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Abstract—Humans have a remarkable capacity for learning,
yet neuronal learning is constrained to locality in time and space
and limited feedback. While neural learning rules have been
designed that adhere to these principles and constraints, they
exhibit difficulty in scaling to deep networks and complicated
datasets. BrainProp is a biologically plausible learning rule,
learning from trial-and-error feedback through reinforcement
learning, that does generalise to deep networks and achieves
good performance on traditional machine learning benchmarks.
It does however falter on problems with a large number of output
categories, such as the classical ImageNet vision benchmark:
while standard BrainProp eventually succeeds, learning is not
robust and highly sensitive to hyper-parameter optimisation and
proper initialisation. Here, we leverage insights from behavioural
science by developing a curriculum that structures how samples
are presented to a network to optimise learning. The key features
of the curriculum involve progressively introducing new classes
to the dataset based on performance metrics, and using a recency
bias to protect recently acquired classes. We demonstrate that our
curriculum approach makes BrainProp-style learning robust and
more rapid, while substantially improving classification accuracy.
We also show the curriculum similarly improves performance for
networks trained using error-backpropagation. We thus establish
a new state-of-the-art performance for large-scale deep reinforce-
ment learning. Our results show the potential of curriculum
learning in local learning settings with limited feedback and
further bridges the gap between biologically plausible learning
rules and error-backpropagation.

Keywords—Curriculum Learning, Local Learning, Biologically
Plausible Learning Rule, Neuroscience, Reinforcement Learning

I. INTRODUCTION

The human brain is remarkable in its capacity for learning.
By modelling the brain, we can gain both a deeper understand-
ing of biology, and biology itself also provides a source of
inspiration for Al. In particular for Al constrained to efficient
and effective learning rules in settings with limited feedback.
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How does learning differ between biological and artificial
systems?

One crucial way how animal learning differs from Al is the
source and locality of information used for neural learning.
Credit assignment in classical error-backpropagation (EBP)
is performed in a supervised manner, where each synapse
is informed about its contribution to the output across all
layers of the neural network, as well as about what the
output should have been when errors are made. However, this
premise is biologically implausible for two reasons. Firstly,
it assumes that each neuron has access to this non-local
information. Secondly, a large amount of learning in humans
and animals occurs without explicit feedback about which
outputs should have been generated when errors are made.
Instead, the environment either provides a reward — or not
— and one has to infer through experience what the correct
output (or action) should be [1]. Thus, we hereby consider
“biologically plausible” to mean learning that is done through
reinforcement and using information available only locally, at
the level of the synapse.

To overcome these limitations, BrainProp was proposed as a
biologically plausible learning scheme for training deep neural
networks. BrainProp achieves state-of-the-art performance on
traditional machine learning benchmarks such as CIFAR-100
and TinylmageNet [2] when set in a reinforcement learning
paradigm. BrainProp learns exclusively through trial-and-error,
and has to discover the correct output for each class. Training
on datasets with many classes therefore becomes very chal-
lenging. If the model selects the wrong class, the model first
has to unlearn this class and sample others until the right
class is found. As the number of classes grows, the probability
diminishes that the model guesses correctly, thereby making
the class selection problem exceedingly hard. As a result,
biologically plausible reinforcement learning methods have
thus far been unable to scale to the size and complexity
of benchmarks such as the ImageNet vision classification
benchmark, which requires deep networks for the classification
of 1,000 categories, despite extensive effort. Here, we show



a way to overcome this problem by drawing inspiration from
how biological systems learn.

In contrast to Al, where networks are often repeatedly ex-
posed to large amounts of unstructured data, humans typically
learn in a very structured manner. Rather than immediately
attempting high-level mathematics, children first learn how
to perform simple addition and subtraction before they are
exposed to increasingly complex problems. These types of
curricula form the foundation of modern education systems
and are designed to facilitate efficient learning [3]. The power
of using a curriculum becomes even more evident when
training animals, since one cannot rely on verbal instructions.
In a series of classic experiments in the early 1900s, Skinner
already showed that by initially rewarding animals for exhibit-
ing very simple motions and afterwards rewarding them for
more complex behavioural sequences (i.e. “shaping”), animals
quickly acquire new behaviour that they might otherwise learn
very slowly — if at all. For this reason, using a curriculum
is considered standard practice when training animals on
behavioural tasks [4], [5].

