani, 2023). 

Similarly, changes in skin temperature are thought to reflect engagement 

levels, with higher temperature suggesting increased cognitive engage­

ment with information (Ahmad and Alzahrani, 2023). As investigated by 

prior work (Lee and See, 2004), trust perception, a complex, subjective 

cognitive and affective process, can be assessed using models by ana­

lyzing physiological (e.g., ECG and EDA (Ajenaghughrure et al., 2021), 

EEG Akash et al., 2018) and behavioral (e.g., gaze patterns  Lim et al., 

2022; Parikh, 2018) indicators. These models help reduce subjective bias 

and can provide real-time insights into trust responses, not least of which 

is an additional verification means alongside self-reports.

These behavioral and physiological signals provide insights into 

users’ implicit responses, capturing attention, emotional arousal, and 

cognitive engagement that may not surface in self-reports. In our work, 

we explore whether implicit signals vary meaningfully across condi­

tions of information source and labeling. We interpret these signals 

cautiously as indirect indicators that may correlate with trust. Within 

the MATCH model (Liao and Sundar, 2022), these sensing signals map 

onto the trust heuristics component, reflecting how users internally pro­

cess trustworthiness cues that influence trust. Unlike explicit cues like 

source attributions, sensing signals help uncover how users process those 

cues implicitly, for example, when trust is assigned reflexively versus 

analytically. By revealing how trust is formed or challenged beneath ex­

plicit awareness, these signals complement extrinsic cues and help build 

a more comprehensive picture of trust in LLM-powered health contexts.

2.4 . Synthesis and research gap

As summarized in Table 1, prior research has largely treated source 

and label in isolation, and separately examined how information sources 

and disclosed labels influence trust in online information, but findings 

are mixed. Some studies report that users trust human-generated content 

more due to perceived expertise and accountability (Kerstan et al., 2023;

Walker et al., 2024), while others show higher trust in AI-generated in­

formation, citing perceived consistency or objectivity (Logg et al., 2019;

Shekar et al., 2024). Research on labeling further shows that disclosing 

AI involvement often reduces trust even when content is identical (Reis 

et al., 2024; Jakesch et al., 2019; Yin et al., 2024). However, few studies 

have systematically disentangled the effects of source and label together, 

or explored whether these effects vary across different information types 

in health contexts (e.g., general, symptoms, treatment). 

Moreover, prior research relies heavily on self-reported trust, which 

may not capture users’ implicit cognitive and emotional responses in­

volved in trust judgments. Behavioral and physiological signals offer 

promising but underexplored means of revealing how users attend to, 

process, and evaluate health information beyond what they report, 

which can offer complementary insights into how trust is formed beyond 

self-reports.

This leaves critical gaps (summarized in Table 1) in understanding 

how information source, labeling, and content type jointly influence 

both users’ explicit trust (self-reports) and implicit responses (behavioral 

and physiological) in the context of LLM-generated health information. 

To address this, our work draws on the MATCH framework (Liao and 

Sundar, 2022), which integrates: Model Attributes (i.e., information 

source), Afforded Cues (i.e., disclosed label and information types), and 

Trust Heuristics (cognitive or emotional responses implicitly reflected in 

sensing signals). This integrated approach allows us to investigate not 

only how trust varies across source, label, and information type, but also 

whether behavioral and physiological signals reflect trust-related judg­

ments in implicit but meaningful ways when users engage with AI- and 

human-generated health information in LLM-powered contexts. 
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Table 1 

Comparative synthesis of prior studies on source and label effects in trust perception and the research gaps we address in this work.

Manipulation Source Labeling Source + Labeling

Self-reports Higher trust in AI than humans:

Logg et al. (2019) (General context); Shekar et al. 

(2024) (Health context);

Labels increase trust:

Scharowski et al. (2023) (General context);

This work (Study 1):

Source+Label joint effects

Higher trust in humans than AI:

Walker et al. (2024) (Binary decision-making); Kerstan 

et al. (2023); Hesse et al. (2005) (Health context);

AI-Human mixed labels decrease trust:

Jakesch et al. (2019) (Marketing context);

AI labels decrease trust: Yin et al. (2024); Rae (2024) 

(General context); Reis et al. (2024) (Health context);

Self-reports + Sensing Trust differs by sources (Gaze Data in Fake News) This work (Study 2):

Trust toward human and AI are not associated (EEG 

Data)

Gaze+Physio in health context

3 . Study 1: online survey

3.1 . Study methods

3.1.1 . Design

We conducted an online survey using a mixed 2 (IV1 - Actual 

Source: Human professionals vs. LLM) × 2 (IV2 - Disclosed Label: Human 

professionals vs. Artificial Intelligence) × 3 (IV3 - Information Type: 

General vs. Symptom vs. Treatment) factorial design to explore peo­

ple’s perceived trust in online health information. The source of health 

information (IV1) was set as a between-subjects variable to explore 

whether people have different trust perceptions based on the source 

(human professionals vs. LLM), which might inherently present infor­

mation in distinct styles. A within-subjects design for the source could 

introduce biases in perceived quality and trustworthiness due to these 

stylistic differences. Additionally, using a between-subjects design for 

the source helps isolate the effect of labeling (IV2), making the findings 

clearer and more robust. Conversely, for the label of the source (IV2) 

and the type of health information (IV3), we opted for a within-subjects 

design to allow direct comparisons of trust perception across different 

labels and types while keeping the source uniform for each participant. 

This approach reduces individual variability, ensuring a clearer separa­

tion of source effects on trust variances while enabling robust analysis 

of influences from labeling and types of health information. Therefore, 

during the completion of the survey, each participant read the informa­

tion either generated by human professionals or LLMs, and each of them 

experienced six distinct conditions.

3.1.2 . Health information

Sets of health information (question and answer pairs) from human 

professionals were selected from an open-sourced dataset (Ben Abacha 

and Demner-Fushman, 2019) due to its diverse range of health ques­

tions, authored by certified professionals. This ensures the reliability and 

authenticity of the information used in this work. To produce compara­

ble and consistent LLM-generated information, we used the Generative 

Pre-trained Transformer 4 (GPT-4) model (OpenAI, 2024) (version: “gpt-

4–0125-preview” through the official API) and prompted it with selected 

health questions and accompanying instructions (e.g., “Health ques­

tion: [question]. Please give an answer to the above question within 

[wordcount] words?”) to generate answers of similar length to those 

from human professionals. To ensure consistency and mitigate poten­

tial misinformation, all LLM-generated responses were independently 

reviewed by two researchers using the corresponding human-authored 

answers as references. The review criteria were consistency in length, 

format, topic relevance, and absence of harmful content. Only responses 

with full agreement were included, following established HCI prac­

tices (McDonald et al., 2019). The health information falls into three 

categories, reflected in both the clinical process and the dataset’s val­

idated taxonomy (Ben Abacha and Demner-Fushman, 2019): General 

information: provides answers to general health topics (e.g. “Do you 

have information about weight control?”); Symptoms-related infor­

mation: focuses on symptoms and potential diagnoses (e.g. “What are 

the symptoms of burns?”); Treatment-related information: provides 

treatment options for specific conditions (e.g. “What to do for burns?”). 

This categorization aligns with clinical practice, which commonly fol­

lows a three-stage diagnostic process (Bridley et al., 2013; Balogh 

et al., 2015): assessment (general inquiry), diagnosis (symptom eval­

uation), and treatment planning (intervention). These types capture a 

progression from low- to high-stakes information, allowing us to explore 

whether trust perceptions vary by the nature of health content.

Twenty-five questions were selected from each category resulting in 

a question set with 75 questions in total, ensuring a comprehensive rep­

resentation of individual health questions. The complete list of health 

information used in the study is included as Supplementary Material.

3.1.3 . Measures

Demographics and prior experience. In the pre-survey, we col­

lected participants’ demographic information (age, gender, education, 

occupation) and their experience in online health information seeking, 

using two questions: “How often do you search for health informa­

tion online?” rated on a 5-point Likert scale from Never to Daily; and 

“How long have you been using online sources for health information 

searching?” with options ranging from Less than 1 year to More than 10 

years.

Propensity of trust in technology (PPT) (Jessup et al., 2019) was 

used to assess inherent trust in technology before participants read the 

health information. It consists of 6 items examining people’s general 

trust in technology (e.g. “I think it’s a good idea to rely on technology for 

help”). All items were scored on a 5-point Likert scale from 1 (Strongly 

Disagree) to 5 (Strongly Agree) (Cronbach’s 𝛼 = 0.71).

eHealth and AI literacy. As part of the pre-survey, we also measured 

participants’ literacy on eHealth and AI separately using two adapted 

questionnaires from eHEALS: The eHealth Literacy Scale (Norman and 

Skinner, 2006) and MAILS - Meta AI Literacy Scale (Carolus et al., 2023). 

All the items were scored from 1 (Strongly Disagree) to 5 (Strongly 

Agree). The adapted measure for eHealth literacy has eight items with 

an example being “I know where to find helpful health resources on the 

Internet” (Cronbach’s 𝛼 = 0.88), and the adapted measure for AI literacy 

has ten items with an example item being “I can distinguish if I interact 

with an AI or a real human” (Cronbach’s 𝛼 = 0.76).

Trust of online health information (Johnson et al., 2015; Rowley 

et al., 2015) (Trust Score) During the formal study, participants 

completed the trust of online health information questionnaire to rate 

their trust levels after reading each set of health information. It consists 

of 13 items (e.g. “The information appears to be objective.”), each rated 

on a 5-point Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree) 

(Cronbach’s 𝛼 = 0.92). We aggregated and calculated the average value 

of all 13 items to obtain our perceived Trust Score. We use this score 

for further analysis throughout our work.

Post-survey: three open-ended questions At the end of the sur­

vey, participants were asked to reflect on their trust perceptions through 

three open-ended questions. These questions explored their views on 

(a) general trust in LLM-generated information versus information from 
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Table 2 

Characteristics of participants in the online survey.

