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Abstract. Online advertising systems have recently transitioned to autobidding, allowing advertisers to
delegate bidding decisions to automated agents. Each advertiser directs their agent to optimize an objective
function subject to return-on-investment (ROI) and budget constraints. Given their practical relevance, this shift
has spurred a surge of research on the liquid welfare price of anarchy (POA) of fundamental auction formats
under autobidding, most notably simultaneous first-price auctions (FPA). One of the main challenges is to
understand the efficiency of FPA in the presence of heterogeneous agent types. We introduce a type-dependent
smoothness framework that enables a unified analysis of the POA in such complex autobidding environments. In
our approach, we derive type-dependent smoothness parameters which we carefully balance to obtain POA bounds.
This balancing gives rise to a POA-revealing mathematical program, which we use to determine tight bounds on
the POA of coarse correlated equilibria (CCE). Our framework is versatile enough to handle heterogeneous agent
types and extends to the general class of fractionally subadditive valuations. Additionally, we develop a novel
reduction technique that transforms budget-constrained agents into budget-unconstrained ones. Combining this
reduction technique with our smoothness framework enables us to derive tight bounds on the POA of CCE in
the general hybrid agent model with both ROI and budget constraints. Among other results, our bounds uncover
an intriguing threshold phenomenon showing that the POA depends intricately on the smallest and largest agent
types. We also extend our study to FPAs with reserve prices, which can be interpreted as predictions of agents’
values, to further improve efficiency guarantees.

1 Introduction. Over the past decade, online advertising systems have undergone a major shift with the
emergence of autobidding. This shift allows advertisers to delegate complex bidding decisions to automated agents
that take various factors into account such as ad performance, campaign constraints, and market dynamics. As a
result, advertisers can manage their campaigns more efficiently and aim to maximize their return on investment.
Autobidding is now the dominant paradigm: over 80% of online ad traffic is managed by autobidding agents
[22]. This widespread adoption has important implications for the behavior of advertisers, publishers, and ad
exchanges.

In the autobidding world, advertisers specify high-level constraints for their campaigns—most notably return-
on-investment (ROI) constraints and budget constraints. Basically, the ROI constraint caps the cost per conversion
or impression, while the budget constraint limits the total spend for a given campaign. Unlike the traditional view,
where agents have intrinsic values for outcomes, autobidding agents operate under ROI and budget constraints
reflecting performance goals and financial limitations. In addition to these constraints, agents may differ in the
objective they seek to optimize. The autobidding literature typically considers two types: value maximizers,
who aim to maximize outcome value subject to budget and ROI constraints, and utility maximizers, who aim
to maximize value minus payment. These two types represent the extremes of a spectrum capturing agents’
trade-offs between value and payment. In this work, we allow agents’ types to lie anywhere along this spectrum,
modeling diverse behaviors in a unified way.
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Alongside the rise of autobidding, the online advertising industry has also undergone a major shift in
auction formats—most notably, the move from second-price to first-price auctions (FPA). This transition has
been especially pronounced in display ad markets, culminating in Google Ad Exchange’s adoption of first-price
auctions in 2019 [40]. The combination of constraint-driven autobidding agents and first-price payment schemes
raises fundamental questions about the performance of FPA in this new environment. This paper is driven by
one central question: What is the efficiency of simultaneous first-price auctions in the presence of heterogeneous
autobidding agents?

The study of the inefficiency of equilibria for simultaneous first-price auctions in the autobidding setting was
initiated by Liaw et al. [35]. To evaluate the efficiency of FPAs in the autobidding setting, we study the Price
of Anarchy (POA) ([33]), which compares the optimal liquid welfare to the welfare achieved in the worst-case
equilibrium. Liquid welfare [24] is a widely used metric that extends standard social welfare to settings with
budget constraints by capping an agent’s contribution at their available budget. This provides a more meaningful
benchmark for evaluating the social welfare achieved by a mechanism when agents face budget constraints. The
POA of first-price auctions under autobidding was recently studied in [22], both in the model with only value
maximizers and in the mixed agent model with both value and utility maximizers. They establish tight bounds
of 2 and 2.188 on the POA of mixed Nash equilibria (MNE) for value maximizers and the mixed agent model,
respectively. However, their analysis is limited to agents subject to ROI constraints only. Their proofs rely on
structural properties of MNE and are tailored to their specific setting. Liaw et al. [36] studied budget-constrained
value maximizers and derived a bound of 2 on the POA of pure Nash equilibria. To the best of our knowledge,
this is also the only work that analyzes the inefficiency of simultaneous FPAs in the autobidding setting under
both ROI and budget constraints.

A powerful framework for proving POA bounds is the smoothness technique, first introduced by Roughgar-
den [41] for strategic games and later extended by Syrgkanis and Tardos [45] to composable auctions. This
framework allows POA bounds established for a ‘base mechanism’ (e.g., single-item first-price auction) to ex-
tend to more complex compositions (e.g., simultaneous first-price auctions) and to broader equilibrium concepts,
including correlated and coarse correlated equilibria. Its ease of application combined with the strong, general
guarantees it provides has made smoothness the technique of choice for studying the price of anarchy. Despite
its success, applying the smoothness framework to the autobidding setting—where constraints and heterogeneous
types play a central role—remains a major open challenge. This paper closes that gap.

1.1 Our Contributions. Building on the challenges posed by heterogeneous autobidding agents and the
shift to first-price auctions, we introduce a type-dependent smoothness framework that enables a unified analysis
of the POA in this complex environment. Our contributions extend prior results in several important directions:

1. We consider a general hybrid agent model in which agents differ in type and are subject to both ROI and
budget constraints. The type t ∈ [0, 1] of an agent reflects their aversion to payments. In particular, t = 0
corresponds to a value maximizer, and t = 1 to a utility maximizer. By allowing arbitrary t ∈ [0, 1],
our model captures the full spectrum of agent behavior between these two extremes. This model strictly
generalizes the mixed agent model in [22] and has been suggested in [7, 1].

2. We significantly broaden the class of valuation functions that can be handled in the autobidding context by
analyzing fractionally subadditive (also known as XOS [34]) valuation functions. This class notably includes
monotone submodular functions as a special case. These functions are particularly relevant in multi-platform
autobidding environments, where advertisers use multiple platforms and experience diminishing returns as
their ads are shown across them (see, e.g., [4]). To the best of our knowledge, prior work on autobidding
has focused exclusively on additive valuations.

3. We extend our analysis beyond pure and mixed Nash equilibria and derive (tight) POA bounds for more
general solution concepts, including correlated equilibria (CE) and coarse correlated equilibria (CCE), even
in the full generality of our hybrid agent model. CCE are particularly relevant in autobidding settings
when agents use regret-minimizing algorithms (see, e.g., [37] and references therein). Building on insights
from [32], we show that CCE induced by such learning dynamics satisfy additional structural properties
essential for our framework to be applicable.

4. We also study the POA of simultaneous first-price auctions with reserve prices. Prior work by Balseiro et
al. [7] and Deng et al. [22] studied this setting in the absence of budgets and under additive valuations.
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Table 1.1: Overview of POA upper bounds for CCEs of simultaneous FPA for fractionally subadditive valuations
(top table) and POA lower bounds of simultaneous FPA for additive valuations (bottom table). Here, tmax

and tmin refer to the largest and smallest agent types, respectively. The function P is defined as P (t) =
1 + t(1 + W0(−e−t−1))−1 for t ≥ θ and P (t) = 2 for t < θ, where W0 is the principal branch of the Lambert
W function and θ is a threshold value defined as θ = 1 + 1

2W0(−2e−2) ≈ 0.797. Furthermore, the function Q is

defined as Q(t) = e
e−1 for t ≥ e−1

e , Q(0) = 2, and Q(t) = 1− (1−t) ln(1−t)
t , otherwise. Lastly, β ≈ 0.741 and is the

solution to β = 1− e−
1
β

Upper Bounds

Agent Types Budgets POA (UB) Statements

tmax ∈ [0, 1] ✓ P (tmax) Thm. 4.6

tmin = tmax = t ✗ Q(t) Thm. 4.4

tmin ≥ β ✗ tmin

(

1− e
−

1
tmin

)

Thm. 4.13

Lower Bounds

Agent Types Budgets POA (LB) Equilibrium class Statements

any ✓ 2 MNE Thm. 4.12

tmin = tmax = t > θ ✓ P (t) CCE Thm. 4.8

tmin = tmax = t ≥ e−1

e
✗

e

e−1
CCE Cor. 4.5

tmin = 0, tmax ∈ [0, 1] ✗ P (t) MNE Thm. 4.10

We extend their analysis to encompass fractionally subadditive valuations, both with and without budget
constraints. As observed by Balseiro et al., reserve prices can be interpreted as predictions of the agents’
values (e.g., derived from historical data through machine-learning techniques), which can be used to improve
efficiency guarantees. By leveraging such predictions to set reserve prices, we obtain improved POA bounds.
This connects to the broader agenda of mechanism design with predictions (see also [28, 15]).

1.2 Overview and Significance of Our Results. An overview of the POA upper bounds that we derive
for CCE of simultaneous FPA with fractionally subadditive valuations and the corresponding lower bounds that
we derive can be found in Table 1.1. Below, we highlight some key implications of our results. Our bounds depend
on the set of agent types T ⊆ [0, 1], where tmin = min(T ) and tmax = max(T ) denote the smallest and largest
agent types, respectively.

Among other results, our bounds uncover an intriguing threshold phenomenon: In the hybrid agent model
with budgets and heterogeneous types, the POA is exactly 2 when the largest agent type satisfies tmax ≤ θ ≈ 0.797.
When tmax > θ and value maximizers are present (i.e., tmin = 0), the POA bound increases smoothly with tmax,
following the function P (tmax), from 2 up to 2.188 as tmax approaches 1; see Figure 1.1a (blue curve). This bound
is tight even for mixed Nash equilibria. This result unifies and generalizes the state-of-the-art POA bounds in
[22] and [36], both of which address special cases of our model. The same bound also applies when agents are
budget-constrained and have a uniform (or homogeneous) type t, i.e., tmin = tmax = t1.

Interestingly, we obtain the exact same POA bounds without budget constraints, as long as value maximizers
are present. As will become clear below, this is not a coincidence. In the budget-free setting with uniform agent
type, we derive strictly improved bounds, illustrated in Figure 1.1a (red curve). This yields a natural separation
result for uniform agents: for every t > 0, the POA for budget-constrained agents (Figure 1.1a (blue curve)) is
strictly worse than that for budget-free agents (Figure 1.1a (red curve)). Our results also reveal a second threshold

1When agents are utility maximizers i.e., t = 1, our objective coincides with the notion of effective welfare introduced in [45] (see
also [13]). Note that, for budget-constrained agents, Syrgkanis and Tardos [45] establish a guarantee of e

e−1
for the weaker benchmark

of the ratio between optimal effective welfare and the utilitarian social welfare at equilibrium, see also Further Related Work.
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Figure 1.1: Illustration of POA bounds of simultaneous FPA with fractionally subadditive valuations. (a) Bounds
for the setting without reserve prices as a function of the type t. (b) Bounds for the setting with reserve prices
as a function of η (quality of the reserve prices) for t ∈ {0, 0.3, 0.7, 1}.

phenomenon: In the budget-free setting, if agents are sufficiently close to utility maximizers, i.e., tmin ≥ β ≈ 0.741,
the POA is in guaranteed to lie in the range [e/(e−1), 1/β2] (as a function of tmin), regardless of type heterogeneity;
see Theorem 4.13 for details.

We briefly comment on our results for simultaneous first-price auctions with reserve prices. In this setting,
the POA bounds additionally depend on a parameter η ∈ [0, 1), which quantifies the quality of the reserve prices.
Intuitively, higher values of η correspond to better reserve prices; formally η captures the worst-case ratio between
the reserve price and the maximum extractable payment over all auctions (see below for a precise definition). We
derive new bounds for this setting (not included in the overview table). For budget-free agents with a uniform
type t, the POA bound is shown in Figure 1.1b. As expected, the POA improves with the quality of the reserve
prices, i.e., it decreases as η increases and converges to 1 as η goes to 1. The bound is tight for both t = 0 and
t = 1.

In our setting with reserve prices, our framework requires that all items are sold in equilibrium outcomes—a
property we refer to as well-supported equilibria. We show that, for additive valuations, this property holds for
equilibria up to and including correlated equilibria (CE), but fails for coarse correlated equilibria (CCE). However,
building on [32], we prove that in repeated single-item first-price auctions with reserve prices, CCE arising from
regret-minimizing agents are well-supported regardless of the agents’ type distribution. This result implies that
CCE produced by such learning dynamics inherently possess the well-supported property.

