
SIGACT News Complexity Theory Column 123

Ben Lee Volk
Efi Arazi School of Computer Science

Reichman University
Herzliya, Israel

Introduction to Complexity Theory Column 123

We close off 2024 with a fantastic guest column by Stacey Jeffery, on the surprising intricacies
regarding composition of quantum algorithms. Stacey also did great work in providing illuminating
intuitive explanations and figures, so trust me — you don’t want to miss it!

What’s in store for 2025? We expect to publish guest columns by Igor Carboni Oliveira
(on Meta-Mathematics of Computational Complexity Theory), Noam Mazor (topic TBA), Elena
Grigorescu (on Locally Decodable Codes for Insertions and Deletions) and Mitali Bafna (on High-
dimensional expanders and their applications to PCPs and codes), so stay tuned!

ACM SIGACT News 49 December 2024, vol. 55, no. 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3710795.3710801&domain=pdf&date_stamp=2024-12-27

Guest Column: Composing Quantum Algorithms1

Stacey Jeffery2

Abstract

Composition is something we take for granted in classical algorithms design, and in par-
ticular, we take it as a basic axiom that composing “efficient” algorithms should result in an
“efficient” algorithm – even using this intuition to justify our definition of “efficient.” Com-
posing quantum algorithms is a much more subtle affair than composing classical algorithms.
It has long been known that zero-error quantum algorithms do not compose, but it turns out
that, using the right algorithmic lens, bounded-error quantum algorithms do. In fact, in the
bounded-error setting, quantum algorithms can even avoid the log factor needed in composing
bounded-error randomized algorithms that comes from amplifying the success probability via
majority voting. In this article, we try to give some intuition for these results: why composing
quantum algorithms is tricky, particularly in the zero-error setting, but why it nonetheless works
better than classical composition in the bounded-error setting.

1 Introduction

Algorithms designers and programmers make ubiquitous use of subroutines. Not only does this
allow code to be easily reused, perhaps even in subroutine libraries used across platforms, it adds
structure to a program, or algorithm, that makes the whole thing easier to analyze. For algorithms
designers, the most important reason to use subroutines is probably that by black-boxing the
algorithms designed by your ingenious colleagues, you can use them as building blocks within your
own new algorithms.

Composition is a fundamental idea in complexity theory as well. One of the motivations for
using polynomials as the class of growth functions considered “efficient” is that we feel intuitively
that whenever we compose “efficient” algorithms, the resulting algorithm should also be “effi-
cient” [AB09]. Perhaps one reason we take for granted that this should be true is the ease with
which we can compose and analyze classical algorithms. If an algorithm A makes Q queries to a
subroutine B with time complexity T (B), and L additional operations, then its complexity is:

T (A) = Q · T (B) + L,

as any first-year computer science student could tell you. This allows us to say things about the
complexity of composed functions. Let f : {0, 1}n → {0, 1} be the composed function f = g ◦ h,

1©S. Jeffery, 2024.
2QuSoft, CWI & University of Amsterdam, Amsterdam, the Netherlands. jeffery@cwi.nl. Supported by ERC

(ASC-Q) 101040624, NWO OCENW.Klein.061, NWA-ORC 1389.20.241, and the CIFAR QIS program.

ACM SIGACT News 50 December 2024, vol. 55, no. 4

where g : {0, 1}m → {0, 1} for some m = m(n) ≤ n, and h : {0, 1}n/m → {0, 1}, defined on
x ∈ {0, 1}n by

f(x) = f(x(1), . . . , x(m)) = g(h(x(1)), . . . , h(x(m))),

where each x(i) is a n/m-bit string. Let D(f) be the deterministic query complexity of f , also
called the decision tree complexity, which is the minimum number of queries to the bits of the input
needed to decide f (on the worst-case input). Then we can immediately see that

D(g ◦ h) ≤ D(g) ·D(h),

by simply composing query-optimal deterministic algorithms for g and h (that is, every time the
algorithm for g makes a query to the input, replace it with a subroutine call to h on the appropriate
part of the input).

A similarly easy composition applies to the expected running time of Las Vegas algorithms,
which are randomized algorithms that always output the correct answer, but might run forever: In
a Las Vegas algorithm A, for any fixed input x (which we generally leave implicit), the running time
T (A) of the algorithm is a random variable, and while its expected value (over the random choices
made by the algorithm) is generally finite, the maximum value it may obtain could be unbounded.
If A is a Las Vegas algorithm that makes Q queries to a Las Vegas subroutine B, and L additional
operations, then3

E[T (A)] = E[Q] · E[T (B)] + E[L].

