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Abstract

Natural gas is vital to Europe’s energy system, with Norway supplying 30% of Eu-
ropean gas demand. Effective management of entry—exit capacity in the Norwegian
network can enhance market efficiency and energy security, but is far from trivial
due to uncertain demand and prices. This study develops a stochastic programming
model to determine optimal capacity allocation under uncertainty, with a focus on
scalability. Concerned about network stability, operators tend to be risk averse in
deviating from their initial decisions when allocating bookable capacities. We use
our model in a case study on Norway’s gas pipeline network and find that moderat-
ing risk aversion can yield considerable system welfare gains. Additionally, we give
insights into the system bottlenecks for policymakers and industry stakeholders and
show the value of flexibility in this context. Finally, we provide a comprehensive
dataset to advance future research.
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1 Introduction

Natural gas is one of the most prominent energy carriers in Europe and plays a vital
role in Europe’s energy system today. It contributes approximately 22% to the EU’s
primary energy consumption and serves around 40% of European households (Agency
for the Cooperation of Energy Regulators 2025). Europe relies heavily on imports to
meet its gas demand; about 80% of gas demand is covered by imports (Agency for
the Cooperation of Energy Regulators 2025). This import dependency has created
vulnerabilities, which have become more prominent in recent years due to geopoliti-
cal tensions (European Central Bank 2023). Besides, natural gas is important for the
future development of the electricity (Ordoudis 2018) and hydrogen system (Dura-
kovic 2024).

Norway is Europe’s largest natural gas supplier meeting about 30% of Europe’s
gas demand (Reuters 2025). As the EU seeks to diversify its energy sources away
from Russian supply, Norway’s stable and reliable gas exports are increasingly valu-
able. The total production of natural gas in 2024 in Norway amounted to 120 billion
standard cubic meter (bcm), and, yielded an export value of over €40 billion in 2023
(Norwegian Petroleum 2025a). According to Norwegian Petroleum (2025¢), 94 oil
and gas fields were in production at the end of 2024, of which Troll, Johan Sver-
drup, and Snehvit are the essential fields. The Norwegian gas network connects key
European markets with a handful of key pipelines including: Europipe I and II, and
Norpipe (to Germany), Langeled (to the UK), Zeepipe (to Belgium), and Franpipe (to
France) (Gassco 2024). At present, 25 companies are involved in the production of
gas and oil on the Norwegian shelf (Norwegian Petroleum 2025b).

There are several reasons why natural gas flows will become less stable in future
years. Annual European natural gas demand has been declining and is expected to
continue to do so (International Energy Agency 2025). Additionally, intermittency
of renewable energy sources (RES) generation can spill over to the natural gas sys-
tem when gas fired power generation demand is used in low RES generation high
electricity load periods. Suppliers will want to respond to short-term demand and
price developments. To facilitate the uptake of hydrogen in the European system as
part of the broader energy transition, hydrogen may be blended into natural gas and
significant parts of the existing gas infrastructure may be repurposed for dedicated
hydrogen transport. Norway can play a significant role in this transition in several
ways with optimal capacity management to increase available capacity within the
transmission system. Optimizing the use of this infrastructure could improve market
efficiency for both natural gas and hydrogen and further bolster Norway’s position as
a key energy partner to Europe.

Gas network capacity management in Europe has gone through several phases in
recent decades, following various energy packages aimed at improving market effi-
ciency. To give a broader perspective, in the following we briefly review the history
of gas market liberalization in Europe, a transformative process that redefined the
structure of the gas sector. This shift aimed to promote competition, enhance market
transparency, and empower consumers by breaking down monopolistic barriers and
fostering cross-border energy trade (Ciucci 2024).
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The liberalization process began in the 1990s, when the European Union (EU)
introduced a series of energy packages designed to open national energy markets.
The First Energy Package (EC 1998) laid the groundwork by requiring member states
to provide third-party access to energy networks and establish independent regula-
tory authorities. However, competition remained limited, as incumbent energy com-
panies retained significant control over infrastructure and supply.

The Second Energy Package (EC 2003) took a step further by granting consumers
the right to choose their energy suppliers. It also marked a significant shift away from
vertically integrated state-owned utilities and set the stage for increased cross-border
trade and competition. However, full market integration remained a challenge due to
continued dominance by national energy giants.

To address these persistent issues, the Third Energy Package (EC 2009) man-
dated the unbundling of energy generation and supply from transmission systems.
This structural separation aimed to prevent conflicts of interest, ensuring that trans-
mission network operators acted independently of supply companies. The package
also strengthened the role of the Agency for the Cooperation of Energy Regulators
(ACER) and enhanced transparency in pricing and market operations.

A cornerstone of market liberalization was the implementation of Third-Party
Access (TPA) (EC 2024), which granted new entrants the right to use existing energy
networks under transparent and non-discriminatory terms. This was essential to
breaking down barriers to market entry and stimulating competition. Moreover, the
introduction of the entry—exit system redefined how gas was traded and transported.
By decoupling physical gas flows from commercial transactions, this system allowed
market participants to book capacity at entry and exit points rather than along fixed
routes, enhancing market flexibility and efficiency. Together, these reforms laid the
foundation for a competitive and integrated European energy market (Ciucci 2024).
They not only improved market transparency and efficiency but also ensured fairer
consumer rights.

As buyers typically adjust periodic volumes to better match fluctuations in demand,
their contracts typically include nomination flexibility (Ason 2022). Suppliers need
entry—exit capacity to deliver gas to these buyers, which can be acquired from the
TSO (the primary market) or the other suppliers (the secondary market). By giving
suppliers the flexibility to trade in a secondary market, the gas network can be used
more efficiently as it ensures a better alignment between supply and consumption. We
will apply the notion of “flexibility” in different settings: besides (1) the flexibility of
a supplier to trade in a secondary market, (2) the flexibility to store gas temporarily,
and (3) the flexibility to adapt decisions over time to prices and demand changes.

As the TSO must manage gas flows at the pipeline level to ensure flow feasibility,
when optimizing system capacity there are trade-offs between maximizing capacity
availability, providing long-term certainty, and providing short-term flexibility for
suppliers to book the entry—exit capacity. At the same time, the TSO must be able
to manage unplanned disruptions in the network. To achieve this, TSOs apply safety
margins when determining available capacity, accounting for both operational uncer-
tainties and potential disruptions. All this, combined with natural gas demand and
price uncertainty, leads to a complex capacity booking and allocation process, which
is exacerbated by the decoupling of capacity bookings in the entry—exit system, and
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the need for feasible flows at the pipeline level. In this study, we address the follow-
ing three research questions:

1. How does risk aversion affect capacity allocation and capacity availability in
various strategic and operation stages?

2. What are the bottlenecks of the system and how can we solve them?

3. What is the value of booking-flexibility for storage facilities?

We focus on these questions when describing and analyzing the entry—exit capacity
market under uncertainty using a stochastic programming model. To address uncer-
tainty realistically, we propose a linear program which is a tractable and scalable
method. Using this model, we conduct a case study on the Norwegian natural gas
pipeline system perspective.

1.1 Contributions
The contributions of this work are:

o We develop a stochastic programming model for the primary and secondary en-
try—exit capacity markets of natural gas with multiple suppliers, which endog-
enously determines how much entry and exit capacity the Transmission System
Operator should make available so as to maximize the utilization rate of the net-
work. Our model can optimize for sufficiently large scenario sets within a consid-
erably small amount of time and yields better scalability compared to the other
models proposed in the literature.

o We base our findings on a realistic case study that is more extensive and more
detailed than used in previous work by Fodstad et al. (2015) and Grimm et al.
(2019). The corresponding data set is available at Markhorst (2025).

e We identify bottlenecks in the Norwegian gas network and find that a less risk
averse approach yields an increase of approximately 0.25% in the system profit.

The rest of this paper is structured as follows. Section 2 contains an outline of the
current state of the literature. In Sect. 3, we will outline our problem and the market
context giving rise to it. Thereafter, we introduce and detail our model in Sect. 4.
Section 5 presents the results and discusses the implications of these findings within
the context of Norway’s natural gas industry. Finally, Sect. 6 concludes the paper,
summarizing the main contributions and insights, and proposing directions for future
research.

2 Literature

We provide an overview of literature pertaining to gas transport capacity booking and
flow optimization as well as some illustrations for the computational complexity of
such problems. This provides a backdrop for our research questions, and support for
developing a scalable approach.
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The literature in the domain of mathematical optimization for the natural gas net-
works is rich and diverse, covering topics such as the design and operation of its
infrastructure (Hellemo 2016), pipeline capacity booking (Fodstad et al. 2015), pipe
sharing (Zhao et al. 2024), or its transportation (Rios-Mercado and Borraz-Sanchez
2015). Mathematical optimization models based on mixed-integer linear program-
ming and nonlinear programming can help determine capacity, verify network abili-
ties, and decide on network expansions, c.f., Fiigenschuh et al. (2014), which is far
from trivial. For example, the work of Schewe et al. (2020) explores the computa-
tional complexity of determining maximal technical capacities in the European gas
market’s entry—exit system and finds that it is NP-hard in certain cases.