Demographic Categories Numbers of Participants (%)

Gender (N=142)

Female 83 (58.5 %)

Male 58 (40.8 %)

Non-binary 1 (0.7 %)

Age 18–24 91 (64.1 %)

25–34 38 (26.8 %)

35–44 9 (6.3 %)

45–54 2 (1.4 %)

65+ 2 (1.4 %)

Education High school degree or equivalent 24 (16.9 %)

Bachelor’s degree 67 (47.2 %)

Master’s degree 49 (34.5 %)

Doctorate or higher 2 (1.4 %)

Professional Domain Health and Medical Science 17 (12.0 %)

Science, Technology, Engineering, and Mathematics (STEM) 35 (24.6 %)

Business, Economics, and Law 35 (24.6 %)

Arts, Culture and Entertainment 19 (13.4 %)

Government and Public Sector 3 (2.1 %)

Education 3 (2.1 %)

Other 30 (21.1 %)

Frequency of online health 

information seeking

Rarely 27 (19.0 %)
Sometimes 77 (54.2 %)

Often 31 (21.8 %)

Always 7 (4.9 %)

Duration of online health 

information seeking

Less than 1 year 4 (2.8 %)
1–3 years 24 (16.9 %)

3–5 years 51 (35.9 %)

5–10 years 45 (31.7 %)

More than 10 years 18 (12.7 %)

human professionals, (b) how they assess the credibility of online in­

formation, and (c) how the labeling of the health information source 

influences their perceived trust.

3.1.4 . Participants

Participants were recruited through the online crowd-sourcing plat­

forms Prolific (Prolific, 2014) and institute recruitment systems. Our 

inclusion criteria included individuals over the age of 18 who are fluent 

in English, and they must have passed the attention check. A power anal­

ysis conducted with G*Power 3.1 (Faul et al., 2007) for a mixed-factor 

ANOVA design indicated that a minimum of 76 participants would be 

required to detect a small effect size (f=0.15), with an alpha level of 

0.05 and a power of 95 %.

Table 2 shows a summary of participants’ demographics. 142 par­

ticipants (N=142) were recruited (F=83, M=58, NB=1), with 90.9 % 

falling in the 18–34 age bracket. Regarding educational backgrounds, 

47.2 % had undergraduate degrees and 35.9 % held postgraduate qual­

ifications. As for online health information-seeking experience, 26.7 % 

frequently used online sources, 54.2 % occasionally searched online, and 

19.0 % rarely used online resources.

3.1.5 . Procedure

The study design and procedure are outlined in Fig. 2(a). Participants 

were first provided with detailed information about the study and gave 

informed consent in line with institutional guidelines. They provided 

demographic information and their experiences with online health in­

formation seeking. A total of 75 health questions were used in the online 

survey, divided evenly into three categories: general health, symptom-

related, and treatment-related (25 each) (Section 3.1.2 “Health informa­

tion”). For each participant, six Q&A pairs were shown: two randomly 

selected from each category. The survey study used a between-subjects 

design for the source of the information (AI- vs. human-generated) and a 

within-subjects design for the label (AI- vs. human-labeled). Both source 

and label orderings were counterbalanced based on a Latin square ap­

proach, ensuring that all condition combinations were evenly distributed 

across participants to mitigate order effects. An illustrative example 

of the reading task interface during the survey is shown in Fig. 3. 

After reviewing each Q&A pair, participants rated their perceived trust 

in the information. At the end, participants completed a post-survey 

comprising three open-ended questions about their perceptions of the 

information source and its labeling.

Participation was voluntary and participants were monetarily com­

pensated for a 30-min session. To ensure we avoided bots in our 

responses, we included an additional attention check where respondents 

needed to select a specific response to one question. Our study received 

approval from our institute’s ethics and data protection committee.

3.1.6 . Data analysis

We conducted quantitative analyses to examine how the types of 

health questions, information sources, and labeling of sources influence 

trust perception in online health information. Initially, we confirmed 

the data’s suitability for parametric tests by performing the Shapiro-

Wilk test (SHAPIRO and WILK, 1965) for normality and Bartlett’s 

test (Arsham and Lovric, 2011) for homogeneity of variance; neither 

assumption was violated. Next, we performed a mixed model, i.e., 

three-way mixed ANOVA (Kherad-Pajouh et al., 2015) to investigate 

differences in trust perceptions based on information sources, disclosed 

labels, and types of information. Since only one ANOVA was conducted, 

no correction for multiple tests was applied. Following, post-hoc pair­

wise comparisons were conducted using t-tests with False Discovery 

Rate (FDR) correction (Haynes, 2013a) to examine differences in trust 

between each pair of label and source combinations. To explore the 

relationships across variables, we also conducted Pearson correlation 

analyses (Freedman et al., 2007) on two subsets of the data: one 

with human-sourced information and the other with LLM-sourced in­

formation (between-subjects independent variable). Before analysis, we 

confirmed that the assumptions for Pearson correlation: normality, lin­

earity, and absence of extreme outliers, were satisfied in the aggregated 

data. Bonferroni correction (Haynes, 2013b) was applied to account for 

multiple comparisons in both correlation analyses.

We conducted an inductive content analysis (Elo and Kyngäs, 2008) 

on the responses to three open-ended questions, focusing on identifying 
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Fig. 3. Example reading task from the survey, showing a Q&A pair with its assigned disclosed source label. Each participant read six Q&A pairs: three labeled as from 

“AI” (left) and three labeled as from “Human Professionals” (middle). After each reading, participants rated their trust using the scale shown on the right.

Table 3 

Descriptive statistics of the online survey.

Measures Mean SD

Pre-survey Propensity of trust in AI technology (PPT) 3.85 / 5 .72

eHealth literacy 3.62 / 5 .87

AI literacy 3.81 / 5 .92

Conditions Mean SD

Trust score Source (Human) & Label (Human) 4.01 / 5 .45

Source (Human) & Label (AI) 3.76 / 5 .49

Source (LLM) & Label (Human) 4.07 / 5 .47

Source (LLM) & Label (AI) 3.87 / 5 .44

Source (Human), regardless of Label 3.89 / 5 .84

Source (LLM), regardless of Label 3.97 / 5 .81

Label (Human), regardless of Source 4.04 / 5 .46

Label (AI), regardless of Source 3.82 / 5 .47

underlying themes that explain trust rather than counting frequencies. 

In the first stage, the first two authors created an initial set of codes 

using the qualitative analysis software ATLAS.ti (ATLAS.Ti, 2024). This 

initial codebook examined respondents’ varying perceptions of trust in 

AI and human professionals, their reasons for trusting or distrusting, 

and how they typically evaluate the credibility and trustworthiness of 

information. Following this, both coders independently open-coded the 

responses, remaining open to new observations and emerging codes. 

Similar codes were merged, unclear ones were refined, and earlier 

responses were re-coded as needed. As the analysis progressed, recur­

ring factors emerged across different questions, allowing us to develop 

common themes that spanned all three sets of responses.

3.2 . Quantitative findings

3.2.1 . Descriptive statistics

As shown in Table 3, participants demonstrated a positive propensity 

to trust in technology, with an average score of 3.85 (SD=.72), indicat­

ing a positive attitude toward technology. The average eHealth literacy 

score was 3.62 (SD=.87), indicating that participants are relatively ca­

pable of using online health resources. AI literacy was also high, with an 

average score of 3.81 (SD=.92), reflecting a favorable understanding of 

AI technology.

In terms of trust perception, the trust scores (based on the aggregate 

Trust Score described in Section 3.1.3) varied depending on the source 

and label of the information. For information both sourced from and 

labeled as human, the average trust score was 4.01 (SD=45). When 

the information was sourced from humans but labeled as AI, the trust 

score decreased significantly to 3.76 (SD=.64). In contrast, information 

Table 4 

Results from the three-way mixed ANOVA analysis on the trust score without 

data correction. (**𝑝 <.01, *𝑝 <.05).

Outcomes Conditions Statistics 𝑝-value Effect size Sig

Trust score Source (Human vs. LLM) 2.27 .024 .14 (medium) *

Label (Human vs. AI) −6.50 .000 –.39 (medium) **

Type of health information 0.67 .505 .05 (small)

sourced from LLM but labeled as human received the highest trust score 

of 4.07 (SD=.47), while information sourced from AI and labeled as LLM 

had a trust score of 3.87 (SD =.44). These findings highlight the ways 

in which both the source and labeling of information can impact trust 

perceptions, with a clear indication that labeling of the sources plays a 

role in shaping trust, potentially even more than the actual source of the 

information.

Our mixed model analysis compared differences in trust levels among 

the source, label, and health information types. Findings are shown in 

Table 4 and Fig. 4, and together highlight how people perceive and trust 

health information manipulated by sources and labels.

3.2.2 . Participants gave higher trust to health information sourced from 

LLM than from human professionals

The impact of the information source (human professionals vs. LLM) 

on trust in health information was analyzed by a three-way mixed 

ANOVA. The results showed significant differences in trust levels be­

tween sources: statistics=2.27, p=.024, effect size=.14. This suggests 

that information sources significantly influence overall trust in health in­

formation. Specifically, participants reported trusting information from 

LLM more than human professionals, with an average trust score for 

LLM-sourced information of 3.97 (SD=.81), compared to 3.89 (SD=.84) 

for information from human professionals.  Although perceived trust 

does not imply factual accuracy, our findings reflect a growing accep­

tance of AI-generated health content and shifting attitudes toward it 

relative to advice from human professionals. 

3.2.3 . Participants gave higher trust ratings to health information labeled as 

from human professionals compared to labeled as from AI

Except for the factor of “source”, the labeling of information sources 

influenced trust perception significantly. Participants perceived signifi­

cantly lower trust in health information labeled as from AI compared to 

that labeled as from human professionals, as indicated by a mixed model 

ANOVA (statistics=−6.50, p<.001, effect size=-.39), with an average 

trust score for information labeled as from human professionals of 4.04 

(SD=.46) and 3.82 (SD=.47) for information labeled as from AI. We 
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Fig. 4. Left: Perceived trust score in information by sources regardless of labels, and by labels regardless of source from the three-way mixed ANOVA without 

correction. Right: Post hoc pairwise comparisons on perceived trust score based on different source and label conditions using t-test with False Discovery Rate (FDR) 

correction. Each plot shows the score density (width), with the red dot indicating the mean, the black line as the median, and thick bars representing the interquartile 

range (IQR). Horizontal lines indicate significance (**𝑝 <.01, *𝑝 <.05, “ns”: no significance).