Let R0(f) denote the zero-error randomized query complexity of f , which is the minimum expected
number of input queries needed by any Las Vegas algorithm for f (on the worst case input). Then
we can easily see that

R0(g ◦ h) ≤ R0(g) ·R0(h). (1)

This naive composition doesn’t quite work if we use randomized algorithms that have some
probability of error. Suppose B̃ is a bounded-error (or Monte Carlo) algorithm, meaning that it
is a randomized algorithm that outputs the correct answer with probability at least 2/3 on every
input, and, in contrast to Las Vegas algorithms, for every input x, there is some finite number of
steps after which it is guaranteed to have halted – we call this the running time, and it is not a
random variable. Note that Monte Carlo algorithms are generally easier to come by than Las Vegas
algorithms, since you can turn any Las Vegas algorithm with worst-case expected running time T
into a Monte Carlo algorithm with (deterministic) running time O(T) by simply stopping the Las
Vegas algorithm after 3T steps. By Markov’s inequality, the probability the Las Vegas algorithm
has not yet found the correct answer is at most 1/3.

While 2/3 is generally considered an acceptable correctness probability, in the context of a
subroutine that is calledQ times by an algorithmA that expects the right answer, this is insufficient.
Assuming Q ≫ 1, with overwhelming probability, one of the calls to B̃ will return the wrong answer,
in which case, we no longer have any guarantees on the correctness of A. To ensure that with
probability at least 2/3, all subroutine calls return the correct answer, we need the probability
of error on each subroutine call to be ≪ 1

Q , so we can apply a union bound. The standard way
to achieve this is as follows: every time A wants to call the subroutine, we will make about logQ

3We make the reasonable assumption that the number of queries, Q, is independent of the time the queries take,
which would be true, for example, if A were designed with each subroutine query treated as a black box whose cost
is always unit.

ACM SIGACT News 51 December 2024, vol. 55, no. 4

parallel calls to B̃, and return the most commonly seen answer (the majority)4. Then, by a binomial
tail bound, each of the Q queries made by A is correct except with probability ≪ 1

Q , as needed. If

the resulting algorithm is called Ã, we have:

T (Ã) = O
(
Q · T (B̃) logQ+ L

)
. (2)

Letting R2(f) denote the bounded-error randomized query complexity of f , which is the minimum
query complexity of a bounded-error randomized algorithm that decides f , we then have:

R2(g ◦ h) ≤ O (R2(g) ·R2(h) logm) . (3)

This inequality is tight: there exist composed functions for which this log factor is necessary [BB19].
In complexity-theoretic terms, this gives us, for deterministic, zero-error, and bounded-error

algorithms respectively:

PP = P, BPPBPP = BPP, and ZPPZPP = ZPP,

(all of which relativize), meaning that each of these three classes is self-low. These complexity-
theoretic statements are, of course, quite granular compared to the finer-grained complexities of
composition described above, but they roughly state that each of the three types of algorithms – effi-
cient deterministic, efficient Monte Carlo, and efficient Las Vegas – are “closed under composition”,
as one would intuitively hope.

All of this is quite elementary, and I don’t mean to be a bore. My point in saying all of this
is to set up a contrast with composition in quantum algorithms, which is not so simple. The first
indication of this, to my knowledge, was a result by Buhrman and de Wolf in 2002 showing that a
quantum analogue of (1) does not hold [BdW03]. They showed an oracle relative to which

ZQPZQP ̸= ZQP.

One reason that this is surprising is that bounded-error quantum query complexity is known to
compose nicely. There is nothing that prevents a quantum algorithm from calling a subroutine,
and an analogue of (3) for quantum algorithms is quite straightforward. But more than that, it is
possible to show an even stronger statement, without log factors:

Q2(g ◦ h) ≤ O(Q2(g) ·Q2(h)), (4)

where Q2(f) is the minimum quantum query complexity of any bounded-error quantum algorithm
for f [Rei09].

We will return to this way in which quantum composition works better than classical shortly.
For now, we focus on the difficulty of composing quantum algorithms, which stems from (at least)
two issues:

1. Whereas classical algorithms may call a distribution of different subroutines, the quantum
analogue is a superposition of different subroutines. Unlike a classical distribution, which can
be visualized as a tree, quantum branches of a superpostion cannot be considered as separate

4Note that majority voting only works if the desired behaviour of B̃ is to output a deterministic bit or string, as
opposed to a distribution, or an element from a set of many possible correct answers.

ACM SIGACT News 52 December 2024, vol. 55, no. 4

non-ineracting branches forever. We generally visualize them as coming back together for the
next operation – indeed, unlike randomness, it is possible to evolve a superposition supported
on many states back to a point function supported on a single state. So, naively, one must wait
for all branches of the superposition to terminate before the next operation can be applied.

2. The quantum analogue of probability is amplitude, and it can be negative. Nonzero amplitude
on an accepting state may later be cancelled by negative amplitude, in contrast to nonzero
probability on an accepting state, which, in a zero-error classical algorithm, is definitive
evidence that “accept” is the correct outcome.

The second issue is severe, and is why zero-error quantum algorithms do not compose, which we
discuss more in Section 3. The first issue turns out to be surmountable, if we simply look at
quantum algorithms the right way.

