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Fast Assessment of Eulerian Trails in Graphs with
Applications

ALESSIO CONTE and ROBERTO GROSSI, University of Pisa, Pisa, Italy
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NADIA PISANTI, University of Pisa, Pisa, Italy

SOLON P. PISSIS, CWI, Amsterdam, The Netherlands and Vrije Universiteit, Amsterdam,
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Enumerating or counting combinatorial objects in graphs is a fundamental data mining task. We consider the
problem of assessing the number of Eulerian trails in directed graphs, which is formalized as follows: Given a
directed graph G = (V, E), with |V| = n nodes and |E| = m edges, and an integer z, assess whether the number
#ET(G) of Eulerian trails of G is at least z. This problem underlies many applications in domains ranging
from data privacy to computational biology, data compression, and transportation networks. Practitioners
currently address this problem by applying the famous BEST theorem, which, in fact, counts #ET (G) instead
of just assessing whether #ET (G) > z. Unfortunately, this solution takes O(n®) arithmetic operations, where
@ < 2.373 denotes the matrix multiplication exponent. Since in most real-world graphs, the number m of edges
is comparable to the number n of nodes, and z is moderate in practice, the algorithmic challenge is: Can we
solve the problem faster for certain values of m and z? We want to design a combinatorial algorithm for assessing
whether #ET(G) > z, which does not resort to the BEST theorem and has a predictably bounded cost as a
function of m and z. We address this challenge as follows. We first introduce a general algorithmic scheme for
assessing (and enumerating) Eulerian trails. We then introduce a novel tree data structure to reduce the number
of iterations in this general scheme. Finally, we complement the above with further combinatorial insight
leading to an algorithm with a worst-case bound of O (m - min{z, #£T(G)}) time. Our experiments using six
benchmark datasets with multi-million edges from different domains show that our implementations are up
to two orders of magnitude faster than the BEST theorem, perform much fewer than mz iterations and scale
near-linearly with m in most cases. Our experiments further show that our implementations bring substantial
efficiency benefits in a data privacy application which employs the BEST theorem for the assessment.
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1 Introduction

Eulerian trails (or Eulerian paths) were introduced by Euler in 1736: Given a multigraph G = (V, E),
an Eulerian trail traverses every edge in E exactly once, allowing for revisiting nodes in V. An
Eulerian circuit is an Eulerian trail that starts and ends on the same node in V. An example is shown
in the graph of Figure 1, where we indicate the edges as e;, e, . . ., es, and obtain one of the Eulerian
trails from node s to node t by traversing the edges in the following order: e;esegesezeseses; note
that other Eulerian trails exist in the graph (e.g., e;esesezeseseses).!

The perhaps most fundamental computational question related to Eulerian trails is whether we
can efficiently find one of them. Hierholzer’s paper ([1],[2,1B]) can be employed for both undirected
and directed graphs to obtain a linear-time algorithm. Another fundamental question is counting
Eulerian trails. For undirected graphs, this question is difficult to answer as it is #P-complete [3].
Instead, for directed graphs, the number of Eulerian trails can be computed in polynomial time
using the BEST theorem [4], named after de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte.
The BEST theorem is the only available tool to achieve this counting in an efficient and exact
manner.

We focus on the scenario where graphs are directed. We make the standard assumption that
every node is represented by a unique integer from [1,|V|] so that the node ids are printed
while traversing an Eulerian trail, producing what we call the node sequence of the trail. For
example, the Eulerian trail ejesegeseseseses in the graph of Figure 1 yields the node sequence:
1,2,3,4,1,2,3,1, 3. This sequence can be seen as a string over [1, |[V|]. As the same node sequence
can arise from two distinct Eulerian trails,” Bernardini et al. [5] call two trails node-distinct if their
node sequences are different and formalize the following assessment problem on directed (Eulerian)
multigraphs:

PrROBLEM 1 (EULERIAN TRAIL AsSESSMENT (ETA)). Given a directed multigraph G = (V, E), with
|V] = nnodes and |E| = m edges, two nodes s,t € V, and an integer z > 0, assess whether the
number #ET(G) of node-distinct Eulerian trails of G with source s and target ¢ is at least z.

In our example from Figure 1, we have that 4ET(G) = 6. However, as we will show in this
article, solving the ETA problem does not necessarily imply that we must count; i.e., compute #ET(G)
explicitly. Actually, we show that assessing is much more efficient in practice than exact counting.

IFor clarity, in the figures, we use different labels for the same edge when it has multiplicity more than 1.

Traditionally, two trails are distinct if their edge sequences are different. It is more challenging to consider node-distinct
Eulerian trails as they yield different node sequences (see Figure 1), whereas some Eulerian trails might correspond to the
same node sequence. Our results easily extend to edge-distinct Eulerian trails: split each multi-edge (u, v) of multiplicity h
by adding h middle nodes zi, ... ., zp, and edges (u, z;) and (z;, v), for all i. This increases the total graph size by O(m),
and the node-distinct Eulerian trails of this new graph are exactly the edge-distinct Eulerian trails of the original graph.
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S €
ee Node-distinct Eulerian trails Node sequences
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(3] (2

Fig. 1. A directed multigraph over the set of nodes [1,4] = {1, 2, 3,4}; its complete set of node-distinct
Eulerian trails starting at node s = 1 and ending at node ¢ = 3; and the corresponding set of node sequences.

1.1 Why Is ETA Useful?

The ETA problem is the core computational task in several string-processing applications [5-7]. In
Section 2, we describe concretely some applications: (A1) defending against reconstruction attacks;
and (A2) investigating genome complexity. In these applications, graphs are huge in size (i.e., n is
large) and exact counting is too slow due to the Q(n?) time bound of the BEST theorem [5, 6], as
we discuss in the next subsection. Since most real-world graphs are sparse, the number m of edges
is comparable to the number n of nodes, and since z is moderate in these applications, assessment
algorithms having a bounded cost as a function of m and z are highly desirable. In particular, a time
bound of O(mz) would be highly desirable for ETA. Further applications are: (A3) finding min-cost
trails; and (A4) compressing undirected graphs and networks. In these application domains, it is
not always possible to define “the” best solution, but there are several best solutions that should be
evaluated according to additional constraints (e.g., a cost function). As our ETA approach can as
well enumerate those solutions, it can be employed as a key component in these cases.

On a more general note, there are many other graph objects beyond Eulerian trails that may
need to be assessed (instead of being counted directly) or enumerated and for which ideas from
our approach may prove useful. Examples include s-t paths (i.e., paths from a given source to a
given target node) [8], k-hop constrained s-t simple paths [9], maximal cliques [10, 11], (maximal)
k-plexes [12, 13], temporal cycles [14], triangles [15], network motifs [16], and subgraphs related
to node centrality measures [17, 18]. In general, enumerating or counting subgraphs of a given
type, like triangles or cliques, has applications in social network analysis [19], link prediction and
recommendation [20], anomaly detection [21], spam filtering [22], and community discovery [23].

1.2 Why Is ETA Challenging?

The ETA problem can be solved in O (n®) arithmetic operations using matrix multiplication [5, 6],
where @ < 2.373 denotes the matrix multiplication exponent [24-26]. This is performed by first
counting the Eulerian trails exactly using the BEST theorem [27] (see Section 2) and then comparing
their number with z. The underlying assumption is that G is Eulerian, that is, the indegree equals
the outdegree in each node, possibly except for the source s and the target ¢ of the trail.

However, the O(n®) bound of the BEST theorem is large and in practice the computation is time
consuming (see Section 2). Thus, directly using the BEST theorem is unsatisfactory for large graphs.
Motivated by this, we address the following algorithmic challenge [5, Final Remarks]: design a
combinatorial algorithm to solve the ETA problem, which does not resort to the BEST theorem and
has a predictably bounded cost as a function of m and z; note that we do not need the exact value
of #ET(G) to provide an answer for the assessment.
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1.3 Our Techniques and Contributions

(1) Assessment Algorithm. Our main contribution is to introduce an approach that does not merely
employ the structure of the BEST theorem, but goes beyond that: we design an efficient algorithm
which directly provides an assessment for #ET(G) > z by looking at Eulerian trails, without
considering the different factors of Equation (1). The main idea consists of providing a lower bound
on #ET(G), based on the product of the lower bounds for the node-distinct trails of its strongly
connected components (SCCs). This lower bound is then progressively refined by improving
the contribution of any arbitrarily chosen component: the component is further decomposed
and its contribution updated according to structural properties of Eulerian graphs presented in
Section 3. Even though it is written in an iterative form, our method conceptually provides a
recursive enumeration approach whose calls enumerate the first z node-distinct Eulerian trails in
O(m? - min{z, #ET(G)}) time. The first presented algorithm, AssessET, follows this scheme in an
immediate way, and is described in Section 4.

(2) Improved Algorithm. Our second contribution is a practical improvement of AssessET, aimed
at avoiding repeated computation. Indeed, the data structure employed by algorithm AssessET is
a collection of tuples, whose elements are the SCCs of some subgraphs of G which are currently
contributing to the lower bound. Such tuples are overall different, but the same SCC can occur
in different tuples: two different considered subgraphs may have an SCC which is the same. By
using structural properties of Eulerian trails and their lower bounds, we devise a compact tree
data structure, which represents all tuples of AssessET at the same time. The central benefit of
such data structure is that it can avoid repetition of the SCCs common to multiple intermediate
subgraphs that are currently contributing to the lower bound. This in turn allows for a reduced
number of iterations, since no computation will now be performed on the same SCC twice. We
thus present algorithm TREEASSESSET in Section 5, resulting from employing our novel tree data
structure on the previous assessment scheme. This algorithm has the same theoretical running
time as AssSessET, but it has a better performance in practice, as we will show in our experimental
evaluation. An important characteristic of our approach is that it can be modified to enumerate
min{z, #£T(G)} Eulerian trails within the same complexity, as described in Sections 4.1 and 5.1.

(3) Further Improvements. Both of our proposed algorithms may require quadratic time per
Eulerian trail, because each conceptual recursive call might require O(m) time. To overcome this
drawback, in Section 6, we present two further improvements which can be applied to both our
algorithms. First, we enhance their practical performance with a chain-compression strategy, which
shortens long paths in the graph, to reduce the number of conceptual recursive calls. On the
theoretical side, we present a way to bring the time complexity of both algorithms down by using a
double numbering on the edges, which guarantees that every call generates at least two distinct calls.
This double numbering gives us insight on the interior connectivity structure of the graph; namely,
how SCCs change when we start removing edges, which is the source of the quadratic time. With
this double numbering, we manage to instantly retrieve edges that generate new trails, no longer
needing to iterate for O(m) unsuccessful steps. We thus slash the time complexity of AssessET by
a factor of m, yielding algorithm IMPROVEDASSESSET, which is time-optimal for z = O(1) or for
#ET(G) = O(1). We formalize this theoretical result as follows:

THEOREM 1. Given a directed multigraph G = (V,E), with |E| = m, and an integer z, assessing
#ET(G) > z can be done in O(m - min{z, #4ET(G)}) time using O(mz) space.

