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      Abstract
Natural gas is vital to Europe’s energy system, with Norway supplying 30% of Eu-
ropean gas demand. Effective management of entry–exit capacity in the Norwegian 
network can enhance market efficiency and energy security, but is far from trivial 
due to uncertain demand and prices. This study develops a stochastic programming 
model to determine optimal capacity allocation under uncertainty, with a focus on 
scalability. Concerned about network stability, operators tend to be risk averse in 
deviating from their initial decisions when allocating bookable capacities. We use 
our model in a case study on Norway’s gas pipeline network and find that moderat-
ing risk aversion can yield considerable system welfare gains. Additionally, we give 
insights into the system bottlenecks for policymakers and industry stakeholders and 
show the value of flexibility in this context. Finally, we provide a comprehensive 
dataset to advance future research.
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1  Introduction

Natural gas is one of the most prominent energy carriers in Europe and plays a vital 
role in Europe’s energy system today. It contributes approximately 22% to the EU’s 
primary energy consumption and serves around 40% of European households (Agency 
for the Cooperation of Energy Regulators 2025). Europe relies heavily on imports to 
meet its gas demand; about 80% of gas demand is covered by imports (Agency for 
the Cooperation of Energy Regulators 2025). This import dependency has created 
vulnerabilities, which have become more prominent in recent years due to geopoliti-
cal tensions (European Central Bank 2023). Besides, natural gas is important for the 
future development of the electricity (Ordoudis 2018) and hydrogen system (Dura-
kovic 2024).

Norway is Europe’s largest natural gas supplier meeting about 30% of Europe’s 
gas demand (Reuters 2025). As the EU seeks to diversify its energy sources away 
from Russian supply, Norway’s stable and reliable gas exports are increasingly valu-
able. The total production of natural gas in 2024 in Norway amounted to 120 billion 
standard cubic meter (bcm), and, yielded an export value of over €40 billion in 2023 
(Norwegian Petroleum 2025a). According to Norwegian Petroleum (2025c), 94 oil 
and gas fields were in production at the end of 2024, of which Troll, Johan Sver-
drup, and Snøhvit are the essential fields. The Norwegian gas network connects key 
European markets with a handful of key pipelines including: Europipe I and II, and 
Norpipe (to Germany), Langeled (to the UK), Zeepipe (to Belgium), and Franpipe (to 
France) (Gassco 2024). At present, 25 companies are involved in the production of 
gas and oil on the Norwegian shelf (Norwegian Petroleum 2025b).

There are several reasons why natural gas flows will become less stable in future 
years. Annual European natural gas demand has been declining and is expected to 
continue to do so (International Energy Agency 2025). Additionally, intermittency 
of renewable energy sources (RES) generation can spill over to the natural gas sys-
tem when gas fired power generation demand is used in low RES generation high 
electricity load periods. Suppliers will want to respond to short-term demand and 
price developments. To facilitate the uptake of hydrogen in the European system as 
part of the broader energy transition, hydrogen may be blended into natural gas and 
significant parts of the existing gas infrastructure may be repurposed for dedicated 
hydrogen transport. Norway can play a significant role in this transition in several 
ways with optimal capacity management to increase available capacity within the 
transmission system. Optimizing the use of this infrastructure could improve market 
efficiency for both natural gas and hydrogen and further bolster Norway’s position as 
a key energy partner to Europe.

Gas network capacity management in Europe has gone through several phases in 
recent decades, following various energy packages aimed at improving market effi-
ciency. To give a broader perspective, in the following we briefly review the history 
of gas market liberalization in Europe, a transformative process that redefined the 
structure of the gas sector. This shift aimed to promote competition, enhance market 
transparency, and empower consumers by breaking down monopolistic barriers and 
fostering cross-border energy trade (Ciucci 2024).
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The liberalization process began in the 1990 s, when the European Union (EU) 
introduced a series of energy packages designed to open national energy markets. 
The First Energy Package (EC 1998) laid the groundwork by requiring member states 
to provide third-party access to energy networks and establish independent regula-
tory authorities. However, competition remained limited, as incumbent energy com-
panies retained significant control over infrastructure and supply.

The Second Energy Package (EC 2003) took a step further by granting consumers 
the right to choose their energy suppliers. It also marked a significant shift away from 
vertically integrated state-owned utilities and set the stage for increased cross-border 
trade and competition. However, full market integration remained a challenge due to 
continued dominance by national energy giants.

To address these persistent issues, the Third Energy Package (EC 2009) man-
dated the unbundling of energy generation and supply from transmission systems. 
This structural separation aimed to prevent conflicts of interest, ensuring that trans-
mission network operators acted independently of supply companies. The package 
also strengthened the role of the Agency for the Cooperation of Energy Regulators 
(ACER) and enhanced transparency in pricing and market operations.

A cornerstone of market liberalization was the implementation of Third-Party 
Access (TPA) (EC 2024), which granted new entrants the right to use existing energy 
networks under transparent and non-discriminatory terms. This was essential to 
breaking down barriers to market entry and stimulating competition. Moreover, the 
introduction of the entry–exit system redefined how gas was traded and transported. 
By decoupling physical gas flows from commercial transactions, this system allowed 
market participants to book capacity at entry and exit points rather than along fixed 
routes, enhancing market flexibility and efficiency. Together, these reforms laid the 
foundation for a competitive and integrated European energy market (Ciucci 2024). 
They not only improved market transparency and efficiency but also ensured fairer 
consumer rights.

As buyers typically adjust periodic volumes to better match fluctuations in demand, 
their contracts typically include nomination flexibility (Ason 2022). Suppliers need 
entry–exit capacity to deliver gas to these buyers, which can be acquired from the 
TSO (the primary market) or the other suppliers (the secondary market). By giving 
suppliers the flexibility to trade in a secondary market, the gas network can be used 
more efficiently as it ensures a better alignment between supply and consumption. We 
will apply the notion of “flexibility” in different settings: besides (1) the flexibility of 
a supplier to trade in a secondary market, (2) the flexibility to store gas temporarily, 
and (3) the flexibility to adapt decisions over time to prices and demand changes.

As the TSO must manage gas flows at the pipeline level to ensure flow feasibility, 
when optimizing system capacity there are trade-offs between maximizing capacity 
availability, providing long-term certainty, and providing short-term flexibility for 
suppliers to book the entry–exit capacity. At the same time, the TSO must be able 
to manage unplanned disruptions in the network. To achieve this, TSOs apply safety 
margins when determining available capacity, accounting for both operational uncer-
tainties and potential disruptions. All this, combined with natural gas demand and 
price uncertainty, leads to a complex capacity booking and allocation process, which 
is exacerbated by the decoupling of capacity bookings in the entry–exit system, and 
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the need for feasible flows at the pipeline level. In this study, we address the follow-
ing three research questions: 

1.	 How does risk aversion affect capacity allocation and capacity availability in 
various strategic and operation stages?

2.	 What are the bottlenecks of the system and how can we solve them?
3.	 What is the value of booking-flexibility for storage facilities?

We focus on these questions when describing and analyzing the entry–exit capacity 
market under uncertainty using a stochastic programming model. To address uncer-
tainty realistically, we propose a linear program which is a tractable and scalable 
method. Using this model, we conduct a case study on the Norwegian natural gas 
pipeline system perspective.

1.1  Contributions

The contributions of this work are:

	● We develop a stochastic programming model for the primary and secondary en-
try–exit capacity markets of natural gas with multiple suppliers, which endog-
enously determines how much entry and exit capacity the Transmission System 
Operator should make available so as to maximize the utilization rate of the net-
work. Our model can optimize for sufficiently large scenario sets within a consid-
erably small amount of time and yields better scalability compared to the other 
models proposed in the literature.

	● We base our findings on a realistic case study that is more extensive and more 
detailed than used in previous work by Fodstad et al. (2015) and Grimm et al. 
(2019). The corresponding data set is available at Markhorst (2025).

	● We identify bottlenecks in the Norwegian gas network and find that a less risk 
averse approach yields an increase of approximately 0.25% in the system profit.

The rest of this paper is structured as follows. Section 2 contains an outline of the 
current state of the literature. In Sect. 3, we will outline our problem and the market 
context giving rise to it. Thereafter, we introduce and detail our model in Sect. 4. 
Section 5 presents the results and discusses the implications of these findings within 
the context of Norway’s natural gas industry. Finally, Sect. 6 concludes the paper, 
summarizing the main contributions and insights, and proposing directions for future 
research.

2  Literature

We provide an overview of literature pertaining to gas transport capacity booking and 
flow optimization as well as some illustrations for the computational complexity of 
such problems. This provides a backdrop for our research questions, and support for 
developing a scalable approach.
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The literature in the domain of mathematical optimization for the natural gas net-
works is rich and diverse, covering topics such as the design and operation of its 
infrastructure (Hellemo 2016), pipeline capacity booking (Fodstad et al. 2015), pipe 
sharing (Zhao et al. 2024), or its transportation (Ríos-Mercado and Borraz-Sánchez 
2015). Mathematical optimization models based on mixed-integer linear program-
ming and nonlinear programming can help determine capacity, verify network abili-
ties, and decide on network expansions, c.f., Fügenschuh et al. (2014), which is far 
from trivial. For example, the work of Schewe et al. (2020) explores the computa-
tional complexity of determining maximal technical capacities in the European gas 
market’s entry–exit system and finds that it is NP-hard in certain cases.