1.3 Our Techniques. At the heart of our analysis lies a novel, type-dependent smoothness framework—
a non-trivial generalization of the original framework by Syrgkanis and Tardos [45] for utility maximizers to
heterogeneous agent types. A key technical challenge is incorporating these diverse agent types. Prior smoothness-
based works assume that agents are ‘alike’, allowing the (λ, µ)-smoothness parameters of the base mechanism to
lift directly to composed mechanisms. In contrast, our setting requires handling heterogeneous types, and applying
the original approach directly fails to yield meaningful bounds in the autobidding context.

We overcome this by proving a smoothness inequality for each type separately, yielding type-specific (λt, µt)
parameters. The core insight is to balance these parameters—crucially leveraging the ROI constraint—through
carefully chosen calibration vectors to obtain the best POA bound. This balancing leads to an optimization
problem over feasible choices of the smoothness parameters, giving rise to what we term the POA-revealing
mathematical program (POA-RMP). Bounding the objective of this program then yields upper bounds on the
POA. With this machinery in place, we then prove smoothness for a single-item first-price auction with reserve
prices across different agent types. By the Extension Theorem, we derive (often tight) POA bounds for coarse
correlated equilibria of simultaneous first-price auctions with reserve prices and fractionally subadditive valuations.

To handle budget constraints, we introduce a novel reduction technique that transforms instances with budgets
into equivalent budget-free proxy instances. A key insight is that any budget-constrained agent can be simulated
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‘almost perfectly’ by a budget-unconstrained agent with a budget-capped valuation function, i.e., one that caps their
original valuation at their budget. This transformation, however, comes with a caveat: it fails when an agent’s
valuation exceeds their budget. We resolve this by introducing, for each such agent, a budget-unconstrained value
maximizer with the corresponding budget-capped valuation function. The resulting instance is our budget-free
proxy instance.

In a nutshell, our strategy is to reduce an instance with budget-constrained agents to a budget-free proxy
instance, and then apply our type-dependent smoothness framework to bound the POA of the proxy instance.
Since the transformation preserves the POA, this yields bounds for the original instance as well. This approach,
however, requires special care: (i) The proxy instance includes budget-capped valuation functions. For example, if
the original valuations are additive, the capped versions become submodular. (ii) The transformation introduces
heterogeneity in agent types. Even if the original instance had a single type t 6= 0, the proxy instance includes both
type t and type 0 agents. Addressing both (i) and (ii) relies critically on the full power of our type-dependent
smoothness framework. For (i), the framework supports XOS valuations, and crucially, budget-capped XOS
functions remain XOS. For (ii), our framework is explicitly designed to accommodate heterogeneous agent types.
Notably, any approach incapable of handling either aspect would render the reduction technique infeasible.

Finally, the augmented type set in (ii) explains a key pattern observed in our results: all POA bounds for
instances with budgets and type set T match those of their budget-free proxy instance, whose type set becomes
T+ = T ∪ {0}.

We demonstrate the power of our type-dependent smoothness technique by analyzing the POA of simultaneous
first-price auctions. However, the technique is broadly applicable, and we believe it extends to a wide range of
autobidding environments—and potentially even beyond. Indeed, we already have evidence that it can be used
to bound the POA of multi-unit auctions under autobidding, further underscoring its broader impact.

1.4 Further Related Work. Aggarwal et al. [2] initiated the study of the inefficiency of equilibria for
auctions in autobidding environments. Their result implies that the liquid welfare price of anarchy for pure Nash
equilibria of the second-price auction is 2. This upper bound was later generalized in [23], which considered a
more general autobidding environment and the VCG mechanism, while [20, 21] obtained POA bounds for the
Generalized Second Price auction (GSP).

The inefficiency of equilibria for simultaneous FPAs was first studied in [35], which showed that when all agents
are value maximizers constrained only by ROI and have additive valuations, the POA of pure Nash equilibria is
also 2. This result was then extended in [22] to MNE and ROI-constrained agents, which also introduced the
mixed-agent model, i.e., the setting where agents can be either utility or value maximizers, which we capture
as a special case. Liaw et al. [36] studied the inefficiency of simultaneous FPAs for agents who are both ROI-
constrained and budget-constrained, focusing on pure Nash equilibria and showing a POA of 2. To the best of
our knowledge, [36] is the only work aside from ours that studies the inefficiency of simultaneous FPAs under
both ROI and budget constraints.

Beyond simultaneous compositions of simple classical auction formats, other autobidding settings that have
been considered in the literature include the inefficiency of randomized auction mechanisms (see, e.g., [39, 35])
and scenarios in which the platform is allowed to “boost” the budgets of agents and implement reserve prices (see,
e.g., [23, 7]), with the latter having an interpretation as machine-learned advice. We refer the reader to Section 5
for a discussion of this perspective. Finally, beyond the inefficiency of equilibria, other directions relevant to
autobidding include the study of optimal bidding from the perspective of the agent (see, e.g., [2, 8]), online
learning (see, e.g., [10, 27, 14, 3, 37]), auction design (see, e.g., [29, 9, 38]), and multi-platform (multi-channel)
autobidding (see, e.g., ([18, 43, 4])). For further details, we refer the interested reader to the recent survey of
Aggarwal et al. [1].

For the standard setting in which all agents are utility maximizers, the inefficiency of the first-price auction
has been studied in the economics literature since the seminal work of Vickrey [46]. Naturally, due to its simplicity,
it has also been considered for simultaneous simple auctions. As shown in [45], the POA of CCE is at most e

e−1 for
simultaneous auctions with XOS valuations. This bound is known to be tight even for a single auction [44], and
for MNE in simultaneous auctions with submodular valuations [16]. Beyond the smoothness framework, Feldman
et al. [25] showed a POA upper bound of 2 for simultaneous auctions with subadditive valuations, while CE, CCE
and their properties have been considered more closely in [26]. More recently, it was shown that the Bayesian

POA for the single-item first-price auction is exactly e2

e2−1 [31], a breakthrough result. For an overview of classical
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results regarding the POA of auctions for utility maximizers, including compositions of other simple auctions, we
refer to the survey by Roughgarden et al. [42].

Finally, we remark that budgeted settings have been considered for utility maximizers from a POA perspective
prior to the emergence of autobidding. Since our model captures the setting where all agents are utility maximizers
as a special case, our work can also be viewed as a follow-up to this line of research. In this context, the three most
closely related works are [45, 6], and [13]. While in [13] the focus is on the proportional mechanism, simultaneous
first-price auctions with XOS valuations are considered in both [45] and [6]. However, Syrgkanis and Tardos [45]
focus on the ratio of the expected social welfare at equilibrium to the optimal liquid welfare, a weaker benchmark
than the one we consider in this work (see also Section 4.6). On the other hand, Azar et al. [6] analyze the ex post
liquid welfare, which is a stronger benchmark, but their results require the items to be divisible into discretely
many parts.2 Note that Caragiannis and Voudouris [13] adopt the same benchmark as we do and call it Effective
Welfare.

2 Preliminaries. We study simultaneous first-price auctions, where a set N = [n] of n ≥ 2 agents
simultaneously participate in a set M = [m] of m ≥ 1 single-item auctions. Each auction j ∈ M implements
a first-price auction (FPA) with reserve price, as detailed below. We use j to denote both the auction and the
respective item interchangeably. Each agent i ∈ N submits a bid bij ∈ R≥0 to each auction j ∈ M . We use
bi = (bij)j∈M to denote the bid profile of agent i, and Di = R

m
≥0 to refer to the set of all bid profiles of i. The

aggregated bid profile of all agents is denoted by b = (bi)i∈N ∈ D = ×i∈NDi.
We focus on simultaneous first-price auctions with reserve prices. More specifically, each auction j ∈ M

handles a reserve price rj ∈ R≥0 that must be met to sell item j; we use FPA(rj) to refer to this auction. Given
the bid profile bj = (bij)i∈N submitted to auction j, FPA(rj) allocates the item to the highest bidder i meeting
the reserve price rj , i.e., bij ≥ rj , and charges their respective bid bij for the item. The agent who wins the item
(if any) is called the actual winner, denoted by aw(j) ∈ argmaxi∈N :bij≥rj bij . In case of ties, the actual winner is
chosen according to an arbitrary but fixed tie-breaking rule. If the reserve price rj is not met (i.e., bij < rj for all
i ∈ N), we define aw(j) = ∅. Let xj(b) = (xij(b))i∈N and pj(b) = (pij(b))i∈N be the respective allocation and
payments of FPA(rj), i.e., for i = aw(j) we have xij(b) = 1 and pij(b) = bij , and for i 6= aw(j) we have xij(b) = 0
and pij(b) = 0.3 We write xj(b) 6= 0 to indicate that item j is sold.

Our global mechanism, denoted by M, implements the above mechanisms with reserve prices r = (rj)j∈M

simultaneously. That is, given a bid profile b, the outcome M(r, b) = (x(b),p(b)) is determined by the allocation
x(b) = (xj(b))j∈M and the payments p(b) = (pj(b))j∈M obtained by running the m auctions (i.e., FPA(rj) for
each j ∈ M) simultaneously. We write x(b) 6= 0 to indicate that all items are sold under b, i.e., xj(b) 6= 0

for all j ∈ M .4 We use xi(b) = (xij(b))j∈M ∈ {0, 1}m and pi(b) =
∑

j∈M pij(b) to denote the allocation
and total payment of agent i, respectively. Further, we define X as the set of all feasible allocations, i.e.,
X = {x = (xi)i∈N ∈ {0, 1}m×n |

∑

i∈N xij ≤ 1 ∀j ∈ M}. We slightly overload notation and use xi(b) also to
refer to the set of items assigned to i, i.e., xi(b) = {j ∈ M | xij(b) = 1} ⊆ M . Additionally, we sometimes omit
the argument b when it is clear from context.

We use FPA(m, r) and FPA(m), respectively, to refer to m simultaneous first-price auctions with reserve
prices r and without reserve prices. We use FPA(r) to indicate that we consider a single-item first-price auction
(i.e., m = 1) with reserve price r. If m = 1, we drop the auction index j = 1 from all our notation.

Valuation Functions. Each agent i ∈ N has a valuation function vi : 2
M → R≥0 over the subsets of the

items, where vi(S) specifies the value that i obtains when receiving the items in S ⊆ M . We assume w.l.o.g. that
vi(∅) = 0. Also, we assume that vi is monotone, i.e., vi(S) ≤ vi(T ) for all S ⊆ T ⊆ M . We use Vi to denote the
class of valuation functions of agent i and let V = ×i∈NVi be the set of all valuation functions of the agents. We
use v = (vi)i∈N ∈ V to refer to the profile of valuation functions of the agents. We consider different classes of
valuation functions:

Definition 2.1. Let vi : 2
M → R≥0 be a valuation function.

• vi is additive if there exist additive valuations (vij)j∈M ∈ R
m
≥0 such that for every subset S ⊆ M , it holds

that vi(S) =
∑

j∈S vij.

2The value of the ex post benchmark is unbounded for our setting of simultaneous first-price auctions, see Theorem C.2. in [5].
3Both xj and pj only depend on the input profile bj . However, we often use b as the argument for notational convenience.
4Note that we slightly abuse notation as x(b) 6= 0 here indicates that there is exactly one 1 in each row of x(b) ∈ {0, 1}m×n.
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• vi is submodular if vi(S ∪ {j})− vi(S) ≥ vi(T ∪ {j})− vi(T ) for all S ⊆ T ⊆ M .
• vi is fractionally subadditive (or, XOS), if there exists a class Li = {(vℓij)j∈M ∈ R

m
≥0} of additive valuations

such that for every subset S ⊆ M , it holds that vi(S) = maxℓ∈Li

∑

j∈S vℓij.

Let Vadd, Vsub and Vxos refer to the set of additive, submodular and fractionally subadditive (XOS) valuation
functions, respectively. It is well-known (see e.g., [34]) that Vadd ⊂ Vsub ⊂ Vxos.

Random Bid Profiles. Each agent i can randomize over their deterministic (or pure) bid profiles bi in Di.
We define ∆i as the space of random bid profiles of i over Di. Let π be a probability distribution over the set of bid
profiles in D; we use ∆ to refer to the set of all such probability distributions. We use B ∼ π to denote a random
bid profile that is drawn from π; we often omit the reference to π and identify B with π. We use fB and FB to
refer to the probability density function (PDF) and cumulative distribution function (CDF) of B, respectively.
The support of B refers to the set of bid profiles that have positive density, i.e., supp(B) = {b ∈ D | fB(b) > 0}.
If supp(B) = {b} then B chooses b deterministically and we write B = b. We use suppi(B) to refer to the set of
bid profiles bi of agent i that have positive density under B. The marginal B−i of B is defined by the following
PDF:

∀b−i ∈ D−i : fB−i
(b−i) =

∫

Di

fB(bi, b−i)dbi.

Given a bid profile b′i of agent i, we denote by (b′i,B−i) the random bid profile that we obtain from B when agent
i bids b′i deterministically and the other agents bid according to the marginal B−i. We say that a bid profile B

is well-supported with respect to reserve prices r if the items are always sold under B, i.e., for each b ∈ supp(B),
x(b) 6= 0.