To illustrate the first issue, imagine having (classical) subroutines B1, . . . ,BN called by an
algorithm A, and let Qi be the number of calls to Bi. Then clearly

E[T (A)] =

N∑
i=1

E[Qi]E[T (Bi)] + E[L], (5)

where, as usual, L is the number of additional operations used by A. For simplicity, suppose the
total number of subroutine queries made by A, Q, is deterministic, and let pj,i be the probability
that the j-th subroutine call is to Bi. Then we can rewrite this:

E[T (A)] =
N∑
i=1

Q∑
j=1

pj,iE[T (Bi)] + E[L]. (6)

An analogous statement for quantum algorithms is not obvious, and even in the case where the
running times T (Bi) are deterministic (which does simplify things for quantum algorithms), naive
composition yields a statement analogous to:

E[T (A)] = Qmax
i∈[N]

T (Bi) + E[L]. (7)

This is because, for the most part, quantum algorithms have been viewed in the quantum circuit
model, which treats them in analogy to classical deterministic algorithms, where each operation is
something to be done once, at a fixed time. If the j-th subroutine call is something that happens
once, at a fixed time, then it certainly can’t happen before the (j − 1)-th subroutine call has
terminated (in all branches of superposition), and so the algorithm must wait maxi∈[N] T (Bi) time
steps, assuming each subroutine has a non-zero probability of being called in the (j − 1)-th query.

In contrast, randomized algorithms are often viewed as graph-like structures, with probability
flowing through them, and so a particular operation might be applied at some step with some
probability, and at a later step with some other probability. Taking a similar view of quantum
algorithms turns out to make composition much more straightforward. While we can’t hope to prove
a quantum statement analogous to (5) for A a Las Vegas algorithm5, due to the result of Buhrman
and de Wolf [BdW03], we do have the next best thing: a quantum analogue of (6) for A a bounded-
error quantum algorithm [Jef22]. This quantum analogue does not use naive quantum composition

5In fact, quantum Las Vegas complexity, is better defined in a more natively quantum way, as in [BY23], on which
[BJY24] is partially based.

ACM SIGACT News 53 December 2024, vol. 55, no. 4

to obtain A, but a more involved way of composing quantum algorithms, viewing them as quantum
analogues of random walks. The results of [Jef22] apply only to subroutines that compute a single
bit, but in [BJY24] we generalize this to quantum subroutines that compute any unitary map (the
kind of map quantum computations are capable of), using a new quantum algorithmic model that
generalizes quantum random walks, called transducers. In Section 2, we discuss in more detail
why quantum composition is different from classical composition, but nonetheless works, if we
are satisfied with getting a bounded-error algorithm. This is done using pictures, rather than
equations, so it is easy to follow on an intuitive level, but does not contain enough detail for a
rigorous understanding. For that, the reader may refer to [Jef22] or [BJY24].

I’d like to return your attention to (4), where we seem to magically save a log factor. Recall
that the log factor repetition in composed classical bounded-error algorithms comes from repeating
each subroutine call logQ times, in order to decrease the error of each subroutine query to around
1
Q via majority voting. Are quantum algorithms somehow able to avoid this repetition?

For a while I was doubtful that avoiding the log-fold repetition was possible. The result in (4)
is proven non-constructively, so it could be that any algorithm for f = g ◦ h achieving the optimal
query complexityO(Q2(g)Q2(h)) does have some kind of log repetition, it’s simply recycling queries,
somewhat like randomness can be recycled in majority voting to avoid a log-factor overhead in the
random bits needed in error-reduced algorithms [IZ89].

However, it turns out quantum algorithms really can avoid repeating subroutines log-many
times: we were able to show that if A is a bounded-error quantum algorithm that makes calls to
a subroutine, whose desired functionality is implemented with bounded error by another quantum
algorithm B̃, then there is a quantum algorithm Ã that implements the desired behaviour of A in
complexity [BJY24]:

T (Ã) = O
(
Q · T (B̃) + L

)
,

where, as usual, L is the number of additional operations made by A, giving a quantum analogue
of (2), but without the log factor. A similar log-factor-free statement applies when there are many
different subroutines implemented with bounded error, in which case we get a complexity analogous
to (6), up to constant factors.

In order to prove this, we make use of our new formalism for quantum algorithms, the afore-
mentioned transducers. If an algorithm has some error with respect to its desired behaviour, it will
map to a perturbed (with respect to the desired behaviour) transducer. Just as an algorithm’s error
can be reduced to any ε at a O(log 1

ε) overhead using majority voting, a transducer can be purified
to a transducer with arbitrarily small perturbation δ, but unlike majority vote, purification results
in a O(1) multiplicative overhead, independent of δ. Whenever we compile transducers back into
algorithms, a constant error ε is introduced, resulting in a bounded-error algorithm, so this does
not give us a way to turn a bounded-error quantum algorithm into a o(1)-error quantum algorithm
with just O(1) overhead. However, it does give a way to compose without log factors, by purifying
all subroutines to have arbitrarily small perturbation, so that when the transducers are composed
to get a new transducer, the cumulative perturbation is still o(1), and then turning back into a
bounded-error quantum algorithm.

I’m not really a complexity theorist – though I am friends with several – so I am not entirely
sure where they stand on log factors, but it seems they are not too bothered by them – after all,
they’re not even polynomial! To be honest, as an algorithms person, me neither, for the most part.6

6They can pose a rather more severe problem when composing algorithms to non-constant depth.

