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Abstract

Tensors play a central role in various areas of computer science and
mathematics, such as algebraic complexity theory (matrix multipli-
cation), quantum information theory (entanglement), and additive
combinatorics (slice rank). Fundamental problems about tensors are
strongly tied to well-known questions in computational complexity
— such as the problem of determining the matrix multiplication ex-
ponent via asymptotic rank, and the stronger Strassen asymptotic
rank conjecture, which has recently been intimately linked to a
whole range of computational problems.

Unlike matrices, which are often well understood through their
rank, tensors have such intricate structure that understanding them
(and aforementioned problems) requires information of a more
subtle nature. The moment polytope, going back decades to work
in symplectic geometry, invariant theory, and representation theory,
is a mathematical object associated to any tensor that collects such
“rank-like” information. Their relevance has become apparent in
several areas: (1) through applications in geometric complexity
theory (GCT), (2) in the construction of functions in Strassen’s
asymptotic spectrum of tensors, (3) as entanglement polytopes in
quantum information theory, and (4) in optimization via scaling
algorithms.

Despite their fundamental role and interest from many angles,
little is known about these polytopes, and in particular for tensors
beyond C? @ C? ® C? and C? ® C2? ® C? ® C? only sporadically
have they been computed. Even less is known about the polytopes’
inclusions and separations (which are particularly relevant for ap-
plications).

We give a new algorithm for computing moment polytopes of
tensors (and in fact moment polytopes for a natural general class
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of reductive algebraic groups) based on a mathematical characteri-
zation of moment polytopes by Franz. This algorithm enables us
to compute moment polytopes of tensors of dimension an order of
magnitude larger than previous methods, allowing us to compute
with certainty, for the first time, all moment polytopes of tensors
in C3 ® C3 ® C3, and with high probability those in C* ® C* ® C2.

Towards an open problem in geometric complexity theory, we
prove (guided by moment polytopes computed with our algorithm)
separations between the moment polytopes of matrix multiplication
tensors and unit tensors, showing in particular that the matrix
multiplication moment polytopes are not maximal (i.e., not equal
to the corresponding Kronecker polytopes).

As a consequence of the above, we obtain a no-go result for a
certain operational characterization of moment polytope inclusion,
by proving that Strassen’s asymptotic restriction on tensors does
not imply moment polytope inclusion.

Finally, based on our algorithmic observations, we construct
explicit (concise) non-free tensors in every format C"®C"®C", thus
solving a “hay in a haystack” problem for this generic property that
plays an important role in Strassen’s theory of asymptotic spectra.
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« Computing methodologies — Algebraic algorithms; - Math-
ematics of computing — Mathematical software; « Theory of
computation — Algebraic complexity theory.
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1 Introduction

Tensors play a central role in various areas of computer science and
mathematics, such as algebraic complexity theory, quantum infor-
mation theory, and additive combinatorics [12, 16, 29, 55]. Indeed,
fundamental open problems about tensors are strongly tied to ques-
tions in computational complexity. A well-known such problem is to
determine the matrix multiplication exponent, which corresponds
to the asymptotic rank of the matrix multiplication tensor. This
problem has been studied for decades from many angles (computa-
tional, geometric, algebraic) [3, 14, 20, 53, 54, 63, 65, 77]. The theory
developed for these tensors has carved out classes of tensors with
special, relevant properties (e.g., tight and free tensors [29, 30, 68]).
A central conjecture in this area is Strassen’s asymptotic rank con-
jecture, which has long been known to be intimately linked to the
matrix multiplication exponent, and a recent burst of results has
developed a range of strong connections between this conjecture
and problems in computational complexity theory [10, 11, 47, 59].
Related to this, often described as “finding hay in a haystack”, it is
an open problem to construct explicit tensors that have large tensor
rank (despite random tensors having that property!); achieving
this would have far-reaching consequences [13, 60]. In quantum
information theory, tensors are the natural formalism to study mul-
tipartite entangled quantum states, their applications, and relations
under local operations, leading to fundamental problems like the
quantum marginal problem [25, 33, 41, 45, 51, 73, 76].

Whereas matrices are understood through simple invariants
like their rank, tensors have such intricate structure and relations
that understanding them (and aforementioned problems) requires
information of a richer nature. The moment polytope is a mathemat-
ical object associated to any tensor that collects such fundamental
“rank-like” information, in a precise sense that allows several dif-
ferent characterizations. Going back decades to fundamental work
in symplectic geometry, invariant theory, and representation the-
ory [15, 48, 56, 57], the relevance of moment polytopes has become
apparent in several areas:

e in algebraic complexity theory as potential obstructions in
geometric complexity theory (GCT) [20] (through under-
standing inclusions and separations between moment poly-
topes),

e as the basis for the construction of elements in Strassen’s
asymptotic spectrum [27, 65] (the subject of Strassen’s duality
theorem for asymptotic rank and the matrix multiplication
exponent),

e in quantum information as entanglement polytopes that char-
acterize entanglement in terms of the reachable quantum
marginals [75], and

e in optimization through a class of algorithms called scaling
algorithms, which optimize over such polytopes [17-19, 34,
38, 44].