In Hellemo (2016), a model is developed to assess investments in infrastructure
while accounting for uncertainties in the natural gas industry, such as fluctuating
prices, demand, and resource quality. To address these issues, the authors develop
optimization models that consider both short-term operational variability and long-
term uncertainties. Applied to the Norwegian Continental Shelf, these models dem-
onstrate substantial cost savings and improved decision-making for investments in
natural gas production and transport capacities. In the work of Fodstad et al. (2015),
the authors state that interruptible transportation services provide an innovative
approach to enhance the flexibility and efficiency of natural gas networks. Unlike
firm services, which guarantee capacity availability, interruptible services transport
gas only when spare capacity exists. The authors show that integrating such services
can (1) boost gas flow efficiency, (2) allow shippers to adapt to uncertainties flexibly,
and (3) deliver economic benefits without compromising supply security. The authors
of the current state-of-the-art in this field, Grimm et al. (2019) present a four-level
model analyzing supplier-TSO interactions, inefficiency levels, and potential mar-
ket design improvements. A “first-best benchmark model” is proposed to compare
the idealized system against real-world scenarios, with simplifications suggested
to enhance runtime while preserving key insights. Similarly, Bottger et al. (2022)
addresses inefficiencies using a robust optimization approach to reduce a multilevel
model to a single-level problem. The study finds that suboptimal network designs
can lead to welfare losses and discrimination against smaller suppliers, emphasizing
the importance of tailored pricing mechanisms and flexible policies. The technical
complexities of gas flow dynamics further complicate market operations. In Hiller
et al. (2018), the authors develop a stochastic optimization model for the European
entry—exit market, integrating nonlinear and mixed-integer constraints. Their soft-
ware system evaluates capacities and validates nominations using historical data,
though computational speed poses a challenge, which differs from this work as we
propose a scalable, linear method. Finally, we highlight two recent related works
(Schewe et al. 2022; Grimm et al. 2023). The former tackles the multilevel structure
of gas networks, including the physical dynamics of gas flow. The authors refor-
mulate nonlinear flow problems into computationally feasible single-level models
using convex constraints and integer variables. Applied to the Greek gas network, the
approach effectively handles tree-shaped networks, introducing combinatorial con-
straints to accelerate calculations. Contrary to this work, which studies a relatively
small gas network, we apply our method on a larger and realistic network, which
represents the Norwegian Continental Shelf and contains connections to several
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European countries. Finally, the interplay of market power and pricing mechanisms
is explored in Grimm et al. (2023). Here, a four-level model captures the strategic
decisions of a monopolistic gas seller, TSO, and buyers. Reformulated into a single-
level model, the study reveals that price discrimination can improve outcomes in con-
gested networks, while uniform pricing remains effective in unconstrained scenarios.
Despite the simplifications, computational challenges persist in larger networks with
extended time horizons.

Table 1 shows an overview of the most relevant papers to this work including their
properties. All works, except (Fodstad et al. 2015) focus on the entry—exit system
and three works include a case study (Grimm et al. 2019; Schewe et al. 2022; Béttger
et al. 2022), which use gas networks that are either heavily stylized or considerably
small. In our work, we conduct a case study on a larger gas network. Due to the nature
of the gas market, such as uncertainty in renewable energy (Durakovic et al. 2024),
or gas prices and demand, stochasticity should be an inherent part for the analysis of
this setting. However, the table contains only two published works that account for
uncertainty. Then, only (Grimm et al. 2023) considers the case of a monopolistic sup-
plier while all other works assume perfect competition. As explained by Grimm et al.
(2023), multilevel approaches are usually required to model the sequential decision-
making structure between the TSO and the suppliers, with the TSO setting explicit
capacity boundaries to enforce that any submitted bid within these boundaries is fea-
sible with regards to transportation. Also, due to the physics of gas flows (Weymouth
1912; Fiigenschuh et al. 2015; Domschke et al. 2023) some constraints are nonlinear.
More specifically, there are nonlinear properties in pressure dynamics in pipelines,
compressor efficiency and gas quality management (Fodstad et al. 2015). Addition-
ally, integer and binary variables are required to model specific decisions, such as the
interruption of some firm booking in Fodstad et al. (2015) or the opening/closing of
valves in Grimm et al. (2019). The last row of Table 1 shows the properties of this
work and how it relates to the literature.

Our proposed method considers uncertainty in the entry—exit market for natural
gas from a high-level perspective and is used in a case study with a large natural gas
network. Because we are interested in such high-level insights, we do not require a
detailed accounting for the pressure dynamics, compressor efficiency, or additional
details regarding gas flow physics. As a result, this resolves all the previously men-
tioned nonlinear and integrality requirements in the literature.

In the model of Grimm et al. (2019), a bilevel structure is used to model the direc-
tive power of the TSO to guide the capacity bidding process by explicitly setting
maximal entry and exit capacities on the network nodes in order to ensure trans-
portation feasibility for all possible bids. As mentioned by Grimm et al. (2019), this
manner of guaranteeing feasibility can lead to network inefficiencies, as it tends to
underusing capacity in several scenarios. This is due to the elimination of technically
feasible bids that cannot be submitted because of the strict capacity limits, which
disallow exploitation of the interplay between different nodes when allocating (maxi-
mum) capacities. Furthermore, in the introduction of the same work, it is mentioned
that these inefficiencies will become more and more problematic in the future as
desired network utilization is expected to increase. In order to maintain tractability
while adding uncertainty to the model, we propose a single level structure, which can
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Table 1 Overview of key papers with relevant research properties

References Topic Case Entry-exit?  Stochastic? Perfect Gas Method
study? competition? physics?
Fodstad Interrupt- v (small X v v X(ap- Se-
etal. (2015) ible trans- network) proxima- quen-
portation tion) tial
services meth-
od;
con-
tains a
MILP
Grimm Unused X v X v v Mul-
etal. (2019) network tilevel
capac- equi-
ity and librium
market model
design
Schewe Global op- v (small v v v v MINLP
etal. (2022) timization network)
for the
multilevel
Euro-
pean gas
market
system
Bottger The cost v (small v X v v Single-
etal. (2022) ofde- network) level
coupling mixed-
trade and integer
transport qua-
dratic
problem
Grimm A tractable X v X X v Mul-
et al. (2023) model for tilevel
entry—exit model.
market Under
with suf-
market ficient
power condi-
tions a
trac-
table
single-
level
model
This work  Capacity v (large v v v X LP
utilization network)
under
uncertainty

be achieved by relaxing the assumption of strict capacity limits set by the TSO. In
the single level structure, all bids for which a fully feasible transportation schedule
can be derived are considered to be submittable, even if they cannot emerge in a set-
ting where fixed capacity limits are set beforehand. Finally, contrary to Fodstad et al.
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(2015), we publish our dataset, which has a realistic network size, online (Markhorst
2025) to accelerate future research.

3 Problem description

Similarly to most works in the literature, see Table 1 from Sect. 2, we assume a
single-commodity market for natural gas where multiple production field operators
(suppliers) are in perfect competition with one another. We study the network capac-
ity management problem primarily from the perspective of the Transmission System
Operator (TSO), which aims to maximize social welfare. This will, however, also
require to find realistic strategies for the individual suppliers involved. Therefore we
assume that all suppliers act as profit-maximizing entities.

To reflect the typical sequencing of capacity allocation in natural gas networks,
we assume that the capacity planning of the network is done by sequentially taking
decisions in three stages:

1. Long-term (months or years ahead)
2. Day ahead
3. Intraday

The planning decisions within each stage appertain to a set of fixed time blocks, that
form a partition of a single day. In the final stage, the TSO is required to facilitate
operation in accordance with the capacity and planning decisions corresponding to
each of the time blocks in all stages. The TSO is tasked with finding a feasible opera-
tional plan of gas flow on the network in the first stage, long before the operational
period. The TSO needs to ensure technical stability when operating the network, as
suppliers and consumers count on continuous supply, and disruptions can have dra-
matic and costly consequences. Therefore, the TSO typically prefers to be in control
of the situation, and is hesitant to allow large modifications in their operational plan-
ning as the operational period approaches. Depending on the risk preferences of the
TSO, there are different levels of strictness in this matter that are to be considered.
The most secure option from the perspective of the TSO, is to fix all decisions in the
first stage, not allowing to change them afterwards. Inevitably, a stricter policy by the
TSO poses additional limits to the suppliers’ flexibility to adjust their capacity and
storage planning during the final two stages.

At any stage, the suppliers can purchase entry and exit capacity from the TSO
(the primary market). These capacities are required to be able to inject or extract gas
from the network during the period of operation, which takes place during the final,
intraday, stage. When determining whether to purchase entry or exit capacity, suppli-
ers are faced with the choice of purchasing capacity now or waiting until later. Dur-
ing the later stages, the purchasing costs are higher, but more information on prices
and demands is known. Furthermore, in the second and third stages, capacity can
be traded among suppliers in a secondary capacity market, allowing suppliers more
freedom to adjust their capacity bookings as they gain more information.
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Costs are associated with capacity booking, production, storage, and flow. Maxi-
mum flow capacities apply to the pipelines in the network, and gas flows may be sub-
ject to losses due to compression. Entry and exit capacities are not explicitly given,
but implicitly as a result of feasible flows given the pipeline capacities. Different
production capacities apply at each of the suppliers’ production locations. Suppliers
are subject to contractual obligations regarding the delivery of specific volumes of
gas to certain markets, so-called minimum demands. The gas prices and minimum
demands are subject to uncertainty, which impacts supplier behavior.