ACM SIGACT News 54 December 2024, vol. 55, no. 4

In analyzing algorithms, I’m wont to hide log factors – even polylog factors – in my asymptotics,
using the notation Õ(·). However, I think it is still quite striking that these log factors need not
appear in composed quantum algorithms. I think it may give us some insight into the power of
quantum computers, although I don’t yet know what that insight is, and won’t be telling you about
it here. But in Section 4, I will discuss this result more, and give some idea of where it comes from
using a toy example.

Note on the model of computation: When we talk about classical computation, we assume the
word RAM model, in which random access memory reads and writes (to our working memory, and
perhaps a memory storing a description of the program to be executed) have unit cost, as do basic
operations, such as addition, of words of a size large enough to address this memory. Our quantum
model will be the quantum analogue of this. The quantum word RAM model is less standard than
its classical counterpart, partially because implementing a quantum random access gate might be
much more difficult than quantum gates acting only on one or two qubits (quantum bits). We
will not concern ourselves with the question of how realistic this model of quantum computation
is in the near-term, as our main interest here is theoretical comparison between classical and
quantum computation, so we give the same powers to both models. Ref. [BJY24] gives some
weaker composition results that also apply in the strict quantum circuit model, in which random
access gates are not consider a basic operation.

2 Quantum vs. Randomized Algorithms

The goal of this section is to illustrate the difficulty of composing quantum algorithms, and specif-
ically, to convey the following:

1. Composing quantum algorithms to achieve a complexity that is a quantum analogue of (6)
is not obvious.

2. It is nonetheless possible, with the caveat that the composed algorithm will have bounded
error.

We also hope to lay the foundations for seeing why zero-error composition is not possible, which we
discuss more in Section 3. For simplicity, throughout this section, the reader may assume that the
quantum subroutines have no error, and Bi terminates after a fixed time T (Bi), though this time
may vary in i. Towards these goals, in this section we describe visualizations of randomized and
quantum algorithms that allow us to compare them at an intuitive level without the use of math7.

Randomized algorithms, as trees A randomized computation can be visualized as a tree (see
Figure 1). There is an entrance at the root, and outgoing terminals at each leaf, each of which is
either accepting or rejecting. The internal tree nodes, shown as rectangles, represent coin flips, and
some extra nodes on the edges might represent deterministic computations. We use dashed lines
to represent a computation that we model as an oracle call, either querying the input directly, or
perhaps meant to be instantiated by a subroutine.

Of course, we sometimes visualize randomized computations as another type of graph, like a
DAG, or more general random walk. However, as long as we don’t care about the amount of

7Math is still very much recommended for actually proving things. For details, see [Jef22, BJY24].

ACM SIGACT News 55 December 2024, vol. 55, no. 4

Figure 1: A run of a randomized algorithms, visualized as probability flowing through a tree. The
incoming arrow is the entrance, and outgoing arrows are terminals.

memory the algorithm uses, we can always model it as a tree, indicating that we remember every
coin flip ever made (even if our future computations might not depend fully on them). So the tree
picture is without loss of generality, as far as time complexity is concerned.

Importantly, in our visualizations, the node you are in will not encode the full state of the
algorithm, but simply where you are in the computation. We assume a “walker” moving through
the tree carries along some extra information as well, based on queries made and computations
performed so far. As such a tree’s structure may be adaptive, depending on the input via results
of computations in the dashed circles. To visualize a run of the computation on a particular input,
we can imagine that we have a unit of probability on the entrance, and as we run the algorithm,
it flows through the tree, from left to right, splitting when it gets to an internal tree node (evenly,
assuming coin flips are unbiased), until it gets to a terminal. It can be helpful to think of this
probability as water flowing through the graph, whose edges are like pipes, possibly carrying with
it some information about the algorithm’s current state.8 The amount of water already at the
terminals after ℓ steps – equivalently, the amount of water at terminals with distance at most ℓ
from the entrance – is precisely the probability that the algorithm has halted after at most ℓ steps.
Figure 1 also shows this probability flow, which includes the probability on the edges at all steps
of the algorithm, rather than only at a particular step.9

It is quite intuitive from Figure 1 that if we instantiate the dashed circles with programs of
varying length – for simplicity, imagine deterministic programs, which are just line graphs – we get
a complexity (expected distance from entrance to root) as in (6).

Quantum algorithms are not trees We can view quantum computations in a somewhat simi-
lar picture, but we replace the concept of randomness with its quantum analogue, superposition, and

8If you want to take this metaphor to an obscene level, you can think of the flow as consisting of different types
of liquids that don’t mix, like water and oil, whose volumes add up to the total flow. The type of liquid encodes the
additional information.

9So if you add up all probabilities shown in the probability flow, you will not get 1, but rather, you will get the
expected running time of the algorithm.

ACM SIGACT News 56 December 2024, vol. 55, no. 4

probability with its quantum analogue amplitude. A quantum state is a vector, not unlike a proba-
bility distribution, but a quantum state is ℓ2-normalized instead of ℓ1-normalized like a probability
distribution. The squared norms of the amplitudes, which sum to 1, are actually probabilities.