Hybrid Agent Model. We consider the general hybrid agent model (see, e.g., [7, 1]), where each agent
i ∈ N maximizes their gain function gi : D → R defined as

(2.1) gi(b) = vi(xi(b))− σi · pi(b).

Here, σi ∈ [0, 1] defines the type of agent i. Intuitively, σi represents i’s sensitivity to payments: a higher value
indicates that i is more negatively affected by payments. In particular, agent i is a value maximizer if σi = 0,
and a utility maximizer if σi = 1. Our model thus allows us to capture a large spectrum of agents’ types, ranging
from value maximizers to utility maximizers. Most previous works focus on the special case of the mixed agent
model consisting of value and utility maximizers only, i.e., σi ∈ {0, 1} for all i ∈ N .

Each agent i has a return-on-investment (ROI) constraint and a budget constraint that must be satisfied (see
[1]). Given a bid profile B, the ROI constraint of an agent i enforces that the expected total payment of i is at
most a factor τi ∈ R>0 of their expected valuation for the received items, where τi is the so-called target parameter
of i, i.e.,

(2.2) E [pi(B)] ≤ τi · E[vi(xi(B))].

Additionally, the budget constraint of agent i requires that the expected total payment of i is at most
Bi ∈ R>0 ∪ {∞}, i.e.,

(2.3) E [pi(B)] ≤ Bi.

For an agent i, we define Ri as the set of bid profiles B that satisfy both the ROI constraint (2.2) and the budget
constraint (2.3). It is not hard to see that we can assume w.l.o.g. that τiσi ≤ 1 for all agents i ∈ N ; we refer to
the full version for more details.

Formally, we use I = (N,M, r,v,σ, τ ,B) to denote an instance. For ease of notation, we omit explicit
references to N and M and simply write I = (r,v,σ, τ ,B). We say that an instance I is budget-free if Bi = ∞
for all agents i ∈ N . The set of agent types of an instance I is defined as T (I) = {t | ∃i ∈ N with σi = t}. Given
an instance I, we use Nt(I) ⊆ N to refer to the subset of agents having type t, i.e., Nt(I) = {i ∈ N | σi = t}.
The following notion will turn out to be useful below. Given a type set T ⊆ [0, 1], we define the augmented type
set T+ as follows: for instances with budgets, we define T+ = T ∪ {0} as the type set obtained from T by adding
the value-maximizing type 0; for budget-free instances, we define T+ = T simply.
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We use I to refer to a class of instances. For val ∈ {add, sub,xos}, we use Ival to refer to the set of
instances with valuation functions from Vval, i.e., vi ∈ Vval for all i ∈ N . We use I∞ to refer to the set of all
budget-free instances. Finally, we also define a class of instances whose type set is restricted. Given a set of types
T ⊆ [0, 1], we use IT to denote the set of instances I whose type set is restricted to T , i.e., T (I) = T . Note that

the above restrictions will also be combined. For example, IT,∞
val denotes the class of all budget-free instances

with valuations functions from Vval and agent types being restricted to T .

Agent’s Problem and Equilibrium Notions. The objective of each agent i is to determine a random
bid profile Bi that, given the bid profile B−i of the other agents, maximizes their gain subject to their ROI and
budget constraints. More formally, each agent i solves the following agent’s problem:

max
Bi

E[gi(Bi,B−i)] subject to (Bi,B−i) ∈ Ri.

The resulting bid profile B constitutes an equilibrium if for each agent i only the deviations satisfying the ROI
and budget constraints are considered. We consider the following equilibrium notions in this paper.

Definition 2.2. Let B ∈ ∆ be a bid profile satisfying B ∈ Ri for each agent i ∈ N .

• B is a coarse correlated equilibrium (CCE) if for every agent i ∈ N we have:

(2.4) E[gi(B)] ≥ E[gi(B
′
i,B−i)] ∀(B′

i,B−i) ∈ Ri.

• B is a correlated equilibrium (CE) if for every agent i ∈ N and every swapping function h : suppi(B) 7→ ∆i

we have:

(2.5) E[gi(B)] ≥ E[gi(h(Bi),B−i)] ∀(h(Bi),B−i) ∈ Ri.

• B is a mixed Nash equilibrium (MNE) if B =
∏

i∈[n] Bi and for every agent i ∈ N we have:

(2.6) E[gi(B)] ≥ E[gi(B
′
i,B−i)] ∀(B′

i,B−i) ∈ Ri.

Given an instance I, we use MNE(I), CE(I) and CCE(I) to refer to the sets of mixed, correlated and coarse
correlated equilibria of I, respectively. Note that MNE(I) ⊆ CE(I) ⊆ CCE(I); a more elaborate discussion on
the equilibrium hierarchy can be found in the full version. We use EQ as a generic placeholder for an equilibrium
notion with EQ ∈ {MNE,CE,CCE}.

Liquid Price of Anarchy. We use liquid welfare as the social welfare objective, which is also the standard
benchmark in the autobidding literature (see, e.g., [1]). Intuitively, the liquid welfare measures the maximum
amount of payments one can extract from the agents. We refer the reader to the full version [17] for a more
detailed discussion of the liquid welfare objective. Given an instance I and a bid profile B, the liquid welfare is
defined as

LW(I,B) =
∑

i∈N

min(E[τivi(xi(B))],Bi).

Given an instance I, an optimal allocation x∗(I) ∈ X maximizes the liquid welfare over all feasible allocations:

x∗(I) ∈ argmax
x∈X

∑

i∈N

min(τivi(xi),Bi).

We use OPT(I) =
∑

i∈N min(τivi(x
∗
i (I)),Bi) to denote the optimal liquid welfare.

In this paper, we study the price of anarchy as introduced by Koutsoupias and Papadimitriou [33] with
respect to the liquid welfare objective: the price of anarchy is defined as the worst-case ratio of the optimal liquid
welfare over the expected liquid welfare of any equilibrium. More formally, given a set of instances I and an
equilibrium notion EQ ∈ {MNE,CE,CCE}, we define the price of anarchy with respect to EQ as:

EQ-POA(I) = sup
I∈I

sup
B∈EQ(I)

OPT(I)

LW(I,B)
.

It is not hard to observe that when studying the liquid price of anarchy, we can assume without loss of
generality that τi = 1 for all i ∈ N (we include a discussion in the full version of our work). Subsequently,
we therefore omit the target parameters (with the understanding that τ = 1) and refer to an instances as
I = (r,v,σ,B).
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Reserve Prices. Balseiro et al. [7] and Deng et al. [22] studied the effect of reserve prices on the price of
anarchy for budget-free instances and additive valuations. Their bounds depend on a parameter η that measures
the relative gap between the reserve price and the highest valuation of an agent over all auctions. We extend their
model to instances with fractionally subadditive valuations (with or without budgets). Let I ∈ Ixos be such an
instance with reserve prices r. We can then choose opt-induced additive representatives (vij)j∈M for each agent
i with respect to their allocation x∗

i in the optimal solution x∗(I) (see Section 3.2 for more details). An agent i
is said to be the rightful winner of auction j, denoted by rw(j), if i is an agent with maximum valuation for the
item, i.e., rw(j) ∈ argmaxi∈N vij . In case of ties, we let rw(j) denote the winner of auction j in the considered
optimal allocation. For each auction j ∈ M , define the relative gap ηj ∈ [0, 1) such that rj = ηjvrw(j)j , and let
η = minj∈M ηj be the smallest relative gap. Note that, as in [7] and [22], we only consider reserve prices r that
satisfy ηj ∈ [0, 1) for each auction j ∈ M . In fact, it is not hard to see that otherwise the POA is unbounded.

The Lambert W Function. In order to derive POA bounds analytically, we use the Lambert W function,
which is the multivalued inverse of the function f(z) = zez. In this work, we exclusively use the principal branch
of the Lambert W function and denote it by W0; more details are given in the appendix.

Some proofs are omitted from the main text and are provided in the appendix. All missing proofs and
additional discussions are available in the full version of our work [17].

3 Type-Dependent Smoothness Framework. We introduce a new type-dependent smoothness frame-
work that enables us to bound the POA of coarse correlated equilibria in simultaneous first-price auctions, in
the full generality of our hybrid model. We begin by formalizing the type-dependent smoothness notion and
deriving corresponding smoothness lemmas. To handle budget constraints, we apply a reduction technique that
transforms instances with budgets into budget-free proxy instances. Our Extension Theorem then leverages this
framework to establish upper bounds on the POA of coarse correlated equilibria. A key technical challenge lies
in balancing the type-dependent smoothness parameters to obtain the best possible bounds. To this end, we
formulate a mathematical program that facilitates the analysis of the price of anarchy.

3.1 Type-Dependent Smoothness. In this section, we focus on single-item instances (i.e., m = 1) and
thus omit the auction index j = 1 from the notation. Note that in this case, fractionally subadditive valuation
functions reduce to additive ones. In particular, each agent i has a single additive value vi for the item (see
Definition 2.1).

We need the notion of ROI-restricted bid profiles. Let B′
i ∈ ∆i be a bid profile of agent i. We say that B′

i is
ROI-restricted if for each b−i ∈ D−i, it holds that E[pi(B

′
i, b−i)] ≤ E[vi(xi(B

′
i, b−i))]. We can now introduce our

new type-dependent smoothness notion:

Definition 3.1 (Type-Dependent Smoothness). Let I = (r,v,σ,B) be a single-item instance with reserve
price r. Let the rightful winner i = rw be of type t. Then, FPA(r) is (λt, µt)-smooth for type t with λt, µt > 0, if
there is a ROI-restricted bid B′

i = B′
i(v) ∈ ∆i such that for every well-supported bid profile b we have

(3.1) E[gi(B
′
i, b−i)] ≥ λtvi − µtpaw(b)(b).

We remark that, crucially, the random deviation B′
i of the rightful winner i may depend on the valuations v

but not on the bid profile b. Note that (3.1) needs to hold only for bid profiles b that are well-supported, i.e.,
when the item is sold; clearly, this condition is redundant in the setting without reserve prices, i.e., r = 0.

The following two lemmas establish type-dependent smoothness of FPA(r) for different types t ∈ [0, 1]. We
start with a simple smoothness lemma for type-0 agents (i.e., value maximizers). Recall that η ∈ [0, 1) measures
the relative gap between the reserve price and the valuation of the rightful winner, i.e., r = ηvrw.

Lemma 3.2. Consider a single-item instance I = (r,v,σ,B) and let the rightful winner i = rw be of type
t = 0. Then, FPA(r) is (λt, µt)-smooth for type t with λt = µt = µ for every µ ∈ (0, (1− η)−1].

A key insight used in the proof is that the reserve price allows us to increase the probability mass of the
random deviation for larger bids. This provides a better trade-off in terms of the smoothness parameters. Our
smoothness lemma for agent types t ∈ (0, 1] follows the same approach, but is technically more challenging.

Lemma 3.3. Consider a single-item instance I = (r,v,σ,B) and let the rightful winner i = rw be of type
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t ∈ (0, 1]. Then, FPA(r) is (λt, µt)-smooth for type t with

(3.2) λt =
µ

t

(

1−
1− tη

et/µ

)

and µt = µ for every







µ ≥ t
(

ln
(

1−tη
1−t

))−1

, if t < 1,

µ > 0, if t = 1.

3.2 Extension Theorem. We present our Extension Theorem to derive bounds on the price of anarchy.
Our bounds depend on the set of available agent types T ⊆ [0, 1]. We consider the class of instances IT

xos
with

fractionally subadditive valuations and type set T .
We first introduce the notion of calibration vectors, which will be crucial in the proof below. As we show in

Lemma A.2 below, the set of calibration vectors C(µ, T ) is always non-empty.

Definition 3.4 (Calibration Vectors). Let T be a set of agent types and let µ = (µt)t∈T be such that µt > 0
for each t ∈ T . We define the set of calibration vectors C(µ, T ) as follows:

(3.3) C(µ, T ) =

{

δ ∈ (0, 1]|T |

∣

∣

∣

∣

max
t∈T

(δtµt) + max
t∈T

(δt(1− t)) ≤ 1

}

.

We can now state the main result of this section. Recall that T+ is the augmented type set of T , where
T+ = T ∪ {0} for instances with budgets and T+ = T for budget-free instances.

Theorem 3.5 (Extension Theorem). Let IT
xos

be the class of instances with fractionally subadditive
valuations and type set T . Assume that FPA(r) is (λt, µt)-smooth for each type t ∈ T+. Then, the price of
anarchy of well-supported coarse correlated equilibria bounded by

CCE-POA(IT
xos

) ≤

(

max
δ∈C(µ,T+)

min
t∈T+

δtλt

)−1

.

The remainder of this section is devoted to the proof of Theorem 3.5.