Despite their fundamental role and the interest they have re-
ceived from mathematical and computational angles, much is still
unknown about moment polytopes. In particular, they are notori-
ously hard to compute. For tensors beyond C? ® C2 ® C? [42, 62, 75]
and C? ® C? ® C? ® C? [75] only sporadically have they been deter-
mined. Moreover, little is known about inclusions and separations
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between moment polytopes, and about their operational meaning,
which is particularly relevant for aforementioned applications.

In this paper, based on a characterization of moment polytopes
by Franz [36] we introduce an algorithm to compute moment poly-
topes of tensors and more general group representations. This
algorithm computes for the first time the moment polytopes of all
tensors in C? @ C3 @ C3 with certainty (in seconds), as well as those
in C* ® C* ® C* with high probability. A new tool in the “moment
polytope toolbox”, this algorithm, and in particular the resulting
concrete description of all moment polytopes in these shapes, can
form a starting point for proving new structural results on moment
polytopes. As one such result, we separate moment polytopes of
matrix multiplication tensors from moment polytopes of unit ten-
sors for a certain range of sizes. This is the first progress towards
an open problem in geometric complexity theory [20, Problem 7.3]
of determining these polytopes and their relations. In quantum
information theory, this result implies that three pair-wise shared
Einstein—Podolski-Rosen (EPR) pairs do not have the largest possi-
ble entanglement polytope, and thus cannot exhibit the full range
of local marginals under stochastic local operations and classical
communication (SLOCC). These separations moreover lead to up-
per bounds on border subrank (and subsequently, with more work,
a different proof of the optimal border subrank result of [52]); we
leave it as an open problem to determine the full power of sepa-
rations obtained by moment polytopes. As a consequence we also
obtain a no-go result on the operational meaning of moment poly-
tope inclusion. Finally, we give, inspired by moment polytope data,
the first construction of explicit non-free tensors (whose existence
hitherto had only been established by dimension arguments [29]).

New results. Our results come in two parts: an algorithmic part and
three structural results on moment polytopes.

e We give a new algorithm for computing moment polytopes
of tensors based on a mathematical characterization by Franz
[36], optimized for practical use and able to compute moment
polytopes of tensors of dimension an order of magnitude
larger than previous methods. This allows us to compute
for the first time exactly all moment polytopes of tensors in
3 ® C® ® C3 with certainty and in C* ® C* ® C* with high
probability. (Our algorithm is in fact much more general and
applies to moment polytopes for general reductive groups
acting by linear maps on finite-dimensional vector spaces.)

e Towards an open problem of Biirgisser and Ikenmeyer in
geometric complexity theory [20], we prove (inspired by
experimental data obtained using the above algorithm) sepa-
rations between the moment polytopes of matrix multiplica-
tion tensors and unit tensors, showing in particular that the
matrix multiplication moment polytopes are not maximal.

o As a consequence of the above, we obtain a no-go result for
a certain operational characterization of moment polytope
inclusion: we prove that Strassen’s asymptotic restriction
[66] on tensors does not imply moment polytope inclusion.

e Based on our algorithmic data, we construct explicit (concise)
non-free tensors in every cubic format C" ® C" @ C" for
n > 3, thus solving a type of “hay in a haystack” problem
for this generic property [29] that plays a central role in
Strassen’s theory of asymptotic spectra [27, 69].
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2 Tensors, their Moment Polytopes, and
Applications to Algebraic Complexity and
Entanglement

We give here a brief overview of the context and background of
this work on tensors and moment polytopes in various areas before
we discuss our results in Section 3.

2.1 Tensors as Quantum States

In quantum information theory, tensors describe pure quantum
states of multipartite finite-dimensional quantum systems. For ex-
ample, a tensor T € C? ® CP ® C¢ of norm one describes a pure
quantum state of a quantum system composed of three local sys-
tems (also called subsystems) C4, cb ,and C¢. The tensor T describes
the global state, including entanglement between the local systems.
The local state in each system is described by a Hermitian linear
operator on the local system. These linear operators are called
marginal density matrices (akin to marginal distributions in proba-
bility theory), and they can be defined as taking the partial trace of
TT* € C%*@ @ Cb*b @ C€*¢ with respect to the other two systems.
For example, the marginal density matrix of the first system is a
Hermitian matrix of shape a X a.

