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Abstract
Tensors play a central role in various areas of computer science and

mathematics, such as algebraic complexity theory (matrix multipli-

cation), quantum information theory (entanglement), and additive

combinatorics (slice rank). Fundamental problems about tensors are

strongly tied to well-known questions in computational complexity

— such as the problem of determining the matrix multiplication ex-

ponent via asymptotic rank, and the stronger Strassen asymptotic

rank conjecture, which has recently been intimately linked to a

whole range of computational problems.

Unlike matrices, which are often well understood through their

rank, tensors have such intricate structure that understanding them

(and aforementioned problems) requires information of a more

subtle nature. The moment polytope, going back decades to work

in symplectic geometry, invariant theory, and representation theory,

is a mathematical object associated to any tensor that collects such

“rank-like” information. Their relevance has become apparent in

several areas: (1) through applications in geometric complexity

theory (GCT), (2) in the construction of functions in Strassen’s

asymptotic spectrum of tensors, (3) as entanglement polytopes in

quantum information theory, and (4) in optimization via scaling

algorithms.

Despite their fundamental role and interest from many angles,

little is known about these polytopes, and in particular for tensors

beyond C2 ⊗ C2 ⊗ C2
and C2 ⊗ C2 ⊗ C2 ⊗ C2

only sporadically

have they been computed. Even less is known about the polytopes’

inclusions and separations (which are particularly relevant for ap-

plications).

We give a new algorithm for computing moment polytopes of

tensors (and in fact moment polytopes for a natural general class
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1 Introduction
Tensors play a central role in various areas of computer science and

mathematics, such as algebraic complexity theory, quantum infor-

mation theory, and additive combinatorics [12, 16, 29, 55]. Indeed,

fundamental open problems about tensors are strongly tied to ques-

tions in computational complexity. Awell-known such problem is to

determine the matrix multiplication exponent, which corresponds

to the asymptotic rank of the matrix multiplication tensor. This

problem has been studied for decades from many angles (computa-

tional, geometric, algebraic) [3, 14, 20, 53, 54, 63, 65, 77]. The theory

developed for these tensors has carved out classes of tensors with

special, relevant properties (e.g., tight and free tensors [29, 30, 68]).

A central conjecture in this area is Strassen’s asymptotic rank con-

jecture, which has long been known to be intimately linked to the

matrix multiplication exponent, and a recent burst of results has

developed a range of strong connections between this conjecture

and problems in computational complexity theory [10, 11, 47, 59].

Related to this, often described as “finding hay in a haystack”, it is

an open problem to construct explicit tensors that have large tensor

rank (despite random tensors having that property!); achieving

this would have far-reaching consequences [13, 60]. In quantum

information theory, tensors are the natural formalism to study mul-

tipartite entangled quantum states, their applications, and relations

under local operations, leading to fundamental problems like the

quantum marginal problem [25, 33, 41, 45, 51, 73, 76].

Whereas matrices are understood through simple invariants

like their rank, tensors have such intricate structure and relations

that understanding them (and aforementioned problems) requires

information of a richer nature. Themoment polytope is a mathemat-

ical object associated to any tensor that collects such fundamental

“rank-like” information, in a precise sense that allows several dif-

ferent characterizations. Going back decades to fundamental work

in symplectic geometry, invariant theory, and representation the-

ory [15, 48, 56, 57], the relevance of moment polytopes has become

apparent in several areas:

• in algebraic complexity theory as potential obstructions in
geometric complexity theory (GCT) [20] (through under-

standing inclusions and separations between moment poly-

topes),

• as the basis for the construction of elements in Strassen’s

asymptotic spectrum [27, 65] (the subject of Strassen’s duality

theorem for asymptotic rank and the matrix multiplication

exponent),

• in quantum information as entanglement polytopes that char-
acterize entanglement in terms of the reachable quantum

marginals [75], and

• in optimization through a class of algorithms called scaling
algorithms, which optimize over such polytopes [17–19, 34,

38, 44].

Despite their fundamental role and the interest they have re-

ceived from mathematical and computational angles, much is still

unknown about moment polytopes. In particular, they are notori-

ously hard to compute. For tensors beyond C2 ⊗C2 ⊗C2
[42, 62, 75]

and C2 ⊗C2 ⊗C2 ⊗C2
[75] only sporadically have they been deter-

mined. Moreover, little is known about inclusions and separations

between moment polytopes, and about their operational meaning,

which is particularly relevant for aforementioned applications.

In this paper, based on a characterization of moment polytopes

by Franz [36] we introduce an algorithm to compute moment poly-

topes of tensors and more general group representations. This

algorithm computes for the first time the moment polytopes of all

tensors in C3 ⊗C3 ⊗C3
with certainty (in seconds), as well as those

in C4 ⊗ C4 ⊗ C4
with high probability. A new tool in the “moment

polytope toolbox”, this algorithm, and in particular the resulting

concrete description of all moment polytopes in these shapes, can

form a starting point for proving new structural results on moment

polytopes. As one such result, we separate moment polytopes of

matrix multiplication tensors from moment polytopes of unit ten-

sors for a certain range of sizes. This is the first progress towards

an open problem in geometric complexity theory [20, Problem 7.3]

of determining these polytopes and their relations. In quantum

information theory, this result implies that three pair-wise shared

Einstein–Podolski–Rosen (EPR) pairs do not have the largest possi-

ble entanglement polytope, and thus cannot exhibit the full range

of local marginals under stochastic local operations and classical

communication (SLOCC). These separations moreover lead to up-

per bounds on border subrank (and subsequently, with more work,

a different proof of the optimal border subrank result of [52]); we

leave it as an open problem to determine the full power of sepa-

rations obtained by moment polytopes. As a consequence we also

obtain a no-go result on the operational meaning of moment poly-

tope inclusion. Finally, we give, inspired by moment polytope data,

the first construction of explicit non-free tensors (whose existence

hitherto had only been established by dimension arguments [29]).

New results. Our results come in two parts: an algorithmic part and

three structural results on moment polytopes.

• We give a new algorithm for computing moment polytopes

of tensors based on a mathematical characterization by Franz

[36], optimized for practical use and able to computemoment

polytopes of tensors of dimension an order of magnitude

larger than previous methods. This allows us to compute

for the first time exactly all moment polytopes of tensors in

C3 ⊗ C3 ⊗ C3
with certainty and in C4 ⊗ C4 ⊗ C4

with high

probability. (Our algorithm is in fact much more general and

applies to moment polytopes for general reductive groups

acting by linear maps on finite-dimensional vector spaces.)

• Towards an open problem of Bürgisser and Ikenmeyer in

geometric complexity theory [20], we prove (inspired by

experimental data obtained using the above algorithm) sepa-

rations between the moment polytopes of matrix multiplica-

tion tensors and unit tensors, showing in particular that the

matrix multiplication moment polytopes are not maximal.

• As a consequence of the above, we obtain a no-go result for

a certain operational characterization of moment polytope

inclusion: we prove that Strassen’s asymptotic restriction

[66] on tensors does not imply moment polytope inclusion.

• Based on our algorithmic data, we construct explicit (concise)

non-free tensors in every cubic format C𝑛 ⊗ C𝑛 ⊗ C𝑛
for

𝑛 ≥ 3, thus solving a type of “hay in a haystack” problem

for this generic property [29] that plays a central role in

Strassen’s theory of asymptotic spectra [27, 69].
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2 Tensors, their Moment Polytopes, and
Applications to Algebraic Complexity and
Entanglement

We give here a brief overview of the context and background of

this work on tensors and moment polytopes in various areas before

we discuss our results in Section 3.

2.1 Tensors as Quantum States
In quantum information theory, tensors describe pure quantum

states of multipartite finite-dimensional quantum systems. For ex-

ample, a tensor 𝑇 ∈ C𝑎 ⊗ C𝑏 ⊗ C𝑐 of norm one describes a pure

quantum state of a quantum system composed of three local sys-

tems (also called subsystems)C𝑎
,C𝑏 , andC𝑐 . The tensor𝑇 describes

the global state, including entanglement between the local systems.

The local state in each system is described by a Hermitian linear

operator on the local system. These linear operators are called

marginal density matrices (akin to marginal distributions in proba-

bility theory), and they can be defined as taking the partial trace of

𝑇𝑇 ∗ ∈ C𝑎×𝑎 ⊗ C𝑏×𝑏 ⊗ C𝑐×𝑐 with respect to the other two systems.

For example, the marginal density matrix of the first system is a

Hermitian matrix of shape 𝑎 × 𝑎.