3.2.1 Opt-Induced Additive Representatives and Budget-Free Proxy Instances. We first intro-
duce the notion of opt-induced additive representatives. Intuitively, these representatives allow us to treat frac-
tionally subadditive valuations as additive ones in the analysis. Let I ∈ Ixos be an instance with XOS valuation
functions v = (vi)i∈N . Fix an optimal allocation x∗ := x∗(I). By Definition 2.1, for each i ∈ N , there exist
additive representatives (v∗ij)j∈M with respect to the optimal allocation x∗

i .
5 We refer to these representatives as

opt-induced additive representatives. We define v∗i as the additive valuation function obtained from these repre-
sentatives, i.e., v∗i (xi) :=

∑

j∈M v∗ijxij for any allocation xi ⊆ M . The following two properties follow directly

from Definition 2.1: (XOS1) vi(x
∗
i ) = v∗i (x

∗
i ). (XOS2) For any allocation xi ⊆ M , vi(xi) ≥ v∗i (xi).

6

Next, we define budget-capped valuations that account for the budget constraints in (2.3). For every i ∈ N , the
Bi-capped valuation vBi

i : 2M 7→ R≥0 is defined as vBi
i (S) = min(vi(S),Bi) for all S ⊆ M . A crucial observation

that we use below is that capped XOS valuation functions remain XOS.

Proposition 3.6 (Lemma C.7 in [45]). vi ∈ Vxos ⇒ vBi
i ∈ Vxos.

We can now formalize the notion of budget-free proxy instances.

Definition 3.7 (Budget-Free Proxy Instance). Given an instance I = (r,v,σ,B) and a bid profile B ∈ ∆,
the budget-free proxy instance of I and B is defined as Î(I,B) = (r,vBi , σ̂(B),∞) with

σ̂i(B) :=

{

0 if Bi < E[vi(xi(B))],

σi otherwise.

Intuitively, the budget-free proxy instance Î simply replaces the valuation function of each agent i by its
budget-capped counterpart and leaves i’s type intact, unless i’s valuation under B exceeds the budget Bi. In

5Note that these representatives simply coincide with the input valuations if the valuation functions v are additive.
6To see this, recall that the additive representatives (vij)j∈M of agent i with respect to xi are chosen as maximizers from the

class Li ∋ (v∗ij)j∈M , and thus vi(xi) =
∑

j∈M vijxij ≥
∑

j∈M v∗ijxij .
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the latter case, i’s type is mapped to 0 and i becomes a value maximizer instead. As we show below, it suffices
to focus on these proxy instances to bound the price of anarchy of instances with budgets.

Note that for every budget-free instance I ∈ I∞ it holds that Î(I,B) = I for all B ∈ ∆. Moreover, it is not
hard to show that the optimal solutions of an instance and each of its budget-free proxies coincide.

Proposition 3.8. Let I = (r,v,σ,B) and B ∈ ∆. Then, OPT(Î(I,B)) = OPT(I).

For the remainder of Section 3.2, given a pair (I,B), we use (ĝi)i∈N to denote the agents’ gain functions for
the proxy instance Î(I,B), i.e., for every i ∈ N and every b ∈ D, we define ĝi(b) := vBi

i (xi(b))− σ̂i(B)pi(b).

Lemma 3.9. Consider an instance I ∈ Ixos and let B ∈ CCE(I). Then, for every agent i ∈ N , for every B′
i

with (B′
i,B−i) ∈ Ri and every δ ∈ [0, 1] it holds

min (E[vi(xi(B))],Bi) ≥ δ · E [ĝi(B
′
i,B−i)] + (1− δ + δσ̂i(B)) · E [pi(B)] .

3.2.2 Proof of Theorem 3.5. The following Lifting Lemma for budget-free instances provides the final
ingredient for the proof of our Extension Theorem. Basically, for any type t, it lifts the smoothness property of
FPA(r) for a single auction of type t (i.e., where the rightful winner is of type t) to all auctions having the same
type. The corollary below will be useful for its proof.

Corollary 3.10. Consider a budget-free instance I ∈ I∞
xos

. Fix an agent i ∈ N and consider a bid profile
B′

i ∈ ∆i that is ROI-restricted and let B−i ∈ ∆−i be arbitrary. Then, (B′
i,B−i) ∈ Ri.

Lemma 3.11 (Lifting Lemma). Let T be a set of types. Consider an instance I ∈ IT,∞
xos and let B ∈ ∆

be a well-supported bid profile. Let (v∗ij) be some opt-induced additive representatives. Assume that FPA(r) is
(λt, µt)-smooth for each type t ∈ T . Then, there exists a bid B′

i for every i ∈ N satisfying (B′
i,B−i) ∈ Ri.

Further, for each t ∈ T , it holds

(3.4)
∑

i∈Nt(I)

E[gi(B
′
i,B−i)] ≥

∑

j∈M :rw(j)∈Nt(I)

λtv
∗
rw(j)j − µtE[paw(j)j(B)].

Proof. Consider some agent i ∈ Nt(I). If i is not the rightful winner of any auction, we define B′
i such that

B′
ij = 0 deterministically. Clearly, (B′

i,B−i) ∈ Ri holds. Otherwise, let i is the rightful winner of auction j,
i.e., i = rw(j). By assumption, FPA(r) is (λt, µt)-smooth for t. Thus, for each auction j ∈ M , there exists an
ROI-restricted bid B′

ij such that, for each well-supported bid profile bj , we have:

(3.5) E[gi(B
′
ij , (bj)−i)] ≥ λtv

∗
rw(j)j − µtpaw(j)j(bj),

We define the random deviation B′
i of agent i for the global mechanism M simply by drawing a bid b′ij for

each auction j ∈ M independently according to B′
ij if i = rw(j), and letting B′

ij = b′ij = 0 deterministically if
i 6= rw(j). For each bid profile b−i, we have:

E[pi(B
′
i, b−i)] = E





∑

j∈M

pij(B
′
ij , (bj)−i)



 ≤ E





∑

j∈M

v∗ijxij(B
′
ij , (bj)−i)





= E[v∗i (xi(B
′
i, b−i))] ≤ E[vi(xi(B

′
i, b−i))].

Here the inequality holds because B′
ij is ROI-restricted for each j (which also holds trivially for all auctions j

with i 6= rw(j)). The second equality follows by the definition of v∗i , and the last inequality follows from property
XOS2. We conclude that B′

i is ROI-restricted for each agent i. Therefore, by Corollary 3.10, (B′
i,B−i) ∈ Ri,

proving the first part of the lemma.
We continue with the second part. Fix a type t ∈ T . Given any bid profile b ∈ supp(B), for every i ∈ Nt(I)

we have

E[gi(B
′

i , b−i)] =
∑

j∈M

E
[

gi
(

B′
ij , (bj)−i

)]

≥
∑

j∈M :rw(j)=i

λtv
∗
rw(j)j − µtpaw(j)j(b).(3.6)

Here the equality follows by linearity of expectation. The inequality follows by applying (3.5) to all auctions j
such that i = rw(j), and using that the expected gain of i is non-negative for all j with i 6= rw(j). Note that B is
well-supported and thus x(b) 6= 0 for each b ∈ supp(B). Taking expectations over B on both sides of (3.6) and
summing over all i ∈ Nt(I) yields (3.4). The claim follows.
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We can now present the proof of our Extension Theorem.

Proof of Theorem 3.5. Consider an instance I ∈ IT
xos

and let B be a well-supported CCE of I. Let
δ ∈ C(µ, T+) be an arbitrary calibration vector; note that such a vector exists by Lemma A.2 (given below). Let
x∗(I) be an optimal allocation and (v∗ij) the respective opt-induced additive representatives. Let Î(I,B) be the

budget-free proxy instance of (I,B) as defined in Definition 3.7. For ease of notation, we write N̂t := Nt(Î(I,B))
for every t ∈ T+.

The instance Î is budget-free by construction. Further, since Î is a proxy of I ∈ Ixos, it follows from
Proposition 3.6 that Î ∈ I∞

xos
. Thus, we can apply Lemma 3.11 to Î ∈ I∞

xos
and B, and obtain (from its first

statement) that there exists a bid B′
i for each agent i ∈ N such that (B′

i,B−i) satisfies the ROI constraint (2.2)

for Î. Using this and the definition of budget-capped valuations, we obtain for each agent i:

E[pi(B
′
i,B−i)] ≤ E

[

vBi
i (xi(B

′
i,B−i))

]

= E [min (vi(xi(B
′
i,B−i)),Bi)] .

In particular, this shows that each (B′
i,B−i) satisfies the ROI constraint (2.2) and the budget constraint (2.3)

for instance I, i.e., (B′
i,B−i) ∈ Ri.

By exploiting (3.4) for instance Î, we obtain that for every t ∈ T+ we have

(3.7)
∑

i∈N̂t

E [ĝi(B
′
i,B−i)] ≥

∑

j∈M :rw(j)∈N̂t

λtv
∗
rw(j)j − µtE

[

p
aw(j)j(B)

]

.

Note that we exploit here that x∗(I) is also an optimal solution for Î ∈ I∞
xos

by Proposition 3.8. Thus, the
opt-induced additive representatives with respect to x∗(I) of I and Î are the same.

We therefore have:

LW(I,B) ≥
∑

t∈T

∑

i∈N̂t

δtE [ĝi(B
′
i,B−i)] + (1− δt + δtσ̂i(B))E [pi(B)]

=
∑

t∈T+

∑

i∈N̂t

δtE [ĝi(B
′
i,B−i)] + (1− δt + δtt)E [pi(B)]

≥
∑

t∈T+

∑

i∈N̂t

δtE [ĝi(B
′
i,B−i)] +

(

1− max
t∈T+

(δt(1− t))

)

E [pi(B)]

=
∑

t∈T+

∑

i∈N̂t

δtE [ĝi(B
′
i,B−i)] +

(

1− max
t∈T+

(δt(1− t))

)

E

[

∑

i∈N

pi(B)

]

.(3.8)

The first inequality follows from applying Lemma 3.9 to each agent i ∈ N , using the deviation B′
i given by

Lemma 3.11. Then, the first equality holds by the definition of T+.
We now lower bound the first term in (3.8). Using Lemma 3.11, we obtain:

∑

t∈T

∑

i∈N̂t

δtE [ĝi(B
′
i,B−i)] ≥

∑

t∈T+

∑

j∈M :rw(j)∈N̂t

δtλtv
∗
rw(j)j − δtµtE

[

p
aw(j)j(B)

]

≥
∑

t∈T+

∑

j∈M :rw(j)∈N̂t

min
t∈T+

(δtλt) v
∗
rw(j)j − max

t∈T+
(δtµt)E

[

p
aw(j)j(B)

]

= min
t∈T+

(δtλt)OPT(I)− max
t∈T+

(δtµt)E

[

∑

i∈N

pi(B)

]

,(3.9)

where the last equality follows from property XOS1.
Substituting (3.9) into (3.8), we obtain:

LW(I,B) ≥ min
t∈T+

(δtλt)OPT(I) +

(

1− max
t∈T+

(δtµt)− max
t∈T+

(δt(1− t))

)

E

[

∑

i∈N

pi(B)

]

≥ min
t∈T+

(δtλt)OPT(I),
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where the second inequality holds because δ ∈ C(µ, T+) (see Definition 3.4). By selecting a calibration vector
δ ∈ C(µ, T+) that maximizes mint∈T+ (δtλt), we finally obtain

(3.10) LW(I,B) ≥ max
δ∈C(µ,T+)

min
t∈T+

δtλtOPT(I).

Since (3.10) holds for every instance I ∈ Ixos and every well-supported B ∈ CCE(I), the proof follows.

Note that, in the proof above, the whole purpose of our calibration vector was to eventually lower bound the
total payments in the final expression by 0. This also explains the specific definition of the feasibility constraint
of C(µ, T ) in (3.3).

3.3 POA-Revealing Mathematical Program. We can now present our POA-revealing mathematical
program (POA-RMP), which facilitates bounding the price of anarchy as stated in our Extension Theorem
(Theorem 3.5). The program is parameterized by the set T of available agent types. Recall that η = minj∈M ηj ∈
[0, 1).

POA-RMP(T ) = max min

{

mint∈T λt,
(

maxt∈T

(

µt

λt

)

+ maxt∈T

(

1−t
λt

))−1
}

s.t. λt = µt

(

1− 1−η
e1/µt

)

µt > 0 ∀t ∈ T ∩ {1}(3.11)

λt =
µt

t

(

1− 1−tη
et/µt

)

µt ≥ t
(

ln
(

1−tη
1−t

))−1

∀t ∈ T ∩ (0, 1)(3.12)

λt = µt µt ∈
(

0, 1
1−η

]

∀t ∈ T ∩ {0}(3.13)

A crucial building block in deriving our mathematical program (POA-RMP) is the characterization of optimal
calibration vectors. By exploiting this characterization, the task of finding the best upper bound on the POA
reduces to solving the above program. We summarize this result in the following theorem.

