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Present two complementary studies:
mixed-methods survey (N = 142) and
lab study (N = 40) with eye-tracking
and ECG/EDA sensing.

Investigate trust in AI- and human-
generated health information, varying
source, disclosed label, and information
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(RQ1) Does the actual source, disclosed label, and type of personal health
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ABSTRACT

As Al-generated health information proliferates online and becomes increasingly indistinguishable from human-
sourced information, it becomes critical to understand how people trust and label such content, especially when
the information is inaccurate. We conducted two complementary studies: (1) a mixed-methods survey (N =142)
employing a 2 (source: Human vs. LLM) x 2 (label: Human vs. AI) x 3 (type: General, Symptom, Treatment)
design, and (2) a within-subjects lab study (N =40) incorporating eye-tracking and physiological sensing (ECG,
EDA, skin temperature). Participants were presented with health information varying by source-label combina-
tions and asked to rate their trust, while their gaze behavior and physiological signals were recorded. We found
that LLM-generated information was trusted more than human-generated content, whereas information labeled as
human was trusted more than that labeled as Al Trust remained consistent across information types. Eye-tracking
and physiological responses varied significantly by source and label. Machine learning models trained on these
behavioral and physiological features predicted binary self-reported trust levels with 73 % accuracy and infor-
mation source with 65 % accuracy. Our findings demonstrate that adding transparency labels to online health
information modulates trust. Behavioral and physiological features show potential to verify trust perceptions and

indicate if additional transparency is needed.

(1) Monitor

(6) 3M electrodes
| LEAD-II for ECG

" e
(3) BioSemi amplifier

(5) Miniature Pt1000
sensor for skin temp

Fig. 1. The hardware setup for presenting the text stimulus and collecting
physiological signals, eye movement, and pupil dilation.

1. Introduction

The internet has become a primary source of health informa-
tion (Cline and Haynes, 2001; Sillence et al., 2007), with 58.5 % of
American adults (Wang et al., 2022) (survey in 2022) and 55 % of
Europeans (Eurostat, 2022) (survey in 2022) using online sources for
health-related searches. This shift has transformed how individuals ac-
cess and engage with health-related content. Online health resources
encompass a broad range of digital tools, including professional medical
websites (National Institutes of Health, 2023; MAYO CLINIC, 2023) and
Al-driven tools like health chatbots powered by Large Language Models
(LLMs) (Wu et al., 2023). These tools have made health information
more accessible and convenient than ever, yet they also require users
to make critical choices about which sources of the retrieved health in-
formation to trust (Liu et al., 2023; Sillence et al., 2005). These trust
decisions directly influence health-related choices, many of which carry
significant health risks (Wang et al., 2023; Marecos et al., 2024). As
a result, understanding how different information sources shape trust
perceptions has become increasingly critical (Bates et al., 2006). Some
prior studies find that users tend to trust human-generated information
more (Broom, 2005; Kerstan et al., 2023; Walker et al., 2024; Reis et al.,
2024), while other work suggests that people may prefer algorithmic
or Al-generated judgments over human ones (Logg et al., 2019; Shekar
et al., 2024). These mixed findings suggest that trust in online informa-
tion varies by source and context, and remains insufficiently understood,
especially in LLM-powered health contexts.

Disclosed labeling of online information signals its source, but can
also shape perceptions independently of the actual source, making it an

essential dimension of understanding trust. Misleading labels or unclear
sourcing may result in misinformation and poor health decisions (Desai
et al., 2022; Marecos et al., 2024). Labeling is increasingly mandated
by regulations, such as the European AI Act (El Ali et al.,, 2024).
Research shows that disclosed labeling (e.g., with/without indicating Al
involvement), can significantly influence trust independently when the
information source is identical (Reis et al., 2024). In Al-powered tools,
labeling plays a critical role, especially as users increasingly struggle
to distinguish between human- and Al-generated content (Rathi et al.,
2025). In LLM-powered systems, the actual content source and the dis-
closed label can diverge, for example, Al-generated content may be
labeled as human-authored. While prior research has independently ex-
amined the effects of information source (e.g., Al vs. human) (Walker
et al., 2024; Johnson et al., 2023) and labeling (Reis et al., 2024; Rae,
2024) on trust, there remains a critical gap in understanding how these
two factors interact. Yet, both can significantly influence perceived trust
in health information. This gap is especially important in high-stakes
contexts like personal health, where trust directly influences individuals’
health decision-making and behavioral outcomes (Marecos et al., 2024).
Our work addresses this need by manipulating the content source and its
disclosed label jointly to investigate their combined effects on people’s
trust perception in health information, particularly in the era of LLMs.

To understand such joint effects of information sources and disclosed
labels on people’s perceived trust, we ask: (RQ1) How do the actual
source, disclosed label, and type of personal health information
influence people’s perceived trust in online health information?
To answer this research question, we employed a mixed-methods ap-
proach in Study 1 (see Fig. 2a). Specifically, we conducted an online
crowdsourcing survey (N=142) using a 2 x 2 x 3 factorial design.
Source (Human Professional vs. LLM) was treated as a between-subjects
variable to minimize potential biases from participants directly compar-
ing human and AI sources. In contrast, Label (Human Professional vs.
Al) and health-information Type (General vs. Symptom- vs. Treatment-
related) were within-subjects variables to enable a nuanced comparison
of trust perceptions across different labeling and information types
within the same participant. This mixed design balanced the reduction
of cross-condition biases with the sensitivity of within-subject compar-
isons. Participants rated their perceived trust in the health information
they received using standardized self-report scales, which served as our
primary trust measure outcome.

Although self-reported measures we adopted for Study 1 are widely
used due to their simplicity and directness, research by Chen et al.
(2021) and Kohn et al. (2021) argues that self-reported trust measures
are subjective, which makes them more vulnerable to biases like social
desirability bias and the Initial Elevation phenomenon (Anvari et al.,
2023). These biases may compromise the reliability and validity of self-
reported trust assessments. With the growing use of sensing technologies
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Fig. 2. Visual summary of the studies in this paper. (a) Study 1: Mixed-methods crowdsourcing survey study to measure perceived trust; (b) Study 2: Within-subjects
lab study to measure perceived trust, as well as behavioral and physiological responses.

and recent interest in Human—Computer Interaction research to draw
on physiological sensing for designing or evaluating interactive sys-
tems (Chiossi et al., 2024), several prior studies (Ajenaghughrure
et al., 2020; Akash et al., 2018; Lim et al., 2022) argue that behav-
ioral and physiological data can provide a complementary perspective
for understanding trust alongside self-reported measures. Behavioral
patterns such as eye movements and physiological responses, as as-
sessed by Electrocardiogram (ECG) (Ajenaghughrure et al., 2020) and
Electrodermal Activity (EDA) (Babaei et al., 2021), could reveal how in-
dividuals process information and make trust-related decisions in health
contexts. For example, eye movement patterns, such as fixation dura-
tion and saccade behaviors, can indicate cognitive engagement with the
information, while physiological responses like heart rate variability
(HRV) (Ajenaghughrure et al., 2020; Tiwari et al., 2021; Ahmad and
Alzahrani, 2023) and skin conductance levels (SCL) can reveal emo-
tional arousal and stress responses. These implicit measures may further
help interpret user trust perceptions (Babaei et al., 2021; Ahmad and
Alzahrani, 2023). Thus, exploring these behavioral and physiological in-
dicators can contribute to a more comprehensive understanding of trust
formation in digital health contexts (Akash et al., 2018; Ajenaghughrure
et al., 2020; Wang, 2018) and further, help develop strategies to enhance
the trustworthiness of online health information, especially given the
growing use of LLM-powered tools for health advice (Garg et al., 2023;
Lee et al., 2023; Biswas, 2023).

Building on RQ1, we adopt behavioral and physiological data as a
complementary lens for understanding trust. We ask: (RQ2) Can be-
havioral and physiological signals be used to understand trust
perceptions toward human- and Al-generated health information?
To address this research question, we conducted a laboratory study
(Study 2, N = 40) using a 2 x 2 x 3 fully within-subjects design. We
collected eye-tracking data (e.g., gaze patterns, pupil dilation) and phys-
iological signals (e.g., ECG, EDA, and skin temperature) to examine
whether these implicit signals vary as manipulated by source and la-
bel. Additionally, we explored how these signals relate to participants’
self-reported trust perceptions. By allowing each participant to serve as
their own control, this design minimized variability due to individual
differences and maximized the robustness of condition-specific infer-
ences. Importantly, participants were not informed that labels could be
intentionally mismatched with the actual source (i.e., cross-labeled) in
both studies. This ensured that participants evaluated the health infor-
mation and its disclosed label as presented, without being influenced by

a heightened awareness of potential labeling errors, thereby allowing
us to more accurately assess their trust perceptions on both information
itself and its labeling.

Online survey (Study 1) findings showed that the (actual) source of
information significantly influenced trust perceptions, with participants
displaying higher trust in LLM-generated health information compared
with human professionals. Second, the labeling of the source played a
crucial role: health information labeled as coming from human profes-
sionals led to significantly higher trust than information labeled as from
Al i.e., regardless of the actual source. Third, the type of health question
did not significantly affect trust, alone or in interaction with label and
source. Together, these observations suggested that perceived trust is
not influenced by the nature of the health query, and that the source and
labeling of the health information are the main determinants. The lab-
oratory study (Study 2) supported the survey findings, with additional
insights: gaze features, such as fixation, saccade, and pupil diameter, var-
ied significantly based on the source and labeling of health information.
Moreover, physiological features, such as heart rate variability (HRV,
measured as the root mean square of successive differences, RMSSD)
and skin temperature, differed when participants engaged with infor-
mation with different labels. These findings indicated that the source
and labeling of health information influence both behavioral and phys-
iological responses. Further prediction tasks were performed based on
behavioral and physiological data, yielding 0.35 R? for predicting trust
scores and 73 % accuracy in classifying binary trust levels (high vs. low).
Additionally, we achieved 65 % accuracy in classifying the source of
health information. These results underscored the potential of leverag-
ing behavioral and physiological signals as complementary indicators
to understand trust perception toward human vs. Al-generated health
information.

Our exploratory work offers two primary contributions: (1) We pro-
vided empirical evidence showing that trust in online health information
is influenced both by its actual source and disclosed label. (2) We found
that trust perceptions in personal health information vary at behavioral
and physiological levels, offering complementary insights beyond self-
reported trust and helping to identify discrepancies between the explicit
(i.e., self-reported) and implicit trust-related responses. To our knowl-
edge, this is one of the few studies that combines physiological (e.g.,
HRYV, skin temperature) and behavioral (e.g., gaze) signals to under-
stand trust in Al-generated health information. Our work highlights the
importance of considering Al transparency labels when measuring trust
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in health information and the vulnerability of trust abuse due to mis-
labeling. It further opens the possibility of verifying trust perceptions
and inferring if and when to apply transparency labels based on sensed
behavioral and physiological data.

2. Related work
2.1. Trust in online health information seeking

Trust is a multifaceted psychological construct essential to both
interpersonal and human-technology interactions. Mayer, Davis, and
Schoorman’s integrative ABI model of trust (Mayer et al., 1995) defines
trust as a willingness to be vulnerable to the actions of another party,
based on the expectation that the party possesses the performance (abil-
ity), intends to do good (benevolence), and adheres to a set of principles
that the trustor finds acceptable (integrity). Extending this concept to
the digital age, (Lee and See, 2004, p. 51) define trust in technology as:
“An attitude that an agent will achieve an individual’s goal in a situation
characterized by uncertainty and vulnerability”.

In the context of health, trust is particularly important due to the
sensitive nature of health information and its impact on health-related
decision-making, which can have dire health consequences should it be
incorrect (Wang et al., 2023; Marecos et al., 2024). Trust formation in
health contexts is complex and influenced by both intrinsic and extrin-
sic factors, including individual characteristics such as prior knowledge,
health literacy, and external cues, such as source credibility, interface
design, as highlighted by Vereschak et al. (2024). For instance, numer-
ous studies (Bates et al., 2006; Liu et al., 2023; Sillence et al., 2004;
Singal and Kohli, 2016; Dutta-Bergman, 2003; Lucassen and Schraagen,
2010) have indicated that the credibility of the information source is
crucial, the design (Fogg et al., 2001; Wathen and Burkell, 2002; Fogg
etal., 2000; Flanagin and Metzger, 2007) and usability (Davis and Davis,
1989) of the health-related tools can significantly affect trust. User
prior experience such as familiarity levels (Sillence et al., 2019), and
user expectations (Guo, 2022) also influence trust perceptions as well.
Moreover, users increasingly expect transparency, ethical Al practices,
and data privacy, which further complicate trust calibration (Friedman
et al., 1999; Bansal and Warkentin, 2022; di Sciascio et al., 2020; Ul
Haque et al., 2023).

To conceptually integrate the literature and these multi-level trust
influences, we draw on the MATCH framework (Liao and Sundar, 2022),
a model that systematically captures the trustworthiness cues in human-
Al communication. Unlike trust models that focus on either the trustee’s
attributes (e.g., classic ABI model) or interface-level cues (e.g., MAIN
model Sundar, 2007), the MATCH framework offers a more integrated
account of how trust is formed in Al systems by collectively integrating
content quality, interface design, and user heuristics.

Specifically, MATCH organizes trust into three components: (1)
Model Attributes. This dimension, drawn directly from the ABI
model (Mayer et al., 1995), refers to the perceived ability and compe-
tence of the system. In our context, it relates to users’ perceptions of
the quality and reliability of the information itself. It echoes the prior
work revealing that the intrinsic quality of the information itself plays
a critical role in shaping trust (Flanagin and Metzger, 2000; Sbaffi and
Rowley, 2017; Wathen and Burkell, 2002; Fogg et al., 2000; Metzger and
Flanagin, 2013). (2) Afforded Cues. These are extrinsic signals such as
formatting, interface design or interaction patterns. Prior work shows
that even subtle interface features like transparency labels (Kizilcec,
2016; Yin et al., 2024) or content layout (Johnson et al., 2015; Fogg
et al., 2001; Wathen and Burkell, 2002; Fogg et al., 2000; Flanagin and
Metzger, 2007) can significantly influence trust judgments. (3) Trust
Heuristics. MATCH uniquely accounts for the mental shortcuts users ap-
ply under uncertainty (e.g., quickly assessing that information labeled as
“human-generated” is more trustworthy, or that “Al-generated” content
is less reliable). It is often shaped by prior experience, health literacy, or
cognitive and affective responses collectively (Lee and See, 2004). In our
work, we further interpret these heuristic processes through behavioral
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and physiological signals, such as gaze patterns that may reflect users’
implicit trust-related responses.

Grounded in the MATCH model, this work examines how both source
information taps into model attributes, how labeling functions as an
afforded trustworthiness cue, and how behavioral and physiological sig-
nals reflect user cognitive heuristic and affective processing of health
information toward the trust-related judgments. While existing studies
have investigated trust in Al- vs. human-generated content, few have
systematically decoupled the actual source from the disclosed label to
assess their independent and combined effects. Our exploration builds
on the MATCH model and extends prior work by isolating and manipu-
lating both information source and labeling disclosure, allowing us to
explore how these cues interact and shape trust formation in online
health information seeking contexts.

2.2. Source and label transparency in the age of LLMs

The internet has become a vital resource for health informa-
tion (Cline and Haynes, 2001), with websites like WebMD (WebMD,
n.d.) and Mayo Clinic (MAYO CLINIC, 2023) providing expert-curated
content. The rise of LLMs like ChatGPT (OpenAl, n.d.) has revolutionized
access to online health information by offering conversational interac-
tions to health queries (Dalton et al., 2022). Trust in these LLM-powered
tools is influenced by various factors (Rheu et al., 2020), including the
perceived credibility of their responses, clarity of information, trans-
parency about how the information is generated (El Ali et al., 2024), and
users’ familiarity and experiences using such Al technologies (Bickmore
et al., 2005). Among these, information source (e.g., human-authored
vs. Al-generated) plays a critical role in shaping trust. Research (Hesse
et al.,, 2005; Bates et al., 2006; Lucassen and Schraagen, 2010) has
shown that trust is significantly affected by the perceived credibility of
information source. While LLMs have been effective in providing health
information (Bickmore et al., 2005; Carlbring et al., 2023), concerns
remain about their credibility and reliability. Although human profes-
sionals are traditionally viewed as authoritative and trustworthy due to
their expertise (Kerstan et al., 2023; Broom, 2005), studies like Logg
et al. (2019) showed that users may trust Al for specific tasks, and
Shekar et al. (2024) indicated that people overtrust Al-generated medi-
cal responses. However, other research (Reis et al., 2024; Kerstan et al.,
2023) highlighted people’s preferences for human-generated health ad-
vice, suggesting that trust varies based on context. Additionally, Montag
et al. (2023) found that trust in humans and AI may not be directly asso-
ciated, suggesting people have distinct trust mechanisms for each. These
varied trust levels underscore the complexity of trust formation toward
information from human and Al sources.

Labeling of information sources plays an additional key factor in
shaping trust perceptions in the era of LLMs. Jakesch et al. (2019)
demonstrated that users perceive content as less trustworthy when it
is labeled as Al-generated, even when the content quality is identical,
which indicates that labeling influences how users perceive trustworthi-
ness. Similarly, Reis et al. (2024) found that perceived Al involvement
significantly impacts trust in digital medical advice, as participants in
their study were less willing to follow health advice when they believed
it was generated by AI rather than a human expert. Studies by Walker
et al. (2024) and Kerstan et al. (2023) have also shown that people tend
to trust advice more when it comes from human professionals rather
than from LLMs, especially when the source is explicitly stated. Yin etal.
(2024) found that while AI can create a sense of being heard, labeling
content as Al-generated can reduce its perceived impact. These findings
underscore how labels can significantly impact trust, even when Al per-
forms tasks effectively. Furthermore, Scharowski et al. (2023) explores
the potential for Al certification labels (e.g., “Digital Trust Label” by the
2023 Swiss Digital Initiative), and finds that such labels can mitigate
data-related concerns surfaced by end-users such as data protection and
privacy, however this came at the cost of other concerns such as model
performance, which poses its own challenges. Nevertheless, these works



X. Sun, R. Ma, S. Wei et al.

highlight that transparent communication about how Al systems oper-
ate and the data sources they use can further enhance or maintain trust
among users (Kizilcec, 2016; Logg et al., 2019).

As Al becomes more integral to health contexts, this work specifically
explores the influence of source and labeling as critical extrinsic cues on
trust in health information, offering insights for designing trustworthy
LLM-powered health systems. Framed through the MATCH model (Liao
and Sundar, 2022), these effects reflect how users interpret afforded cues
(e.g., disclosure labels) and model attributes (e.g., inferred competence
or benevolence of a human vs. Al source) when assessing trust. Labels
operate as an interface-level factor that invokes trust heuristics, partic-
ularly under conditions of uncertainty. These trust dynamics highlight
the importance of carefully designing how source and authorship are
communicated in Al-powered health systems.