A central goal in quantum information theory is to establish

entanglement monotones. These are measures that cannot increase

under local operations. Examples of such operations are: acting by

unitary matrices on the local systems (LU), LU operations with clas-

sical communication (LOCC), and LOCC operations with nonzero

success probability (SLOCC). Mathematically, SLOCC operations

correspond to applying matrices 𝐴, 𝐵, and 𝐶 on the local systems,

via 𝑆 = (𝐴 ⊗ 𝐵 ⊗ 𝐶)𝑇 .
Moment polytopes are fundamental entanglement monotones,

and hence are also called entanglement polytopes [75]. They suc-

cinctly describe constraints on which states the tensor 𝑇 can be

transformed into by SLOCC operations and taking limits. That is,

we act by invertible matrices 𝐴, 𝐵, and 𝐶 on 𝑇 but allow also the

limits of tensors obtained in this way. We denote the set of all such

tensors by (GL𝑎 ×GL𝑏 ×GL𝑐 )𝑇 , where GL𝑛 denotes the invertible

𝑛 × 𝑛 matrices, and the line indicates we include limit points. The

eigenvalues of the three Hermitian marginal density operators are

real, and when the tensor has unit norm they also sum to one (hence

form a probability distribution). Because we can diagonalize using

LU operations, these eigenvalues classify the operators. Denote

with r1 (𝑇 ) the eigenvalues of the first marginal density matrix,

sorted from big to small. Similarly define r2 (𝑇 ) and r3 (𝑇 ). Then we

can define the moment polytope Δ(𝑇 ) of 𝑇 as

Δ(𝑇 ) =
{(
r1 (𝑆), r2 (𝑆), r3 (𝑆)

) ��� 𝑆 ∈ GL ·𝑇, ∥𝑆 ∥ = 1

}
⊆ R𝑎 × R𝑏 × R𝑐 ,

where GL := GL𝑎 ⊗GL𝑏 ⊗GL𝑐 . Even for tensors of a relatively

small size, determining the moment polytope can be rather difficult.

One particular motivation for studying moment polytopes comes

from matrix product states (MPS) [1, 22, 28, 39, 40]. Consider a sys-

tem with 𝑘 sites arranged on a circle, and give each pair of adjacent

systems one maximally entangled pair of dimension 𝑛; call the re-

sulting tensor 𝑇 . Then the MPS on 𝑘 sites with bond dimension 𝑛

are exactly those tensors which can be obtained from 𝑇 by SLOCC.

Thus, the moment polytope of 𝑇 characterizes the collections of

one-bodymarginal density operators that can be realized (or approx-

imated arbitrarily closely) using MPS of the given bond dimension.

We show that for any 𝑘 ≥ 3 and any 𝑛 ≥ 2, matrix product states

obey interesting constraints on top of those that are inherent from

being the marginal density operators of a (pure) quantum state.

Our techniques and results may also lead to new insights in other

connectivity scenarios for tensor networks [23].

As moment polytopes characterize the one-body marginal den-

sity operators reachable from of a multi-party quantum state, they

can be used to witness many-particle entanglement from single-

particle data [75]. This test has been used in experiments [2, 78],

and is relevant in the understanding of Pauli’s principle [4]. Up

to now, such experiments have been limited to qubits, since the

polytopes of larger dimensional tensors were not known; with our

algorithm, we have been able to extend knowledge of these poly-

topes to three qutrits and further. The test could readily be used

experimentally in order to witness new types of entanglement.

2.2 Algebraic Complexity Theory
In algebraic complexity theory, tensors correspond to bilinear com-

putational problems [16]. Examples include the matrix multipli-
cation tensor M𝑛 ∈ C𝑛2 ⊗ C𝑛2 ⊗ C𝑛2

describing the multiplica-

tion of two 𝑛 × 𝑛 matrices, the polynomial multiplication tensors
P𝑎,𝑏 ∈ C𝑎 ⊗ C𝑏 ⊗ C𝑎+𝑏−1

describing the multiplication of two uni-

variate polynomials of degrees 𝑎 − 1 and 𝑏 − 1, and the unit tensor
U𝑟 :=

∑𝑟
𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖 ∈ C𝑟 ⊗ C𝑟 ⊗ C𝑟

describing elementwise

multiplication of two vectors of length 𝑟 . The complexity of these

problems corresponds to the number of required multiplications

between the two inputs, which is called the rank of the tensor. Re-
strictions apply linear transformations to the inputs and the output

separately, and we write 𝑇 ≤ 𝑆 whenever 𝑇 = (𝐴 ⊗ 𝐵 ⊗ 𝐶)𝑆 for

some matrices𝐴, 𝐵, and𝐶 of suitable sizes. Whenever there exists a

restriction𝑇 ≤ 𝑆 , this means we can compute𝑇 using as many mul-

tiplications between inputs as is required for 𝑆 . Naturally, we may

define the rank R(𝑇 ) of 𝑇 as the smallest 𝑟 ∈ N such that 𝑇 ≤ U𝑟 .

A central open problem is to determine the asymptotic complex-

ity of matrix multiplication. The goal is to determine the smallest

(in the sense of infimum) real number 𝜔 such that R(M𝑛) = O(𝑛𝜔 ).
This number is called the matrix multiplication exponent [64]. The
best known upper bound is 𝜔 ≤ 2.3721339 . . . [3], and the best

known lower bound is 𝜔 ≥ 2.

An important property of matrix multiplication is its recursive

structure. Indeed, block matrices can be multiplied block-wise. This

property is observed in the tensor by the fact that the Kronecker

product of two matrix multiplication tensors gives another matrix

multiplication tensor:M𝑚⊗Mℓ = M𝑚ℓ . As a consequence, knowing

the behaviour of R(M⊗𝑛
2

) for large 𝑛 allows us to determine 𝜔 . We

define the asymptotic rank as ˜R(𝑇 ) := lim𝑛→∞ R(𝑇 ⊗𝑛)1/𝑛 , where
the limit can be replaced by an infimum by Fekete’s lemma. It can

be shown that ˜R(M2) = 2
𝜔
. In fact, hereM2 can be replaced with

any matrix multiplication tensor of fixed shape to characterize 𝜔 .

The moment polytope of 𝑇 describes representation-theoretic

properties of tensor powers𝑇 ⊗𝑛
. These come in the form of discrete

data given by triples of integer vectors (𝜆, 𝜇, 𝜈) ∈ N𝑎 × N𝑏 × N𝑐

with non-negative and non-increasing entries that each sum to 𝑛
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(Young diagrams). There exist natural projections of 𝑇 ⊗𝑛
to cer-

tain tensors [𝑇 ⊗𝑛]𝜆,𝜇,𝜈 with strong representation-theoretic or

invariant-theoretic properties. The moment polytope of𝑇 describes

the (𝜆, 𝜇, 𝜈) such that this projection is non-zero, each normalized

to a triple of probability distributions, that is,

Δ(𝑇 ) =
{ (𝜆

𝑛
,
𝜇

𝑛
,
𝜈

𝑛

) ��� (𝜆, 𝜇, 𝜈) s.t.

[
𝑇 ⊗𝑛 ]

𝜆,𝜇,𝜈 ≠ 0

}
, (2.1)

where the closure is the Euclidean closure. It turns out that among

all moment polytopes Δ(𝑇 ) for tensors in a given spaceC𝑎⊗C𝑏⊗C𝑐
there is a maximal one (which is also obtained for “generic” tensors).

This polytope is also known as the Kronecker polytope, called so

because it captures precisely the asymptotic support of the Kro-

necker coefficients in the representation theory of the symmetric

group [50, 71]. An important questions is as follows: What are
the moment polytopes of important computational problems? This
question was raised by Ikenmeyer and Bürgisser concerning specif-

ically M𝑛 and U𝑟 [20]. They computed a related but different kind

of polytope for these tensors and showed that they are maximal.

We make progress towards answering their question for the mo-

ment polytopes proper by finding explicit points that are contained

in the moment polytope of Δ(U𝑟 ) but not in Δ(M𝑛), for certain
𝑛, 𝑟 , showing in particular that the moment polytope of the matrix

multiplication tensor is not maximal.

2.3 Strassen’s Asymptotic Spectrum and the
Quantum Functionals

Moment polytopes play a central role in algebraic complexity theory

in the construction of quantum functionals [27], which combines the

geometric and representation-theoretic perspectives. The quantum

functionals are a family of functions from 𝑘-tensors to R≥0, which
map U𝑟 to 𝑟 for every 𝑟 ∈ N and are monotone under restriction,

multiplicative under Kronecker products, and additive under direct

sums. The collection of all functions with these properties form

the asymptotic spectrum of 𝑘-tensors [67]. The landmark result by

Strassen tells us that given a tensor 𝑇 , its asymptotic rank is equal

to the supremum of 𝑓 (𝑇 ) for all 𝑓 in the asymptotic spectrum. More

generally, the asymptotic spectrum characterizes the existence of

so-called asymptotic restrictions between 𝑘-tensors.