Fig. 5. Pearson correlation with Bonferroni correction among the key variables in the online survey. (**𝑝 <.01, *𝑝 <.05). Note: “HumLabel”: information with human 

label regardless of the actual source. “AILabel”: information with AI label regardless of the actual source.

also observed no significant difference in trust between human-labeled 

information from human sources (M=4.01, SD=.45) and LLM sources 

(M=4.07, SD=.47). These results suggest that while LLM-generated in­

formation is generally trusted, the perceived trust still leans in favor of 

human-associated information when directly compared.

3.2.4 . The type of health information does not affect participants’ trust 

perception in information

Additionally, we explored how trust varied across different cate­

gories of health information. There was no significant effect found 

(statistics=0.67, p=.505, effect size=.05). This suggests that the type 

of health question does not influence people’s trust levels in health 

information. The interaction effect between the label of the informa­

tion source and the category of information was not significant as well 

(statistics=-.51, p=.613, effect size=-.15). This implies that the influ­

ence of labeling on trust does not vary across different types of health 

information.

3.2.5 . Correlation analysis

Given that the mixed ANOVA indicated no significant effect of the 

type of health information on the trust perceptions, the repeated mea­

sures were averaged into a single observation for each participant. 

This simplification allowed us to conduct a Pearson correlation analy­

sis (Freedman et al., 2007) to examine the general relationships between 

key variables in the online survey. The results, illustrated in Fig. 5, re­

vealed distinct patterns of trust in health information from different 

sources. For information sourced from human professionals, trust in 

human-labeled information showed a moderate positive correlation with 

trust in AI-labeled information (𝑟(142) = 0.47, 𝑝<0.01). However, other 

relationships, such as those involving eHealth literacy and AI literacy, 

exhibited weak or negligible correlations. In contrast, for information 

sourced from LLMs, we observed stronger correlations across multiple 

variables. Trust in human-labeled information showed a strong positive 

correlation with trust in AI-labeled information (r(142)=0.65,p<0.01), 

AI literacy (r(142)=0.41,p<0.01), and the propensity of trust in AI 

(𝑟(142) = 0.37, 𝑝<0.05). Additionally, the propensity of trust in AI 

correlated with trust in AI-labeled information (r(142)=0.50,p<0.01), 

eHealth literacy (𝑟(142) = 0.42, 𝑝<0.01), and AI literacy (𝑟(142) =
0.30, 𝑝<0.01). AI literacy positively correlated with eHealth literacy 

(𝑟(142) = 0.33, 𝑝<0.01). These results highlighted a consistent influence 

of labeling on participants’ trust across different sources.

3.3 . Qualitative findings

We received a total of 426 free-text responses (142 for each ques­

tion). In this section, we present our findings with four themes. We 

found that participants’ trust in AI versus humans is shaped by their 

inherent trust predispositions (Section 3.3.1) and their perceived source 

of knowledge for each agent (Section 3.3.2). Additionally, participants 

value human consciousness as a factor contributing to greater trust 

(Section 3.3.3), and the presentation of information also influences their 

trust (Section 3.3.4).

3.3.1 . Predisposition toward AI and humans influences trust

Survey respondents demonstrated a predisposition to trust either AI 

or humans, independent of the content or source of the information. 

However, there were individual differences in this inclination. Some 

respondents were optimistic about AI technology, regularly using and 

trusting AI in their daily lives. They perceived no difference in relia­

bility between AI and human professionals, and some even trusted AI 

more. Conversely, some respondents expressed significant reservations 

about AI, doubting its readiness to address serious topics, especially in 

sensitive fields like healthcare. One respondent noted, “I don’t trust AI, 

and the quick push in its advancements is dangerous; at the very least, it 

should be limited in specific fields such as health.” Privacy concerns and 
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the risks of AI-driven health advice reinforced such skepticism, leading 

to more critical evaluation of AI recommendations. This underlying pre­

disposition toward AI or human professionals also shaped respondents’ 

views on labeling. Some participants expressed a preference for human-

labeled content, with one stating, “AI label makes me trust it less and 

view the information more critically than if it came from a human profes­

sional.” However, not all respondents allowed their predispositions to 

dictate their trust. Others placed less emphasis on labels, focusing in­

stead on verifying information from multiple perspectives rather than 

relying solely on the source. As one respondent explained, “The label 

doesn’t affect how I interact with it, and my trust wouldn’t be based solely 

on the label.”

3.3.2 . Perceived source of knowledge influences trust

Survey respondents’ trust in AI or human professionals was shaped by 

their perceptions of where each derives its knowledge. One respondent 

explained, “I would trust a human professional more, since he has learned 

factual information in school. An AI has learned from multiple sources online, 

not only factual ones, so that is why I would trust it a bit less.”. In contrast, 

some respondents believed that AI can learn from “more databases and the 

most important points that all research brought up”, potentially making it 

more knowledgeable than a single human expert. These differing views 

on the origins of human and AI’s knowledge contributed to varying levels 

of trust. Some respondents took a more balanced stance, recognizing that 

both AI and human professionals are susceptible to biases and errors. 

As one respondent commented, “While information from a human profes­

sional may need correction due to incomplete knowledge, information from AI 

might contain errors due to gaps in its training data.” Consequently, many 

respondents shared that they would evaluate both sources of information 

with equal care, relying on their own experiences to evaluate the con­

tent’s credibility. Additionally, some respondents expressed a preference 

for combining information sources, such as cross-checking information 

or using AI as a complementary tool to support human decision-making.

3.3.3 . The human touch builds greater trust than AI

Survey respondents highlighted that, due to the absence of con­

sciousness and empathy in AI, they trusted human professionals more, 

particularly in healthcare contexts. Many respondents emphasized that 

AI lacks the ability to evaluate information with awareness. As one 

respondent commented, “Unlike human, AI doesn’t know the difference 

between good or bad quality.” In contrast, many respondents emphasized 

that human professionals have “years of medical education and experi­

ence with real-life cases” to inform their decisions, something that AI 

cannot replace despite its access to vast information. This absence of 

consciousness made respondents very skeptical about AI’s capability to 

offer reliable health advice. The issue extended beyond decision-making 

to interpersonal interactions. Respondents valued the sense of responsi­

bility and ethical obligation that human professionals carry, with one 

noting, “I trust the information from the human professional more because 

they are human and have moral and professional obligations about not giv­

ing misinformation.” Additionally, human-to-human interaction offered 

a sense of personalized care, making respondents feel their symptoms 

are better understood. In contrast, AI lacked this human touch, and its 

absence of empathy and accountability led respondents to trust it less.

3.3.4 . Presentation of information influences trust

Information presentation was highlighted as an advantage of AI, 

which increased respondents’ trust. They mentioned that when evaluat­

ing health information, factors such as the design of the user interface, 

the length of the information, the visible publication date, and the clarity 

of language were important. Compared to human professionals, AI was 

often perceived as providing simpler, more structured, and user-friendly 

information. Respondents appreciated that AI’s answers were clearly ex­

plained and easy to understand. Additionally, the objective tone of AI 

responses further boosted respondents’ trust. These elements collectively 

enhanced AI’s explainability. As one respondent noted, “When I receive 

information from a human professional, I expect it to contain more academic 

language, which is harder to understand and less explanatory. Information 

from AI, however, uses simpler words and is easier to understand.”

4 . Study 2: laboratory study

Study 1 demonstrated that the factors of actual source and disclosed 

label both affect people’s perceived trust (self-reported) in health infor­

mation. To further understand the process and user behaviors involved 

in forming trust perceptions, we conducted an in-person experiment. 

This study explored how health information from different sources and 

labels affects people’s behavioral and physiological states.

4.1 . Study methods

4.1.1 . Design

Similarly to the online survey study, we utilized a within-subjects 

2 (IV1 - Information Source: Human Professional vs. LLM) × 2 (IV2 

- Disclosed Label: Human Professional vs. Artificial Intelligence) × 3 

(IV3 - Information Type: General vs. Symptom vs. Treatment) facto­

rial design tested in a controlled, laboratory environment (as shown in 

Fig. 2b). Different from Study 1, participants experienced all 12 distinct 

conditions for this in-person experiment, enabling direct comparisons 

between human- and LLM-generated health information. We opted for 

a within-subject design for all independent variables to facilitate a nu­

anced analysis of participants’ behavioral and physiological responses 

across conditions. Specifically, for the source of information (IV1), we 

aimed to observe whether participants exhibited different behavioral 

(e.g., gaze patterns) and physiological (e.g., heart rate, skin conduc­

tance) signals when reading information attributed to human versus 

LLM sources. While these sources may differ in presentation styles, it 

is also possible that participants’ trust were influenced more by their 

belief about the source of text (human vs. AI) rather than the actual con­

tent or style. A within-subject design was critical for disentangling these 

effects, as it allowed each participant to serve as their own control, re­

ducing variability across conditions and enabling a clearer examination 

of these factors. Participants rated their perceived level of trust for each 

set of health information while their eye-tracking data (gaze positions 

and pupil diameter) and physiological responses (ECG: Beats Per Minute 

(BPM), Beat-to-Beat Interval (BBI), Root Mean Square of Successive 

Differences (RMSSD); EDA: Skin Conductance Level (SCL) and Response 

(SCR); Skin Temperature) were recorded throughout the tasks.

To address our second research question, we explore whether behav­

ioral and physiological signals can be used as complementary indicators 

to understand trust perceptions toward human- and AI-generated per­

sonal health information. In addition, we set up two prediction tasks 

that make use of the sensed data: (1) predicting participants’ trust in 

health information through both regression on perceived trust scores 

and binary classification on trust level (high vs. low); and (2) classifying 

the actual source of the health information.

4.1.2 . Stimuli and apparatus

We developed a web interface that displays the health information 

(question-and-answer pair) and the questionnaires for participants to 

rate their trust scores (see Fig. 6). The health information was identical 

to the material used in Study 1, as described in Section 3.1.2. Each set 

of health information was labeled as being generated either by “Human 

Professionals” or “Artificial Intelligence”, regardless of the actual source.

We used a PHILIPS (Full HD, 1920*1080, 100 Hz) monitor to dis­

play the stimuli. The eye movements and pupil diameter (PD) data were 

recorded by a Tobii Pro Fusion eye tracker. The remote eye tracker 

was attached to the bottom of the monitor and connected to a com­

puter (Windows, Intel Core i5, 16 GB RAM) running the Tobii Pro Lab 

software (AB, 2024).