Theorem 3.12. Let IT
xos

be the class of instances with fractionally subadditive valuations and type set T .
Assume that FPA(r) is (λt, µt)-smooth for each type t ∈ T+. Then, the price of anarchy of well-supported coarse
correlated equilibria is upper bounded by POA-RMP(T+)−1.

We use (POA-RMP) in the next section to derive (tight) bounds on the POA of CCE.

4 Liquid Welfare Guarantees Without Reserve Prices. In this section, we focus on simultaneous
first price auctions without reserve prices, i.e., we assume that η = 0 in (3.11)–(3.13). In Section 4.1, we develop
lower bounds on the optimal value of POA-RMP(T ), which lead to POA upper bounds for various sets of types.
Then, in Section 4.2, we present these liquid welfare guarantees upper bounds, and in multiple cases, complement
our positive results with matching lower bounds.

4.1 Bounding POA-RMP(T ) by Partitioning Agent Types. In this section, we characterize a feasible
solution to POA-RMP(T ) for a given set of types T . The main technical challenge is to identify an analytical
solution that yields strong POA upper bounds. Below, we describe a policy for defining a solution vector µ for
POA-RMP(T ).

Given a set of types T , the main idea is to partition them into two classes Hω (high) and Lω (low), where ω is
a separation parameter. We then define µt depending on the class each t ∈ T belongs to. Intuitively, Hω contains
agent types that are structurally close to utility maximizers, while Lω contains agent types that are structurally
close to value maximizers.

Definition 4.1. Given ω ∈ (0, 1) and a set of types T , define Hω(T ) = {t ∈ T | t ≥ ω} and Lω(T ) =

{t ∈ T | t < ω}. Define µ∗(ω, T ) ∈ R
|T |
>0 such that, for each t ∈ T ,

µ∗
t (ω, T ) =











t
− ln(1−ω) , if t ∈ Hω(T ),

t
− ln(1−t) , if t ∈ Lω(T ) ∩ (0, 1),

1, if t ∈ Lω(T ) ∩ {0}.

(4.1)
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The following corollary is easy to verify.

Corollary 4.2. Given ω ∈ (0, 1) and a set of types T , µ∗ (ω, T ) is a feasible solution of POA-RMP(T ).

Lemma 4.3 will be useful when proving some of the price anarchy bounds that follow.

Lemma 4.3. Let T be a set of agent types. If max(T ) > 0, then for every ω ∈ (0,max(T )] ∩ (0, 1),

POA-RMP(T ) ≥ min

{

ω

− ln(1− ω)
,

ω

ω +max(T )

}

.

4.2 Price of Anarchy Bounds

4.2.1 Budget-Free Instances and Common Type. We first investigate the price of anarchy for budget-

free instances with XOS valuations, assuming agents have a single type t ∈ [0, 1] i.e., the class I
{t},∞
xos . In

Theorem 4.4, we establish a liquid welfare guarantee for I
{t},∞
xos , which interpolates smoothly from e/e−1 ≈ 1.58

when t = 1 (all agents are utility maximizers) to 2 when t = 0 (all agents are value maximizers). This interpolation
is illustrated in Figure 1.1(a).

Theorem 4.4. Let I
{t},∞
xos be the class of budget-free instances with fractionally subadditive valuations and a

single type t ∈ [0, 1]. Then,

CCE-POA
(

I
{t},∞
xos

)

≤











e
e−1 , if t ∈ [1− 1/e, 1] ,

1− (1−t) ln(1−t)
t , if t ∈ (0, 1− 1/e) ,

2, if t = 0.

Proof. Set ω = 1 − 1/e. Let µ := µ∗(ω, {t}) be as prescribed by Definition 4.1. We distinguish three cases
based on the value of t.

Case 1: t = 0. In this case, (λ, µ) = (1, 1) (by (3.13)) and POA-RMP({t}) ≥ min
(

λ, λ
µ+1

)

= 1
2 .

Case 2: t ∈ (0, 1− 1/e). Similarly, (λ, µ) =
(

t(− ln(1− t))−1, t(− ln(1− t))−1
)

(by (3.12) and we obtain

POA-RMP({t}) ≥ min

(

λ,
λ

µ+ 1− t

)

=
λ

µ+ 1− t
=

t

t− (1− t) ln(1− t)
.

Here, the first equality follows since µ = t
− ln(1−t) ≥ t holds for all t ∈ (0, 1− 1/e).

Case 3: t ∈ [1− 1/e, 1]. We have that (λ, µ) =
(

ω(− ln(1− ω))−1, t(− ln(1− ω))−1
)

= (1− 1/e, t) (by (3.12) for
t < 1 and (3.11) for t = 1). Furthermore,

POA-RMP({t}) ≥ min

(

λ,
λ

µ+ 1− t

)

= λ = 1−
1

e
.

Finally, by Theorem 3.12, we have that CCE-POA(I
{t},∞
xos ) ≤ (POA-RMP({t}))−1

. Combining this fact with the
lower bounds on POA-RMP({t}) we obtained for each of the three cases above, the claim follows.

Theorem 4.4 has a few important implications. Note that for t = 1, i.e., when agents are utility maximizers, the
upper bound of Theorem 4.4 recovers the best possible price of anarchy bound of e

e−1 (due to [45]). We show
that the same bound holds as long as t ≥ 1 − 1/e. That is, somewhat surprisingly, the CCE-POA for this range
of types does not get worse; in fact, this is true even for single-item first price auctions. The proof of Corollary
4.5 is implied by Theorem 5.3 (for η = 0) in Section 5.2.

Corollary 4.5. Let I
{t},∞
add be the class of budget-free instances with additive valuations and a single type

t ∈ [0, 1]. If t ≥ 1− 1/e then, CCE-POA(I
{t},∞
add ) ≥ e

e−1 and the bound holds even for single-item auctions.

Finally, for instances with value-maximizers only i.e., for t = 0, Theorem 4.4 extends the best possible upper
bound of 2 to coarse correlated equilibria and XOS valuation functions [35, 22].
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4.2.2 Budget-Constrained Agents and Heterogeneous Types. In Theorem 4.6, we make use of all
the technical tools developed so far in this section to obtain a liquid welfare guarantee for coarse correlated
equilibria and budget-constrained agents with XOS valuations for arbitrarily heterogeneous agent types. Recall
that we denote by W0 the principal branch of the Lambert W function Let P : [0, 1] 7→ R≥0 be defined as

(4.2) P (z) =

{

1 + z
1+W0(−e−z−1) , if z > 1 + W0(−2e−2)

2 ,

2, otherwise.
.

Theorem 4.6. Let IT
xos

be the class of instances with fractionally subadditive valuations and type set
T ⊆ [0, 1]. Then, CCE-POA

(

IT
xos

)

≤ P (max(T )).

Theorem 4.6 reveals an intriguing threshold phenomenon: the POA for a type set T remains at most 2 when
max(T ) < 0.797, and increases from 2 to 2.1885 as max(T ) approaches 1 (see also Figure 1.1(a)). Note that
our liquid welfare guarantee unifies and generalizes two state-of-the-art POA bounds. Specifically, Theorem 4.6
recovers the upper bound of 2.1885 due to [22], for budget-free instances with additive valuation functions and
mixed Nash equilibria under the mixed-agent model (i.e., T = {0, 1}). It also recovers the upper bound of
2 due to [36], for budget-constrained value maximizers (i.e., T = {0}) with additive valuations. Theorem 4.6
generalizes both results to coarse correlated equilibria and budget-constrained agents with XOS valuations, while
simultaneously extending the type set to the general model in [1].

We now prove Theorem 4.6 using the following fact.

Fact 4.7. Let f(z) = 1 + W0

(

−e−z−1
)

. For every z ∈
(

1 + W0(−2e−2)/2, 1
]

, we have f(z) < z and
f(z) + z = − ln(1− f(z)).

Proof of Theorem 4.6. Observe that max(T+) = max(T ∪ {0}) = max(T ). We distinguish three cases, based
on the value of max(T ).

Case 1: max(T ) = 0. In this case T+ = T = {0}. We have:

(4.3) POA-RMP(T+) = POA-RMP({0}) ≥ min

{

λt,

(

µt

λt
+

1

λt

)−1
}

= min
{

1, (1 + 1)
−1

}

=
1

2
.

Here, the second equality is due to (3.13) and (4.1).

Case 2: max(T ) ∈
(

0, 1 + W0(−2e−2)/2
]

. Set ω = max(T ). Then ω ∈ (0,max(T )]∩ (0, 1) (since ω = max(T ) < 1),
and we can invoke Lemma 4.3 for T+ with ω = max(T ). Hence, we obtain that the value of the objective function
of POA-RMP(T+) is at least:

(4.4) min

{

ω

− ln(1− ω)
,

ω

ω +max(T )

}

= min

{

max(T )

− ln(1−max(T ))
,
1

2

}

=
1

2
.

Here, the first and second equality follow by choice of ω = max(T ) as z
− ln(1−z) ≥

1
2 for all z ≤ 1 + W0(−2e−2)/2.

Case 3: max(T ) ∈ (1+W0(−2e−2)/2, 1]. Set ω = 1+W0

(

−e−max(T )−1
)

. Using the first statement of Fact 4.7, we
get that ω = f(max(T )) < max(T ) whenever max(T ) ∈ (1+W0(−2e−2)/2, 1]. Therefore, ω ∈ (0,max(T )]∩ (0, 1) as
max(T ) ≤ 1 and, similarly to Case 2, we can invoke Lemma 4.3 for T+ with ω = 1+W0

(

−e−max(T )−1
)

. Hence,
we obtain that the value of the objective function of POA-RMP(T+) is at least:

min

{

ω

− ln(1− ω)
,

ω

ω +max(T )

}

=
ω

ω +max(T )
=

1 +W0

(

−e−max(T )−1
)

1 +W0

(

−e−max(T )−1
)

+max(T )
.(4.5)

Here, the first equality holds by the second statement of Fact 4.7 and the second equality follows by our choice of
ω.

We therefore conclude that CCE-POA
(

IT
xos

)

≤ (POA-RMP (T+))
−1

≤ P (max(T )). The first inequality follows
by Theorem 3.12 and the second inequality by (4.3), (4.4) and (4.5).
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We now show that the liquid welfare guarantee of Theorem 4.6 is best possible by providing two matching lower
bounds for simple classes of instances. The lower bound of Theorem 4.8 matches the upper bound of Theorem
4.6 for CCE, even when the agents have a single type t ∈ [0, 1] and additive valuation functions.

Theorem 4.8. Let I
{t}
add be the class of instances with additive valuations and a single type t ∈ [0, 1]. Then,

CCE-POA(I
{t}
add) ≥ P (t).

Theorem 4.8 has one additional implication for the inefficiency of CCE of simultaneous first price auctions and
fractionally subadditive valuations. By combining Theorem 4.8 and Theorem 4.4, we obtain a separation in terms
of liquid welfare guarantees for environments with a single type t > 0. Namely, we show that budget-constraints
make the price of anarchy strictly worse in this case (see Figure 1.1(a)).

Corollary 4.9. For every type t ∈ T , let I
{t}
xos be the class of instances with fractionally subadditive

valuations and let I
{t},∞
xos be the subclass of budget-free instances. For t > 0, it holds that CCE-POA(I

{t}
xos) >

CCE-POA(I
{t},∞
xos ).

We continue with our second negative result. Here, we show that the liquid welfare guarantee in Theorem 4.6
is also tight for the class of budget-free instances, additive valuations and budget-free instances, even for mixed
Nash equilibria, as long as value maximizers are included in the type set T . This lower bound is a generalization
of the one in [22] for a mixed agent model with value maximizers and a different type.

Theorem 4.10. Let I
{0,t},∞
add be the class of budget-free instances with additive valuations and a set of agent

types {0, t} for t ∈ (0, 1]. Then, MNE-POA(I
{0,t},∞
add ) ≥ P (t).

Note that Theorem 4.10 together with Theorem 4.6 settle the price of anarchy of all equilibrium classes and
all budget-constrained instances for agent type sets that include the value-maximizing type t = 0.

Corollary 4.11. For val ∈ {add, sub,xos}, let IT
val

be the class of instances with valuations in Vval and
let T be a set of types. If 0 ∈ T , then, for EQ ∈ {MNE,CE,CCE} we have EQ-POA(IT

val
) = P (max(T )).

We conclude this section with Theorem 4.12, which states a slightly weaker POA lower bound for MNE with
budget-constrained agents and additive valuation functions. However, this bound holds for an arbitrary type set
T (not necessarily including t = 0).

Theorem 4.12. For every type set T , it holds that MNE-POA(IT
add

) ≥ 2.

Closing the gap between 2 and P (max(T )) for MNE, for every type set T , is an intriguing open question.