In Hellemo (2016), a model is developed to assess investments in infrastructure 
while accounting for uncertainties in the natural gas industry, such as fluctuating 
prices, demand, and resource quality. To address these issues, the authors develop 
optimization models that consider both short-term operational variability and long-
term uncertainties. Applied to the Norwegian Continental Shelf, these models dem-
onstrate substantial cost savings and improved decision-making for investments in 
natural gas production and transport capacities. In the work of Fodstad et al. (2015), 
the authors state that interruptible transportation services provide an innovative 
approach to enhance the flexibility and efficiency of natural gas networks. Unlike 
firm services, which guarantee capacity availability, interruptible services transport 
gas only when spare capacity exists. The authors show that integrating such services 
can (1) boost gas flow efficiency, (2) allow shippers to adapt to uncertainties flexibly, 
and (3) deliver economic benefits without compromising supply security. The authors 
of the current state-of-the-art in this field, Grimm et al. (2019) present a four-level 
model analyzing supplier-TSO interactions, inefficiency levels, and potential mar-
ket design improvements. A “first-best benchmark model” is proposed to compare 
the idealized system against real-world scenarios, with simplifications suggested 
to enhance runtime while preserving key insights. Similarly, Böttger et  al. (2022) 
addresses inefficiencies using a robust optimization approach to reduce a multilevel 
model to a single-level problem. The study finds that suboptimal network designs 
can lead to welfare losses and discrimination against smaller suppliers, emphasizing 
the importance of tailored pricing mechanisms and flexible policies. The technical 
complexities of gas flow dynamics further complicate market operations. In Hiller 
et al. (2018), the authors develop a stochastic optimization model for the European 
entry–exit market, integrating nonlinear and mixed-integer constraints. Their soft-
ware system evaluates capacities and validates nominations using historical data, 
though computational speed poses a challenge, which differs from this work as we 
propose a scalable, linear method. Finally, we highlight two recent related works 
(Schewe et al. 2022; Grimm et al. 2023). The former tackles the multilevel structure 
of gas networks, including the physical dynamics of gas flow. The authors refor-
mulate nonlinear flow problems into computationally feasible single-level models 
using convex constraints and integer variables. Applied to the Greek gas network, the 
approach effectively handles tree-shaped networks, introducing combinatorial con-
straints to accelerate calculations. Contrary to this work, which studies a relatively 
small gas network, we apply our method on a larger and realistic network, which 
represents the Norwegian Continental Shelf and contains connections to several 
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European countries. Finally, the interplay of market power and pricing mechanisms 
is explored in Grimm et al. (2023). Here, a four-level model captures the strategic 
decisions of a monopolistic gas seller, TSO, and buyers. Reformulated into a single-
level model, the study reveals that price discrimination can improve outcomes in con-
gested networks, while uniform pricing remains effective in unconstrained scenarios. 
Despite the simplifications, computational challenges persist in larger networks with 
extended time horizons.

Table 1 shows an overview of the most relevant papers to this work including their 
properties. All works, except  (Fodstad et al. 2015) focus on the entry–exit system 
and three works include a case study (Grimm et al. 2019; Schewe et al. 2022; Böttger 
et al. 2022), which use gas networks that are either heavily stylized or considerably 
small. In our work, we conduct a case study on a larger gas network. Due to the nature 
of the gas market, such as uncertainty in renewable energy (Durakovic et al. 2024), 
or gas prices and demand, stochasticity should be an inherent part for the analysis of 
this setting. However, the table contains only two published works that account for 
uncertainty. Then, only (Grimm et al. 2023) considers the case of a monopolistic sup-
plier while all other works assume perfect competition. As explained by Grimm et al. 
(2023), multilevel approaches are usually required to model the sequential decision-
making structure between the TSO and the suppliers, with the TSO setting explicit 
capacity boundaries to enforce that any submitted bid within these boundaries is fea-
sible with regards to transportation. Also, due to the physics of gas flows (Weymouth 
1912; Fügenschuh et al. 2015; Domschke et al. 2023) some constraints are nonlinear. 
More specifically, there are nonlinear properties in pressure dynamics in pipelines, 
compressor efficiency and gas quality management (Fodstad et al. 2015). Addition-
ally, integer and binary variables are required to model specific decisions, such as the 
interruption of some firm booking in Fodstad et al. (2015) or the opening/closing of 
valves in Grimm et al. (2019). The last row of Table 1 shows the properties of this 
work and how it relates to the literature.

Our proposed method considers uncertainty in the entry–exit market for natural 
gas from a high-level perspective and is used in a case study with a large natural gas 
network. Because we are interested in such high-level insights, we do not require a 
detailed accounting for the pressure dynamics, compressor efficiency, or additional 
details regarding gas flow physics. As a result, this resolves all the previously men-
tioned nonlinear and integrality requirements in the literature.

In the model of Grimm et al. (2019), a bilevel structure is used to model the direc-
tive power of the TSO to guide the capacity bidding process by explicitly setting 
maximal entry and exit capacities on the network nodes in order to ensure trans-
portation feasibility for all possible bids. As mentioned by Grimm et al. (2019), this 
manner of guaranteeing feasibility can lead to network inefficiencies, as it tends to 
underusing capacity in several scenarios. This is due to the elimination of technically 
feasible bids that cannot be submitted because of the strict capacity limits, which 
disallow exploitation of the interplay between different nodes when allocating (maxi-
mum) capacities. Furthermore, in the introduction of the same work, it is mentioned 
that these inefficiencies will become more and more problematic in the future as 
desired network utilization is expected to increase. In order to maintain tractability 
while adding uncertainty to the model, we propose a single level structure, which can 
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be achieved by relaxing the assumption of strict capacity limits set by the TSO. In 
the single level structure, all bids for which a fully feasible transportation schedule 
can be derived are considered to be submittable, even if they cannot emerge in a set-
ting where fixed capacity limits are set beforehand. Finally, contrary to Fodstad et al. 

Table 1  Overview of key papers with relevant research properties
References Topic Case 

study?
Entry-exit? Stochastic? Perfect 

competition?
Gas 
physics?

Method

Fodstad 
et al. (2015)

Interrupt-
ible trans-
portation 
services

✓ (small 
network)

✗ ✓ ✓ ✗(ap-
proxima-
tion)

Se-
quen-
tial 
meth-
od; 
con-
tains a 
MILP

Grimm 
et al. (2019)

Unused 
network 
capac-
ity and 
market 
design

✗ ✓ ✗ ✓ ✓ Mul-
tilevel 
equi-
librium 
model

Schewe 
et al. (2022)

Global op-
timization 
for the 
multilevel 
Euro-
pean gas 
market 
system

✓ (small 
network)

✓ ✓ ✓ ✓ MINLP

Böttger 
et al. (2022)

The cost 
of de-
coupling 
trade and 
transport

✓ (small 
network)

✓ ✗ ✓ ✓ Single-
level 
mixed-
integer 
qua-
dratic 
problem

Grimm 
et al. (2023)

A tractable 
model for 
entry–exit 
market 
with 
market 
power

✗ ✓ ✗ ✗ ✓ Mul-
tilevel 
model. 
Under 
suf-
ficient 
condi-
tions a 
trac-
table 
single-
level 
model

This work Capacity 
utilization 
under 
uncertainty

✓ (large 
network)

✓ ✓ ✓ ✗ LP
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(2015), we publish our dataset, which has a realistic network size, online (Markhorst 
2025) to accelerate future research.

3  Problem description

Similarly to most works in the literature, see Table  1 from Sect.  2, we assume a 
single-commodity market for natural gas where multiple production field operators 
(suppliers) are in perfect competition with one another. We study the network capac-
ity management problem primarily from the perspective of the Transmission System 
Operator (TSO), which aims to maximize social welfare. This will, however, also 
require to find realistic strategies for the individual suppliers involved. Therefore we 
assume that all suppliers act as profit-maximizing entities.

To reflect the typical sequencing of capacity allocation in natural gas networks, 
we assume that the capacity planning of the network is done by sequentially taking 
decisions in three stages: 

1.	 Long-term (months or years ahead)
2.	 Day ahead
3.	 Intraday

The planning decisions within each stage appertain to a set of fixed time blocks, that 
form a partition of a single day. In the final stage, the TSO is required to facilitate 
operation in accordance with the capacity and planning decisions corresponding to 
each of the time blocks in all stages. The TSO is tasked with finding a feasible opera-
tional plan of gas flow on the network in the first stage, long before the operational 
period. The TSO needs to ensure technical stability when operating the network, as 
suppliers and consumers count on continuous supply, and disruptions can have dra-
matic and costly consequences. Therefore, the TSO typically prefers to be in control 
of the situation, and is hesitant to allow large modifications in their operational plan-
ning as the operational period approaches. Depending on the risk preferences of the 
TSO, there are different levels of strictness in this matter that are to be considered. 
The most secure option from the perspective of the TSO, is to fix all decisions in the 
first stage, not allowing to change them afterwards. Inevitably, a stricter policy by the 
TSO poses additional limits to the suppliers’ flexibility to adjust their capacity and 
storage planning during the final two stages.

At any stage, the suppliers can purchase entry and exit capacity from the TSO 
(the primary market). These capacities are required to be able to inject or extract gas 
from the network during the period of operation, which takes place during the final, 
intraday, stage. When determining whether to purchase entry or exit capacity, suppli-
ers are faced with the choice of purchasing capacity now or waiting until later. Dur-
ing the later stages, the purchasing costs are higher, but more information on prices 
and demands is known. Furthermore, in the second and third stages, capacity can 
be traded among suppliers in a secondary capacity market, allowing suppliers more 
freedom to adjust their capacity bookings as they gain more information.

1 3
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Costs are associated with capacity booking, production, storage, and flow. Maxi-
mum flow capacities apply to the pipelines in the network, and gas flows may be sub-
ject to losses due to compression. Entry and exit capacities are not explicitly given, 
but implicitly as a result of feasible flows given the pipeline capacities. Different 
production capacities apply at each of the suppliers’ production locations. Suppliers 
are subject to contractual obligations regarding the delivery of specific volumes of 
gas to certain markets, so-called minimum demands. The gas prices and minimum 
demands are subject to uncertainty, which impacts supplier behavior.