A central goal in quantum information theory is to establish
entanglement monotones. These are measures that cannot increase
under local operations. Examples of such operations are: acting by
unitary matrices on the local systems (LU), LU operations with clas-
sical communication (LOCC), and LOCC operations with nonzero
success probability (SLOCC). Mathematically, SLOCC operations
correspond to applying matrices A, B, and C on the local systems,
viaS=(A®B®C)T.

Moment polytopes are fundamental entanglement monotones,
and hence are also called entanglement polytopes [75]. They suc-
cinctly describe constraints on which states the tensor T can be
transformed into by SLOCC operations and taking limits. That is,
we act by invertible matrices A, B, and C on T but allow also the
limits of tensors obtained in this way. We denote the set of all such
tensors by (GL, X GLj, X GL;)T, where GL,, denotes the invertible
n X n matrices, and the line indicates we include limit points. The
eigenvalues of the three Hermitian marginal density operators are
real, and when the tensor has unit norm they also sum to one (hence
form a probability distribution). Because we can diagonalize using
LU operations, these eigenvalues classify the operators. Denote
with rq(T) the eigenvalues of the first marginal density matrix,
sorted from big to small. Similarly define r(T) and r3(T). Then we
can define the moment polytope A(T) of T as

A(T) = {(rl(S),rg(S),r3(S)) (s eGL T |I§] = 1}
C R xR? xR,

where GL = GL, ® GLj, ® GL.. Even for tensors of a relatively
small size, determining the moment polytope can be rather difficult.

One particular motivation for studying moment polytopes comes
from matrix product states (MPS) [1, 22, 28, 39, 40]. Consider a sys-
tem with k sites arranged on a circle, and give each pair of adjacent
systems one maximally entangled pair of dimension n; call the re-
sulting tensor T. Then the MPS on k sites with bond dimension n
are exactly those tensors which can be obtained from T by SLOCC.
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Thus, the moment polytope of T characterizes the collections of
one-body marginal density operators that can be realized (or approx-
imated arbitrarily closely) using MPS of the given bond dimension.
We show that for any k > 3 and any n > 2, matrix product states
obey interesting constraints on top of those that are inherent from
being the marginal density operators of a (pure) quantum state.
Our techniques and results may also lead to new insights in other
connectivity scenarios for tensor networks [23].

As moment polytopes characterize the one-body marginal den-
sity operators reachable from of a multi-party quantum state, they
can be used to witness many-particle entanglement from single-
particle data [75]. This test has been used in experiments [2, 78],
and is relevant in the understanding of Pauli’s principle [4]. Up
to now, such experiments have been limited to qubits, since the
polytopes of larger dimensional tensors were not known; with our
algorithm, we have been able to extend knowledge of these poly-
topes to three qutrits and further. The test could readily be used
experimentally in order to witness new types of entanglement.

2.2 Algebraic Complexity Theory

In algebraic complexity theory, tensors correspond to bilinear com-
putational problems [16]. Examples include the matrix multipli-
cation tensor M,, € o’ @ @ C”’ describing the multiplica-
tion of two n X n matrices, the polynomial multiplication tensors
Pop €C?® CP @ C2*0=1 describing the multiplication of two uni-
variate polynomials of degrees a — 1 and b — 1, and the unit tensor
Ur =37 _1ei®e ®e € C" ®C" ®C" describing elementwise
multiplication of two vectors of length r. The complexity of these
problems corresponds to the number of required multiplications
between the two inputs, which is called the rank of the tensor. Re-
strictions apply linear transformations to the inputs and the output
separately, and we write T < S whenever T = (A ® B® C)S for
some matrices A, B, and C of suitable sizes. Whenever there exists a
restriction T < S, this means we can compute T using as many mul-
tiplications between inputs as is required for S. Naturally, we may
define the rank R(T) of T as the smallest r € N such that T < U,.

A central open problem is to determine the asymptotic complex-
ity of matrix multiplication. The goal is to determine the smallest
(in the sense of infimum) real number w such that R(M,) = O(n®).
This number is called the matrix multiplication exponent [64]. The
best known upper bound is w < 2.3721339... [3], and the best
known lower bound is w > 2.

An important property of matrix multiplication is its recursive
structure. Indeed, block matrices can be multiplied block-wise. This
property is observed in the tensor by the fact that the Kronecker
product of two matrix multiplication tensors gives another matrix
multiplication tensor: Mp,, ® My = Mp,¢. As a consequence, knowing
the behaviour of R(M?") for large n allows us to determine w. We
define the asymptotic rank as R(T) = limp—c0 R(T®")1/", where
the limit can be replaced by an infimum by Fekete’s lemma. It can
be shown that R(Mz) = 2%. In fact, here My can be replaced with
any matrix multiplication tensor of fixed shape to characterize .