Evidently, demand and prices in markets can fluctuate throughout the day. To
address these fluctuations, suppliers have the option to reserve storage capacity at the
market nodes against a fee. This option allows them to bring gas to a node, without
having to sell immediately. Gas stored in this manner can then be extracted from the
storage during a later time block with higher prices, complementing supply extracted
directly from the pipeline network. The storage capacity needs to be reserved during
the “Long-term” stage, but these capacities can still be traded in a secondary market
between different suppliers during the “Day ahead” and “Intraday” stages. A sche-
matic overview of the planning and operation horizons is given in the lower part of
Fig. 1, which also presents the realization of uncertain events.

3.1 On secondary market trading

We will now proceed by explaining the dynamics of the entry and exit capacity mar-
ket followed by a few remarks on the pricing mechanics in the described market
context.

3.1.1 lllustrative example

To illustrate the dynamics of entry and exit capacity markets in the context of natural
gas trading, we present a small example, illustrated by Fig. 2.

We look at a simple network of five nodes and five arcs, as shown in Fig. 2a, where
node C is an intermediate node. We assume a capacity of ten gas units for each arc.
The length of the arcs corresponds to their flow costs; i.e., long arcs are expensive
to route gas through. Consider two distinct markets for natural gas: Market 1 and
Market 2, represented by nodes E and D in our network, respectively. The selling
prices of natural gas differ between the two; prices are higher in Market 1 and lower
in Market 2. Consequently, suppliers prefer to prioritize selling their gas in Market 1
to maximize revenue.

The example involves two suppliers, Supplier 1 and Supplier 2, who operate sepa-
rate production facilities located at nodes 4 and B in our network, respectively, each
with a maximum production capacity of ten units of gas. However, contractual obli-
gations require Supplier 1 to deliver at least five units of gas to Market 2 (Node D).
Despite this obligation, Supplier 1, like Supplier 2, prefers selling gas in Market 1
(Node FE) due to its more attractive selling prices.

Under the initial scenario, Supplier 1’s contractual minimum of five units for Mar-
ket 2 leaves them free to allocate the remaining five units of their production to Mar-
ket 1, which optimally balances Supplier 1’s contractual commitments and revenue
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Strategic Strategic Strategrlc Operational
stage 1: stage 2: stage 3: eriod
Long-term Day ahead Intraday P

Decisions: Demand Prices
Buy revealed revealed
Entry/Exit [ Decisions: | [ Decisions: |
Buy storage Buy Buy
:' 13}6\;1516;151": Entry/EXit Entry/Exit
1 flows y Trade Trade
_________ Entry/Exit Entry/Exit
Trade storage Trade storage
:— i:’}c;v_igi&_lél—: Operational
' __ flows ! flows

Fig. 1 A schematic overview of the strategic planning and operation horizons considered in this study.
Entry/exit and storage refers to capacities acquired by suppliers. Provisional correspond to the flows
routed by the TSO in the first and second stages, whereas the operational flows are the flows that actu-
ally materialize in the third stage
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(a) Connection between the network, suppliers, and markets.
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v
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(b) Interplay between the suppliers.

Fig. 2 Illustration of the dynamics of the entry and exit capacity markets

goals. As Supplier 1 has lower transportation costs to Market 1 than Supplier 2, the
system prioritizes Supplier 1, as stated in the objective of our mathematical model in
Eq. (1). Hence, both suppliers sell 5 gas units in Market 1, due to the arc capacity of
ten gas units. Consequently, the suppliers book an entry capacity of ten units at node
A and B, respectively, and both book an exit capacity of five units at both nodes D
and E.

Now, consider a shift in conditions: The minimum demand in Market 2 that Sup-
plier 1 must satisfy increases from five units to eight units. An increase is typically
allowed within the nomination flexibility of the buyer, see Ason (2022). For illustra-
tive purposes, we make this increase large. This change forces a reallocation of Sup-
plier 1’s supply. With a total production capacity of ten units, fulfilling the additional
three units required for Market 2 comes at the expense of Supplier 1’s supply to
Market 1.

To adjust to the new situation, Supplier 1 turns to the secondary capacity market.
In this market, Supplier 1 purchases three units of exit capacity for Market 2 from
Supplier 2 to meet the increased contractual requirement. Simultaneously, Supplier
1 sells three units of exit capacity for Market 1 to Supplier 2 to maintain a balance
with their production limit. Supplier 2 is interested in these capacity trades, as they
enable a higher profit, due to the higher prices in Market 1. These transactions dem-
onstrate the interplay between contractual obligations, capacity limits, and market
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price incentives, highlighting the critical role of the secondary market in optimizing
entry/exit capacity allocation.

3.1.2 Remarks on pricing mechanics

Transactions such as the one we saw in our illustrative example, take place in our
model whenever the buying supplier has a higher valuation of the traded capacity
than the selling supplier. There can be numerous reasons for this:

1. the selling supplier has an excess of capacity in some market (e.g., because of
high contractual obligations needed to be met in other markets); or

2. both suppliers could use the capacity but one supplier can make more profit from
obtaining this capacity. In practice, this will only happen when the total capacity
already allocated by the TSO is equal to the total capacity that can be allocated
in this market: if the TSO still has capacity left to allocate, it is more profitable to
buy more capacity directly from the TSO; or

3. the buying supplier needs the capacity to comply with contract feasibility con-
straints. In reality, this will correspond to a rather high valuation for the buying
supplier, as they can expect a large negative financial consequence if they breach
their contract.

We remark here that, for any given first (second) stage solution, a secondary market
transaction will take place between two parties if it increases the second (third) stage
valuation. The price of these secondary market transactions may differ from the price
of obtaining capacity through the TSO, and will depend on both buyer and seller
valuations and market circumstances. As the total system profit is always indifferent
to the agreed prices for these transactions, there is no need to explicitly consider the
price realization as a separate supplier decision. If necessary, one can estimate the
prices a posteriori.

3.2 Markets for network and storage capacity

As a starting point for the capacity market model in our context, we consider a situ-
ation where the entire system is managed by a single TSO, with its own entry—exit
capacity market, inelastic demand aggregated at exit points, own price and contrac-
tual demand scenarios, and storage facilities. In reality, market set-ups are much more
complex, for instance considering connections to surrounding networks in neighbor-
ing countries, numbers and locations of storage facilities, behavior of market seg-
ments, etc. We will address some of this complexity relating to market segmentation
in our case study. We account for this phenomenon in our methodology in Sect. 4, and
illustrate the situation we consider with a small example.

Figure 3 gives a schematic overview of the situation in the Zeebrugge market in
our case study. We can see in this figure that the market consists of two market seg-
ments (Industrial and Retail), which pay the same spot prices, but which each have
separate contractual agreements with traders. Furthermore, the storage facility and
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Fig. 3 Schematic example of market with
submarkets

Zeebrugge
markets

----- » Storage

Requires ™
exit

capacity

(pooled)

§v;v

Zeebrugge-I 1+ Zeebrugge-R

Contractual \ Contractual
Demand: E . Demand: D

exit capacities in the model at the dummy node can be used to serve either market
segment.

4 Methodology

In this section, we introduce the complete mathematical formulation of our model.
We will first introduce the relevant parameters and variables. Thereafter, we present
the mathematical formulation of the stochastic model by stating the objective func-
tion and constraints in terms of these variables.

4.1 Scenario tree structure, sets & parameters

To capture the uncertainty inherent to the problem, we employ a stochastic scenario
tree with three stages, corresponding to the moments when decisions are taken,
as presented in Sect. 3 and shown in Fig. 1. We let K := {1,2,3} be the set of
stages and M be the set of all strategic nodes in the scenario tree (represented by
red circles in Fig. 1). We introduce shorthand notations M(¥), k € K to denote the
set of nodes in stage k. Furthermore, we introduce II(m) to be the set of all parent
scenario nodes of scenario node m € M), including itself. Each strategic node m
has its corresponding probability p,,, such that ), ) pm = 1 for k € K (prob-
abilities within a stage sum to 1), and pp, = 3~ 5, c vr) . meri(m) P forallm € M®),

k € K\{3} (probability of a parent node is the sum of the probabilities of its children
in the third stage). We let the set H describe the different time blocks in which the
operational period is partitioned, such that each operational node (represented by
blue squares in Fig. 1) is indexed on both M and H. The set T represents different

@ Springer



9 Page 14 of 41 B. Markhorst et al.

suppliers in our model. Finally, the physical infrastructure is modeled as a directed
graph G = (N, A), where N represents nodes (facilities or markets) and 4 represents
arcs (pipelines).

Gas flow in the network is subject to losses due to compression, represented by
a loss rate [, for each arc a € A. Costs associated with capacity booking, produc-
tion, storage, and flow, are represented by ¢ (entry), ¢~ (exit), ¢/, ¢k, and ¢,
respectively. Each arc a has a maximum flow capacity C AP, and each node n has
a maximum production capacity C AP!.

The prices and demands volumes are subject to uncertainty, modeled through
uncertain parameters &,,,x¢ for demand and r,,,, for price. The parameters C
and C are used to reflect the level of the TSO’s risk aversion and limit respective
changes in flow, capacity and storage planning after the first and second stage deci-
sions have been made.