It has proven to be a challenge to describe the asymptotic spec-

trum explicitly. For almost 30 years the only known points were

the flattening ranks, until the construction of the quantum function-

als [27]. The flattening ranks are defined by flattening the tensor

into a matrix (in one of three possible ways) and computing the

matrix rank. The quantum functionals are defined for 3-tensors 𝑇

as 2
𝐸𝜃 (𝑇 )

with 𝐸𝜃 (𝑇 ) := max(𝑝1,𝑝2,𝑝3 ) ∈Δ(𝑇 ) 𝜃1𝐻 (𝑝1) + 𝜃2𝐻 (𝑝2) +
𝜃3𝐻 (𝑝3), where (𝜃1, 𝜃2, 𝜃3) is any probability vector and 𝐻 denotes

the Shannon entropy. Quantum functionals have been used to show

barrier results for the techniques used to prove upper bounds on

the matrix multiplication exponent [26]. It is unknown whether

the quantum functionals make up the entire asymptotic spectrum

of 3-tensors. If the answer is yes, this would in particular imply the

matrix multiplication exponent equals 2. Another notion relating

strongly to the moment polytope is the 𝐺-stable rank [31].

The quantum functionals aremaximizations of concave functions

on the moment polytope, and can hence be computed in polynomial

time using standard convex optimization techniques given efficient

access to the moment polytope. Scaling algorithms [17, 18] provide

suitable membership oracles which are effective in practice but are

not known to run in polynomial time in all parameters. However,

these optimization-based techniques do not yield a description of

the moment polytopes in terms of vertices or inequalities. This

presents a bottleneck, and indeed finding such a description even

for not too large tensor shapes seems far out of reach for known

methods. The moment polytopes of tensors of shape 2 × 2 × 2

and 2 × 2 × 2 × 2 were computed via Eq. (2.1) and a complete

understanding of the underlying invariant theory [75]; but such an

understanding is not available in higher dimensions. We advance

the computational state-of-the art significantly with our algorithm.

In particular, our results allow us to compute for the first time the

moment polytopes (and derived quantities) for all tensors of the

shape 3 × 3 × 3.

In the context of quantum information, the quantum functionals

are monotones for asymptotic SLOCC. There is also an analogous

theory for (asymptotic) LOCC [46, 74].

2.4 Non-Free Tensors
Strassen’s support functionals [68] are a (continuously parametrized

just like the quantum functionals) family of functions for which

Strassen proved that, restricted to so-called oblique tensors, they are
in the asymptotic spectrum. That is, the support functionals satisfy

the properties listed above when restricted to oblique tensors. All

examples of tensors we have discussed so far (e.g. M𝑛 , U𝑟 ) are

oblique. An interesting aspect of the support functionals is that

they are defined over fields of positive characteristic as well [24].

Oblique tensors are a special case of free tensors, which are

defined as follows. We say a support {(𝑖, 𝑗, 𝑘) | 𝑇𝑖, 𝑗,𝑘 ≠ 0} is free
when any two distinct elements (𝑖, 𝑗, 𝑘) and (𝑖′, 𝑗 ′, 𝑘′) differ in at

least two coordinates. We say 𝑇 is a free tensor when its support

is free after some change of basis, that is, if (𝐴 ⊗ 𝐵 ⊗ 𝐶)𝑇 has free

support for some (𝐴, 𝐵,𝐶) ∈ GL𝑎 ×GL𝑏 ×GL𝑐 . Free tensors are a

class of tensors that play a special role in several parts of the theory

of moment polytopes and asymptotic spectra [36, 69]. For instance,

it is known that the support functionals and quantum functionals

coincide on free tensors [27]. This begs the following question: Are
the support functionals and quantum functionals equal also on tensors
that are not free?

To approach this question, we need a better understanding of

non-free tensors. Via a dimension counting argument, it can be

shown that (many) non-free tensors exist [29]. Indeed, a random

tensor in C𝑛 ⊗ C𝑛 ⊗ C𝑛
for 𝑛 ≥ 4 will be non-free almost surely.

However, methods for verifying this for any explicitly generated

random tensor have been lacking. In fact, before this paper, no

explicit examples of non-free tensors were known. Such situations

are common in mathematics and computer science for “generic”

properties. For instance, we do not have explicit constructions of

tensors with high tensor rank [13, 29, 60]. For non-freeness we

solve this “hay in a haystack” problem in this paper by constructing

explicit non-free tensor for every cubic tensor shape.
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2.5 Polytope Inclusion
Given two tensors, we can ask whether their moment polytopes are

included in one another. The inclusion of moment polytopes defines

a relation between tensors that encodes inherent asymptotic and

geometric information. At the same time, moment polytopes can be

succinctly described via finitely many inequalities. This makes this

relations interesting to study:What inclusions and separations can
we prove and using which techniques? We algorithmically determine

the moment polytopes of all 3×3×3 tensors, revealing in particular

all inclusions among them. Furthermore, we prove the moment

polytope of the unit tensor is not contained in that of the matrix

multiplication tensor of the same size. The above separation directly

implies an upper bound on the so-called border subrank of matrix

multiplication. This quantity is essential for constructions of matrix

multiplication algorithms [12]. The techniques we use to prove this

separation we then extend to give an alternative proof of the best

possible upper bound on border subrank of matrix multiplication

[52], and in particular establish new connections with polynomial

multiplication tensors.

The asymptotic nature of moment polytopes and previous appli-

cations via the quantum functionals [27] suggests a connection to

asymptotic restriction between tensors. Using the moment polytope

relations and separations that we found, we show by counterexam-

ple that an a priori natural such connection is false.

3 Results
We now present our main results in more detail. Our first result is

of algorithmic and experimental nature, namely an algorithm to

compute concrete moment polytopes. This algorithm, while not

poly-time in the dimension, is in particular able to compute the

moment polytopes of any tensor in C3 ⊗ C3 ⊗ C3
with certainty

and in C4 ⊗ C4 ⊗ C4
with high probability. The resulting data then

led us to prove the structural results that we discuss below. We will

further discuss the algorithm itself in Section 4.

3.1 Separation of Moment Polytope of Matrix
Multiplication and Unit Tensors

Bürgisser and Ikenmeyer [20, Problem 7.3], motivated by the geo-

metric complexity theory approach to lower bounds on the matrix

multiplication exponent (as part of a more general program aimed

at solving the VP vs. VNP problem), posed as a central open problem

to determine themoment polytopes of the matrix multiplication ten-

sorsM𝑛 and the unit tensors U𝑟 . While a related (but different) kind

of polytope were shown to coincide forM𝑛 and U𝑛2 , no progress

was made on computing or relating these moment polytopes since.

We prove the following separations.

Theorem 3.1. For every 𝑐, 𝑛 ∈ N satisfying 𝑛2 − 𝑛 + 1 < 𝑐 ≤ 𝑛2,
there exists a point 𝑝𝑐 such that 𝑝𝑐 ∉ Δ(M𝑛) and 𝑝𝑐 ∈ Δ(U𝑐 ). In
particular, the moment polytope of M𝑛 is not maximal for any 𝑛 ≥ 2.

The point 𝑝𝑐 that we obtain in our proof of Theorem 3.1 is given

by 𝑝𝑐 := (𝑢2, 𝑢𝑐−1, 𝑢𝑐 ), where𝑢𝑚 =
∑𝑚
𝑖=1 𝑒𝑖/𝑚 ∈ R𝑛2

is the uniform

probability vector on the first𝑚 coordinates. The first instance of

this separation (which we then extended to all 𝑛, 𝑐 as above) was

indeed obtained from our algorithmic data, which showed that

the polytope of the 2 × 2 matrix multiplication tensor M2,2,2 is

strictly smaller than the maximal polytope in C4 ⊗ C4 ⊗ C4
, and in

particular that the point 𝑝4 =
(
( 1
2
, 1
2
, 0, 0), ( 1

3
, 1
3
, 1
3
, 0), ( 1

4
, 1
4
, 1
4
, 1
4
)
)

was not included. Indeed, we prove that a point 𝑝𝑐 of similar shape

is a general separating point.

As an important ingredient for the proof of Theorem 3.1, we

prove certain degenerations between matrix multiplication tensors

and polynomial multiplication tensors P𝑎,𝑏 are not possible. We say

a tensor𝑇 degenerates to a tensor 𝑆 , denoted by𝑇 ⊵ 𝑆 , whenever 𝑆

is a limit of restrictions from 𝑇 . We show:

Lemma 3.2. For 𝑏 > 𝑛
(
𝑛 − ⌊

√
𝑎 − 1⌋

)
we haveM𝑛 ̸⊵ P𝑎,𝑏 .