Evidently, demand and prices in markets can fluctuate throughout the day. To 
address these fluctuations, suppliers have the option to reserve storage capacity at the 
market nodes against a fee. This option allows them to bring gas to a node, without 
having to sell immediately. Gas stored in this manner can then be extracted from the 
storage during a later time block with higher prices, complementing supply extracted 
directly from the pipeline network. The storage capacity needs to be reserved during 
the “Long-term” stage, but these capacities can still be traded in a secondary market 
between different suppliers during the “Day ahead” and “Intraday” stages. A sche-
matic overview of the planning and operation horizons is given in the lower part of 
Fig. 1, which also presents the realization of uncertain events.

3.1  On secondary market trading

We will now proceed by explaining the dynamics of the entry and exit capacity mar-
ket followed by a few remarks on the pricing mechanics in the described market 
context.

3.1.1  Illustrative example

To illustrate the dynamics of entry and exit capacity markets in the context of natural 
gas trading, we present a small example, illustrated by Fig. 2.

We look at a simple network of five nodes and five arcs, as shown in Fig. 2a, where 
node C is an intermediate node. We assume a capacity of ten gas units for each arc. 
The length of the arcs corresponds to their flow costs; i.e., long arcs are expensive 
to route gas through. Consider two distinct markets for natural gas: Market 1 and 
Market 2, represented by nodes E and D in our network, respectively. The selling 
prices of natural gas differ between the two; prices are higher in Market 1 and lower 
in Market 2. Consequently, suppliers prefer to prioritize selling their gas in Market 1 
to maximize revenue.

The example involves two suppliers, Supplier 1 and Supplier 2, who operate sepa-
rate production facilities located at nodes A and B in our network, respectively, each 
with a maximum production capacity of ten units of gas. However, contractual obli-
gations require Supplier 1 to deliver at least five units of gas to Market 2 (Node D). 
Despite this obligation, Supplier 1, like Supplier 2, prefers selling gas in Market 1 
(Node E) due to its more attractive selling prices.

Under the initial scenario, Supplier 1’s contractual minimum of five units for Mar-
ket 2 leaves them free to allocate the remaining five units of their production to Mar-
ket 1, which optimally balances Supplier 1’s contractual commitments and revenue 
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Fig. 1  A schematic overview of the strategic planning and operation horizons considered in this study. 
Entry/exit and storage refers to capacities acquired by suppliers. Provisional correspond to the flows 
routed by the TSO in the first and second stages, whereas the operational flows are the flows that actu-
ally materialize in the third stage
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goals. As Supplier 1 has lower transportation costs to Market 1 than Supplier 2, the 
system prioritizes Supplier 1, as stated in the objective of our mathematical model in 
Eq. (1). Hence, both suppliers sell 5 gas units in Market 1, due to the arc capacity of 
ten gas units. Consequently, the suppliers book an entry capacity of ten units at node 
A and B, respectively, and both book an exit capacity of five units at both nodes D 
and E.

Now, consider a shift in conditions: The minimum demand in Market 2 that Sup-
plier 1 must satisfy increases from five units to eight units. An increase is typically 
allowed within the nomination flexibility of the buyer, see Ason (2022). For illustra-
tive purposes, we make this increase large. This change forces a reallocation of Sup-
plier 1’s supply. With a total production capacity of ten units, fulfilling the additional 
three units required for Market 2 comes at the expense of Supplier 1’s supply to 
Market 1.

To adjust to the new situation, Supplier 1 turns to the secondary capacity market. 
In this market, Supplier 1 purchases three units of exit capacity for Market 2 from 
Supplier 2 to meet the increased contractual requirement. Simultaneously, Supplier 
1 sells three units of exit capacity for Market 1 to Supplier 2 to maintain a balance 
with their production limit. Supplier 2 is interested in these capacity trades, as they 
enable a higher profit, due to the higher prices in Market 1. These transactions dem-
onstrate the interplay between contractual obligations, capacity limits, and market 

Fig. 2  Illustration of the dynamics of the entry and exit capacity markets
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price incentives, highlighting the critical role of the secondary market in optimizing 
entry/exit capacity allocation.

3.1.2  Remarks on pricing mechanics

Transactions such as the one we saw in our illustrative example, take place in our 
model whenever the buying supplier has a higher valuation of the traded capacity 
than the selling supplier. There can be numerous reasons for this: 

1.	 the selling supplier has an excess of capacity in some market (e.g., because of 
high contractual obligations needed to be met in other markets); or

2.	 both suppliers could use the capacity but one supplier can make more profit from 
obtaining this capacity. In practice, this will only happen when the total capacity 
already allocated by the TSO is equal to the total capacity that can be allocated 
in this market: if the TSO still has capacity left to allocate, it is more profitable to 
buy more capacity directly from the TSO; or

3.	 the buying supplier needs the capacity to comply with contract feasibility con-
straints. In reality, this will correspond to a rather high valuation for the buying 
supplier, as they can expect a large negative financial consequence if they breach 
their contract.

We remark here that, for any given first (second) stage solution, a secondary market 
transaction will take place between two parties if it increases the second (third) stage 
valuation. The price of these secondary market transactions may differ from the price 
of obtaining capacity through the TSO, and will depend on both buyer and seller 
valuations and market circumstances. As the total system profit is always indifferent 
to the agreed prices for these transactions, there is no need to explicitly consider the 
price realization as a separate supplier decision. If necessary, one can estimate the 
prices a posteriori.

3.2  Markets for network and storage capacity

As a starting point for the capacity market model in our context, we consider a situ-
ation where the entire system is managed by a single TSO, with its own entry–exit 
capacity market, inelastic demand aggregated at exit points, own price and contrac-
tual demand scenarios, and storage facilities. In reality, market set-ups are much more 
complex, for instance considering connections to surrounding networks in neighbor-
ing countries, numbers and locations of storage facilities, behavior of market seg-
ments, etc. We will address some of this complexity relating to market segmentation 
in our case study. We account for this phenomenon in our methodology in Sect. 4, and 
illustrate the situation we consider with a small example.

Figure 3 gives a schematic overview of the situation in the Zeebrugge market in 
our case study. We can see in this figure that the market consists of two market seg-
ments (Industrial and Retail), which pay the same spot prices, but which each have 
separate contractual agreements with traders. Furthermore, the storage facility and 
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exit capacities in the model at the dummy node can be used to serve either market 
segment.

4  Methodology

In this section, we introduce the complete mathematical formulation of our model. 
We will first introduce the relevant parameters and variables. Thereafter, we present 
the mathematical formulation of the stochastic model by stating the objective func-
tion and constraints in terms of these variables.

4.1  Scenario tree structure, sets & parameters

To capture the uncertainty inherent to the problem, we employ a stochastic scenario 
tree with three stages, corresponding to the moments when decisions are taken, 
as presented in Sect.  3 and shown in Fig.  1. We let K := {1, 2, 3} be the set of 
stages and M be the set of all strategic nodes in the scenario tree (represented by 
red circles in Fig. 1). We introduce shorthand notations M (k), k ∈ K to denote the 
set of nodes in stage k. Furthermore, we introduce Π(m) to be the set of all parent 
scenario nodes of scenario node m ∈ M (3), including itself. Each strategic node m 
has its corresponding probability pm, such that 

∑
m∈M(k) pm = 1 for k ∈ K (prob-

abilities within a stage sum to 1), and pm =
∑

m̃∈M(3):m∈Π(m̃) pm̃ for all m ∈ M (k), 

k ∈ K\{3} (probability of a parent node is the sum of the probabilities of its children 
in the third stage). We let the set H describe the different time blocks in which the 
operational period is partitioned, such that each operational node (represented by 
blue squares in Fig. 1) is indexed on both M and H. The set T represents different 

Fig. 3  Schematic example of market with 
submarkets
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suppliers in our model. Finally, the physical infrastructure is modeled as a directed 
graph G = (N, A), where N represents nodes (facilities or markets) and A represents 
arcs (pipelines).

Gas flow in the network is subject to losses due to compression, represented by 
a loss rate la for each arc a ∈ A. Costs associated with capacity booking, produc-
tion, storage, and flow, are represented by cN+

mh  (entry), cN−
mh  (exit), cP

n , cI
n, and cA

a , 
respectively. Each arc a has a maximum flow capacity CAP A

a , and each node n has 
a maximum production capacity CAP P

n .
The prices and demands volumes are subject to uncertainty, modeled through 

uncertain parameters ξnmht for demand and rnmh for price. The parameters C1 
and C2 are used to reflect the level of the TSO’s risk aversion and limit respective 
changes in flow, capacity and storage planning after the first and second stage deci-
sions have been made.

4.2  Variables

The model contains several non-negative decision variables: x+
nmht and x−

nmht 
respectively denote the entry and exit capacity at node n acquired by supplier t in 
scenario node m. Variables y+

nmht and y−
nmht respectively represent the entry and 

exit capacities sold by suppliers in the secondary market. Variables s+
nmh and s−

nmh 
denote the capacity sold by the TSO. Gas flow for a supplier at arc a in scenario 
node m is denoted by fmhat, while qS

nmht and qP
nmht represent the quantity sold and 

produced, respectively. Storage is modeled using vnmht, w+
nmht, and w−

nmht, repre-
senting the stored inventory, the gas volume injected into storage, and the gas volume 
retrieved from storage, respectively. We model buying and selling storage capacity 
with decision variables znmht and unmht, respectively.

For a comprehensive overview of all sets, parameters, and decision variables, 
please refer to Tables 8, 9, and 10 in Appendix 1.