Physiological signals, including ECG, EDA, and skin temperature, 

were measured using a BioSemi amplifier (van Amsterdam, 2025) 

(as shown in Fig. 1). ECG was captured through a disposable 3M 
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Fig. 6. Top: An example of text stimulus displayed on the monitor. Bottom: Heatmap of the gaze points on stimuli. Three AOIs are predefined: AOI-1 is the area for 

presenting disclosed label; AOI-2 is the area for presenting health information; AOI-3 is the area to rate the perceived trust in health information.

Red Dot in LEAD-II configuration, EDA was measured with electrodes 

attached to fingers, and skin temperature was monitored with a minia­

ture Pt1000 sensor, all at a 24-bit resolution and 1000 S/s sampling 

rate. These data were collected using software FysioRecorder version 

2.1 (van Amsterdam, 2025). Data recording was initiated through 

a central recording application developed in PsychoPy Peirce et al. 

(2019), connecting to sensors via IP addresses to simultaneously capture 

synchronized ECG, EDA, skin temperature, and eye-tracking signals.

4.1.3 . Self-reported measures

We collected several self-reported measures, consistent with 

those used in Study 1 described in Section 3.1.3. These included 

demographics, prior experience with online health information and 

AI, the propensity to trust technology (PPT), eHealth, and AI literacy. 

Additionally, we assessed the perceived reliability of AI and human 

professionals using a single item for each: “How reliable do you find 

AI/Human Professionals?” Responses were captured on a 5-point Likert 

scale, ranging from 1 (Not at all) to 5 (Extremely). They were collected 

before the formal reading task.

During the reading task, we repeatedly measured the participants’ 1) 

familiarity level with each given health question and 2) their perceived 

trust score in health information (Johnson et al., 2015; Rowley et al., 

2015), after they completed each stimulus.

4.1.4 . Machine learning: setup and approach

We performed binary classification to predict information sources 

and applied both regression and classification (i.e., binary and three-

class classification) for trust scores. The perceived trust score (see 
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Table 5 

Characteristics of participants in the lab study.

Demographic Categories Numbers of Participants (%)

Gender (N = 40)

Female 23 (57.5 %)

Male 16 (40.0 %)

Non-binary 1 (2.5 %)

Age 18–24 23 (57.5 %)

25–34 14 (35.0 %)

35–44 1 (2.5 %)

45–54 1 (2.5 %)

65+ 1 (2.5 %)

Education Bachelor’s degree 18 (45.0 %)

Master’s degree 17 (42.5 %)

Doctorate or higher 5 (12.5 %)

Professional Domain Health and Medical Science 2 (5.0 %)

Science, Technology, Engineering, and Mathematics (STEM) 11 (27.5 %)

Business, Economics, and Law 8 (20.0 %)

Communication, Arts, Culture, and Entertainment 7 (17.5 %)

Education and Social Science 7 (17.5 %)

Other 5 (12.5 %)

Frequency of online health 

information seeking

Rarely 6 (15.0 %)
Sometimes 25 (62.5 %)

Often 7 (17.5 %)

Always 2 (5.0 %)

Frequency of using AI tools Never 2 (5.0 %)

Rarely 5 (12.5 %)

Sometimes 9 (22.5 %)

Often 18 (45.0 %)

Always 6 (15.0 %)

Duration of online health 

information seeking

Less than 1 year 4 (2.8 %)
1–3 years 24 (17.0 %)

3–5 years 50 (35.5 %)

5–10 years 45 (31.9 %)

More than 10 years 18 (12.8 %)

Section 4.1.3), as an aggregate numerical rating based on the “trust of 

online health information questionnaire” (Johnson et al., 2015; Rowley 

et al., 2015), naturally lends itself to regression. However, this approach 

can be challenging to interpret given that trust is an aggregate and over­

all complex construct. On the other hand, trust classification simplifies 

interpretation but introduces an arbitrary split between high and low 

trust levels. To address this, we pre-processed the original trust scores 

into high and low categories using the median value as a threshold for 

binary classification. For the three-class classification, we divided the 

trust scores into low, medium, and high categories based on tertiles, 

creating balanced splits that account for the distribution of scores.

We used several common machine learning algorithms as suggested 

in prior research (Ajenaghughrure et al., 2021), including single models 

(i.e., logistic regression (LR), random forest (RF), support vector ma­

chines (SVM), multi-layer perceptron (MLP), linear regression, ridge 

regression, random forest-based regression), and ensemble methods 

(i.e., boosting, voting, stacking and bagging). Models were built us­

ing hand-crafted gaze features (i.e., fixations, saccades, pupil diameter) 

and physiological signals (i.e., BPM, BPI, RMSSD, SCL, SCR, and skin 

temperature).

We experimented with three feature sets: Gaze-only, Physiology-

only, and Gaze + Physiology. These sets trained and evaluated the 

selected models to determine how effectively they could predict partic­

ipants’ perceived trust scores and classify the source of information. We 

set the “random state” (Sahagian, 2024) parameter to ensure result con­

sistency and used the “grid search” (Liashchynskyi and Liashchynskyi, 

2019) technique to find the optimal hyperparameters of the models. 

We only considered user-independent models to ensure that any predic­

tions generalize across all participants, despite well-known challenges in 

generalizing using peripheral physiological features (Alamudun et al., 

2012). To achieve this, we adopted a Leave-One-Subject-Out (LOSO) 

cross-validation approach (Kunjan et al., 2021), where in each iteration, 

one participant’s data was held out for testing, and the remaining data 

was split 80/20 for training and validation. This setup ensures robust 

user-independent models. The performance of the regression models (for 

trust score prediction) was evaluated by Mean Squared Error (MSE) and 

Coefficient of Determination (𝑅2). The performance of the classification 

models (for trust level and information source) was assessed with the 

Macro-F1 (Opitz and Burst, 2021) score as the average of the validations.

4.1.5 . Participants

For the in-person experiment, we used the same inclusion criteria as 

in Study 1 (age above 18 who are fluent in English). Participants were 

recruited through the institute’s recruitment system. A power analysis 

using G*Power 3.1 (Faul et al., 2007) for a within-factor ANOVA in­

dicated that at least 28 participants were required to detect a medium 

effect size observed in Study 1 (f=0.24), with an alpha level of 0.05 and 

a power of 80 %.

Table 5 shows the characteristic information of the participants. 

Forty participants (N=40) were enrolled (F=23, M=16, NB=1), aged 

between 18–65+ years, with 92.5 % falling in the 18–34 age range. 

Regarding online health information-seeking experience, 22.5 % fre­

quently or always used online sources, 62.5 % occasionally searched 

online, and 15.0 % rarely used online resources. For the frequency of AI 

usage, 60.0 % frequently or always used AI tools, 22.5 % occasionally 

used AI, and 17.5 % rarely or never used AI.

4.1.6 . Study procedure

Each participant was invited to the institute for a single session at 

the lab. The researcher first provided an overview of the study and task 

details, after which participants gave informed consent before the lab 

session. During the pre-survey, participants provided their demographic 

information (age, gender, occupation) and their experiences with online 

health information searches and interactions with AI.

Upon completing the pre-survey and successfully calibrating the sen­

sors, participants began the formal reading task. During the reading task, 

each participant reviewed 12 sets of health information: six were labeled 

as from human professionals and six as from AI, regardless of the actual 
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source. Sources and labels were counterbalanced to minimize order 

effects. The entire session lasted approximately 60 minutes, and par­

ticipants were rewarded with €10 for participating. The study received 

approval from our institute’s ethics and data protection committee. The 

procedure of the lab study is detailed in Fig. 2(b).

4.1.7 . Data pre-processing

Self-reported Trust Scores. To assess how factors such as information 

source, labeling, and information type affect trust in online health infor­

mation, we first checked the suitability of the data for statistical analysis. 

A Shapiro-Wilk test (SHAPIRO and WILK, 1965) confirmed that the self-

reported trust scores deviated from a normal distribution. Therefore, 

we applied generalized estimating equations (GEE) (Hardin and Hilbe, 

2012) to analyze trust differences across information sources and labels, 

because of its robustness to violations of normality and flexibility in han­

dling repeated ordinal measures. Additionally, we conducted Spearman 

correlation analyses (Zar, 2005) with Bonferroni corrections to explore 

relationships among the variables. Consistent with Study 1, and given 

that the GEE results (Table 7) indicated no significant interaction effects 

between the independent variables of source and labeling, we averaged 

the repeated measures for each participant into a single observation 

across conditions. This simplification allowed us to focus on the key 

exploratory relationships while maintaining analytical clarity.

Eye Tracking Data Processing. Raw eye-tracking data were extracted 

from eye tracker (Tobii Pro Fusion) using Tobii Pro Lab software AB, 

2024), and time-synchronized with stimuli. As shown in Fig. 6 (Top), 

there are three Areas of Interest (AOIs): AOI-1 (disclosed label of source), 

AOI-2 (health information), and AOI-3 (rating scale). We chose a fixation 

threshold of 30◦ for velocity and 60 ms for duration, as suggested by 

the information reading task (Van der Lans et al., 2011). Gaze features 

including gaze duration, fixation (count and duration), saccade (count 

and length), and pupil diameter were calculated to understand how users 

read the information. We excluded participants whose gaze accuracy 

fell below 90 %, resulting in 38 participants’ eye-tracking data being 

retained for further analysis. After transforming data through Aligned 

Ranked Transformation (ART) (Wobbrock et al., 2011), we confirmed 

the non-normality of eye tracking data with the Shapiro-Wilk test.

Physiological Signal Processing. Physiological signals were processed 

using Vsrrp98 software (v13.1.4) (van Amsterdam, 2025), following the 

practice in prior research (Babaei et al., 2021; Ahmad and Alzahrani, 

2023). Key physiological features derived from the raw ECG data 

using interval-to-interval window size included BPM, BPI, and the 

main HRV metrics - the root mean square of successive differences 

(RMSSD). For EDA data, we used the continuous decomposition analysis 

method (Benedek and Kaernbach, 2010) to separate it into the tonic SCL 

and phasic SCR components, then calculated the mean SCL and SCR val­

ues, as well as the SCR count. Skin temperature readings were screened 

for any abnormal responses. We excluded SCL and SCR data when more 

than 4 out of 12 stimuli have values lower than.01𝜇S or exceeded 50𝜇S, 

as these readings likely resulted from loss recording or movement ar­

tifacts. As a result, we retained data from 34 participants for SCL and 

SCR analysis, and 40 participants for ECG and skin temperature anal­

ysis. Following preprocessing, we used the Shapiro-Wilk test to assess 

normality, revealing that all physiological features were not normally 

distributed.