The border subrank of a tensor 𝑇 is defined as the largest 𝑟

such that 𝑇 ⊵ U𝑟 . Since U𝑎+𝑏−1 ⊵ P𝑎,𝑏 [16] and degeneration is

a transitive relation, Lemma 3.2 directly implies the best possible

upper bound for border subrank by choosing the optimal values

for 𝑎 and 𝑏, recovering (with a new proof) the result of [52, The-

orem 3]: The border subrank of the 𝑛 × 𝑛 matrix multiplication

tensor is upper bounded by ⌈ 3
4
𝑛2⌉, which matches the lower bound

by Strassen [66]. In fact, the moment polytope separation in Theo-

rem 3.1 immediately implies the weaker upper bound of 𝑛2 − 𝑛 + 1.

We leave as an open problem whether the improved bound can be

obtained from moment polytope separations alone.

In the context of quantum information theory, the matrix multi-

plication tensor M𝑛 describes the quantum state of three quantum

systems, with each pair sharing a generalized EPR pair

∑𝑛
𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖

(or many copies of EPR pairs if 𝑛 is a power of 2). Then Theorem 3.1

tells us that there exists marginals that cannot be reached using

SLOCC transformations. Moreover, these marginals can be reached

starting from the generalized GHZ state U𝑐 for all 𝑐 > 𝑛2 − 𝑛 + 1.

This shows in particular thatM𝑛 is not “maximally entangled” in

the SLOCC setting, and it follows that the same is true in the LOCC

and LU settings. This is an especially interesting result as such

pair-wise shared EPR pairs form the basis for many applications

in tensor network theory studying entanglement [22]. We show

that the same holds for the iterated matrix multiplication tensor,

which corresponds to pair-wise shared EPR pairs arranged on a

cycle. In other words, matrix product states with bond dimension 𝑛

satisfy extra constraints that are already visible on the level of their

one-body marginal density operators.

3.2 Moment Polytopes are Not an Asymptotic
Restriction Monotone

Moment polytopes are monotone under degeneration (if 𝑇 ⊵ 𝑆 ,

then Δ(𝑇 ) ⊇ Δ(𝑆)), and they also have an asymptotic nature: the

representation-theoretic description in Eq. (2.1) involves large Kro-

necker powers of a tensor. Motivated by understanding potential

operational interpretations of moment polytope inclusion, it is

natural to ask if asymptotic restriction implies moment polytope

inclusion. We say a tensor𝑇 asymptotically restricts to a tensor 𝑆 if

𝑇⊠𝑛+𝑜 (𝑛) ≥ 𝑆⊠𝑛 , which we denote by𝑇 ≳ 𝑆 . It is known that𝑇 ⊵ 𝑆

implies 𝑇 ≳ 𝑆 . We show that moment polytopes are not monotone

under asymptotic restriction:

Theorem 3.3. There exist (explicit) tensors𝑇 and 𝑆 such that𝑇 ≳ 𝑆

but Δ(𝑇 ) ⊉ Δ(𝑆).
As discussed, the quantum functionals are defined via an opti-

mization problem over the moment polytope, and hence moment

760



STOC ’25, June 23–27, 2025, Prague, Czechia Maxim van den Berg, Matthias Christandl, Vladimir Lysikov, Harold Nieuwboer, Michael Walter, and Jeroen Zuiddam

polytope inclusion implies monotonicity of the quantum function-

als [27]. Strassen showed that 𝑇 ≳ 𝑆 if and only if 𝑓 (𝑇 ) ≥ 𝑓 (𝑆) for
all functions 𝑓 in the asymptotic spectrum [67]. It is an important

open problem to determine whether the quantum functionals make

up the entire asymptotic spectrum for 3-tensors [27]; if this is not

the case, it also directly implies Theorem 3.3.

In quantum information theory, Theorem 3.3 implies that an

asymptotic SLOCC transformation from 𝑇 to 𝑆 does not imply

that 𝑇 is necessarily “more entangled” than 𝑆 , in the following

sense: there can exist collections of marginal density operators only

reachable from 𝑆 and not from 𝑇 .

We give two examples of such pairs 𝑇 and 𝑆 in Theorem 3.3: the

first is 𝑇 = M𝑛 and 𝑆 = U𝑛2 , and the second is 𝑇 = 𝑒1 ∧ 𝑒2 ∧ 𝑒3
and 𝑆 = U3. The fact that the first pair is an example follows from

the separation between the moment polytope of M𝑛 and U𝑛2 of

Theorem 3.1, as well as the known fact that the asymptotic subrank

ofM𝑛 is 𝑛2 [52, 66]. For the second pair, we use that the asymptotic

subrank of 𝑇 is known to equal 3. This follows from a characteriza-

tion of asymptotic subrank for a subclass of so-called tight tensors

by Strassen [68]. To separate the moment polytopes, we prove a

correspondence between the maxranks of a tensor to the inclusion

of specific points in its moment polytope. This correspondence was

discovered through computational observations.

3.3 Explicit Non-Free Tensors of All Cubic
Dimensions

Free tensors are a class of tensors that play a special role in several

parts of the theory of moment polytopes and asymptotic spec-

tra [36, 69]. As mentioned, for free tensors it is known the support

functionals and quantum functionals coincide [27], but it is not

known whether they are equal in general. This motivates the search

for explicit examples of non-free tensors. Non-freeness is a generic

property for sufficiently large 𝑛, as follows from a dimension argu-

ment [27, Remark 4.19]. In [29] the dimension of the Zariski-closure

of the set of free tensors in C𝑛 ⊗ C𝑛 ⊗ C𝑛
was determined exactly

to be 4𝑛2 − 3𝑛. This implies that for every 𝑛 ≥ 4 non-free tensors

exist in C𝑛 ⊗ C𝑛 ⊗ C𝑛
. However, no explicit non-free tensors were

known. We construct explicit non-free tensors in every cubic shape

of size 𝑛 ≥ 3. In particular, we establish that already for 𝑛 = 3,

non-free tensors exist, even though random tensors of that shape

are free.

Theorem 3.4. For every𝑛 ≥ 3, the following tensor inC𝑛⊗C𝑛⊗C𝑛

is non-free:

𝑇 =

𝑛−1∑︁
𝑖=1

(
𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖 + 𝑒𝑖 ⊗ 𝑒𝑛 ⊗ 𝑒𝑛

)
+

𝑛−1∑︁
𝑗=1

𝑒𝑛 ⊗ 𝑒 𝑗 ⊗ 𝑒 𝑗+1 .

Moreover, a generic tensor with support in {(𝑖, 𝑗, 𝑗) : 𝑖, 𝑗 ∈ [𝑛 − 1]} ∪
{(𝑛, 𝑗, 𝑗 + 1) : 𝑗 ∈ [𝑛 − 1]} is equivalent to 𝑇 and hence non-free.

For example, for 𝑛 = 4 this corresponds to the tensor

𝑇 =


1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

 .
The construction of this family was inspired by the analysis

of two tensors in C3 ⊗ C3 ⊗ C3
, T2 and T5 (originating from the

classification by Nurmiev [32, 58]), which turned out to be non-free.

Central in our proof is a new general criterion for freeness in terms

of the moment polytope: for tensors whose marginals map to the

minimal norm point of their moment polytope, the tensor is free if

and only if its support can be made free using a unitary change of

bases. We prove this result using machinery from the symplectic-

geometric viewpoint on moment polytopes. Our computational

results allowed us to determine exactly the points of minimal norm

of the moment polytopes of T2 and T5, and to construct the tensors
in their respective orbits that map to these minimum-norm points.

Disproving freeness of the support under unitary base changes

afterwards is then feasible. Using Franz’ characterization of the the

moment polytope [36], we were able to generalize this construction

to larger cubic shapes.

We observe numerically that for small instances of the non-free

tensors constructed above the support functionals and quantum

functionals coincide. The question whether these two functionals

coincide or not in general remains open.

3.4 All Moment Polytopes of Tensors in
C3 ⊗ C3 ⊗ C3

There is a classification of all tensors of this shape by Nurmiev

[32, 58]. Notably, this classification contains families with contin-

uous parameters. We were able to use our algorithms, along with

analytical proofs that certain families have the largest possible mo-

ment polytope, to compute all moment polytopes for tensors in

C3 ⊗ C3 ⊗ C3
. Only the largest possible moment polytope (Kro-

necker polytope) was previously computed for C3 ⊗ C3 ⊗ C3
in

[36] (and for C4 ⊗ C4 ⊗ C4
in [71]). Our computations in particular

reveal all inclusion relations between the moment polytopes in this

format. The results are available at [70].

4 Algorithm for Computing Moment Polytopes
We present an algorithm for computing the moment polytope of

a tensor 𝑇 ∈ C𝑎 ⊗ C𝑏 ⊗ C𝑐 based on the description of moment

polytopes by Franz [36], which characterizes moment polytopes in

terms of the support of the tensor after applying lower-triangular

matrices to the three factors, which we will now discuss.