4.3  Multi-stage stochastic program

Objective
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max
x, y, s, q,
f , v, w

∑
n∈N

∑
t∈T

∑
h∈H




∑
m∈M(3)

pm · qS
nmht · rnmh︸ ︷︷ ︸

Supplier sales revenue

−
∑

m∈M(3)

pm ·


 cP

n

(
qP

nmht

)
︸ ︷︷ ︸

Supplier production costs

+
∑

a∈A+
n

cA
a (fmhat)︸ ︷︷ ︸
Flow costs




−
∑

m∈M

pm ·


cN+

mh

(
x+

nmht − y+
nmht

)
︸ ︷︷ ︸

Costs entry capacity

+ cN−
mh

(
x−

nmht − y−
nmht

)
︸ ︷︷ ︸

Costs exit capacity

+ cI
nmh (znmht − unmht)︸ ︷︷ ︸

Supplier costs storage capacity




−
∑

m∈M

pm ·


 ϵ

(
w−

nmht + vnmht

)
︸ ︷︷ ︸

Penalty for storage use and extraction

+ ϵ ·
(
y+

nmht + y−
nmht + unmht

)
︸ ︷︷ ︸

Penalty for sales







� (1)

The objective of the TSO is to operate the network under a transportation plan that 
maximizes social welfare, while taking into account the flow costs associated with 
transporting gas. The social welfare maximization is driven by suppliers competing 
for capacity aiming to supply their gas to the most profitable markets. In reality, prices 
of capacity usage are charged to the suppliers (regulated, or auction-determined). In 
our objective, charges paid from suppliers to the TSO will cancel out (Egging 2010, 
Footnote 203). However, actual costs to cover operations, maintenance, depreciate, 
overhead etc., are reflected in the objective function. Under the assumptions we have 
made, this objective leads to a maximized social welfare (Egging 2010, Page 72). We 
penalize sales, storage use and extraction with an ϵ to prevent degenerate solutions.

TSO constraints

	

∑
t∈T

fmhat ≤ CAP A
a ∀m ∈ M, h ∈ H, a ∈ A� (2a)

Constraint (2a) ensures that the arc capacities are not exceeded.
Supplier constraints

	 qS
nmht ≥ ξnmht ∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T � (2b)
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∑
t∈T

qP
nmht ≤ CAP P

n ∀n ∈ N, m ∈ M (3), h ∈ H � (2c)

	

qP
nmht + w−

nmht +
∑

a∈A+
n

(1 − la) fmhat = qS
nmht + w+

nmht +
∑

a∈A−
n

fmhat

∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T

� (2d)

	

∑
m̃∈Π(m)

(
x−

nm̃ht − y−
nm̃ht

)
≥ qS

nmht + w+
nmht − w−

nmht

∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T

� (2e)

	

∑
m̃∈Π(m)

(
x+

nm̃ht − y+
nm̃ht

)
≥ qP

nmht ∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T � (2f)

	
vnmht =

h∑

h̃=1

(
w+

nmh̃t
− w−

nmh̃t

)
∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T � (2g)

	 vnmht ≤ CAP I
n ∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T � (2h)

	
vnmht ≤

∑
m̃∈Π(m)

(znm̃ht − unm̃ht) ∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T � (2i)

In constraint (2b), we ensure that the nominated contract demand is met by the sup-
plier’s sales. Constraint (2c) ensures that the suppliers do not produce more than the 
capacity at the node. Constraint (2d) entails the mass-balance constraints. We ensure 
that the production, extraction from storage, and loss-corrected inflows equal the 
sum of sales, injection into storage, and outflows. We adjust the inflows by a factor 
(1 − la) since compressors maintaining pressure in the network use a fraction of 
the transported gas. Constraint (2e) accounts for the bought and sold exit capacity: 
Exit capacity is needed for all sales that are realized by taking gas directly from the 
network, as well as for injection into storage, but not for sales that are realized using 
stored gas (which has already exited the system). Similarly, Constraint (2f) ensures 
that suppliers have enough entry capacity to feed in their production. Constraint (2g) 
models the storage of gas and extraction/injection out of/into the storage. We model 
the storage inventory capacity limit with Constraint (2h). The storage inventory is 
limited by the total net purchased storage capacity over all stages, as indicated by 
Constraint (2i) models the storage of gas and extraction/injection out of/into the stor-
age. Note that vnmht is non-negative, and it will never be optimal to have positive 
inventory after the last time block, so we do not need to explicitly account for an 
injections-extractions balance. From a storage perspective, injection and withdrawal 
limits may apply in reality. We assume that upon purchasing storage capacity, a com-
plementary amount of injection and withdrawal capacity is included. These offered 
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capacities are assumed to be sufficiently high, such that additional cost for injecting 
and withdrawing from the storage does not have to be considered explicitly.

Storage booking constraints

	 znmht = znm1t ∀n ∈ N, m ∈ M, h ∈ H, t ∈ T � (2j)

	 unmht = unm1t ∀n ∈ N, m ∈ M, h ∈ H, t ∈ T � (2k)

Constraints (2j) and (2k) ensure that the storage capacity that is bought is equal 
throughout the entire day. This enforces the most risk-averse capacity management 
approach. Relaxing these constraints allows the purchased storage capacity to be dif-
ferent for each time block, increasing flexibility.

Capacity market constraints

	

∑
t∈T

x−
nmht = s−

nmh +
∑
t∈T

y−
nmht ∀n ∈ N, m ∈ M, h ∈ H � (2l)

	

∑
t∈T

x+
nmht = s+

nmh +
∑
t∈T

y+
nmht ∀n ∈ N, m ∈ M, h ∈ H � (2m)

	

∑
t∈T

znmht =
∑
t∈T

unmht ∀n ∈ N, m ∈
∪

k∈K\{1}

M (k), h ∈ H � (2n)

Constraints  (2l) and  (2m) balance the selling and buying of the secondary market 
exit and entry capacities. In every scenario node, the entry and exit capacity volume 
bought by the suppliers equals the volume sold by the TSO and the suppliers in the 
secondary market. Similarly, Constraint (2n) ensures that storage capacity in stages 2 
and 3 can only be purchased through the secondary market, by equating the total stor-
age capacity purchased by suppliers to the total storage capacity sold by suppliers. 
This is different from entry–exit trading, for which capacity can be purchased from 
the TSO also in stages 2 and 3.

Risk aversion constraints
Although the TSO is risk neutral with regard to the system social welfare objec-

tive (Eq.  (1)), there are some risks inherent to allowing for capacity adjustments 
shortly before operation. Viewed through the lense of a TSO engineer, too big of a 
last-minute change in capacity and flow planning may jeopardize the guarantee of 
being able to stably operate a transportation plan that suits the suppliers’ bids. In the 
worst case, this leads to the TSO not meeting its own obligations, which it wants to 
avoid at all costs. These risks are not reflected in Eq. (1), or any of the constraints 
introduced before. We will introduce constraints to model the conservative stance of 
the TSO in this matter, and show that these emerge from applying chance constraints 
to (a slightly adjusted version of) our problem. Furthermore, in Appendix 2, we will 
argue that, under specific assumptions, applying chance constraints also constrains 
the VaR and CVaR of an adjusted objective, due to an existing equivalence relation 
between chance constraints and VaR (Sarykalin et al. 2008).
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Let us assume that the occurrence of a failure of meeting obligations depends on 
a controllable variable η, and an uncertain variable ξ. More precisely, let us say that 
a failure occurs when ϕ(η, ξ) > τ , where ϕ is a function that is non-decreasing in η.

Logically, the TSO aims to constrain the risk of a failure to an acceptable, very low 
probability. At the same time, the TSO would like to retain some degree of flexibility 
for the gas suppliers to make adjustments to their bids in later stages.

Constraining the failure risk can be achieved by adding a chance constraint to the 
original model, which ensures that P [ϕ(η, ξ) ≤ τ ] ≥ α.

As we assumed that ϕ is non-decreasing in η, it holds that P[ϕ(η, ξ) > τ ] is also 
non-decreasing in η. This implies that (for values of α that are not extremely low) we 
can write this single chance constraint as a regular constraint depending on α instead: 
η ≤ C(α, τ). Note that while it may be very hard to compute C(α, τ), we know that 
C(α, τ) is non-increasing in α.

As established before, failure risk for the TSO increases as the (relative) changes 
in the flow and capacity plan at later stages w.r.t. earlier stages become larger. Based 
on our earlier analysis, mitigating failure risk can thus be modeled by imposing a 
constraint on these changes, acting in the same manner as the constraint on η intro-
duced before. The implicit assumption here is that the occurence of a failure depends 
solely on the relative change in the transportation plan and some unobserved uncer-
tainty. The level of risk the TSO is willing to take increases as the right-hand side of 
such a constraint increases. To model this, three sets of auxiliary decision variables 
are used: γimhat, δs

inmht, and θinmht. The former computes the difference in flow 
decisions between the third stage and the corresponding first (k = 1) or second stage 
(k = 2) decision, shown in Constraint (2q) and (2r). The second measures the dif-
ference in acquired entry and exit capacity, [Constraint(2s) and (2t)], and the third 
measures difference in acquired storage capacity [Constraint(2u) and (2v)]. In these 
constraints, we make use of some additional auxiliary decision variables: λs

nmht and 
κnmht. λs

nmht, keeps track of how much exit (s = −) and entry (s = +) capacity 
at node n a supplier t has acquired so far up to scenario node m at time block h, as 
defined in Constraint (2o). κnmht, defined in Constraint (2p), tracks the total storage 
capacity acquired upto node m for each node n and supplier t in a similar fashion. 
As we want to quantify the absolute deviation from the third stage decisions, we 
require tracking both positive differences (γ̂, δ̂, θ̂) and negative differences (γ̄, δ̄, θ̄) 
separately.