(4) Experimental Evaluation. The last contribution of our article is the experimental evaluation of
our assessment approach, detailed in Section 7. Since our main focus here is on engineering the
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assessment #ET(G) > z, we only provide implementations of AssEssET and TREEASSESSET (denoted
AF and AT, respectively), equipped with a chain-compression preprocessing strategy. Indeed, the
significantly more complex IMPROVEDASSESSET algorithm is very unlikely to be competitive in
practice: although it is designed, as explained above, to avoid the O(m) unsuccessful calls in every
call of the assessment, we observe that the unsuccessful calls are very few on average in real-world
datasets. We use our implementations to provide an extensive experimental evaluation using six real-
world datasets from different domains. As a baseline for comparison, we used the implementation
of the BEST theorem from [28] that relies, among others, on the highly optimized sparse LU
decomposition function of the open source Eigen library (v. 3.3.7) [29]. Our experimental results
show that both AF and AT: (1) are up to two orders of magnitude faster than the aforementioned
implementation of the BEST theorem and on average they are about one order of magnitude faster;
(2) perform much fewer than mz iterations in most cases, despite their worst-case bound that is
quadratic in m, and scale near-linearly with m in most cases; and (3) bring substantial efficiency
benefits in application A1 from Section 1.1, as they speed up the approach of Bernardini et al. [28]
by more than 5 times on average. Furthermore, our experiments show that, as expected, AT is
several times faster than AF, due to the design of the tree data structure.

Let us remark that a preliminary version of this article without Contribution (2), the practical
improvement in Contribution (3), and Contribution (4) appeared as [30].

2 Related Work and Applications

As discussed in Introduction, for counting Eulerian trails, the only available tool is the BEST
theorem [27], which we discuss below:

Let A = (ay,) be the adjacency matrix of G allowing both a,, > 1 (multi-edges) and a,,, > 0
(self-loops). Let r,, = d*(u) foru # ¢, r; =d*(t) + 1, where d*(u) denotes the outdegree of u, and
the edges are counted with multiplicity. We can apply the BEST theorem using one of its variants
for counting node-distinct trails in directed multigraphs [27]:

-1

#ET(G)=(detL)-(1_[(ru—l)!)- ]—[ (aw)!| . (1)

ueV (u,0)€E

where L = (1,,,) is the n X n matrix with L, = r, — ay, and l,, = —ay,.® The original BEST theorem
states that the number of Eulerian trails of a directed graph can be obtained by multiplying the
number of arborescences® rooted at any node of the graph (in our case, given by det L) by the number
of permutations of the edges outgoing from each node ([],cy (ry — 1)!). In the multigraph version
given in Equation (1), the formula is further divided by the number of permutations of multi-edges
(I'T(w0)eE @us!), in order to only count node-distinct trails. The problem thus reduces in computing
the LU decomposition of A using matrix multiplication and then from thereon compute det L.

However, directly applying the formula of Equation (1) is often too costly. The bottleneck is the
computation of det L, which can take several hours in typical instances, even with state-of-the-art
(sparse) matrix multiplication libraries and other tricks (see [5] for more details).

One may also naturally wonder whether the computation of det L in Equation (1) can be bypassed.
However, this is not the case. Specifically, in this equation, we can single out two factors: the
determinant det L and the ratio of factorials F = [,ey (ru = D!(I1(40)er duo!) ™' However, the
assessment based on Equation (1) cannot rely on the assumption that F > z (which would imply

3Note that L as defined in Equation (1) is not the Laplacian of graph G (which is always singular): r; is equal to d* (¢) + 1
instead of simply d* (¢) due to the specific problem formulation of [27], to which we refer the reader for more details.

4A directed graph is called an arborescence if, from a given node u known as the root node, there is exactly one elementary
path from u to every other node v.
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that #ET(G) > z), since we can have F < 1. As an example, consider a directed multi-cycle with n
nodes, uy, . . ., Uy, each connected to the next (and u, back to u;) with k multi-edges: we have only
one node-distinct Eulerian trail, so #ET(G) = 1, but there are k! arborescences, so det L = k"~ 1.In
particular, we have that F = k'(k;,—ln)m_l = k,,l_l < 1, for any choice of s = ¢. In addition, enumerating
arborescences [31, 32], progressively bounding det L to check whether det L > z/F, might be too
costly because the number of arborescences could be exponential in #ET(G), as in the example.

Last, it is possible to assess #ET (G) in O(mz) time by enumerating arborescences in a new graph
G’ = (V,E’), where E’ is the set of E (i.e., E’ is the set of edges obtained from E after neglecting
their multiplicities).5 For each listed arborescence, we obtain at least one Eulerian trail in G. For
enumerating the complete set A of arborescences in G’ one can use the classic algorithm by Gabow
and Myers that takes O(|E’| + |V| + |A||E’|) total time [31], with the idea that we can estimate
after how many steps the algorithm would terminate if #ET(G) was less than z, and give a positive
answer as soon as we reach this point rather than waiting for the end of the computation. The
problem of such an approach in practice is that one must know the exact constant c in the O(|A||E’|)
term to determine the exact number of elementary operations of the algorithm in the worst case,
in order to determine when exactly to terminate.

Since all the aforementioned approaches for assessing #ET (G) are unsatisfactory, in this article,
we embark on a fundamentally different approach that is not based on the BEST theorem or on
the enumeration of arborescences. Our approach takes O(m) = O(nk) time in our example from
above and can be generalized to more involved graphs.

In the following, we discuss the applications of our approach for ETA in some more details. We
begin by illustrating an application for defending against reconstruction attacks in strings, which
serves as a case study in our article.

(A1) Defending against Reconstruction Attacks. Textual information can be strictly confidential
[33, 34]; consider, for example, a long fragment of DNA. We would like on the one hand to enable
searching its contents for analysis purposes, but on the other hand to prevent its full reconstruction
due to privacy concerns. Bernardini et al. [28] proposed to de-assemble a string using the notion
of de Bruijn graph (dBG). Let S = S[1]S[2] ... S[|S|] be a string of length |S| over an alphabet
2. The order-d dBG Gs 4 of a string S is defined as follows: the set Vs 4 of nodes is the set of the
length-(d — 1) substrings of S; and there exists one edge in multiset Eg 4 from node u to node v for
every occurrence in S of the length-d substring equal to u[1] v = uv[d — 1] (i.e., the suffix of length
d — 2 of u equals the prefix of length d — 2 of v). The directed multigraph in Figure 2 is the dBG of
order d = 3 of S = abbaabbaba over ¥ = {a,b}; e.g., e; and e, denote that u[1] v = abb =uv[d — 1]
occurs twice in S with u = ab and v = bb (u[1] =aandv[d — 1] =b).

The key idea of Bernardini et al. [28] is that five distinct strings other than S have the same order-3
dBG. These six strings in total are in one-to-one correspondence with the 6 node-distinct Eulerian
trails of Gg 4. Bernardini et al. use the BEST theorem to compute the number #ET (G) of node-distinct
Eulerian trails of Gg 4 in order to evaluate the level of ambiguity introduced by de-assembling S in
fragments of length d: the more Eulerian trails, the more difficult it is for an attacker to uniquely
reconstruct S. In this context, with no further assumptions on S, the assessment #ET(G) > z
implies that an attacker has probability no more than % to infer the correct trail corresponding
to S. Bernardini et al. considered more powerful attack models as well, but again our assessment
problem is the core computational task for a defense. In fact, the approach of Bernardini et al. aims

SPersonal communication with Pawet Gawrychowski.

®Indeed, if the number of arborescences is less than, say, x, the algorithm would definitely terminate in O (x|E’|) time. If
we could determine the exact moment this time was exceeded, we would know that the number of arborescences is more
than x, without actually waiting for the algorithm to terminate, and immediately output YES in O(x|E’|) time.
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S (&
@@ Node-distinct Eulerian trails Distinct strings

€1€3€66E5e2646763 abbaabbaba
€1€3€7€9€4€46568 abbabbaaba
es €4 €1€3E7€3E6E5E2E4 abbabaabba
€8€6E5E1€3E7€2€4 abaabbabba
es €8€7€1€3E6E5E2€4 ababbaabba
€1€3E6E5E8E7€9€E, abbaababba
¢ (ba) (22)

Fig. 2. The directed de Bruijn multigraph Gs 4 of order d = 3 for string S = abbaabbaba over ¥ = {a, b}; its
complete set of node-distinct Eulerian trails starting at node s = ab and ending at node t = ba; and the
corresponding set of distinct stings.

to find the maximal d for which #ET(G) > z, which implies that it uses the BEST theorem a large
number of times with different candidate values for the maximal d.

In our experimental evaluation in Section 7, we took this application as a case study. Our ETA-
based algorithms substantially speed up the approach in [28], if they are used instead of the BEST
theorem. Importantly, our implementations bring substantial time savings, incurring no accuracy
loss for pattern matching queries on very long (i.e., up to length-d) substrings, and providing
privacy against string reconstruction (i.e., probability of reconstruction of no more than %)

Further applications are listed below.

(A2) Investigating Genome Complexity. Assessment of Eulerian trails applied to dBGs can find
interesting uses in bioinformatics as dBGs are a common tool to represent genome sequencing data
(cf. [35]). Therein, the (number of) node-distinct Eulerian trails between a given source and target
node correspond to (the number of) alternative sequences in between these nodes. In RNA-Seq
data, assessment of Eulerian trails between a pair of nodes corresponding to suitable exons is useful
for isoforms quantification [7]. In genome assembly (cf. [36]), assessment of Eulerian trails between
a pair of nodes is a useful task for understanding the genome’s repetitive structure, which is the
main obstacle for high-quality assemblies. Although currently, this assessment is performed by
counting the exact number of Eulerian trails via the BEST theorem [6], an assessment algorithm
could provide efficiency benefits in large-scale graphs.

(A3) Finding Min-Cost Trails. Consider a large road network, where nodes are junctions and edges
are roads. Further consider that a vehicle would like to begin from a starting point (source node),
pass from every road of the network once (make an Eulerian trail) for patrolling purposes, and end
at some other location (target node). In theory, the vehicle could choose any Eulerian trail of the
network. However, taking a specific road (edge) e at a specific order r induces a penalty that is not
fixed because, for example, the traffic depends on when a road of the network is traversed [37].
This can be modeled by a cost function c(e, ), which maps every edge e taken as the rth edge of an
Eulerian trail to a cost. The computational problem is: Given a directed multigraph G and a cost
function ¢, compute a min-cost Eulerian trail in G. This problem has been studied by Hannenhalli
et al. [38], who showed that the decision version of the problem is NP-complete even on graphs
with out-degree at most two. Ben-Dor et al. [39] showed that the problem is NP-complete on dBGs
as well. Given these negative results, one could resort to the enumeration of all Eulerian trails (if
they are not too many) or to the enumeration of some of them (using branch and bound), compute
their cost using function ¢, and choose a min-cost Eulerian trail among them. One could do this
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Node-distinct Eulerian trails
€1€3€6E5€2€4€7€8
€1€3€7€2€4€6€5€8
€1€3€7€8€E3E5€2€4
€8€6E5€1€3C7€2€,
€8€7€1€3€6E5€2€4
€1€3€6E5E8€C7€2€4

Fig. 3. A directed multigraph and its complete set of node-distinct Eulerian trails. Each trail can have a
different cost.

only if the number of the enumerated trails is reasonably small; interestingly, the problem can be
solved exactly in polynomial time when #ET(G) is small. Thus, an algorithm which first assesses
#ET(G) > z, for some integer z, could be applied as preprocessing to solve this challenging problem
for such instances. Moreover, as we show in this work, our assessment algorithm can easily be
extended to enumerate Eulerian trails within the same asymptotic time complexity.

The following table presents a cost function for the directed multigraph in Figure 3. For example
c(es, 2) = 7: taking edge e; as the second edge of an Fulerian trail has cost 7.