Denote by supp(𝑇 ) the set of vectors (𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘 ) ∈ R𝑎 × R𝑏 × R𝑐

such that𝑇𝑖, 𝑗,𝑘 ≠ 0 and denote byD the set of triples of vectors with

non-increasing entries (called dominant vectors) in R𝑎 × R𝑏 × R𝑐 .
Write conv𝑄 for the convex hull of a set 𝑄 . Then we define the

Borel polytope of a tensor 𝑆 as

ΔB (𝑆) :=
⋂

(𝐴,𝐵,𝐶 ) ∈GL
lower triangular

conv supp

(
(𝐴 ⊗ 𝐵 ⊗ 𝐶)𝑆

)
∩ D (4.1)

where GL := GL𝑎 ×GL𝑏 ×GL𝑐 . Borel polytopes have a geometric

and representation-theoretic description as well [17, 35]. From the

representation-theoretic description it is possible to deduce that for

every 𝑆 in a dense subset of the orbit GL ·𝑇 , we have ΔB (𝑆) = Δ(𝑇 ).
In fact, this dense subset is exactly described by the non-vanishing

of a certain set of polynomials, and hence equality holds for a

nonempty Zariski-open subset of GL ·𝑇 .
Franz’s description leads to an algorithm for computing mo-

ment polytopes. First generate a random element 𝑆 ∈ GL ·𝑇 , and
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then iterate over all possible supports, for each support checking

whether it is attainable by lower-triangular action on 𝑆 . This last

step can be achieved by solving a polynomial system, and can be

done using symbolic methods such as Gröbner basis computation.

The result will then equal Δ(𝑇 ) with high probability. The random

element may also be described symbolically; in this way Δ(𝑇 ) may

be computed with certainty.

However, this approach quickly becomes unfeasible due to the

exponential number of possible supports, and cannot go much

beyond previous methods. The crucial insight is to instead focus

on the inequalities defining Δ(𝑇 ). The inequalities defining Δ(𝑇 )
(e.g. the inequalities that are tight on some face of Δ(𝑇 )) must all

be defining for at least one of the finitely many terms occuring in

the intersection in Eq. (4.1). We can characterize such inequalities

combinatorially. The first step of our algorithm computes all of

them and stores them into a finite setH .

We call an inequality attainable for 𝑆 whenever there exists

lower triangular matrices (𝐴, 𝐵,𝐶) such that all elements of the

support supp((𝐴 ⊗ 𝐵 ⊗ 𝐶)𝑆) satisfy the inequality. For step two

of our algorithm we iterate over H and keep all ℎ ∈ H that are

attainable. The resulting inequalities H𝑆 will define ΔB (𝑆), after
the straightforward intersection with D. This describes the basic

outline of the algorithms, which we summarize here:

Algorithm 1 Computing the moment polytope Δ(𝑇 ).
1: Determine all candidate inequalitiesH (or retrieve from stor-

age, since this only depends on the dimensions 𝑎, 𝑏, 𝑐).

2: Generate random (or symbolic) 𝑆 ∈ (GL𝑎 ×GL𝑏 ×GL𝑐 ) ·𝑇 .
3: Determine the attainable inequalities H𝑆 ⊆ H with respect

to 𝑆 using Gröbner bases.

4: Determine the polytope defined byH𝑆 and intersect with D.

We also provide a verification algorithm which determines if 𝑃

equals Δ(𝑇 ) for some polytope 𝑃 without requiring iteration over

the large set H . It makes use of the tensor scaling algorithm as

developed in [17] (cf. [18, 19, 34, 38]). Substantial further effort was

required to translate the above procedure into a practical program.

We briefly list a selection of the optimizations essential for making

running times tractable.

• Exploiting symmetries.We make use of the permutation

symmetries of the set of possible supports to greatly improve

the running times for determiningH .

• Filtering via point inclusions. If we know beforehand a

point 𝑝 ∈ Δ(𝑇 ), we can remove all inequalities from H that

exclude it. This greatly reduces the amount of the expensive

symbolic computations required when determining H𝑆 . For

example, the point (𝑒1, 𝑒1, 𝑒1) is always included. Addition-
ally, we prove (and use) that a notion called the maxranks
of 𝑇 leads to the inclusion of certain points in Δ(𝑇 ).

• Filtering generic inequalities. Some inequalities are true

for the moment polytope of any tensor in a given shape.

These inequalities describe the Kronecker polytope, which

has been computed in some cases. We use the Kronecker

polytopes of shapes 3 × 3 × 3 and 4 × 4 × 4 as computed in

[36, 71]. We can include all inequalities valid for it intoH𝑆

by default.

• Modular arithmetic.As discussed, we use Gröbner bases to
determine attainability of inequalities. A known problem in

Gröbner basis algorithms is that of intermediate coefficient

swell [5], which can make computations infeasible due to

memory and runtime issues.We solve the issue by computing

Gröbner basis in some finite field F𝑞 for a large random

prime 𝑞, and argue for the feasibility of this heuristic.

• Heuristics for polytope construction.We observe that

inequalities defining moment polytopes have low “complex-

ity”, in the sense that they are described by vectors with

relatively small integer coefficients. By sorting the candidate

inequalities in H based on their norm, we are likely to find

all defining inequalities early in the loop over H . We can

construct an intermediate outer approximation of the poly-

tope during the loop, and filter the remaining inequalities

for redundancy.

The same idea can be applied to greatly speed up vertex enu-

meration. Vertex enumeration for polyhedra is NP-hard in

the unbounded case [49] (although for our setting of bounded

polytopes, the complexity is open), and in particular imple-

mentations can be slow in scenarios when there are many

redundant inequalities, as is the case for us.

• Derandomization. To verify the results with certainty, it is

required to run Algorithm 1 using a symbolic element in the

orbit of𝑇 . This greatly increases the hardness of the Gröbner

basis computations, and in many cases makes it infeasible

to perform them directly. However, the Gröbner bases for

randomly generated 𝑆 can provide structural information

about this symbolic Gröbner basis. We use this fact to de-

randomize our results in concrete situations. In particular,

we establish the polytopes of all tensors in C3 ⊗ C3 ⊗ C3

with certainty.

5 General Theory
Moment polytopes can be defined not just for tensors but for a

broad range of groups and representations. We can replace the

group GL𝑎 ×GL𝑏 ×GL𝑐 with any reductive algebraic group, which

can be modeled concretely by a subgroup 𝐺 of GL𝑛 , defined by

polynomial equations, that is closed under taking conjugate trans-

poses. This includes for instance all the complex classical Lie groups

and products between them. We can replace the representation

C𝑎 ⊗ C𝑏 ⊗ C𝑐 by any rational representation of 𝐺 , that is, by any

action that is given by polynomials in the matrix entries of the

group element and in det
−1
. This naturally captures applications

such as the well-known Horn’s problem [9, 34] and algorithmic

problems of quiver representations [21, 37, 72], and it enables new

ones, such as symmetric tensors (polynomials) in the setting of

algebraic and geometric complexity theory [20]. Scaling algorithms

generalize naturally to this general setting; see [18] for a structural

and algorithmic account.

Our algorithm generalizes naturally to this setting, and almost all

optimizations that we develop generalize as well. For example, the

permutation symmetries on the set of possible supports corresponds

to symmetries of the so-called Weyl group of𝐺 . Our algorithm can

exploit these symmetries in the same way as we do for tensors.
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6 Outlook
We believe that our algorithm for computing moment polytopes

will be of independent interest for the discovery of relevant patterns

towards examples and conjectures, and that this addition to the

“moment polytope toolbox”, alongside scaling algorithms, will be a

useful tool for future work on moment polytopes. In particular, our

algorithm brings moment polytope computation “up to speed” with

general methods for Kronecker polytope computation, which is

currently known up to C4 ⊗ C4 ⊗ C4
[71] (however, several special

cases for Kronecker polytopes of other (incomparable) shapes are

known as well [43, 50]).

Moment polytopes of tensors can have an exponential number

of vertices and inequalities [17, 18, 37, 61]. Our algorithm does not

improve over previous methods in terms of asymptotic complexity,

only in terms of practicality, with the “experimental mathematics”

goal in mind: generating computationally a large set of examples

from which we can extract general results.

Acknowledgments
MvdB, VL, and MW acknowledge support by the European Re-

search Council (ERC Grant Agreement No. 101040907). MvdB also

acknowledges financial support by the Dutch National Growth

Fund (NGF), as part of the Quantum Delta NL visitor programme.