	
λs

nmht =
∑

m̃∈Π(m)

(xs
nm̃ht − ys

nm̃ht)
{

∀s ∈ {−, +}, n ∈ N,
m ∈ M, h ∈ H, t ∈ T � (2o)

	
κnmht =

∑
m̃∈Π(m)

(znm̃ht − unm̃ht) ∀n ∈ N, m ∈ M, h ∈ H, t ∈ T � (2p)

	
γ̂kmhat ≥ fmhat − fm̃hat

{
∀m ∈ M (3), m̃ ∈ Π(m),
h ∈ H, a ∈ A, t ∈ T ; k : m̃ ∈ M (k) � (2q)
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γ̄kmhat ≥ fm̃hat − fmhat

{
∀m ∈ M (3), m̃ ∈ Π(m),
h ∈ H, a ∈ A, t ∈ T ; k : m̃ ∈ M (k) � (2r)

	
δ̂s

knmht ≥ λs
nmht − λs

nm̃ht

{
∀s ∈ {−, +}, n ∈ N, m ∈ M (3),
m̃ ∈ Π(m), h ∈ H, t ∈ T ; k : m̃ ∈ M (k) �(2s)

	
δ̄s

knmht ≥ λs
nm̃ht − λs

nmht

{
∀s ∈ {−, +}, n ∈ N, m ∈ M (3),
m̃ ∈ Π(m), h ∈ H, t ∈ T ; k : m̃ ∈ M (k) �(2t)

	
θ̂knmht ≥ κnmht − κnm̃ht

{
∀n ∈ N, m ∈ M (3), m̃ ∈ Π(m),
h ∈ H, t ∈ T ; k : m̃ ∈ M (k) � (2u)

	
θ̄knmht ≥ κnm̃ht − κnmht

{
∀n ∈ N, m ∈ M (3), m̃ ∈ Π(m),
h ∈ H, t ∈ T ; k : m̃ ∈ M (k) � (2v)

In the below, parameters C1 and C2 are used to quantify the TSO’s risk aversion. The 
former quantifies the allowed maximum total difference in decisions between the first 
and the third stage whereas the latter does the same for the second and the third stage 
decisions. These values correspond to the levels of risk α1 and α2 the TSO is willing 
to take w.r.t a failure to meet obligations. Both correspondences are monotonous, i.e. 
a higher risk tolerance 1 − αk corresponds to a higher Ck, but the exact relation of 
C1 to α1 may differ from that of C2 to α2. By definition, we have C2 ≤ C1. We con-
strain the sum of absolute changes in decision variables by the sum over all the corre-
sponding third stage decision variables, multiplied with the respective risk-aversion 
parameter Ck in Constraints (2w), (2x) and (2y). As a general remark, a relatively 
high value of Ck, e.g. an aggregated deviation of 50% for the final stage with respect 
to the planning at stage k, may still correspond to an acceptable, extremely low risk 
tolerance.

	

∑
n∈N

∑
t∈T

(
δ̂knmht + δ̄knmht

)
≤ Ck

∑
n∈N

∑
t∈T

λs
nm̃ht

{
∀s ∈ {−, +}, m ∈ M (3),
m̃ ∈ Π(m), h ∈ H; k : m̃ ∈ M (k)

� (2w)

	

∑
a∈A

∑
t∈T

(γ̂kmhat + γ̄kmhat) ≤ Ck

∑
a∈A

∑
t∈T

fm̃hat

{
∀m ∈ M (3), m̃ ∈ Π(m),
h ∈ H; k : m̃ ∈ M (k) �(2x)

	

∑
n∈N

∑
t∈T

(
θ̂knmht + θ̄knmht

)
≤ Ck

∑
n∈N

∑
t∈T

κnm̃ht

{
∀m ∈ M (3), m̃ ∈ Π(m),
h ∈ H; k: m̃ ∈ M (k) �(2y)

Submarket constraints
We model the submarket setting outlined in Sect. 3.2 using three market nodes: 

one dummy market node used for accounting the shared exit capacity and storage, 
and two end nodes for the respective market segments R and I, that can be reached 
from the dummy node using an arc with zero flow cost. As sales should take place in 
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the market segments and not in the dummy node, we set the sales price at the dummy 
node to €0. Let S(n) be the set of market segments corresponding to a (dummy) node 
n in this fashion (Note: for almost all network nodes n, we have S(n) = ∅). As the 
exit capacities at the market segment share the total pooled exit capacity purchased in 
the dummy node, we cap these exit capacities by enforcing the following constraints:

	

∑
ñ∈S(n)

∑
m̃∈Π(m)

(
x−

ñm̃ht − y−
ñm̃ht

)
− w−

nmht + w+
nmht ≤

∑
m̃∈Π(m)

(
x−

nm̃ht − y−
nm̃ht

)

∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T

�(2z)

As Constraint (2z) ties exit capacities for the market segment nodes to the exit capac-
ity purchased at the dummy node, the cost for obtaining exit capacity at the market 
segment nodes themselves is set to 0. The terms −w−

nmht + w+
nmht in Constraint (2z) 

ensure that gas extracted from the pooled storage does not use exit capacity, whereas 
injecting into the pooled storage does. Finally, we remark that Constraint (2e) is valid 
at both the dummy node and the market segment nodes, albeit partially redundant.

Domain constraints

	

fmhat ∈ R+ ∀m ∈ M, h ∈ H, a ∈ A, t ∈ T

x+
nmht, x−

nmht,
y+

nmht, y−
nmht

}
∈ R+ ∀n ∈ N, m ∈ M, h ∈ H, t ∈ T

s+
nmh, s−

nmh ∈ R+ ∀n ∈ N, m ∈ M, h ∈ H

qP
nmht, vnmht,

w+
nmht, w−

nmht

}
∈ R+ ∀n ∈ N, m ∈ M (3), h ∈ H, t ∈ T

qS
nmht ∈ R+ ∀n ∈ N, m ∈

∪
k∈K\{1}

M (k), h ∈ H, t ∈ T

λs
nmht ∈ R+ ∀s ∈ {−, +}, n ∈ N, m ∈ M, h ∈ H, t ∈ T

κnmht ∈ R+ ∀n ∈ N, m ∈ M, h ∈ H, t ∈ T

γ̂kmhat, γ̄kmhat ∈ R+ ∀k ∈ K \ {3}, m ∈ M (3), h ∈ H, a ∈ A, t ∈ T

δ̂s
knmht, δ̄s

knmht ∈ R+
{

∀s ∈ {−, +}, k ∈ K \ {3},
n ∈ N, m ∈ M (3), h ∈ H, t ∈ T

θ̂knmht, θ̄knmht ∈ R+ ∀k ∈ K \ {3}, n ∈ N, m ∈ M (3), h ∈ H, t ∈ T

znmht, unmht ∈ R+ ∀n ∈ N, m ∈ M, h ∈ H, t ∈ T

All decision variables lie in the domain of non-negative real numbers. Note that we 
set the upper bound of production and sales decision variables to zero if the supplier 
cannot produce respectively trade on that node. Additionally, we set the upper bound 
of the decision variables corresponding to buying entry capacity at a node equal to 
zero if a supplier is not active at that node.
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5  Results and discussion

To study ways of optimizing the gas entry–exit capacity utilization under uncertainty, 
we describe the experimental setup in Sect. 5.1 and discuss the numerical results of 
the case study in Sect. 5.2.

5.1  Experimental setup

We explain the data used in this case study in three parts: network and supplier data, 
parameter values, and scenarios. Next, we restate the research questions and explain 
how we answer them.

5.1.1  Network and supplier data

In our study, we utilize a comprehensive dataset concerning the gas pipeline network, 
sourced primarily from GeoNorge (2024). This dataset provides detailed information 
about the locations of pipelines and facilities, as well as their capacities. As this data-
set pertains to a subset of all the pipelines in this area, we have augmented the dataset 
with additional pipelines based on information from Norsk Petroleum (2024), such as 
those connecting Denmark to Poland. The pipeline capacities reported by GeoNorge 
(2024) were verified against the capacities displayed in Gassco (2024). The result-
ing network, consisting of 65 nodes and 67 pipe lines, is visualized in Fig. 4a. We 
divide the nodes into three categories: (1) facilities for accumulating production and/
or processing; (2) intermediate nodes; and (3) markets. Gas is fed into the network 
at the processing nodes, and passes through the intermediate nodes to end up in the 
markets.

We have obtained production capacity data from GEM Wiki (2024), for which 
we mapped each production node to a facility in our network, based on information 
about the connecting pipelines. If this data was missing, we made a connection to the 
nearest facility in our network. Additionally, we used information from this source to 
determine which suppliers are active at specific facilities or nodes, and which act as 
the main operators of processing facilities.

We consider eight different suppliers, each of them only being active at only a 
subset of the processing facilities, as shown in Fig. 4b. In Figs. 12 and 13 in “Appen-
dix 3”, we visualize the network range of the different suppliers.

5.1.2  Parameter values

In this section, we discuss the parameter values for our case study. We will first 
motivate our choices for fixed parameters, such as booking and flow costs. This is 
followed by an explanation of the parameters that are affected by uncertainty.