The moment polytope of T describes representation-theoretic
properties of tensor powers T®". These come in the form of discrete
data given by triples of integer vectors (4, u,v) € N% x NP x N¢
with non-negative and non-increasing entries that each sum to n
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(Young diagrams). There exist natural projections of T®" to cer-
tain tensors [T®"] Ay With strong representation-theoretic or
invariant-theoretic properties. The moment polytope of T describes
the (A, p, v) such that this projection is non-zero, each normalized
to a triple of probability distributions, that is,

A(T) = { (’% 5 %) } (Apv) st [T®],,, #0 } 2.1)

where the closure is the Euclidean closure. It turns out that among
all moment polytopes A(T) for tensors in a given space C4®C? @C*
there is a maximal one (which is also obtained for “generic” tensors).
This polytope is also known as the Kronecker polytope, called so
because it captures precisely the asymptotic support of the Kro-
necker coefficients in the representation theory of the symmetric
group [50, 71]. An important questions is as follows: What are
the moment polytopes of important computational problems? This
question was raised by Ikenmeyer and Biirgisser concerning specif-
ically M, and U, [20]. They computed a related but different kind
of polytope for these tensors and showed that they are maximal.
We make progress towards answering their question for the mo-
ment polytopes proper by finding explicit points that are contained
in the moment polytope of A(U,) but not in A(M,,), for certain
n, r, showing in particular that the moment polytope of the matrix
multiplication tensor is not maximal.

2.3 Strassen’s Asymptotic Spectrum and the
Quantum Functionals

Moment polytopes play a central role in algebraic complexity theory
in the construction of quantum functionals [27], which combines the
geometric and representation-theoretic perspectives. The quantum
functionals are a family of functions from k-tensors to Rxo, which
map U, to r for every r € N and are monotone under restriction,
multiplicative under Kronecker products, and additive under direct
sums. The collection of all functions with these properties form
the asymptotic spectrum of k-tensors [67]. The landmark result by
Strassen tells us that given a tensor T, its asymptotic rank is equal
to the supremum of f(T) for all f in the asymptotic spectrum. More
generally, the asymptotic spectrum characterizes the existence of
so-called asymptotic restrictions between k-tensors.

It has proven to be a challenge to describe the asymptotic spec-
trum explicitly. For almost 30 years the only known points were
the flattening ranks, until the construction of the quantum function-
als [27]. The flattening ranks are defined by flattening the tensor
into a matrix (in one of three possible ways) and computing the
matrix rank. The quantum functionals are defined for 3-tensors T
as 2601 with Eg(T) = max y, , p,)en(r) O1H(p1) + O2H(ps) +
03H(p3), where (01, 62, 63) is any probability vector and H denotes
the Shannon entropy. Quantum functionals have been used to show
barrier results for the techniques used to prove upper bounds on
the matrix multiplication exponent [26]. It is unknown whether
the quantum functionals make up the entire asymptotic spectrum
of 3-tensors. If the answer is yes, this would in particular imply the
matrix multiplication exponent equals 2. Another notion relating
strongly to the moment polytope is the G-stable rank [31].

The quantum functionals are maximizations of concave functions
on the moment polytope, and can hence be computed in polynomial
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time using standard convex optimization techniques given efficient
access to the moment polytope. Scaling algorithms [17, 18] provide
suitable membership oracles which are effective in practice but are
not known to run in polynomial time in all parameters. However,
these optimization-based techniques do not yield a description of
the moment polytopes in terms of vertices or inequalities. This
presents a bottleneck, and indeed finding such a description even
for not too large tensor shapes seems far out of reach for known
methods. The moment polytopes of tensors of shape 2 X 2 x 2
and 2 X 2 X 2 X 2 were computed via Eq. (2.1) and a complete
understanding of the underlying invariant theory [75]; but such an
understanding is not available in higher dimensions. We advance
the computational state-of-the art significantly with our algorithm.
In particular, our results allow us to compute for the first time the
moment polytopes (and derived quantities) for all tensors of the
shape 3 X 3 X 3.

In the context of quantum information, the quantum functionals
are monotones for asymptotic SLOCC. There is also an analogous
theory for (asymptotic) LOCC [46, 74].

2.4 Non-Free Tensors

Strassen’s support functionals [68] are a (continuously parametrized
just like the quantum functionals) family of functions for which
Strassen proved that, restricted to so-called oblique tensors, they are
in the asymptotic spectrum. That is, the support functionals satisfy
the properties listed above when restricted to oblique tensors. All
examples of tensors we have discussed so far (e.g. M, U,) are
oblique. An interesting aspect of the support functionals is that
they are defined over fields of positive characteristic as well [24].