H r 1 2 3 4 5 6 7 8 H
es 6 8 5 2 3 7 71 3
e2 4 7 4 8 3 3 9 6
es 1 7 3 7 4 9 3 1
e 9 5 3 6 6 7 5 3
es 4 6 2 9 7 8 2 1
e 5 5 10 1 8 4 1 6
ez 2 2 3 6 2 10 6 5
es 7 4 5 7 2 1 5 3

The first Eulerian trail, e;esegesezeseses, has cost: 6 +7 + 10 + 9+ 3 + 7 + 6 + 3 = 51. Thus, by
enumerating all node-distinct Eulerian trails and calculating their cost, we can then select the
one with a minimum cost. In fact, the Eulerian trail with the minimum cost is the second one,
ejeseyezeseqeses, and its cost is 39. This optimal solution is shown in red color.

(A4) Compressing Undirected Graphs and Networks. Social networks are often large in size, and
their analysis can benefit from storing them in compressed format. The method presented in [40]
exploits Eulerian trails to provide a compressed graph format supporting efficient neighbor queries,
where the adjacency list of any given node is returned without decompressing the whole graph.
The basic idea for the linearization of the graph using Eulerian trails is the following. Suppose first
that the graph is Eulerian: any node-distinct Eulerian trail is a feasible linearization of the set of
adjacency lists. For example, in the graph of Figure 3, the Eulerian trail e;eseqesesesezes corresponds
to the node sequence Z = sxtysxtst. We observe that all edges are encoded in Z: given any node x,
its incoming neighbors in the graph are the nodes preceding x in Z = sxtysxtst, which correspond
to the incoming edges e; and e; of x, and its outgoing neighbors are the nodes succeeding x in
Z = sxtysxtst, which correspond to the outgoing edges e; and ey of x. (Hence, multiple edges
can be represented using Z). As a result, the adjacency list of x is obtained by retrieving all the
occurrences of x in Z, along with the predecessors and successors of x. Suppose that the graph is
not Eulerian: in [40-42] it is described how to augment a graph so that it becomes Eulerian with
the smallest number of added edges. If the graph is undirected, each edge can be seen as a pair
of directed edges, of opposite directions. Consequently, the aforementioned method shows that
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compressing a graph amounts to compressing its linearization Z (i.e., Eulerian trail). There are
several methods to compress Z so that we can efficiently retrieve the preceding and succeeding
elements in Z for any x (e.g., see the textbook [43]). Moreover, any two different Eulerian trails can
yield different sequences with different compression ratios. Hence, an enumeration of Eulerian
trails (i.e., graph linearizations) would lead to the best compression ratio within this method.

3 Structure and Properties of Directed Eulerian Graphs

Definitions and Notation. Consider a directed graph G = (V, E) with multi-edges (i.e., E is a multi-set)
and self-loops, and let |V| = n and |E| = m. A trail over G is a sequence of adjacent distinct edges.
Two trails are node-distinct if their node sequences are different. A graph is called Eulerian if it
has an Eulerian trail, i.e., a trail that traverses every edge exactly once. We consider node-distinct
Eulerian trails. The set of node-distinct Eulerian trails of G is denoted by ET(G) and its size is
denoted by #ET(G). We may omit the term “node-distinct” when it is clear from its context.

Given a node u € V, we define its outdegree (resp. indegree) as the number of edges of the form
(u,0) (resp. (v, u)), counting multiplicity and self-loops. We then denote by A(u) the difference
outdegree(u) — indegree(u). Furthermore, we define the set of out-neighbors of u as N*(u) =
{v € V| (u,0) € E}. Finally, we use the notation Nf(u) = N*(u) N C, when referring only to the
out-neighbors inside some subgraph C of G.

G is called strongly connected if there is a trail in each direction between each pair of the graph
nodes. An SCC of G is a strongly connected subgraph of G. G is called weakly connected if replacing
all of its edges by undirected edges produces a connected graph, i.e., there is a trail between every
pair of nodes. We recall the characterization of Eulerian graphs:

Remark 1. A directed graph G = (V, E) is Eulerian with source s and target t, where s, t € V, if it is
weakly connected and either (i) A(s) =1, A(t) = —1,and A(u) =0Vu € V \ {s,t}; or (ii) A(u) =0
Vu € V. In Case (i), G has an Eulerian trail from s to t. In Case (ii), G has an Eulerian circuit: an
Eulerian trail that starts and ends on s = t.

Structure and Properties. The SCCs of a directed Eulerian graph G induce a directed acyclic graph
Gscc. Considering this graph, we derive some useful properties, upon which we will heavily rely
to design our algorithms for assessing the number of node-distinct Eulerian trails. Let us start with
the following crucial lemma.

LEMMA 1. Let G be an Eulerian graph, with SCCs Cy, .. ., Cy, source s € Cy, and target t € Cy. The
corresponding Gscc is a chain graph of the form Cy — C; — ... — Cy, where the arrow between C;
and Ciy1 represents a single edge (1, si+1) € E, called bridging edge. Furthermore, each C; is Eulerian
with source s; and target t;, where sy = s, 1y =t.

Proor. We will first show that the graph forms a chain, and then that each component is Eulerian.

First, given a C; with i < k, we will show that there exists a unique single edge (t;,v) € E such
that ¢; € C; and v ¢ C;. In other words, there is a unique edge directed from a node of C; to a node
of a different SCC. By contradiction, let there be two: e = (t;,0) and e’ = (t/,0") with t;, ] € C;, not
necessarily different, and v,v” ¢ C;, again not necessarily different. We know by hypothesis that
there exists an Eulerian trail # in G from s to t. This trail will need to traverse both e, e’. Wlog, let
it traverse e first; then we must have a trail from v back to #] to be able to traverse e’. This implies v
is in the same SCC as t;, i.e., v € C;: contradiction. From now onwards we will refer to this ¢; as
the unique target or exit point of C;. Consider now Cg. In this case, we cannot have any outgoing
edges (u,v) with u € Ci, v ¢ Cg. This is because all the Eulerian trails of G end in ¢, thus any trail
u — v ~» ¢ would imply v € Cy, which is a contradiction. Let then t; = .
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The “opposite” condition on the incoming edges can be easily proved symmetrically. That is, for
each C; with i > 0 there exists a unique incoming edge (v,s;) € E, with s; € C; called the unique
source or entry point of C;, and v ¢ C;. As for Cy, we consider sy = s, and again we can prove that
there are no incoming edges whatsoever.

At this point we have proved that each SCC C; with i # 0, k has exactly one entry point and one
exit point; while Cy has one exit point and no entry, and Ci has one entry point and no exit. This
immediately implies that the graph has a chain shape: C; — C; — - -+ = Ck.

Consider now a given C;; we will show that it is an Eulerian graph with source s; and target t;,
as claimed. We consider all possible cases, recalling that (strong) connectivity is immediate, as we
are working on an SCC, and that A(v) =0 for allv € G\ {s, t}. In what follows, let A;(v) be A(v)
defined over the induced subgraph G[C;].

(1) s,t € C; = G =C; is Eulerian.
(2) s € C; =Cy, t ¢ Cy. Note that A(s) =1 and A(t) = —1. We know that in C; we have s; =s,
and we have a unique exit point #;. This leads us to two subcases:
—s=t; = Ni(s) =A(s) -1 =0,and A;(u) = A(u) =0 for allu € C; \ {s}. That is, we are in
case (ii) of Remark 1.
—s#t; = Ni(s) =A(s) =1, Ai(8) =A(t) =1 =—-1and A;(u) = A(u) =0 forallu € C;,
u # s, t;. We thus satisfy case (i) of Remark 1.
(3) Caset € C; =Ck, s ¢ C is symmetric to Item 2.
(4) s,t ¢ C; = consider the corresponding unique entry and exit points s;, t;. We show that these
are the source and target, looking at A; and considering two subcases:
—s; # t; = We have Ai(si) = A(Si) +1=1, Ai(ti) = A(ti) —1=-1and A,(u) = A(u) =0
forallu € C; \ {s;, t;}, i.e., case (i) of Remark 1.
—s; =t = Ni(s;) =Ai(t;) =A(s)+1—-1=0,and A;(u) =A(u) =0forallu € C; \ {s;, t;},
i.e., case (ii) of Remark 1.
O

It follows from Lemma 1 that every trail from s to ¢t must traverse all edges of C, ..., C; before
crossing the bridging edge (¢, s;+1). As a consequence, we obtain the following.

COROLLARY 1. Let G be an Eulerian graph with SCCs Cy, . ..,Ck. We have ET(G) = fzo ET(Cy),
where [ | denotes the cartesian product. Thus, the number of trails of G is the product of the number of
trails of its SCCs.

We can thus focus on an individual SCC or, equivalently, assume, wlog, that the Eulerian graph
is strongly connected. The following lemma forms the basis of our technique.

LEMMA 2. Let C be a strongly connected Eulerian graph with source s and target t. For every edge
(s, u), there is an Eulerian trail of C whose first two traversed nodes are s and u. Moreover, the residual
graph C \ (s, u) remains Eulerian with new source u.

Proor. The proof is by case analysis. In what follows, let e = (s,u) and C’ = C \ {e}, and let
A’ be the difference between the indegrees and outdegrees of nodes in C’. Note that the strong
connectivity of C immediately implies the connectivity of C’.

Suppose that s = t: we are in case (ii) of Remark 1. Then, A’(s) = A(s) — 1 = —1, while on the
other hand A’(u) = A(u) + 1 = 1. All other nodes v remain with A’(v) = 0. This proves that C’ falls
under case (i) of Remark 1.

Suppose that s # t: we are in case (i) of Remark 1. Here we consider three cases.

Case (a): u # t,s. We have A’(s) = A(s) =1 =0,A’(t) =A(t) =—-1and A'(u) = A(u) + 1 =1.
All other nodes stay unchanged with A’ = 0. This means that C’ falls under case (i) of the remark.
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Case (b): u =t. We have A’(s) = A(s) =1 =0,A(u) =A(u) +1 =0and A’ (v) = A(v) =0 for all
other v € V. Furthermore, C’ is connected. These two hypotheses directly imply that there is an
Eulerian circuit, thus the graph is actually strongly connected.

Case (c) u = s: That is, e is a self-loop. In this case, A’ (v) = A(v) for all v € V, and the graph
remains Eulerian. O

COROLLARY 2. Let C; be any SCC of an Eulerian graph with source s;. Then:

ET(C) = | (seu) ET(G\ (s1),

“ENE,- (si)

i.e., the Eulerian trails of C; are given by concatenating each possible start of the trail (s;, u) with all
its possible continuations (the trails in ET(C; \ (si,u))). Thus the number of trails of C; is the sum
of the number of trails of the subgraphs with edges (si,u) removed, for every u € N{. (s;) distinct
out-neighbor of s; in C;, with u as the new source.

Proor. This follows from Lemma 2 applied to the SCCs: we know that each distinct out-neighbor
of s; leads to at least one trail; furthermore, no two of these trails can be equal since they begin
with distinct edges. Lastly, all trails are accounted for, since we consider every trail starting from
every distinct out-neighbor of s;, and s; is the source of C;. ]

Note the subtle point in the statement of Corollary 2, where we use Ng,- (s;) instead of N*(s;): if
the latter two differ, it is because s; has an outgoing bridging edge, and this should be traversed
after all other edges in C;.