Fixed parameters
For the fixed parameter values, we have made several deliberate choices to con-

struct realistic economic dynamics. We want to incentivize early booking of capacity 
that will definitely be used. Additionally, we want to enable booking capacity that is 
only used circumstantially at a later stage. Therefore, the costs for buying and sell-
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ing entry and exit capacities in each of the three stages were set to €1, €1.04, and 
€1.08 per MWh, respectively, based on information from Gassco (2025). Preliminary 
results showed that this yields a balanced distribution of trading over the stages. The 
flow costs were set uniformly to €0.10 per MWh for traversing each pipeline, as we 
do not want flow cost in itself to be a main driver of the results. Storage costs were 
set to €2.40 for storage capacity of one MWh for 24 hours, which is equivalent to a 
cost of €0.30 per three-hour period. We consider the former an appropriate value as 
it makes the use of storage profitable in case of considerable price fluctuations over 
time, yet not in case of minor fluctuations. Production costs amount to €9 per MWh, 
which is approximately 30% of the gas price per MWh, similar to relative costs 
reported in Equinor (2024). We assume that the storage facilities can accommodate 
all capacity requests, i.e., there are no hard capacity limits. We neglect losses in the 
gas flow, which is equivalent to a loss rate of 0%. An overview of all the parameters 
and their values can be found in Table 2.

Parameters affected by uncertainty
The uncertain minimum demand contract volumes for gas and the uncertain gas 

prices for each (sub)market are provided in Tables 3 and 4, respectively. These values 
were chosen to be aligned with real values for the specific (sub)markets (Interconti-
nental Exchange 2025; Gassco 2024). We divide a day of 24 h into eight time blocks 
(TB1 up to TB8) of 3 h each. To mimic a realistic daily cycle of demand levels over 
the day, we group these time blocks such that we have four periods (P1 up to P4) of 

Fig. 4  Network and supplier data used in this study

 

1 3

    9   Page 22 of 41



Optimizing gas entry–exit capacity utilization under uncertainty

Table 3  Total contractual demands (MWh) for natural gas in different (sub)markets for each three hour 
time block
Market Segment Demand level P1 P2 P3 P4

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8
St. Fergus – – 12,500 12,500 12,500 12,500
Easington – – 12,500 12,500 12,500 12,500
Teesside – – 12,500 12,500 12,500 12,500
Poland – – 25,000 25,000 25,000 25,000
Dunkerque – – 50,000 56,250 43,750 50,000
Emden Industrial High 25,000 33,125 25,000 33,125

Low 25,000 23,125 25,000 23,125
Retail High 25,000 33,125 25,000 33,125

Low 25,000 23,125 25,000 23,125
Dornum Industrial High 25,000 33,125 25,000 33,125

Low 25,000 23,125 25,000 23,125
Retail High 25,000 33,125 25,000 33,125

Low 25,000 23,125 25,000 23,125
Zeebrugge Industrial High 25,000 35,000 25,000 35,000

Low 25,000 15,000 25,000 15,000
Retail High 25,000 35,000 25,000 35,000

Low 25,000 15,000 25,000 15,000
We denote the four periods by P1 up to P4 and the eight time blocks by TB1 up to TB8. The combination 
of Market and Segment refers to a specific (sub)market. Demand Level distinguishes between the low 
and high demand cases at such a market

Description Parameter Domain Value Unit
Entry and exit 
capacity costs

cN+
mh

, cN−
mh

∀m ∈ M(1), h ∈ H1 €/MWh

cN+
mh

, cN−
mh

∀m ∈ M(2), h ∈ H1.04

cN+
mh

, cN−
mh

∀m ∈ M(3), h ∈ H1.08

Production 
costs

cP
n

∀n ∈ N 9 €/MWh

Storage cap. 
costs

cI
n

∀n ∈ N 0.3 €/MWh 
per time 
block

Flow costs cA
a

Market → 
Segments

0 €/MWh

All other arcs 0.1 €/MWh
Production 
capacity

CAP P
n

∀n ∈ N De-
pends 
on n

MWh 
per time 
block

Pipe capacity CAP A
a

∀a ∈ A De-
pends 
on a

MWh 
per time 
block

Storage cap. 
limit

CAP I
n

Market nodes ∞ MWh
All other 
nodes

0 MWh

Loss rate la ∀a ∈ A 0 Not ap-
plicable

Table 2  Values for fixed 
parameters
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12, 3, 6, and 3 h, respectively. We divide the minimum volume contracts in a feasible 
and fair manner over the different suppliers as shown in Fig. 5.

5.1.3  Scenarios

In our case study, we consider 96 equiprobable scenarios, which correspond to differ-
ent realizations of the uncertain minimum demand and the gas prices. Contract nomi-
nations are revealed in the second stage, and prices in the third stage, respectively, 
as visualized in Fig. 6. More specifically, we consider fluctuations in the demand at 

Table 4  Prices for natural gas in different markets (€/MWh)
Market Segment Price level P1 P2 P3 P4

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8
St. Fergus – – 26 28 27 29
Easington – – 26 28 27 29
Teesside – – 26 28 27 29
Zeebrugge Both – 29 31 30 32
Poland – – 30 30 30 30
Emden Both High 31 30 32 31

Low 25 30 26 31
Dornum Both High 31 30 32 31

Low 25 30 26 31
Dunkerque – High 32 32 33 33

Low 28 32 29 33
We denote the four periods by P1 up to P4 and the eight time blocks by TB1 up to TB8. The combination 
of Market and Segment refers to a specific (sub)market. Price Level distinguishes between the low and 
high price cases at such a market

Fig. 5  Minimum contract volumes in each market for each supplier
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the market segments in Emden, Dornum and Zeebrugge during time blocks 5 and 
8. In these time blocks, demand can be either high (H) or low (L). Most of these 
fluctuations are assumed to be independent, with two notable exceptions. Firstly, 
because of the proximity of the Emden and Dornum nodes, the realizations of retail 
market demand are assumed to be identical in both locations. In addition to this, we 
model the effect of large fluctuations between different demand realizations in the 
Zeebrugge market segments. The consequence of this is that high demand cannot be 
realized in both Zeebrugge market segments simultaneously. In practice, this means 
that the Zeebrugge market has 3 equiprobable realizations for industrial and retail 
demand: (H, L), (L, H) and (L, L). This results in 23 ∗ 3 = 24 branches in the second 
stage, as shown in Fig. 6. Specific values of the demand are provided in Table 3. For 
the uncertain prices, we consider two possible realizations, high (H) and low (L), at 
the markets in France and Germany, as shown in Table 4 and Fig. 6. Again, the price 
realizations in the German markets of Emden and Dornum are assumed to be identi-
cal due to geographical proximity, resulting in 22 = 4 different realizations of prices 
throughout the network.

5.1.4  Research questions

In this research, the goal is to study ways of optimizing the gas entry–exit capacity 
utilization under uncertainty. To achieve this, we conduct experiments that contribute 
to the resolution of the research questions, as introduced in Sect. 1: 

1.	 How does risk aversion affect capacity allocation and capacity availability in 
various strategic and operation stages? (Sect. 5.2.1)

2.	 What are the bottlenecks in the system and how can we solve them? (Sect. 5.2.2)
3.	 What is the value of booking-flexibility for storage facilities? (Sect. 5.2.3)

Fig. 6  Realization of some of the 
uncertainties in the schematic scenario 
tree, including a selection of 8 out of 
96 scenarios

 

1 3

Page 25 of 41      9 



B. Markhorst et al.

For the first research question, we vary the values for C1 and C2. To answer the sec-
ond and third research questions, we follow the experimental setup as described in 
Sects. 5.1.1–5.1.3.

5.1.5  Computational setup

We have implemented our methods and experiments in Python 3.10, solved the mod-
els with the Gurobi 10.0.1 solver (Gurobi  Optimization 2025), and published the 
corresponding data and code on GitHub (Markhorst 2025). For Gurobi, we use an 
aggresive presolve method and the barrier method, while the other parameters are 
set to the default values. All experiments were run on a high performance computing 
(HPC) cluster using 32 cores with a clock speed of 2.4 GHz and 2 GB memory per 
core.

5.2  Numerical results

Before answering the three research questions in their corresponding sections, we 
discuss the value of stochastic solution (VSS) and the expected value of perfect infor-
mation (EVPI). With the considered network and parameter settings, we observe that 
the first stage solution of the expected value problem yields an infeasible problem 
when fixed in the original problem. This is caused by the need for storage in some 
scenarios of the original problem, which is not used in the solution of the expected 
value problem. As the solution of the expected value problem is infeasible in the 
original problem, the VSS amounts to ∞, which underlines the importance of consid-
ering uncertainty in this context. Then, the EVPI amounts to €135k per day, which is 
a considerable amount of money when aggregated over a year. However, considering 
that this is only a small fraction of the total revenue, this market with its underlying 
network and capacity and storage options, seems to cope naturally well with the fact 
that some demand and prices are uncertain.

5.2.1  Risk aversion

Research question 1  How does risk aversion affect capacity allocation and capac-
ity availability in various strategic and operation stages?
We assumed that the TSO is risk averse and therefore wants to change its decisions 
as little as possible. To quantify the extent of the TSO’s risk aversion in our model, 
we have introduced parameters C1 and C2 in Sect. 4. We run the model with differ-
ent values for C1 and C2 with C2 ≤ C1 and show the result in Fig. 7. Based on this 
result, we make two observations.

First, we see that being slightly less risk averse already yields considerable gains 
in the system profit. Note that small percentages correspond to considerable amounts 
of money in this industry, as mentioned in Sect. 1. Additionally, we see that the prob-
lem with C1 = C2 = 0 is infeasible as combining all scenarios into one solution 
without a recourse action is not possible. We observe that mainly C2 impacts the 
objective value as the graphs for C1 = 100% and C1 = C2 are almost identical.