Oblique tensors are a special case of free tensors, which are
defined as follows. We say a support {(i, j, k) | T; j . # 0} is free
when any two distinct elements (i, j, k) and (i’, j’, k”) differ in at
least two coordinates. We say T is a free tensor when its support
is free after some change of basis, that is, if (A ® B ® C)T has free
support for some (A, B,C) € GL; X GLj, X GL,. Free tensors are a
class of tensors that play a special role in several parts of the theory
of moment polytopes and asymptotic spectra [36, 69]. For instance,
it is known that the support functionals and quantum functionals
coincide on free tensors [27]. This begs the following question: Are
the support functionals and quantum functionals equal also on tensors
that are not free?

To approach this question, we need a better understanding of
non-free tensors. Via a dimension counting argument, it can be
shown that (many) non-free tensors exist [29]. Indeed, a random
tensor in C" ® C"* ® C” for n > 4 will be non-free almost surely.
However, methods for verifying this for any explicitly generated
random tensor have been lacking. In fact, before this paper, no
explicit examples of non-free tensors were known. Such situations
are common in mathematics and computer science for “generic”
properties. For instance, we do not have explicit constructions of
tensors with high tensor rank [13, 29, 60]. For non-freeness we
solve this “hay in a haystack” problem in this paper by constructing
explicit non-free tensor for every cubic tensor shape.
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2.5 Polytope Inclusion

Given two tensors, we can ask whether their moment polytopes are
included in one another. The inclusion of moment polytopes defines
a relation between tensors that encodes inherent asymptotic and
geometric information. At the same time, moment polytopes can be
succinctly described via finitely many inequalities. This makes this
relations interesting to study: What inclusions and separations can
we prove and using which techniques? We algorithmically determine
the moment polytopes of all 3 3 X 3 tensors, revealing in particular
all inclusions among them. Furthermore, we prove the moment
polytope of the unit tensor is not contained in that of the matrix
multiplication tensor of the same size. The above separation directly
implies an upper bound on the so-called border subrank of matrix
multiplication. This quantity is essential for constructions of matrix
multiplication algorithms [12]. The techniques we use to prove this
separation we then extend to give an alternative proof of the best
possible upper bound on border subrank of matrix multiplication
[52], and in particular establish new connections with polynomial
multiplication tensors.

The asymptotic nature of moment polytopes and previous appli-
cations via the quantum functionals [27] suggests a connection to
asymptotic restriction between tensors. Using the moment polytope
relations and separations that we found, we show by counterexam-
ple that an a priori natural such connection is false.

3 Results

We now present our main results in more detail. Our first result is
of algorithmic and experimental nature, namely an algorithm to
compute concrete moment polytopes. This algorithm, while not
poly-time in the dimension, is in particular able to compute the
moment polytopes of any tensor in C3 ® C3 ® C* with certainty
and in C* ® C* ® C* with high probability. The resulting data then
led us to prove the structural results that we discuss below. We will
further discuss the algorithm itself in Section 4.

3.1 Separation of Moment Polytope of Matrix
Multiplication and Unit Tensors

Biirgisser and Ikenmeyer [20, Problem 7.3], motivated by the geo-
metric complexity theory approach to lower bounds on the matrix
multiplication exponent (as part of a more general program aimed
at solving the VP vs. VNP problem), posed as a central open problem
to determine the moment polytopes of the matrix multiplication ten-
sors My, and the unit tensors U,. While a related (but different) kind
of polytope were shown to coincide for M, and U2, no progress
was made on computing or relating these moment polytopes since.
We prove the following separations.

THEOREM 3.1. For every c,n € N satisfyingn® —n+1 < ¢ < n?,

there exists a point p. such that p. ¢ A(My) and p. € A(U¢). In
particular, the moment polytope of My, is not maximal for anyn > 2.

The point p, that we obtain in our proof of Theorem 3.1 is given
by pe = (uz, the—1, uc), where up, = 372, e;/m € R™ is the uniform
probability vector on the first m coordinates. The first instance of
this separation (which we then extended to all n, ¢ as above) was
indeed obtained from our algorithmic data, which showed that
the polytope of the 2 X 2 matrix multiplication tensor My 22 is
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strictly smaller than the maximal polytope in C* ® C* ® C%, and in
particular that the point p4 = ((% % 0,0), (% % %,0), (%, %, %, 71} )
was not included. Indeed, we prove that a point p. of similar shape
is a general separating point.

As an important ingredient for the proof of Theorem 3.1, we
prove certain degenerations between matrix multiplication tensors
and polynomial multiplication tensors P, ; are not possible. We say
a tensor T degenerates to a tensor S, denoted by T > S, whenever S
is a limit of restrictions from T. We show:

LemMA 3.2. Forb > n(n— | Va—1]) we have My ¥ P .