2.3. Behavioral and physiological signals for understanding trust perception

Traditional research on trust perception has heavily relied on self-
reported assessments; however, many studies (Chen et al., 2021; Kohn
et al., 2021) suggest behavioral and physiological signals may add a rele-
vant layer of information. Integrating these implicit measures helps offer
a complementary understanding of trust in human and LLM-generated
health information. For example, research by Holmgqvist et al. (2011)
shows that eye movement metrics like fixation, saccade, and pupil dila-
tion provide insights into cognitive load and attention allocation during
information processing. While these physiological indicators do not
directly measure trust, they may reflect how users cognitively and affec-
tively engage with content they perceive as more important, credible,
or challenging. For instance, increased pupil dilation, linked to higher
cognitive load (Ahmad et al., 2020) and emotional arousal, may suggest
deeper cognitive processing, which may co-occur when individuals are
evaluating information for trustworthiness or making health-related de-
cisions. Although the relationship between trust, cognitive, and affective
responses is complex, monitoring these signals may help identify mo-
ments of increased scrutiny or hesitation, offering indirect cues about
trust-related states. As an example of such research, Ji et al. (2024,
2023) demonstrated that physiological signals, such as electrodermal
activity, blood volume pulse, and gaze, vary meaningfully across differ-
ent information processing activities (e.g., reading, speaking, listening)
during information-seeking tasks. Moreover, prior work has used be-
havioral data to explore how people engage with online news content,
particularly in the context of misinformation. For instance, Abdrabou
et al. (2023) found that gaze and mouse movement patterns could help
distinguish between user exposure to real versus fake news, achieving
moderate accuracy in identifying subconscious engagement with misin-
formation. Similarly, Sii et al. (2021) showed that eye-tracking data
reflected differences in how users read and process true versus false
news articles, suggesting that such behavioral signals can offer a com-
prehensive understanding of how people implicitly respond to varying
degrees of information credibility. Studies (Lu and Sarter, 2019; Wang,
2018; Kohn et al., 2021; Holmqvist et al., 2011; Sevcenko et al., 2022;
Ayres et al., 2021) demonstrate that distinct gaze patterns are linked to
trust levels, with higher fixation counts and longer duration typically
indicating focused attention, greater cognitive engagement, and trust in
the information. Saccades, characterized by the frequency and length
of eye movements between fixations, often signal information verifi-
cation processes (Lu and Sarter, 2019; Wang and Stern, 2001; Wang,
2019). These findings suggest that these multimodal implicit signals can
be sensitive indicators of user cognitive effort and engagement, offering
potential to infer user states such as trust or uncertainty in information
processing contexts.

Physiological features such as ECG (Ajenaghughrure et al., 2020),
EDA (Babaei et al., 2021), and skin temperature (Ahmad and Alzahrani,
2023) can be useful for understanding implicit responses related to
trust. Heart Rate Variability (HRV), derived from ECG, reflects the level
of stress and cognitive dissonance, with higher HRV indicating lower
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physiological arousal which is associated with relaxation, comfort, and
higher trust levels (Tiwari et al., 2021; Kim et al., 2018; Thielmann
et al., 2022). EDA measures, including Skin Conductance Level (SCL)
and Skin Conductance Response (SCR) are similarly tied to emotional
arousal, where lower conductance is used to infer greater comfort and
trust (Babaei et al., 2021; Wang, 2018; Ahmad and Alzahrani, 2023).
Similarly, changes in skin temperature are thought to reflect engagement
levels, with higher temperature suggesting increased cognitive engage-
ment with information (Ahmad and Alzahrani, 2023). As investigated by
prior work (Lee and See, 2004), trust perception, a complex, subjective
cognitive and affective process, can be assessed using models by ana-
lyzing physiological (e.g., ECG and EDA (Ajenaghughrure et al., 2021),
EEG Akash et al., 2018) and behavioral (e.g., gaze patterns Lim et al.,
2022; Parikh, 2018) indicators. These models help reduce subjective bias
and can provide real-time insights into trust responses, not least of which
is an additional verification means alongside self-reports.

These behavioral and physiological signals provide insights into
users’ implicit responses, capturing attention, emotional arousal, and
cognitive engagement that may not surface in self-reports. In our work,
we explore whether implicit signals vary meaningfully across condi-
tions of information source and labeling. We interpret these signals
cautiously as indirect indicators that may correlate with trust. Within
the MATCH model (Liao and Sundar, 2022), these sensing signals map
onto the trust heuristics component, reflecting how users internally pro-
cess trustworthiness cues that influence trust. Unlike explicit cues like
source attributions, sensing signals help uncover how users process those
cues implicitly, for example, when trust is assigned reflexively versus
analytically. By revealing how trust is formed or challenged beneath ex-
plicit awareness, these signals complement extrinsic cues and help build
a more comprehensive picture of trust in LLM-powered health contexts.

2.4. Synthesis and research gap

As summarized in Table 1, prior research has largely treated source
and label in isolation, and separately examined how information sources
and disclosed labels influence trust in online information, but findings
are mixed. Some studies report that users trust human-generated content
more due to perceived expertise and accountability (Kerstan et al., 2023;
Walker et al., 2024), while others show higher trust in Al-generated in-
formation, citing perceived consistency or objectivity (Logg et al., 2019;
Shekar et al., 2024). Research on labeling further shows that disclosing
Al involvement often reduces trust even when content is identical (Reis
et al., 2024; Jakesch et al., 2019; Yin et al., 2024). However, few studies
have systematically disentangled the effects of source and label together,
or explored whether these effects vary across different information types
in health contexts (e.g., general, symptoms, treatment).

Moreover, prior research relies heavily on self-reported trust, which
may not capture users’ implicit cognitive and emotional responses in-
volved in trust judgments. Behavioral and physiological signals offer
promising but underexplored means of revealing how users attend to,
process, and evaluate health information beyond what they report,
which can offer complementary insights into how trust is formed beyond
self-reports.

This leaves critical gaps (summarized in Table 1) in understanding
how information source, labeling, and content type jointly influence
both users’ explicit trust (self-reports) and implicit responses (behavioral
and physiological) in the context of LLM-generated health information.
To address this, our work draws on the MATCH framework (Liao and
Sundar, 2022), which integrates: Model Attributes (i.e., information
source), Afforded Cues (i.e., disclosed label and information types), and
Trust Heuristics (cognitive or emotional responses implicitly reflected in
sensing signals). This integrated approach allows us to investigate not
only how trust varies across source, label, and information type, but also
whether behavioral and physiological signals reflect trust-related judg-
ments in implicit but meaningful ways when users engage with Al- and
human-generated health information in LLM-powered contexts.
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Comparative synthesis of prior studies on source and label effects in trust perception and the research gaps we address in this work.

Manipulation Source

Labeling

Source + Labeling

Self-reports Higher trust in AI than humans:

Logg et al. (2019) (General context); Shekar et al.
(2024) (Health context);

Higher trust in humans than AI:

Walker et al. (2024) (Binary decision-making); Kerstan

et al. (2023); Hesse et al. (2005) (Health context);

Self-reports + Sensing Trust differs by sources (Gaze Data in Fake News)
Trust toward human and AI are not associated (EEG

Data)

Labels increase trust:
Scharowski et al. (2023) (General context);

This work (Study 1):
Source + Label joint effects

AI-Human mixed labels decrease trust:

Jakesch et al. (2019) (Marketing context);

Al labels decrease trust: Yin et al. (2024); Rae (2024)
(General context); Reis et al. (2024) (Health context);

This work (Study 2):
Gaze + Physio in health context

3. Study 1: online survey
3.1. Study methods

3.1.1. Design

We conducted an online survey using a mixed 2 (IV1 - Actual
Source: Human professionals vs. LLM) x 2 (IV2 - Disclosed Label: Human
professionals vs. Artificial Intelligence) x 3 (IV3 - Information Type:
General vs. Symptom vs. Treatment) factorial design to explore peo-
ple’s perceived trust in online health information. The source of health
information (IV1) was set as a between-subjects variable to explore
whether people have different trust perceptions based on the source
(human professionals vs. LLM), which might inherently present infor-
mation in distinct styles. A within-subjects design for the source could
introduce biases in perceived quality and trustworthiness due to these
stylistic differences. Additionally, using a between-subjects design for
the source helps isolate the effect of labeling (IV2), making the findings
clearer and more robust. Conversely, for the label of the source (IV2)
and the type of health information (IV3), we opted for a within-subjects
design to allow direct comparisons of trust perception across different
labels and types while keeping the source uniform for each participant.
This approach reduces individual variability, ensuring a clearer separa-
tion of source effects on trust variances while enabling robust analysis
of influences from labeling and types of health information. Therefore,
during the completion of the survey, each participant read the informa-
tion either generated by human professionals or LLMs, and each of them
experienced six distinct conditions.

3.1.2. Health information

Sets of health information (question and answer pairs) from human
professionals were selected from an open-sourced dataset (Ben Abacha
and Demner-Fushman, 2019) due to its diverse range of health ques-
tions, authored by certified professionals. This ensures the reliability and
authenticity of the information used in this work. To produce compara-
ble and consistent LLM-generated information, we used the Generative
Pre-trained Transformer 4 (GPT-4) model (OpenAl, 2024) (version: “gpt-
4-0125-preview” through the official API) and prompted it with selected
health questions and accompanying instructions (e.g., “Health ques-
tion: [question]. Please give an answer to the above question within
[wordcount] words?”) to generate answers of similar length to those
from human professionals. To ensure consistency and mitigate poten-
tial misinformation, all LLM-generated responses were independently
reviewed by two researchers using the corresponding human-authored
answers as references. The review criteria were consistency in length,
format, topic relevance, and absence of harmful content. Only responses
with full agreement were included, following established HCI prac-
tices (McDonald et al., 2019). The health information falls into three
categories, reflected in both the clinical process and the dataset’s val-
idated taxonomy (Ben Abacha and Demner-Fushman, 2019): General
information: provides answers to general health topics (e.g. “Do you
have information about weight control?”); Symptoms-related infor-
mation: focuses on symptoms and potential diagnoses (e.g. “What are

the symptoms of burns?”); Treatment-related information: provides
treatment options for specific conditions (e.g. “What to do for burns?”).
This categorization aligns with clinical practice, which commonly fol-
lows a three-stage diagnostic process (Bridley et al., 2013; Balogh
et al., 2015): assessment (general inquiry), diagnosis (symptom eval-
uation), and treatment planning (intervention). These types capture a
progression from low- to high-stakes information, allowing us to explore
whether trust perceptions vary by the nature of health content.
Twenty-five questions were selected from each category resulting in
a question set with 75 questions in total, ensuring a comprehensive rep-
resentation of individual health questions. The complete list of health
information used in the study is included as Supplementary Material.

3.1.3. Measures

Demographics and prior experience. In the pre-survey, we col-
lected participants’ demographic information (age, gender, education,
occupation) and their experience in online health information seeking,
using two questions: “How often do you search for health informa-
tion online?” rated on a 5-point Likert scale from Never to Daily; and
“How long have you been using online sources for health information
searching?” with options ranging from Less than 1 year to More than 10
years.

Propensity of trust in technology (PPT) (Jessup et al., 2019) was
used to assess inherent trust in technology before participants read the
health information. It consists of 6 items examining people’s general
trust in technology (e.g. “I think it’s a good idea to rely on technology for
help”). All items were scored on a 5-point Likert scale from 1 (Strongly
Disagree) to 5 (Strongly Agree) (Cronbach’s « = 0.71).

eHealth and Al literacy. As part of the pre-survey, we also measured
participants’ literacy on eHealth and Al separately using two adapted
questionnaires from eHEALS: The eHealth Literacy Scale (Norman and
Skinner, 2006) and MAILS - Meta Al Literacy Scale (Carolus et al., 2023).
All the items were scored from 1 (Strongly Disagree) to 5 (Strongly
Agree). The adapted measure for eHealth literacy has eight items with
an example being “I know where to find helpful health resources on the
Internet” (Cronbach’s « = 0.88), and the adapted measure for Al literacy
has ten items with an example item being “I can distinguish if I interact
with an Al or a real human” (Cronbach’s a = 0.76).

Trust of online health information (Johnson et al., 2015; Rowley
et al.,, 2015) (Trust Score) During the formal study, participants
completed the trust of online health information questionnaire to rate
their trust levels after reading each set of health information. It consists
of 13 items (e.g. “The information appears to be objective.”), each rated
on a 5-point Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree)
(Cronbach’s a = 0.92). We aggregated and calculated the average value
of all 13 items to obtain our perceived Trust Score. We use this score
for further analysis throughout our work.

Post-survey: three open-ended questions At the end of the sur-
vey, participants were asked to reflect on their trust perceptions through
three open-ended questions. These questions explored their views on
(a) general trust in LLM-generated information versus information from
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Characteristics of participants in the online survey.

Demographic Categories Numbers of Participants (%)
Gender (N=142)
Female 83 (58.5 %)
Male 58 (40.8 %)
Non-binary 1 (0.7 %)
Age 18-24 91 (64.1 %)
25-34 38 (26.8 %)
35-44 9 (6.3 %)
45-54 2 (1.4 %)
65+ 2 (1.4 %)
Education High school degree or equivalent 24 (16.9 %)

Professional Domain

Bachelor’s degree

Master’s degree

Doctorate or higher

Health and Medical Science

Science, Technology, Engineering, and Mathematics (STEM)
Business, Economics, and Law

Arts, Culture and Entertainment

67 (47.2 %)
49 (34.5 %)
2 (1.4 %)

17 (12.0 %)
35 (24.6 %)
35 (24.6 %)
19 (13.4 %)

Government and Public Sector 3(2.1 %)
Education 3 (2.1 %)
Other 30 (21.1 %)
Frequency of online health Rarely 27 (19.0 %)
information seeking Sometimes 77 (54.2 %)
Often 31 (21.8 %)
Always 7 (4.9 %)
Duration of online health Less than 1 year 4 (2.8 %)
information seeking 1-3 years 24 (16.9 %)
3-5 years 51 (35.9 %)
5-10 years 45 (31.7 %)

More than 10 years

18 (12.7 %)

human professionals, (b) how they assess the credibility of online in-
formation, and (c) how the labeling of the health information source
influences their perceived trust.

3.1.4. Participants

Participants were recruited through the online crowd-sourcing plat-
forms Prolific (Prolific, 2014) and institute recruitment systems. Our
inclusion criteria included individuals over the age of 18 who are fluent
in English, and they must have passed the attention check. A power anal-
ysis conducted with G*Power 3.1 (Faul et al., 2007) for a mixed-factor
ANOVA design indicated that a minimum of 76 participants would be
required to detect a small effect size (f=0.15), with an alpha level of
0.05 and a power of 95 %.

Table 2 shows a summary of participants’ demographics. 142 par-
ticipants (N =142) were recruited (F=83, M=58, NB=1), with 90.9 %
falling in the 18-34 age bracket. Regarding educational backgrounds,
47.2 % had undergraduate degrees and 35.9 % held postgraduate qual-
ifications. As for online health information-seeking experience, 26.7 %
frequently used online sources, 54.2 % occasionally searched online, and
19.0 % rarely used online resources.

3.1.5. Procedure

The study design and procedure are outlined in Fig. 2(a). Participants
were first provided with detailed information about the study and gave
informed consent in line with institutional guidelines. They provided
demographic information and their experiences with online health in-
formation seeking. A total of 75 health questions were used in the online
survey, divided evenly into three categories: general health, symptom-
related, and treatment-related (25 each) (Section 3.1.2 “Health informa-
tion”). For each participant, six Q&A pairs were shown: two randomly
selected from each category. The survey study used a between-subjects
design for the source of the information (AI- vs. human-generated) and a
within-subjects design for the label (AI- vs. human-labeled). Both source
and label orderings were counterbalanced based on a Latin square ap-
proach, ensuring that all condition combinations were evenly distributed
across participants to mitigate order effects. An illustrative example

of the reading task interface during the survey is shown in Fig. 3.
After reviewing each Q&A pair, participants rated their perceived trust
in the information. At the end, participants completed a post-survey
comprising three open-ended questions about their perceptions of the
information source and its labeling.

Participation was voluntary and participants were monetarily com-
pensated for a 30-min session. To ensure we avoided bots in our
responses, we included an additional attention check where respondents
needed to select a specific response to one question. Our study received
approval from our institute’s ethics and data protection committee.

3.1.6. Data analysis

We conducted quantitative analyses to examine how the types of
health questions, information sources, and labeling of sources influence
trust perception in online health information. Initially, we confirmed
the data’s suitability for parametric tests by performing the Shapiro-
Wilk test (SHAPIRO and WILK, 1965) for normality and Bartlett’s
test (Arsham and Lovric, 2011) for homogeneity of variance; neither
assumption was violated. Next, we performed a mixed model, i.e.,
three-way mixed ANOVA (Kherad-Pajouh et al., 2015) to investigate
differences in trust perceptions based on information sources, disclosed
labels, and types of information. Since only one ANOVA was conducted,
no correction for multiple tests was applied. Following, post-hoc pair-
wise comparisons were conducted using t-tests with False Discovery
Rate (FDR) correction (Haynes, 2013a) to examine differences in trust
between each pair of label and source combinations. To explore the
relationships across variables, we also conducted Pearson correlation
analyses (Freedman et al., 2007) on two subsets of the data: one
with human-sourced information and the other with LLM-sourced in-
formation (between-subjects independent variable). Before analysis, we
confirmed that the assumptions for Pearson correlation: normality, lin-
earity, and absence of extreme outliers, were satisfied in the aggregated
data. Bonferroni correction (Haynes, 2013b) was applied to account for
multiple comparisons in both correlation analyses.

We conducted an inductive content analysis (Elo and Kyngas, 2008)
on the responses to three open-ended questions, focusing on identifying
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For the health-related question: "Do you have information about quitting
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For the below listed items, please read each statement carefully. Using the 5-point

scale ranging from 1 (Strongly disagree) to 5 (Strongly agree), select the statement

For the health-related question: "Do you have information about smokeless

tobacco?";

The answer we obtained from the artificial intelligence (AI) is:

Smokeless tobacco, also known as chewing tobacco, snuff, snus, or dip, refers to
tobacco products that are used by means other than smoking. These products
contain tobacco and nicotine and are placed in the mouth, chewed, or sniffed
rather than smoked. They are often mistakenly perceived as safer alternatives to
smoking, but in reality, they carry significant health risks.

Smokeless tobacco can cause oral cancers, esophageal cancer, and pancreatic
cancer. It is also linked to gum disease, tooth decay, and tooth loss due to the
direct contact of tobacco with gum tissues. Additionally, it increases the risk of

smoking?";

‘The answer we obtained from the health professional is:

Tobacco use is the most common preventable cause of death. About half of the
people who don't quit smoking will die of smoking-related problems. Quitting
smoking is important for your health. Soon after you quit, your circulation begins
to improve, and your blood pressure starts to return to normal. Your sense of smell
and taste return, and it's easier for you to breathe.

In the long term, giving up tobacco can help you live longer. Your risk of getting
cancer decreases with each year you stay smoke-free. Quitting is not easy. You may
have short-term affects such as weight gain, irritability, and anxiety. Some people

that most accurately describes your
above.

of the answer ab

Strongly

disagree  Disagree Neutral Agree

The information contains facts rather than opinions
The information is impartial

Ifeel | can believe the information

The nformation has good quality

The nformation i objective

The information is comprehensive

Theinformation s reliable

Irust this information

Strongly
agree

heart disease and stroke. Nicotine in these products is highly addictive, making try several times before they succeed

quitting difficult.

It's important to understand that all tobacco products, including smokeless ones,
pose health risks. Quitting tobacco use altogether is the best way to reduce these
risks.

‘There are many ways to quit smoking. Some people stop "cold turkey." Others
benefit from step-by-step manuals, counseling, or medicines or products that help
reduce nicotine addiction. Some people think that switching to e-cigarettes can

help you quit smoking, but that has not been proven. Your health care provider H
can help you find the best way for you to quit.

The information tells me most of what | need to know
: The information helps me to understand the issue better
The structure of the information s clear

1 can understand the information easily

[eeNeoNoNoNoNeNeNoNoNoNoNe]
O0O00O0O0O0O0O000O0O0
O0O00O0O0O0O0O000O0O0
O0O0CO0O0O0O0O0O0O0O0O0O0
O0O0CO0O0O0O0O0O00O0O0O0

I can read the information easily

Fig. 3. Example reading task from the survey, showing a Q&A pair with its assigned disclosed source label. Each participant read six Q&A pairs: three labeled as from
“AI” (left) and three labeled as from “Human Professionals” (middle). After each reading, participants rated their trust using the scale shown on the right.