4.2 Variables

The model contains several non-negative decision variables: xzmht and x
respectively denote the entry and exit capacity at node n acquired by supplier # in

scenario node m. Variables y .. and y, . respectively represent the entry and

nmht

exit capacities sold by suppliers in the secondary market. Variables s, and s .
denote the capacity sold by the TSO. Gas flow for a supplier at arc a in scenario
node m is denoted by finnas, while g5 . and ¢f . represent the quantity sold and
produced, respectively. Storage is modeled using vnmnat, w:mht, and w,, ..,
senting the stored inventory, the gas volume injected into storage, and the gas volume
retrieved from storage, respectively. We model buying and selling storage capacity
with decision variables 2y, 5t and g, pe, respectively.

repre-

For a comprehensive overview of all sets, parameters, and decision variables,
please refer to Tables 8, 9, and 10 in Appendix 1.

4.3 Multi-stage stochastic program

Objective
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max Z Z Z Z Pm qgmht *Tnmh
—_——

L,Y,8,4,  neNteT heH |meM® )
Supplier sales revenue
v, w
P ( P
Z Pm - Cn (qnmht> + Z fmhat
(3) Vv
meM Supplier production costs aGAn Flow costs

3 N+ (+ + N— (.~ -
- Pm - | Cpp (‘rnmht - ynmht) +th (Inmht - ynmht)
meM

Costs entry capacity Costs exit capacity (1)

+ CfLmh (anht - unmht)

Supplier costs storage capacity

- D Pm € (W5 e + Vnmit)
meM

Penalty for storage use and extraction

+ _
te- (ynmht + Ynmht + unmht)

Penalty for sales

The objective of the TSO is to operate the network under a transportation plan that
maximizes social welfare, while taking into account the flow costs associated with
transporting gas. The social welfare maximization is driven by suppliers competing
for capacity aiming to supply their gas to the most profitable markets. In reality, prices
of capacity usage are charged to the suppliers (regulated, or auction-determined). In
our objective, charges paid from suppliers to the TSO will cancel out (Egging 2010,
Footnote 203). However, actual costs to cover operations, maintenance, depreciate,
overhead etc., are reflected in the objective function. Under the assumptions we have
made, this objective leads to a maximized social welfare (Egging 2010, Page 72). We
penalize sales, storage use and extraction with an € to prevent degenerate solutions.
TSO constraints

> frhat < CAPA YmeM,heHacA a)
teT

Constraint (2a) ensures that the arc capacities are not exceeded.
Supplier constraints

QWmhf_fnmht VnEN,mGM(B),hEH,tGT (2b)
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> ahun <CAPE VneNomeM® heH (20)
teT

q,ljmht + w;mht + Z (1 - la) fmhat = qsmht + w;:,_mht + Z fmhat
acA} acA; (2d)
Vne NNmeM® heHteT
Z (I;ﬁmt - y;ﬁzht) > qvé;mht + w:mht = Wyt
mell(m) (26)
Vne NmeM® heHteT

Z (sz—mht*yimht) >qb Vne NNmeM® heHteT

2
mell(m) ( f)
h
Unmht = Z (w:er;Lt - w;mﬁt) vn € N’ m € M(3)’ h e H’ teT (Zg)
h=1
Vpmnt < CAPL  Vne Nyme M® he HiteT (2h)
Vnmnt <Y (Zuimht — Unmnt)  Vn€N,meM® he HteT )

mell(m)

In constraint (2b), we ensure that the nominated contract demand is met by the sup-
plier’s sales. Constraint (2¢) ensures that the suppliers do not produce more than the
capacity at the node. Constraint (2d) entails the mass-balance constraints. We ensure
that the production, extraction from storage, and loss-corrected inflows equal the
sum of sales, injection into storage, and outflows. We adjust the inflows by a factor
(1 —1,) since compressors maintaining pressure in the network use a fraction of
the transported gas. Constraint (2¢) accounts for the bought and sold exit capacity:
Exit capacity is needed for all sales that are realized by taking gas directly from the
network, as well as for injection into storage, but not for sales that are realized using
stored gas (which has already exited the system). Similarly, Constraint (2f) ensures
that suppliers have enough entry capacity to feed in their production. Constraint (2g)
models the storage of gas and extraction/injection out of/into the storage. We model
the storage inventory capacity limit with Constraint (2h). The storage inventory is
limited by the total net purchased storage capacity over all stages, as indicated by
Constraint (21) models the storage of gas and extraction/injection out of/into the stor-
age. Note that v,,,,,+ is non-negative, and it will never be optimal to have positive
inventory after the last time block, so we do not need to explicitly account for an
injections-extractions balance. From a storage perspective, injection and withdrawal
limits may apply in reality. We assume that upon purchasing storage capacity, a com-
plementary amount of injection and withdrawal capacity is included. These offered
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capacities are assumed to be sufficiently high, such that additional cost for injecting
and withdrawing from the storage does not have to be considered explicitly.
Storage booking constraints

Znmht = Znmlt Vne NNme M,he HiteT (2j)
Unmht = Unmlt Yne NmeMhe HteT (21()

Constraints (2j) and (2k) ensure that the storage capacity that is bought is equal
throughout the entire day. This enforces the most risk-averse capacity management
approach. Relaxing these constraints allows the purchased storage capacity to be dif-
ferent for each time block, increasing flexibility.

Capacity market constraints

> Tt =Smmn t D Ynmne  VMENmEMheH @
teT teT

oat =t Y vyt meNmeMheH (2m)

teT teT
Z Znmht = Zunmht Vn € N>m € U M(k)7 he H (21’1)
teT teT keK\{1}

Constraints (21) and (2m) balance the selling and buying of the secondary market
exit and entry capacities. In every scenario node, the entry and exit capacity volume
bought by the suppliers equals the volume sold by the TSO and the suppliers in the
secondary market. Similarly, Constraint (2n) ensures that storage capacity in stages 2
and 3 can only be purchased through the secondary market, by equating the total stor-
age capacity purchased by suppliers to the total storage capacity sold by suppliers.
This is different from entry—exit trading, for which capacity can be purchased from
the TSO also in stages 2 and 3.

Risk aversion constraints

Although the TSO is risk neutral with regard to the system social welfare objec-
tive (Eq. (1)), there are some risks inherent to allowing for capacity adjustments
shortly before operation. Viewed through the lense of a TSO engineer, too big of a
last-minute change in capacity and flow planning may jeopardize the guarantee of
being able to stably operate a transportation plan that suits the suppliers’ bids. In the
worst case, this leads to the TSO not meeting its own obligations, which it wants to
avoid at all costs. These risks are not reflected in Eq. (1), or any of the constraints
introduced before. We will introduce constraints to model the conservative stance of
the TSO in this matter, and show that these emerge from applying chance constraints
to (a slightly adjusted version of) our problem. Furthermore, in Appendix 2, we will
argue that, under specific assumptions, applying chance constraints also constrains
the VaR and CVaR of an adjusted objective, due to an existing equivalence relation
between chance constraints and VaR (Sarykalin et al. 2008).
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Let us assume that the occurrence of a failure of meeting obligations depends on
a controllable variable 7, and an uncertain variable £&. More precisely, let us say that
a failure occurs when ¢(n, £) > 7, where ¢ is a function that is non-decreasing in 7.

Logically, the TSO aims to constrain the risk of a failure to an acceptable, very low
probability. At the same time, the TSO would like to retain some degree of flexibility
for the gas suppliers to make adjustments to their bids in later stages.

Constraining the failure risk can be achieved by adding a chance constraint to the
original model, which ensures that P [¢(n, &) < 7] > «a.

As we assumed that ¢ is non-decreasing in 7, it holds that P[¢(n,£) > 7] is also
non-decreasing in 7). This implies that (for values of « that are not extremely low) we
can write this single chance constraint as a regular constraint depending on « instead:
1 < C(a, 7). Note that while it may be very hard to compute C'(«, 7), we know that
C(a, 7) is non-increasing in «.

As established before, failure risk for the TSO increases as the (relative) changes
in the flow and capacity plan at later stages w.r.t. earlier stages become larger. Based
on our earlier analysis, mitigating failure risk can thus be modeled by imposing a
constraint on these changes, acting in the same manner as the constraint on 7 intro-
duced before. The implicit assumption here is that the occurence of a failure depends
solely on the relative change in the transportation plan and some unobserved uncer-
tainty. The level of risk the TSO is willing to take increases as the right-hand side of
such a constraint increases. To model this, three sets of auxiliary decision variables
are used: Yimnats O;pmps> AN Ginmne. The former computes the difference in flow
decisions between the third stage and the corresponding first (k = 1) or second stage
(k = 2) decision, shown in Constraint (2q) and (2r). The second measures the dif-
ference in acquired entry and exit capacity, [Constraint(2s) and (2t)], and the third
measures difference in acquired storage capacity [Constraint(2u) and (2v)]. In these
constraints, we make use of some additional auxiliary decision variables: A; .. and
Knmht- Ane keeps track of how much exit (s = —) and entry (s = +) capacity
at node n a supplier ¢ has acquired so far up to scenario node m at time block /4, as
defined in Constraint (20). Knmhnt, defined in Constraint (2p), tracks the total storage
capacity acquired upto node m for each node n and supplier ¢ in a similar fashion.
As we want to quantify the absolute deviation from the third stage decisions, we
require tracking both positive differences (7, 5, é) and negative differences (7, 0, 6)
separately.