The border subrank of a tensor T is defined as the largest r
such that T > Uy. Since Ug+p-1 & P, p [16] and degeneration is
a transitive relation, Lemma 3.2 directly implies the best possible
upper bound for border subrank by choosing the optimal values
for a and b, recovering (with a new proof) the result of [52, The-
orem 3]: The border subrank of the n X n matrix multiplication
tensor is upper bounded by [%nz], which matches the lower bound
by Strassen [66]. In fact, the moment polytope separation in Theo-
rem 3.1 immediately implies the weaker upper bound of n? — n + 1.
We leave as an open problem whether the improved bound can be
obtained from moment polytope separations alone.

In the context of quantum information theory, the matrix multi-
plication tensor M, describes the quantum state of three quantum
systems, with each pair sharing a generalized EPR pair Y7, ¢; ® e;
(or many copies of EPR pairs if n is a power of 2). Then Theorem 3.1
tells us that there exists marginals that cannot be reached using
SLOCC transformations. Moreover, these marginals can be reached
starting from the generalized GHZ state U, for all ¢ > n® — n + 1.
This shows in particular that My, is not “maximally entangled” in
the SLOCC setting, and it follows that the same is true in the LOCC
and LU settings. This is an especially interesting result as such
pair-wise shared EPR pairs form the basis for many applications
in tensor network theory studying entanglement [22]. We show
that the same holds for the iterated matrix multiplication tensor,
which corresponds to pair-wise shared EPR pairs arranged on a
cycle. In other words, matrix product states with bond dimension n
satisfy extra constraints that are already visible on the level of their
one-body marginal density operators.

3.2 Moment Polytopes are Not an Asymptotic
Restriction Monotone

Moment polytopes are monotone under degeneration (if T & S,
then A(T) 2 A(S)), and they also have an asymptotic nature: the
representation-theoretic description in Eq. (2.1) involves large Kro-
necker powers of a tensor. Motivated by understanding potential
operational interpretations of moment polytope inclusion, it is
natural to ask if asymptotic restriction implies moment polytope
inclusion. We say a tensor T asymptotically restricts to a tensor S if
TEA+o(n) > GBN which we denote by T 2 S.ItisknownthatT &> S
implies T > S. We show that moment polytopes are not monotone
under asymptotic restriction:

THEOREM 3.3. There exist (explicit) tensors T and S such thatT 2 S
but A(T) 2 A(S).

As discussed, the quantum functionals are defined via an opti-
mization problem over the moment polytope, and hence moment
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polytope inclusion implies monotonicity of the quantum function-
als [27]. Strassen showed that T > S if and only if f(T) > f(S) for
all functions f in the asymptotic spectrum [67]. It is an important
open problem to determine whether the quantum functionals make
up the entire asymptotic spectrum for 3-tensors [27]; if this is not
the case, it also directly implies Theorem 3.3.

In quantum information theory, Theorem 3.3 implies that an
asymptotic SLOCC transformation from T to S does not imply
that T is necessarily “more entangled” than S, in the following
sense: there can exist collections of marginal density operators only
reachable from S and not from T.

We give two examples of such pairs T and S in Theorem 3.3: the
firstis T = My and S = U2, and the secondis T = e; A ey A e3
and S = Us. The fact that the first pair is an example follows from
the separation between the moment polytope of M, and U,2 of
Theorem 3.1, as well as the known fact that the asymptotic subrank
of My, is n? [52, 66]. For the second pair, we use that the asymptotic
subrank of T is known to equal 3. This follows from a characteriza-
tion of asymptotic subrank for a subclass of so-called tight tensors
by Strassen [68]. To separate the moment polytopes, we prove a
correspondence between the maxranks of a tensor to the inclusion
of specific points in its moment polytope. This correspondence was
discovered through computational observations.

3.3 Explicit Non-Free Tensors of All Cubic
Dimensions

Free tensors are a class of tensors that play a special role in several
parts of the theory of moment polytopes and asymptotic spec-
tra [36, 69]. As mentioned, for free tensors it is known the support
functionals and quantum functionals coincide [27], but it is not
known whether they are equal in general. This motivates the search
for explicit examples of non-free tensors. Non-freeness is a generic
property for sufficiently large n, as follows from a dimension argu-
ment [27, Remark 4.19]. In [29] the dimension of the Zariski-closure
of the set of free tensors in C" ® C" ® C" was determined exactly
to be 4n? — 3n. This implies that for every n > 4 non-free tensors
exist in C" ® C" ® C". However, no explicit non-free tensors were
known. We construct explicit non-free tensors in every cubic shape
of size n > 3. In particular, we establish that already for n = 3,
non-free tensors exist, even though random tensors of that shape
are free.