Table 3
Descriptive statistics of the online survey.
Measures Mean SD
Pre-survey Propensity of trust in Al technology (PPT) 3.85/5 72
eHealth literacy 3.62/5 .87
Al literacy 3.81/5 .92
Conditions Mean SD
Trust score Source (Human) & Label (Human) 401/5 .45
Source (Human) & Label (AI) 3.76 /5 .49
Source (LLM) & Label (Human) 4.07/5 .47
Source (LLM) & Label (AI) 3.87/5 .44
Source (Human), regardless of Label 3.89/5 .84
Source (LLM), regardless of Label 3.97/5 .81
Label (Human), regardless of Source 4.04/5 .46
Label (AI), regardless of Source 3.82/5 47

underlying themes that explain trust rather than counting frequencies.
In the first stage, the first two authors created an initial set of codes
using the qualitative analysis software ATLAS.ti (ATLAS.Ti, 2024). This
initial codebook examined respondents’ varying perceptions of trust in
Al and human professionals, their reasons for trusting or distrusting,
and how they typically evaluate the credibility and trustworthiness of
information. Following this, both coders independently open-coded the
responses, remaining open to new observations and emerging codes.
Similar codes were merged, unclear ones were refined, and earlier
responses were re-coded as needed. As the analysis progressed, recur-
ring factors emerged across different questions, allowing us to develop
common themes that spanned all three sets of responses.

3.2. Quantitative findings

3.2.1. Descriptive statistics

As shown in Table 3, participants demonstrated a positive propensity
to trust in technology, with an average score of 3.85 (SD =.72), indicat-
ing a positive attitude toward technology. The average eHealth literacy
score was 3.62 (SD=.87), indicating that participants are relatively ca-
pable of using online health resources. Al literacy was also high, with an
average score of 3.81 (SD =.92), reflecting a favorable understanding of
Al technology.

In terms of trust perception, the trust scores (based on the aggregate
Trust Score described in Section 3.1.3) varied depending on the source
and label of the information. For information both sourced from and
labeled as human, the average trust score was 4.01 (SD=45). When
the information was sourced from humans but labeled as Al, the trust
score decreased significantly to 3.76 (SD =.64). In contrast, information

Table 4
Results from the three-way mixed ANOVA analysis on the trust score without
data correction. (**p <.01, *p <.05).

Outcomes  Conditions Statistics p-value Effect size Sig

Trust score  Source (Human vs. LLM) 2.27 .024 .14 (medium)  *
Label (Human vs. AI) —6.50 .000 —-.39 (medium) **
Type of health information 0.67 .505 .05 (small)

sourced from LLM but labeled as human received the highest trust score
of 4.07 (SD=.47), while information sourced from Al and labeled as LLM
had a trust score of 3.87 (SD =.44). These findings highlight the ways
in which both the source and labeling of information can impact trust
perceptions, with a clear indication that labeling of the sources plays a
role in shaping trust, potentially even more than the actual source of the
information.

Our mixed model analysis compared differences in trust levels among
the source, label, and health information types. Findings are shown in
Table 4 and Fig. 4, and together highlight how people perceive and trust
health information manipulated by sources and labels.

3.2.2. Participants gave higher trust to health information sourced from
LLM than from human professionals

The impact of the information source (human professionals vs. LLM)
on trust in health information was analyzed by a three-way mixed
ANOVA. The results showed significant differences in trust levels be-
tween sources: statistics=2.27, p=.024, effect size=.14. This suggests
that information sources significantly influence overall trust in health in-
formation. Specifically, participants reported trusting information from
LLM more than human professionals, with an average trust score for
LLM-sourced information of 3.97 (SD =.81), compared to 3.89 (SD =.84)
for information from human professionals. Although perceived trust
does not imply factual accuracy, our findings reflect a growing accep-
tance of Al-generated health content and shifting attitudes toward it
relative to advice from human professionals.

3.2.3. Participants gave higher trust ratings to health information labeled as
from human professionals compared to labeled as from AI

Except for the factor of “source”, the labeling of information sources
influenced trust perception significantly. Participants perceived signifi-
cantly lower trust in health information labeled as from AI compared to
that labeled as from human professionals, as indicated by a mixed model
ANOVA (statistics= —6.50, p<.001, effect size=-.39), with an average
trust score for information labeled as from human professionals of 4.04
(SD=.46) and 3.82 (SD=.47) for information labeled as from AI. We
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g. 4. Left: Perceived trust score in information by sources regardless of labels, and by labels regardless of source from the three-way mixed ANOVA without

correction. Right: Post hoc pairwise comparisons on perceived trust score based on different source and label conditions using t-test with False Discovery Rate (FDR)
correction. Each plot shows the score density (width), with the red dot indicating the mean, the black line as the median, and thick bars representing the interquartile
range (IQR). Horizontal lines indicate significance (**p <.01, *p <.05, “ns”: no significance).
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Fig. 5. Pearson correlation with Bonferroni correction among the key variables in the online survey. (**p <.01, *p <.05). Note: “HumLabel”: information with human
label regardless of the actual source. “AlLabel”: information with Al label regardless of the actual source.

also observed no significant difference in trust between human-labeled
information from human sources (M=4.01, SD=.45) and LLM sources
(M=4.07, SD=.47). These results suggest that while LLM-generated in-
formation is generally trusted, the perceived trust still leans in favor of
human-associated information when directly compared.

3.2.4. The type of health information does not affect participants’ trust
perception in information

Additionally, we explored how trust varied across different cate-
gories of health information. There was no significant effect found
(statistics=0.67, p=.505, effect size=.05). This suggests that the type
of health question does not influence people’s trust levels in health
information. The interaction effect between the label of the informa-
tion source and the category of information was not significant as well
(statistics=-.51, p=.613, effect size=-.15). This implies that the influ-
ence of labeling on trust does not vary across different types of health
information.

3.2.5. Correlation analysis

Given that the mixed ANOVA indicated no significant effect of the
type of health information on the trust perceptions, the repeated mea-
sures were averaged into a single observation for each participant.
This simplification allowed us to conduct a Pearson correlation analy-
sis (Freedman et al., 2007) to examine the general relationships between
key variables in the online survey. The results, illustrated in Fig. 5, re-
vealed distinct patterns of trust in health information from different
sources. For information sourced from human professionals, trust in
human-labeled information showed a moderate positive correlation with
trust in Al-labeled information (r(142) = 0.47, p<0.01). However, other
relationships, such as those involving eHealth literacy and Al literacy,
exhibited weak or negligible correlations. In contrast, for information
sourced from LLMs, we observed stronger correlations across multiple

variables. Trust in human-labeled information showed a strong positive
correlation with trust in Al-labeled information (r(142)=0.65,p<0.01),
Al literacy (r(142)=0.41,p<0.01), and the propensity of trust in Al
(r(142) = 0.37,p<0.05). Additionally, the propensity of trust in Al
correlated with trust in Al-labeled information (r(142)=0.50,p<0.01),
eHealth literacy (r(142) = 0.42,p<0.01), and Al literacy (r(142) =
0.30, p<0.01). AI literacy positively correlated with eHealth literacy
(r(142) = 0.33, p<0.01). These results highlighted a consistent influence
of labeling on participants’ trust across different sources.

3.3. Qualitative findings

We received a total of 426 free-text responses (142 for each ques-
tion). In this section, we present our findings with four themes. We
found that participants’ trust in Al versus humans is shaped by their
inherent trust predispositions (Section 3.3.1) and their perceived source
of knowledge for each agent (Section 3.3.2). Additionally, participants
value human consciousness as a factor contributing to greater trust
(Section 3.3.3), and the presentation of information also influences their
trust (Section 3.3.4).

3.3.1. Predisposition toward Al and humans influences trust

Survey respondents demonstrated a predisposition to trust either Al
or humans, independent of the content or source of the information.
However, there were individual differences in this inclination. Some
respondents were optimistic about AI technology, regularly using and
trusting Al in their daily lives. They perceived no difference in relia-
bility between AI and human professionals, and some even trusted Al
more. Conversely, some respondents expressed significant reservations
about Al, doubting its readiness to address serious topics, especially in
sensitive fields like healthcare. One respondent noted, “I don’t trust Al,
and the quick push in its advancements is dangerous; at the very least, it
should be limited in specific fields such as health.” Privacy concerns and
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the risks of Al-driven health advice reinforced such skepticism, leading
to more critical evaluation of Al recommendations. This underlying pre-
disposition toward Al or human professionals also shaped respondents’
views on labeling. Some participants expressed a preference for human-
labeled content, with one stating, “AI label makes me trust it less and
view the information more critically than if it came from a human profes-
sional.” However, not all respondents allowed their predispositions to
dictate their trust. Others placed less emphasis on labels, focusing in-
stead on verifying information from multiple perspectives rather than
relying solely on the source. As one respondent explained, “The label
doesn’t affect how I interact with it, and my trust wouldn’t be based solely
on the label.”

3.3.2. Perceived source of knowledge influences trust

Survey respondents’ trust in Al or human professionals was shaped by
their perceptions of where each derives its knowledge. One respondent
explained, “I would trust a human professional more, since he has learned
factual information in school. An Al has learned from multiple sources online,
not only factual ones, so that is why I would trust it a bit less.”. In contrast,
some respondents believed that Al can learn from “more databases and the
most important points that all research brought up”, potentially making it
more knowledgeable than a single human expert. These differing views
on the origins of human and AI’s knowledge contributed to varying levels
of trust. Some respondents took a more balanced stance, recognizing that
both AI and human professionals are susceptible to biases and errors.
As one respondent commented, “While information from a human profes-
sional may need correction due to incomplete knowledge, information from Al
might contain errors due to gaps in its training data.” Consequently, many
respondents shared that they would evaluate both sources of information
with equal care, relying on their own experiences to evaluate the con-
tent’s credibility. Additionally, some respondents expressed a preference
for combining information sources, such as cross-checking information
or using Al as a complementary tool to support human decision-making.

3.3.3. The human touch builds greater trust than Al

Survey respondents highlighted that, due to the absence of con-
sciousness and empathy in Al, they trusted human professionals more,
particularly in healthcare contexts. Many respondents emphasized that
Al lacks the ability to evaluate information with awareness. As one
respondent commented, “Unlike human, AI doesn’t know the difference
between good or bad quality.” In contrast, many respondents emphasized
that human professionals have “years of medical education and experi-
ence with real-life cases” to inform their decisions, something that Al
cannot replace despite its access to vast information. This absence of
consciousness made respondents very skeptical about AI's capability to
offer reliable health advice. The issue extended beyond decision-making
to interpersonal interactions. Respondents valued the sense of responsi-
bility and ethical obligation that human professionals carry, with one
noting, “I trust the information from the human professional more because
they are human and have moral and professional obligations about not giv-
ing misinformation.” Additionally, human-to-human interaction offered
a sense of personalized care, making respondents feel their symptoms
are better understood. In contrast, Al lacked this human touch, and its
absence of empathy and accountability led respondents to trust it less.

3.3.4. Presentation of information influences trust

Information presentation was highlighted as an advantage of Al,
which increased respondents’ trust. They mentioned that when evaluat-
ing health information, factors such as the design of the user interface,
the length of the information, the visible publication date, and the clarity
of language were important. Compared to human professionals, Al was
often perceived as providing simpler, more structured, and user-friendly
information. Respondents appreciated that Al’s answers were clearly ex-
plained and easy to understand. Additionally, the objective tone of Al
responses further boosted respondents’ trust. These elements collectively
enhanced AI’s explainability. As one respondent noted, “When I receive
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information from a human professional, I expect it to contain more academic
language, which is harder to understand and less explanatory. Information
from Al however, uses simpler words and is easier to understand.”

4. Study 2: laboratory study

Study 1 demonstrated that the factors of actual source and disclosed
label both affect people’s perceived trust (self-reported) in health infor-
mation. To further understand the process and user behaviors involved
in forming trust perceptions, we conducted an in-person experiment.
This study explored how health information from different sources and
labels affects people’s behavioral and physiological states.

4.1. Study methods

4.1.1. Design

Similarly to the online survey study, we utilized a within-subjects
2 (IV1 - Information Source: Human Professional vs. LLM) x 2 (IV2
- Disclosed Label: Human Professional vs. Artificial Intelligence) x 3
(IV3 - Information Type: General vs. Symptom vs. Treatment) facto-
rial design tested in a controlled, laboratory environment (as shown in
Fig. 2b). Different from Study 1, participants experienced all 12 distinct
conditions for this in-person experiment, enabling direct comparisons
between human- and LLM-generated health information. We opted for
a within-subject design for all independent variables to facilitate a nu-
anced analysis of participants’ behavioral and physiological responses
across conditions. Specifically, for the source of information (IV1), we
aimed to observe whether participants exhibited different behavioral
(e.g., gaze patterns) and physiological (e.g., heart rate, skin conduc-
tance) signals when reading information attributed to human versus
LLM sources. While these sources may differ in presentation styles, it
is also possible that participants’ trust were influenced more by their
belief about the source of text (human vs. Al) rather than the actual con-
tent or style. A within-subject design was critical for disentangling these
effects, as it allowed each participant to serve as their own control, re-
ducing variability across conditions and enabling a clearer examination
of these factors. Participants rated their perceived level of trust for each
set of health information while their eye-tracking data (gaze positions
and pupil diameter) and physiological responses (ECG: Beats Per Minute
(BPM), Beat-to-Beat Interval (BBI), Root Mean Square of Successive
Differences (RMSSD); EDA: Skin Conductance Level (SCL) and Response
(SCR); Skin Temperature) were recorded throughout the tasks.

To address our second research question, we explore whether behav-
ioral and physiological signals can be used as complementary indicators
to understand trust perceptions toward human- and Al-generated per-
sonal health information. In addition, we set up two prediction tasks
that make use of the sensed data: (1) predicting participants’ trust in
health information through both regression on perceived trust scores
and binary classification on trust level (high vs. low); and (2) classifying
the actual source of the health information.

4.1.2. Stimuli and apparatus

We developed a web interface that displays the health information
(question-and-answer pair) and the questionnaires for participants to
rate their trust scores (see Fig. 6). The health information was identical
to the material used in Study 1, as described in Section 3.1.2. Each set
of health information was labeled as being generated either by “Human
Professionals” or “Artificial Intelligence”, regardless of the actual source.

We used a PHILIPS (Full HD, 1920%1080, 100 Hz) monitor to dis-
play the stimuli. The eye movements and pupil diameter (PD) data were
recorded by a Tobii Pro Fusion eye tracker. The remote eye tracker
was attached to the bottom of the monitor and connected to a com-
puter (Windows, Intel Core i5, 16 GB RAM) running the Tobii Pro Lab
software (AB, 2024).

Physiological signals, including ECG, EDA, and skin temperature,
were measured using a BioSemi amplifier (van Amsterdam, 2025)
(as shown in Fig. 1). ECG was captured through a disposable 3M
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Health Question:
What is (are) Migraine ?

Source of the Answer:
Artificial Intelligence (Al)

Answer to Question:

If you suffer from migraine headaches, you're not alone. About 12 percent of the U.S.
population gets them. Migraines are recurring attacks of moderate to severe pain. The pain is
throbbing or pulsing, and is often on one side of the head.

During migraines, people are very sensitive to light and sound. They may also become
nauseated and vomit. Migraine is three times more common in women than in men. Some
people can tell when they are about to have a migraine because they see flashing lights or
zigzag lines or they temporarily lose their vision.

Many things can trigger a migraine. These include:
- Anxiety

- Stress

- Lack of food or sleep

- Exposure to light

- Hormonal changes (in women)

the head. Now they believe the cause is related to genes that control the activity of some brain
cells. Medicines can help prevent migraine attacks or help relieve symptoms of attacks when
they happen. For many people, treatments to relieve stress can also help.

(7) Stimuli

Doctors used to believe migraines were linked to the opening and narrowing of blood vessels in
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Using the &-paint scale ranging from 1 (smmgly dlsagree) to$ (Stongly agree), please

select the that most of the question and the answer.
Geep  Disagree  Neural Agree —

1am familiar with this health question O O O O D
The information contains facts rather than opinions (@) (@) (&) (@) &)
The information is impartal e -] O [ ()
Ieel | can believe the information O & O O )
The information has good quality O O O O ()
“The information is objective D () () O (]
The information is comprehensive (@) D () (@) O
The information is reliable () () O O O
1rust this information O (@) O [ (&)
The information tells me most of what I need to know (O (@} (25} (] (@)
The information helps me to understand the issue better (> (@) o O O
The structure of the information is clear O O O O O
I can understand the information easily (35 () (5] (e (D)
I can read the information easily O (@) (@] O ()

Health Question:
What is (are) Migraine ?

Using the 5-point scale ranging from 1 (Strongly disagree) to 5 (Strongly agree), please
select the statement that most accurately describes your perception of the question and the answer.

Answer:
ligence (Al)

AOI-1

Question:

're not alone. About 12 percent of the U.S.
.mlmwmm ing attacks of moderate to severe pain. The pain is
often on one side of the head.

are very sensitive to light and sound. They may also become

rlhu is Ihrea times more common in women than in men. Some
they are have a migraine because they see flashing lights or
hmporarlly lose thelr vision.

can trigger a migraine. These include:

or sleep
to light
changes (in women)

the head. Now they believe the cause is related to genes that control the activil
cells. Medicines can help prevent migraine attacks or help relieve symptoms of attacks when
they happen. For many people, treatments to relieve stress can also help.

AOI-2

Doctors used to believe migraines were linked to the opening and narrowing of blood vessels in
of some brain

AOI-3 Googwy  Dlagee  Newnl  Agee S
| am familiar with this health question (&) @ @ () ()
‘The information contains facts rather than opinions O (@] [« (@) @
Th information is impartal > 5 <. & O
16! | can believe the information e () @ - )
The information has good quality (&) (@) @ (@) )
The Information Is objective O ) (@] & i
The informetion is comprehensive (&) O a @ ()
The information Is rellable @) @) & & =)
| st this information ) (@) = () e
The information tells me mostof what Ineed toknow (> (@) @ &) )
The ips Is (W) () @ () O
The structure of the information is clear (D) () (G, ) @)
| can understand the information easily (@) D (&) @ &>
I can ead the information easlly &) =, ] & =D

Fig. 6. Top: An example of text stimulus displayed on the monitor. Bottom: Heatmap of the gaze points on stimuli. Three AOIs are predefined: AOI-1 is the area for
presenting disclosed label; AOI-2 is the area for presenting health information; AOI-3 is the area to rate the perceived trust in health information.

Red Dot in LEAD-II configuration, EDA was measured with electrodes
attached to fingers, and skin temperature was monitored with a minia-
ture Pt1000 sensor, all at a 24-bit resolution and 1000 S/s sampling
rate. These data were collected using software FysioRecorder version
2.1 (van Amsterdam, 2025). Data recording was initiated through
a central recording application developed in PsychoPy Peirce et al.
(2019), connecting to sensors via IP addresses to simultaneously capture
synchronized ECG, EDA, skin temperature, and eye-tracking signals.

4.1.3. Self-reported measures

We collected several self-reported measures, consistent with
those used in Study 1 described in Section 3.1.3. These included
demographics, prior experience with online health information and
Al the propensity to trust technology (PPT), eHealth, and AI literacy.
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Additionally, we assessed the perceived reliability of Al and human
professionals using a single item for each: “How reliable do you find
Al/Human Professionals?” Responses were captured on a 5-point Likert
scale, ranging from 1 (Not at all) to 5 (Extremely). They were collected
before the formal reading task.