4 Assessment Algorithm for #ET(G)

We present AssessET, a simple but non-trivial algorithm for assessing the number of node-distinct
Eulerian trails on a given directed graph, which will be refined in Section 6. AssessET takes the
following input parameters: (i) a weakly connected Eulerian graph G = (V, E) with source s and
target t; (ii) a positive integer threshold z, and (iii) a function Ib(-), which outputs a lower bound
on the number of the node-distinct Eulerian trails in G. To achieve the desired complexity, Ib(-)
must be computable in O(m) time and [b(+) > 1 must hold.” We will prove the following result.

PROPOSITION 1. Given graph G, nodes s and t, integer z, and Ib(-), ASSESSET assesses #ET(G) > z
in O(m? - min{z, #ET(G)}) time using O(mz) space.

Main Idea. Let Cy, . ..,Cy be the set of SCCs of an Eulerian graph G as illustrated in Lemma 1.
AssEessET exploits Corollary 1, Lemma 2, and Corollary 2, to provide a lower bound on the number
of node-distinct Eulerian trails of graph G, denoted by lbgr(G), where Ibpr(G) < #ET(G). Initially,
we set lbgr(G) = H;C:o Ib(C;), based on the product of the lower bounds for the number of node-
distinct Eulerian trails of the SCCs of G by Corollary 1. Then [bgr(G) is progressively refined by
considering any arbitrarily chosen component, say C;, and in turn replacing its lower bound [b(C;)
with a new lower bound [bgr(C;) that exploits Lemma 2 and its Corollary 2. That is, we remove each
different outgoing edge from the source s; of C;, and after computing the Ib(-) function on all of the
resulting graphs, we sum these lower bounds to obtain Ibgr(C;), and update lbgr(G). We proceed
in this way until either Ibgr(G) > z, or we compute the actual number of trails: Ibgr(G) = #ET(G).

The requirements for the lower bound function are trivially satisfied by the constant function
Ib(-) = 1. However, we use a better lower bound given by Lemma 3.

7Observe that, when G has an Eulerian circuit, any node can be a source, and the choice of source can change the number
of node-distinct Eulerian circuits of G. We assume every graph generated keeps track of the correct source.
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LEMMA 3. For any Eulerian graph G, the function:

BG) =1+ > (IN5@I-2). (2)

0eV(G):|Nk (0)]23
is a lower bound for the number #ET(G) of node-distinct Eulerian trails of G.

ProoF. Let us consider T € ET(G), and v € V(G) with k > 3 distinct out-neighbors. Consider
the prefix T’ of T up to the first edge reaching node v, and let G’ = G \ T’ (i.e., G’ is the graph
obtained from G after removing the subgraph T”). G’ is Eulerian with source v, and each S € ET(G")
contributes to creating a distinct T’S € ET(G). Of the k out-neighbors of v, one was the continuation
of T. As for the others, at most one can be a bridging edge, with the other endpoint belonging to
a different SCC of G’. This is because of the chain structure of the SCCs given in Lemma 1. The
remaining k — 2 neighbors, by Lemma 2, correspond to distinct Eulerian trails of G’. These trails,
when appended to T’, generate distinct Eulerian trails of G, all different from T.

Repeating the above considerations for every node v with [N (v)| > 3, and accounting for the
trail T we were basing the reasoning on, we obtain:

#ET(G) > 1 + Z (ING(@)] = 2).

0eV(G):INE (0)]23

]

Function CompuTESCC. Our algorithm relies on a function CompuTESCC(G), which computes
the SCCs of a given input graph G. This function only outputs the non-trivial components (i.e.,
comprised of multiple nodes), and it requires O(m) time to achieve this (specifically, we use [44]).

Frontier Data Structure. In order to efficiently explore the different SCCs as discussed above, we
introduce the Frontier Data Structure, denoted by ¥ = {fi, ..., fi7}, representing the frontier of
the recursive tree we are implicitly constructing when traversing a component. At any moment of
the computation, an element f; € ¥ is a tuple (Cj V.. CJ } where Cy, .. ., Ch, are the non-trivial

SCCs of some Eulerian subgraph G; C G. A component 1s considered trivial if it is comprised of
a single node. A trivial component is omitted because it contributes to the product in Equation
(3) below by a factor of one. Different G;’s are obtained from G by removing different edges that
are outgoing from the source of a component, as per Lemma 2; thus G; differs from any other
G; by at least one removed edge. In this way, each element of the frontier represents at least one
node-distinct Eulerian trail of G. Furthermore, our data structure # retains an important invariant:
at any moment, the elements of ¥ are the SCC decompositions of the subgraphs which realize the
current bound. That is,

|71 |F] hj
Ibgr(G) = Y Iber(f) = Y. [ [ 1b(C). 3)
= j=1 i=0
Each component f;[i] = C/, J with source s] J and target t. is represented in f € F as a tuple of the

form (V[CJ] E[CJ] sl, i lb(C])) In what follows we consider ¥ implemented as a stack: both
removing and inserting elements requires O(1) time with poP and PUSH operations. Performing
these operations also modifies the size of ¥, which is accounted for. We can thus answer whether
the stack is empty in O(1) time.

Algorithm AssessET. The algorithm maintains a running bound [bgr, induced by the components
currently forming the elements of the stack, according to Equation (3), where [bgr is the current
value of Ibpr(G). We proceed as follows (see also Algorithm 1):
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Algorithm 1: AssessET
1: procedure AssessET(G = (V,E), z = O(poly(|E|), Ib(-))

2: Co, .. .,Cr « CoMPUTESCC(G) > Only considers non-trivial SCCs
32 feA(Co,...,Ck)
4 if f is empty then lbpr < 1
5: else Stack.pusH(f) > Initialization
6: Ibgr — nfzo Ib(Cj)
7 while lbgr < z do
8 if STACK ISEMPTY() then Output NO
9: f < Stack.pop()
10: lbgr — by — lbgr (f) > bgr () = T} (FLi])
11: Choose any i; let C; = f[i] and s; be its source > f[i] is the i-th SCC of f
12: Remove C; from f
13: forallu e Néi(si) do
14: C « CoMpPUTESCC(C; \ (si,u))
15: if f - C is not empty then > f - C: f with each SCC of C appended
16: Stack.pusH(f - C)
17: Ibpr « Ibgr + lbpT (f - C)
18: else lbgr « lbpr +1

19: Output YES

(1) Compute the (non-trivial) SCCs of graph G. If there is none, we only have one trail, and
Ibgr = 1. Otherwise, we initialize the stack with the tuple (Cy, ..., Ck) of these SCCs, and
also initialize the bound accordingly setting lbgr < H?:o Ib(Cj).

(2) While Ibgr < z, we perform the following:

(a) If the stack is empty, we output NO. Since non-trivial components are never added into
the stack, the stack is empty if and only if lbgr = #ET(G) and lbgr < z.
(b) Otherwise, we pop an element f from the stack, and remove its contribution from the
current bound: lbgr «— Ibgr — lbpr(f), where lber(f) = [T Ib(f[i]).
(c) We pick an arbitrary component C; = f[i] of tuple f, and let s; be its source. We remove
the component from f.
(d) For all distinct out-neighbors u € Ngi (si):
(i) We compute the SCCs C of C; with edge (s;, u) removed.
(ii) If f with the added new components C (i.e., f - C) is nonempty,® we add it into the
stack and increase the running bound accordingly as lbgr < lbgr + lbgr(f - C). If
f - C is empty, it corresponds to a single Eulerian trail, so we increase the bound lbgr
by one.
(3) If we exit from the while loop in Item 2, then Ibgr > z and we output YES.

The correctness of AssessET follows from Corollary 1, Lemma 2, and Corollary 3. With time and
space complexity of AssessET, we complete the proof of Proposition 1.

Complexity Analysis. We aim at showing that growing STACK to size S takes O(m?*S) time.” As
Ib(-) > 1 for each element on STACK, and since each tuple represents node-distinct Eulerian trails,
this certifies #ET(G) > S. We thus stop when S = min{z, #ET(G)} after O(m?S) time. Let us stress
that a good Ib(-) function can help us stop the algorithm even when S is significantly smaller than
z. In fact, we experimentally show that this is the case with the [b function in Equation (2) we used.

8The tuple is nonempty if it contains at least one element. Since trivial SCCs are omitted from the tuples, this is equivalent
to saying that the corresponding graph has at least one non-trivial SCC.
9This includes the case where we implicitly represent an empty tuple by increasing the bound b7 (Line 18).
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Let us remember that each pPUsH and Pop operation on STACK requires O(1) time, and that our
Ib(+) function can always be computed in time linear in m. Finally, remember that also CompuTESCC
requires O(m) time.

We are now ready for a detailed analysis. By the discussion above, every line up to Line 6 requires
O(m) time. The while loop in Line 7 iterates until our bound Ibgr reaches z, and every operation
up to Line 13 takes either O(1) or O(m) time. Once we get into the for loop in Line 13, we go over
all (distinct) out-neighbors of node s;. We apply ComPUTESCC to the current component with the
chosen edge removed, which takes O(m) time. Then we perform another set of O(1)- or O(m)-time
operations, until we exit the loops. Thus, the for loop of Line 13 requires O (m - |Ngi (s;)|) time, and
generates |Ngi (si)| new elements, meaning that the size of STACK increases by |Ngi (si))| = 1 (as we
popped one).

Whenever |Na- (s;)| > 1, we are increasing the size of STACK, paying O(m) time for each new
element. However, if |Ngi (si)] = 1, we have popped f, and spent O(m) time to put back a single
element f” on STACK, without increasing its size. In this case, we remark that f” corresponds to f
minus at least one edge ((s;, #) in Line 14). Thus, an element containing h edges may be processed
in this way, which takes O (m) time and does not increase the size of STACK, only O(h) times. In
turn, since h < m, the total time arising from this bad case on a STack with S elements is O(m?5),
which implies our claimed bound.

As for the space complexity, our frontier data structure, represented by STACK, is comprised of
elements of size O(m) each. Since each element corresponds to at least one node-distinct Eulerian
trail, we never have more than z elements stored. Thus, STACK requires O (mz) space, and Proposition
1is proved.

We finally remark that this complexity is tight for this algorithm: when Ib(-) always returns
1, the contribution of each tuple is exactly 1, as it is a product of components whose bound is 1.
Therefore, the lower bound corresponds to the number of tuples generated so far (including trivial
ones omitted from the data structure), so AssessET needs to generate exactly z tuples. As stated in
the analysis above, this requires O(m?z) time.

4.1 Enumeration

While the algorithm focuses on deciding whether there are at least z trails, it is relevant to show
how it can easily keep track of such trails and explicitly list them. Looking at the way the algo-
rithm processes tuples of SCCs, we simply need to preserve the sources in these: when e.g., C;
is processed in the example in Figure 4, this corresponds to generating 3 branches, all of which
traversed an edge outgoing from the source s;. We can thus keep track of s; by turning (..., Cj,...)
into (...,s,C},...)(...,s,C?,...)(...,s,C},...). In this way, whenever a tuple has been completely
processed (i.e., all its elements correspond to single nodes), the tuple itself will be the node-sequence
of the corresponding Eulerian trail; as for tuples still containing SCCs, it is sufficient to replace
each one with one arbitrary Eulerian trail of the SCC.