1 3

    9   Page 26 of 41



Optimizing gas entry–exit capacity utilization under uncertainty

Second, this figure also has an interpretation relating to realistic first-stage deci-
sions under different market circumstances. If suppliers are unwilling to risk an indi-
vidual third-stage contract infeasibility, putting them in a vulnerable position when 
needing a secondary-market deal, the likely optimal first-stage decision will resemble 
the situation of complete strictness: each supplier will make sure to book an amount 
of capacity in the first stage that will allow them to fulfill all contractually obligated 
demand in any scenario. This is system sub-optimal, but no supplier will be at risk of 
putting themselves in a vulnerable position of having to rely on another supplier to be 
able to meet their obligations. If there is distrust between suppliers, we end up here: 
suppliers expect their competitors to extort any vulnerability they might have. How-
ever, since we assume perfect competition, suppliers may approve of a first-stage 
decision that is system optimal in expectation, but requires some suppliers to rely on 
cooperation of competitors to repair any contractual infeasibilities that may occur in 
some scenarios by offering the required capacity at a reasonable price.

Additionally, we show the difference in decision variables, aggregated over all 
indices, between C2 = 100% and C2 = 0% while C1 = 100% in Fig.  8, which 
shows that, when the system is less restricted, the system waits with assigning exit 
capacity to a supplier until the demand and price uncertainties are revealed. Note 
that the figure only includes decision variables at those stages for which they are also 
included in the objective function of our method.

5.2.2  Bottlenecks

Research question 2  What are the bottlenecks of the system and how can we solve 
them?
We consider three bottlenecks: production and pipe capacities and minimum contract 
volumes. We look at shadow prices of Constraints (2a), (2c), and (2b), respectively, 
to identify these bottlenecks. Table 5 shows the approximate gains in the objective 
due to an increase of one MWh on the right hand side of Constraints (2a) and (2c). We 
sum the shadow prices of the individual capacity constraints corresponding to each 
scenario and time block to obtain an estimate of how much an capacity increase of 
one MWh positively impacts the objective function. We observed that three pipes are 

Fig. 7  Different levels of risk aver-
sion in the first and second stage
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the most important bottlenecks: Johan Sverdrup Gassror, Vesterled, and Troll Gas-
sror. If we could increase the capacity of these pipes, the system’s overall through-
put would increase considerably. More specifically, increasing the capacity of Johan 
Sverdrup Gassror with one MWh per time block yields approximately €144,000 per 
day. The rightmost column in Table 5 represents the maximum aggregated shadow 
prices over the different time blocks. By comparing the second and third column in 
Table 5, we can get an indication of how the system’s bottlenecks may vary depend-
ing on the demands and prices, which vary due to uncertainty and time fluctuations. 
In some specific scenarios and time blocks, it would be useful to have more capacity 

Table 5  Approximate gains (€) in the objective due to an increase of one MWh on the right hand side of 
Constraints (2a) and (2c)
Pipe Total over all time blocks Maximum
Johan Sverdrup Gassror 144,000 23,040
Vesterled 125,760 20,160
Troll Gassror 124,800 19,200
Node Total over all time blocks Maximum
Ekofisk J 144,960 –
Statfjord B 143,040 –
Heidrun 142.080 –
Norne ERB 142.080 –
Skarv ERB 142.080 –
Sleipner A 125,760 –
Ormen Lange A 125,760 –
Aasta Hansteen Plem 124,800 –
Kvitebjorn 124,800 –
Gjøa 123,840 –
Cats Platform 111,360 –

Fig. 8  Comparison in decision variables between C2 = 100% and C2 = 0% while C1 = 100%
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in a set of pipes for which the aggregate shadow price is not high. This indicates that 
the bottlenecks of the system are not static.

When considering Constraint (2c), we observed that eleven facilities are the most 
important bottlenecks, which are also listed in Table  5. Increasing the production 
capacity of these nodes would also improve the system’s throughput considerably. 
More specifically, as stated in Table 5, increasing the production capacity of Ekofisk 
J with one MWh per time block yields approximately €144,960 per day. Finally, Fig-
ure 14 in Appendix 4 shows the shadow prices of constraint (2b). We observe that the 
German markets are the most important bottlenecks. Lowering the contracts in these 
three markets would benefit the system’s profit.

5.2.3  Use of storage

Research question 3  What is the value of booking-flexibility for storage facilities?
To answer this research question, we evaluate the system by applying our model 
with Constraints (2j) and (2k) relaxed. We then compare this to the solution of our 
base model and show the results in Table 6. When comparing these two solutions, 
we see that the (expenses for) storage capacities are about ten times lower when 
these constraints are relaxed. This shows that there is a considerable added value in 
having the flexibility to book different storage capacities for different time blocks. 
Conversely, the system cost of being inflexible in this context is high as well. Further-
more, this finding entails that this flexibility option will be lucrative to suppliers even 
if the party administering storage would ask a high surcharge. Finally, we see that 
the relaxed model uses the booked storage capacity more often than the base model, 
indicating a more efficient system.

5.3  Model scalability

To give an indication of our method’s tractability, we provide more details in 
Table 7.1 For this specific run, we used the settings C1 = 1 and C2 = 0. We see that 
the solver’s presolve method considerably decreases the model size. Additionally, 
we observe that for this large, but continuous, linear program the solver finds an 
interior point solution within minutes, which is the case for the configurations used in 
both Sects. 5.2.2 and 5.2.3. In Sect. 5.2.1, the solution times are much longer as the 
shadow prices must be computed for which a computationally expensive crossover 
method is required.

1 Note that the reported number of constraints and decision variables slightly differs from the theoretical 

numbers due to implementation choices.

Storage capac-
ity used (%)

Total storage 
capacity acquired 
(MWh)

Objective 
(€)

Base model 31.59 109,260 59,931,000
Relaxed model 89.98 1,409,390 60,623,000

Table 6  Illustration of the value 
of booking-flexibility for stor-
age facilities

 

1 3

Page 29 of 41      9 



B. Markhorst et al.

Figure  9 depicts the runtimes of our model applied to scenario trees of differ-
ent size, which indicates an exponential but limited growth pattern. The results in 
this figure were obtained in the following manner: we reduced the original scenario 
tree by randomly removing branches, solve the smaller problem with our model and 
report the runtimes. We executed this process twelve times to account for randomness 
due to random sampling and report the average in Fig. 9.

As shown in Table 1, the network considered in this study is relatively large com-
pared to other existing literature. However, we would also like to briefly shed the 
light of the expected performance of our model on networks of even larger scale or 
networks that are more intricate. To this end, we would like to point out that the size 
of our model grows linearly with the network size if the other parameters remain the 
same, as shown in Fig. 10, while the solving time will increase more than linearly but 
remains manageable. Compared to other models in the literature, our method is still 
tractable with much larger instances, both in terms of network size and the number 
of scenarios. However, this will also greatly depend on the network structure and 
inherent complexities.
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ferent numbers of scenarios. Each 
datapoint is an average over twelve 
runs

 

Attribute Value
Before presolve Number of decision variables 13,610,640

Number of constraints 12,328,888
After presolve Number of decision variables 4,620,036

Number of constraints 3,490,493
Strategic nodes in scenario tree 
(red nodes in Fig. 1)

121

Operational nodes in scenario tree 
(blue nodes in Fig. 1)

968

Solution time (s) 225

Table 7  Properties of a run with 
our model using C1 = 1 and 
C2 = 0

These values give an indication 
of our method’s tractability
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5.4  Discussion

While our findings support the hypothesis that the risk aversion negatively affects the 
entry–exit capacity utilization under uncertainty, certain limitations—mainly caused 
by made assumptions—should be considered when interpreting these outcomes.

An important asset of our model is its applicability to any gas network with a 
graph representation of any size. However, the insights on system dynamics pre-
sented in this study can only be extended to other gas networks to a limited extent. 
This is due to the complexity of networks—which we identify as an important driver 
of these dynamics—highly depending on the maturity and size of a network.

As an example of this, our method could provide considerably more added value 
when applied to gas networks whose graph representation is not acyclic. Typically, 
such networks have more possible overlapping routes competing for capacity than 
the network we considered in this study. As a consequence of this, more profit can 
be realized from secondary market trading due to optimal flow direction reversal in 
specific scenarios. A possible application will be to study networks with bidirectional 
pipelines, such as the Interconnector UK or Bacton Balgzand Line. We conjecture 
that the gap between a fully risk averse and fully non risk averse TSO will be signifi-
cantly larger in networks that contain a substantial number of cycles caused by such 
bidirectional pipelines.

The last few years, decentralized electricity production has increased considerably, 
which led to a shift in the use of natural gas: as the base load for electricity networks 
decreases due to the higher volatility of renewable sources, the role of natural gas in 
stabilizing electricity supply becomes pivotal. Consequently, the demand for natural 
gas is subject to a new source of stochasticity introduced by supply fluctuations in 
the electricity market. This underlines the importance of accounting for uncertainty 
when modeling natural gas markets in the context of securing a stable energy supply 
in Europe.

Furthermore, novel gaseous commodities, most notably hydrogen, will be used 
increasingly to make the European energy mix more sustainable. In order to opti-
mally exploit existing infrastructure, these commodities can be injected into the flow 
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Fig. 10  Model size in terms of 
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of conventional natural gas, directly impacting flow volumes in a network. As hydro-
gen needs to be cleanly produced, its production facilities should be powered by 
green electricity sources. This means that, in terms of supply stability, hydrogen pro-
duction suffers from the same capriciousness mentioned before. Thus, the paradigm 
of accrediting a central role to uncertainty and flexibility when studying gas networks 
is also highly valuable in this light.

We observe that the problem formulation from Sect. 3 has similarities with the 
static stochastic knapsack problem (Steinberg and Parks 1979), which has uncertain 
values per item. In our case, the knapsack is the combination of all the markets, 
which has a limit on the sales due to pipe capacities, and the knapsack items are the 
gas units. The results show that first, the most profitable markets are served, which, 
among others, depends on their gas prices. In the case of minimum volume contracts, 
the “knapsack” is already partially filled with mandatory “items”, i.e., gas units.