Within Al, numerous studies have also demonstrated the
beneficial effects of using curricula for reinforcement learning
[6], [7]. One potential contributor to the success of curriculum
learning regards the difficulty level of training examples,
which has been shown to be an important influence on training
efficiency [8]-[10]. A curriculum could allow for initial opti-
misation of an easy function, which can then progressively be
refined as it becomes more non-convex through more difficult
examples [11]. It has been suggested that the most optimal
training regime is one in which training accuracy hovers
around 85% [12]; thus not being too difficult, but also not
too easy. A curriculum can be used to dynamically adjust the
difficulty of training examples to achieve this state. Another
advantage of curriculum learning concerns the acquisition of
primitives underlying more complex behaviour, which could
facilitate learning the overarching behaviour [13]-[15], and
result in networks behaving more similarly to animals on the
same task [14]. In fact, given that associative learning in mice
has been shown to occur in a stepwise manner [16], forcing
an artificial neural network to learn in discrete steps using
a curriculum might therefore not only simplify the learning
process, but also result in more biologically plausible learning.

We here developed a novel curriculum to overcome the
class-learning problem for biologically plausible learning rules
based on reinforcement learning — such as BrainProp. The
curriculum, specifically a form of structured class-incremental
curriculum learning, operates by gradually introducing each
class to the network. We first demonstrate that with precise ini-
tialisation and optimisation BrainProp can scale to ImageNet,
but that the standard trial-and-error learning is very slow,
and unstable because only few initialisations converge, and
networks that appear to learn well regularly collapse. Next, we
show that using the curriculum makes learning robust, more
rapid and more accurate. We thereby establish a new state-of-
the-art performance for biologically plausible reinforcement
learning on the ImageNet benchmark, and demonstrate the

ability of approaches such as BrainProp to scale to biolog-
ically relevant domain sizes and network complexities with
local learning and limited feedback. Finally, we show that a
curriculum also aids in the performance of EBP on ImageNet,
and conduct an ablation analysis to investigate which elements
are important for the curriculum’s success.

II. A CURRICULUM FOR OVERCOMING THE
CLASS-LEARNING PROBLEM

A. Biologically plausible learning

BrainProp is a biologically inspired reinforcement learning
scheme for neural networks that performs credit assignment
using feedback connections to successively lower layers in
the network ( [2]; see Fig. 1). We here briefly summarise its
working mechanism and how this relates to the class-learning
problem.

After choosing an action s based on output layer activa-
tions, the network receives reward information r from the
environment. This is 1 if the correct choice was made, and
0 otherwise. The model then computes the reward prediction
error (RPE; §), which quantifies the discrepancy between the
expected reward (the activation of the chosen unit yﬁv ) and the
actual reward (r):

Blw) = 5(r— ') n
RPE signalling is believed to be performed by the dopamin-
ergic system [17] and in BrainProp is broadcast to the network
as a global neuromodulatory signal. The aim of learning is to
minimise this RPE over the course of training. Importantly,
the RPE is only calculated for the selected class (s) and only
those weights that contributed to this action are updated. The
resulting weight update for weights (wﬁf —1) connecting to the
output layer (V) becomes:
N-1'ifn=s
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For lower layers, a separate feedback network carries an
attentional signal conveying activity (rather than error signals)
from the selected output, gating plasticity in the forward
network in a manner compatible with locally available infor-
mation.

For these layers, weight updates rely not only on the RPE,
but are also gated by the level of feedback neurons (qﬁfjl)
receive from higher layers. Feedback is only provided if
a higher-level neuron was active and is propagated using
feedback connections (wﬁ B) from higher to lower layers.
These feedback connections are assumed to be reciprocal to
the feedforward connections (wf ]-F ) within a cortical column;
a feature that also emerges for BrainProp over the course of
learning [18]. For the output layer, feedback activity emerges
from the selected unit:

o — 1, ifn=s 3)
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The BrainProp algorithm is a three-factor learning rule that, based on the presence of feedforward activity and a reward prediction error, assigns credit

to synapses involved in action selection using a feedback network. Figure reproduced from [2].