During the reading task, we repeatedly measured the participants’ 1)
familiarity level with each given health question and 2) their perceived
trust score in health information (Johnson et al., 2015; Rowley et al.,
2015), after they completed each stimulus.

4.1.4. Machine learning: setup and approach

We performed binary classification to predict information sources
and applied both regression and classification (i.e., binary and three-
class classification) for trust scores. The perceived trust score (see
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Table 5
Characteristics of participants in the lab study.
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Demographic Categories Numbers of Participants (%)
Gender (N = 40)
Female 23 (57.5 %)
Male 16 (40.0 %)
Non-binary 1 (2.5 %)
Age 18-24 23 (57.5 %)
25-34 14 (35.0 %)
35-44 1 (2.5 %)
45-54 1 (2.5 %)
65+ 1 (2.5 %)
Education Bachelor’s degree 18 (45.0 %)

Master’s degree
Doctorate or higher
Professional Domain

Other

Rarely
Sometimes
Often

Always

Never

Rarely
Sometimes
Often

Always

Less than 1 year
1-3 years

3-5 years

5-10 years
More than 10 years

Frequency of online health
information seeking

Frequency of using Al tools

Duration of online health
information seeking

Health and Medical Science
Science, Technology, Engineering, and Mathematics (STEM)
Business, Economics, and Law

Communication, Arts, Culture, and Entertainment
Education and Social Science

17 (42.5 %)
5(12.5 %)
2 (5.0 %)
11 (27.5 %)
8 (20.0 %)
7 (17.5 %)
7 (17.5 %)
5(12.5 %)
6 (15.0 %)
25 (62.5 %)
7 (17.5 %)
2 (5.0 %)

2 (5.0 %)

5 (12.5 %)
9 (22.5 %)
18 (45.0 %)
6 (15.0 %)
4 (2.8 %)
24 (17.0 %)
50 (35.5 %)
45 (31.9 %)
18 (12.8 %)

Section 4.1.3), as an aggregate numerical rating based on the “trust of
online health information questionnaire” (Johnson et al., 2015; Rowley
et al., 2015), naturally lends itself to regression. However, this approach
can be challenging to interpret given that trust is an aggregate and over-
all complex construct. On the other hand, trust classification simplifies
interpretation but introduces an arbitrary split between high and low
trust levels. To address this, we pre-processed the original trust scores
into high and low categories using the median value as a threshold for
binary classification. For the three-class classification, we divided the
trust scores into low, medium, and high categories based on tertiles,
creating balanced splits that account for the distribution of scores.

We used several common machine learning algorithms as suggested
in prior research (Ajenaghughrure et al., 2021), including single models
(i.e., logistic regression (LR), random forest (RF), support vector ma-
chines (SVM), multi-layer perceptron (MLP), linear regression, ridge
regression, random forest-based regression), and ensemble methods
(i.e., boosting, voting, stacking and bagging). Models were built us-
ing hand-crafted gaze features (i.e., fixations, saccades, pupil diameter)
and physiological signals (i.e., BPM, BPI, RMSSD, SCL, SCR, and skin
temperature).

We experimented with three feature sets: Gaze-only, Physiology-
only, and Gaze + Physiology. These sets trained and evaluated the
selected models to determine how effectively they could predict partic-
ipants’ perceived trust scores and classify the source of information. We
set the “random state” (Sahagian, 2024) parameter to ensure result con-
sistency and used the “grid search” (Liashchynskyi and Liashchynskyi,
2019) technique to find the optimal hyperparameters of the models.
We only considered user-independent models to ensure that any predic-
tions generalize across all participants, despite well-known challenges in
generalizing using peripheral physiological features (Alamudun et al.,
2012). To achieve this, we adopted a Leave-One-Subject-Out (LOSO)
cross-validation approach (Kunjan et al., 2021), where in each iteration,
one participant’s data was held out for testing, and the remaining data
was split 80/20 for training and validation. This setup ensures robust
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user-independent models. The performance of the regression models (for
trust score prediction) was evaluated by Mean Squared Error (MSE) and
Coefficient of Determination (R?). The performance of the classification
models (for trust level and information source) was assessed with the
Macro-F1 (Opitz and Burst, 2021) score as the average of the validations.

4.1.5. Participants

For the in-person experiment, we used the same inclusion criteria as
in Study 1 (age above 18 who are fluent in English). Participants were
recruited through the institute’s recruitment system. A power analysis
using G*Power 3.1 (Faul et al., 2007) for a within-factor ANOVA in-
dicated that at least 28 participants were required to detect a medium
effect size observed in Study 1 (f=0.24), with an alpha level of 0.05 and
a power of 80 %.

Table 5 shows the characteristic information of the participants.
Forty participants (N =40) were enrolled (F=23, M=16, NB=1), aged
between 18-65+ years, with 92.5 % falling in the 18-34 age range.
Regarding online health information-seeking experience, 22.5 % fre-
quently or always used online sources, 62.5 % occasionally searched
online, and 15.0 % rarely used online resources. For the frequency of Al
usage, 60.0 % frequently or always used Al tools, 22.5 % occasionally
used Al and 17.5 % rarely or never used AL

4.1.6. Study procedure

Each participant was invited to the institute for a single session at
the lab. The researcher first provided an overview of the study and task
details, after which participants gave informed consent before the lab
session. During the pre-survey, participants provided their demographic
information (age, gender, occupation) and their experiences with online
health information searches and interactions with AL

Upon completing the pre-survey and successfully calibrating the sen-
sors, participants began the formal reading task. During the reading task,
each participant reviewed 12 sets of health information: six were labeled
as from human professionals and six as from Al, regardless of the actual
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source. Sources and labels were counterbalanced to minimize order
effects. The entire session lasted approximately 60 minutes, and par-
ticipants were rewarded with €10 for participating. The study received
approval from our institute’s ethics and data protection committee. The
procedure of the lab study is detailed in Fig. 2(b).

4.1.7. Data pre-processing

Self-reported Trust Scores. To assess how factors such as information
source, labeling, and information type affect trust in online health infor-
mation, we first checked the suitability of the data for statistical analysis.
A Shapiro-Wilk test (SHAPIRO and WILK, 1965) confirmed that the self-
reported trust scores deviated from a normal distribution. Therefore,
we applied generalized estimating equations (GEE) (Hardin and Hilbe,
2012) to analyze trust differences across information sources and labels,
because of its robustness to violations of normality and flexibility in han-
dling repeated ordinal measures. Additionally, we conducted Spearman
correlation analyses (Zar, 2005) with Bonferroni corrections to explore
relationships among the variables. Consistent with Study 1, and given
that the GEE results (Table 7) indicated no significant interaction effects
between the independent variables of source and labeling, we averaged
the repeated measures for each participant into a single observation
across conditions. This simplification allowed us to focus on the key
exploratory relationships while maintaining analytical clarity.

Eye Tracking Data Processing. Raw eye-tracking data were extracted
from eye tracker (Tobii Pro Fusion) using Tobii Pro Lab software AB,
2024), and time-synchronized with stimuli. As shown in Fig. 6 (Top),
there are three Areas of Interest (AOIs): AOI-1 (disclosed label of source),
AOI-2 (health information), and AOI-3 (rating scale). We chose a fixation
threshold of 30° for velocity and 60 ms for duration, as suggested by
the information reading task (Van der Lans et al., 2011). Gaze features
including gaze duration, fixation (count and duration), saccade (count
and length), and pupil diameter were calculated to understand how users
read the information. We excluded participants whose gaze accuracy
fell below 90 %, resulting in 38 participants’ eye-tracking data being
retained for further analysis. After transforming data through Aligned
Ranked Transformation (ART) (Wobbrock et al., 2011), we confirmed
the non-normality of eye tracking data with the Shapiro-Wilk test.

Physiological Signal Processing. Physiological signals were processed
using Vsrrp98 software (v13.1.4) (van Amsterdam, 2025), following the
practice in prior research (Babaei et al., 2021; Ahmad and Alzahrani,
2023). Key physiological features derived from the raw ECG data
using interval-to-interval window size included BPM, BPI, and the
main HRV metrics - the root mean square of successive differences
(RMSSD). For EDA data, we used the continuous decomposition analysis
method (Benedek and Kaernbach, 2010) to separate it into the tonic SCL
and phasic SCR components, then calculated the mean SCL and SCR val-
ues, as well as the SCR count. Skin temperature readings were screened
for any abnormal responses. We excluded SCL and SCR data when more
than 4 out of 12 stimuli have values lower than.01 uS or exceeded 50uS,
as these readings likely resulted from loss recording or movement ar-
tifacts. As a result, we retained data from 34 participants for SCL and
SCR analysis, and 40 participants for ECG and skin temperature anal-
ysis. Following preprocessing, we used the Shapiro-Wilk test to assess
normality, revealing that all physiological features were not normally
distributed.

Given the exploratory nature of our investigation and the presence of
multiple comparisons, we applied appropriate corrections based on the
type of data. First, self-reported data were analyzed using a single GEE
test, thus no multiple comparison correction was necessary. Second, for
eye-tracking data, where multiple tests were conducted for different fea-
tures, we applied False Discovery Rate (FDR) correction (Haynes, 2013a)
to control for potential inflation of Type I errors. Third, for physiologi-
cal data, no multiple comparison correction was applied because most of
the physiological features (e.g., RMSSD, ECG, EDA) were uncorrelated,
as confirmed by correlation analysis, and each feature was analyzed
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Table 6
Descriptive statistics of the lab study.
Measures Mean SD
Pre-survey Familiarity of Al 3.58 .96
Perceived Reliability of Al 3.13 .61
Perceived Reliability of Human Professionals 3.78 .53
Propensity of Trust (PPT) 3.54 .33
eHealth literacy 3.69 .25
Al literacy 3.78 .20
Conditions Mean SD
Trust score Source (Human) & Label (Human) 3.67 .63
Source (Human) & Label (AI) 3.56 .64
Source (LLM) & Label (Human) 3.92 .56
Source (LLM) & Label (AI) 3.78 .63
Source (Human), regardless of Label 3.62 .64
Source (LLM), regardless of Label 3.85 .60
Label (Human), regardless of Source 3.80 .61
Label (AI), regardless of Source 3.67 .65
Table 7

Results from the GEE analysis on the self-reported trust score. (**p <.01,
*p <.05).

Outcomes  Conditions Coefficient P-value Effect (Std.f) Sig

Trust score  Source (Human vs. LLM) .22 .00 .35 (medium) **
Label (Human vs. AI) -.15 .01 .23 (medium) **
Source * Label .03 71 .05 (small)

independently. This approach reflects our goal of treating these fea-
tures as distinct, non-overlapping measures, without assuming that they
influence each other.

4.2. Findings

4.2.1. Descriptive statistics

As shown in Table 6, participants demonstrated a generally positive
attitude toward technology, with an average trust in technology score
of 3.36 (SD =.23). Their eHealth literacy averaged 3.69 (SD =.25), indi-
cating proficiency in searching for digital health information. Al literacy
was even higher, with an average score of 3.78 (SD =.20), suggesting a
strong understanding of Al and its applications.

Regarding the perceived trust, the lab study results closely mirrored
those of the online survey, despite being based on separate partici-
pant samples and independently collected data. The self-reported trust
scores from the lab study varied depending on both the source and
the labeling of the health information. Information both sourced from
and labeled as from human professionals had an average trust score of
3.67 (SD=.63). When human-sourced information was labeled as Al,
the score slightly decreased to 3.56 (SD=.64). LLM-sourced informa-
tion labeled as from human received the highest trust score of 3.92
(SD =.56), while information sourced from LLM and labeled as from Al
had a trust score of 3.78 (SD =.63). Overall, participants reported higher
trust in LLM-sourced information (M=3.85, SD=.60) than in human-
sourced information (M = 3.62, SD =.64), echoing the trend observed in
the online survey and indicating a growing acceptance of Al (i.e., LLM) in
health contexts. However, information labeled as coming from human
professionals was trusted more (M=3.80, SD=.61) than that labeled
as AI (M=3.67, SD=.65), suggesting that labeling plays an influential
role in trust formation, potentially even more than the actual source.
These findings reinforced the patterns found in the online survey while
providing additional validity through the lab sessions.

4.2.2. Analysis of self-reported trust
Table 7 presents the results from the GEE analysis on self-reported
trust scores from the lab study. Consistent with the online survey, both
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the source and the label significantly impacted trust perceptions. Fig. 7
further illustrates the same pattern, echoing the online survey results.
Trust was highest for LLM-sourced information labeled as human and
lowest for human-sourced information labeled as AL

The analyses first revealed a significant effect of information source
on trust, with a coefficient of 0.22 (p <0.01), indicating that LLM-sourced
information was generally trusted more than human-sourced infor-
mation, i.e., without knowledge of the actual source. This suggests
that the source of information is crucial in shaping trust, as Al-generated
content may be perceived as more structured and objective than human-
authored content. While the raw coefficient represented a modest
change of 0.22 points on a 5-point Likert scale, the corresponding effect
size (Std.f=0.35) was classified as medium. This reflects the bounded
nature of the Likert scale, where even small raw differences can in-
dicate meaningful relationships due to the relatively low variability
in responses. Thus, the medium effect size underscores the practical
relevance of the findings despite the small-scale differences.

Labeling also significantly impacted the trust perception, with a co-
efficient of —0.15 (p = 0.01), meaning information labeled as Al was
trusted less than when labeled as human professionals. The negative
coefficient suggests a preference for human-labeled information, as par-
ticipants may associate human endorsement with greater credibility.
Similarly, while the raw change (—0.15) was modest, the standard-
ized effect size (Std.p = 0.23) reflects a medium effect, emphasizing that
the impact of labeling, though subtle on the scale, has measurable and
meaningful implications for trust perceptions.

Notably, the interaction between source and label was not significant
(coef ficient = 0.03,p = 0.71), indicating that the combined influence
of source and label does not affect trust beyond their individual ef-
fects. The small standardized effect size (Std.f=0.05) confirmed that
this interaction effect is negligible.

4.2.3. Analysis of eye movement data

The results of GEE analysis (Hardin and Hilbe, 2012) on eye tracking
data are detailed in Table 8, showing varied eye movement patterns.
In AOI-1 (label area), fixation duration and pupil diameter of fixation
showed significant differences by information sources and labels, while
saccade count showed significant differences by information labels only.

The post hoc comparisons shown in Figs. 8 and 9, participants
demonstrated higher fixation counts (p <.05) and saccade counts (p<.1)
in AOI-2 (main health information area) under the Al label condition,
indicating that participants assessed the information focusing more on
the content itself rather than the label when they were informed that
the information was from Al This implies that trust-related judgments

*k K%

Median and Mean Value of Perceived Trust Score

Human source LLM source Human label Al label
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in Al-labeled information were driven more by the actual content than
the labeling of the source. Participants also showed significantly fewer
fixation counts (p<.05) in AOI-3 (rating area) under the human label
condition compared to the AI label condition. This suggests that hu-
man labels might inspire greater confidence, potentially influencing how
users rate the trust score of the information. When information was ac-
tually sourced from LLM, participants showed higher fixation duration
(p<.01) and counts (p<.1) in AOI-2, suggesting a more careful reading
of Al-generated content. Conversely, human-sourced information led
to higher fixation and saccade counts in AOI-3 (p<.01), indicating
that LLM-sourced information might inspire greater confidence, poten-
tially influencing how users rate the trust score, which aligns with the
self-reported trust perceptions.

4.2.4. Analysis of physiological signals

Table 9 presents the results from GEE analysis on physiological
data, shedding light on how physiological responses vary with different
information sources and labeling.

RMSSD, a feature derived from ECG data, was significantly higher
for Al-labeled information compared to human-labeled information (p =
.025). Higher RMSSD indicates greater heart rate variability (HRV),
which is often associated with lower physiological arousal. This aligns
with the gaze patterns where participants paid less attention to the
labeling area (AOI-1) under “AI” labels than “Human” labels, as in-
dicated by significantly reduced fixation duration, saccade count, and
pupil diameter (see Table 8).

Skin temperature responses also varied significantly between human
and Al labels (p = .029), as well as between human and LLM sources
(p = .022). Higher skin temperature in response to Al labels and sources
suggests participants may have experienced increased emotional arousal
or stress when interacting with Al-associated content.

SCL (p = .061) and SCR (p = .082) average values did not exhibit
statistically significant differences, as shown in Fig. 10. This suggests
that EDA components, at least within our study, were not discrimina-
tive of physiological arousal when users encountered human- versus
Al-generated information.

4.2.5. Correlation analysis

The Spearman correlation analysis (Zar, 2005) in Figs. 11 and 12
revealed significant relationships between the self-reported trust score
and various gaze and physiological features, indicating how participants’
perceived trust in health information is linked to their behavioral and
physiological responses.

Familiarity with the health question showed a strong positive correla-
tion with trust in the information (p <.01). Among gaze features, fixation

*%*

6 *%
* *k
5
4
3
2
1
Hum source Hum source LLM source LLM source
Hum label Al label Hum label Al label

Fig. 7. Left: Perceived trust score in information by sources regardless of labels, and by labels regardless of sources. Right: Perceived trust score based on different
source and label conditions. Each plot shows score density (width), with the red dot as the mean, the black line as the median, and thick bars denoting the interquartile
range (IQR). Horizontal lines indicate significant pairwise differences (**p <.01, *p <.05).
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Table 8
Results from the GEE analysis with False Discovery Rate (FDR) correction on the eye tracking data. (**p <.01, *p <.05, -p <.10).
Gaze AOI Condition Coeff P (Orig) P (Corrected) Effect (Std.p) Sig
Fixation Count AOI-1 Source —4.02 .033 .079 .22 (medium) -
Label —4.54 .015 .055 .25 (medium) -
Src x Lab 6.01 .082 .150 .33 (medium)
AOI-2 Source 0.61 .962 .962 .00 (small)
Label -3.23 .827 .910 .02 (small)
Src x Lab 34.61 .036 .079 .26 (medium) -
AOI-3 Source —-8.14 .198 272 .14 (small)
Label 9.90 151 237 .17 (small)
Src x Lab —5.53 .559 .683 .10 (small)
Fixation Duration AOI-1 Source —51.39 .000 .000 .43 (large) e
Label —37.64 .006 .017 .31 (medium) *
Src x Lab 71.27 .000 .000 .59 (large) i
AOI-2 Source 4.60 .038 .069 .14 (medium) -
Label —2.80 .218 .343 .09 (small)
Src x Lab 1.75 .584 642 .05 (small)
AOI-3 Source —0.46 .879 .879 .01 (small)
Label —1.61 .553 .642 .05 (small)
Src x Lab 2.85 .519 642 .09 (small)
Saccade Count AOI-1 Source -5.13 .044 .086 .21 (medium) -
Label —-7.38 .013 .047 .26 (medium) *
Src x Lab 8.89 .047 .086 .36 (medium) -
AOI-2 Source —4.35 787 .787 .03 (small)
Label -7.82 .651 716 .05 (small)
Src x Lab 43.77 .026 .071 .28 (medium) -
AOI-3 Source —9.40 223 .307 .12 (medium)
Label 10.71 .160 .251 .14 (medium)
Src x Lab —7.96 .487 .595 .10 (medium)
Saccade Length AOI-1 Source 0.03 124 .341 .17 (medium)
Label 0.01 531 .649 .08 (small)
Src x Lab -0.07 .020 .073 .38 (medium) -
AOI-2 Source 0.00 .355 .558 .08 (small)
Label 0.00 .181 .398 .12 (medium)
Src x Lab 0.00 .829 .829 .02 (small)
Source 0.00 .276 .506 .08 (small)
AOI-3 Label 0.00 456 627 .06 (small)
Src x Lab 0.00 .685 .754 .05 (small)
Pupil Diameter Fixation AOI-1 Source —0.41 .002 .011 .35 (medium) *
Label -0.33 .018 .040 .29 (medium) *
Src x Lab 0.50 .003 .011 .43 (large) *
AOI-2 Source 0.00 .673 .823 .01 (small)
Label 0.01 445 .699 .02 (small)
Src x Lab 0.00 .898 932 .00 (small)
AOI-3 Source 0.00 227 416 .03 (small)
Label 0.01 .531 .730 .01 (small)
Src x Lab 0.00 932 932 .00 (small)
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Fig. 8. Posthoc pairwise comparison by Wilcoxon signed-rank test with False Discovery Rate (FDR) correction of fixation features (count and duration) in three AOIs.
(**p <.01, *p <.05, -p <.10, “ns” is not significant).
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Fig. 9. Posthoc pairwise comparison by Wilcoxon signed-rank test with False Discovery Rate (FDR) correction of saccade count and pupil diameter of fixation in three

AOIs. (**p <.01, *p <.05, -p <.10, “ns” is not significant).