5 Improved Tree-Based Data Structure

In this section, we will present some practical improvements of algorithm AssessET. Specifically,

we present a modified and improved version of AssessET, called TREEAssESSET, with the same

worst-case running time, but with a better performance in practice, as we will see in Section 7.
The idea behind TREEASSESSET is to represent the bound formula (copied from Equation (3)):

|71 7] By ‘
br(G) = ) Iber(f;) = > [ | (),
j=1 j=1 i=0
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f=(C1,...,Ci-1,Ci,Ciy1,...,Ck)

f={(C1,...,Ci-1,C},Cis1,...,Ci)

Fig. 4. Left: decomposition of the Eulerian trail of an SCC C; according to the distinct neighbors of its source
s; (as per Lemma 2), where each C/ is strongly connected and has source s;. Right: corresponding effect during
AssessET in an element of the frontier f € F.

®r ®r
Cy e G G Ciy1 o G — G o G @ Ciy1 - Ck
N
ci

c3

i
Fig. 5. Left: Initialization of the tree 7gr. Right: After one step of TREEASSESSET, corresponding to the

decomposition shown in Figure 4. The tree node for C; is replaced with a @ node, which has the three new
components as children. The lower bound is Ibgr = Iby(®,) = (Ib(C}) + Ib(CZ) + Ib(C?)) X [14; Ib(C)).

in a tree-like structure, which we will denote 7¢r.

The tree 7gr will represent the bound in a way akin to a parse tree. Indeed, internal nodes will
be of one of two types, ® or @, respectively corresponding to product and sum operations. The leaf
nodes of the tree will be in a 1:1 correspondence with the set of components {Clj lj=1..,|F;i=
0,...,h;} at some moment of the computation of AssessET. Each node U of the tree will have an
assigned bound value [b4(U), which expresses the contribution of its rooted subtree to the global
running bound [bgr, and is defined recursively as follows:

—If node U is a leaf, then it corresponds to some component Cl] Then, Ib4-(U) = lb(C{).

—If node U is an internal node of type ® with children V;, ..., Vg, then [b#(U) = Ibg (V) X
b7 (Vz) X -+ - X Ibg (V).

—If node U is an internal node of type @ with children Vi,. .., Vi, then lb#(U) = Ibqe(V7) +
by (V2) + -+ + by (V).

Along the computation, we wish to preserve a tree structure such that the lbgr value for the root
of tree Tgr is always equal to the current running bound Ilbgr (Equation (3)).

The Algorithm. In AssessET, the frontier data structure implicitly represents the current frontier of
the binary partition procedure. In algorithm TREEASSESSET the tree 7gr will substitute the frontier
data structure as follows:

(1) Let Cy,...,Cy be the SCCs of graph G. We start with Tgr equal to a single ® node, the
root ®,, with a (leaf) child for each C; (see Figure 5, left). This is equivalent to initializing
F ={(C1,...,Cx)}. By definition, lbgr = Ibs(®,) = Hlle Ib(C;) is initialized correctly.

(2) Similarly, every time we compute the SCCs By, ..., By, of a (leaf) component C, we replace
the node for C with a node of type ®, with By, ..., By as children. Note that By, ..., By have
now become leaves of the tree. This is implicitly handled in AssessET, as lbgr(f) for f €
is defined as the product of the bound of the single components of f.
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(3) Recall that AssessET considers an arbitrary component C; of one of the tuples f = (Cy,. ..,
Ch,) and performs the following: it goes over all neighbors u of the source s; of C; (Line 13
and considers the tuples f;, obtained from f by substituting C; with the SCCs resulting from
removing edge (s;, u) (Line 16). The contribution of f to the global bound will be replaced
by the sum of the contributions of all such f,s. This structure will be represented in the
tree version using @ nodes: we will pick one leaf of 7gr (corresponding to an SCC of some
instance), and we will substitute it with a @ node, with a child for each sub-instance arising
when traversing different neighbors of the source. Note that such children can in turn become
® nodes, if they are not strongly connected themselves. Figure 5 shows an example of this,
corresponding to the step of AssessET given in Figure 4.

Remark 2. Contrary to the components in the frontier data structure, the leaves of tree 7g7 all
correspond to different components. Indeed, they start as distinct SCCs of the original graph. Then,
every time we replace a leaf L with a subtree, the newly created leaves are all disjoint subgraphs
of L.

Instead, when using the frontier data structure at any one step of the algorithm, we redundantly
add to the frontier one new vector f, for each neighbor u of the source of the chosen C;. In this
scenario, the different vectors f;, all contain the SCCs different from C; (Cy,...,Ci—1, Cit1, - - .,Chf)
as they were in f; they only differ in what they replaced component C; with. Therefore, in the
frontier data structure, the same component C; may appear as a component in several f € . This
allows us to avoid repeated computation, as the same component is never processed more than
once, reducing the running time in practice (see Section 7).

The pseudocode for the modified algorithm TREEASSESSET is shown in Algorithm 2. In the algo-
rithm, we substitute ¥ with 7gr, proceeding as described above. Specifically, the tree is initialized
as ® node, with the SCCs of the original graph G as children, and only leaves (Line 3). This mirrors
the initialization of the frontier # as the tuple of the SCCs. At each step, we pick a leaf L of 7z,
and we expand the corresponding component. This has the effect of replacing L with a @ node
(Line 11), with a child for each neighbor u of the source of L. Each of these children might also
further become ® nodes, if their SCCs have become non-trivial (Lines 19-26). In this case, a new
leaf tree node is created for each different SCC, associated with the corresponding bound (Lines
21-25). On the other hand, if one of the children has components that are all trivial, it becomes a
trivial leaf (Lines 15-17). In any case, the correct contribution is added to [bs(@y ), at Lines 26 and
17, respectively. For simplicity, we keep a list £ of non-trivial leaves, from which we extract the
next leaf to expand at Line 9.

Remark 3. To ensure the correctness of the bound update and that no leaf is of type ® or @, when
function ComPUTESCC returns all trivial components, we instead create a dummy trivial leaf with
Ibgr = 1 (Line 16). This leaf is not added to the list £ of valid leaves.

Correctness. We prove correctness by showing that performing one step of TREEASSESSET is
equivalent to performing several steps of AssEssET at once. First, note that the tree is initialized as
a root ® node, with the SCCs of the original graph Cy, ..., Cy as children. As mentioned before,
this is equivalent to the initialization of the frontier as ¥ = {(Cy, ..., C)}.

When performing a step of TREEASSESSET for some chosen component C;, we take the corre-
sponding leaf, and substitute it with a @ node, splitting over the distinct neighbors of the source.
Since component C; may appear in several tuples of # (see Remark 2), this step is actually equiva-
lent to performing that same expansion step in AssessET for all tuples f € ¥ which contain C;
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Algorithm 2: TREEASSESSET

1: procedure TREEASSESSET(G = (V, E), z = O(poly(|E|), Ib(-))
..... Cy < ComPUTESCC(G)

3 Initialize 7T as a ® root node ®,-, with children Cy, ..., Cr
4 Initialize list £ with non-trivial C;s

5: if L is empty then lbpr =1

6 else Ibgr = [15, 16(C;)
7
8
9

[o+]
&

while lbgr < z do
if £ is empty then Output NO
: Pick an element L from L, let sy, be its source
10: oldbound = Ibs(L)

11: Substitute node for L in g1 with a ® node, denoted &

12: Intialize Ibg-(®1) =0

13: forallu € N{(s.) do

14: C < CompUuTESCC(L \ (sr,u))

15: if C is empty then > All components are trivial
16: Add a trivial leaf with by = 1 as a child of &

17: Ibg(&r) = lbg(®r) +1

18: else

19: Create a new node ®¢ of type ® as a child of &,

20: by (®¢c) =1

21: forall C € C do

22: Add C as a leaf child of ®¢c with Ibg-(C) =1b(C)

23: Let sc, tc source and target of C

24: Add C tolist £

25: Ibg(®c) = Ibr(®c) % Ib(C)

26: Iby(@®r) = by (®L) + by (Q¢) > Add contribution to &
27: UppATETREEBOUND(0ldBound, Ibq- (L), parent(®r))

28: Ibgr = lbg-(®,)

29: Output YES

as a component, simultaneously. Consequently, by setting lbgr = lbs(®,) after one such step, we
obtain the same running lower bound as after the corresponding multiple steps in AssessET.

Complexity. We have seen how one step of TREEASSESSET corresponds to performing several
simultaneous steps of AssessET, ensuring correctness of the algorithm. On the other hand, in this
new framework updating the running global bound Ibgris no longer constant-time. We show how,
when we substitute a leaf with a subtree, we can propagate the bound update towards the root in a
procedure called UPDATETREEBOUND that takes time proportional to the depth of the updated leaf
(see Algorithm 3).

More specifically, the function takes as input a non-leaf node © of 7g, and two values, oldBound
and newBound. Let V4, . . ., Vi be the children of ©; the function updates the /b4 value of ® assuming
that one of its children (wlog V;) had its Ibg value changed from oldBound to newBound. It does
so recursively:

—If © is of type ®, then by definition [b7(®) = lbg(Vy) X Ibq(V3) X ... X Ibq(Vy). Therefore, if
Ib4-(V1) changed from oldBound to newBound, then [b4(©®) must change from oldBound X
(V) X. .. xXIbg (Vi) to newBound X1bg (V) X. . . xX1bq (V). Equivalently, [b4(®) is updated
to b5 (©®)/oldBound X newBound (Line 4).

—If © is of type @, then Ib7(©) = Ibe(V1) + by (V2) + ... + Ibg(Vk), and consequently it must
change from oldBound + lbg(V;) + ... + Ibq (Vi) to newBound + lby(V2) + ... + lbg (V).
Therefore, [bq(©) becomes [bs(©) — oldBound + newBound (Line 7).
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Algorithm 3: UpDATETREEBOUND

1: procedure UpDATETREEBOUND(0l/dBound, newBound, ®)

2 oldg = 1bg(©)

3 if O is of type ® then

4: Ibq(©) = Ibg(®)/oldbound X newbound

5 if © is the root ®, then return

6 else > O is necessarily of type @, and cannot be root
7

Ibq(©) = Ibg(®) — oldbound + newbound
UpDATETREEBOUND(0ldg, Ibg(©), parent (©®))

8: return

In any of the two cases, if we are not at the root, the function is recursively called on the parent of
node O, passing both the old and new value of [b4(®) (Line 7).

The levels of the tree alternate nodes of type ® and of type @, and each @ step requires the loss of
an edge. Thus, the depth of a leaf is bounded by 2|E|. Overall, this yields the same total asymptotic
time complexity of AssessET, as the cost of each step is still O(|E|), and, at the worst case, we
perform the same exact computation.

As for the space complexity of TREEASSESSET, in the worst case it is the same as AssessET. First,
note that, when creating ® nodes, the same space is retained as before: indeed, a component is
replaced with several ones, of the same total size. Consider now @ nodes. On the other hand, every
time a ® node is created for some component C, we substitute component C with x < |V| new
components, each of size O(|E(C)|) € O(|E|), and since each child C” has [b(C’) > 1, the & node
will contribute for at least x trails, i.e., in the worst case we pay an additional O(|E(C)|) space for
each new trail (if a @ node has only one child, and thus the bound does not increase, then the space
remains the same). Therefore, in the worst case, the algorithm takes up O(|E|) space for each of
the trails found, which are at most z, for a total space usage of O(|E| z).

We have thus arrived at the following result.

PRroPosSITION 2. Given graph G, nodes s and t, integer z, and Ib(+), TREEASSESSET assesses #ET (G) >
z in O(m? - min{z, #ET(G)}) time using O(mz) space.