Feedback activity from the layer prior is calculated by
means of the feedback weights from the output layer and
feedback activity of the output layer:

PpN-1 ZwFBN 14N wFBN 1 (4)

For all lower layers, feedback activity is computed based
on a combination of the feedback weights, feedback activity
and the derivative of the activation function (g):

o= wi o g (5)
k
The resulting weight update from any neuron ¢ in lower lay-
ers to unit j in the layer above becomes a combination of the
RPE, feedback from the higher-level unit (qﬁé), the derivative
of the activation function in the feedforward pathway (g!) and
feedforward activity of the unit itself (yéfl):

Awj St = oglgiyi " (6)

Since BrainProp uses rectified linear units (ReLUs) as the
activation function, the resulting derivative becomes O if the
higher-level unit was inactive and 1 otherwise. As such, the
weight update relies on the presence of both feedback activity
and feedforward activity, making it Hebbian in nature.

The main difference between EBP and BrainProp lies in
which weights are updated at any given time: while EBP
can assign credit to all weights, BrainProp optimises only
the subset of connections contributing to the chosen action
through the reinforcement learning signal. As a result, the
two algorithms are mathematically equivalent in the case that
each possible action is sampled by BrainProp once, and the
network weights are subsequently altered, for each sample
individually. If the action chosen by BrainProp is correct,
the network can be updated efficiently. In contrast, if it is
incorrect, the network first has to unlearn the class associated
with the stimulus before it selects a new class. If this class is
also incorrect, this process has to be repeated until the right

class is found. Hence, BrainProp enables networks to learn
smaller benchmarks to near error-backpropagation accuracy,
but learning is less efficient for datasets with large outcome
spaces such as ImageNet, because the iterative process of
learning and unlearning is slow. Can a curriculum be designed
in such a way to remedy this?

B. Curriculum design

To encourage learning of new classes, we developed a
curriculum that gradually exposed the model to the different
classes in the ImageNet dataset (see Fig. 2). Rather than
presenting the full dataset from the beginning, the model was
first presented with images from a single class. A new class
was added to the dataset once the previous class was learned.
This procedure was repeated until all classes were incorporated
into the training set. The full network was used from the start,
with no alterations made to network size and the number
of output units throughout the curriculum. All output units
(including those for classes not observed yet) were considered
during decision-making and were treated identically during
training.

Importantly, the curriculum was designed to incentivise
learning of new classes, while protecting the performance on
recently introduced classes. Therefore, the newest class was
presented with a higher probability (30%) than the classes
that were already learned!, so that the model has sufficient
opportunity to sample the outcome categories until it deter-
mined the correct class. Moreover, this approach might help
the model to learn to not only correctly classify the typical
samples of a class [19], but also some of the more exceptional
cases, allowing the model to delineate boundaries between
the categories. The most recently introduced class prior to
the current class was also presented with higher probability
(10%) to prevent forgetting of this class, given the instability of
recently acquired memories (see also [20]) and the beneficial

IFrom the 10th class onwards. Prior to this, all classes were presented with
equal probability during the introduction phase.
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Fig. 2. Training commenced with a curricular pre-training stage, wherein classes are successively added to the training set, while promoting learning of new
classes (first purple, then green) while protecting the most recently introduced class prior to that (light blue, followed by purple). Once all ImageNet categories
were learned, a final training phase presented the full dataset to the model until convergence.

effects of rehearsal on memory consolidation [21]. A new class
was introduced once the model either classified the newest
class with high accuracy (at least 75% correct on the most
recent 25 presentations) or after a maximum of 15 epochs.
This process was repeated until all classes in ImageNet had
been presented.

Upon completion of the curriculum phase, the model was
trained on the full dataset with the same probability of each
class (0.1%). The goal of this final training stage was to
enhance overall training and validation accuracy on the dataset
and to prevent overfitting, because the curriculum contained
only a limited number of samples per class (only a total of
50.000 images were shown during this phase). During this
second training stage we presented the full training dataset
(1.2 million images) to the network to improve generalisation.
An early stopping criterion assessed validation accuracy on
5.000 (of 50.000 validation images) with a patience of 45 and
a minimum delta of 0.001. Once validation accuracy plateaued,
the model was tested on the full validation dataset (excluding
the 5.000 validation images that had been used).