Given the exploratory nature of our investigation and the presence of 

multiple comparisons, we applied appropriate corrections based on the 

type of data. First, self-reported data were analyzed using a single GEE 

test, thus no multiple comparison correction was necessary. Second, for 

eye-tracking data, where multiple tests were conducted for different fea­

tures, we applied False Discovery Rate (FDR) correction (Haynes, 2013a) 

to control for potential inflation of Type I errors. Third, for physiologi­

cal data, no multiple comparison correction was applied because most of 

the physiological features (e.g., RMSSD, ECG, EDA) were uncorrelated, 

as confirmed by correlation analysis, and each feature was analyzed 

Table 6 

Descriptive statistics of the lab study.

Measures Mean SD

Pre-survey Familiarity of AI 3.58 .96

Perceived Reliability of AI 3.13 .61

Perceived Reliability of Human Professionals 3.78 .53

Propensity of Trust (PPT) 3.54 .33

eHealth literacy 3.69 .25

AI literacy 3.78 .20

Conditions Mean SD

Trust score Source (Human) & Label (Human) 3.67 .63

Source (Human) & Label (AI) 3.56 .64

Source (LLM) & Label (Human) 3.92 .56

Source (LLM) & Label (AI) 3.78 .63

Source (Human), regardless of Label 3.62 .64

Source (LLM), regardless of Label 3.85 .60

Label (Human), regardless of Source 3.80 .61

Label (AI), regardless of Source 3.67 .65

Table 7 

Results from the GEE analysis on the self-reported trust score. (**𝑝 <.01, 

*𝑝 <.05).

Outcomes Conditions Coefficient P-value Effect (𝑆𝑡𝑑.𝛽) Sig

Trust score Source (Human vs. LLM) .22 .00 .35 (medium) **

Label (Human vs. AI) −.15 .01 .23 (medium) **

Source ∗ Label .03 .71 .05 (small)

independently. This approach reflects our goal of treating these fea­

tures as distinct, non-overlapping measures, without assuming that they 

influence each other. 

4.2 . Findings

4.2.1 . Descriptive statistics

As shown in Table 6, participants demonstrated a generally positive 

attitude toward technology, with an average trust in technology score 

of 3.36 (SD=.23). Their eHealth literacy averaged 3.69 (SD=.25), indi­

cating proficiency in searching for digital health information. AI literacy 

was even higher, with an average score of 3.78 (SD=.20), suggesting a 

strong understanding of AI and its applications.

Regarding the perceived trust, the lab study results closely mirrored 

those of the online survey, despite being based on separate partici­

pant samples and independently collected data. The self-reported trust 

scores from the lab study varied depending on both the source and 

the labeling of the health information. Information both sourced from 

and labeled as from human professionals had an average trust score of 

3.67 (SD=.63). When human-sourced information was labeled as AI, 

the score slightly decreased to 3.56 (SD=.64). LLM-sourced informa­

tion labeled as from human received the highest trust score of 3.92 

(SD=.56), while information sourced from LLM and labeled as from AI 

had a trust score of 3.78 (SD=.63). Overall, participants reported higher 

trust in LLM-sourced information (M=3.85, SD=.60) than in human-

sourced information (M=3.62, SD=.64), echoing the trend observed in 

the online survey and indicating a growing acceptance of AI (i.e., LLM) in 

health contexts. However, information labeled as coming from human 

professionals was trusted more (M=3.80, SD=.61) than that labeled 

as AI (M=3.67, SD=.65), suggesting that labeling plays an influential 

role in trust formation, potentially even more than the actual source. 

These findings reinforced the patterns found in the online survey while 

providing additional validity through the lab sessions.

4.2.2 . Analysis of self-reported trust

Table 7 presents the results from the GEE analysis on self-reported 

trust scores from the lab study. Consistent with the online survey, both 
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the source and the label significantly impacted trust perceptions. Fig. 7 

further illustrates the same pattern, echoing the online survey results. 

Trust was highest for LLM-sourced information labeled as human and 

lowest for human-sourced information labeled as AI.

The analyses first revealed a significant effect of information source 

on trust, with a coefficient of 0.22 (𝑝<0.01), indicating that LLM-sourced 

information was generally trusted more than human-sourced infor­

mation, i.e., without knowledge of the actual source. This suggests 

that the source of information is crucial in shaping trust, as AI-generated 

content may be perceived as more structured and objective than human-

authored content. While the raw coefficient represented a modest 

change of 0.22 points on a 5-point Likert scale, the corresponding effect 

size (𝑆𝑡𝑑.𝛽=0.35) was classified as medium. This reflects the bounded 

nature of the Likert scale, where even small raw differences can in­

dicate meaningful relationships due to the relatively low variability 

in responses. Thus, the medium effect size underscores the practical 

relevance of the findings despite the small-scale differences.

Labeling also significantly impacted the trust perception, with a co­

efficient of −0.15 (𝑝 = 0.01), meaning information labeled as AI was 

trusted less than when labeled as human professionals. The negative 

coefficient suggests a preference for human-labeled information, as par­

ticipants may associate human endorsement with greater credibility. 

Similarly, while the raw change (−0.15) was modest, the standard­

ized effect size (𝑆𝑡𝑑.𝛽=0.23) reflects a medium effect, emphasizing that 

the impact of labeling, though subtle on the scale, has measurable and 

meaningful implications for trust perceptions.

Notably, the interaction between source and label was not significant 

(𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.03, 𝑝 = 0.71), indicating that the combined influence 

of source and label does not affect trust beyond their individual ef­

fects. The small standardized effect size (𝑆𝑡𝑑.𝛽=0.05) confirmed that 

this interaction effect is negligible.

4.2.3 . Analysis of eye movement data

The results of GEE analysis (Hardin and Hilbe, 2012) on eye tracking 

data are detailed in Table 8, showing varied eye movement patterns. 

In AOI-1 (label area), fixation duration and pupil diameter of fixation 

showed significant differences by information sources and labels, while 

saccade count showed significant differences by information labels only.

The post hoc comparisons shown in Figs. 8 and 9, participants 

demonstrated higher fixation counts (𝑝<.05) and saccade counts (𝑝<.1) 

in AOI-2 (main health information area) under the AI label condition, 

indicating that participants assessed the information focusing more on 

the content itself rather than the label when they were informed that 

the information was from AI. This implies that trust-related judgments 

in AI-labeled information were driven more by the actual content than 

the labeling of the source. Participants also showed significantly fewer 

fixation counts (𝑝<.05) in AOI-3 (rating area) under the human label 

condition compared to the AI label condition. This suggests that hu­

man labels might inspire greater confidence, potentially influencing how 

users rate the trust score of the information. When information was ac­

tually sourced from LLM, participants showed higher fixation duration 

(𝑝<.01) and counts (𝑝<.1) in AOI-2, suggesting a more careful reading 

of AI-generated content. Conversely, human-sourced information led 

to higher fixation and saccade counts in AOI-3 (𝑝<.01), indicating 

that LLM-sourced information might inspire greater confidence, poten­

tially influencing how users rate the trust score, which aligns with the 

self-reported trust perceptions.

4.2.4 . Analysis of physiological signals

Table 9 presents the results from GEE analysis on physiological 

data, shedding light on how physiological responses vary with different 

information sources and labeling.

RMSSD, a feature derived from ECG data, was significantly higher 

for AI-labeled information compared to human-labeled information (𝑝 =
.025). Higher RMSSD indicates greater heart rate variability (HRV), 

which is often associated with lower physiological arousal. This aligns 

with the gaze patterns where participants paid less attention to the 

labeling area (AOI-1) under “AI” labels than “Human” labels, as in­

dicated by significantly reduced fixation duration, saccade count, and 

pupil diameter (see Table 8).

Skin temperature responses also varied significantly between human 

and AI labels (𝑝 = .029), as well as between human and LLM sources 

(𝑝 = .022). Higher skin temperature in response to AI labels and sources 

suggests participants may have experienced increased emotional arousal 

or stress when interacting with AI-associated content.

SCL (𝑝 = .061) and SCR (𝑝 = .082) average values did not exhibit 

statistically significant differences, as shown in Fig. 10. This suggests 

that EDA components, at least within our study, were not discrimina­

tive of physiological arousal when users encountered human- versus 

AI-generated information.

4.2.5 . Correlation analysis

The Spearman correlation analysis (Zar, 2005) in Figs. 11 and  12 

revealed significant relationships between the self-reported trust score 

and various gaze and physiological features, indicating how participants’ 

perceived trust in health information is linked to their behavioral and 

physiological responses.

Familiarity with the health question showed a strong positive correla­

tion with trust in the information (𝑝<.01). Among gaze features, fixation 
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Table 8 

Results from the GEE analysis with False Discovery Rate (FDR) correction on the eye tracking data. (**𝑝 <.01, *𝑝 <.05, -𝑝 <.10).