4.2.3 Bounded Minimum Type. A qualitative interpretation of the upper bound in Theorem 4.6 is that
equilibria become more inefficient in the presence of agent types whose types resemble utility maximizers—i.e.,
as t approaches 1, the POA worsens. One contributing factor to this phenomenon is that, in the worst case, the
competitors of these agents may, on the contrast, be structurally similar to value maximizers. A natural question
is to study mixtures of types in which the minimum type is bounded away from 0. In Theorem 4.13, we present
a second threshold phenomenon revealed by our framework: whenever a type set T satisfies min(T ) ≥ 0.74, the
liquid welfare guarantees for CCE of budget-free instances improve, no matter how heterogeneous the set of types
is. In fact, for such type sets, CCE-POA(IT,∞

xos ) ≤ 1.83!

Theorem 4.13. Let β be the solution to β = 1 − e−
1
β , i.e., β ≈ 0.741. Let IT,∞

xos be the class of budget-free
instances with fractionally subadditive valuations and type set T . If min(T ) ≥ β, then:

CCE-POA(IT,∞
xos

) ≤
(

min(T )
(

1− e−
1

min(T )

))−1

∈

[

e

e− 1
,
1

β2

]

5 Improved Liquid Welfare Guarantees with Reserve Prices. Our type-dependent smoothness
framework and the POA-RMP developed in Section 3 allow us to study the inefficiency of instances with
fractionally subadditive valuations and their induced well-supported equilibria when the auctioneer implements
reserve prices for each individual auction (see also Section 2). Namely, as already hinted by our formulation
of POA-RMP(T ) in Section 3.3, our liquid welfare guarantees for instances with reserve prices depend on the
minimum relative gap η ∈ [0, 1).
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We remark that, as observed by Balseiro et al. [7], a reserve price rj can be interpreted as a prediction (see
also [28, 15, 19]) of the value of the rightful winner of an auction j ∈ M . These predictions can then be used to
set reserve prices accordingly, with the goal of improving liquid welfare guarantees. In this context, the parameter
η can be viewed as an error measure of the prediction: η = 0 indicates a completely uninformative prediction,7

whereas as η → 1, the reserve prices approach the actual valuations of the rightful winners in all auctions.
Section 5 is structured as follows. In Section 5.1, we devise upper bounds on the POA that are functions

of η for well-supported equilibria of a given class. Then, in Section 5.2, we examine when such equilibria are
guaranteed to exist. Finally, in Section 5.3, we demonstrate that when budget-free agents repeatedly participate
in a first-price auction with reserve price using regret-minimizing algorithms, they converge to CCE that are
well-supported.

5.1 POA Bounds as Functions of the Minimum Relative Gap. In the presence of the η parameter,
deriving analytical POA bounds for a general type set T becomes significantly more challenging. In order to
obtain upper bounds on the POA as functions of η, we can no longer rely on our approach from Section 4.1.
Therefore, in this section, we focus on more tractable settings, such as the budget-free single-type environment
and the mixed-agent model with budget-constrained agents.

5.1.1 Budget-Free Agents with One Type. We present our POA upper bound for the single type
environment {t} for every t ∈ [0, 1], fractionally subadditive valuations and well-supported CCE in Theorem 5.1.
As η → 1, the liquid welfare of all such CCE tends to optimality; see Figure 1.1b for an illustration.

Theorem 5.1. Let I
{t},∞
xos be the class of budget-free instances with fractionally subadditive valuations, a

single type t ∈ [0, 1], and let η ∈ [0, 1) be the smallest relative gap of the reserve prices. Also, let:

(5.1) Pt(η) =















e
e−1+tη , if t ∈ (1− 1/e, 1] and η ∈

[

0, 1−e(1−t)
t

)

,

1 + 1
t

(

ln
(

1−tη
1−t

)

(1− t)
)

, if t ∈ (0, 1) and η ∈
(

max
(

0, 1−e(1−t)
t

)

, 1
)

,

2− η, if t = 0.

For well-supported coarse correlated equilibria, it holds that CCE-POA(I
{t},∞
xos ) ≤ Pt(η). Furthermore, Pt is non

increasing in [0, 1) with limz→1 Pt(z) = 1 for every t ∈ [0, 1].

We now present two lower bounds for CCE in budget-free instances with reserve prices in single-type
environments. In Theorem 5.2, we show that the bound of Theorem 5.1 is tight for all η ∈ [0, 1) in auctions
with value maximizers only, i.e., when t = 0. Then, in Theorem 5.3, we establish a negative result for a different
restricted range of (η, t), including the case of utility maximizers (t = 1) for which we prove that the bound of
Theorem 5.1 is tight for all η ∈ [0, 1). Interestingly, the worst-case instances used in the proof of these theorems
involve a two-item and single-item auction.

Theorem 5.2. Let It,∞
add be the class of budget-free instances with additive valuations for type t = 0 and

let η ∈ [0, 1) be the smallest relative gap from reserve prices in I
{0},∞
add . Then, CCE-POA(I

{0},∞
add ) ≥ 2 − η for

well-supported coarse correlated equilibria.

Theorem 5.3. Let I
{t},∞
add be the class of budget-free instances with additive valuations for type t ∈ [1− 1/e, 1]

and let η ∈ [0, 1) be the smallest relative gap from reserve prices. Then, if η ≤ 1−(e−1)t
t , CCE-POA(I

{0},∞
add ) ≥

e
e−1+η for well-supported coarse correlated equilibria.

Corollary 5.4. Let η ∈ [0, 1) be the smallest relative gap from reserve prices. Then, for t ∈ {0, 1} it holds

that CCE-POA(I
{t},∞
xos ) = CCE-POA(I

{t},∞
add ) = Pt(η).

7Uninformative for improving liquid welfare guarantees: almost all ηj ’s may be close to 1, but one auction j with ηj = 0 can
prevent improved guarantees (see also the proof of Theorem 5.2).
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5.1.2 Budget-Constrained Agents in the Mixed Agent Model. We now focus on liquid welfare
guarantees for T = {0, 1}, i.e., the mixed-agent model in which agents are either utility or value maximizers,
under budget constraints and with reserve prices. This setting has previously been studied with budget-free,
mixed Nash equilibria, and additive valuations [22]. In Theorem 5.5, we establish a POA upper bound that
depends on the parameter η for budget-constrained agents, CCE, and fractionally subadditive valuations. As the
parameter η increases from 0 to 1, the resulting bound interpolates between our liquid welfare guarantee of 2.1885
from Theorem 4.6 and the optimal value of 1.

Theorem 5.5. Let I
{0,1},∞
xos be the class of instances with fractionally subadditive valuations for the set of

types {0, 1}. Let η ∈ [0, 1) be the smallest relative gap from reserve prices. Then, for well-supported equilibria,

CCE-POA(I
{0,1}
xos ) ≤ Q(η), where

Q(η) = (1− η) ·
2− η +W0

(

−(1− η)2eη−2
)

1− η +W0 (−(1− η)2eη−2)
.

Furthermore, Q(η) is non-increasing in [0, 1) with Q(0) ≈ 2.1885 and limz→1 Q(z) = 1.

5.2 On the Existence of Well-Supported Equilibria. Recall that for an instance I with reserve prices
r, a bid profile B ∈ ∆ is well-supported if, for each b ∈ supp(B), it holds that xj(b) 6= 0 for every item j ∈ M .
Throughout our work, we have applied this refinement on equilibria when considering liquid welfare guarantees
for instances with reserve prices, as, in the presence of reserve prices, it is a crucial precondition of our Extension
Theorem (Theorem 3.12) in Section 3. In this section, we explore when such equilibria are guaranteed to exist.

5.2.1 Budget-Free Instances and Additive Valuations. We begin with a positive result for the class
IT,∞
add given a type set T : namely, in Theorem 5.6, we show that all correlated equilibria induced on instances of

this class are well-supported.

Theorem 5.6. Let T be a set of agent types and let I ∈ IT,∞
add . Then, every B ∈ CE(I) is well-supported.

Intuitively, for agents with additive valuations, the rightful winner i of an auction j always has “room” for
additional gain by bidding above the reserve price rj and competing for the item (unless of course some other
agent has already submitted a sufficiently high bid above rj). In Theorem 5.6, we confirm this intuition for
correlated equilibria. Interestingly, we observe that it does not necessarily hold for coarse correlated equilibria; in
Theorem 5.7, we construct a simple single-item auction with two utility maximizers and a feasible reserve price,
along with a CCE that is not well-supported.

Theorem 5.7. Let Iadd be the class of budget-free instances with additive valuation functions and reserve
prices. There exists an instance I ∈ Iadd and a B ∈ CCE(I) which is not well-supported for I.

The intuition behind why such CCE exist even in simple settings is that it can be more cost-effective for the
highest-valued agent to remain coordinated in their bidding (through the CCE probability distribution) which
might mean that they sometimes bid below the reserve price with positive probability, rather than deviating
unilaterally and always bidding at least the reserve price which can lead to a higher expected payment. Note that
the instance in Theorem 5.7 also implies a lower bound on the POA of e

e−1 for CCE that are not necessarily well-
supported. We therefore conclude that our inability to devise improved liquid welfare guarantees as parameters
of η ∈ [0, 1) for such equilibria (similar to those of Theorem 5.1 and Theorem 5.5) is not an artifact of our analysis
(e.g., in Theorem 3.5), but rather an unavoidable structural property of CCE.

Corollary 5.8. Let Iadd be the class of instances with additive valuations and let η ∈ [0, 1) be the smallest
relative gap from reserve prices. Then, CCE-POA(Iadd) ≥

e
e−1 .

5.2.2 Beyond Additive Valuations. We conclude the section with another negative result. We show
that, for the class of budget-free instances with submodular valuations, even mixed Nash equilibria are not
guaranteed to be well-supported. Moreover, this fact paints a bleak picture for their liquid welfare guarantees:
without refining the set of MNE to well-supported equilibria only, the POA for MNE for instances with reserve
prices is unbounded.

Theorem 5.9. Let Isub be the class of budget-free instances with submodular valuation functions and reserve
prices. There exists an instance I ∈ Isub and a B ∈ MNE(I) which is not well-supported for I. Furthermore,
POA-MNE(Isub) = ∞.
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5.3 Mean-Based Algorithms Converge to Well-Supported CCE. It is well known that regret-
minimization dynamics in auctions lead to CCE (see, e.g., [30, 11, 47]). In this section, motivated by the negative
result in Theorem 5.7, which shows that there exist CCE that are not well-supported even in single-item first-price
auctions with agents with no budget constraints, we address the question of whether the CCE reached through
such dynamics are well-supported.

We consider a model similar to the repeated auction setting studied in [32]. Specifically, we consider two
budget-free agents8 with arbitrary types who repeatedly participate in a first-price auction with a feasible reserve
price r, where ties are broken uniformly at random. Each agent i is assumed not to overbid, i.e., bi ≤ vi (as
we can still assume w.l.o.g. that τ = 1). The agents’ values and types remain fixed across all repetitions of the
auction. We assume that values, bids, and the reserve price r are all integer multiples of a minimum increment
ε > 0. Each agent aims to maximize their cumulative gain gi over time.

Agents use regret-minimization algorithms, where the regret of agent i after T rounds, given bids (b1, . . . , bT ),
is defined as

RT
i =

T
∑

t=1

max
b

gi(b, b
t
−i)− gi(b

t
i, b

t
−i),

with b denoting the optimal fixed bid in hindsight. We introduce the definition of a weakly dominated action
below.

Definition 5.10. Let A1 and A2 be subsets of the action spaces of two agents in a two-agent game. An
action i ∈ A1 of agent 1 is weakly dominated in A2 by another action i′ ∈ A1 if:

1. ∀j ∈ A2 : g1(i, j) ≤ g1(i
′, j), and

2. ∃j ∈ A2 : g1(i, j) < g1(i
′, j).

Kolumbus and Nisan [32] introduce a specific subclass of CCE called co-undominated. In such equilibria, no
action in an agent’s support is weakly dominated relative to the other agent’s support.

Definition 5.11 ([32]). Let B be a CCE of a (finite) two-agent game with action spaces I1 and I2. Let its
support be (A1, A2), where A1 = {i ∈ I1 | ∃j ∈ I2 such that Bij > 0} and A2 = {j ∈ I2 | ∃i ∈ I1 such that Bij >
0}. The CCE is co-undominated if, for every i ∈ A1 and every i′ ∈ I1, action i is not weakly dominated in A2

by i′, and similarly for A2.

If regret-minimizing algorithms9 converge, Kolumbus and Nisan [32] show that they converge to co-
undominated CCE. This convergence result also holds in our setting of a first-price auction with a feasible
reserve price and heterogeneous agent types. Moreover, co-undominated CCE possess the desired property of
being well-supported, as we show in the next theorem.

Theorem 5.12. Consider a first-price auction with feasible reserve price among two agents with arbitrary
types and action spaces I1 and I2. Then, any co-undominated CCE is well-supported.