Unlike probability, amplitude can be negative (or even complex), and – actually because of this
– in contrast to a random variable, a superposition has no entropy. It’s possible to move from a
“classical deterministic” state, such as 0n, into a superposition of many states, and then back to
a “classical deterministic” state. So we cannot generally visual a quantum algorithm as a tree.
Instead, it looks more like the diagram below10:

Each of the rectangles represents some quantum operation, and as above, the dashed circle repre-
sents a query to the input (or perhaps a subroutine). There are is an accepting terminal, and a
rejecting terminal. In this visualization, any Q-query quantum algorithm looks the same, so this
basic picture tells us very little about the program’s structure. To visualize a run of the algorithm,
we can imagine its amplitude flowing through the graph, as we did with probabilities.

When we show amplitude flows, the strength of the flow will be visualized as the square of the
amplitude, so they all add up to 1 (on any entrance-terminals cut), whereas the colour will tell
us the sign: blue for positive, and red for negative11. Visualizing a quantum algorithm this way
is, admittedly, much less helpful and intuitive than visualizing a randomized algorithm as a tree,
but it does allow us to think about quantum composition. Imagine you want to instantiate the
dashed circles with calls to different subroutines. A deterministic subroutine is just a line, so we
get something like the following:

10For readers used to quantum circuit diagrams: the lines do not represent different qubits, but rather, different
states, so in an n-qubit system, there are 2n of them.

11In general, the amplitude could take any direction e−iθ on the unit circle, but we will restrict to postive, (+1)
and negative (−1).

ACM SIGACT News 57 December 2024, vol. 55, no. 4

Each circle above is a subroutine step. The number of subroutine steps varies in different branches
of the superposition, just as the number of subroutine steps might vary in different tree branches
in a randomized algorithm. What is the complexity of this composed quantum algorithm? To
run this algorithm, first we apply the first quantum operation, represented by the first rectangle.
Before we apply the second, it seems like we need to complete all subroutine calls – consisting of
the operations represented by circles – because the second rectangle depends on all the inputs, so
naively, we have to wait the maximum path length. This is certainly true if we think of the second
operation as something we’re going to apply once, at some fixed time, as we do in the most common
model of quantum algorithms, the quantum circuit model. This gives complexity:

T (A) = Qmax
i∈[N]

T (Bi) + L, (8)

which, compared to (6), is terrible, as we’ve replaced an average with a maximum. This illustrates
that it is not straightforward to have quantum subroutines that take different amounts of time in
different branches of the superposition. It seems like we need to wait for the slowest branch of the
superposition to terminate before we can move on to the next step, and until a couple of years ago,
no better expression than (8) was known.

This issue doesn’t come up in a tree, obviously, since paths never come together again. However,
as previously mentioned, we often do visualize randomized algorithms as something other than a
tree. What is the expected time to get from the entrance to one of the terminals in the following
DAG (all edge directions are left-to-right), representing a randomized computation where we forget
whatever randomness has been used so far?

It is obviously the expected path length. As “liquid” moves through the graph, it eventually all
ends up at the terminals. It doesn’t matter if you let liquid through the rectangles as it arrives, or
wait for it all to arrive before distributing it out the other side, it will all end up at the terminals,
carrying the same information either way, because probability can do nothing but add up.

It turns out that this intuition also holds (with somewhat more difficulty in making it precise
enough to turn into a proof) in quantum algorithms. If we think of the quantum algorithm in
analogy to a random process – actually, as the quantum analogue of a random walk – we find that
it’s fine if we send some amplitude through a box before the rest of the amplitude has caught up: it
will all add up to the same thing on the terminals in the end, no matter what speed different parts
of it get there. Thus, if we combine the outer quantum algorithm, consisting of just the boxes and
the dashed circles representing queries, with the quantum subroutines instantiating those queries
– in a particular way inspired by quantum random walks – everything will add up correctly to the
right state on the terminals after the final rectangle. And if we just wait until most of the amplitude
has made it through the final rectangle, we will end up with a state that is mostly correct, giving

ACM SIGACT News 58 December 2024, vol. 55, no. 4

a bounded-error quantum algorithm A with complexity:

T (A) = O

 Q∑
j=1

N∑
i=1

qj,iT (Bi) + L

 , (9)

where, Q is the number of subroutine calls, and qj,i is the squared norm of the amplitude on the
i-th superposition branch right befor ethe j-th subroutine query. This was shown (with polylog
factor overhead) for subroutines that compute a single bit in [Jef22], and later generalized to
arbitrary (unitary) quantum subroutines in [BJY24]. We can even replace the complexities T (Bi)
with expected complexities (we have not talked about how quantum algorithms can have a running
time that is a random variable, but it is possible) to get a quantum analogue of (6).

We have been assuming, for simplicity that the subroutines have no error. If we instead have
bounded-error subroutines, then we can use majority voting (assuming the desired behaviour of the
subroutines is to output a deterministic string) to obtain the complexity in (9), but with logarthmic
overhead. However, using purifiers, we can even get this complexity expression with no log factors
even when the subroutines have bounded error. We discuss this more in Section 4.