Gaze AOI Condition Coeff P (Orig) P (Corrected) Effect (𝑆𝑡𝑑.𝛽) Sig

Fixation Count AOI-1 Source −4.02 .033 .079 .22 (medium) –

Label −4.54 .015 .055 .25 (medium) –

Src × Lab 6.01 .082 .150 .33 (medium)

AOI-2 Source 0.61 .962 .962 .00 (small)

Label −3.23 .827 .910 .02 (small)

Src × Lab 34.61 .036 .079 .26 (medium) –

AOI-3 Source −8.14 .198 .272 .14 (small)

Label 9.90 .151 .237 .17 (small)

Src × Lab −5.53 .559 .683 .10 (small)

Fixation Duration AOI-1 Source −51.39 .000 .000 .43 (large) **

Label −37.64 .006 .017 .31 (medium) *

Src × Lab 71.27 .000 .000 .59 (large) **

AOI-2 Source 4.60 .038 .069 .14 (medium) –

Label −2.80 .218 .343 .09 (small)

Src × Lab 1.75 .584 .642 .05 (small)

AOI-3 Source −0.46 .879 .879 .01 (small)

Label −1.61 .553 .642 .05 (small)

Src × Lab 2.85 .519 .642 .09 (small)

Saccade Count AOI-1 Source −5.13 .044 .086 .21 (medium) –

Label −7.38 .013 .047 .26 (medium) *

Src × Lab 8.89 .047 .086 .36 (medium) –

AOI-2 Source −4.35 .787 .787 .03 (small)

Label −7.82 .651 .716 .05 (small)

Src × Lab 43.77 .026 .071 .28 (medium) –

AOI-3 Source −9.40 .223 .307 .12 (medium)

Label 10.71 .160 .251 .14 (medium)

Src × Lab −7.96 .487 .595 .10 (medium)

Saccade Length AOI-1 Source 0.03 .124 .341 .17 (medium)

Label 0.01 .531 .649 .08 (small)

Src × Lab −0.07 .020 .073 .38 (medium) –

AOI-2 Source 0.00 .355 .558 .08 (small)

Label 0.00 .181 .398 .12 (medium)

Src × Lab 0.00 .829 .829 .02 (small)

AOI-3

Source 0.00 .276 .506 .08 (small)

Label 0.00 .456 .627 .06 (small)

Src × Lab 0.00 .685 .754 .05 (small)

Pupil Diameter Fixation AOI-1 Source −0.41 .002 .011 .35 (medium) *

Label −0.33 .018 .040 .29 (medium) *

Src × Lab 0.50 .003 .011 .43 (large) *

AOI-2 Source 0.00 .673 .823 .01 (small)

Label 0.01 .445 .699 .02 (small)

Src × Lab 0.00 .898 .932 .00 (small)

AOI-3 Source 0.00 .227 .416 .03 (small)

Label 0.01 .531 .730 .01 (small)

Src × Lab 0.00 .932 .932 .00 (small)

Fig. 8. Posthoc pairwise comparison by Wilcoxon signed-rank test with False Discovery Rate (FDR) correction of fixation features (count and duration) in three AOIs. 

(**𝑝 <.01, *𝑝 <.05, -𝑝 <.10, “ns” is not significant).
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Fig. 9. Posthoc pairwise comparison by Wilcoxon signed-rank test with False Discovery Rate (FDR) correction of saccade count and pupil diameter of fixation in three 

AOIs. (**𝑝 <.01, *𝑝 <.05, -𝑝 <.10, “ns” is not significant).

Table 9 

Results from GEE analysis on physiological signals. (**𝑝 <.01, *𝑝 <.05, -𝑝 <.10).

Outcomes Features Conditions Coeff 𝑝-value Effect (𝑆𝑡𝑑.𝛽) Sig

ECG BPM Source (Human vs. LLM) −0.58 .571 .07 (small)

Label (Human vs. AI) −1.10 .288 .13 (medium)

Source × Label 1.38 .341 .17 (medium)

RMSSD Source (Human vs. LLM) 2.11 .435 .12 (medium)

Label (Human vs. AI) 5.21 .025 .29 (medium) *

Source × Label −4.45 .179 .25 (medium)

BPI Source (Human vs. LLM) 8.88 .242 .12 (medium)

Label (Human vs. AI) 10.43 .225 .14 (medium)

Source × Label −17.10 .153 .24 (medium)

EDA SCL Source (Human vs. LLM) 0.03 .949 .04 (small)

Label (Human vs. AI) −0.77 .061 .12 (medium) –

Source × Label 0.38 .414 .06 (small)

SCR Source (Human vs. LLM) −0.56 .399 .05 (small)

Label (Human vs. AI) −0.92 .082 .08 (small) –

Source × Label −0.98 .576 .08 (small)

Temperature — Source (Human vs. LLM) 0.46 .022 .31 (medium) *

Label (Human vs. AI) 0.42 .029 .28 (medium) *

Source × Label −0.57 .058 .39 (medium) –

duration in AOI-1 (label area) positively correlated with the perceived 

trust score (𝑝<.01), indicating that higher trust levels are associated with 

a longer focus on the labeling of information sources. Additionally, pupil 

diameter during fixation in AOI-1 (𝑝<.01) also correlated positively with 

the trust score. Fixation and saccade counts in AOI-3 (rating area) were 

negatively correlated with trust, implying that participants who gave 

lower trust in the information exhibited more frequent saccadic move­

ments in the rating area, likely reflecting efforts to evaluate or verify the 

information further.

No significant correlations were found between physiological fea­

tures and trust levels. However, correlations were observed among 

the physiological features themselves, such as BPM (heartbeats), SCL, 

SCR, and skin temperature, though these did not directly link to

trust.

4.2.6 . Predictions using behavioral and physiological sensing

To explore trust perception (i.e., self-reported trust scores) through 

behavioral and physiological responses, we defined two tasks: (1) pre­

dicting participants’ perceived trust scores in health information and (2) 

classifying the source of the health information.

For trust prediction, we first explored how regression models approx­

imate perceived trust scores using regression models: linear regression 

(LR), ridge regression, SVM and random forest-based regressions, and 

XGBoost. As shown in Table 10, the random forest regressor on the 

combined Gaze+Physio feature set achieved the lowest MSE of.20 and 

the highest 𝑅2 = .35 among the three feature sets, indicating the best 

performance. This highlights the value of combining gaze and physio­

logical features for trust assessment. Fig. 13 illustrates the regression 

results on three different feature sets.

Next, we performed both binary (i.e., high vs. low) and three-class 

(i.e., high vs. medium vs. low) classification of trust levels based on 

participants’ self-reported trust scores. As shown in Table 11, the en­

semble method (voting model) achieved the highest accuracy (0.73) 

for binary classification using gaze-only features, while random forest 

achieved the highest accuracy (0.63) for three-class classification us­

ing combined gaze-physiological features. Interestingly, combining gaze 

and physiological features did not improve performance across all mod­

els, for instance, the gradient boosting model achieved slightly lower 

accuracy (0.72) for binary classification when incorporating both feature 

sets compared to using gaze features alone. These results indicate that 
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Fig. 10. Pairwise comparison without correction on features of RMSSD and SCR per participant. Each boxplot shows the distribution (median, IQR, outliers) for 

each participant under two labeling conditions: participants read the information labeled as from “Human Professionals” (Left) and from “AI” (Right), regardless 

of the source. Color gradient reflects participant-wise ordering based on decreasing RMSSD or SCR values to facilitate visual comparison; the color itself carries no 

semantic meaning.

Fig. 11. Spearman correlation with Bonferroni corrections between trust perceptions and the gaze features. (**𝑝 <.01, *𝑝 <.05). Note: “FixDurAOI-”: fixation duration 

in AOI-; “FixCountAOI-”: fixation count in AOI-; “SacCountAOI-”: saccade count in AOI-; “SacLenAOI-”: saccade lenth in AOI-; “PupilAOI-”: pupil diameter of fixation 

in AOI-.
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Fig. 12. Correlation on variables. (**𝑝 <.01, *𝑝 <.05). Note: “SCR_Num”: number of SCR; “SCR_Avg”: average value of SCR; “SCR_Max”: maximum value of SCR; 

“SCR_Stand”: standard value of SCR.

Table 10 

Prediction of perceived trust scores through regression using gaze and physiological features.

Models Gaze Only Physio Only Gaze + Physio

MAE R2 MAE R2 MAE R2

SVR .29 .06 .33 .06 .28 .10

Linear Regression .25 .20 .31 .01 .24 .20

Ridge Regression .24 .21 .31 .01 .24 .23

Random-Forest Regression .23 .25 .25 .19 .20 .35

XGBoost .24 .22 .28 .08 .23 .23

Fig. 13. Prediction of perceived trust score using the Random-Forest Regression model on three different features set: Gaze-only, Physiology-only, Gaze+Physiology. 

Each dot represents one participant’s predicted vs. actual self-reported trust score, with the red dashed line indicating perfect prediction.

gaze features alone achieved higher classification accuracy for binary 

trust levels compared to combined gaze and physiological features. This 

suggests that gaze features may play a more prominent role in pre­

dicting trust levels than physiological responses in the context of this

study.

For the second task to classify the information source, combining 

gaze and physiological features yielded the best results. The AdaBoost 

model achieved the highest accuracy of 0.65 and F1 score of 0.64, 

indicating that physiological responses complement gaze features in 

distinguishing between human- and LLM-generated health information.

Fig. 14 presents feature importance for the prediction tasks following 

SHAP framework proposed by  (Lundberg and Lee, 2017) for better in­

terpreting the model predictions. In summary, gaze features are effective 

for predicting trust perceptions, while combining gaze and physiological 

features could improve the classification of information sources. The 

robust performance of ensemble methods across both tasks highlights 

their potential in developing tools to assess trust-related responses in 

health communication by leveraging gaze and physiological signals.

5 . Discussion

We conducted an online survey and a lab study in this work to inves­

tigate how users’ trust responds to human versus AI-generated content, 

and in what ways trust in online health information may be influenced 

by including transparency labels as simple as “Human” versus “AI” labels 

on personal health information. Our findings showed that self-reported 

trust in digital health information is influenced by its actual source and 

disclosed labeling of the source. Further, the impacts of these conditions 
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Table 11 

Classification of trust levels (high, medium, low) and the source of information using gaze and physiological 

features.

Features Models Trust Level Source

2-class(Acc / F1) 3-class(Acc / F1) 2-class(Acc / F1)

Gaze Only LR .65 /.62 .57 /.57 .62 /.55

RF .69 /.65 .57 /.57 .57 /.52

SVM .51 /.53 .43 /.42 .60 /.48

MLP .57 /.58 .32 /.32 .44 /.53

GradientBoost .72 /.66 .54 /.54 .52 /.52

AdaBoost .67 /.64 .58 /.58 .65 /.52

XGBoost .70 /.66 .54 /.54 .43 /.52

Voting .73 /.67 .54 /.54 .60 /.49

Stacking .70 /.66 .59 /.58 .49 /.55

Bagging .70 /.66 .57 /.57 .57 /.47

Gaze + Physio LR .65 /.62 .58 /.56 .58 /.54

RF .69 /.65 .63 /.63 .60 /.52

SVM .51 /.53 .43 /.43 .60 /.49

MLP .53 /.60 .48 /.47 .59 /.50

GradientBoost .72 /.68 .59 /.56 .53 /.53

AdaBoost .66 /.64 .54 /.54 .65 /.64

XGBoost .65 /.67 .57 /.57 .57 /.52

Voting .67 /.67 .59 /.58 .60 /.53

Stacking .69 /.66 .60 /.60 .48 /.52

Bagging .70 /.66 .61 /.61 .54 /.53

Fig. 14. Top 10 important gaze and physiological features in Random Forest regressor for predicting perceived trust scores (Left) and in AdaBoost classifier for 

classifying the source of health information (Right), based on SHAP values computed on the test set. Blue bars represent gaze features; red bars represent physiological 

features.

were also evident at a behavioral and physiological level. Below, we 

discuss these aspects in detail.