5.1 Enumeration

As above, this algorithm is easily adapted for explicit enumeration of the solutions: whenever
traversing a node v of the graph, we can save it in the ® node generated. Whenever a leaf / of the
tree is just a single node or a trivial SCC, we can then reconstruct the corresponding Eulerian trail
from its root-to-leaf path, starting from the root: each @ node corresponds to alternative choices, so
we add the stored graph node and only consider the prosecution of the root-to-leaf path leading to
I; on the other hand, the children of ® nodes represent a sequence of SCCs, so we need to consider
all of them (in the same order given by the decomposition algorithm). As above, leaves which
contain a non-trivial SCC can be replaced by an arbitrary Eulerian trail of said SCC. Finally, observe
that due to ® nodes we may visit branches that do lead to [, and we may there encounter @ nodes:
in this case, it is sufficient to follow a single arbitrary child to obtain a valid trail.

The following section concerns some complexity improvements of the algorithms based on
considering several nodes at once: observe how the enumeration strategy remains the same, and it
is simply necessary to store the compressed sequences rather than a single node.

6 Practical and Theoretical Improvements

In this section, we showcase two improvements that can be applied to both algorithms AssessET
and TREEASSESSET. The first improvement, described in Section 6.1, is a practical pre-processing
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O=0=C0ORN0O==—0

Fig. 6. Compression of chain node v.

step, which is also implemented in the code used for the experiments of Section 7. Section 6.2 instead
presents a theoretical improvement which allows to reach the complexity bounds of Theorem 8,
shaving an O(m) factor from the theoretical complexity of the algorithms.

6.1 A Practical Improvement: Chain Compression

Our first improvement is a pre-processing step aimed at reducing the number of iterations of our
algorithms. We do this by compressing chain nodes: a node v is a chain node if it has exactly one
in-neighbor and one out-neighbor, that is, [N~ (v)| = [N*(v)| = 1. Reducing the number of chain
nodes immediately reduces the number of iterations of our algorithms: indeed, when considering a
chain node as source, both of our algorithms would perform an iteration without incrementing
the global lower bound Ibgr (see the complexity analysis at the end of Section 4). Note that chain
nodes can have high degree, it is the number of neighbors that is fixed to one. Still, if v is a chain
node with N~ (v) = {u} and N*(v) = {w} then the multiplicities of (4, v) and of (v, w) are equal
since the graph is Eulerian.

In what follows, let v be a chain node of a graph G, with N~ (v) = {u} and N*(v) = {w}. We say
that we compress chain node v when we perform the following operations to graph G (see Figure 6):

—Remove node v and all its incident edges from the graph
— Add m copies of edge (u, w) to the graph, where m was the multiplicity of (u, v).

To ensure that we do not change the number of Eulerian trails during compression of chain nodes,
we need the following remark:

Remark 4. If u is also a chain node, then the number of node-distinct Eulerian trails of the graph
does not change during the compression of v.

Indeed, when u is a chain node as well, any Eulerian trail reaching u will be forced to go to node
w after passing through v. Note that this is not necessarily true if u is not a chain node; for instance,
consider the case where w was already a neighbor of u in G: w € N (u). In this case, there are
two node-distinct choices for an Eulerian trail passing through u: going to v then w, or directly to
w. After performing chain compression for node v, the only choice becomes going directly to w,
losing thus some node-distinct trails in the process.

Our pre-processing procedure now follows naturally: we remove all chain nodes whose in-
neighbor is a chain node as well. We do this by considering one node v at a time and checking
whether (i) v is a chain node and (ii) its only in-neighbor is a chain node. If both conditions hold,
we perform chain compression for v. Such procedure runs in linear time in the size of the graph,
since every node is considered exactly once, and all operations take O(1) time.

6.2 A Theoretical Improvement: Branching Sources

We may think of our algorithms AssessET and TREEASSESSET as a recursive computation (handled
explicitly with pop/push on a stack for the former, and with the list £ in the latter) having the
drawback that it makes O(mz) recursive calls. To try and speed up the process, one could resort to
existing decremental SCC algorithms [45]. However, these tend to add (poly)logarithmic factors,
and do not immediately yield improvements unless further amortization is suitably designed.
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Fig. 7. This graph has a single node-distinct Eulerian trail from s to itself, even if all nodes except for s and d
are branching.

We use a different approach, reducing the number of calls to O(z) by guaranteeing that each
call generates at least two further calls or immediately halts when one Eulerian trail is found. In
this section, we show how to attain this goal with a theoretically efficient combinatorial procedure.

6.2.1 Introducing Function BRANCHINGSOURCE. Let C; be the SCC chosen for a given step of our
algorithms, and let s; be its source. We call a node u € C; branching if it has at least two distinct
out-neighbors in C;, that is, |Ngi (u)| = 2. Thus, if s; is branching (i.e., has at least two out-neighbors
in C;), we have at least two calls by Lemma 2. The issue comes when s; has just one out-neighbor,
as illustrated in Figure 7: some of the remaining nodes could be branching but, unfortunately, only
one node-distinct Eulerian trail exists. Thus, the existence of branching nodes when the source s; is
not branching does not guarantee that we attain our goal.

One first solution comes to mind, as it is exploited in our lower bound [b(-) of Equation (2).
Consider a trail T € ET(C;), which is nonempty as C; is Eulerian: a node u gives rise to at least
|Na_ (u)| — 2 further Eulerian trails by Lemma 2 as, when u becomes a source for the first time, one
out-neighbor of u is part of T and at most one out-neighbor of u leads to a bridging edge; thus the
remaining |Ngi (1)| — 2 out-neighbors can be traversed in any order by so many other Eulerian
trails. While this helps for |Ngi (u)| = 3, it is not so useful in the situation illustrated in Figure 7,
where all branching nodes have |Na_ (w)] = 2.

Main Idea. A better solution is obtained by introducing a function BRANCHINGSOURCE to be applied
to any tuple f of SCCs from the frontier data structure ¥ of AssessET, or to any SCC from the list
L of TREEASSESSET. If any of these SCCs has a branching source, then BRANCHINGSOURCE returns
f itself. Otherwise, it examines each SCC C in f: if #ET(C) = 1, it removes C from f as it is trivial;
otherwise, it finds the longest common prefix P of all trails in ET(C), and computes the SCCs of C\ P,
which take the place of C in f. Among these SCCs, one is guaranteed to have a branching source,
so BRANCHINGSOURCE returns f updated in this way. Note that only trivial SCCs are removed by
BRANCHINGSOURCE, and hence the number of Eulerian trails cannot change. If f is empty, then we
have a single Eulerian trail as there is no choice. BRANCHINGSOURCE can be implemented in O (m?)
time as it simulates what our algorithms do until a branching source is found. The challenge is to
implement it in O(m) time. Armed with that, we can modify both AssessET and TREEASSESSET to
get their improved versions IMPROVEDASSESSET and IMPROVEDTREEASSESSET, where we guarantee
in O(m) time that the source s; is always branching. The modification is just a few lines, once
BRANCHINGSOURCE is available, so we do not provide a detailed description of the pseudocode.

6.2.2 Linear-Time Computation of BRANCHINGSOURCE. Suppose that tuple f in the frontier data
structure F contains only SCCs with non-branching sources (otherwise, BRANCHINGSOURCE returns
f unchanged). Consider any SCC C in the tuple f. The main idea is to fix any trail T € ET(C),
which can be found in O(|E(C)|) time, and traverse T asking at each node u whether there is an
alternative trail T’ branching at u.

Swap Edges. Let us start with the following definition.

Definition 6.1. Given an Eulerian trail T of an SCC C, let T,, be the prefix of T from its source s to
the first time u is met and (u, v) be the next edge traversed by T. An edge (u,0") in C is a swap edge
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if T, - (u,v") is prefix of another Eulerian trail T # T and v’ # v. We say that u admits a swap edge
and T,, = T}, is the longest common prefix of T and T".

The discovery of swap edges in C is key to BRANCHINGSOURCE: although different Eulerian trails
of C may give rise to different swap edges in C, these trails all share P, so the node u at the end of
P can be identified by T,, (Definition 6.1), for any trail T € ET(C).

LEMMA 4. Suppose that all swap edges are known in an SCC C of f for any given trail T € ET(C).
Then (i) #ET(C) = 1 if and only if there are no swap edges in C; moreover, (ii) if #ET(C) > 1, let u be
the first node that is met traversing T and that admits a swap edge. Then P = T,, is the longest common
prefix of all the trails in ET(C).

ProoF. Claim (i) is immediate. As for Claim (ii), we observe that, since P is common to all the
trails in ET(C), any trail suffices and thus we choose T to find node u: the first met node which
admits a swap edge cannot be found in T,, earlier than u (i.e., P is shorter), as otherwise T;, would
be shorter too. That node cannot be found later than u in the trail T (i.e., P is longer), as there is
already an alternative trail at u. So, it must be u, and T,, = P. O

Using Swap Edges in BRANCHINGSOURCE. Based on Lemma 4, BRANCHINGSOURCE examines each
Cef: it tests whether C is trivial (#ET (C) = 1), or it finds the longest common prefix P = T,, of all
the trails. If all SCCs are trivial, it returns an empty f. Otherwise, it deletes from f the trivial SCCs
found so far, and for the current non-trivial SCC C, it computes the set C =CompuTESCC (C \ T,)
of SCCs. Note that u becomes the source of an SCC in C and u is branching as it admits a swap
edge (u,v’), along with (u, ) from its trail T. Thus, u keeps at least two out-neighbors v and v’ in
C. At this point, BRANCHINGSOURCE stops its computation, updates f by replacing C with the SCCs
from C, and returns f. As only trivial SCCs are removed from f, and the number of Eulerian trails
in C is the product of those in the SCCs of C, the overall number of Eulerian trails in f does not
change before and after its update. This proves Lemma 5.

LEMMA 5. Given any tuple f in ¥ and the set of swap edges in the SCCs of f, the function BRANCH-
INGSOURCE takes O(m) time to update f, so that either f is empty (a single Eulerian trail exists in f),
or f contains at least one SCC with branching source.

Remark 5. Since every swap edge generates at least one new Eulerian trail, if we can find all swap
edges in O(m) time, we can employ Ib(G) = 1+ “number of swap edges” in our algorithm. Any
node with three different out-neighbors generates at least a swap edge. Thus, this new choice for
the lower bound function necessarily performs better than the one shown in Equation (2). For
example, in the right of Figure 8, there are 5 swap edges whereas Ib(-) = 1.

Finding Swap Edges in Linear Time. We are thus interested in finding all the swap edges in linear
time. We need the following property to characterize them for an SCC C of f.

LEMMA 6. Let C be an SCC, and let T with prefix T,, - (u,v) be one of its Eulerian trails. Edge (u,0"),
forv” # v, is a swap edge if and only if there is a trail from v" to u (i.e., u is reachable from v’) in
C\T,.

Proor. (=) If (u, v”) is a swap edge, then the new Eulerian trail T’ traverses edge (u, v) after (u, 0”).
LetT" =T, (u,0") - Py, - (u,0) - T”. Since Eulerian trails go through each edge exactly once, P}, is a
directed trail from v’ to u that does not use the edgesinT,, = T,,. (<) Let T = T,,- (u, v) - P¥ - (u,0") - T”,
with P} trail from o to u. Recall that, by hypothesis, v’ has a trail to u in C \ T, and let us select a
node x as follows:

—If o’ still has a trail to u in C \ {T;, - (u,v) - P¥}, consider x = u.
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Fig. 8. Left: Choice of node x in the proof of Lemma 6. Right: Example of an Eulerian graph with s =¢t. The
black (left) numbers on the edges are the Eulerian trail numbers etn for a given trail T; the orange (right) ones
are the disconnecting indices dis. Swap edges are in bold.