The reason quantum composition does not work in the zero-error case, that is, if we want the
composed algorithm A to have zero error, is that we would need to wait for all amplitude to get to
the end of the graph if we want to have no probability of error. In the next section, we will explore
this subtle difference between quantum and classical composition.

3 Impossibility of Zero-error quantum Composition

In [BdW03], Buhrman and de Wolf show that there is an oracle A such that

ZQPZQPA

̸= ZQPA,

by exhibiting a composed f = g ◦ h for which Q0(g) = 1, Q0(h) = O(1), and Q0(f) ≥ m
2 + 1. We

describe this composed function, and try to give some intuition why its zero-error quantum query
complexity is not also constant.

Let |x| denote the Hamming weight of a binary string x. Let g be the promise problem on the
set {x ∈ {0, 1}m : |x| ∈ {0,m/2}} for even m, defined:

g(x) =

{
1 if |x| = 0
0 if |x| = m/2.

This function decides if a string is constant 0m; or balanced, meaning it has the same number of 0s
and 1s. It is well known in the quantum algorithms literature, because there is a quantum algorithm
due to Deutsch and Jozsa [DJ92] – one of the very first quantum algorithms in fact – that outputs
the correct answer using a single query to the input. So in particular, Q0(g) = 1 (in fact, we have
the stronger statement QE(g) = 1, where QE is the exact quantum query complexity, since 1 is not
merely the expected complexity, but an upper bound on the complexity). In contrast, if the input
is constant, then a classical algorithm needs to see m/2 + 1 bits to be certain that they are all the
same, so R0(g) = m/2 + 1.

The Deutsch-Jozsa algorithm, which decides g exactly with a single quantum query, relies
precisely and crucially on the promised structure of the problem, which we can illustrate in our

ACM SIGACT News 59 December 2024, vol. 55, no. 4

Figure 2: On the left, we see a run of the algorithm on a constant input, and on the right, a run of
the algorithm on a balanced input. In both cases, we first do a quantum Fourier transform (first
box) to split one unit of amplitude uniformly into m branches. In branch i ∈ [m], we query xi
(the dashed circle), changing the sign from positive (blue) to negative (red) if xi = 1. Finally, we
invert the Fourier transform (last box), sending the sum of the amplitudes on all branches onto
the accepting terminal. When x is constant (left-hand side), all paths stay blue (positive), so they
add up to a unit of amplitude going out the accepting terminal. When x is balanced (right-hand
side), half the paths become red (negative) and cancel with the blue paths, so they add up to 0
amplitude on the accepting terminal. Note that there are other implicit terminals (not shown), all
of which are rejecting.

intuitive graph picture, in Figure 2. The algorithm first does something called a quantum Fourier
transform, which maps 0logm to a uniform superposition over all logm-bit strings – a bit like flipping
logm (quantum) coins – representing each i ∈ [m]. Next, in each branch of the superposition, the
algorithm queries the i-th bit. It does a pretty quantum thing with that bit: if the bit is 1, it
changes the sign of the amplitude from positive to negative. That’s shown as the colour changing
from blue to red. Finally, it does something called an inverse Fourier transform, and the only
thing we need to know about that is that the amplitude on 0logm coming out of that operation –
which is the accepting state/terminal (the rejecting terminal is not pictured, but all other states
are rejecting) – is the sum of all incoming amplitudes12. So one of two things happens:

Constant (accepting) Case: all the bits are 0, meaning all paths are blue, so they add up to
unit amplitude (corresponding to probability 1) coming out the accepting terminal; or

Balanced (rejecting) Case: half the bits are 0 and half the bits are 1, meaning there are as
many blue paths as red paths, and so they cancel, resulting in 0 amplitude (corresponding to
probability 0) coming out the accepting terminal.

Note that if the Hamming weight were not exactly m/2 in the rejecting case, we would not get the
perfect cancellation that makes this an exact, and thus a zero-error, algorithm.

The inner function h defining f = g ◦ h will also be a promise problem, and we will define it by
its pre-images:

h−1(1) = {0mxR : xR ∈ {0, 1}m, |xR| ≥ m/2}
h−1(0) = {xL0m : xL ∈ {0, 1}m, |xL| ≥ m/2}.

12This is actually not completely correct, but it gives the right mental picture if you’re not following too closely.
The actual amplitude on the accepting terminal is 1/

√
m times the sum of the m incoming amplitudes, each of which

is either 1/
√
m (blue) or −1

√
m (red). The square roots are because quantum states are ℓ2-normalized.

ACM SIGACT News 60 December 2024, vol. 55, no. 4

Figure 3: Here we see the probability flow for two runs of a randomized algorithm for h on different
inputs: one with |x| = m/2 (left-hand side); and one with |x| = 3m/4 (right-hand side). The
dashed circles represent calls to a small subroutine that queries xj and xm+j in the j-th branch,
and terminates if one of them is 1, in either an accepting terminal (if xm+j = 1) or a rejecting
terminal (if xj = 1). In the left-hand image, which is the worst case, half the probability is already
on terminals after one such step, and for the remaining half, a new j′ ∈ [m] \ {j} is chosen. The
longest paths from the entrance to a terminal in the worst case are m/2 + 1 steps, but the total
probability weight on these is very small.