THEOREM 3.4. Foreveryn > 3, the following tensor in C"@C"®C"
is non-free:

n—1 n—1
T= Z(ei®e,~®ei+ei®en®en) + Zen®ej®ej+1.
i=1 =1

Moreover, a generic tensor with support in {(i, j,j) : i,j € [n—1]}U
{(n,j,j+1):j e [n—1]} is equivalent to T and hence non-free.
For example, for n = 4 this corresponds to the tensor
1000/0O0O0O00O0OO0OO0O|O01O00O0
00O0O0O(O0O1O0O0OO0OO0O0OOIOO0

00O0O0]0O0O0O0O(0OO0OT1O0]0
000071000 1{00O0T1]|0

o o

00

The construction of this family was inspired by the analysis
of two tensors in C> ® C* ® C3, T, and Ts (originating from the
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classification by Nurmiev [32, 58]), which turned out to be non-free.
Central in our proof is a new general criterion for freeness in terms
of the moment polytope: for tensors whose marginals map to the
minimal norm point of their moment polytope, the tensor is free if
and only if its support can be made free using a unitary change of
bases. We prove this result using machinery from the symplectic-
geometric viewpoint on moment polytopes. Our computational
results allowed us to determine exactly the points of minimal norm
of the moment polytopes of T, and Ts, and to construct the tensors
in their respective orbits that map to these minimum-norm points.
Disproving freeness of the support under unitary base changes
afterwards is then feasible. Using Franz’ characterization of the the
moment polytope [36], we were able to generalize this construction
to larger cubic shapes.

We observe numerically that for small instances of the non-free
tensors constructed above the support functionals and quantum
functionals coincide. The question whether these two functionals
coincide or not in general remains open.

3.4 All Moment Polytopes of Tensors in
CeC*eC’

There is a classification of all tensors of this shape by Nurmiev
[32, 58]. Notably, this classification contains families with contin-
uous parameters. We were able to use our algorithms, along with
analytical proofs that certain families have the largest possible mo-
ment polytope, to compute all moment polytopes for tensors in
C? ® C3 ® C3. Only the largest possible moment polytope (Kro-
necker polytope) was previously computed for C3 ® C* ® C3 in
[36] (and for C* ® C* ® C* in [71]). Our computations in particular
reveal all inclusion relations between the moment polytopes in this
format. The results are available at [70].

4 Algorithm for Computing Moment Polytopes

We present an algorithm for computing the moment polytope of
atensor T € C* ® C? ® C¢ based on the description of moment
polytopes by Franz [36], which characterizes moment polytopes in
terms of the support of the tensor after applying lower-triangular
matrices to the three factors, which we will now discuss.

Denote by supp(T) the set of vectors (e;, ej, ex) € R% x Rb x R€
suchthat T ; x # 0and denote by D the set of triples of vectors with
non-increasing entries (called dominant vectors) in R x R® x RE.
Write conv Q for the convex hull of a set Q. Then we define the
Borel polytope of a tensor S as

Ag(S) = convsupp (A®B®C)S) N D

(A,B,C)eGL
lower triangular

(4.1)

where GL = GL, X GLj, X GL,. Borel polytopes have a geometric
and representation-theoretic description as well [17, 35]. From the
representation-theoretic description it is possible to deduce that for
every S in a dense subset of the orbit GL -T, we have Ag(S) = A(T).
In fact, this dense subset is exactly described by the non-vanishing
of a certain set of polynomials, and hence equality holds for a
nonempty Zariski-open subset of GL -T.

Franz’s description leads to an algorithm for computing mo-
ment polytopes. First generate a random element S € GL -T, and
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then iterate over all possible supports, for each support checking
whether it is attainable by lower-triangular action on S. This last
step can be achieved by solving a polynomial system, and can be
done using symbolic methods such as Grébner basis computation.
The result will then equal A(T) with high probability. The random
element may also be described symbolically; in this way A(T) may
be computed with certainty.

However, this approach quickly becomes unfeasible due to the
exponential number of possible supports, and cannot go much
beyond previous methods. The crucial insight is to instead focus
on the inequalities defining A(T). The inequalities defining A(T)
(e.g. the inequalities that are tight on some face of A(T)) must all
be defining for at least one of the finitely many terms occuring in
the intersection in Eq. (4.1). We can characterize such inequalities
combinatorially. The first step of our algorithm computes all of
them and stores them into a finite set .

We call an inequality attainable for S whenever there exists
lower triangular matrices (A, B,C) such that all elements of the
support supp((A ® B ® C)S) satisfy the inequality. For step two
of our algorithm we iterate over H and keep all h € H that are
attainable. The resulting inequalities Hs will define Ag(S), after
the straightforward intersection with 9. This describes the basic
outline of the algorithms, which we summarize here:

Algorithm 1 Computing the moment polytope A(T).

1: Determine all candidate inequalities # (or retrieve from stor-
age, since this only depends on the dimensions a, b, c).

2: Generate random (or symbolic) S € (GL, X GLy, XGL¢) - T.