—Otherwise, some edges needed for v’ to reach u have been used by ;. Consider the first edge
(in the traversal order) of £} that shares its head with an edge of T”, and let x be their head
(see the left of Figure 8).

Let P} be the prefix of trail #; up to the first occurrence of node x. Similarly, let P be the prefix
of T" up to the first occurrence of x. The Eulerian trail T will then be of the form T, - (u,0) - P} -
P\ Py - (u,0") - P, - T\ P,,. Consider now T" = T,, - (u,0") - Py, - Py \ Py - (w,0) - Py - T" \ P,
obtained from T by swapping (u,v) - £} and (u,v") - £7;, both of which are trails from u to x. By
construction, T’ is an Eulerian trail of C, equal to T up to the first occurrence of node u, and with
(u,0") as the next edge. That is, (u,0") is a swap edge. )

In order to find the swap edges, we need to traverse T in reverse order and assign each edge
e € E(C) two integers, as illustrated in the example in the right of Figure 8: (i) the Eulerian trail
numbering etn(e), which represents the position of e inside T and is immediate to compute, and (ii)
the disconnecting index di(e), which is discussed in the next paragraph as its computation is a bit
more involved. As we will see (Lemma 7), comparing these integers allows us to check if a given
edge is a swap edge in constant time.

Disconnecting Indices. We introduce the notion of disconnecting index relatively to a given trail
T € ET(C), according to the following rationale. We observe that Lemma 5 characterizes a swap
edge (u,v’) by stating that u and v” must belong to the same SCC after T, is removed from C.
Suppose that we want to traverse T to discover the swap edges. Equivalently, we take the edges
according to their etn order in T. Fix any edge (u,0"). At the beginning, u and v’ are in the same
SCC C. Next, we start to conceptually remove, from C, the edges traversed by an increasingly long
prefix of T: how long will u and v’ stay in the same SCC? In this scenario, the disconnecting index
of (u,v") corresponds to the maximum etn (hence prefix of T) for which u and v” will stay in the
same SCC, i.e., removing any prefix of T longer than this one from C disconnects v’ from u.

For any ¢ € [0, m], we denote by T, the prefix T, of T such that |T,,| = . When ¢ = 0, it is the
empty prefix; when ¢ = m, it is T itself.

Definition 6.2. Given an edge (u,v") € E(C), its disconnecting index di(u,v") is given by:
max {0 < ¢ < etn(u,v") | u,v” are inside an SCC of C \ T, }.

Figure 8 (right) illustrates an example where the following property can be checked by inspection.
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LEMMA 7. For any edge (u,v") € E(C), we have that (u,0") is a swap edge for a given trail if and
only if di(u,v") > etn(u,v) — 1 for somev # v’.

ProoF. (=) Let (u,v") be a swap edge, and let (u,v) be the edge traversed by T after T, with
etn(u,0) = p+1and |T,| = p. Trivially, (u, 0") constitutes a trail from u to v’ in C \ T,,. By Lemma 6,
there is also a trail from o’ to u in C \ T,,. Therefore, u and v’ are in the same SCC of C\ T,, = C\ T,
which implies di(u,0") > p = etn(u,v) — 1.

(&) Let us now assume that di(u,v”) > etn(u,v) — 1 for some (4, v) with v # v’. Wlog we can
consider (u, v) with minimum etn. By Definition 6.2, u and v are in the same SCC of C\T<, = C\ T,
where p = etn(u,v) — 1. Thus 0’ reaches u in this subgraph, that is, (u,0") is a swap edge. )

Linear-Time Computation of Disconnecting Indices. Consider an SCC C from f € ¥, and any arbitrary
trail T € ET(C) (computable in O(|E(C)|) time). Assign the Eulerian trail numbering etn(e) to each
edge e € E(C). We discuss how to assign the disconnecting index di(e) to each edge e in O(|E(C)|)
time.

We proceed by reconstructing T backwards. That is, we conceptually start from an empty graph,
and we add edges from T, one at a time from last to first (i.e., in decreasing order of their etn values),
until all edges from T are added back obtaining again the SCC C. During this task, along with
disconnecting indices, we also assign a flag tr(u) = true to the nodes u touched by the edges that
have been added. We keep a stack, BRIDGES, for the edges that have been added but do not yet have
a disconnecting index, i.e., they are not in an SCC of the current partial graph. More formally, we
will guarantee the following invariants:

I1 The edges in BRIDGES have increasing etn values, starting from the top.

I2 The edges in BRIDGES are all and only the bridging edges of the current graph.

I3 Given any two consecutive edges e, ¢’ in BRIDGEs, the edges with etn values in [etn(e) +
1, etn(e”) — 1] (which, observe, are not in BRIDGES) make up an SCC of the current graph.

I4 The flag tr(u) is true if and only if u is incident to an edge of the current graph.

We describe the algorithm and prove its correctness and all invariants.

Forf =m,m—1,..., 1, step £ adds back to the current graph the edge (u, v) such that etn(u,v) = ¢.

Let u be the tail and v be the head of the edge.

—If the tail u has not been explored (i.e., tr(u) = false), we add (u,0v) to BRIDGES and set
tr(u) = true. If £ = m, v is the last node of the trail and we also set tr(v) = true.

—Otherwise, u has been traversed before, and there must be at least an edge incoming in u in
our current graph; let (z, u) be the one such edge with highest etn value, say, etn(z, u) = x.
We assign di(u,v) = etn(u,v) — 1, and pop all edges e from BRIDGES such that etn(e) < x,
assigning di(e) = etn(u,v) — 1 to all of these too.

LemMa 8. Given an SCC C from f in F, and any arbitrary trail T € ET(C), the disconnecting
indices of T can be computed in O(|E(C)|) time and space.

Proor. The proof will consist in showing that all invariants hold at all times, and all assigned
di(-) are correct.

All invariants trivially hold at the step £ = m of the computation, as the graph is composed of a
single edge (that is bridging); all ¢r(-) are initialized to false.

As edges are taken into account in decreasing order of their etn value and only added once to
BRIDGES, invariant I1 always holds. I4 also trivially holds, as the head of the edge at step ¢ is already
the tail of the edge at step ¢ + 1, which has been already considered (except in the case £ = m,
which is handled ad-hoc). Furthermore, since the graph is always Eulerian, by Lemma 1 its SCCs
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will have a chain structure. Therefore, the edges between bridges of the current graph necessarily
form SCCs. That is, 12 directly implies I3. In the rest, we thus only need to focus on I12.
When edge (u,v) is added at step £, we have two cases.

—If the tail u has not been traversed yet, it has no other incoming or outgoing edge in the
graph so far; thus u must be the source and (u,v) a bridge. No di(-) is assigned, and 12 is still
satisfied.

—Otherwise, u has been traversed before. We need to show that the popped edges are exactly

the ones that are part of the same SCC as node u, but that have not been previously popped.
First, note that by adding edge (u, v), we just closed a directed circuit composed of the edges
from (u,v) to (z,u) in T, where (z, u) has maximum etn value x among incoming edges in u.
Thus, the popped edges are surely in the same SCC as u. Furthermore, all these edges were
bridging edges until now (by 12). Thus, since we are traversing the edges of T backwards, their
disconnecting index must be precisely etn(u,v) — 1 as it is largest.
Vice versa, let us now prove that there are no other edges of the stack in the SCC of u. By
contradiction, let e € BRIDGES be such an edge, with etn(e) > x. That is, in the current graph
there are both a trail from u to the tail of e, and from the head of e to u. Since etn(e) > x > £+1,
edge e appears after edge (z, u) in trail T, and thus u reached the tail of e also at the previous
step of the computation (£ + 1). As (u, v) cannot help e to reach u, the head of e also reached u
at the previous step. This leads to a contradiction: e would not have been a bridging edge at
the previous step, violating invariant I2. We thus remove from BRIDGEs exactly the edges that
start belonging to a non-trivial SCC, assigning them their correct disconnecting indices. The
edges left in the stack must be the bridges of the current graph, preserving I2.

Finally, let us discuss the complexity: all operations concerning the tr(-) values, the stack, and
di(-) values take constant time each, and thus O(|E(C)|) time in total. The identification of the
edge (z,u) of maximum etn among incoming edges in u can be managed by storing, in each node
with tr(-) = true, the maximum etn value among its incoming edges. Note that this assignment is
only performed once, as edges are traversed in decreasing etn values, thus we just record the first
edge incoming in u considered in the backwards traversal. The whole cost amounts to O(|E(C)|)
time. Space is also O(|E(C)|) words of memory, since we only store the graph and, for each node,
tr and the maximum etn. O

We thus arrive at our main result.

THEOREM 1. Given a directed multigraph G = (V,E), with |E| = m, and an integer z, assessing
#ET(G) > z can be done in O(m - min{z, #ET (G)}) time using O(mz) space.

Other than being easily extensible to the edge-distinct case, the algorithm underlying Theorem 1
has an attractive property: its number of O(m)-time steps is z in the worst case, but can be
significantly smaller, thanks to suitable lower bounding techniques. This property means that our
assessment algorithm can potentially run in less than constant amortized time per solution on
favorable instances.

7 Experimental Evaluation

Setup and Datasets. We evaluated AssessET with the Frontier data structure (Section 4), referred
to as AF, and with the tree-like data structure (Section 5), referred to as AT. To achieve a good
compromise between theory and practice, both our algorithms employ the chain-compression
strategy described in Section 6.1, but they do not employ the branching source computation of
Section 6.2. Indeed, while the latter one is necessary to obtain the claimed theoretical bound, its
linear cost in every recursive call is significant, while its benefit may only occur in rare cases.
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Table 1. Datasets Characteristics

[ Dataset H Length n [ Alphabet size |3| ]

XML 50,000,000 96
SOURCES 50,000,000 102
ENGLISH 50,000,000 236

DNA 50,000,000 16
PROTEINS || 50,000,000 25
PITCHES 69,904,636 64

We compared our two implementations of AF and AT to BEsT, the application of the BEST
theorem, all for assessing the number of node-distinct Eulerian trails in directed multigraphs.

In all three implementations, we first compute the ratio F = [],cy (ry = D!(I1(y0) e ayy!) ! of
factorials (see Equation (1)) and give a positive answer when F > z. Otherwise, we proceed with the
workflow of our algorithms, or in the case of BEST, we compute det L and combine its value with F.
The BEsT implementation makes use of the Sparse LU decomposition function of the open-source
Eigen library (v. 3.3.7) [29], which is based on the algorithm of [46], to compute det L.

To obtain realistic directed multigraphs, which are also Eulerian, we used all six datasets from
the popular Pizza & Chilli corpus [47]. These are string datasets that come from different domains
and have alphabets of different sizes. Their characteristics are summarized in Table 1. The first five
of these datasets are ASCII-encoded strings, and the last one had to be converted to such a string.
From each string S, we then constructed a dBG that was given as input to the ETA problem. Indeed,
since the dBG came directly from a single string S, it was Eulerian. One could make a non-Eulerian
graph Eulerian (as described in A4) and use it as well, but we did not use non-Eulerian graphs, as
the efficiency of our algorithms does not depend on the dataset domain. Moreover, note that any
Eulerian graph can be easily transformed to a dBG by setting 3 := V.

We have implemented AF and AT in C++. Our code is available at https://github.com/gloukides/
eta/. For BEsT, we used the C++ implementation of [5]. All experiments ran on an AMD EPYC 7282
@ 2.8GHz CPU with 512GB RAM.