Table 9
Results from GEE analysis on physiological signals. (**p <.01, *p <.05, -p <.10).
Outcomes Features Conditions Coeff p-value Effect (Std.f) Sig
ECG BPM Source (Human vs. LLM) -0.58 571 .07 (small)
Label (Human vs. AI) —-1.10 .288 .13 (medium)
Source X Label 1.38 341 .17 (medium)
RMSSD Source (Human vs. LLM) 2.11 435 .12 (medium)
Label (Human vs. AI) 5.21 .025 .29 (medium) *
Source X Label —4.45 179 .25 (medium)
BPI Source (Human vs. LLM) 8.88 242 .12 (medium)
Label (Human vs. AI) 10.43 225 .14 (medium)
Source x Label —-17.10 .153 .24 (medium)
EDA SCL Source (Human vs. LLM) 0.03 949 .04 (small)
Label (Human vs. AI) —-0.77 .061 .12 (medium) -
Source x Label 0.38 414 .06 (small)
SCR Source (Human vs. LLM) -0.56 .399 .05 (small)
Label (Human vs. AI) —-0.92 .082 .08 (small) -
Source x Label —-0.98 .576 .08 (small)
Temperature — Source (Human vs. LLM) 0.46 .022 .31 (medium) *
Label (Human vs. AI) 0.42 .029 .28 (medium) *
Source x Label —-0.57 .058 .39 (medium) -

duration in AOI-1 (label area) positively correlated with the perceived
trust score (p <.01), indicating that higher trust levels are associated with
a longer focus on the labeling of information sources. Additionally, pupil
diameter during fixation in AOI-1 (p<.01) also correlated positively with
the trust score. Fixation and saccade counts in AOI-3 (rating area) were
negatively correlated with trust, implying that participants who gave
lower trust in the information exhibited more frequent saccadic move-
ments in the rating area, likely reflecting efforts to evaluate or verify the
information further.

No significant correlations were found between physiological fea-
tures and trust levels. However, correlations were observed among
the physiological features themselves, such as BPM (heartbeats), SCL,
SCR, and skin temperature, though these did not directly link to
trust.

4.2.6. Predictions using behavioral and physiological sensing

To explore trust perception (i.e., self-reported trust scores) through
behavioral and physiological responses, we defined two tasks: (1) pre-
dicting participants’ perceived trust scores in health information and (2)
classifying the source of the health information.
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For trust prediction, we first explored how regression models approx-
imate perceived trust scores using regression models: linear regression
(LR), ridge regression, SVM and random forest-based regressions, and
XGBoost. As shown in Table 10, the random forest regressor on the
combined Gaze + Physio feature set achieved the lowest MSE of.20 and
the highest R? = .35 among the three feature sets, indicating the best
performance. This highlights the value of combining gaze and physio-
logical features for trust assessment. Fig. 13 illustrates the regression
results on three different feature sets.

Next, we performed both binary (i.e., high vs. low) and three-class
(i.e., high vs. medium vs. low) classification of trust levels based on
participants’ self-reported trust scores. As shown in Table 11, the en-
semble method (voting model) achieved the highest accuracy (0.73)
for binary classification using gaze-only features, while random forest
achieved the highest accuracy (0.63) for three-class classification us-
ing combined gaze-physiological features. Interestingly, combining gaze
and physiological features did not improve performance across all mod-
els, for instance, the gradient boosting model achieved slightly lower
accuracy (0.72) for binary classification when incorporating both feature
sets compared to using gaze features alone. These results indicate that
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Table 10

Prediction of perceived trust scores through regression using gaze and physiological features.

Models Gaze Only Physio Only Gaze + Physio
MAE R? MAE R? MAE R?
SVR .29 .06 .33 .06 .28 .10
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Fig. 13. Prediction of perceived trust score using the Random-Forest Regression model on three different features set: Gaze-only, Physiology-only, Gaze + Physiology.
Each dot represents one participant’s predicted vs. actual self-reported trust score, with the red dashed line indicating perfect prediction.

gaze features alone achieved higher classification accuracy for binary
trust levels compared to combined gaze and physiological features. This
suggests that gaze features may play a more prominent role in pre-
dicting trust levels than physiological responses in the context of this
study.

For the second task to classify the information source, combining
gaze and physiological features yielded the best results. The AdaBoost
model achieved the highest accuracy of 0.65 and F1 score of 0.64,
indicating that physiological responses complement gaze features in
distinguishing between human- and LLM-generated health information.

Fig. 14 presents feature importance for the prediction tasks following
SHAP framework proposed by (Lundberg and Lee, 2017) for better in-
terpreting the model predictions. In summary, gaze features are effective
for predicting trust perceptions, while combining gaze and physiological
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features could improve the classification of information sources. The
robust performance of ensemble methods across both tasks highlights
their potential in developing tools to assess trust-related responses in
health communication by leveraging gaze and physiological signals.

5. Discussion

We conducted an online survey and a lab study in this work to inves-
tigate how users’ trust responds to human versus Al-generated content,
and in what ways trust in online health information may be influenced
by including transparency labels as simple as “Human” versus “Al” labels
on personal health information. Our findings showed that self-reported
trust in digital health information is influenced by its actual source and
disclosed labeling of the source. Further, the impacts of these conditions
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Table 11
Classification of trust levels (high, medium, low) and the source of information using gaze and physiological
features.
Features Models Trust Level Source
2-class(Acc / F1) 3-class(Acc / F1) 2-class(Acc / F1)
Gaze Only LR .65 /.62 .57 /.57 .62 /.55
RF .69 /.65 .57 /.57 .57 /.52
SVM .51 /.53 .43 /.42 .60 /.48
MLP .57 /.58 .32/.32 .44 /.53
GradientBoost .72 /.66 .54 /.54 .52 /.52
AdaBoost .67 /.64 .58 /.58 .65 /.52
XGBoost .70 /.66 .54 /.54 .43 /.52
Voting .73 /.67 .54 /.54 .60 /.49
Stacking .70 /.66 .59 /.58 .49 /.55
Bagging .70 /.66 .57 /.57 .57 /.47
Gaze + Physio LR .65 /.62 .58 /.56 .58 /.54
RF .69 /.65 .63 /.63 .60 /.52
SVM .51 /.53 .43 /.43 .60 /.49
MLP .53 /.60 .48 /.47 .59 /.50
GradientBoost .72 /.68 .59 /.56 .53 /.53
AdaBoost .66 /.64 .54 /.54 .65 /.64
XGBoost .65 /.67 .57 /.57 .57 /.52
Voting .67 /.67 .59 /.58 .60 /.53
Stacking .69 /.66 .60 /.60 .48 /.52
Bagging .70 /.66 .61 /.61 .54 /.53

Top 10 Important Features in Trust Score Regression

S——— ]
sacctenaor2

SCL

RMSSD

SaccLen [
saccCount-ACI-3 [N
P —
Fixadur-A01-3 [

Foow

0.04 0.06 0.08 0.10

Top 10 Important Features in Information Source Classification

I et S A s e A
P | —————

GazeDur-A02 [

Gazepuracs

FixaDur-AOI-2

FixDur-AOI-1

FixaDur

SaccLen

0.06 0.08 0.10 012

Fig. 14. Top 10 important gaze and physiological features in Random Forest regressor for predicting perceived trust scores (Left) and in AdaBoost classifier for
classifying the source of health information (Right), based on SHAP values computed on the test set. Blue bars represent gaze features; red bars represent physiological

features.

were also evident at a behavioral and physiological level. Below, we
discuss these aspects in detail.

5.1. Users may prefer LLM-sourced health information, but an AI label
lowers their trust

Both studies tested (RQ1) if the actual source, disclosed label, and
type of information influence perceived trust in online personal health
information. Our findings revealed that LLM-sourced content is trusted
more than human-sourced content, regardless of labeling, whereas hu-
man professional labels are trusted more than AI labels. Trust however
remained consistent across different information types (general, symp-
tom, or treatment-related), suggesting that the source and labeling,
rather than the type of information, are the primary determinants of
perceived trust.

The observed difference in trust perception was evident in both
self-reported trust scores (i.e., higher trust scores of LLM-generated in-
formation) and qualitative data, which suggests that participants have
perceived subtle distinctions of information presentation styles in the
LLM- versus human professionals-sourced information that provided
cues for trust. The stronger effect observed in Study 2 (lab study with
the within-subjects design) compared to Study 1 (survey study with the
between-subjects design) further supports this, as the within-subjects
design allowed participants to compare responses from both sources
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side by side. While we cannot conclusively determine the specific fac-
tors in information quality driving higher trust, our findings imply that
LLM-generated content may convey an impression of clarity or objec-
tivity that resonates more strongly with participants. Our observation
that LLM-sourced information was trusted more than that from hu-
man professionals may reflect advancements in LLMs like ChatGPT,
which can produce structured and high-quality responses (Hristidis
et al., 2023; Van Bulck and Moons, 2023). Notably, GPT-4 generated re-
sponses have been found to be perceived as more human-like than actual
human-authored content and other studies find that LLM-generated con-
tent is often indistinguishable from human-generated text (Rathi et al.,
2025). This explanation (i.e., generally higher language quality of LLM-
generated responses as a basis of trust) aligns with Dalton et al. (2022)
proposal of emergent conversational information-seeking powered by
LLMs, and is evident when assessing how LLMs are being used in the
context of healthcare (Garg et al., 2023; Lee et al., 2023; Hristidis et al.,
2023; Van Bulck and Moons, 2023; Sun et al., 2024).

Furthermore, researchers suggest that people prefer algorithms to hu-
mans in certain tasks and it could relate to individuals’ machine heuristic
(rule of thumb that machines are more secure and trustworthy than
humans (Logg et al., 2019; Sundar and Kim, 2019)). In our studies,
qualitative analyses (Section 3.3) further confirmed that participants
attributed the higher trust in LLM-generated content to its efficiency,
capacity to process extensive health data (Singhal et al., 2023), and
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objective language style (Xu et al., 2023; Sun et al., 2024). This suggests
that LLMs’ (e.g., GPT-4 (OpenAl, 2024)) ability to deliver comprehen-
sive and objective health information resonates with users, positioning
them as reliable sources of health information.

Paradoxically, when health information was labeled as human, it was
rated with higher trust scores than Al-labeled information, which is sup-
ported by Reis et al. (2024), who found that people value human advice
more when aware of Al’s involvement, especially in health context. This
observation appears to generalize across domains, whereby an Al la-
bel can diminish people’s perceived quality, even if the AI source was
initially deemed superior. This includes AI art (Horton, Jr et al., 2023),
general communication (Yin et al., 2024), medical advice (Kerstan et al.,
2023). Even in clinical decision-making scenarios, people tend to prefer
human decision-makers over Al, perceiving the latter as less digni-
fied (Formosa et al., 2022), further highlighting a deep-seated bias
against Al involvement in sensitive health-related contexts. Moreover,
Epstein et al. (2023) found that not only the presence of a label, but also
its wording, can significantly affect trust. For example, people perceive
content labeled as “Al-assisted” more favorably than “Al-generated”, in-
dicating that subtle linguistic framing influences users’ willingness to
trust. This suggests that beyond binary source disclosure, the design and
language of labeling also play a critical role in shaping perception.

The qualitative findings (Section 3.3) confirmed that participants
expressed greater trust in human expertise, which they associate with
verified knowledge, accountability, and human empathy. In contrast,
they viewed the lack of consciousness, ethical judgment, and trans-
parency in Al as diminishing their perceived trust. The perspective
expressed by our participants aligns with De Freitas et al. (2023) work
about psychological factors affecting attitudes toward Al acceptance,
which identifies opacity (lack of transparency or explainability) and
emotionlessness (absence of empathy or moral understanding) as key
factors driving user resistance to Al tools. Our respondents echoed these
concerns by highlighting AI’s lack of transparency and moral reasoning,
especially in healthcare contexts, where trust is closely tied to perceived
ethical awareness and human empathy. These reactions may also reflect
a broader skepticism about machine consciousness (Scott et al., 2023).

These findings can be interpreted through the MATCH model (Liao
and Sundar, 2022), which conceptualizes trust in Al systems through
three components. In our context, actual source of the information (hu-
man vs. LLM) corresponds to model attributes, reflecting users’ judgments
of competence and reliability. Disclosure labels (AI vs. human) act as af-
forded cues, shaping trust perceptions independently of content quality.
Participants’ perceptions, such as associating human expertise with trust
or distrusting Al due to its lack of professionalism, reflect trust heuristics,
where users rely on cognitive shortcuts in uncertain of complex health
contexts. This framing emphasizes that trust is not only a response to
information content but also to how the system communicates author-
ship and identity, and how users emotionally and cognitively process
these trustworthiness cues (Lee and See, 2004) which was further ex-
plored through implicit behavioral and physiological responses in the
following section.

Summarizing, while Al is increasingly recognized for its competence,
our findings underscore the role of transparency as a trustworthiness
cue framed in the MATCH model (Liao and Sundar, 2022), emphasiz-
ing the need for transparent Al-powered systems (Liao et al., 2023)
and authentic information (Burrus et al., 2024; El Ali et al., 2024) to
build trust, particularly when providing nuanced health advice (Broom,
2005; Kerstan et al., 2023). However, our study also cautions against
over-reliance on labeling as a trust mechanism. As highlighted in prior
work (Scharowski et al., 2023), labels can create a false sense of security
and may inadvertently reinforce the “implied truth effect” (Pennycook
et al., 2020), where unlabeled content is assumed to be accurate. These
findings point to the need for more context-sensitive and dynamic
approaches to communicating Al involvement in health information
systems.
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5.2. Behavioral and physiological features can vary by health information
source and label

Our results demonstrated that the effects of label and source are
also evident at the behavioral and physiological level. Prior work has
shown value in leveraging behavioral and psychophysiological sensing
across fake news detection in social media (Abdrabou et al., 2023) and
information-seeking tasks (Ji et al., 2024), where such signals are indica-
tive of visual attention and information processing in these tasks. With
respect to trust, Ajenaghughrure et al. (2020) review found that while
psychophysiological levels of trust perceptions (e.g., arousal) can be de-
tected (e.g., using EEG or ECG), how such responses behave during user
interactions (in real-time) remains underexplored. In the context of our
study, we first explored (RQ2) whether such signals vary during health
information processing across human versus Al-sourced content, and es-
sentially whether such signals can serve as a means of verifying and pos-
sibly predicting self-reported trust scores (Section 4.1.4). We found that
participants displayed distinct gaze patterns related to the source and
labeling of the presented presented information. Specifically, we found
that longer fixation duration, higher fixation counts, and larger pupil
dilation were associated with information labeled as human-generated,
suggesting a deeper cognitive engagement with this human-labeled in-
formation, suggestive of higher trust. Conversely, information labeled
as Al-generated prompted more scanning behavior (i.e., reflected in in-
creased saccadic movements and shorter fixation durations), indicative
of increased verification processes. These results corroborate existing re-
search from others (e.g., Just and Carpenter, 1980 and Rayner, 1998)
who likewise found that gaze patterns, especially the fixation and sac-
cade behaviors, are indicative of cognitive processing and information
verification relevant to trust assessment and dynamics.

For the peripheral physiological signals, while we found signifi-
cant differences in features such as RMSSD and skin temperature when
users encountered labeled health information, no such differences were
found in skin conductance (SCL and SCR) measurements. It is worth
speculating what this means: these indicators aligned with users’ self-
reports, where health information labeled as from AI elicited higher
HRV (i.e., RMSSD) than the label of human professionals. Higher
HRV is typically associated with lower physiological arousal, possibly
reflecting less cognitive processing or more relaxed state. This inter-
pretation is consistent with the meta-analysis by Kim et al. (2018),
which found that HRV reliably decreases under stress or increased cog-
nitive demands, and increases under lower arousal or more comfortable
conditions. Indeed, HRV is one of the most commonly used psychophys-
iological indicators in trust research (Ajenaghughrure et al., 2020),
able to detect subtle variations in user state during human-computer
interaction. Although Ajenaghughrure et al. caution that trust classifi-
cation using physiological signals remains an open research challenge.
Furthermore, the pattern of reduced physiological arousal in response
to Al-labeled information aligns with the gaze data in our study, which
suggested less attentional engagement (e.g., shorter fixations, fewer
regressions) with Al-labeled content compared to human-labeled infor-
mation. These findings suggest that participants may have processed
Al-labeled health information with lower cognitive and emotional in-
vestment. Similarly, higher skin temperature levels were observed with
both Al-labeled and LLM-sourced information, suggesting lower emo-
tional arousal and stress levels, reflecting participants’ psychological
interpretation of trust (Ahmad and Alzahrani, 2023). Le., participants
gave higher trust scores to the LLM-sourced information compared to
human-sourced, and showed lower physiological arousal with the Al
labels than human labels.

These behavioral and physiological responses deepen our interpreta-
tion of trust formation grounded in the MATCH model (Liao and Sundar,
2022). While the online survey study (Study 1) focused on how users re-
spond to model attributes and afforded cues (i.e., health information
source and labels), we further extend the analysis to trust heuristics,
the implicit, affective processes that guide user trust-related judgments
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under uncertainty. Physiological responses like HRV and skin tempera-
ture likely reflect affective dimensions of trust (e.g., comfort, emotional
arousal), whereas gaze patterns and fixation behavior index cognitive
engagement. This layered interpretation aligns with calls to distinguish
between cognitive and affective trust as investigated by (Lee and See,
2004) which is grounded in the most widely used and accepted ABI trust
model from (Mayer et al., 1995), suggesting that trust in Al-generated
health content is not just explicitly reported but also embodied in users’
implicit affective reactions.

Taken together, these sensing signals could serve as a useful means
to corroborate how users react and feel toward content perceived to be
sourced from humans versus Al, while providing an additional layer of
information about information processing and associated affect.

5.3. Considerations: toward trust-aware Al for health information seeking

Our findings offer actionable design considerations for stakeholders
designing or developing LLM-powered health information tools. These
include interface designers and developers of adaptive AI systems. We
outline practical considerations as below, grounded in the findings of
this work.

5.3.1. For UI designers of health information interfaces

Designing and placing labels for trustworthy interfaces. As a key element
of user interfaces, transparency labels play a crucial role in promoting
trustworthy Al design (Liao et al., 2024). Our findings show that la-
beling content as Al-generated consistently reduced trust compared to
identical content labeled as human-generated. This suggests that while
transparency is critical, poorly framed labels can inadvertently erode
trust. Given the critical role of UX for responsible and transparent Al
design (Liao et al., 2024), we find it important to foster trust already
at the interface level when presenting health information. Prior work
highlights the need for balance: too little transparency risks deception,
while too much may undermine confidence (Kizilcec, 2016). Therefore,
designers should carefully consider not only whether labels are present,
but also how they are phrased and styled. Research from Epstein et al.
(2023) shows that both presence and framing can significantly shape
user trust. Insights from privacy nutrition labels (Kelley et al., 2009)
further demonstrate that visual choices of design, such as simplifying
symbols, using color intensity to signal risks, and providing accessible
visual explanations for technical terms, can improve users’ accuracy,
efficiency, and satisfaction (Kelley et al., 2009).