MC and HN acknowledge financial support from the European

Research Council (ERC Grant Agreement No. 818761), VILLUM

FONDEN via the QMATH Centre of Excellence (Grant No. 10059)

and the Novo Nordisk Foundation (grant NNF20OC0059939 ‘Quan-

tum for Life’). MC also thanks the National Center for Competence

in Research SwissMAP of the Swiss National Science Foundationnd

the Section of Mathematics at the University of Geneva for their

hospitality. Part of this work was completed while MC was Turing

Chair for Quantum Software, associated to the QuSoft research cen-

ter in Amsterdam, acknowledging financial support by the Dutch

National Growth Fund (NGF), as part of the Quantum Delta NL

visitor programme. HN also acknowledges support by the Euro-

pean Union via an ERC grant (QInteract, Grant No. 101078107). MW

also acknowledges the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strat-

egy - EXC 2092 CASA - 390781972, the BMBF (QuBRA, 13N16135;

QuSol, 13N17173) and the Dutch Research Council (NWO grant

OCENW.KLEIN.267). JZ was supported by an NWO Veni grant

VI.Veni.212.284. Views and opinions expressed are those of the au-

thor(s) only and do not necessarily reflect those of the European

Union or the European Research Council Executive Agency. Nei-

ther the European Union nor the granting authority can be held

responsible for them.

References
[1] Arturo Acuaviva, Visu Makam, Harold Nieuwboer, David Pérez-García, Friedrich

Sittner, Michael Walter, and Freek Witteveen. 2023. The minimal canonical form

of a tensor network. In 2023 IEEE 64th Annual Symposium on Foundations of
Computer Science—FOCS 2023. IEEE Computer Soc., Los Alamitos, CA, 328–362.

https://doi.org/10.1109/FOCS57990.2023.00027

[2] Gabriel H. Aguilar, Stephen P. Walborn, Paulo H. Souto Ribeiro, and Lucas C.

Céleri. 2015. Experimental Determination of Multipartite Entanglement with

Incomplete Information. Physical Review X 5, 3 (Sept. 2015), 031042. https:

//doi.org/10.1103/PhysRevX.5.031042

[3] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu,

and Renfei Zhou. 2024. More Asymmetry Yields Faster Matrix Multiplication.

arXiv:2404.16349 [cs.DS]

[4] Murat Altunbulak and Alexander Klyachko. 2008. The Pauli Principle Revisited.

Communications in Mathematical Physics 282, 2 (Sept. 2008), 287–322. https:

//doi.org/10.1007/s00220-008-0552-z

[5] Elizabeth A. Arnold. 2003. Modular Algorithms for Computing Gröbner Bases.

Journal of Symbolic Computation 35, 4 (April 2003), 403–419. https://doi.org/10.

1016/S0747-7171(02)00140-2

[6] Maxim van den Berg, Matthias Christandl, Vladimir Lysikov, Harold Nieuwboer,

Michael Walter, and Jeroen Zuiddam. 2025. Computing moment polytopes of

tensors. (2025). To appear.

[7] Maxim van den Berg, Matthias Christandl, Vladimir Lysikov, Harold Nieuw-

boer, Michael Walter, and Jeroen Zuiddam. 2025. Explicit non-free tensors.

arXiv:2503.22650

[8] Maxim van den Berg, Matthias Christandl, Vladimir Lysikov, Harold Nieuwboer,

Michael Walter, and Jeroen Zuiddam. 2025. The moment polytope of matrix

multiplication is not maximal. arXiv:2503.22633

[9] Nicole Berline, Michèle Vergne, and Michael Walter. 2017. The Horn inequalities

from a geometric point of view. L’Enseignement mathématique 63, 3-4 (2017),
403–470. https://doi.org/10.4171/LEM/63-3/4-7

[10] Andreas Björklund and Petteri Kaski. 2024. The Asymptotic Rank Conjecture and

the Set Cover Conjecture Are Not Both True. In Proceedings of the 56th Annual
ACM Symposium on Theory of Computing (STOC 2024) (Vancouver, BC, Canada).
Association for Computing Machinery, 859–870. https://doi.org/10.1145/3618260.

3649656

[11] Andreas Björklund, Radu Curticapean, Thore Husfeldt, Petteri Kaski, and Kevin

Pratt. 2025. Fast Deterministic Chromatic Number under the Asymptotic Rank

Conjecture. In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2025). 2804–2818. https://doi.org/10.1137/1.9781611978322.91

[12] Markus Bläser. 2013. Fast Matrix Multiplication. Number 5 in Graduate Surveys.

Theory of Computing Library. 1–60 pages. https://doi.org/10.4086/toc.gs.2013.005

[13] Markus Bläser. 2014. Explicit Tensors. In Perspectives in Computational Com-
plexity: The Somenath Biswas Anniversary Volume, Manindra Agrawal and Vikra-

man Arvind (Eds.). Springer International Publishing, Cham, 117–130. https:

//doi.org/10.1007/978-3-319-05446-9_6

[14] Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, Eric Naslund,

William F. Sawin, and Chris Umans. 2017. On cap sets and the group-theoretic

approach to matrix multiplication. Discrete Analysis (2017). Issue 3. https:

//doi.org/10.19086/da.1245

[15] Michel Brion. 1987. Sur l’image de l’application moment. In Séminaire d’algèbre
Paul Dubreil et Marie-Paule Malliavin (Paris, 1986). Lecture Notes in Mathematics,

Vol. 1296. Springer, Berlin, 177–192. https://doi.org/10.1007/BFb0078526

[16] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. 1997. Al-
gebraic complexity theory. Grundlehren der mathematischen Wissenschaften,

Vol. 315. Springer-Verlag, Berlin. xxiv+618 pages. https://doi.org/10.1007/978-3-

662-03338-8

[17] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and

Avi Wigderson. 2018. Efficient algorithms for tensor scaling, quantum marginals,

and moment polytopes. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS 2018). IEEE, 883–897. https://doi.org/10.1109/FOCS.2018.
00088

[18] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and

Avi Wigderson. 2019. Towards a Theory of Non-Commutative Optimization:

Geodesic 1st and 2nd Order Methods for Moment Maps and Polytopes. In 2019
IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS 2019).
845–861. https://doi.org/10.1109/FOCS.2019.00055

[19] Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigder-

son. 2018. Alternating Minimization, Scaling Algorithms, and the Null-Cone

Problem from Invariant Theory. In 9th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

https://doi.org/10.4230/LIPIcs.ITCS.2018.24

[20] Peter Bürgisser and Christian Ikenmeyer. 2011. Geometric complexity theory

and tensor rank. In Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing (STOC 2011) (San Jose, California, USA). Association for

Computing Machinery, New York, NY, USA, 509–518. https://doi.org/10.1145/

1993636.1993704

[21] Calin Chindris, Brett Collins, and Daniel Kline. 2025. Hive-type polytopes for

quiver multiplicities and the membership problem for quiver moment cones.

Algebraic Combinatorics 8, 1 (2025), 175–199. https://doi.org/10.5802/alco.398

[22] Matthias Christandl, Angelo Lucia, Péter Vrana, and Albert H. Werner. 2020.

Tensor Network Representations from the Geometry of Entangled States. SciPost
Physics 9, 3 (Sept. 2020), 042. https://doi.org/10.21468/SciPostPhys.9.3.042

[23] Matthias Christandl, Vladimir Lysikov, Vincent Steffan, Albert H. Werner, and

Freek Witteveen. 2024. The resource theory of tensor networks. Quantum 8 (Dec.

2024), 1560. https://doi.org/10.22331/q-2024-12-11-1560

[24] Matthias Christandl, Vladimir Lysikov, and Jeroen Zuiddam. 2023. Weighted

slice rank and a minimax correspondence to Strassen’s spectra. Journal de
Mathématiques Pures et Appliquées 172 (2023), 299–329. https://doi.org/10.1016/

j.matpur.2023.02.006

763

https://doi.org/10.1109/FOCS57990.2023.00027
https://doi.org/10.1103/PhysRevX.5.031042
https://doi.org/10.1103/PhysRevX.5.031042
https://arxiv.org/abs/2404.16349
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1016/S0747-7171(02)00140-2
https://doi.org/10.1016/S0747-7171(02)00140-2
https://arxiv.org/abs/2503.22650
https://arxiv.org/abs/2503.22633
https://doi.org/10.4171/LEM/63-3/4-7
https://doi.org/10.1145/3618260.3649656
https://doi.org/10.1145/3618260.3649656
https://doi.org/10.1137/1.9781611978322.91
https://doi.org/10.4086/toc.gs.2013.005
https://doi.org/10.1007/978-3-319-05446-9_6
https://doi.org/10.1007/978-3-319-05446-9_6
https://doi.org/10.19086/da.1245
https://doi.org/10.19086/da.1245
https://doi.org/10.1007/BFb0078526
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1109/FOCS.2018.00088
https://doi.org/10.1109/FOCS.2018.00088
https://doi.org/10.1109/FOCS.2019.00055
https://doi.org/10.4230/LIPIcs.ITCS.2018.24
https://doi.org/10.1145/1993636.1993704
https://doi.org/10.1145/1993636.1993704
https://doi.org/10.5802/alco.398
https://doi.org/10.21468/SciPostPhys.9.3.042
https://doi.org/10.22331/q-2024-12-11-1560
https://doi.org/10.1016/j.matpur.2023.02.006
https://doi.org/10.1016/j.matpur.2023.02.006