Comparison to BEST. After ensuring that all implementations give always the same answer, we have
turned our focus on efficiency, examining the impact of parameters.

Impact of d. We examined the impact of d, i.e., the order of the dBG which is constructed from a
string dataset (see Section 1). A larger d increases the number of nodes of the dBG and very slightly
decreases the number of edges, which is |S| — d + 1, where |S]| is the string length. Thus, the graph
becomes sparser and sparser, as d increases: the number of repeating substrings of length-d in S
decreases as d increases.

Figure 9 shows the results for runtime for varying d on all the datasets. As can be seen, our
algorithms are up to more than two orders of magnitude faster than Best, while AF and AT is more
than 20 and 26.7 times faster, respectively on average (over all datasets). The difference is larger for
small values of d (e.g., d = 32 which correspond to dense graphs). This is because the input dBGs are
denser and the implementation of BEST exploits Sparse LU decomposition, which is faster for sparse
graphs but less efficient for dense graphs. On the other hand, our algorithms are not substantially
affected by d. For example, even for the largest d = 1,024, AF and AT were 4 and 5.5 times faster
than BEsT, respectively. Note also that AT outperforms AF by 3.2 times on average. Furthermore,
there are two “outlier” cases (Figure 9(c) for d = 512 and d = 1,024), where the running time of AF
surpasses not only that of AT but also that of BEST, due to a significant duplication of tuples in the
frontier data structure. However, the performance of AT remains consistently faster than BEesT, as
it does not duplicate SCCs (see Remark 2). This highlights the practical benefit of AT.
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Fig. 9. Runtime vs. d for z = 1,000. We omit the result for d = 32 from (a) because all algorithms answer YES,
based on the ratio of BEST theorem, which is very fast.

Figure 10 shows the size (number of edges) of dBG after chain compression performed by AF
and AT, for the experiments of Figure 9, as well as the number of iterations performed by these
algorithms. The compressed dBG has a much smaller size than the input dBG; the latter contains
about 50 million edges for all datasets except PITCHES and about 70 million edges for PITCHES.
Also, the size of the compressed dBG decreases as d increases, since the degree of nodes decreases
and the paths get longer and are compressed. Interestingly, the number of iterations performed by
our algorithms is in most cases much smaller than the size of the compressed dBG and in any case
much smaller than mz. This is encouraging, as it shows that the quadratic in m worst-case bounds
of our simple algorithms are quite pessimistic, and it justifies the use of these algorithms.

Impact of z. We examined the impact of z, i.e., the threshold in ETA. Clearly, a larger z does not
affect BEsT, since the BEST theorem counts all Eulerian trails irrespectively of z, but it affects our
algorithms as it generally increases the number of iterations they perform.

Figure 11 shows the results for varying z for all the datasets. As can be seen, our algorithms are up
to 6 times faster than BEsT, while AF and AT are 3.5 and 4.4 times faster on average, respectively (over
all datasets). The difference is generally smaller for large values of z, as the number of iterations
performed by our algorithms increases. Again, AT outperforms AF by 7.7 times on average, and
there are cases in which AT performs much better. There are four cases (see Figure 11(c) and (d)
for z > 10%, and Figure 11(f) for z = 10°) in which AF performs worse than BEsT due to the large
number of iterations it performed. For example, in Figure 11(d) for z = 104, AF performed 932,197
iterations, but for z = 10° the number of iterations increased to 8,540,177. On the other hand, the
number of iterations of AT was much smaller (e.g., in Figure 11(d), it was 2,490 for z = 10* and
24,978 for z = 10°). It is encouraging to see that even with large z values, such as z = 10°, our
algorithms perform so well.

Impact of |S|. Finally, we examined the impact of |5, i.e., the length of string S from which the
input dBG to ETA is constructed. Note that m = |S| — d + 1, which counts also multiplicities. Thus,
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Fig. 10. Number of iterations vs. d. Each dotted line corresponds to m after chain compression. In (a) both
algorithms simply calculate F > z and return a positive answer, for d = 32. When there are no bars, the
algorithms do not perform any iterations because the minimum lower bound is at least z.

a larger string length |S| increases the number of nodes and edges of the dBG, and therefore the
runtime of both BEsT and our algorithms also increases.

Figure 12 shows the results for runtime for varying |S| on all datasets. As can be seen, our
algorithms are up to 6.5 times faster than BEsT, while on average (over all datasets), AF is over 3.9

ACM Transactions on Knowledge Discovery from Data, Vol. 20, No. 1, Article 14. Publication date: December 2025.



14:28 A. Conte et al.

BEST BEST BEST
21000 e 21000 B 10000| [ AF
8 2 3 |
Q
S 100 8 100 g 1000
2 2 -
g g 2 100
£ 10 £ 10 g
& E g 10
o
1 S [ [ ¥ & 1 ~ % I > 2 1 ~ O By w o
NSNS NS SRS S 3 2 8 9
z z z
(a) XML (b) SOURCES (c) ENGLISH
E BEST E BEST E BEST
AF AF AF
21000 4 21000 o2 21000] g ar
3 3 3
i= [=2] j=2
£ 100 £ 100 < 100
O O O
£ £ £
£ 10 £ 10 g 10
=3 =} =3
o o o
1 1 1
~ v el » o ~ v e " o ~ o o » o
NN NN N NN
z z z
(d) DNA (e) PROTEINS (f) PITCHES
Fig. 11. Runtime vs. z for d = 256.
400 [] BesT 400 [] BEST 400 [] BesT
O AF AF AF
_300| HA _300| EA _300] HA
o o O
[} (0] [0}
£ 200 £ 200 £ 200
S S S
o o o
100 100 100
0 N N \° o\° N° 0 N° A\ N° ° \° 0 o\° N N° 2\ N
9 o 9 o 9 R o 9 o 9 9 o 9 o R
SR $ & & & $ SR $
1S S| S|
(a) XML (b) SOURCES (c) ENGLISH
400 [] BEST 400 [ BesT 400 [] BEST
AF AF AF
300 a 300 a 300 A
o © ©
£ 200 £200 £ 200
100 100 100
0 N S 0 N 0 ° 0 0 o0 o°
® q‘? “ N ~ "\‘? < S N ({‘? & \QQ
S| ] 18I
(d) DNA (e) PROTEINS (f) PITCHES

Fig. 12. Runtime vs. |S| for z = 1,000 and d = 256.

and AT is over 4.8 times faster, respectively. Furthermore, the difference generally becomes larger as
|S| increases. Again, AT was faster than AF by up to 12.7 times and by 2 times on average (over all
datasets). As expected, both AT and AF scale much better than their O(m? min{z, #ET(G)})-time
bound. In particular, it is encouraging to see that AT scales near-linearly with m.
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Table 2. Runtime Comparison for Counting #ET(G)

(a) XML
[ Algorithm [ z =#ET(G) = 74,880 and d = 280 | z = #ET(G) = 25,897,000 and d = 267 |
BEesT 1,481 1,369
AF 514 42,189
AT 383 436

(b) SOURCES

[ Algorithm [[ z =#ET(G) = 16,818 and d = 16,384 | z = #ET(G) = 153,475,000 and d = 14,500

BEST 1,244 1,349
AF 406 > 43,200
AT 391 > 43,200
(c) ENGLISH
[ Algorithm [[ z =#ET(G) = 131,072 and d = 35,000 | z = #ET(G) = 4,194,300 and d = 33,000
BEST 13331 1,329
AF 498 8,024
AT 313 318
(d) DNA
[ Algorithm [[ z =#ET(G) = 16,818 and d = 16,384 | z = #ET(G) = 153,475,000 and d = 14,500
BEST 1,682 1,683
AF 320 3,901
AT 326 717

(e) PROTEINS

[ Algorithm [[ z =#ET(G) = 1,728 and d = 8,750 | z = #ET(G) = 33,984,000 and d = 6,554

BEesT 1,314 1,429
AF 9,236 > 43,200
AT 321 338
(f) PITCHES
[ Algorithm | z=#ET(G) =6,244and d = 9,830 | z = #ET(G) = 2,352,380 and d = 8,192
BEsT 1,936 1,942
AF 486 12,216
AT 483 6,663

The reported timings are in seconds; since some instances did not finish within 12 hours, we have
marked them with > 43,200, the corresponding amount in seconds.

Counting #ET(G). As we have shown, AT and AF are more efficient than BEsT for assessing the
#ET(G). One may wonder, however, how AT and AF compare to BesT for counting #ET(G). For
this, we first used BEsT with some d value to obtain #£T(G) and then we applied our algorithms
with the same d value and z := MAX_INT - recall the multiplicative min{z, #£T(G)} factor in the
time complexity of our algorithms. The results in Table 2 show that AT and AF were faster than
BesT (with AT being faster than AF) when #ET(G) was small, and in some cases, AT and AF were
slower when #ET (G) was large. These results confirm our theoretical findings, and show that AT
and AF can be useful for counting in instances where #ET(G) is expected to be small.
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Case Study: Defending Against Reconstruction Attacks. We show that both AF and AT can substantially
speed up the defense approach in [28], if they are used instead of BEsT. Recall that the approach
in [28] does not need to count #ET (G), which is the output of BesT: it suffices to assess whether
#ET(G) = z, which is exactly what our algorithms do. Recall also that the approach in [28] aims to
find the maximal d for which #ET(G) > z, which implies that our algorithms or BEsT are applied a
large number of times with different candidate values for the maximal d and thus the efficiency
benefit they bring accumulates.

In these experiments, we used the values for z from [28] and the ENGLISH and DNA datasets,
as they come from domains where reconstruction attacks are likely. Figure 13 shows the total
time spent for counting #E(G) by BEST (respectively, assessing #E(G) > z by our algorithms), for
varying z. As can be seen, our algorithms brought substantial time savings, as the total time they
need is up to 7.7 smaller compared to the time needed by BEsT. Also, the time needed by AF and AT
is lower by 5.3 and 6.1 times on average (over all datasets). Figure 14 shows the maximal d values
found by the approach of [28] for varying z. Although these values are clearly the same for both
our algorithms and BEsT, for a given z, we show them to justify that the z values we used in all the
experiments allow the approach of [28] to incur no accuracy loss for pattern matching queries on
very long (i.e., up to length-d) substrings, while providing privacy against dataset reconstruction
(i.e., probability of data reconstruction of no more than %)

8 Conclusion and Future Work

We considered the problem of assessing the number of Eulerian trails in a directed multigraph, which
underlies many applications in domains such as data privacy and computational biology. In these
applications, the BEST theorem is typically used to count, instead of assess, the number of Eulerian
trails, which can be inefficient for large graphs. In response, we proposed the AssessET algorithm
for solving the assessment problem and the TREEASSESSET algorithm, which employs a novel tree
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data structure to reduce the number of iterations in comparison to AssessET. We enhanced the
practical performance of our algorithms with a chain-compression strategy and presented a way to
bring the time complexity of both algorithms down to O(mz) based on combinatorial insight.

Our experiments show that AssessET and TREEASSESSET are up to two orders of magnitude
faster than the algorithm applying the BEST theorem, perform much fewer than mz iterations in
most cases, and scale near-linearly with m. Our experiments also show that the proposed algorithms
bring substantial efficiency benefits in a data privacy application (see A1 in Introduction).

Open Problems. In our view, the main open questions that stem from our work are as follows:

—Can the O(mz)-time bound be improved for the assessment problem in general directed
graphs?
—Can the O(mz)-time bound be improved for the assessment problem in dBGs?
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