s E s s Vse{—,+},n €N,
nmht — (xnmht - ynﬁzht) { m € ]{4" h G}H, te (20)
mell(m)

Rnmht = Z (Zn'rhht - un'fnht) n S N, m e M7 h S Ha teT
mell(m)

(2p)

N vm € M®) i € II(m)
> — f. ) )
Ykmhat = fmhat fmhat { he H, a € A,t c T, k:m el f(k) (2q)
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_ Vm e M®) m e I(m),

Ykmhat 2 fﬁzhat - fmhat { h c H a € A te rIv( k?): m c M(k) (21’)
fs s s Vse{—,+},n€ Nyme M®),

5knmht 2 )‘nmht - Anmht { = H(TTL), heHteT; k:m¢€ M(k) (25)

<s s s VSG{*,‘F},RGN,TTLGM(B),

6knmht 2 )‘nmht — nmht { m e H(m), heHteT; k:m¢c M(k) (20
5 Vne N,me M® meI(m),
Oknmht = Knmht — Knmht { hne H,t ZLT, k ,';hn; M(k()m) (2u)
5 Vne N,me M® mell(m),
Oknmht = Knmht — Knmht { hne H,t ZT, k- mnel M(k()m) (2v)

In the below, parameters C; and C are used to quantify the TSO’s risk aversion. The
former quantifies the allowed maximum total difference in decisions between the first
and the third stage whereas the latter does the same for the second and the third stage
decisions. These values correspond to the levels of risk a; and «g the TSO is willing
to take w.r.t a failure to meet obligations. Both correspondences are monotonous, i.e.
a higher risk tolerance 1 — «y; corresponds to a higher C, but the exact relation of
C1 to o; may differ from that of C5 to . By definition, we have Co < C7. We con-
strain the sum of absolute changes in decision variables by the sum over all the corre-
sponding third stage decision variables, multiplied with the respective risk-aversion
parameter C', in Constraints (2w), (2x) and (2y). As a general remark, a relatively
high value of C}, e.g. an aggregated deviation of 50% for the final stage with respect
to the planning at stage &, may still correspond to an acceptable, extremely low risk
tolerance.

s = s Vse{—,+},me M®),
Z Z (6knmht + 5knmht> < Cy Z Z bt { i € (m), h € H; k:m e M®
nEN teT neN teT 2w)

. _ VYm € M® 1 € T(m),
Z Z ('Wcmhat + 'Vkmhat) S Ck Z Z ffnhat { h c H; k:m c ]u(k) (2X)

acAteT acAteT

« _ 3) 5
Z Z (9knmht + ek'rlmht) < Ck Z Z Rnmht { ZTZ er\lk ,';rzln; fw’l}k()m)’ (2y)

neN teT neN teT

Submarket constraints

We model the submarket setting outlined in Sect. 3.2 using three market nodes:
one dummy market node used for accounting the shared exit capacity and storage,
and two end nodes for the respective market segments R and I, that can be reached
from the dummy node using an arc with zero flow cost. As sales should take place in
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the market segments and not in the dummy node, we set the sales price at the dummy
node to €0. Let S(n) be the set of market segments corresponding to a (dummy) node
n in this fashion (Note: for almost all network nodes n, we have S(n) = 0)). As the
exit capacities at the market segment share the total pooled exit capacity purchased in
the dummy node, we cap these exit capacities by enforcing the following constraints:

Z Z (xa;mh,t - "/f?ﬁzhf) — Wt + Wy < Z (x;mh,t - y;mht)

neS(n) mell(m) mell(m) (22)
Vne NNmeM® heHteT

As Constraint (2z) ties exit capacities for the market segment nodes to the exit capac-
ity purchased at the dummy node, the cost for obtaining exit capacity at the market
segment nodes themselves is set to 0. The terms —w_, ., + w;fm 5 in Constraint (2z)
ensure that gas extracted from the pooled storage does not use exit capacity, whereas
injecting into the pooled storage does. Finally, we remark that Constraint (2¢) is valid
at both the dummy node and the market segment nodes, albeit partially redundant.

Domain constraints

fmhat € RT VmeMheHac AteT

+ —
zfC’nn‘thh xﬂmhﬁ } ER"{‘ vneN,m€M7heH7t€T
Ynmhtr  Ynmht
st s €RY YneENmeMheH
P
Inpnnt>  Unmht, }eR+ Vne NNmeM® heHteT
Whmht» Whmht

Gmnt € RT VneNme |J M® heHteT

ke K\{1}

+
)‘fzmht €ER
Knmht € R+

’/ykmhah :Ykmhat S R+

Vse{—,+},ne NmeMheHteT
VneN;meMheHteT
Vke K\{3},me M® he HacAteT

s <s +
5knmht’ 6knmht eR

Vse {4} ke K\ {3},
neNmeM® heHteT

Vke K\{3},ne NmeM® heHteT
Vne Nyme M,he HiteT

gknmhta gknmht S R+

+
Znmht; Upmht € R

All decision variables lie in the domain of non-negative real numbers. Note that we
set the upper bound of production and sales decision variables to zero if the supplier
cannot produce respectively trade on that node. Additionally, we set the upper bound
of the decision variables corresponding to buying entry capacity at a node equal to
zero if a supplier is not active at that node.
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5 Results and discussion

To study ways of optimizing the gas entry—exit capacity utilization under uncertainty,
we describe the experimental setup in Sect. 5.1 and discuss the numerical results of
the case study in Sect. 5.2.

5.1 Experimental setup

We explain the data used in this case study in three parts: network and supplier data,
parameter values, and scenarios. Next, we restate the research questions and explain
how we answer them.

5.1.1 Network and supplier data

In our study, we utilize a comprehensive dataset concerning the gas pipeline network,
sourced primarily from GeoNorge (2024). This dataset provides detailed information
about the locations of pipelines and facilities, as well as their capacities. As this data-
set pertains to a subset of all the pipelines in this area, we have augmented the dataset
with additional pipelines based on information from Norsk Petroleum (2024), such as
those connecting Denmark to Poland. The pipeline capacities reported by GeoNorge
(2024) were verified against the capacities displayed in Gassco (2024). The result-
ing network, consisting of 65 nodes and 67 pipe lines, is visualized in Fig. 4a. We
divide the nodes into three categories: (1) facilities for accumulating production and/
or processing; (2) intermediate nodes; and (3) markets. Gas is fed into the network
at the processing nodes, and passes through the intermediate nodes to end up in the
markets.

We have obtained production capacity data from GEM Wiki (2024), for which
we mapped each production node to a facility in our network, based on information
about the connecting pipelines. If this data was missing, we made a connection to the
nearest facility in our network. Additionally, we used information from this source to
determine which suppliers are active at specific facilities or nodes, and which act as
the main operators of processing facilities.

We consider eight different suppliers, each of them only being active at only a
subset of the processing facilities, as shown in Fig. 4b. In Figs. 12 and 13 in “Appen-
dix 3”, we visualize the network range of the different suppliers.

5.1.2 Parameter values

In this section, we discuss the parameter values for our case study. We will first
motivate our choices for fixed parameters, such as booking and flow costs. This is
followed by an explanation of the parameters that are affected by uncertainty.

Fixed parameters

For the fixed parameter values, we have made several deliberate choices to con-
struct realistic economic dynamics. We want to incentivize early booking of capacity
that will definitely be used. Additionally, we want to enable booking capacity that is
only used circumstantially at a later stage. Therefore, the costs for buying and sell-
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Fig. 4 Network and supplier data used in this study

ing entry and exit capacities in each of the three stages were set to €1, €1.04, and
€1.08 per MWh, respectively, based on information from Gassco (2025). Preliminary
results showed that this yields a balanced distribution of trading over the stages. The
flow costs were set uniformly to €0.10 per MWh for traversing each pipeline, as we
do not want flow cost in itself to be a main driver of the results. Storage costs were
set to €2.40 for storage capacity of one MWh for 24 hours, which is equivalent to a
cost of €0.30 per three-hour period. We consider the former an appropriate value as
it makes the use of storage profitable in case of considerable price fluctuations over
time, yet not in case of minor fluctuations. Production costs amount to €9 per MWh,
which is approximately 30% of the gas price per MWh, similar to relative costs
reported in Equinor (2024). We assume that the storage facilities can accommodate
all capacity requests, i.e., there are no hard capacity limits. We neglect losses in the
gas flow, which is equivalent to a loss rate of 0%. An overview of all the parameters
and their values can be found in Table 2.