Our eye-tracking data supports this: participants gave more fixation
counts to Al-labeled health information while also giving more fixation
counts to human labels. This indicates that labels strongly influence
both user attention and trust judgments. Effective placement is there-
fore crucial: labels should appear in or near high-attention areas such
as headlines or primary content zones, and be styled with moderate
emphasis, visible, but not distracting.

Taken together, these insights point toward “trust-aware” UI design,
where transparency labels are not just added for compliance but are
thoughtfully designed and positioned to foster trust without bias. Visual
elements such as trust meters or engagement indicators could further re-
flect the health information system’s trust assessment and communicate
how health systems interpret user interactions, making transparency
both informative and supportive of trust.

Uniform UI structure across health topics. Our findings also showed
that trust ratings did not vary across information types, suggesting that
a uniform interface structure can be used across health content cate-
gories, allowing design efforts to focus more on trust-sensitive features
like labels and source attribution rather than varying UI by topic.

5.3.2. For developers of adaptive LLM-powered health information systems

Real-time user states estimation is feasible. Our findings show that be-
havioral and physiological signals (e.g., fixation and pupil size) varied
across conditions, showing potential in predicting self-reported trust and
source attribution. These results suggest the feasibility of integrating
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user-state modeling into adaptive health information systems, echoing
recent efforts in Human-Computer Interaction that leverage physiologi-
cal signals to guide interactive system design and development (Chiossi
et al., 2024). For instance, Boonprakong et al. (2023) develop bias-aware
systems that use physiological data for cognitive load estimation Ahmad
et al. (2020), and study (Ajenaghughrure et al., 2021) predicts trust us-
ing psychophysiological measures. Understanding users’ implicit states
has the potential to enable the health system to better support health
information seeking, flag moments of confusion or disengagement, and
ultimately improve trust perceptions in health information.

Toward “disclosure-aware” interfaces. Building on this, our findings
suggest the opportunity to build “disclosure-aware” health systems or
interfaces that can dynamically adjust the transparency labels based on
real-time user states. For example, when the system detects low attention
(e.g., reduced fixations), it could highlight source labels to encourage
more critical engagement. Conversely, when signs of cognitive overload
or skepticism emerge (e.g., sustained focus on labels, increased pupil
dilation), the system could simplify or temporarily de-emphasize the
label to prevent unnecessary distrust, particularly when the content is
accurate and clearly presented. Moreover, such “disclosure-aware” in-
terfaces could provide on-demand explanations of labels, giving users
deeper transparency only when users seek it.

This vision resonates with the concept of attentive user interfaces
by Hummel et al. (2018), which sense and respond to users’ attentional
states to ensure that key digital nudges are not overlooked. Extending
this logic, transparency labels could be made on demand, surfacing
prominently when attention is low, and simplifying when signs of over-
load or skepticism arise. Such attentional feedback loops point toward
health information systems and interfaces that are not only disclosure-
aware but also attention-adaptive, dynamically balancing clarity, trust,
and cognitive load.

Overall, this work advances HCI efforts to design AI health informa-
tion systems and user interfaces that are not only transparent but also
trust-aware and adaptive. By revealing how users respond to different in-
formation sources and disclosure labels, our findings offer actionable in-
sights for both designers and developers. These considerations can help
calibrate trust more effectively, reducing over-reliance, mitigating un-
due skepticism, and ensuring that both AI- and human-generated health
information are presented in ways that support informed judgment.

5.4. Limitations and future work

Our study had several limitations that should be considered when
interpreting the findings.

First, while our findings suggest that behavioral and physiological
signals show potential in reflecting trust-related responses, we caution
against overinterpreting them as direct indicators of trust, a com-
plex and subjective construct (Liu et al., 2023; Johnson et al., 2015;
Vereschak et al., 2024). Such signals can be influenced by unrelated
factors like attention, physical arousal, or contextual noise (Cacioppo
et al., 2016). Without careful contextualization, these signals could be
misinterpreted as significant in scenarios where they merely represent
contextual noise. Future research should integrate additional modali-
ties (e.g., fNIRS Boonprakong et al., 2023, EEG Michalkova et al., 2024)
to more robustly capture underlying cognitive states. Moreover, trans-
lating these findings into real-world applications (e.g., web-based gaze
tracking (Mounica et al., 2019), rPPG from facial videos (McDuff et al.,
2014)) raises ethical concerns regarding consent, data privacy, and po-
tential over-reliance on AI (Wang et al., 2023; Friedman et al., 1999).
Hence, any deployment must adhere to legal regulations (e.g., European
Al Act (Act, 2024)) and prioritize continuous consent based on on-device
security and privacy controls.

Second, the controlled lab environment may have influenced par-
ticipants’ responses, as being observed might heighten scrutiny of
Al-labeled information, potentially amplified by societal caution to-
ward Al. However, such a “mere observer effect”, is likely just typical
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for controlled psychological experimental conditions, where partici-
pant awareness of observation can subtly affect behavior (Cacioppo
et al., 1990). While these settings are valuable for minimizing exter-
nal confounders and ensuring reliable comparisons across conditions,
future studies should nevertheless validate these findings in real-
world environments to account for potential differences in naturalistic
behaviors.

Third, our study measured trust at a single time point and re-
lied on self-reports rather than actual decision-making actions. While
this provides initial insights, trust is inherently dynamic and context-
sensitive, often influencing real-world decision-making under uncer-
tainty (Sillence et al., 2019). Capturing only static trust ratings may miss
how trust evolves over interactions or translates into behavior, such as
whether individuals follow AI- vs. human-sourced advice. Future work
should adopt longitudinal, action-oriented paradigms (e.g., Ecological
Momentary Assessment (Crosby et al., 2016)) to better reflect how trust
evolves over time and influences real-life health decisions. This would
yield a more ecologically valid understanding of trust in LLM-powered
health context.

Fourth, while all LLM-generated responses were reviewed for con-
sistency with human-authored content, we did not explicitly screen
for stylistic aspects such as tone, clarity, or writing uniformity, which
may influence perceived trust. Besides, this study focused on a single
LLM (GPT-40), and the findings may not generalize across other mod-
els (e.g., Claude, Gemini, Llama), which vary in output quality and
style. Moreover, we did not include an in-task manipulation check to
assess whether participants consciously perceived the actual source be-
hind the labeled information. However, we acknowledge that perceived
source awareness could influence trust independently of disclosed labels.
Future work should evaluate the role of stylistic linguistic features across
different LLMs, with regard to trust in AL Additionally, to better un-
derstand how users react to Al-generated content, future studies should
incorporate perceived-source ratings (e.g., post-task questionnaires or
detectability checks) to assess whether trust judgments are mediated by
users’ ability to distinguish AI- from human-authored responses.

Lastly, our participant sample (notably WEIRD Linxen et al., 2021)
across both studies was not representative of the general population, fur-
ther limiting generalization. This is particularly relevant for groups with
varying levels of Al literacy or differing baseline trust in technology.
Acknowledging this limitation helps specify to whom these findings most
apply. Nevertheless, our study provides a key initial step toward under-
standing the impact of source and labeling in online health information.
Future expansion to include participants from varied demographics
can enhance our understanding of how trust in health information is
perceived across different groups.

6. Conclusion

Through a mixed-methods crowdsourcing survey (N=142) and
within-subjects lab study (N=40), we found that Al-generated health
information is trusted more than content sourced by human profession-
als, regardless of labeling, while human labels are trusted more than Al
labels. Furthermore, we found that trust perceptions in personal health
information are not only influenced by the source and label but also
vary at behavioral and physiological levels. Our work highlighted the
importance of considering Al transparency labels when measuring trust
in online health information, and in developing techniques for verifying
subjective trust perceptions and automatically inferring if and when to
apply transparency labels based on sensed behavioral and physiological
data. As such, we invite future research on understanding and designing
for the physiology of online human-Al interactions, within and beyond
Al-powered health information systems.

CRediT authorship contribution statement

Xin Sun: Writing - review & editing, Writing - original
draft, Visualization, Validation, Software, Project administration,

22

International Journal of Human - Computer Studies 209 (2026) 103714

Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Rongjun Ma: Writing — review & editing, Writing —
original draft, Formal analysis. Shu Wei: Writing — review & editing,
Writing — original draft, Conceptualization. Pablo Cesar: Supervision,
Methodology, Conceptualization. Jos A. Bosch: Writing — review &
editing, Supervision, Methodology, Funding acquisition. Abdallah El
Ali: Writing — review & editing, Writing — original draft, Supervision,
Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:

Jos A. Bosch reports that financial support was provided by the
University of Amsterdam. Xin Sun reports a relationship with the
University of Amsterdam that includes: employment and funding
grants. Jos A. Bosch also reports a relationship with the University of
Amsterdam that includes: employment and funding grants. If there are
other authors, they declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work is funded by the European Commission under the Horizon
H2020 scheme, awarded to Jos A. Bosch (TIMELY Grant Agreement ID:
101017424).

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.ijhcs.2025.103714.

Data availability

Data will be made available on request.

References

Anvari, F., Efendic, E., Olsen, J., Arslan, R.C., Elson, M., Schneider, LK., 2023. Bias in
self-reports: an initial elevation phenomenon. Soc. Psychol. Pers. Sci. 14 (6), 727-737.
https://doi.org/10.1177/19485506221129160

Ajenaghughrure, 1.B., Sousa, S.D.C., Lamas, D., 2020. Measuring trust with psychophysio-
logical signals: a systematic mapping study of approaches used. Multimodal Technol.
Interact. 4 (3), https://doi.org/10.3390/mti4030063. https://www.mdpi.com/2414-
4088/4/3/63.

Akash, K., Hu, W.-L., Jain, N., Reid, T., Nov 2018. A classification model for sensing human
trust in machines using EEG and gsr. ACM Trans. Interact. Intell. Syst. 8 (4), https:
//doi.org/10.1145/3132743

Ahmad, M., Alzahrani, A., 2023. Crucial clues: investigating psychophysiological be-
haviors for measuring trust in human-robot interaction. In: Proceedings of the
25th International Conference on Multimodal Interaction, ICMI ’23. Association for
Computing Machinery, New York, NY, USA, pp. 135-143, https://doi.org/10.1145/
3577190.3614148

Ahmad, M.I, Keller, 1., Robb, D.A., Lohan, K.S., 2020. A framework to estimate cognitive
load using physiological data. Pers. Ubiquitous Comput. 27 (6), 2027-2041. https:
//doi.org/10.1007/s00779-020-01455-7

Abdrabou, Y., Karypidou, E., Alt, F., Hassib, M., 2023. Investigating User Behavior Towards
Fake News on Social Media Using Gaze and Mouse Movements. https://doi.org/10.
14722/usec.2023.232041

Ayres, P., Lee, J.Y., Paas, F., van Merriénboer, J.J.G., 2021. The validity of physiological
measures to identify differences in intrinsic cognitive load. Front. Psychol. 12, 702538.

Ajenaghughrure, 1.B., Da Costa Sousa, S.C., Lamas, D., 2021. Psychophysiological mod-
elling of trust in technology: comparative analysis of algorithm ensemble methods. In:
2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics
(SAMI), pp. 000161-000168, https://doi.org/10.1109/SAMI50585.2021.9378655

Arsham, H., Lovric, M., 2011. Bartlett’s Test. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 87-88. https://doi.org/10.1007/978-3-642-04898-2_132

ATLAS.Ti, Sep. 2024. https://atlasti.com.

T. AB, 2024. Tobii Pro Lab, computer software. http://www.tobii.com/.

Alamudun, F., Choi, J., Gutierrez-Osuna, R., Khan, H., Ahmed, B., 2012. Removal
of subject-dependent and activity-dependent variation in physiological measures of
stress. In: 2012 6th International Conference on Pervasive Computing Technologies
for Healthcare (PervasiveHealth) and Workshops, pp. 115-122, https://doi.org/10.
4108/icst.pervasivehealth.2012.248722

Act, E.A.L, 2024. Regulation (EU) 2024/1689 of the European Parliament and of the
Council of 13 June 2024 laying down harmonised rules on Artificial intelligence
and amending regulations (EC) no 300/2008, (EU) no 167,/2013, (EU) no 168/2013,


https://doi.org/10.1016/j.ijhcs.2025.103714
https://doi.org/10.1016/j.ijhcs.2025.103714
https://doi.org/10.1177/19485506221129160
https://doi.org/10.3390/mti4030063
https://www.mdpi.com/2414-4088/4/3/63
https://www.mdpi.com/2414-4088/4/3/63
https://doi.org/10.1145/3132743
https://doi.org/10.1145/3132743
https://doi.org/10.1145/3577190.3614148
https://doi.org/10.1145/3577190.3614148
https://doi.org/10.1007/s00779-020-01455-7
https://doi.org/10.1007/s00779-020-01455-7
https://doi.org/10.14722/usec.2023.232041
https://doi.org/10.14722/usec.2023.232041
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0035
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0035
https://doi.org/10.1109/SAMI50585.2021.9378655
https://doi.org/10.1007/978-3-642-04898-2_132
https://atlasti.com
http://www.tobii.com/
https://doi.org/10.4108/icst.pervasivehealth.2012.248722
https://doi.org/10.4108/icst.pervasivehealth.2012.248722

X. Sun, R. Ma, S. Wei et al.

(EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and directives 2014/90/EU,
(EU) 2016/797 and (EU) 2020/1828 (Artificial intelligence Act) (text with EEA rel-
evance). https://eur-lex.europa.eu/eli/reg/2024/1689/0j http://data.europa.eu/eli/
reg/2024/1689/0j (Accessed 12-Sep-2024).

Bates, B.R., Romina, S., Ahmed, R., Hopson, D., 2006. The effect of source credibility
on consumers’ perceptions of the quality of health information on the internet. Med.
Inform. Internet Med. 31 (1), 45-52.

Broom, A., 2005. The Emale: Prostate Cancer, masculinity and online support as a
challenge to medical expertise. J. Sociol. (Melb) 41 (1), 87-104.

Babaei, E., Tag, B., Dingler, T., Velloso, E., 2021. A critique of electrodermal activity
practices at CHI. In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI "21. Association for Computing Machinery, New York, NY,
USA, https://doi.org/10.1145/3411764.3445370

Biswas, S.S., 2023. Role of Chatgpt in public health. Ann. Biomed. Eng. 51, 868-869.
https://doi.org/10.1007/s10439-023-03172-7

Bansal, G., Warkentin, M., 2022. Do you still trust? The role of age, gender, and privacy
concern on trust after insider data breaches. SIGMIS Database 52 (4), 9-44. https:
//doi.org/10.1145/3508484.3508487

Bickmore, T., Gruber, A., Picard, R., 2005. Establishing the computer—patient working
alliance in automated health behavior change interventions. Patient Educ. Couns. 59
(1), 21-30. 10.1016/j.pec.2004.09.008.

Ben Abacha, A., Demner-Fushman, D., 2019. A question-entailment approach to question
answering. BMC Bioinform. 20 (1), 511:1-511:23.

Bridley, A.L.W.D. Jr., 2013. Module 3: clinical assessment, diagnosis, and treat-
ment &x2013; fundamentals of psychological disorders — opentext.wsu.edu.
https://opentext.wsu.edu/abnormal-psych/chapter/module-3-clinical-assessment-
diagnosis-and-treatment/?utm_source = chatgpt.com.

Balogh, E.P., Miller, B.T., Ball, J.R., 2015. Improving Diagnosis in Health Care. The
National Academies Press, Washington, DC, https://doi.org/10.17226/21794. https:
//nap.nationalacademies.org/catalog/21794/improving-diagnosis-in-health-care.

Benedek, M., Kaernbach, C., 2010. A continuous measure of phasic electrodermal activity.
J. Neurosci. Methods 190 (1), 80-91.

Burrus, O., Curtis, A., Herman, L., 2024. Unmasking Al: informing authenticity decisions
by labeling Al-generated content. Interactions 31 (4), 38-42. https://doi.org/10.1145/
3665321

Boonprakong, N., Chen, X., Davey, C., Tag, B., Dingler, T., 2023. Bias-aware systems:
exploring indicators for the occurrences of cognitive biases when facing different opin-
ions. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery, CHI "23, New York, NY, USA, https:
//doi.org/10.1145/3544548.3580917

Cline, R.J.W., Haynes, K.M., 2001. Consumer health information seeking on the inter-
net: the state of the art. Health Educ. Res. 16 (6), 671-692. https://doi.org/10.
1093/her/16.6.671. https://academic.oup.com/her/article-pdf/16,/6,/671/9809432/
160671.pdf.

Chen, J., Mishler, S., Hu, B., 2021. Automation error type and methods of communicating
Automation reliability affect trust and performance: an empirical study in the cyber do-
main. IEEE Trans. Hum.-Mach. Syst. 51 (5), 463-473. https://doi.org/10.1109/THMS.
2021.3051137

Chiossi, F., Stepanova, E.R., Tag, B., Perusquia-Hernandez, M., Kitson, A., Dey, A., Mayer,
S., El Ali, A., 2024. Physiochi: towards best practices for integrating physiological
signals in HCI. In: Extended Abstracts of the 2024 CHI Conference on Human Factors
in Computing Systems, CHI EA "24. Association for Computing Machinery, New York,
NY, USA, https://doi.org/10.1145/3613905.3636286

Carlbring, P., Hadjistavropoulos, H., Kleiboer, A., Andersson, G., 2023. A new era in inter-
net interventions: the advent of chat-gpt and ai-assisted therapist guidance. Internet
Interv. 32.

Carolus, A., Koch, M.J., Straka, S., Latoschik, M.E., Wienrich, C., 2023. Mails - meta
Al literacy scale: development and testing of an Al literacy questionnaire based on
well-founded competency models and psychological change- and meta-competencies.
Comput. Hum. Behav.: Artif. Hum. 1 (2), 100014. 10.1016/j.chbah.2023.100014.

Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., 2016. Strong Inference in
Psychophysiological Science, Cambridge Handbooks in Psychology. Cambridge
University Press, pp. 3-15.

Cacioppo, J.T., Rourke, P.A., Marshall-Goodell, B.S., Tassinary, L.G., Baron, R.S.,
1990. Rudimentary physiological effects of mere observation. Psychophysiology 27
(2), 177-186. https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.1990.
tb00368.x. https://doi.org/10.1111/j.1469-8986.1990.tb00368.x.

Crosby, R.D., Lavender, J.M., Engel, S.G., Wonderlich, S.A., 2016. Ecological Momentary
Assessment. Springer Singapore, Singapore, pp. 1-3. https://doi.org/10.1007/978-
981-287-087-2_159-1

Desai, A.N., Ruidera, D., Steinbrink, J.M., Granwehr, B., Lee, D.H., 2022. Misinformation
and disinformation: the potential disadvantages of social media in infectious disease
and how to combat them. Clin. Infect. Dis. 74, e34—e39.

Dutta-Bergman, M., et al., 2003. Trusted online sources of health information: differences
in demographics, health beliefs, and health-information orientation. J. Med. Internet
Res. 5 (3), e893.