5.1 . Users may prefer LLM-sourced health information, but an AI label 

lowers their trust

Both studies tested (RQ1) if the actual source, disclosed label, and 

type of information influence perceived trust in online personal health 

information. Our findings revealed that LLM-sourced content is trusted 

more than human-sourced content, regardless of labeling, whereas hu­

man professional labels are trusted more than AI labels. Trust however 

remained consistent across different information types (general, symp­

tom, or treatment-related), suggesting that the source and labeling, 

rather than the type of information, are the primary determinants of 

perceived trust.

The observed difference in trust perception was evident in both 

self-reported trust scores (i.e., higher trust scores of LLM-generated in­

formation) and qualitative data, which suggests that participants have 

perceived subtle distinctions of information presentation styles in the 

LLM- versus human professionals-sourced information that provided 

cues for trust. The stronger effect observed in Study 2 (lab study with 

the within-subjects design) compared to Study 1 (survey study with the 

between-subjects design) further supports this, as the within-subjects 

design allowed participants to compare responses from both sources 

side by side. While we cannot conclusively determine the specific fac­

tors in information quality driving higher trust, our findings imply that 

LLM-generated content may convey an impression of clarity or objec­

tivity that resonates more strongly with participants. Our observation 

that LLM-sourced information was trusted more than that from hu­

man professionals may reflect advancements in LLMs like ChatGPT, 

which can produce structured and high-quality responses (Hristidis 

et al., 2023; Van Bulck and Moons, 2023). Notably, GPT-4 generated re­

sponses have been found to be perceived as more human-like than actual 

human-authored content and other studies find that LLM-generated con­

tent is often indistinguishable from human-generated text (Rathi et al., 

2025). This explanation (i.e., generally higher language quality of LLM-

generated responses as a basis of trust) aligns with  Dalton et al. (2022) 

proposal of emergent conversational information-seeking powered by 

LLMs, and is evident when assessing how LLMs are being used in the 

context of healthcare (Garg et al., 2023; Lee et al., 2023; Hristidis et al., 

2023; Van Bulck and Moons, 2023; Sun et al., 2024).

Furthermore, researchers suggest that people prefer algorithms to hu­

mans in certain tasks and it could relate to individuals’ machine heuristic 

(rule of thumb that machines are more secure and trustworthy than 

humans (Logg et al., 2019; Sundar and Kim, 2019)). In our studies, 

qualitative analyses (Section 3.3) further confirmed that participants 

attributed the higher trust in LLM-generated content to its efficiency, 

capacity to process extensive health data (Singhal et al., 2023), and 
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objective language style (Xu et al., 2023; Sun et al., 2024). This suggests 

that LLMs’ (e.g., GPT-4 (OpenAI, 2024)) ability to deliver comprehen­

sive and objective health information resonates with users, positioning 

them as reliable sources of health information.

Paradoxically, when health information was labeled as human, it was 

rated with higher trust scores than AI-labeled information, which is sup­

ported by Reis et al. (2024), who found that people value human advice 

more when aware of AI’s involvement, especially in health context. This 

observation appears to generalize across domains, whereby an AI la­

bel can diminish people’s perceived quality, even if the AI source was 

initially deemed superior. This includes AI art (Horton, Jr et al., 2023), 

general communication (Yin et al., 2024), medical advice (Kerstan et al., 

2023). Even in clinical decision-making scenarios, people tend to prefer 

human decision-makers over AI, perceiving the latter as less digni­

fied (Formosa et al., 2022), further highlighting a deep-seated bias 

against AI involvement in sensitive health-related contexts. Moreover, 

Epstein et al. (2023) found that not only the presence of a label, but also 

its wording, can significantly affect trust. For example, people perceive 

content labeled as “AI-assisted” more favorably than “AI-generated”, in­

dicating that subtle linguistic framing influences users’ willingness to 

trust. This suggests that beyond binary source disclosure, the design and 

language of labeling also play a critical role in shaping perception.

The qualitative findings (Section 3.3) confirmed that participants 

expressed greater trust in human expertise, which they associate with 

verified knowledge, accountability, and human empathy. In contrast, 

they viewed the lack of consciousness, ethical judgment, and trans­

parency in AI as diminishing their perceived trust. The perspective 

expressed by our participants aligns with De Freitas et al. (2023) work 

about psychological factors affecting attitudes toward AI acceptance, 

which identifies opacity (lack of transparency or explainability) and 

emotionlessness (absence of empathy or moral understanding) as key 

factors driving user resistance to AI tools. Our respondents echoed these 

concerns by highlighting AI’s lack of transparency and moral reasoning, 

especially in healthcare contexts, where trust is closely tied to perceived 

ethical awareness and human empathy. These reactions may also reflect 

a broader skepticism about machine consciousness (Scott et al., 2023).

These findings can be interpreted through the MATCH model (Liao 

and Sundar, 2022), which conceptualizes trust in AI systems through 

three components. In our context, actual source of the information (hu­

man vs. LLM) corresponds to model attributes, reflecting users’ judgments 

of competence and reliability. Disclosure labels (AI vs. human) act as af­

forded cues, shaping trust perceptions independently of content quality. 

Participants’ perceptions, such as associating human expertise with trust 

or distrusting AI due to its lack of professionalism, reflect trust heuristics, 

where users rely on cognitive shortcuts in uncertain of complex health 

contexts. This framing emphasizes that trust is not only a response to 

information content but also to how the system communicates author­

ship and identity, and how users emotionally and cognitively process 

these trustworthiness cues (Lee and See, 2004) which was further ex­

plored through implicit behavioral and physiological responses in the 

following section.

Summarizing, while AI is increasingly recognized for its competence, 

our findings underscore the role of transparency as a trustworthiness 

cue framed in the MATCH model (Liao and Sundar, 2022), emphasiz­

ing the need for transparent AI-powered systems (Liao et al., 2023) 

and authentic information (Burrus et al., 2024; El Ali et al., 2024) to 

build trust, particularly when providing nuanced health advice (Broom, 

2005; Kerstan et al., 2023). However, our study also cautions against 

over-reliance on labeling as a trust mechanism. As highlighted in prior 

work (Scharowski et al., 2023), labels can create a false sense of security 

and may inadvertently reinforce the “implied truth effect” (Pennycook 

et al., 2020), where unlabeled content is assumed to be accurate. These 

findings point to the need for more context-sensitive and dynamic 

approaches to communicating AI involvement in health information 

systems.

5.2 . Behavioral and physiological features can vary by health information 

source and label

Our results demonstrated that the effects of label and source are 

also evident at the behavioral and physiological level. Prior work has 

shown value in leveraging behavioral and psychophysiological sensing 

across fake news detection in social media (Abdrabou et al., 2023) and 

information-seeking tasks (Ji et al., 2024), where such signals are indica­

tive of visual attention and information processing in these tasks. With 

respect to trust, Ajenaghughrure et al. (2020) review found that while 

psychophysiological levels of trust perceptions (e.g., arousal) can be de­

tected (e.g., using EEG or ECG), how such responses behave during user 

interactions (in real-time) remains underexplored. In the context of our 

study, we first explored (RQ2) whether such signals vary during health 

information processing across human versus AI-sourced content, and es­

sentially whether such signals can serve as a means of verifying and pos­

sibly predicting self-reported trust scores (Section 4.1.4). We found that 

participants displayed distinct gaze patterns related to the source and 

labeling of the presented presented information. Specifically, we found 

that longer fixation duration, higher fixation counts, and larger pupil 

dilation were associated with information labeled as human-generated, 

suggesting a deeper cognitive engagement with this human-labeled in­

formation, suggestive of higher trust. Conversely, information labeled 

as AI-generated prompted more scanning behavior (i.e., reflected in in­

creased saccadic movements and shorter fixation durations), indicative 

of increased verification processes. These results corroborate existing re­

search from others (e.g.,  Just and Carpenter, 1980 and  Rayner, 1998) 

who likewise found that gaze patterns, especially the fixation and sac­

cade behaviors, are indicative of cognitive processing and information 

verification relevant to trust assessment and dynamics.

For the peripheral physiological signals, while we found signifi­

cant differences in features such as RMSSD and skin temperature when 

users encountered labeled health information, no such differences were 

found in skin conductance (SCL and SCR) measurements. It is worth 

speculating what this means: these indicators aligned with users’ self-

reports, where health information labeled as from AI elicited higher 

HRV (i.e., RMSSD) than the label of human professionals. Higher 

HRV is typically associated with lower physiological arousal, possibly 

reflecting less cognitive processing or more relaxed state.  This inter­

pretation is consistent with the meta-analysis by Kim et al. (2018), 

which found that HRV reliably decreases under stress or increased cog­

nitive demands, and increases under lower arousal or more comfortable 

conditions. Indeed, HRV is one of the most commonly used psychophys­

iological indicators in trust research (Ajenaghughrure et al., 2020), 

able to detect subtle variations in user state during human-computer 

interaction. Although Ajenaghughrure et al. caution that trust classifi­

cation using physiological signals remains an open research challenge. 

Furthermore, the pattern of reduced physiological arousal in response 

to AI-labeled information aligns with the gaze data in our study, which 

suggested less attentional engagement (e.g., shorter fixations, fewer 

regressions) with AI-labeled content compared to human-labeled infor­

mation. These findings suggest that participants may have processed 

AI-labeled health information with lower cognitive and emotional in­

vestment. Similarly, higher skin temperature levels were observed with 

both AI-labeled and LLM-sourced information, suggesting lower emo­

tional arousal and stress levels, reflecting participants’ psychological 

interpretation of trust (Ahmad and Alzahrani, 2023). I.e., participants 

gave higher trust scores to the LLM-sourced information compared to 

human-sourced, and showed lower physiological arousal with the AI 

labels than human labels.