Computing Moment Polytopes of Tensors, with Applications in Algebraic Complexity andQuantum Information STOC ’25, June 23–27, 2025, Prague, Czechia

[25] Matthias Christandl and Graeme Mitchison. 2006. The spectra of quantum states

and the Kronecker coefficients of the symmetric group. Communications in
Mathematical Physics 261, 3 (2006), 789–797. https://doi.org/10.1007/s00220-005-

1435-1

[26] Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. 2021. Barriers for Fast

Matrix Multiplication from Irreversibility. Theory of Computing 17, 2 (2021), 1–32.
https://doi.org/10.4086/toc.2021.v017a002

[27] Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. 2021. Universal Points

in the Asymptotic Spectrum of Tensors. Journal of the American Mathe-
matical Society 36, 1 (Nov. 2021), 31–79. https://doi.org/10.1090/jams/996

arXiv:1709.07851 [quant-ph]

[28] Juan Ignacio Cirac, David Pérez-García, Norbert Schuch, and Frank Verstraete.

2021. Matrix Product States and Projected Entangled Pair States: Concepts,

Symmetries, and Theorems. Reviews of Modern Physics 93, 4 (2021), 045003.

https://doi.org/10.1103/RevModPhys.93.045003

[29] Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, Emanuele Ventura, and

Yao Wang. 2021. Towards a Geometric Approach to Strassen’s Asymptotic

Rank Conjecture. Collectanea Mathematica 72, 1 (Jan. 2021), 63–86. https:

//doi.org/10.1007/s13348-020-00280-8

[30] Don Coppersmith and Shmuel Winograd. 1990. Matrix multiplication via arith-

metic progressions. Journal of Symbolic Computation 9, 3 (1990), 251–280.

https://doi.org/10.1016/S0747-7171(08)80013-2

[31] Harm Derksen. 2022. The G-stable rank for tensors and the cap set problem.

Algebra & Number Theory 16, 5 (2022), 1071 – 1097. https://doi.org/10.2140/ant.

2022.16.1071

[32] Sabino Di Trani, Willem A. de Graaf, and Alessio Marrani. 2023. Classification of

Real and Complex Three-Qutrit States. J. Math. Phys. 64, 9 (Sept. 2023), 091701.
https://doi.org/10.1063/5.0156805

[33] Wolfgang Dür, Guifré Vidal, and Juan Ignacio Cirac. 2000. Three qubits can be

entangled in two inequivalent ways. Physical Review. A. Third Series 62, 6 (2000),
062314, 12. https://doi.org/10.1103/PhysRevA.62.062314

[34] Cole Franks. 2018. Operator scaling with specified marginals. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018)
(Los Angeles, CA, USA). Association for Computing Machinery, New York, NY,

USA, 190–203. https://doi.org/10.1145/3188745.3188932

[35] Cole Franks and Michael Walter. 2022. Minimal length in an orbit closure as a

semiclassical limit. arXiv:2004.14872 [math.AG]

[36] Matthias Franz. 2002. Moment polytopes of projective𝐺-varieties and tensor

products of symmetric group representations. Journal of Lie Theory 12, 2 (2002),

539–549. https://www.emis.de/journals/JLT/vol.12_no.2/16.html

[37] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. 2017. Algorith-

mic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling.

In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting (Montreal, Canada) (STOC 2017). Association for Computing Machinery,

New York, NY, USA, 397–409. https://doi.org/10.1145/3055399.3055458

[38] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. 2020. Operator

scaling: theory and applications. Foundations of Computational Mathematics 20,
2 (2020), 223–290.

[39] Fulvio Gesmundo, J. M. Landsberg, and Michael Walter. 2018. Matrix Product

States and the Quantum Max-Flow/Min-Cut Conjectures. J. Math. Phys. 59, 10
(Oct. 2018), 102205. https://doi.org/10.1063/1.5026985

[40] Fulvio Gesmundo, Vladimir Lysikov, and Vincent Steffan. 2024. Quantum Max-

flow in the Bridge Graph. Transformation Groups (July 2024). https://doi.org/10.

1007/s00031-024-09863-2

[41] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. 1989. Going

beyond Bell’s theorem. In Bell’s theorem, quantum theory and conceptions of the
universe. Springer, 69–72. https://doi.org/10.1007/978-94-017-0849-4

[42] Yong-Jian Han, Yong Sheng Zhang, and Guang Can Guo. 2004. Compatible

conditions, entanglement, and invariants. Physical Review. A. Third Series 70, 4
(2004), 042309, 9. https://doi.org/10.1103/PhysRevA.70.042309

[43] Atsushi Higuchi, Anthony Sudbery, and Jason Szulc. 2003. One-Qubit Reduced

States of a Pure Many-Qubit State: Polygon Inequalities. Physical Review Letters
90 (March 2003), 107902. Issue 10. https://doi.org/10.1103/PhysRevLett.90.107902

[44] Hiroshi Hirai, Harold Nieuwboer, and Michael Walter. 2023. Interior-point meth-

ods on manifolds: theory and applications. In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE, 2021–2030.

[45] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki.

2009. Quantum entanglement. Reviews of Modern Physics 81, 2 (2009), 865–942.
https://doi.org/10.1103/RevModPhys.81.865

[46] Asger Kjærulff Jensen and Péter Vrana. 2020. The Asymptotic Spectrum of

LOCC Transformations. IEEE Transactions on Information Theory 66, 1 (Jan. 2020),

155–166. https://doi.org/10.1109/TIT.2019.2927555

[47] Petteri Kaski and Mateusz Michałek. 2025. A Universal Sequence of Tensors for

the Asymptotic Rank Conjecture. In 16th Innovations in Theoretical Computer
Science Conference (ITCS 2025) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 325), Raghu Meka (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 64:1–64:24. https://doi.org/10.4230/LIPIcs.ITCS.

2025.64

[48] George Kempf and Linda Ness. 1979. The Length of Vectors in Representation

Spaces. In Algebraic Geometry, Knud Lønsted (Ed.). Vol. 732. Springer Berlin

Heidelberg, Berlin, Heidelberg, 233–243. https://doi.org/10.1007/BFb0066647

[49] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir

Gurvich. 2008. Generating all vertices of a polyhedron is hard. Discrete &
Computational Geometry. An International Journal of Mathematics and Computer
Science 39, 1-3 (2008), 174–190. https://doi.org/10.1007/s00454-008-9050-5

[50] Alexander Klyachko. 2004. Quantum Marginal Problem and Representations of

the Symmetric Group. arXiv:quant-ph/0409113

[51] Alexander Klyachko. 2006. Quantum marginal problem and N-representability.

Journal of Physics: Conference Series 36, 1 (2006), 72. https://doi.org/10.1088/1742-

6596/36/1/014

[52] Swastik Kopparty, Guy Moshkovitz, and Jeroen Zuiddam. 2023. Geometric Rank

of Tensors and Subrank of Matrix Multiplication. Discrete Analysis (April 2023).
https://doi.org/10.48550/arXiv.2002.09472

[53] Joseph M. Landsberg and Giorgio Ottaviani. 2013. Equations for secant varieties

of Veronese and other varieties. Annali di Matematica Pura ed Applicata. Series
IV 192, 4 (2013), 569–606. https://doi.org/10.1007/s10231-011-0238-6

[54] Joseph M. Landsberg and Giorgio Ottaviani. 2015. New lower bounds for the

border rank of matrix multiplication. Theory of Computation 11 (2015), 285–298.

https://doi.org/10.4086/toc.2015.v011a011

[55] Shachar Lovett. 2019. The analytic rank of tensors and its applications. Discrete
Analysis (2019), Paper No. 7, 10. https://doi.org/10.19086/da.8654

[56] David Mumford, John Fogarty, and Frances Kirwan. 1994. Geometric Invariant
Theory (3rd ed.). Ergebnisse Der Mathematik Und Ihrer Grenzgebiete (2) [Results

in Mathematics and Related Areas (2)], Vol. 34. Springer-Verlag, Berlin. xiv+292

pages. https://doi.org/10.1007/978-3-642-57916-5

[57] Linda Ness and David Mumford. 1984. A Stratification of the Null Cone Via

the Moment Map. American Journal of Mathematics 106, 6 (Dec. 1984), 1281.

https://doi.org/10.2307/2374395

[58] Anvar G. Nurmiev. 2000. Orbits and Invariants of Cubic Matrices of Order

Three. Sbornik: Mathematics 191, 5 (June 2000), 717. https://doi.org/10.1070/

SM2000v191n05ABEH000478

[59] Kevin Pratt. 2024. A Stronger Connection between the Asymptotic Rank Con-

jecture and the Set Cover Conjecture. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing (STOC 2024) (Vancouver, BC, Canada). As-
sociation for Computing Machinery, New York, NY, USA, 871–874. https:

//doi.org/10.1145/3618260.3649620

[60] Ran Raz. 2013. Tensor-Rank and Lower Bounds for Arithmetic Formulas. J. ACM
60, 6, Article 40 (Nov. 2013), 15 pages. https://doi.org/10.1145/2535928

[61] Nicolas Ressayre. 2018. Personal communication.