Davis, F., Davis, F., 1989. Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS Quarterly 13, 319. https://doi.org/10.2307/249008

di Sciascio, C., Veas, E., Barria-Pineda, J., Culley, C., 2020. Understanding the ef-
fects of control and transparency in searching as learning. In: Proceedings of the
25th International Conference on Intelligent User Interfaces, IUI "20. Association for
Computing Machinery, New York, NY, USA, pp. 498-509, https://doi.org/10.1145/
3377325.3377524

Dalton, J., Fischer, S., Owoicho, P., Radlinski, F., Rossetto, F., Trippas, J.R., Zamani, H.,
2022. Conversational information seeking: theory and application. In: Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in

23

International Journal of Human - Computer Studies 209 (2026) 103714

Information Retrieval, SIGIR ’22. Association for Computing Machinery, New York,
NY, USA, pp. 3455-3458, https://doi.org/10.1145/3477495.3532678

De Freitas, J., Agarwal, S., Schmitt, B., Haslam, N., 2023. Psychological factors underlying
attitudes toward Al tools. Nat. Hum. Behav. 7 (11), 1845-1854.

Eurostat, 2022. Survey on the Use of Ict in Households and by Individuals.

El Ali, A., Venkatraj, K.P., Morosoli, S., Naudts, L., Helberger, N., Cesar, P., 2024.
Transparent Al disclosure obligations: who, what, when, where, why, how. In:
Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing
Systems, CHI EA ’24. Association for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/3613905.3650750

Elo, S., Kyngés, H., 2008. The qualitative content analysis process. J. Adv. Nurs. 62 (1),
107-115.

Epstein, Z., Fang, M.C., Arechar, A.A., Rand, D.G., Jul 2023. What label should be applied
to content produced by generative AI? https://doi.org/10.31234/0sf.io/v4mfz. osf.io/
preprints/psyarxiv/v4mfz.

Fogg, B.J., Marshall, J., Laraki, O., Osipovich, A., Varma, C., Fang, N., Paul, J., Rangnekar,
A., Shon, J., Swani, P., Treinen, M., 2001. What makes web sites credible? A report
on a large quantitative study. In: Proceedings of the CHI 2001 Conference on Human
Factors in Computing Systems Vol. 3, pp. 61-68, https://doi.org/10.1145/365024.
365037

Fogg, B.J., Marshall, J., Osipovich, A., Varma, C., Laraki, O., Fang, N., Paul, J., Rangnekar,
A., Shon, J., Swani, P., Treinen, M., 2000. Elements that affect web credibility: early
results from a self-report study. In: CHI 00 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’00. Association for Computing Machinery, New York,
NY, USA, pp. 287-288, https://doi.org/10.1145/633292.633460

Flanagin, A.J., Metzger, M.J., 2007. The role of site features, user attributes, and infor-
mation verification behaviors on the perceived credibility of web-based information.
New Media Soc. 9 (2), 319-342. https://doi.org/10.1177/1461444807075015. 10.
1177/1461444807075015.

Friedman, B., Thomas, J.C., Grudin, J., Nass, C., Nissenbaum, H., Schlager, M.,
Shneiderman, B., 1999. Trust me, i’'m accountable: trust and accountability online.
In: CHI ’99 Extended Abstracts on Human Factors in Computing Systems, CHI EA
’99. Association for Computing Machinery, New York, NY, USA, pp. 79-80, https:
//doi.org/10.1145/632716.632766

Flanagin, A., Metzger, M., 2000. Perceptions of internet information credibil-
ity. Journalism Mass Commun Q. 77, 515-540. https://doi.org/10.1177/
107769900007700304

Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A., 2007. G*Power 3: a flexible statistical
Power analysis program for the social, behavioral, and biomedical sciences. Behav.
Res. Methods 39 (2), 175-191.

Freedman, D., Pisani, R., Purves, R., 2007. Statistics (international student edition). Pisani,
R. Purves, fourth WW Norton & Company, New York.

Formosa, P., Rogers, W., Griep, Y., Bankins, S., Richards, D., 2022. Medical Al and human
dignity: contrasting perceptions of human and artificially intelligent (AI) decision mak-
ing in diagnostic and medical resource allocation contexts. Comput. Hum. Behav. 133,
107296. https://doi.org/10.1016/j.chb.2022.107296.

Garg, RXK., Urs, V.L., Agrawal, A.A., Chaudhary, S.K., Paliwal, V., Kar, S.K., 2023.
Exploring the role of Chatgpt in patient care (diagnosis and treatment) and med-
ical research: a systematic review. medRxiv https://doi.org/10.1101/2023.06.13.
23291311

Guo, Y., Dec 2022. Digital trust and the reconstruction of trust in the digital society: an
integrated model based on trust theory and expectation confirmation theory. Digit.
Gov.: Res. Pract. 3 (4), https://doi.org/10.1145/3543860

Hesse, B.W., Nelson, D.E., Kreps, G.L., Croyle, R.T., Arora, N.K., Rimer, B.K., Viswanath,
K., 2005. Trust and sources of health information: the impact of the internet and its im-
plications for health care providers: findings from the first health information National
Trends Survey. Arch. Intern. Med. 165 (22), 2618-2624.

Holmgvist, K., Nystrom, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer,
J., 2011. Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford
University Press, United States.

Haynes, W., 2013. Benjamini-Hochberg Method. Springer New York, New York, NY, p.
78. https://doi.org/10.1007/978-1-4419-9863-7_1215

Haynes, W., 2013. Bonferroni Correction. Springer New York, New York, NY, p. 154. https:
//doi.org/10.1007/978-1-4419-9863-7_1213

Hardin, J.W., Hilbe, J.M., 2012. Generalized Estimating Equations, Second Edition, second
ed. Chapman & Hall/CRC, Philadelphia, PA.

Hristidis, V., Ruggiano, N., Brown, E.L., Ganta, S.R.R., Stewart, S., 2023. Chatgpt VS
Google for queries related to dementia and other cognitive decline: comparison of re-
sults. J. Med. Internet Res. 25, e48966. https://doi.org/10.2196,/48966. https://www.
jmir.org/2023/1/e48966.

Horton, Jr, C.B., White, M.W., Iyengar, S.S., 2023. Bias against Al art can enhance
perceptions of human creativity. Sci. Rep. 13 (1), 19001.

Hummel, D., Toreini, P., Maedche, A., 2018. Improving digital nudging using attentive
user interfaces: theory development and experiment design. In: 13th International
Conference on Design Science Research in Information Systems and Technology
(DESRIST), Chennai, India, 3rd - 6th June, 2018, pp. 1-8.

Johnson, D., Goodman, R., Patrinely, J., Stone, C., Zimmerman, E., Donald, R., Chang, S.,
Berkowitz, S., Finn, A., Jahangir, E., Scoville, E., Reese, T., Friedman, D., Bastarache,
J., van der Heijden, Y., Wright, J., Carter, N., Alexander, M., Choe, J., Wheless, L.,
Feb 2023. Assessing the accuracy and reliability of ai-generated medical responses: an
evaluation of the chat-gpt model. Research Square. https://doi.org/10.21203/rs.3.rs-
2566942/v1

Johnson, F.C., Rowley, J.E., Sbaffi, L., 2015. Modelling trust formation in health infor-
mation contexts. J. Inf. Sci. 41, 415-429. https://api.semanticscholar.org/CorpusID:
206454953.


https://eur-lex.europa.eu/eli/reg/2024/1689/oj
http://data.europa.eu/eli/reg/2024/1689/oj
http://data.europa.eu/eli/reg/2024/1689/oj
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0070
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0070
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0070
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0075
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0075
https://doi.org/10.1145/3411764.3445370
https://doi.org/10.1007/s10439-023-03172-7
https://doi.org/10.1145/3508484.3508487
https://doi.org/10.1145/3508484.3508487
10.1016/j.pec.2004.09.008
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0100
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0100
https://opentext.wsu.edu/abnormal-psych/chapter/module-3-clinical-assessment-diagnosis-and-treatment/?utm_source=chatgpt.com
https://opentext.wsu.edu/abnormal-psych/chapter/module-3-clinical-assessment-diagnosis-and-treatment/?utm_source=chatgpt.com
https://doi.org/10.17226/21794
https://nap.nationalacademies.org/catalog/21794/improving-diagnosis-in-health-care
https://nap.nationalacademies.org/catalog/21794/improving-diagnosis-in-health-care
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0115
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0115
https://doi.org/10.1145/3665321
https://doi.org/10.1145/3665321
https://doi.org/10.1145/3544548.3580917
https://doi.org/10.1145/3544548.3580917
https://doi.org/10.1093/her/16.6.671
https://doi.org/10.1093/her/16.6.671
https://academic.oup.com/her/article-pdf/16/6/671/9809432/160671.pdf
https://academic.oup.com/her/article-pdf/16/6/671/9809432/160671.pdf
https://doi.org/10.1109/THMS.2021.3051137
https://doi.org/10.1109/THMS.2021.3051137
https://doi.org/10.1145/3613905.3636286
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0145
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0145
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0145
10.1016/j.chbah.2023.100014
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0155
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0155
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0155
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.1990.tb00368.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.1990.tb00368.x
https://doi.org/10.1111/j.1469-8986.1990.tb00368.x
https://doi.org/10.1007/978-981-287-087-2_159-1
https://doi.org/10.1007/978-981-287-087-2_159-1
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0170
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0170
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0170
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0175
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0175
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0175
https://doi.org/10.2307/249008
https://doi.org/10.1145/3377325.3377524
https://doi.org/10.1145/3377325.3377524
https://doi.org/10.1145/3477495.3532678
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0195
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0195
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0200
https://doi.org/10.1145/3613905.3650750
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0210
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0210
https://doi.org/10.31234/osf.io/v4mfz
osf.io/preprints/psyarxiv/v4mfz
osf.io/preprints/psyarxiv/v4mfz
https://doi.org/10.1145/365024.365037
https://doi.org/10.1145/365024.365037
https://doi.org/10.1145/633292.633460
https://doi.org/10.1177/1461444807075015
10.1177/1461444807075015
10.1177/1461444807075015
https://doi.org/10.1145/632716.632766
https://doi.org/10.1145/632716.632766
https://doi.org/10.1177/107769900007700304
https://doi.org/10.1177/107769900007700304
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0245
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0245
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0245
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0250
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0250
https://doi.org/10.1016/j.chb.2022.107296
https://doi.org/10.1101/2023.06.13.23291311
https://doi.org/10.1101/2023.06.13.23291311
https://doi.org/10.1145/3543860
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0270
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0270
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0270
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0270
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0275
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0275
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0275
https://doi.org/10.1007/978-1-4419-9863-7_1215
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0290
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0290
https://doi.org/10.2196/48966
https://www.jmir.org/2023/1/e48966
https://www.jmir.org/2023/1/e48966
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0300
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0300
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0305
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0305
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0305
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0305
https://doi.org/10.21203/rs.3.rs-2566942/v1
https://doi.org/10.21203/rs.3.rs-2566942/v1
https://api.semanticscholar.org/CorpusID:206454953
https://api.semanticscholar.org/CorpusID:206454953

X. Sun, R. Ma, S. Wei et al.

Jakesch, M., French, M., Ma, X., Hancock, J.T., Naaman, M., 2019. Al-mediated communi-
cation: how the perception that profile text was written by Al affects trustworthiness.
In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
CHI "19. Association for Computing Machinery, New York, NY, USA, pp. 1-13, https:
//doi.org/10.1145/3290605.3300469

Ji, K., Hettiachchi, D., Salim, F.D., Scholer, F., Spina, D., 2024. Characterizing informa-
tion seeking processes with multiple physiological signals. In: Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Vol. 5 of SIGIR 2024. ACM, pp. 1006-1017, https://doi.org/10.1145/
3626772.3657793. http://dx.doi.org/10.1145/3626772.3657793.

Ji, K., Spina, D., Hettiachchi, D., Scholer, F., Salim, F.D., 2023. Towards detecting tonic
information processing activities with physiological data. In: Adjunct Proceedings of
the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing
& the 2023 ACM International Symposium on Wearable Computing, UbiComp/ISWC
’23 Adjunct. Association for Computing Machinery, New York, NY, USA, pp. 1-5, https:
//doi.org/10.1145/3594739.3610679

Jessup, S., Schneider, T., Alarcon, G., Ryan, T., Capiola, A., Jun 2019. The measurement of
the propensity to trust Automation. https://doi.org/10.1007/978-3-030-21565-1_32.

Just, M.A., Carpenter, P.A., 1980. A theory of reading: from eye fixations to comprehen-
sion. Psychol. Rev. 87 (4), 329-354.

Kerstan, S., Bienefeld, N., Grote, G., Sep 2023. Choosing human over Al doctors? How
comparative trust associations and knowledge relate to risk and benefit perceptions of
Al in healthcare. Risk Anal. 44, https://doi.org/10.1111/risa.14216

Kohn, S.C., de Visser, E.J., Wiese, E., Lee, Y.-C., Shaw, T.H., 2021. Measurement of trust
in automation: a narrative review and reference guide. Front. Psychol. 12, 604977.

Kizilcec, R.F., 2016. How much information? Effects of transparency on trust in an algo-
rithmic interface. In: Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, CHI "16. Association for Computing Machinery, New York, NY,
USA, pp. 2390-2395, https://doi.org/10.1145/2858036.2858402

Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y.H., Koo, B.-H., 2018. Stress and heart rate
variability: a meta-analysis and review of the literature. Psychiatry Investig. 15 (3),
235-245.

Kherad-Pajouh, S., Renaud, O., 2015. A general permutation approach for analyzing
repeated measures ANOVA and mixed-model designs. Stat. Pap. 56 (4), 947-967.
Kunjan, S., Grummett, T.S., Pope, K.J., Powers, D.M.W., Fitzgibbon, S.P., Bastiampillai,
T., Battersby, M., Lewis, T.W., 2021. The necessity of leave one subject out (loso)
cross validation for EEG disease diagnosis. In: Brain Informatics: 14th International
Conference, BI 2021, Virtual Event, September 17-19, 2021, Proceedings. Springer-
Verlag, Berlin, Heidelberg, pp. 558-567, https://doi.org/10.1007/978-3-030-86993-

9.50

Kelley, P.G., Bresee, J., Cranor, L.F., Reeder, R.W., 2009. A “nutrition label” for privacy.
In: Proceedings of the 5th Symposium on Usable Privacy and Security, SOUPS ’09.
Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/
1572532.1572538

Liu, J., Zhang, Y., Kim, Y., 2023. Consumer health information quality, credibility, and
trust: an analysis of definitions, measures, and conceptual dimensions. In: Proceedings
of the 2023 Conference on Human Information Interaction and Retrieval, CHIIR ’23.
Association for Computing Machinery, New York, NY, USA, pp. 197-210, https://doi.
org/10.1145/3576840.3578331

Logg, J.M., Minson, J.A., Moore, D.A., 2019. Algorithm appreciation: people prefer
algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 151, 90-103.

Lim, J.Z., Mountstephens, J., Teo, J., 2022. Eye-tracking feature extraction for biometric
machine learning. Front. Neurorobot. 15, 796895.

Lee, P., Bubeck, S., Petro, J., 2023. Benefits, limits, and risks of gpt-4 as an Al
chatbot for medicine. N. Engl. J. Med. 388 (13), 1233-1239, pMID: 36988602.
arXiv:10.1056/NEJMsr2214184, https://doi.org/10.1056/NEJMsr2214184

Lee, J.D., See, K.A., 2004. Trust in automation: designing for appropriate reliance. Hum.
Factors 46 (1), 50-80.

Lucassen, T., Schraagen, J.M., 2010. Trust in Wikipedia: how users trust information from
an unknown source. In: Proceedings of the 4th Workshop on Information Credibility,
WICOW ’10. Association for Computing Machinery, New York, NY, USA, pp. 19-26,
https://doi.org/10.1145/1772938.1772944

Liao, Q.V., Sundar, S.S., 2022. Designing for responsible trust in Al systems: a com-
munication perspective. In: Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’22. Association for Computing Machinery,
New York, NY, USA, pp. 1257-1268, https://doi.org/10.1145/3531146.3533182

Lu, Y., Sarter, N., 2019. Eye tracking: a process-oriented method for inferring trust in
Automation as a function of priming and system reliability. IEEE Trans. Hum.-Mach.
Syst. PP 1-9. https://doi.org/10.1109/THMS.2019.2930980

Liashchynskyi, P., Liashchynskyi, P., 2019. Grid search, random search, genetic algorithm:
A big comparison for nas. arXiv:1912.06059, https://arxiv.org/abs/1912.06059.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17. Curran Associates Inc., Red Hook, NY, USA, pp. 4768-4777.

Liao, Q.V., Subramonyam, H., Wang, J., Wortman Vaughan, J., 2023. Designerly under-
standing: information needs for model transparency to support design ideation for
ai-powered user experience. In: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, CHI "23. Association for Computing Machinery, New
York, NY, USA, https://doi.org/10.1145/3544548.3580652

Liao, Q.V., Vorvoreanu, M., Subramonyam, H., Wilcox, L., 2024. Ux matters: the criti-
cal role of ux in responsible Al Interactions 31 (4), 22-27. https://doi.org/10.1145/
3665504

Linxen, S., Sturm, C., Brithlmann, F., Cassau, V., Opwis, K., Reinecke, K., 2021. How weird
is CHI? In: Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI ’21. Association for Computing Machinery, New York, NY, USA, https:
//doi.org/10.1145/3411764.3445488

24

International Journal of Human - Computer Studies 209 (2026) 103714

MAYO CLINIC, 2023. Mayo Clinic. https://www.mayoclinic.org/.

Marecos, J., Tude Graca, D., Goiana-da Silva, F., Ashrafian, H., Darzi, A., 2024. Source
credibility labels and other nudging interventions in the context of online health misin-
formation: a systematic literature review. Journalism and Media 5 (2), 702-717. https:
//doi.org/10.3390/journalmedia5020046. https://www.mdpi.com/2673-5172/5/2/
46.

Mayer, R.C., Davis, J.H., Schoorman, F.D., 1995. An integrative model of organizational
trust. Acad. Manag. Rev. 20 (3), 709-734. http://www.jstor.org/stable/258792.

Metzger, M., Flanagin, A., 2013. Credibility and trust of information in online environ-
ments: the use of cognitive heuristics. J. Pragmat. 59, 210-220. https://doi.org/10.
1016/j.pragma.2013.07.012

Montag, C., Klugah-Brown, B., Zhou, X., Wernicke, J., Liu, C., Kou, J., Chen, Y., Haas,
B.W., Becker, B., 2023. Trust toward humans and trust toward artificial intelligence
are not associated: initial insights from self-report and neurostructural brain imaging.
Pers. Neurosci. 6, e3. https://doi.org/10.1017/pen.2022.5

McDonald, N., Schoenebeck, S., Forte, A., Nov. 2019. Reliability and inter-rater reliability
in qualitative research: norms and guidelines for cscw and HCI practice. Proc. ACM
Hum.-Comput. Interact. 3 (CSCW), https://doi.org/10.1145/3359174

Michalkova, D., Rodriguez, M.P., Moshfeghi, Y., Jan 2024. Understanding feeling-of-
knowing in information search: an EEG study. ACM Trans. Inf. Syst. 42 (3), https:
//doi.org/10.1145/3611384

Mounica, M.S., Manvita, M., Jyotsna, C., Amudha, J., 2019. Low cost eye gaze tracker us-
ing web camera. In: 2019 3rd International Conference on Computing Methodologies
and Communication (ICCMC), pp. 79-85, https://doi.org/10.1109/ICCMC.2019.
8819645

McDuff, D.J., Gontarek, S., Picard, R.W., 2014. Remote measurement of cognitive stress
via heart rate variability. 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society 2957-2960. https://api.semanticscholar.
org/CorpusID:206627980.

National Institutes of Health, 2023. National Institutes of Health. https://www.nih.gov.