Proof. Let B be a co-undominated CCE of a FPA(r) with a feasible reserve price among two agents with
arbitrary types and action spaces I1 and I2. For contradiction, assume that B is not well-supported, i.e., the item
is not sold with probability 1. Denote the support (A1, A2) of B by A1 = {i ∈ I1 | ∃j ∈ I2 such that Bij > 0}
and A2 = {j ∈ I2 | ∃i ∈ I1 such that Bij > 0}. Assume w.l.o.g. that v1 ≥ v2.

Since the item is not sold with probability 1, there exist actions i ∈ A1 and j ∈ A2 such that i < r, j < r,
and Bij > 0. In this case, we observe that action i of agent 1 is weakly dominated in A2 by action r, since for
all j′ ∈ A2 it holds that 0 = g1(i, j

′) ≤ g1(r, j
′), and 0 = g1(i, j) < g1(r, j) = v1 − σ1r, as r < v1 and σ1 ≤ 1.

However, by assumption, i ∈ A1 i.e., it is in the support of the CCE B. This contradicts Definition 5.12 and the
claim follows.

Theorem 5.12 indicates that, when autobidding agents converge to a CCE using regret-minimizing algorithms,
they reach a well-supported CCE. Hence, for each such CCE, the liquid welfare guarantees we obtained in
Section 5.1 apply.

8We focus on two agents for simplicity, though the result extends to more than two agents.
9In particular, Kolumbus and Nisan [32] focus on a family of algorithms called mean-based ; see [12] for a definition.
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Appendix

A Missing Material of Section 3

A.1 Proof of Lemma 3.2

Lemma 3.2. Consider a single-item instance I = (r,v,σ,B) and let the rightful winner i = rw be of type
t = 0. Then, FPA(r) is (λt, µt)-smooth for type t with λt = µt = µ for every µ ∈ (0, (1− η)−1].

Proof of Lemma 3.2. Assume that the rightful winner i is of type t = 0. We need to show that there exists a
ROI-restricted random bid B′

i such that for every well-supported bid profile b and aw = aw(b) the actual winner,
it holds that:

(A.1) E [gi (B
′
i, b−i)] ≥ µvi − µpaw(b).

Let B′
i = B′

i(v) be a random unilateral deviation of i drawn from [ηvi, vi] with CDF F (z) = FB′

i
(z) =

µz/vi +1−µ. Note that the domain is well-defined as η ∈ [0, 1), and it is easy to verify that F (·) is non-negative
and increasing over [ηvi, vi] and F (vi) = 1. Also, B′

i is ROI-restricted as the condition is even pointwise satisfied,
i.e., for every z ∈ [ηvi, vi] it holds that pi(z, ·) ≤ vi(xi(z, ·)).

It remains to show that B′
i satisfies (A.1). Note that the expected gain of i is always non-negative, as i

bids above vi with 0 probability. Thus, (A.1) holds trivially if vi ≤ paw(b). Therefore, assume that vi > paw(b)
and define θi := max(ηvi,maxj 6=i bj). For every z ≥ θi, i wins the item under the bid profile (z, b−i) and pays
pi(z, b−i) = z. As the item is sold under the bid profile b by assumption, the actual winner under b either pays
the reserve price or their maximum bid, i.e., paw(b) = max(ηvi,maxj bj). We obtain:

θi = max

(

ηvi,max
j 6=i

bj

)

≤ max

(

ηvi,max
j

bj

)

= paw(b) < vi.

This leads to the desired result as:

E [gi (B
′
i, b−i)] = vi(1− F (θi)) = vi

(

1−

(

µθi
vi

+ 1− µ

))

= µvi − µθi ≥ µvi − µpaw(b).

Note that the first equality holds because the sensitivity of i is σi = t = 0.

A.2 Proof of Lemma 3.3

Lemma 3.3. Consider a single-item instance I = (r,v,σ,B) and let the rightful winner i = rw be of type
t ∈ (0, 1]. Then, FPA(r) is (λt, µt)-smooth for type t with

(3.2) λt =
µ

t

(

1−
1− tη

et/µ

)

and µt = µ for every







µ ≥ t
(

ln
(

1−tη
1−t

))−1

, if t < 1,

µ > 0, if t = 1.

We elaborate on the expression of (3.2) in Lemma 3.3. First, note that t ∈ (0, 1], as t > 0 and t ≤ 1
by assumption. The ln(·) expression decreases as η increases and converges to 0 (from above) as η → 1; the
lower bound restriction on µ thus increases as η increases. As η < 1, the ln(·) expression is well-defined for all
combinations of t and η, except when t = 1. In the latter case, we only impose the restriction that µ > 0.

Given µ, we define a parameter γ = γ(µ) as follows:

(A.2) γ(µ) =
1

t

(

1−
1− tη

et/µ

)

,

which will be useful in the proof of Lemma 3.3. Note that γ is well-defined because t > 0 by assumption.
The following corollary is an immediate consequence of the definitions above.

Corollary A.1. Let µ satisfy (3.2) and let γ be defined as in (A.2). Then, γ ∈ [η, 1].
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Proof. Note that the interval [η, 1] is well-defined because η ∈ [0, 1) by assumption. We first prove the lower
bound on γ. Note that et/µ > 1 as µ > 0 and t > 0, and therefore:

γ =
1

t

(

1−
1− tη

et/µ

)

>
1

t
· tη = η.

For the upper bound on γ, we have that:

γ =
1

t

(

1−
1− tη

et/µ

)

≤
1

t

(

1−
1− tη

eln(
1−tη
1−t )

)

=
1

t
· t = 1,

where the inequality follows from (3.2) and because ex is non-decreasing in x.

We now continue with the proof of Lemma 3.3.

Proof of Lemma 3.3. Assume that the rightful winner i is of type t ∈ T with σi = t > 0. We need to show
that there exists a ROI-restricted random bid B′

i such that for every well-supported bid profile b and aw = aw(b)
the actual winner, it holds that:

(A.3) E [gi (B
′
i, b−i)] ≥ µγvi − µpaw(b).

Let B′
i = B′

i(v) be a random unilateral deviation of i drawn from [ηvi, γvi] with PDF f(z) = fB′

i
(z) =

µ/(vi − tz). Note that the domain is well-defined as γ ∈ [η, 1] by Corollary A.1, and that f(·) is non-negative.
Also note that:

∫ γvi

ηvi

f(z)dz =

∫ γvi

ηvi

µ

vi − tz
dz = µ

∫ γvi

ηvi

(

− ln (vi − tz)

σ

)′

dz

=
µ

t
ln

(

1− tη

1− tγ

)

=
µ

t
ln

(

et/µ
)

= 1,

where the fourth equality follows from the definition of γ in (A.2). Furthermore, B′
i is ROI-restricted as the

condition is even pointwise satisfied, i.e., for z ∈ [ηvi, γvi] it holds that pi(z, ·) ≤ γvi(xi(z, ·)) ≤ vi(xi(z, ·)), as
γ ∈ [η, 1] by Corollary A.1.

It remains to show that B′
i satisfies (A.3). Note that the expected gain of i is always non-negative, as i

bids above vi with 0 probability and t ≤ 1. Thus, (A.3) holds trivially if γvi ≤ paw(b). Therefore, assume that
γvi > paw(b) and define θi := max(ηvi,maxj 6=i bj). Then, for every z ≥ θi, i wins the item under bid profile
(z, b−i) and pays pi(z, b−i) = z. As the item is sold under bid profile b by assumption, the actual winner under
b either pays the reserve price or their maximum bid, i.e., paw(b) = max(ηvi,maxj bj). We obtain:

θi = max

(

ηvi,max
j 6=i

bj

)

≤ max

(

ηvi,max
j

bj

)

= paw(b) < γvi.

This leads to the desired result as:

E [gi (B
′
i, b−i)] =

∫ γvi

θi

(vi − tpi(z, b−i))f(z)dz =

∫ γvi

θi

(vi − tz)f(z)dz

=

∫ γvi

θi

µdz = µγvi − µθi ≥ µγvi − µpaw(b).

Note that the first equality holds because the sensitivity of i is σi = t by the precondition of the Lemma.

A.3 Proofs of Proposition 3.8, Lemma 3.9, and Corollary 3.10

Proposition 3.8. Let I = (r,v,σ,B) and B ∈ ∆. Then, OPT(Î(I,B)) = OPT(I).

Proof of Proposition 3.8. Using Definition 3.7 and the definition of budget-capped valuations, we obtain:

OPT(Î(I,B)) = max
x∈X

∑

i∈N

vBi
i (xi) = max

x∈X

∑

i∈N

min (vi(xi),Bi) = OPT(I).
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Lemma 3.9. Consider an instance I ∈ Ixos and let B ∈ CCE(I). Then, for every agent i ∈ N , for every B′
i

with (B′
i,B−i) ∈ Ri and every δ ∈ [0, 1] it holds

min (E[vi(xi(B))],Bi) ≥ δ · E [ĝi(B
′
i,B−i)] + (1− δ + δσ̂i(B)) · E [pi(B)] .

Proof of Lemma 3.9. Fix an agent i ∈ N . We distinguish two cases.

Case 1: Bi < E[vi(xi(B))]. We have:

min (E[vi(xi(B))],Bi) = δBi + (1− δ)Bi

≥ δ E [min (vi(xi(B
′
i,B−i)),Bi)] + (1− δ)Bi

= δ E
[

vBi
i (xi(B

′
i,B−i))

]

+ (1− δ)Bi

≥ δ E
[

vBi
i (xi(B

′
i,B−i))

]

+ (1− δ)E [pi(B)]

= δ E
[

vBi
i (xi(B

′
i,B−i))− σ̂i(B)pi(B

′
i,B−i)

]

+ (1− δ + σ̂i(B)δ)E [pi(B)]

= δ E [ĝi(B
′
i,B−i)] + (1− δ + δσ̂i(B))E [pi(B)] .

The first equality follows by the definition of Case 1, and the second equality follows by the definition of budget-
capped valuations. The second inequality follows since, by assumption, B is a CCE for I and therefore satisfies the
budget constraint in (2.3) for instance I. Finally, the third equality follows since σ̂i(B) = 0 holds by Definition 3.7.

Case 2: Bi ≥ E[vi(xi(B))]. In this case, we have:

min (E[vi(xi(B))],Bi) = δ E[vi(xi(B))] + (1− δ)E[vi(xi(B))]

≥ δ E[vi(xi(B))] + (1− δ)E [pi(B)]

= δ E[gi(B)] + (1− δ + δσi)E [pi(B)]

≥ δ E[gi(B
′
i,B−i)] + (1− δ + δσi)E [pi(B)]

= δ E[vi(xi(B
′
i,B−i))− σipi(B

′
i,B−i)] + (1− δ + δσi)E [pi(B)]

≥ δ E[min (vi(xi(B
′
i,B−i)),Bi)− σipi(B

′
i,B−i)] + (1− δ + δσi)E [pi(B)]

= δ E
[

vBi
i (xi(B

′
i,B−i))− σipi(B

′
i,B−i)

]

+ (1− δ + δσi)E [pi(B)]

= δ E
[

vBi
i (xi(B

′
i,B−i))− σ̂i(B)pi(B

′
i,B−i)

]

+ (1− δ + δσ̂i(B))E [pi(B)]

= δ E [ĝi(B
′
i,B−i)] + (1− δ + δσ̂i(B))E [pi(B)] .

Here, the first equality follows by the definition of Case 2, and the first inequality holds since, by assumption,
B is a CCE of I and therefore satisfies the ROI constraint in (2.2). Similarly, the second inequality follows from
(2.4), since B is a CCE of I, and it holds by assumption that (B′

i,B−i) ∈ Ri. The fourth equality holds by the
definition of budget-capped valuations, while the fifth follows since, by Definition 3.7, σ̂i(B) = σi holds.

Corollary 3.10. Consider a budget-free instance I ∈ I∞
xos

. Fix an agent i ∈ N and consider a bid profile
B′

i ∈ ∆i that is ROI-restricted and let B−i ∈ ∆−i be arbitrary. Then, (B′
i,B−i) ∈ Ri.

Proof. We have:

E[pi(B
′
i,B−i)] =

∫

D−i

fB−i
(b−i) · E[pi(B

′
i, b−i)]db−i

≤

∫

D−i

fB−i
(b−i) · E[vi(xi(B

′
i, b−i))]db−i = E[vi(xi(B

′
i,B−i))],

where the inequality follows because B′
i is ROI-restricted. We have thus shown that (2.2) is satisfied. Since I is

budget-free (and therefore (2.3) is trivially true), the proof follows.
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A.4 Proof of Theorem 3.12.

Theorem 3.12. Let IT
xos

be the class of instances with fractionally subadditive valuations and type set T .
Assume that FPA(r) is (λt, µt)-smooth for each type t ∈ T+. Then, the price of anarchy of well-supported coarse
correlated equilibria is upper bounded by POA-RMP(T+)−1.

A crucial building block in deriving our mathematical program (POA-RMP) is the characterization of optimal
calibration vectors.