Parameters affected by uncertainty

The uncertain minimum demand contract volumes for gas and the uncertain gas
prices for each (sub)market are provided in Tables 3 and 4, respectively. These values
were chosen to be aligned with real values for the specific (sub)markets (Interconti-
nental Exchange 2025; Gassco 2024). We divide a day of 24 h into eight time blocks
(TB1 up to TBS8) of 3 h each. To mimic a realistic daily cycle of demand levels over
the day, we group these time blocks such that we have four periods (P1 up to P4) of
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Table2 Values for fixed Description Parameter Domain Value  Unit
parameters Entry and exit N ;"L- N Iy vme MM ple g €MWh
capacity costs 7™
pacty NE NS yme M) pld4
N N vm e M®) pld%
mh’ “mh ’
Production ck Vn € N 9 €/MWh
costs
Storage cap. cl Vn e N 0.3 €/MWh
costs per time
block
Flow costs cé‘ Market — 0 €/MWh
Segments
All other arcs 0.1 €/MWh
Production CAPF Vn € N De- MWh
capacity pends  per time
onn block
Pipe capacity  CcAPA Va € A De- MWh
pends  per time
ona block
Storage cap. CAP! Market nodes oo MWh
limit All other 0 MWh
nodes
Loss rate la Yae€ A 0 Not ap-

plicable

Table 3 Total contractual demands (MWh) for natural gas in different (sub)markets for each three hour
time block

Market Segment Demand level Pl P2 P3 P4
TBlI TB2 TB3 TB4 TB5 TB6 TB7 TB8
St. Fergus  — - 12,500 12,500 12,500 12,500
Easington — - 12,500 12,500 12,500 12,500
Teesside - - 12,500 12,500 12,500 12,500
Poland - - 25,000 25,000 25,000 25,000
Dunkerque - - 50,000 56,250 43,750 50,000
Emden Industrial High 25,000 33,125 25,000 33,125
Low 25,000 23,125 25,000 23,125
Retail High 25,000 33,125 25,000 33,125
Low 25,000 23,125 25,000 23,125
Dornum Industrial High 25,000 33,125 25,000 33,125
Low 25,000 23,125 25,000 23,125
Retail High 25,000 33,125 25,000 33,125
Low 25,000 23,125 25,000 23,125
Zeebrugge Industrial High 25,000 35,000 25,000 35,000
Low 25,000 15,000 25,000 15,000
Retail High 25,000 35,000 25,000 35,000
Low 25,000 15,000 25,000 15,000

We denote the four periods by P1 up to P4 and the eight time blocks by TB1 up to TB8. The combination
of Market and Segment refers to a specific (sub)market. Demand Level distinguishes between the low
and high demand cases at such a market
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Table 4 Prices for natural gas in different markets (€/MWh)

Market Segment Price level Pl P2 P3 P4
TBlI TB2 TB3 TB4 TB5 TB6 TB7 TB8
St. Fergus  — - 26 28 27 29
Easington  — - 26 28 27 29
Teesside - - 26 28 27 29
Zeebrugge  Both - 29 31 30 32
Poland - - 30 30 30 30
Emden Both High 31 30 32 31
Low 25 30 26 31
Dornum Both High 31 30 32 31
Low 25 30 26 31
Dunkerque - High 32 32 33 33
Low 28 32 29 33

We denote the four periods by P1 up to P4 and the eight time blocks by TB1 up to TB8. The combination
of Market and Segment refers to a specific (sub)market. Price Level distinguishes between the low and
high price cases at such a market

Division of contracts over suppliers
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Fig. 5 Minimum contract volumes in each market for each supplier

12, 3, 6, and 3 h, respectively. We divide the minimum volume contracts in a feasible
and fair manner over the different suppliers as shown in Fig. 5.

5.1.3 Scenarios
In our case study, we consider 96 equiprobable scenarios, which correspond to differ-
ent realizations of the uncertain minimum demand and the gas prices. Contract nomi-

nations are revealed in the second stage, and prices in the third stage, respectively,
as visualized in Fig. 6. More specifically, we consider fluctuations in the demand at
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Fig.6 Realization of some of the Stage 1 Stage 2 Stage 3
uncertainties in the schematic scenario
tree, including a selection of 8 out of

96 scenarios Price reveal

~

Demand reveal

(H,HHHL)

(H,H)
(HvL)
(L.H)

(L.L)

the market segments in Emden, Dornum and Zeebrugge during time blocks 5 and
8. In these time blocks, demand can be either high (H) or low (L). Most of these
fluctuations are assumed to be independent, with two notable exceptions. Firstly,
because of the proximity of the Emden and Dornum nodes, the realizations of retail
market demand are assumed to be identical in both locations. In addition to this, we
model the effect of large fluctuations between different demand realizations in the
Zeebrugge market segments. The consequence of this is that high demand cannot be
realized in both Zeebrugge market segments simultaneously. In practice, this means
that the Zeebrugge market has 3 equiprobable realizations for industrial and retail
demand: (H, L), (L, H) and (L, L). This results in 23 * 3 = 24 branches in the second
stage, as shown in Fig. 6. Specific values of the demand are provided in Table 3. For
the uncertain prices, we consider two possible realizations, high (H) and low (L), at
the markets in France and Germany, as shown in Table 4 and Fig. 6. Again, the price
realizations in the German markets of Emden and Dornum are assumed to be identi-
cal due to geographical proximity, resulting in 22 = 4 different realizations of prices
throughout the network.

5.1.4 Research questions

In this research, the goal is to study ways of optimizing the gas entry—exit capacity
utilization under uncertainty. To achieve this, we conduct experiments that contribute
to the resolution of the research questions, as introduced in Sect. 1:

1. How does risk aversion affect capacity allocation and capacity availability in
various strategic and operation stages? (Sect. 5.2.1)

2. What are the bottlenecks in the system and how can we solve them? (Sect. 5.2.2)

3. What is the value of booking-flexibility for storage facilities? (Sect. 5.2.3)
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For the first research question, we vary the values for C; and C5. To answer the sec-
ond and third research questions, we follow the experimental setup as described in
Sects. 5.1.1-5.1.3.

5.1.5 Computational setup

We have implemented our methods and experiments in Python 3.10, solved the mod-
els with the Gurobi 10.0.1 solver (Gurobi Optimization 2025), and published the
corresponding data and code on GitHub (Markhorst 2025). For Gurobi, we use an
aggresive presolve method and the barrier method, while the other parameters are
set to the default values. All experiments were run on a high performance computing
(HPC) cluster using 32 cores with a clock speed of 2.4 GHz and 2 GB memory per
core.

5.2 Numerical results

Before answering the three research questions in their corresponding sections, we
discuss the value of stochastic solution (VSS) and the expected value of perfect infor-
mation (EVPI). With the considered network and parameter settings, we observe that
the first stage solution of the expected value problem yields an infeasible problem
when fixed in the original problem. This is caused by the need for storage in some
scenarios of the original problem, which is not used in the solution of the expected
value problem. As the solution of the expected value problem is infeasible in the
original problem, the VSS amounts to co, which underlines the importance of consid-
ering uncertainty in this context. Then, the EVPI amounts to €135k per day, which is
a considerable amount of money when aggregated over a year. However, considering
that this is only a small fraction of the total revenue, this market with its underlying
network and capacity and storage options, seems to cope naturally well with the fact
that some demand and prices are uncertain.

5.2.1 Risk aversion

Research question 1 How does risk aversion affect capacity allocation and capac-
ity availability in various strategic and operation stages?

We assumed that the TSO is risk averse and therefore wants to change its decisions
as little as possible. To quantify the extent of the TSO’s risk aversion in our model,
we have introduced parameters C; and C5 in Sect. 4. We run the model with differ-
ent values for C7 and Cs with Cs < C; and show the result in Fig. 7. Based on this
result, we make two observations.

First, we see that being slightly less risk averse already yields considerable gains
in the system profit. Note that small percentages correspond to considerable amounts
of money in this industry, as mentioned in Sect. 1. Additionally, we see that the prob-
lem with C7; = C; = 0 is infeasible as combining all scenarios into one solution
without a recourse action is not possible. We observe that mainly C, impacts the
objective value as the graphs for C; = 100% and C; = Cs are almost identical.
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Fig. 7 Different levels of risk aver- Risk aversion
sion in the first and second stage | e———————————
59925 /
,I

59900 /

3

S 598751

—

e

S 59850

(0]

x

2 598251

o

[+
59800‘ Cl (%)
597751 100

- =G,
0 20 40 60 80 100
Conservative C2 (%) Flexible

Second, this figure also has an interpretation relating to realistic first-stage deci-
sions under different market circumstances. If suppliers are unwilling to risk an indi-
vidual third-stage contract infeasibility, putting them in a vulnerable position when
needing a secondary-market deal, the likely optimal first-stage decision will resemble
the situation of complete strictness: each supplier will make sure to book an amount
of capacity in the first stage that will allow them to fulfill all contractually obligated
demand in any scenario. This is system sub-optimal, but no supplier will be at risk of
putting themselves in a vulnerable position of having to rely on another supplier to be
able to meet their obligations. If there is distrust between suppliers, we end up here:
suppliers expect their competitors to extort any vulnerability they might have. How-
ever, since we assume perfect competition, suppliers may approve of a first-stage
decision that is system optimal in expectation, but requires some suppliers to rely on
cooperation of competitors to repair any contractual infeasibilities that may occur in
some scenarios by offering the required capacity at a reasonable price.

Additionally, we show the difference in decision variables, aggregated over all
indices, between Cy = 100% and Cy = 0% while C; = 100% in Fig. 8, which
shows that, when the system is less restricted, the system waits with assigning exit
capacity to a supplier until the demand and price uncertainties are revealed. Note
that the figure only includes decision variables at those stages for which they are also
included in the objective function of our method.

5.2.2 Bottlenecks

Research question 2 What are the bottlenecks of the system and how can we solve
them?