Norman, C.D., Skinner, H.A., 2006. Eheals: the ehealth literacy scale. J. Med. Internet Res.
8 (4), e27. https://doi.org/10.2196/jmir.8.4.e27

OpenAl, https://openai.com/chatgpt/.

OpenAl et al., 2024. Gpt-4 technical report. arXiv:2303.08774.

Opitz, J., Burst, S., 2021. Macro f1 and macro f1. arXiv:1911.03347, https://arxiv.org/
abs/1911.03347.

Parikh, S.S., 2018. Eye gaze feature classification for predicting levels of learning. https:
//api.semanticscholar.org/CorpusID:53471366.

Prolific, 2014. https://www.prolific.com.

Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Hochenberger, R., Sogo, H., Kastman,
E., Lindelgv, J.K., 2019. Psychopy2: experiments in behavior made easy. Behav. Res.
Methods 51 (1), 195-203.

Pennycook, G., Bear, A., Collins, E.T., Rand, D.G., 2020. The implied truth effect: attaching
warnings to a subset of fake news headlines increases perceived accuracy of headlines
without warnings. Manage. Sci. 66 (11), 4944-4957. https://doi.org/10.1287 /mnsc.
2019.3478.

Reis, M., Reis, F., Kunde, W., Jul. 2024. Influence of believed Al involvement on the
perception of digital medical advice. Nat. Med. 30 (11), 3098-3100.

Rathi, .M., Taylor, S., Bergen, B., Jones, C., 2025. Gpt-4 is judged more human than
humans in displaced and inverted turing tests. In: Alam, F., Nakov, P., Habash,
N., Gurevych, I., Chowdhury, S., Shelmanov, A., Wang, Y., Artemova, E., Kutlu,
M., Mikros, G. (Eds.), Proceedings of the 1stWorkshop on GenAl Content Detection
(GenAlDetect). International Conference on Computational Linguistics, Abu Dhabi,
UAE, pp. 96-110.

Rae, L., 2024. The effects of perceived Al use on content perceptions. In: Proceedings of
the CHI Conference on Human Factors in Computing Systems, CHI "24. Association
for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3613904.
3642076

Rheu, M., Shin, J.Y., Peng, W., Huh-Yoo, J., 2020. Systematic review: trust-building factors
and implications for conversational agent design. Int. J. Hum.-Comput. Interact. 37,
1-16. https://doi.org/10.1080/10447318.2020.1807710

Rowley, J.E., Johnson, F.C., Sbaffi, L., 2015. Students’ trust judgements in online health
information seeking. Health Inform. J. 21, 316-327.

Rayner, K., 1998. Eye movements in reading and information processing: 20 years of
research. Psychol. Bull. 124 (3), 372-422.

Sillence, E., Briggs, P., Harris, P.R., Fishwick, L., 2007. How do patients evaluate and make
use of online health information? Soc. Sci. Med. 64 (9), 1853-1862. https://doi.org/
10.1016/j.socscimed.2007.01.012

Sillence, E., Briggs, P., Fishwick, L., Harris, P., 2005. Guidelines for developing trust
in health websites. In: Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, WWW ’05. Association for Computing Machinery,
New York, NY, USA, pp. 1026-1027, https://doi.org/10.1145/1062745.1062851

Shekar, S., Pataranutaporn, P., Sarabu, C., Cecchi, G.A., Maes, P., 2024. People over trust
ai-generated medical responses and view them to be as valid as doctors, despite low
accuracy. arXiv:2408.15266, https://arxiv.org/abs/2408.15266.

Sillence, E., Briggs, P., Fishwick, L., Harris, P., 2004. Trust and mistrust of online health
sites. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04. Association for Computing Machinery, New York, NY, USA, pp.
663-670, https://doi.org/10.1145/985692.985776

Singal, H., Kohli, S., 2016. Intellectualizing trust for medical websites. In: Proceedings of
the Second International Conference on Information and Communication Technology
for Competitive Strategies, ICTCS ’16. Association for Computing Machinery, New
York, NY, USA, https://doi.org/10.1145/2905055.2905293

Sillence, E., Blythe, J.M., Briggs, P., Moss, M., 2019. A revised model of trust in internet-
based health information and advice: cross-sectional questionnaire study. J. Med.
Internet Res. https://doi.org/10.2196/11125


https://doi.org/10.1145/3290605.3300469
https://doi.org/10.1145/3290605.3300469
https://doi.org/10.1145/3626772.3657793
https://doi.org/10.1145/3626772.3657793
http://dx.doi.org/10.1145/3626772.3657793
https://doi.org/10.1145/3594739.3610679
https://doi.org/10.1145/3594739.3610679
https://doi.org/10.1007/978-3-030-21565-1_32
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0340
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0340
https://doi.org/10.1111/risa.14216
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0350
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0350
https://doi.org/10.1145/2858036.2858402
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0360
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0360
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0360
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0365
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0365
https://doi.org/10.1007/978-3-030-86993-9_50
https://doi.org/10.1007/978-3-030-86993-9_50
https://doi.org/10.1145/1572532.1572538
https://doi.org/10.1145/1572532.1572538
https://doi.org/10.1145/3576840.3578331
https://doi.org/10.1145/3576840.3578331
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0385
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0385
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0390
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0390
http://arxiv.org/abs/10.1056/NEJMsr2214184
https://doi.org/10.1056/NEJMsr2214184
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0400
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0400
https://doi.org/10.1145/1772938.1772944
https://doi.org/10.1145/3531146.3533182
https://doi.org/10.1109/THMS.2019.2930980
http://arxiv.org/abs/1912.06059
https://arxiv.org/abs/1912.06059
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0425
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0425
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0425
https://doi.org/10.1145/3544548.3580652
https://doi.org/10.1145/3665504
https://doi.org/10.1145/3665504
https://doi.org/10.1145/3411764.3445488
https://doi.org/10.1145/3411764.3445488
https://www.mayoclinic.org/
https://doi.org/10.3390/journalmedia5020046
https://doi.org/10.3390/journalmedia5020046
https://www.mdpi.com/2673-5172/5/2/46
https://www.mdpi.com/2673-5172/5/2/46
http://www.jstor.org/stable/258792
https://doi.org/10.1016/j.pragma.2013.07.012
https://doi.org/10.1016/j.pragma.2013.07.012
https://doi.org/10.1017/pen.2022.5
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3611384
https://doi.org/10.1145/3611384
https://doi.org/10.1109/ICCMC.2019.8819645
https://doi.org/10.1109/ICCMC.2019.8819645
https://api.semanticscholar.org/CorpusID:206627980
https://api.semanticscholar.org/CorpusID:206627980
https://www.nih.gov
https://doi.org/10.2196/jmir.8.4.e27
https://openai.com/chatgpt/
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1911.03347
https://arxiv.org/abs/1911.03347
https://arxiv.org/abs/1911.03347
https://api.semanticscholar.org/CorpusID:53471366
https://api.semanticscholar.org/CorpusID:53471366
https://www.prolific.com
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0525
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0525
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0525
https://doi.org/10.1287/mnsc.2019.3478
https://doi.org/10.1287/mnsc.2019.3478
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0535
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0535
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0540
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0540
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0540
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0540
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0540
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0540
https://doi.org/10.1145/3613904.3642076
https://doi.org/10.1145/3613904.3642076
https://doi.org/10.1080/10447318.2020.1807710
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0555
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0555
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0560
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0560
https://doi.org/10.1016/j.socscimed.2007.01.012
https://doi.org/10.1016/j.socscimed.2007.01.012
https://doi.org/10.1145/1062745.1062851
http://arxiv.org/abs/2408.15266
https://arxiv.org/abs/2408.15266
https://doi.org/10.1145/985692.985776
https://doi.org/10.1145/2905055.2905293
https://doi.org/10.2196/11125

X. Sun, R. Ma, S. Wei et al.

Sundar, S.S., 2007. The main model: a heuristic approach to understanding technology
effects on credibility. https://api.semanticscholar.org/CorpusID:17588424.

Sbaffi, L., Rowley, J., 2017. Trust and credibility in web-based health information: a review
and agenda for future research. J. Med. Internet Res. 19 (6), e218. https://doi.org/10.
2196/jmir.7579. http://www.jmir.org/2017/6/e218/.

Scharowski, N., Benk, M., KACEhne, S.J., Wettstein, L., BrACEhlmann, F., 2023.
Certification labels for trustworthy Al insights from an empirical mixed-method
study. In: 2023 ACM Conference on Fairness, Accountability, and Transparency. ACM,
Chicago IL USA, pp. 248-260, https://doi.org/10.1145/3593013.3593994. https://dl.
acm.org/doi/10.1145/3593013.3593994.

Siimer, O., Bozkir, E., Kibler, T., Griiner, S., Utz, S., Kasneci, E., 2021.
Fakenewsperception: an eye movement dataset on the perceived believability of
news stories. Data in Brief 35, 106909. 10.1016/j.dib.2021.106909.

Sevcenko, N., Appel, T., Ninaus, M., Moeller, K., Gerjets, P., 2022. Theory-based approach
for assessing cognitive load during time-critical resource-managing human—computer
interactions: an eye-tracking study. J. Multimodal User Interfaces 17, 1-19. https://
doi.org/10.1007/512193-022-00398-y

SHAPIRO, S.S., WILK, M.B., 1965. An analysis of variance test for normality (complete
samples). Biometrika 52 (3—-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591

Sahagian, G., 2024. What is random state 42? — grsahagian.medium.com. https://
grsahagian.medium.com/what-is-random-state-42.

Sun, X., Ma, R., Zhao, X., Li, Z., Lindqvist, J., Ali, A.E., Bosch, J.A., 2024. Trusting
the search: Unraveling human trust in health information from google and chatgpt.
arXiv:2403.09987, https://arxiv.org/abs/2403.09987.

Sundar, S.S., Kim, J., 2019. Machine heuristic: when we trust computers more than humans
with our personal information. In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19. Association for Computing Machinery, New
York, NY, USA, pp. 1-9, https://doi.org/10.1145/3290605.3300768

Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A.,
Cole-Lewis, H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Babiker,
A., Schérli, N., Chowdhery, A., Mansfield, P., Demner-Fushman, D., Agiiera y Arcas,
B., Webster, D., Corrado, G.S., Matias, Y., Chou, K., Gottweis, J., Tomasev, N., Liu,
Y., Rajkomar, A., Barral, J., Semturs, C., Karthikesalingam, A., Natarajan, V., 2023.
Large language models encode clinical knowledge. Nature 620 (7972), 172-180. https:
//doi.org/10.1038/541586-023-06291-2

Scott, A.E., Neumann, D., Niess, J., Wozniak, P.W., 2023. Do you mind? User perceptions
of machine consciousness. In: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, CHI ’23. Association for Computing Machinery, New
York, NY, USA, https://doi.org/10.1145/3544548.3581296

Tiwari, R., Kumar, R., Malik, S., Raj, T., Kumar, P., 2021. Analysis of heart rate variability
and implication of different factors on heart rate variability. Curr. Cardiol. Rev. 17 (5),
€160721189770.

Thielmann, B., Hartung, J., Bockelmann, 1., 2022. Objective assessment of mental stress in
individuals with different levels of effort reward imbalance or overcommitment using
heart rate variability: a systematic review. Syst. Rev. 11 (1), 48.

Ul Haque, E., Khan, M.M.H., Fahim, M.A.A., 2023. The nuanced nature of trust and privacy
control adoption in the context of Google. In: Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI ’23. Association for Computing
Machinery, New York, NY, USA, https://doi.org/10.1145/3544548.3581387

Vereschak, O., Alizadeh, F., Bailly, G., Caramiaux, B., 2024. Trust in ai-assisted decision
making: perspectives from those behind the system and those for whom the decision is

25

International Journal of Human - Computer Studies 209 (2026) 103714

made. In: Proceedings of the CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, CHI 24, New York, NY, USA, https://doi.org/
10.1145/3613904.3642018

van Amsterdam, U., 2025. Fmg Research Lab — lab-fmg.uva.NL https://lab-fmg.uva.nl/
en.

Van der Lans, R., Wedel, M., Pieters, R., 2011. Defining eye-fixation sequences across
individuals and tasks: the binocular-individual threshold (bit) algorithm. Behav. Res.
Methods. 43, 239-257.

Van Bulck, L., Moons, P., 2023. What if your patient switches from Dr. Google to Dr.
Chatgpt? A vignette-based survey of the trustworthiness, value, and danger of Chatgpt-
generated responses to health questions. Eur. J. Cardiovasc. Nurs. zvad038. https://
doi.org/10.1093/eurjcn/zvad038

Wang, X., R.A., Cohen, 2022. Health Information Technology Use Among Adults: United
States, July-December 2022. https://www.cdc.gov/nchs/products/databriefs/db482.
htm.

Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., Tang, Y., 2023. A brief overview of
Chatgpt: the history, status quo and potential future development. IEEE/CAA J. Autom.
Sin. 10 (5), 1122-1136. https://doi.org/10.1109/JAS.2023.123618

Wang, C., Liu, S., Yang, H., Guo, J., Wu, Y., Liu, J., 2023. Ethical considerations of using
Chatgpt in health care. J. Med. Internet Res. 25, e48009. https://doi.org/10.2196/
48009. https://www.jmir.org/2023/1/e48009.

Walker, F., Favetta, M., Hasker, L., Walker, R., 2024. They prefer humans! experimen-
tal measurement of student trust in Chatgpt. In: Extended Abstracts of the 2024
CHI Conference on Human Factors in Computing Systems, CHI EA ’24. Association
for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3613905.
3650955

Wang, J., Aug 2018. Gaze behavior, skin conductance, and trust in Automation. http:
//essay.utwente.nl/76357/.

Wathen, C., Burkell, J., 2002. Believe it or not: factors influencing credibility on the web.
JASIST 53, 134-144. https://doi.org/10.1002/asi.10016

WebMD, https://www.webmd.com/.

Wang, L., Stern, J.A., 2001. Saccade initiation and accuracy in gaze shifts are affected by
visual stimulus significance. Psychophysiology 38 (1), 64-75.

Wang, L., 2019. Eye tracking methodology in screen-based usability testing. In: Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI
EA ’19. Association for Computing Machinery, New York, NY, USA, pp. 1-3, https:
//doi.org/10.1145/3290607.3298811

Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J., 2011. The aligned rank transform
for nonparametric factorial analyses using only anova procedures. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI "11. Association
for Computing Machinery, New York, NY, USA, pp. 143-146, https://doi.org/10.
1145/1978942.1978963

Xu, R., Feng, Y., Chen, H., 2023. Chatgpt vs. google: A comparative study of search
performance and user experience. arXiv:2307.01135, https://arxiv.org/abs/2307.
01135.

Yin, Y., Jia, N., Wakslak, C.J., 2024. Al can help people feel heard, but an AI label dimin-
ishes this impact. Proc. Natl. Acad. Sci. 121 (14), e2319112121. https://doi.org/10.
1073/pnas.2319112121. https://www.pnas.org/doi/pdf/10.1073/pnas.2319112121.
https://www.pnas.org/doi/abs/10.1073/pnas.2319112121.

Zar, J.H., 2005. Spearman rank correlation. Encyclopedia of Biostatistics 7.


https://api.semanticscholar.org/CorpusID:17588424
https://doi.org/10.2196/jmir.7579
https://doi.org/10.2196/jmir.7579
http://www.jmir.org/2017/6/e218/
https://doi.org/10.1145/3593013.3593994
https://dl.acm.org/doi/10.1145/3593013.3593994
https://dl.acm.org/doi/10.1145/3593013.3593994
10.1016/j.dib.2021.106909
https://doi.org/10.1007/s12193-022-00398-y
https://doi.org/10.1007/s12193-022-00398-y
https://doi.org/10.1093/biomet/52.3-4.591
https://grsahagian.medium.com/what-is-random-state-42
https://grsahagian.medium.com/what-is-random-state-42
http://arxiv.org/abs/2403.09987
https://arxiv.org/abs/2403.09987
https://doi.org/10.1145/3290605.3300768
https://doi.org/10.1038/s41586-023-06291-2
https://doi.org/10.1038/s41586-023-06291-2
https://doi.org/10.1145/3544548.3581296
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0650
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0650
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0650
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0655
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0655
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0655
https://doi.org/10.1145/3544548.3581387
https://doi.org/10.1145/3613904.3642018
https://doi.org/10.1145/3613904.3642018
https://lab-fmg.uva.nl/en
https://lab-fmg.uva.nl/en
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0675
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0675
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0675
https://doi.org/10.1093/eurjcn/zvad038
https://doi.org/10.1093/eurjcn/zvad038
https://www.cdc.gov/nchs/products/databriefs/db482.htm
https://www.cdc.gov/nchs/products/databriefs/db482.htm
https://doi.org/10.1109/JAS.2023.123618
https://doi.org/10.2196/48009
https://doi.org/10.2196/48009
https://www.jmir.org/2023/1/e48009
https://doi.org/10.1145/3613905.3650955
https://doi.org/10.1145/3613905.3650955
http://essay.utwente.nl/76357/
http://essay.utwente.nl/76357/
https://doi.org/10.1002/asi.10016
https://www.webmd.com/
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0720
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0720
https://doi.org/10.1145/3290607.3298811
https://doi.org/10.1145/3290607.3298811
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1145/1978942.1978963
http://arxiv.org/abs/2307.01135
https://arxiv.org/abs/2307.01135
https://arxiv.org/abs/2307.01135
https://doi.org/10.1073/pnas.2319112121
https://doi.org/10.1073/pnas.2319112121
https://www.pnas.org/doi/pdf/10.1073/pnas.2319112121.
https://www.pnas.org/doi/abs/10.1073/pnas.2319112121
http://refhub.elsevier.com/S1071-5819(25)00269-1/sbr0745

	Understanding trust toward human versus AI-generated health information through behavioral and physiological sensing
	1 Introduction
	2 Related work
	2.1 Trust in online health information seeking
	2.2 Source and label transparency in the age of LLMs
	2.3 Behavioral and physiological signals for understanding trust perception
	2.4 Synthesis and research gap

	3 Study 1: online survey
	3.1 Study methods
	3.1.1 Design
	3.1.2 Health information
	3.1.3 Measures
	3.1.4 Participants
	3.1.5 Procedure
	3.1.6 Data analysis

	3.2 Quantitative findings
	3.2.1 Descriptive statistics
	3.2.2 Participants gave higher trust to health information sourced from LLM than from human professionals
	3.2.3 Participants gave higher trust ratings to health information labeled as from human professionals compared to labeled as from AI
	3.2.4 The type of health information does not affect participants' trust perception in information
	3.2.5 Correlation analysis

	3.3 Qualitative findings
	3.3.1 Predisposition toward AI and humans influences trust
	3.3.2 Perceived source of knowledge influences trust
	3.3.3 The human touch builds greater trust than AI
	3.3.4 Presentation of information influences trust


	4 Study 2: laboratory study
	4.1 Study methods
	4.1.1 Design
	4.1.2 Stimuli and apparatus
	4.1.3 Self-reported measures
	4.1.4 Machine learning: setup and approach
	4.1.5 Participants
	4.1.6 Study procedure
	4.1.7 Data pre-processing

	4.2 Findings
	4.2.1 Descriptive statistics
	4.2.2 Analysis of self-reported trust
	4.2.3 Analysis of eye movement data
	4.2.4 Analysis of physiological signals
	4.2.5 Correlation analysis
	4.2.6 Predictions using behavioral and physiological sensing


	5 Discussion
	5.1 Users may prefer LLM-sourced health information, but an AI label lowers their trust
	5.2 Behavioral and physiological features can vary by health information source and label
	5.3 Considerations: toward trust-aware AI for health information seeking
	5.3.1 For UI designers of health information interfaces
	5.3.2 For developers of adaptive LLM-powered health information systems

	5.4 Limitations and future work

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References