These behavioral and physiological responses deepen our interpreta­

tion of trust formation grounded in the MATCH model (Liao and Sundar, 

2022). While the online survey study (Study 1) focused on how users re­

spond to model attributes and afforded cues (i.e., health information 

source and labels), we further extend the analysis to trust heuristics, 

the implicit, affective processes that guide user trust-related judgments 
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under uncertainty. Physiological responses like HRV and skin tempera­

ture likely reflect affective dimensions of trust (e.g., comfort, emotional 

arousal), whereas gaze patterns and fixation behavior index cognitive 

engagement. This layered interpretation aligns with calls to distinguish 

between cognitive and affective trust as investigated by (Lee and See, 

2004) which is grounded in the most widely used and accepted ABI trust 

model from (Mayer et al., 1995), suggesting that trust in AI-generated 

health content is not just explicitly reported but also embodied in users’ 

implicit affective reactions.

Taken together, these sensing signals could serve as a useful means 

to corroborate how users react and feel toward content perceived to be 

sourced from humans versus AI, while providing an additional layer of 

information about information processing and associated affect.

5.3 . Considerations: toward trust-aware AI for health information seeking

Our findings offer actionable design considerations for stakeholders 

designing or developing LLM-powered health information tools. These 

include interface designers and developers of adaptive AI systems. We 

outline practical considerations as below, grounded in the findings of 

this work.

5.3.1 . For UI designers of health information interfaces

Designing and placing labels for trustworthy interfaces. As a key element 

of user interfaces, transparency labels play a crucial role in promoting 

trustworthy AI design (Liao et al., 2024). Our findings show that la­

beling content as AI-generated consistently reduced trust compared to 

identical content labeled as human-generated. This suggests that while 

transparency is critical, poorly framed labels can inadvertently erode 

trust. Given the critical role of UX for responsible and transparent AI 

design (Liao et al., 2024), we find it important to foster trust already 

at the interface level when presenting health information. Prior work 

highlights the need for balance: too little transparency risks deception, 

while too much may undermine confidence (Kizilcec, 2016). Therefore, 

designers should carefully consider not only whether labels are present, 

but also how they are phrased and styled. Research from Epstein et al. 

(2023) shows that both presence and framing can significantly shape 

user trust. Insights from privacy nutrition labels (Kelley et al., 2009) 

further demonstrate that visual choices of design, such as simplifying 

symbols, using color intensity to signal risks, and providing accessible 

visual explanations for technical terms, can improve users’ accuracy, 

efficiency, and satisfaction (Kelley et al., 2009).

Our eye-tracking data supports this: participants gave more fixation 

counts to AI-labeled health information while also giving more fixation 

counts to human labels. This indicates that labels strongly influence 

both user attention and trust judgments. Effective placement is there­

fore crucial: labels should appear in or near high-attention areas such 

as headlines or primary content zones, and be styled with moderate 

emphasis, visible, but not distracting.

Taken together, these insights point toward “trust-aware” UI design, 

where transparency labels are not just added for compliance but are 

thoughtfully designed and positioned to foster trust without bias. Visual 

elements such as trust meters or engagement indicators could further re­

flect the health information system’s trust assessment and communicate 

how health systems interpret user interactions, making transparency 

both informative and supportive of trust.

Uniform UI structure across health topics. Our findings also showed 

that trust ratings did not vary across information types, suggesting that 

a uniform interface structure can be used across health content cate­

gories, allowing design efforts to focus more on trust-sensitive features 

like labels and source attribution rather than varying UI by topic.

5.3.2 . For developers of adaptive LLM-powered health information systems

Real-time user states estimation is feasible. Our findings show that be­

havioral and physiological signals (e.g., fixation and pupil size) varied 

across conditions, showing potential in predicting self-reported trust and 

source attribution. These results suggest the feasibility of integrating 

user-state modeling into adaptive health information systems, echoing 

recent efforts in Human-Computer Interaction that leverage physiologi­

cal signals to guide interactive system design and development (Chiossi 

et al., 2024). For instance, Boonprakong et al. (2023) develop bias-aware 

systems that use physiological data for cognitive load estimation Ahmad 

et al. (2020), and study (Ajenaghughrure et al., 2021) predicts trust us­

ing psychophysiological measures. Understanding users’ implicit states 

has the potential to enable the health system to better support health 

information seeking, flag moments of confusion or disengagement, and 

ultimately improve trust perceptions in health information.

Toward “disclosure-aware” interfaces. Building on this, our findings 

suggest the opportunity to build “disclosure-aware” health systems or 

interfaces that can dynamically adjust the transparency labels based on 

real-time user states. For example, when the system detects low attention 

(e.g., reduced fixations), it could highlight source labels to encourage 

more critical engagement. Conversely, when signs of cognitive overload 

or skepticism emerge (e.g., sustained focus on labels, increased pupil 

dilation), the system could simplify or temporarily de-emphasize the 

label to prevent unnecessary distrust, particularly when the content is 

accurate and clearly presented. Moreover, such “disclosure-aware” in­

terfaces could provide on-demand explanations of labels, giving users 

deeper transparency only when users seek it.

This vision resonates with the concept of attentive user interfaces 

by Hummel et al. (2018), which sense and respond to users’ attentional 

states to ensure that key digital nudges are not overlooked. Extending 

this logic, transparency labels could be made on demand, surfacing 

prominently when attention is low, and simplifying when signs of over­

load or skepticism arise. Such attentional feedback loops point toward 

health information systems and interfaces that are not only disclosure-

aware but also attention-adaptive, dynamically balancing clarity, trust, 

and cognitive load.

Overall, this work advances HCI efforts to design AI health informa­

tion systems and user interfaces that are not only transparent but also 

trust-aware and adaptive. By revealing how users respond to different in­

formation sources and disclosure labels, our findings offer actionable in­

sights for both designers and developers. These considerations can help 

calibrate trust more effectively, reducing over-reliance, mitigating un­

due skepticism, and ensuring that both AI- and human-generated health 

information are presented in ways that support informed judgment.

5.4 . Limitations and future work

Our study had several limitations that should be considered when 

interpreting the findings.

First, while our findings suggest that behavioral and physiological 

signals show potential in reflecting trust-related responses, we caution 

against overinterpreting them as direct indicators of trust, a com­

plex and subjective construct (Liu et al., 2023; Johnson et al., 2015;

Vereschak et al., 2024). Such signals can be influenced by unrelated 

factors like attention, physical arousal, or contextual noise (Cacioppo 

et al., 2016). Without careful contextualization, these signals could be 

misinterpreted as significant in scenarios where they merely represent 

contextual noise. Future research should integrate additional modali­

ties (e.g., fNIRS Boonprakong et al., 2023, EEG Michalkova et al., 2024) 

to more robustly capture underlying cognitive states. Moreover, trans­

lating these findings into real-world applications (e.g., web-based gaze 

tracking (Mounica et al., 2019), rPPG from facial videos (McDuff et al., 

2014)) raises ethical concerns regarding consent, data privacy, and po­

tential over-reliance on AI (Wang et al., 2023; Friedman et al., 1999). 

Hence, any deployment must adhere to legal regulations (e.g., European 

AI Act (Act, 2024)) and prioritize continuous consent based on on-device 

security and privacy controls.

Second, the controlled lab environment may have influenced par­

ticipants’ responses, as being observed might heighten scrutiny of 

AI-labeled information, potentially amplified by societal caution to­

ward AI. However, such a “mere observer effect”, is likely just typical 
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for controlled psychological experimental conditions, where partici­

pant awareness of observation can subtly affect behavior (Cacioppo 

et al., 1990). While these settings are valuable for minimizing exter­

nal confounders and ensuring reliable comparisons across conditions, 

future studies should nevertheless validate these findings in real-

world environments to account for potential differences in naturalistic

behaviors.

Third, our study measured trust at a single time point and re­

lied on self-reports rather than actual decision-making actions. While 

this provides initial insights, trust is inherently dynamic and context-

sensitive, often influencing real-world decision-making under uncer­

tainty (Sillence et al., 2019). Capturing only static trust ratings may miss 

how trust evolves over interactions or translates into behavior, such as 

whether individuals follow AI- vs. human-sourced advice. Future work 

should adopt longitudinal, action-oriented paradigms (e.g., Ecological 

Momentary Assessment (Crosby et al., 2016)) to better reflect how trust 

evolves over time and influences real-life health decisions. This would 

yield a more ecologically valid understanding of trust in LLM-powered 

health context.

Fourth, while all LLM-generated responses were reviewed for con­

sistency with human-authored content, we did not explicitly screen 

for stylistic aspects such as tone, clarity, or writing uniformity, which 

may influence perceived trust. Besides, this study focused on a single 

LLM (GPT-4o), and the findings may not generalize across other mod­

els (e.g., Claude, Gemini, Llama), which vary in output quality and 

style. Moreover, we did not include an in-task manipulation check to 

assess whether participants consciously perceived the actual source be­

hind the labeled information. However, we acknowledge that perceived 

source awareness could influence trust independently of disclosed labels. 

Future work should evaluate the role of stylistic linguistic features across 

different LLMs, with regard to trust in AI. Additionally, to better un­

derstand how users react to AI-generated content, future studies should 

incorporate perceived-source ratings (e.g., post-task questionnaires or 

detectability checks) to assess whether trust judgments are mediated by 

users’ ability to distinguish AI- from human-authored responses.

Lastly, our participant sample (notably WEIRD Linxen et al., 2021) 

across both studies was not representative of the general population, fur­

ther limiting generalization. This is particularly relevant for groups with 

varying levels of AI literacy or differing baseline trust in technology. 

Acknowledging this limitation helps specify to whom these findings most 

apply. Nevertheless, our study provides a key initial step toward under­

standing the impact of source and labeling in online health information. 

Future expansion to include participants from varied demographics 

can enhance our understanding of how trust in health information is 

perceived across different groups.

6 . Conclusion

Through a mixed-methods crowdsourcing survey (N=142) and 

within-subjects lab study (N=40), we found that AI-generated health 

information is trusted more than content sourced by human profession­

als, regardless of labeling, while human labels are trusted more than AI 

labels. Furthermore, we found that trust perceptions in personal health 

information are not only influenced by the source and label but also 

vary at behavioral and physiological levels. Our work highlighted the 

importance of considering AI transparency labels when measuring trust 

in online health information, and in developing techniques for verifying 

subjective trust perceptions and automatically inferring if and when to 

apply transparency labels based on sensed behavioral and physiological 

data. As such, we invite future research on understanding and designing 

for the physiology of online human-AI interactions, within and beyond 

AI-powered health information systems.
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