We consider three bottlenecks: production and pipe capacities and minimum contract
volumes. We look at shadow prices of Constraints (2a), (2¢), and (2b), respectively,
to identify these bottlenecks. Table 5 shows the approximate gains in the objective
due to an increase of one MWh on the right hand side of Constraints (2a) and (2¢). We
sum the shadow prices of the individual capacity constraints corresponding to each
scenario and time block to obtain an estimate of how much an capacity increase of
one MWh positively impacts the objective function. We observed that three pipes are
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Comparison of decision variables across stages
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Fig. 8 Comparison in decision variables between C2 = 100% and C2 = 0% while C1 = 100%

Table 5 Approximate gains (€) in the objective due to an increase of one MWh on the right hand side of
Constraints (2a) and (2¢)

Pipe Total over all time blocks Maximum
Johan Sverdrup Gassror 144,000 23,040
Vesterled 125,760 20,160
Troll Gassror 124,800 19,200
Node Total over all time blocks Maximum
Ekofisk J 144,960 -
Statfjord B 143,040 -
Heidrun 142.080 -

Norne ERB 142.080 -

Skarv ERB 142.080 -
Sleipner A 125,760 —

Ormen Lange A 125,760 -

Aasta Hansteen Plem 124,800 —
Kvitebjorn 124,800 -

Gjoa 123,840 -

Cats Platform 111,360 -

the most important bottlenecks: Johan Sverdrup Gassror, Vesterled, and Troll Gas-
sror. If we could increase the capacity of these pipes, the system’s overall through-
put would increase considerably. More specifically, increasing the capacity of Johan
Sverdrup Gassror with one MWh per time block yields approximately €144,000 per
day. The rightmost column in Table 5 represents the maximum aggregated shadow
prices over the different time blocks. By comparing the second and third column in
Table 5, we can get an indication of how the system’s bottlenecks may vary depend-
ing on the demands and prices, which vary due to uncertainty and time fluctuations.
In some specific scenarios and time blocks, it would be useful to have more capacity
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in a set of pipes for which the aggregate shadow price is not high. This indicates that
the bottlenecks of the system are not static.

When considering Constraint (2¢), we observed that eleven facilities are the most
important bottlenecks, which are also listed in Table 5. Increasing the production
capacity of these nodes would also improve the system’s throughput considerably.
More specifically, as stated in Table 5, increasing the production capacity of Ekofisk
J with one MWh per time block yields approximately €144,960 per day. Finally, Fig-
ure 14 in Appendix 4 shows the shadow prices of constraint (2b). We observe that the
German markets are the most important bottlenecks. Lowering the contracts in these
three markets would benefit the system’s profit.

5.2.3 Use of storage

Research question 3 What is the value of booking-flexibility for storage facilities?
To answer this research question, we evaluate the system by applying our model
with Constraints (2j) and (2k) relaxed. We then compare this to the solution of our
base model and show the results in Table 6. When comparing these two solutions,
we see that the (expenses for) storage capacities are about ten times lower when
these constraints are relaxed. This shows that there is a considerable added value in
having the flexibility to book different storage capacities for different time blocks.
Conversely, the system cost of being inflexible in this context is high as well. Further-
more, this finding entails that this flexibility option will be lucrative to suppliers even
if the party administering storage would ask a high surcharge. Finally, we see that
the relaxed model uses the booked storage capacity more often than the base model,
indicating a more efficient system.

5.3 Model scalability

To give an indication of our method’s tractability, we provide more details in
Table 7. For this specific run, we used the settings C; = 1 and C = 0. We see that
the solver’s presolve method considerably decreases the model size. Additionally,
we observe that for this large, but continuous, linear program the solver finds an
interior point solution within minutes, which is the case for the configurations used in
both Sects. 5.2.2 and 5.2.3. In Sect. 5.2.1, the solution times are much longer as the
shadow prices must be computed for which a computationally expensive crossover
method is required.

Note that the reported number of constraints and decision variables slightly differs from the theoretical

Table 6 .IllustraFiqn' of the value Storage capac- Total storage Objective
of booking-flexibility for stor- ity used (%) capacity acquired (€)
age facilities (MWh)
Base model 31.59 109,260 59,931,000
Relaxed model ~ 89.98 1,409,390 60,623,000

numbers due to implementation choices.
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Table 7 Properties of a run with Attribute Value
gxr Tog elusing C3 = 1 and Before presolve ~ Number of decision variables 13,610,640
? Number of constraints 12,328,888
After presolve Number of decision variables 4,620,036
Number of constraints 3,490,493
Strategic nodes in scenario tree 121
(red nodes in Fig. 1)
Operational nodes in scenario tree 968
These values give an indication (blue 'HOdE_:S in Fig. 1)
of our method’s tractability Solution time (s) 225
Fig.9 Runtimes (seconds) for dif- Scalability Regarding Scenario Tree Size
ferent numbers of scenarios. Each
datapoint is an average over twelve T T T T
runs 250 + .
©
2 200 - N
g 150 - -
S 100( 1
5
Z 50| |
0 \ \ \ L]
1 24 48 72

Number of Scenarios

Figure 9 depicts the runtimes of our model applied to scenario trees of differ-
ent size, which indicates an exponential but limited growth pattern. The results in
this figure were obtained in the following manner: we reduced the original scenario
tree by randomly removing branches, solve the smaller problem with our model and
report the runtimes. We executed this process twelve times to account for randomness
due to random sampling and report the average in Fig. 9.

As shown in Table 1, the network considered in this study is relatively large com-
pared to other existing literature. However, we would also like to briefly shed the
light of the expected performance of our model on networks of even larger scale or
networks that are more intricate. To this end, we would like to point out that the size
of our model grows linearly with the network size if the other parameters remain the
same, as shown in Fig. 10, while the solving time will increase more than linearly but
remains manageable. Compared to other models in the literature, our method is still
tractable with much larger instances, both in terms of network size and the number
of scenarios. However, this will also greatly depend on the network structure and
inherent complexities.
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Fig. 10 Model size in terms of S(lt%]sability Regarding Network Size
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5.4 Discussion

While our findings support the hypothesis that the risk aversion negatively affects the
entry—exit capacity utilization under uncertainty, certain limitations—mainly caused
by made assumptions—should be considered when interpreting these outcomes.

An important asset of our model is its applicability to any gas network with a
graph representation of any size. However, the insights on system dynamics pre-
sented in this study can only be extended to other gas networks to a limited extent.
This is due to the complexity of networks—which we identify as an important driver
of these dynamics—highly depending on the maturity and size of a network.

As an example of this, our method could provide considerably more added value
when applied to gas networks whose graph representation is not acyclic. Typically,
such networks have more possible overlapping routes competing for capacity than
the network we considered in this study. As a consequence of this, more profit can
be realized from secondary market trading due to optimal flow direction reversal in
specific scenarios. A possible application will be to study networks with bidirectional
pipelines, such as the Interconnector UK or Bacton Balgzand Line. We conjecture
that the gap between a fully risk averse and fully non risk averse TSO will be signifi-
cantly larger in networks that contain a substantial number of cycles caused by such
bidirectional pipelines.

The last few years, decentralized electricity production has increased considerably,
which led to a shift in the use of natural gas: as the base load for electricity networks
decreases due to the higher volatility of renewable sources, the role of natural gas in
stabilizing electricity supply becomes pivotal. Consequently, the demand for natural
gas is subject to a new source of stochasticity introduced by supply fluctuations in
the electricity market. This underlines the importance of accounting for uncertainty
when modeling natural gas markets in the context of securing a stable energy supply
in Europe.

Furthermore, novel gaseous commodities, most notably hydrogen, will be used
increasingly to make the European energy mix more sustainable. In order to opti-
mally exploit existing infrastructure, these commaodities can be injected into the flow
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of conventional natural gas, directly impacting flow volumes in a network. As hydro-
gen needs to be cleanly produced, its production facilities should be powered by
green electricity sources. This means that, in terms of supply stability, hydrogen pro-
duction suffers from the same capriciousness mentioned before. Thus, the paradigm
of accrediting a central role to uncertainty and flexibility when studying gas networks
is also highly valuable in this light.

We observe that the problem formulation from Sect. 3 has similarities with the
static stochastic knapsack problem (Steinberg and Parks 1979), which has uncertain
values per item. In our case, the knapsack is the combination of all the markets,
which has a limit on the sales due to pipe capacities, and the knapsack items are the
gas units. The results show that first, the most profitable markets are served, which,
among others, depends on their gas prices. In the case of minimum volume contracts,
the “knapsack” is already partially filled with mandatory “items”, i.e., gas units.

We assume that suppliers are price takers. Given prices in the markets, the lowest-
cost producer has the highest willingness to pay for capacity, which is the implicit
mechanism driving social welfare maximization. We have opted for fixed demand
and prices, and not inverse demand curves as demand changes caused by the mar-
ket power dynamics would be hard to decouple from other observed effects. This
allows us to focus on how price arbitrage possibilities drive demand for capacity, and
capacity flexibility. Including market power in this model could be a topic for future
research. Another topic of future research could be including supply and demand
dynamics in the gas prices.

The objective of our model produces a first stage that is system optimal but not
necessarily agent optimal. This is a consequence of assuming that all agents are price
takers. The first stage decision produced by our model does not contain a balanc-
ing of interests between the different suppliers, which may bring some suppliers in
vulnerable positions because there is no mechanism in place that guarantees a fair
distribution of risk over all the suppliers. It is possible that smaller suppliers would
have a higher degree of risk aversion. In our current study, suppliers have no indi-
vidual agency on risks they are willing to take, only system wide risk stances have
been addressed.