We assume that suppliers are price takers. Given prices in the markets, the lowest-
cost producer has the highest willingness to pay for capacity, which is the implicit 
mechanism driving social welfare maximization. We have opted for fixed demand 
and prices, and not inverse demand curves as demand changes caused by the mar-
ket power dynamics would be hard to decouple from other observed effects. This 
allows us to focus on how price arbitrage possibilities drive demand for capacity, and 
capacity flexibility. Including market power in this model could be a topic for future 
research. Another topic of future research could be including supply and demand 
dynamics in the gas prices.

The objective of our model produces a first stage that is system optimal but not 
necessarily agent optimal. This is a consequence of assuming that all agents are price 
takers. The first stage decision produced by our model does not contain a balanc-
ing of interests between the different suppliers, which may bring some suppliers in 
vulnerable positions because there is no mechanism in place that guarantees a fair 
distribution of risk over all the suppliers. It is possible that smaller suppliers would 
have a higher degree of risk aversion. In our current study, suppliers have no indi-
vidual agency on risks they are willing to take, only system wide risk stances have 
been addressed.

In our case study, we consider one large and seven small suppliers, which is repre-
sentative for the actual situation at the Norwegian Continental Shelf where Equinor is 
by far the largest gas producer. Additionally, the network range of these suppliers dif-
fer considerably from each other, as shown in Appendix 3. Therefore, the competition 
between suppliers on each pipeline is relatively small. This phenomenon influences 
the results and therefore impacts the generalizability of our findings to other energy 
markets with different supplier proportions and network structures. Future research 
could entail testing our model on other gas networks.
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As our results are based on data, which mimic reality, our findings are not merely 
useful for academics, but also for practitioners from the industry. Additionally, our 
method, a stochastic linear program, could be applied to larger scenario trees or 
networks.

6  Conclusion

This work addresses the optimization of natural gas entry and exit capacity under 
uncertainty using a multi-stage stochastic programming approach. Given the inherent 
uncertainties in gas demand and pricing, we introduce a decision-making framework 
spanning three planning horizons: long term (months ahead), day ahead, and intra-
day. The optimization framework considers multiple gas suppliers interacting with 
a Transmission System Operator (TSO). Suppliers book entry and exit capacities 
and can adjust their positions in a secondary market. The objective is to maximize 
system-wide profitability while incorporating costs related to capacity booking, pro-
duction, storage, and gas flow. The physical infrastructure is represented as a directed 
graph, where gas flow is subject to compression losses.

We find that slightly reducing the TSO’s risk aversion already yields considerable 
gains in the system profit. We argue that checks and balances in the system are pivotal 
to this improvement, to decrease additional risk aversion among individual suppliers. 
Additionally, we identify bottlenecks in the Norwegian gas market with respect to 
the pipeline and production capacities, and minimum contract volumes. Finally, we 
study the value of flexibility-booking for storage and show a considerable markup for 
flexibility in this context. These findings might contribute to securing a stable energy 
supply in Europe.

For future research, we can include disruptable capacities, and the price dynamics 
of supply-and-demand in our model. Additionally, we can study a model with more 
stages if the prices and the demands are more volatile and are only realized shortly 
in advance. Next, we could study the impact of modeling more realistic risk stances 
of individual suppliers in the first stage on the tractability and scalability of our 
model. Finally, the inclusion of hydrogen production, transport, or even infrastruc-
ture (Zhang et al. 2023) in our model could also be interesting for future research. 
Similarly to Huppmann and Egging (2014), we could use study market power exerted 
across several fuels.

Appendix 1: Methodology

See Tables 8, 9, and 10.
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Symbol Description

cP
n

Production costs in node n

cI
nmh

Storage capacity costs in node n in scenario 
node m at time block h

cA
a

Flow costs in arc/pipe a

cN+
mh

Entry capacity costs in scenario node m at time 
block h

cN−
mh

Exit capacity costs in scenario node m at time 
block h

CAP P
n

Production capacity in node n

CAP I
n

Storage capacity in node n

CAP A
a

Flow capacity at arc/pipe a
la Loss rate for flow over arcs/pipes
pm Weight for scenario node m, based on the prob-

ability and the time block this node represents
ξnmht Uncertain, minimum demand volume of natu-

ral gas in node n and scenario node m at time 
block h for supplier t

rnmh The price of natural gas at scenario node m at 
time block h in node n

C1 Maximum difference (%) between the first and 
third stage decisions

C2 Maximum difference (%) between the second 
and third stage decisions

Table 9  Parameters 

Symbol Description
K Stages; index k
N Nodes in the network (production platforms, pro-

cessing facilities, markets); index n
A Arcs/pipes which can transport natural gas; index a

A+
n

Inward arcs into node n; index a

A−
n

Outward arcs from node n; index a

M Scenario tree nodes; index m

M(1) Scenario tree nodes corresponding to long term; 
index m

M(2) Scenario tree nodes corresponding to day ahead; 
index m

M(3) Scenario tree nodes corresponding to intra day; 
index m

Π(m) All the parent nodes of node m and node m itself. 
If m = 1, then Π(m) := {1}; index m̃

H Time blocks; index h
T Suppliers of natural gas; index t

Table 8  Sets 
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Symbol Description

x+
nmht

Entry capacity bought at node n by the supplier t 
in scenario node m at time block h

x−
nmht

Exit capacity bought at node n by the supplier t in 
scenario node m at time block h

y+
nmht

Entry capacity sold at node n by the supplier t in 
scenario node m at time block h

y−
nmht

Exit capacity sold at node n by the supplier t in 
scenario node m at time block h

s+
nmh

Entry capacity sold by the TSO in scenario node 
m at time block h at node n

s−
nmh

Exit capacity sold by the TSO in scenario node m 
at time block h at node n

fmhat Supplier infrastructure flow for supplier t at arc a 
in scenario node m at time block h

qS
nmht

The volume of gas sold by supplier t at node n in 
scenario node m at time block h

qP
nmht

The volume of gas produced by supplier t at node 
n in scenario node m at time block h

vnmht The volume of natural gas stored by supplier t at 
node n in scenario node m at time block h

w+
nmht

The volume of natural gas put into storage by sup-
plier t at node n in scenario node m at time block h

w−
nmht

The volume of natural gas retrieved out of storage 
by supplier t at node n in scenario node m at time 
block h

znmht Storage capacity bought at node n by the supplier 
t in scenario node m at time block h

unmht Storage capacity sold at node n by the supplier t in 
scenario node m at time block h

λs
nmht

Volume of entry (s = +) or exit (s = −) capac-
ity at node n supplier t has acquired so far up to 
scenario node m in time block h

κnmht Volume of storage capacity at node n supplier t 
has acquired so far up to scenario node m in time 
block h

γkmhat The difference in flow decisions between the third 
and the corresponding first (k = 1) or second 
stage (k = 2) decision of trader t at arc a in sce-
nario node m and time block h

δs
knmht

The difference in acquired entry (s = +) or exit 
(s = −) capacity between the third and the cor-
responding first (k = 1) or second stage (k = 2) 
decision of trader t at node n in scenario node m 
and time block h

θknmht The difference in acquired storage capacity 
between the third and the corresponding first 
(k = 1) or second stage (k = 2) decision of trader 
t at node n in scenario node m and time block h

Table 10  Decision variables 
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Appendix 2: Relation between risk aversion constraints and (C)VaR

In order to understand how the relation between risk aversion constraints and (C)VaR 
manifests itself in our problem context, let us assume that, in case of failure to facilitate 
the guaranteed transportation plan, the TSO incurs a penalty B, which is much larger than 
the best attainable social welfare. We let g(η, ξ) denote the possible penalty incurred for 
a specific η and ξ, such that g(η, ξ) is either 0 or −B. Additionally, we let ζ(η, ξ) be the 
realized system profit, akin to Eq. (1), for a given realization of the uncertainty ξ and 
decision η.

One has to take into account that η may constrain the rest of the variables in the 
program, and therefore the optimal objective. Yet, due to the gravity of the conse-
quences of a failure, it is reasonable to assume that the incurred penalty B will domi-
nate differences in the objective caused by η constraining other variables:

	
max
η,η̃

|ζ(η, ξ) − ζ(η̃, ξ)| ≪ B ∀ξ.

An example of this setting is illustrated by Fig. 11, which shows the inverse cumu-
lative distribution function (cdf) of the realized profit for a given solution and η, with 
the large jump separating the situations where failure does and does not occur.

As there exists an equivalence relation between chance constraints and VaR con-
straints (Sarykalin et al. 2008), we can say that adding such a chance constraint is 
equivalent to constraining the VaR of ζ(η, ξ) + g(η, ξ) (for example, to be above 
−B

2 ). Because the α-chance constraint directly controls the fraction of scenarios 
in which a penalty occurs, i.e., the location of the jump in Fig. 11, it ensures that 
VaRα (ζ(η, ξ) + g(η, ξ)) ≫ −B. Furthermore, for all β < α the following holds:

	
CVaRβ ≥ α

1 − β
· −B

because we may assume in our context that, so lang as α > ϵ with ϵ being a very 
small number, a non-negative feasible solution to our original problem exists for 
some η satisfying the α-chance constraint.

Fig. 11  Inverse cdf of the outcome distribution for a given solution and η
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Appendix 3: Network ranges suppliers

See Figs. 12 and 13.

Fig. 12  Network ranges of Equinor, Shell, ConocoPhillips, and Aker
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Fig. 13  Network ranges of Neptune, Lundin, Var, and Wintershall
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Appendix 4: Bottlenecks

See Fig. 14.

Fig. 14  Shadow prices of minimum contracts
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