Lemma A.2. Let T be a set of types, µ = (µt)t∈T ∈ R
|T |
>0, and λ = (λt)t∈T ∈ R

|T |
>0. Then,

(A.4) max
δ∈C(µ,T )

min
t∈T

λtδt = O, where O = min

{

min
t∈T

λt,

(

max
t∈T

(

µt

λt

)

+max
t∈T

(

1− t

λt

))−1
}

.

Proof. Define δ′ such that δ′t = O/λt for each t ∈ T . We first show that δ′ ∈ C(µ, T ) and mint∈T λtδ
′
t = O.

First, note that δ′ ∈ (0, 1]|T |, since for each t ∈ T it holds that:

δ′t =
O

λt
≤

mint∈T λt

λt
≤ 1,

and δ′t > 0 as O > 0. Furthermore, δ′ satisfies:

max
t∈T

(δ′tµt) + max
t∈T

(δ′t (1− t)) = max
t∈T

(

O

λt
µt

)

+max
t∈T

(

O

λt
(1− t)

)

= O ·

(

max
t∈T

(

µt

λt

)

+max
t∈T

(

1− t

λt

))

≤ 1,

where the last inequality follows from (A.4). Hence, δ′ ∈ C(µ, T ), and therefore mint∈T λtδ
′
t = O.

To complete the proof, we need to show that maxδ∈C(µ,T ) mint∈T λtδt = O. Towards a contradiction, assume
that there exists δ̄ ∈ C(µ, T ) with mint∈T λtδ̄t > O. We distinguish two cases for the value of O.

Case 1: mint∈T λt ≤
(

maxt∈T

(

µt

λt

)

+maxt∈T

(

1−t
λt

))−1

. In this case, we conclude that

(A.5) min
t∈T

λt = O < min
t∈T

λtδ̄t ≤ min
t∈T

λt.

The equality holds by the definition of Case 1, and the first inequality holds by assumption. The second inequality
follows since δ̄ ∈ C(µ, T ) ⊆ (0, 1]|T |, and therefore δ̄t ≤ 1 holds for all t ∈ T . Thus, our analysis in (A.5) implies
that Case 1 cannot occur, and we move on to Case 2.

Case 2: mint∈T λt >
(

maxt∈T

(

µt

λt

)

+maxt∈T

(

1−t
λt

))−1

. Let t̂ := argmaxt∈T µt/λt and t̃ := argmaxt∈T (1 −

t)/λt. In this case,

1 <

(

µt̂

λt̂

+
1− t̃

λt̃

)

·min
t∈T

λtδ̄t =
µt̂

λt̂

·min
t∈T

λtδ̄t +
1− t̃

λt̃

·min
t∈T

λtδ̄t

≤ µt̂δ̄t̂ + (1− t̃)δ̄t̃ ≤ max
t∈T

(

µtδ̄t
)

+max
t∈T

(

(1− t) δ̄t
)

≤ 1.

Here, the first inequality holds by the definition of Case 2, and the last inequality holds since δ̄ ∈ C(µ, T ).
However, our analysis implies that Case 2 also cannot occur.

As neither Case 1 nor Case 2 can occur, we have arrived at a contradiction. This concludes the proof.

Proof of Theorem 3.12. We can now use Lemma A.2 together with our Smoothness Lemmas (Lemma 3.2 and
Lemma 3.3) to derive the POA-revealing mathematical program (POA-RMP) as defined in Section 3.3. To obtain
a bound on the POA, we determine a vector µ = (µt)t∈T that maximizes the expression in (A.4) subject to the
constraints (3.11)–(3.13). This concludes the proof.

B Missing Material of Section 4

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited1817

D
ow

nl
oa

de
d 

01
/2

2/
26

 to
 1

92
.1

6.
18

4.
22

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



0 0.5 1
0

0.72

1
ωLω(T ) Hω(T )

λ∗

t (ω, T )

Figure B.1: Illustration of λ∗(ω, T ) for ω = 1
2 and the partitioning of agent type set T into Lω(T ) (blue) and

Hω(T ) (red). For all t ∈ Hω(T ), the value λ∗
t (ω, T ) in Lemma B.1 is given by λ∗

t (ω, T ) =
ω

− ln(1−ω) =
1

2 ln 2 ≈ 0.72.

For all t ∈ Lω(T ), the value λ∗
t (ω) satisfies λ∗

t (ω) ≥
ω

− ln(1−ω) .

B.1 Properties of the Feasible Solution.

Corollary 4.2. Given ω ∈ (0, 1) and a set of types T , µ∗ (ω, T ) is a feasible solution of POA-RMP(T ).

Proof of Corollary 4.2. Clearly, µ∗ (ω, T ) satisfies (3.11) for all utility maximizers t ∈ Hω(T ) ∩ {1}. Also,
µ∗ (ω, T ) satisfies (3.12) for each t ∈ Hω(T )∩ (0, 1) because t ≥ ω and because the function f(z) = − ln(1− z) is
non-negative and non-decreasing on (0, 1). Further, it satisfies (3.12) with equality for all types t ∈ Lω ∩ (0, 1).
Finally, (3.13) holds for all value maximizing types t ∈ Lω ∩ {0}.

Given ω ∈ (0, 1) and a set of types T , recall the feasible solution µ∗ in Definition 4.1. (see also Figure B.1).

Lemma B.1. The following properties hold for every set of agent types T with max(T ) > 0 and every
ω ∈ (0,max(T )] ∩ (0, 1):

(i) λ∗
t (ω, T ) =











ω
− ln(1−ω) , if t ∈ Hω(T ),

t
− ln(1−t) , if t ∈ Lω(T ) ∩ (0, 1),

1, if t ∈ Lω(T ) ∩ {0}.

(ii) mint∈T∩(0,1] λ
∗
t (ω, T ) =

ω
− ln(1−ω) .

(iii) maxt∈T∩(0,1]
1−t

λ∗

t (ω,T ) =

{

− ln(1−ω)(1−min(T\{0}))
ω , if min (T \ {0}) ≥ ω,

− ln(1−min(T\{0}))(1−min(T\{0}))
min(T\{0}) , if min (T \ {0}) < ω.

(iv) maxt∈T∩(0,1]
µ∗

t (ω,T )
λ∗

t (ω,T ) = max(T )
ω .

Proof of Lemma B.1. For notational convenience, we use λt := λ∗
t (ω, T ) and µt := µ∗

t (ω, T ) for each t ∈ T .
Also, we use L := Lω(T ) and H := Hω(T ). Note that H is guaranteed to be non-empty by the range of ω. All
statements follow from the definition of µ∗(ω, T ) in (4.1) and elementary calculus.

(i) For every t ∈ L ∩ {0}, λt = µt = 1 holds. Then, for all t ∈ L ∩ (0, 1), we have that:

λt =
µt

t

(

1− e−
t
µt

)

=
1− eln(1−t)

− ln(1− t)
=

t

− ln(1− t)
.

Similarly, for all t ∈ H we have that:

λt =
µt

t

(

1− e−
t
µt

)

=
1− eln(1−ω)

− ln(1− ω)
=

ω

− ln(1− ω)
.

(ii) First, assume that L ∩ (0, 1) = ∅. Then, by identity (i) we have:

min
t∈T∩(0,1]

λt = min
t∈H

λt =
ω

− ln(1− ω)
.
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Next, assume that L ∩ (0, 1) 6= ∅. By the definition of L, the fact that f(x) = x
− ln(1−x) is non-increasing, and

statement (i), we obtain:

min
t∈L∩(0,1)

λt = min
t∈L∩(0,1)

t

− ln(1− t)
≥

ω

− ln(1− ω)
= min

t∈H
λt.

Therefore:

min
t∈T∩(0,1]

λt = min

{

min
t∈H

λt, min
t∈L∩(0,1)

λt

}

= min
t∈H

λt =
ω

− ln(1− ω)
.

(iii) First, consider the case of min(T \ {0}) ≥ ω. Then L ∩ (0, 1) = ∅. By statement (i) and since
minH = min(T \ {0}), it holds that:

max
t∈T :∩(0,1]

1− t

λt
= max

t∈H

1− t

λt
=

− ln(1− ω)(1−min(T \ {0}))

ω
.

Next, assume that min(T \ {0}) < ω. Then L ∩ (0, 1) 6= ∅. We have that:

max
t∈H

1− t

λt
=

− ln(1− ω)maxt∈H(1− t)

ω
=

− ln(1− ω) (1−min(H))

ω

≤
− ln(1− ω) (1− ω)

ω
≤ max

t∈L∩(0,1)

− ln(1− t) (1− t)

t
= max

t∈L∩(0,1)

1− t

λt
.(B.1)

The first inequality holds by the definition of H. The second inequality holds by the definition of L and due to

the fact that the function h(x) = − ln(1−x)(1−x)
x is non-increasing in (0, 1). Using (B.1), we conclude that:

max
t∈T :∩(0,1]

1− t

λt
= max

{

max
t∈H

1− t

λt
, max
t∈L∩(0,1)

1− t

λt

}

= max
t∈L:∩(0,1)

1− t

λt

= max
t∈L:∩(0,1)

− ln(1− t)(1− t)

t
=

− ln(1− tmin+
)(1− tmin+

)

tmin+

.

The last equality holds because the function h(x), as defined above, is non-increasing in (0, 1), and thus the
maximum is attained for min(T \ {0}).

(iv) If L = ∅, the statement follows by statement (i). Otherwise, we have that:

max
t∈T∩(0,1]

µt

λt
= max

{

max
t∈H

µt

λt
, max
t∈L∩(0,1)

µt

λt

}

= max

{

max
t∈H

t

ω
, 1

}

=
max(T )

ω
,

where, the last equality follows from the definition of H and because ω ≤ max(T ) holds by assumption.

B.2 Proof of Lemma 4.3.

Lemma 4.3. Let T be a set of agent types. If max(T ) > 0, then for every ω ∈ (0,max(T )] ∩ (0, 1),

POA-RMP(T ) ≥ min

{

ω

− ln(1− ω)
,

ω

ω +max(T )

}

.

Proof of Lemma 4.3. Let µ∗
t (ω, T ) and λ∗

t (ω, T ) be as previously defined in (4.1) and Lemma B.1, respectively.
For notational convenience, we use λt := λ∗

t (ω, T ) and µt := µ∗
t (ω, T ) for each t ∈ T . As argued in Corollary 4.2,

(µt)t∈T is a feasible solution to POA-RMP(T ). We bound the two terms of the min expression in the objective
function of POA-RMP(T ) separately.

First, we show that:

(B.2) min
t∈T

λt =
ω

− ln(1− ω)
.
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When min(T ) > 0, (B.2) immediately follows from property (ii) of Lemma B.1. Otherwise, when min(T ) = 0,
we have that

min
t∈T

λt = min

{

min
t∈T :t>0

λt, min
t∈T :t=0

λt

}

= min

{

ω

− ln(1− ω)
, 1

}

=
ω

− ln(1− ω)
.

The last equality holds since z
− ln(1−z) < 1, for all z ∈ (0, 1). We obtain (B.2).

Next, we show that:

(B.3) max
t∈T

µt

λt
+max

t∈T

1− t

λt
≤

max(T )

ω
+ 1.

When min(T ) > 0, we have:

max
t∈T

µt

λt
+max

t∈T

1− t

λt
= max

t∈T∩(0,1]

µt

λt
+ max

t∈T∩(0,1]

1− t

λt
=

max(T )

ω
+ max

t∈T∩(0,1]

1− t

λt

=
max(T )

ω
+max

{

− ln(1− ω) (1− ω)

ω
, max
t∈L∩(0,1)

− ln(1− t) (1− t)

t

}

≤
max(T )

ω
+ 1.

Here, the second and third equality follow from properties (iv) and (i) of Lemma B.1, respectively. Then, the

inequality holds by the fact that − ln(1−z)(1−z)
z < 1 holds for all z ∈ (0, 1).

Similarly, when min(T ) = 0, we obtain:

max
t∈T

µt

λt
+max

t∈T

1− t

λt
= max

{

max
t∈T :∩(0,1]

µt

λt
,
µ0

λ0

}

+max

{

max
t∈T∩(0,1]

1− t

λt
,
1

λ0

}

= max

{

max(T )

ω
, 1

}

+max

{

max
t∈T :∩(0,1]

1− t

λt
, 1

}

=
max(T )

ω
+ 1,

where the second equality holds by properties (i) and (iv) of Lemma B.1, i.e., for t = 0, it holds that λ0 = 1. The

last equality holds because ω ≤ max(T ) (by definition) and by property (iii) of Lemma B.1, as − ln(1−z)(1−z)
z < 1

for all z ∈ (0, 1). We thus obtain (B.3).
By combining (B.2) and (B.3), we obtain that the optimal value of POA-RMP(T ) is at least:

min

{

min
t∈T

λt,

(

max
t∈T

µt

λt
+max

t∈T

1− t

λt

)−1
}

≥ min

{

ω

− ln(1− ω)
,

ω

ω +max(T )

}

.
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