So we are promised that one half of the string is all-0s, and the other half has relatively many 1s,
and we must decide which half is which. Even a classical algorithm can solve this with zero error
in expected constant time: Alternatively query a random as-of-yet-unqueried bit xj on the left-half
and, the corresponding xj+m on the right half until you see a 1, at which point, you’re done. In
the tree picture, this looks like Figure 3.

If you’re maximally unlucky, you will query all the 0s in the half with 1s before you query a
1, meaning you will spend 2(m/2 + 1) = m + 2 queries, but this only happens with probability
Θ(2−m). Since every two queries finds a 1 with probability at least 1/2, the expected number of
queries before a 1 is found is O(1). Thus Q0(h) ≤ R0(h) = O(1).

We have seen that Q0(g) and Q0(h) are both O(1), so, in light of the fact that R0(g ◦ h) ≤
R0(g) ·R0(h), we might expect Q0(g ◦ h) to be O(1), but in fact, we have [BdW03]:

Q0(g ◦ h) ≥ m/2 + 1.

The classical result R0(g ◦ h) ≤ R0(g) ·R0(h) is based on the observation that we can simply
run an optimal Las Vegas algorithm for g, and every time the algorithm tries to query the input,
replace the query with a call to the optimal Las Vegas algorithm for h (on the appropriate block of
the input). Let us try to understand what goes wrong with quantum composition, by considering
running the single-query Deutsch-Jozsa algorithm for g, but replacing the query with a call to our
algorithm for h (which we can turn into a quantum algorithm without much difficulty).

To see the issue, consider an input x = (x(1), x(2), x(3), x(4)) to g ◦ h (so m = 4) that induces a
balanced input to g, meaning that exactly half of the strings x(1), x(2), x(3), and x(4) are 1-inputs to
h. Each part, x(i), of x is a 2m-bit string with two parts, x(i,L) and x(i,R), one of which has weight

ACM SIGACT News 61 December 2024, vol. 55, no. 4

Figure 4: This image depicts the probability flow through the Deutsch-Jozsa algorithm from Fig-
ure 2, if we instantiate the queries with the subroutine for h from Figure 3, and pause the subroutine
after one step. We are assuming the different inputs to h have different weights, all at least m/2,
resulting in different amplitudes coming out of the subroutine after one step, all at least half. How-
ever, since these amplitudes are not the same, even though two are positive and two are negative,
they do not perfectly cancel, so there is non-zero amplitude on the accepting terminal.

0, the other of which has weight at least m/2. Suppose further that x has the following structure:

x = 0m x(1,R) x(2,L) 0m 0m x(3,R) x(4,L) 0m

weight 0 3m
4 m 0 0 m

2
3m
4 0

This satisfies the promise, because all non-zero strings have weight at least m/2.
Consider what happens after we’ve run one step of the algorithm for h – a step being two queries,

one for each half of the input to h. This is depicted in Figure 4. In each of the four branches of the
superposition, the subroutine for h has terminated with probability at least half, which we depict
by some amplitude coming out of the subroutines (the remaining amplitude, not shown, is still
inside the subroutine). The size of these amplitudes depends on the weight of the non-zero string
in the input to h. In the top branch of the superposition, the input to h is x(1) = 0mx(1,R). Since
|x(1,R)| = 3m/4, with probability 3/4, we find a 1 in the first step, and conclude that h(x(1)) = 1,
since the one is in x(1,R), the right half. We thus change the amplitude to negative, shown as red
– since the subroutine has zero error, only red amplitude will ever exit the subroutine call in this
branch. In the second branch, since |x(2,L)| = m, we will find a 1 in the first step with certainty,
so all amplitude has already exited the subroutine after one step, and it is positive (blue). In the
third branch, since |x(3,R)| = m/2, half the amplitude exits after one step, and in the fourth branch,
since |x(4,R)| = 3m/4, 3/4 of the amplitude exits after one step.

The issue is that the amount of positive and negative amplitude is not the same, and so these
amplitudes do not perfectly cancel, meaning there is a nonzero amplitude on the accepting terminal,
even though accepting would be incorrect for this input. If we waited for all amplitudes to exit
the subroutine, then we would have the same amount coming out of each, and these would cancel,
leaving 0 amplitude on the accepting terminal, but if we stop early conditioned on the subroutine
being finished after one step, we will have some non-zero probabaility of outputting the wrong
answer.

Note that this cannot happen in a classical algorithm – once you have any non-zero probability
on a terminal, you’re safe to accept or reject accordingly, because there’s no chance that later
probability will arrive and cancel it out, so that it would have been zero, had you waited.