C. Architecture

For all experiments, we used a VGG-inspired network
[2] with seven convolutional layers, followed by two fully-
connected layers of sizes 8§192x3000 and 3000x1000 (see
Fig. 3). Epsilon-greedy served as the action selection mech-
anism for BrainProp. This mechanism usually chose the ac-
tion associated with the most highly active output unit, but
selected an action randomly with a probability of 2%. For
EBP we used a softmax function instead. For the curriculum-
trained networks, a learning rate of 0.005 was used. BrainProp
without curriculum was trained using higher learning rates of
0.04, 0.05 and 0.06. The same learning rates were used for
experiments with EBP. A batch size of 125 was utilised and the
curriculum evaluated criterion performances every 20th batch.
ImageNet stimuli were downsized to 64x64 pixels, converted
to RGB and normalised.

III. EXPERIMENTS

Biologically plausible learning rules have proven difficult
to scale to large problems such as ImageNet [22]. We here
demonstrate that the BrainProp learning rule can accomplish
this under certain conditions, although learning proceeds very
slowly and is generally not robust. However, we show that
employing a curriculum that gradually introduces each class
to the network successfully overcomes these difficulties and
substantially improves accuracy, training speed and stability.

Without a curriculum, BrainProp learned to classify Ima-
geNet to some degree, given the right initialisation and with
careful hyper-parameter tuning. Networks that do learn, do
so very slowly; requiring 1372 (SD = 1295) epochs on
average to converge (see Fig. 4). Moreover, top-1 and top-
5 test accuracy was low, averaging only 6.4% (SD = 8.1%)
and 9.9% (SD = 11.9%), respectively. Furthermore, learning
was not robust. Of the five seeds trained on the task, two
seeds quickly (i.e. within the first epoch) exhibited unstable
performance and did not converge. Two of the seeds that
initially demonstrated stable learning also eventually showed
a sharp decline in their validation accuracy, which dropped
to chance level during a later stage of training (around 1300
and 1500 epochs; see Fig. 5). When the learning rate was
decreased from 0.05 to 0.04 (‘lowLR’ condition), learning was
stable, but while none of the seeds showed deterioration in
validation accuracy at a later training stage, performance on
three of the five seeds never exceeded chance level (average
top-1 and top-5 test accuracy for these seeds of 0.11% and
0.49%, respectively, with an overall top-1 and top-5 accuracy
of 8.55% and 14.0% for all 5 seeds). With a slightly higher
learning rate of 0.06, none of the seeds were viable due to
numerical instabilities. Thus, while some networks learned,
learning was slow, unstable, and sensitive to hyper-parameter
changes.

The curriculum largely solved these issues. Classification
performance, training speed and robustness all improved
substantially. None of the seeds showed instabilities during
training, and the networks reached on average a top-1 test
accuracy of 30.2% (SD = 0.5%) and a top-5 test accuracy
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Fig. 3. Network architecture (figure adapted from [2]). Each convolutional layer had a kernel size of 3 by 3 with a stride of 1 and used zero-padding. The
first two convolutional layers had 64 channels and all other convolutional layers had 128 channels. Batch normalisation was applied after every convolutional
layer. Moreover, max pooling (kernel size and stride of 2) and dropout (0.3) were performed after the second, fourth and seventh layer. A final dropout layer
occurred after the first fully-connected layer. ReLU activation functions were employed for all layers except for the output layer.

0.5

mmm BrP_curriculum
s BrP_baseline_medLR
Wmm BrP_baseline_lowLR

100 4
1400

0.4
1200

1000
0.3

800

02 600

0.1
200

0.0 0 0
Top-1 Test Accuracy Epochs until Convergence Converged Seeds (%)

Top-5 Test Accuracy
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BrainProp with a curriculum (‘BrP_curriculum’) and without the curriculum
using two types of learning rates (0.05 for ‘BrP_baseline_medLR’ and 0.04 for
‘BrP_baseline_lowLR’). Networks trained with the highest learning rate (0.06)
are not shown since their training was aborted very early due to instabilities.
Using a curriculum enhanced performance on all metrics.

of 48.8% (SD = 0.7%) while requiring only 478 (SD = 56)
epochs to converge (Fig. 4-5).