3: Determine the attainable inequalities Hs C H with respect
to S using Grébner bases.

4: Determine the polytope defined by Hs and intersect with D.

We also provide a verification algorithm which determines if P
equals A(T) for some polytope P without requiring iteration over
the large set H. It makes use of the tensor scaling algorithm as
developed in [17] (cf. [18, 19, 34, 38]). Substantial further effort was
required to translate the above procedure into a practical program.
We briefly list a selection of the optimizations essential for making
running times tractable.

¢ Exploiting symmetries. We make use of the permutation
symmetries of the set of possible supports to greatly improve
the running times for determining .

o Filtering via point inclusions. If we know beforehand a
point p € A(T), we can remove all inequalities from # that
exclude it. This greatly reduces the amount of the expensive
symbolic computations required when determining Hs. For
example, the point (eq, e, e1) is always included. Addition-
ally, we prove (and use) that a notion called the maxranks
of T leads to the inclusion of certain points in A(T).

o Filtering generic inequalities. Some inequalities are true
for the moment polytope of any tensor in a given shape.
These inequalities describe the Kronecker polytope, which
has been computed in some cases. We use the Kronecker
polytopes of shapes 3 X 3 X 3 and 4 X 4 X 4 as computed in
[36, 71]. We can include all inequalities valid for it into Hs
by default.
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o Modular arithmetic. As discussed, we use Grobner bases to
determine attainability of inequalities. A known problem in
Grobner basis algorithms is that of intermediate coefficient
swell [5], which can make computations infeasible due to
memory and runtime issues. We solve the issue by computing
Grébner basis in some finite field Fy for a large random
prime g, and argue for the feasibility of this heuristic.

e Heuristics for polytope construction. We observe that

inequalities defining moment polytopes have low “complex-
ity”, in the sense that they are described by vectors with
relatively small integer coefficients. By sorting the candidate
inequalities in # based on their norm, we are likely to find
all defining inequalities early in the loop over H. We can
construct an intermediate outer approximation of the poly-
tope during the loop, and filter the remaining inequalities
for redundancy.
The same idea can be applied to greatly speed up vertex enu-
meration. Vertex enumeration for polyhedra is NP-hard in
the unbounded case [49] (although for our setting of bounded
polytopes, the complexity is open), and in particular imple-
mentations can be slow in scenarios when there are many
redundant inequalities, as is the case for us.

e Derandomization. To verify the results with certainty, it is
required to run Algorithm 1 using a symbolic element in the
orbit of T. This greatly increases the hardness of the Grébner
basis computations, and in many cases makes it infeasible
to perform them directly. However, the Grobner bases for
randomly generated S can provide structural information
about this symbolic Grébner basis. We use this fact to de-
randomize our results in concrete situations. In particular,
we establish the polytopes of all tensors in C3 ® C3 ® C3
with certainty.

5 General Theory

Moment polytopes can be defined not just for tensors but for a
broad range of groups and representations. We can replace the
group GL, X GL, X GL, with any reductive algebraic group, which
can be modeled concretely by a subgroup G of GL,, defined by
polynomial equations, that is closed under taking conjugate trans-
poses. This includes for instance all the complex classical Lie groups
and products between them. We can replace the representation
C? @ CP ® C¢ by any rational representation of G, that is, by any
action that is given by polynomials in the matrix entries of the
group element and in det™!. This naturally captures applications
such as the well-known Horn’s problem [9, 34] and algorithmic
problems of quiver representations [21, 37, 72], and it enables new
ones, such as symmetric tensors (polynomials) in the setting of
algebraic and geometric complexity theory [20]. Scaling algorithms
generalize naturally to this general setting; see [18] for a structural
and algorithmic account.

Our algorithm generalizes naturally to this setting, and almost all
optimizations that we develop generalize as well. For example, the
permutation symmetries on the set of possible supports corresponds
to symmetries of the so-called Weyl group of G. Our algorithm can
exploit these symmetries in the same way as we do for tensors.
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6 Outlook

We believe that our algorithm for computing moment polytopes
will be of independent interest for the discovery of relevant patterns
towards examples and conjectures, and that this addition to the
“moment polytope toolbox”, alongside scaling algorithms, will be a
useful tool for future work on moment polytopes. In particular, our
algorithm brings moment polytope computation “up to speed” with
general methods for Kronecker polytope computation, which is
currently known up to C* ® C* ® C* [71] (however, several special
cases for Kronecker polytopes of other (incomparable) shapes are
known as well [43, 50]).

Moment polytopes of tensors can have an exponential number
of vertices and inequalities [17, 18, 37, 61]. Our algorithm does not
improve over previous methods in terms of asymptotic complexity,
only in terms of practicality, with the “experimental mathematics”
goal in mind: generating computationally a large set of examples
from which we can extract general results.
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