In our case study, we consider one large and seven small suppliers, which is repre-
sentative for the actual situation at the Norwegian Continental Shelf where Equinor is
by far the largest gas producer. Additionally, the network range of these suppliers dif-
fer considerably from each other, as shown in Appendix 3. Therefore, the competition
between suppliers on each pipeline is relatively small. This phenomenon influences
the results and therefore impacts the generalizability of our findings to other energy
markets with different supplier proportions and network structures. Future research
could entail testing our model on other gas networks.
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As our results are based on data, which mimic reality, our findings are not merely
useful for academics, but also for practitioners from the industry. Additionally, our
method, a stochastic linear program, could be applied to larger scenario trees or
networks.

6 Conclusion

This work addresses the optimization of natural gas entry and exit capacity under
uncertainty using a multi-stage stochastic programming approach. Given the inherent
uncertainties in gas demand and pricing, we introduce a decision-making framework
spanning three planning horizons: long term (months ahead), day ahead, and intra-
day. The optimization framework considers multiple gas suppliers interacting with
a Transmission System Operator (TSO). Suppliers book entry and exit capacities
and can adjust their positions in a secondary market. The objective is to maximize
system-wide profitability while incorporating costs related to capacity booking, pro-
duction, storage, and gas flow. The physical infrastructure is represented as a directed
graph, where gas flow is subject to compression losses.

We find that slightly reducing the TSO’s risk aversion already yields considerable
gains in the system profit. We argue that checks and balances in the system are pivotal
to this improvement, to decrease additional risk aversion among individual suppliers.
Additionally, we identify bottlenecks in the Norwegian gas market with respect to
the pipeline and production capacities, and minimum contract volumes. Finally, we
study the value of flexibility-booking for storage and show a considerable markup for
flexibility in this context. These findings might contribute to securing a stable energy
supply in Europe.

For future research, we can include disruptable capacities, and the price dynamics
of supply-and-demand in our model. Additionally, we can study a model with more
stages if the prices and the demands are more volatile and are only realized shortly
in advance. Next, we could study the impact of modeling more realistic risk stances
of individual suppliers in the first stage on the tractability and scalability of our
model. Finally, the inclusion of hydrogen production, transport, or even infrastruc-
ture (Zhang et al. 2023) in our model could also be interesting for future research.
Similarly to Huppmann and Egging (2014), we could use study market power exerted
across several fuels.

Appendix 1: Methodology

See Tables 8, 9, and 10.
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Table 8 Sets Symbol

Description

Stages; index &

Nodes in the network (production platforms, pro-
cessing facilities, markets); index n

Arcs/pipes which can transport natural gas; index a
Inward arcs into node »; index a

Outward arcs from node #n; index a

Scenario tree nodes; index m

Scenario tree nodes corresponding to long term;
index m

Scenario tree nodes corresponding to day ahead,
index m

Scenario tree nodes corresponding to intra day;
index m

All the parent nodes of node m and node m itself.
If m = 1, then II(m) := {1}; index m

Time blocks; index &

Suppliers of natural gas; index ¢

Table 9 Parameters Symbol

Description

CAPF
CAP!
CAPA
l a

pm

gnmht

Tnmh
C1

Ca

Production costs in node n

Storage capacity costs in node # in scenario
node m at time block /

Flow costs in arc/pipe a

Entry capacity costs in scenario node m at time
block 4

Exit capacity costs in scenario node m at time
block #

Production capacity in node n
Storage capacity in node n

Flow capacity at arc/pipe a

Loss rate for flow over arcs/pipes

Weight for scenario node m, based on the prob-
ability and the time block this node represents
Uncertain, minimum demand volume of natu-
ral gas in node » and scenario node m at time
block 4 for supplier ¢

The price of natural gas at scenario node m at
time block / in node n

Maximum difference (%) between the first and
third stage decisions

Maximum difference (%) between the second
and third stage decisions
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Table 10 Decision variables

Symbol Description
=t Entry capacity bought at node n by the supplier ¢
nmht . . .
in scenario node m at time block /
= Exit capacity bought at node » by the supplier ¢ in
nmht A .
scenario node m at time block /
y+ Entry capacity sold at node n by the supplier ¢ in
nmht . .
scenario node m at time block 4
y Exit capacity sold at node » by the supplier # in
nmht A .
scenario node m at time block /
sT N Entry capacity sold by the TSO in scenario node
nm m at time block 4 at node n
s Exit capacity sold by the TSO in scenario node m
nmh at time block / at node n

Fmhat Supplier infrastructure flow for supplier ¢ at arc a
in scenario node m at time block /

q° The volume of gas sold by supplier  at node » in

nmht . .
scenario node m at time block £
qF The volume of gas produced by supplier # at node
nmht . . .
n in scenario node m at time block /

Vnmht The volume of natural gas stored by supplier 7 at
node 7 in scenario node m at time block /

wT N The volume of natural gas put into storage by sup-

it plier 7 at node n in scenario node m at time block /
w™ The volume of natural gas retrieved out of storage
nmht b . . . .
y supplier  at node # in scenario node m at time
block 4

Znmht Storage capacity bought at node n by the supplier
¢ in scenario node m at time block £

Upmht Storage capacity sold at node » by the supplier ¢ in
scenario node m at time block /

A bt Volume of entry (s = +) or exit (s = —) capac-
ity at node n supplier ¢ has acquired so far up to
scenario node m in time block /

Knmht Volume of storage capacity at node n supplier ¢
has acquired so far up to scenario node m in time
block 4

Yiemhat The difference in flow decisions between the third
and the corresponding first (k = 1) or second
stage (k = 2) decision of trader # at arc a in sce-
nario node m and time block 4

O3 mht The difference in acquired entry (s = +) or exit
(s = —) capacity between the third and the cor-
responding first (k = 1) or second stage (k = 2)
decision of trader ¢ at node » in scenario node m
and time block £

Oknmht The difference in acquired storage capacity

between the third and the corresponding first
(k = 1) or second stage (k = 2) decision of trader
t at node 7 in scenario node m and time block %
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Appendix 2: Relation between risk aversion constraints and (C)VaR

In order to understand how the relation between risk aversion constraints and (C)VaR
manifests itself in our problem context, let us assume that, in case of failure to facilitate
the guaranteed transportation plan, the TSO incurs a penalty B, which is much larger than
the best attainable social welfare. We let g(n), £) denote the possible penalty incurred for
a specific 7 and &, such that g(), €) is either 0 or — B. Additionally, we let {(), ) be the
realized system profit, akin to Eq. (1), for a given realization of the uncertainty ¢ and
decision 7).

One has to take into account that  may constrain the rest of the variables in the
program, and therefore the optimal objective. Yet, due to the gravity of the conse-
quences of a failure, it is reasonable to assume that the incurred penalty B will domi-
nate differences in the objective caused by 7 constraining other variables:

Q%X\C(mﬁ) —((7,8)| < B Y.

An example of this setting is illustrated by Fig. 11, which shows the inverse cumu-
lative distribution function (cdf) of the realized profit for a given solution and 7, with
the large jump separating the situations where failure does and does not occur.

As there exists an equivalence relation between chance constraints and VaR con-
straints (Sarykalin et al. 2008), we can say that adding such a chance constraint is
equivalent to constraining the VaR of {(n, &) + g(n, &) (for example, to be above
’Q—B). Because the a-chance constraint directly controls the fraction of scenarios
in which a penalty occurs, i.e., the location of the jump in Fig. 11, it ensures that
VaR,, (¢(n, &) + g(n,£)) > —B. Furthermore, for all 8 < « the following holds:

CVaRj > -B

@
1-p
because we may assume in our context that, so lang as o > € with ¢ being a very

small number, a non-negative feasible solution to our original problem exists for
some 7 satisfying the a-chance constraint.

Failure to meet TSO obligations

Realised profit r

0 01 02 03 04 05 06 07 08 09 1
P[(¢(1,&) +g(n,&) > 7))

Fig. 11 Inverse cdf of the outcome distribution for a given solution and n
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Appendix 3: Network ranges suppliers

See Figs. 12 and 13.

Network range of Equinor Network range of Shell
) Openstreetitap contrvutors () caRTo ) Openstreetitap contrvutors (€ caRTo
Network range of ConocoPhillips Network range of Aker BP

(©) Openst s

Fig. 12 Network ranges of Equinor, Shell, ConocoPhillips, and Aker
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Network range of Neptune Energy Network range of Lundin Energy
€) Openstreetvan contrvutors (©) carro (©) Openstreetiap contrivutrs (C) CARTO.
Network range of Var Energi Network range of Wintershall DEA
€) Openstreetiap contrbutors (©) caRro (©) Openstreetitap contrivutrs (C) CARTO.

Fig. 13 Network ranges of Neptune, Lundin, Var, and Wintershall

@ Springer



Optimizing gas entry—exit capacity utilization under uncertainty Page 39 of 41 9

Appendix 4: Bottlenecks

See Fig. 14.

Sensitivity analysis minimum contracts

Emden industrial
Dornum industrial
Poland
Dornum retail
£ Zeebrugge industrial
X
i
2 St.fergus
Zeebrugge retail 1
Easington -
Dunkerque 4

Teesside A

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Shadow prices (weighted sum over scenarios)

Fig. 14 Shadow prices of minimum contracts
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