[62] Adam Sawicki, Michael Walter, and Marek Kuś. 2013. When is a pure state of

three qubits determined by its single-particle reduced density matrices? Journal
of Physics A: Mathematical and Theoretical 46, 5 (2013), 055304. https://doi.org/

10.1088/1751-8113/46/5/055304

[63] Volker Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13, 4
(1969), 354–356. https://doi.org/10.1007/BF02165411

[64] Volker Strassen. 1983. Rank and Optimal Computation of Generic Tensors.

Linear Algebra Appl. 52–53 (July 1983), 645–685. https://doi.org/10.1016/0024-

3795(83)80041-X

[65] Volker Strassen. 1986. The Asymptotic Spectrum of Tensors and the Exponent of

Matrix Multiplication. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986. IEEE Computer Society, 49–54.

https://doi.org/10.1109/SFCS.1986.52

[66] Volker Strassen. 1987. Relative bilinear complexity and matrix multiplication.

Journal für die reine und angewandte Mathematik 1987, 375-376 (Jan. 1987), 406–

443. https://doi.org/10.1515/crll.1987.375-376.406

[67] Volker Strassen. 1988. The asymptotic spectrum of tensors. Journal für die Reine
und Angewandte Mathematik. 384 (1988), 102–152. https://doi.org/10.1515/crll.

1988.384.102

[68] Volker Strassen. 1991. Degeneration and complexity of bilinear maps: Some

asymptotic spectra. Journal für die reine und angewandte Mathematik 413 (1991),

127–180. https://doi.org/10.1515/crll.1991.413.127

[69] Volker Strassen. 2005. Komplexität Und Geometrie Bilinearer Abbildungen.

Jahresbericht der Deutschen Mathematiker-Vereinigung 107, 1 (2005), 3–31.

[70] Maxim van den Berg, Matthias Christandl, Vladimir Lysikov, Harold Nieuwboer,

Michael Walter, and Jeroen Zuiddam. 2025. Tensor moment polytopes repository.

https://github.com/qi-rub/tensor_moment_polytopes.

[71] Michèle Vergne and Michael Walter. 2017. Inequalities for moment cones of

finite-dimensional representations. Journal of Symplectic Geometry 15 (Jan. 2017),

1209–1250. https://doi.org/10.4310/JSG.2017.v15.n4.a8

[72] Michèle Vergne and Michael Walter. 2023. Moment cone membership for quivers

in strongly polynomial time. arXiv:2303.14821 [cs.CC]

[73] Frank Verstraete, Jeroen Dehaene, Bart De Moor, and Henri Verschelde. 2002.

Four Qubits Can Be Entangled in Nine Different Ways. Physical Review A 65, 5

(April 2002), 052112. https://doi.org/10.1103/PhysRevA.65.052112

[74] Péter Vrana. 2023. A Family of Multipartite Entanglement Measures. Communi-
cations in Mathematical Physics 402, 1 (Aug. 2023), 637–664. https://doi.org/10.

764

https://doi.org/10.1007/s00220-005-1435-1
https://doi.org/10.1007/s00220-005-1435-1
https://doi.org/10.4086/toc.2021.v017a002
https://doi.org/10.1090/jams/996
https://arxiv.org/abs/1709.07851
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1007/s13348-020-00280-8
https://doi.org/10.1007/s13348-020-00280-8
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.2140/ant.2022.16.1071
https://doi.org/10.2140/ant.2022.16.1071
https://doi.org/10.1063/5.0156805
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1145/3188745.3188932
https://arxiv.org/abs/2004.14872
https://www.emis.de/journals/JLT/vol.12_no.2/16.html
https://doi.org/10.1145/3055399.3055458
https://doi.org/10.1063/1.5026985
https://doi.org/10.1007/s00031-024-09863-2
https://doi.org/10.1007/s00031-024-09863-2
https://doi.org/10.1007/978-94-017-0849-4
https://doi.org/10.1103/PhysRevA.70.042309
https://doi.org/10.1103/PhysRevLett.90.107902
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1109/TIT.2019.2927555
https://doi.org/10.4230/LIPIcs.ITCS.2025.64
https://doi.org/10.4230/LIPIcs.ITCS.2025.64
https://doi.org/10.1007/BFb0066647
https://doi.org/10.1007/s00454-008-9050-5
https://arxiv.org/abs/quant-ph/0409113
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.48550/arXiv.2002.09472
https://doi.org/10.1007/s10231-011-0238-6
https://doi.org/10.4086/toc.2015.v011a011
https://doi.org/10.19086/da.8654
https://doi.org/10.1007/978-3-642-57916-5
https://doi.org/10.2307/2374395
https://doi.org/10.1070/SM2000v191n05ABEH000478
https://doi.org/10.1070/SM2000v191n05ABEH000478
https://doi.org/10.1145/3618260.3649620
https://doi.org/10.1145/3618260.3649620
https://doi.org/10.1145/2535928
https://doi.org/10.1088/1751-8113/46/5/055304
https://doi.org/10.1088/1751-8113/46/5/055304
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/0024-3795(83)80041-X
https://doi.org/10.1016/0024-3795(83)80041-X
https://doi.org/10.1109/SFCS.1986.52
https://doi.org/10.1515/crll.1987.375-376.406
https://doi.org/10.1515/crll.1988.384.102
https://doi.org/10.1515/crll.1988.384.102
https://doi.org/10.1515/crll.1991.413.127
https://github.com/qi-rub/tensor_moment_polytopes
https://doi.org/10.4310/JSG.2017.v15.n4.a8
https://arxiv.org/abs/2303.14821
https://doi.org/10.1103/PhysRevA.65.052112
https://doi.org/10.1007/s00220-023-04731-8
https://doi.org/10.1007/s00220-023-04731-8


STOC ’25, June 23–27, 2025, Prague, Czechia Maxim van den Berg, Matthias Christandl, Vladimir Lysikov, Harold Nieuwboer, Michael Walter, and Jeroen Zuiddam

1007/s00220-023-04731-8

[75] Michael Walter, Brent Doran, David Gross, and Matthias Christandl. 2013. Entan-

glement Polytopes: Multiparticle Entanglement from Single-Particle Information.

Science 340, 6137 (2013), 1205–1208. https://doi.org/10.1126/science.1232957

[76] Walter, Michael. 2014. Multipartite Quantum States and their Marginals. Ph. D.
Dissertation. ETH Zurich. https://doi.org/10.3929/ETHZ-A-010250985

[77] Avi Wigderson and Jeroen Zuiddam. 2022. Asymptotic spectra: Theory, applica-

tions and extensions. https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf

[78] Yuan-Yuan Zhao, Markus Grassl, Bei Zeng, Guo-Yong Xiang, Chao Zhang, Chuan-

Feng Li, and Guang-Can Guo. 2017. Experimental Detection of Entanglement

Polytopes via Local Filters. npj Quantum Information 3, 1 (March 2017), 1–7.

https://doi.org/10.1038/s41534-017-0007-5

765

https://doi.org/10.1007/s00220-023-04731-8
https://doi.org/10.1126/science.1232957
https://doi.org/10.3929/ETHZ-A-010250985
https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf
https://doi.org/10.1038/s41534-017-0007-5

	Abstract
	1 Introduction
	2 Tensors, their Moment Polytopes, and Applications to Algebraic Complexity and Entanglement
	2.1 Tensors as Quantum States
	2.2 Algebraic Complexity Theory
	2.3 Strassen's Asymptotic Spectrum and the Quantum Functionals
	2.4 Non-Free Tensors
	2.5 Polytope Inclusion

	3 Results
	3.1 Separation of Moment Polytope of Matrix Multiplication and Unit Tensors
	3.2 Moment Polytopes are Not an Asymptotic Restriction Monotone
	3.3 Explicit Non-Free Tensors of All Cubic Dimensions
	3.4 All Moment Polytopes of Tensors in C3 (x) C3 (x) C3

	4 Algorithm for Computing Moment Polytopes
	5 General Theory
	6 Outlook
	Acknowledgments
	References