We also trained the network with EBP, with and without the
curriculum. As expected, EBP yielded a higher performance
than BrainProp in terms of training speed and classification
accuracy (Fig. 6). Without the curriculum, EBP obtained an
average top-1 test accuracy of 35.9% (SD = 0.2%) and an
average top-5 test accuracy of 59.9% (SD = 0.3%), while
requiring merely 53.8 (SD = 2.5) epochs on average to
converge. Interestingly, adding the curriculum enhanced top-1
and top-5 classification performance further to 43.4% (SD =
0.1%) and 67.8% (SD = 0.2%), respectively, despite a small
increase in the number of epochs required for training (M
= 83, SD = 7). All seeds showed stable performance and
converged for each learning rate (Fig. 6).

Finally, we carried out an ablation study to investigate the
role of the recency bias in the curriculum (Fig. 7). This recency
bias corresponds to slightly enhancing the probability of the
previous class (10%) to prevent forgetting this class. When
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Fig. 5. (Normalised) validation accuracy during training for all conditions.
Dashed lines indicate the completion of the curriculum phase for networks
trained in the curriculum condition. Networks trained using BrainProp (‘BrP’)
with a curriculum outperform those without the curriculum in both training
speed and validation accuracy.

networks were trained without this recency bias, top-1 and
top-5 test performance were still markedly improved compared
to the baseline without curriculum and were comparable to
that for the full curriculum (M = 29.9%, SD = 0.7%, and
M = 48.3%, SD = 1.0%, respectively). However, the full
curriculum converged more than 100 epochs faster than the
ablated curriculum without the recency bias (M = 609, SD =
48).

In conclusion, using a curriculum allowed BrainProp to
successfully learn on ImageNet, thereby proving to be a
useful strategy in training networks with biologically plausible
reinforcement learning.

IV. DISCUSSION

Thus far, it proved to be too challenging to train networks
on large scale classification benchmarks such as the ImageNet
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BrainProp using the full curriculum (‘BrP_curriculum’) and with a version
of the curriculum without recency bias (‘BrP_ablation’). Although final
performance was comparable, the training speed was higher with the full
curriculum.

dataset with biologically plausible reinforcement learning
rules. Here, we therefore investigated whether a curriculum
would help these networks scale to these larger datasets.
We first showed that learning with the biologically plausible
learning rule BrainProp on ImageNet is in fact possible, but
only given careful hyper-parameter tuning. Moreover, learning
was overall very slow and accuracy remained limited.

We speculated that the difficulty of a reinforcement learning
rule such as BrainProp in scaling to large datasets could
originate from having to sample many different classes before
the correct class is found. Therefore, to enhance performance,
we generated a curriculum that gradually exposed the network
to each class in the dataset. We introduced one new class at a
time and biased the selection of samples to the new class so
that the model had ample opportunity to discover the correct

class label by trial-and-error. When the validation accuracy
of the newest class reached criterion, we introduced the next
class until the full dataset was acquired. We also increased the
probability of the class that was introduced most recently to
reduce forgetting.

The curriculum enhanced learning on the ImageNet bench-
mark. Learning accelerated and the convergence time de-
creased by a factor of nearly three. In addition, learning
became more robust and classification performance improved
substantially. Specifically, top-1 and top-5 test accuracy rose
by a factor of 5 to 30.2% and 48.8%, respectively. To our
knowledge, this constitutes state-of-the-art performance for
reinforcement learning on ImageNet. Hence, representation
learning with biologically plausible learning rules can scale
to biologically relevant large-scale domains and powerful
network architectures.

The curriculum also improved classification performance
of networks trained using EBP, although it necessitated a
modest number of additional training epochs to converge. This
finding is counter-intuitive given that EBP is a supervised
learning method and it should therefore not suffer from the
class-learning problem that BrainProp is sensitive to. One
possible explanation is related to the lottery ticket hypoth-
esis [23], which states that learning becomes more robust
when networks have many parameters so that the efficacy of
curricula decreases. Here we used relatively small networks,
and the curriculum may have overcome such unfavourable
initialisations. This explanation is supported by the BrainProp
experiments without a curriculum, demonstrating instabilities
and the absence of learning with lower learning rates. How-
ever, [23] studied smaller datasets (up to CIFAR-10) and
networks in supervised settings. Future work could investigate
the effect of curricula on deep neural networks.

The recency bias did not materially affect final model per-
formance, but improved the speed of convergence. However,
our implementation of the recency bias was relatively simple
and it is possible that using a more elaborate approach (e.g.
as in [24]) would also increase the classification accuracy.
For instance, one could explore the protection of multiple
classes that were recently introduced, decaying their prob-
ability based on how long ago they were learned. Other
elements could also be added to the curriculum. For instance,
a type of consolidation mechanism or other regularisation or
rehearsal-based techniques from continual learning and class-
incremental learning [25] may protect older classes against
forgetting. Alternatively, the overarching class structure in
ImageNet (based on the WordNet hierarchy as in [26] or
a compositional analysis of network motifs from a trained
network such as in [27]) could be leveraged to identify —
and protect — classes with representational overlap with new
classes and might therefore be overwritten. Finally, several
studies used difficulty metrics in designing the order of cur-
ricula (as reviewed by [7]). We leave the examination of these
other approaches as opportunities for future work.

It is of interest to compare category learning between
artificial systems and biological systems. Humans and non-



human primates have specific biases during category learning
[19], [28], which are qualitatively different from those in
other vertebrates [28]. For example, primates tend to first
learn the stereotypical samples of a class, and only later
the more exceptional samples [19], [29]. These biases have
also been observed in both deep neural networks trained with
supervised algorithms [29], [30] and could be exploited by
curricula to further enhance learning, by first training on the
canonical samples and introducing the non-typical samples
later. Additionally, the ordering of examples within classes
can be structured in a way to optimise category discovery and
generalisation further [31], [32].

BrainProp is one of several biologically inspired learning
rules. Other approaches include predictive coding-based rules
[33], [34], equilibrium propagation [35], target propagation
[36], [37], feedback alignment [38]-[40], e-prop [41], sign-
symmetry [42], the forward-forward algorithm [43], and sev-
eral other unsupervised [44], [45] or self-supervised [44],
[46]-[53] approaches. Most of these learning rules however
do not scale to deeper networks or larger datasets such as
ImageNet [22]. The exceptions that do scale to deeper architec-
tures and/or larger data sets such as ImageNet [36], [39], [40],
[42], [44], [49]-[52], [54], [55], use some type of supervisory
signal telling the network what the correct response should be
combined with error-backpropagation, for instance in the out-
put layer. This limits their biological plausibility. Alternatively,
they use a more biologically plausible approximation of error-
backpropagation but then do not scale to deep networks (e.g.
[48]). While there are indications that devising scalable self-
supervised approaches that are compatible with biological con-
straints are non-trivial [56], [57], these alternative approaches
offer interesting prospects when combined with the BrainProp
framework, which might enhance their overall biological plau-
sibility and augment the overall performance. One interesting
avenue for future research could also be to combine a self-
supervised pre-training phase to allow the network to learn
the statistics of the dataset prior to learning class identities
through reinforcement learning curriculum with BrainProp
[58]. Another possibility would be to add an active learning
[59] phase subsequent to learning all outcome categories to
allow the model to continue learning based on predictions
about unlabelled samples that it is sufficiently confident about.

In conclusion, we showed that a curriculum enables Brain-
Prop, a biologically plausible reinforcement learning rule, to
train deep networks on the challenging ImageNet benchmark
and to achieve state-of-the-art performance across existing
biologically plausible learning rules. The curriculum was
relatively simple, and we noted many opportunities for expan-
sion and combining it with other approaches. This approach
specifically demonstrates how deep networks can be trained
with local learning rules and limited feedback, which is of
importance for example when training EdgeAl devices in the
field. We hope that our work inspires future studies that could
achieve even better performance, and generate new insights
into the relation between category learning in artificial and
biological systems.
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