The difference between a classical zero-error algorithm and a quantum zero-error algorithm is
that in the classical picture, once we have some amount of probability on an accepting terminal,
it means, with certainty, that 1 is the correct answer, and once we have some nonzero probability

ACM SIGACT News 62 December 2024, vol. 55, no. 4

on a rejecting terminal, it means, with certainty, that 0 is the correct answer. This is related to
the fact that a randomized algorithm can always be viewed as a tree: once you get to a terminal
(leaf) by some path, there is no other path that could come and change things. This is in contrast
to quantum algorithms, where even if at some point you have nonzero amplitude on an accepting
terminal, it doesn’t mean the answer is 1 – it could be that if you wait, negative amplitude will
come and cancel the positive amplitude so that the resulting amplitude on the accepting terminal
by the end of the algorithm is 0.

4 Transducers, Purifers, and no more log Factors

I have already mentioned that by looking at quantum algorithms as quantum random walks, we can
get some nice composition results. However, the results obtained this way are limited to composing
subroutines that compute classical functions, whereas a quantum subroutine might potentially
map a quantum state to another quantum state, through any unitary linear map. For this more
general type of composition, we need a more general model, called transducers [BJY24]. Moreover,
composing via transducers is how we can achieve composition of bounded-error quantum algorithms
without log factors. That’s what we will talk about in this section.

Like a quantum algorithm, a transducer has an associated unitary action, and a complexity. I
will not give details about what a transducer is, but it has the following properties that make it a
useful abstraction for quantum algorithms:

1. There is a mapping that takes any quantum algorithm implementing a unitary map U in
complexity T , and compiles it into a transducer for U with complexity O(T).

2. There is a mapping that takes any transducer for U with complexity T , and compiles it into
a quantum circuit implementing U with bounded error in complexity O(T).

3. Transducers compose nicely: You can combine a transducer for some outer algorithm that
makes oracle calls, with transducers for some subroutines, to get a transducer for the composed
functionality. The complexity will have a nice expression, like that in (9).

Often we want a quantum algorithm that decides a function, f : {0, 1}n → {0, 1}, rather than
implementing some arbitrary unitary. We say a unitary Ux parametrized by an input x decides f
if it maps the quantum state that is a point function on the all-0s string, 0m for some m (a natural
starting state) to the quantum state that is a point function on the string 0m−1f(x). A quantum
algorithm decides f if it implements a unitary U that decides f .

Often we have quantum algorithms that don’t perfectly implement the desired unitary map,
U , but rather, implement it up to bounded error. If we try to map this to a transducer, it will
also only implement U up to some error. A δ-perturbed transducer for U implements a map that
is δ-close to U in some sense of closeness. When δ = 0, we say the transducer is perfect (wrt some
U – often a U that decides a function f).

When we compose transducers, the perturbations add up, similar to how errors add in algorith-
mic composition, so we need the perturbations to be sufficiently small so that even when they add
up, we can bound them well below 1. If all of our subroutines decide functions, then we can use
majority voting to decrease their error sufficiently. This incurs log factors: D-round majority voting
has a multiplicative overhead of D, but reduces the error to 2−Θ(D), so that when we transform the

ACM SIGACT News 63 December 2024, vol. 55, no. 4

subroutines into transducers, the small perturbations add up to a total perturbation well below 1,
and so we can turn this into a bounded-error quantum algorithm.

However, as stated, we can avoid the log factor overhead. It turns out that there is an analogue
of majority voting for transducers that decide a function, which reduces their perturbations to
2−Θ(D) for any D, with just a O(1) multiplicative overhead on the complexity. This construction
is called a purifer, and we will shortly give a purifier for a simplified case, to illustrate how this
process works. First, it is worth emphasizing that no matter how much we reduce perturbations
in transducers, when we compile them back into algorithms, there will be a small constant error.
Thus, there is no way to reduce the error of an algorithm for free by turning it into a transducer,
purifying it, and then turning it back into an algorithm. This trick is just powerful enough to let
us avoid the log factor overhead in composing bounded-error quantum algorithms.

A toy problem To give some idea of how purification works, we will consider the special case of
a quantum algorithm that outputs the quantum analogue of a biased coin that gives 0 with some
probability p0 = p0(x), depending implicitly on some input x:

√
p0e0 +

√
1− p0e1. (10)

This is a 2-dimensional vector, and there are squareroots over the probabilities because quantum
states are ℓ2-normalized. We could call such a state a biased quantum coin flip. We imagine that
there is some constant ε ∈ [0, 1/2) such that one of the following two cases holds, and we want to
decide which one:

Rejecting Case: p0 ≥ 1− ε

Accepting Case: p0 ≤ ε.
(11)

This setting does not fully capture the setting of bounded-error quantum algorithms, as we are
assuming the algorithm’s output is in a known two-dimensional space, but it is the simplest to
analyze. But before we think about this quantum problem, let us think a little bit about the
classical version of this problem.

A classical walk on a line If you were given a (classical) biased coin with the promise that
one of the conditions in (11) holds, and you want to know which one, your instinct would likely
be to flip the coin many times, and take a majority vote. One way to model a majority vote is as
a weighted random walk on a line. You can use the coin to implement a weighted walk on a line
where the edges are labelled by the integers:

v0 . . .
0 1 2 3 4

. . .
−1−2−3−4−5

and the weight of edge ℓ is

wℓ =

(
1− p0
p0

)ℓ

. (12)

ACM SIGACT News 64 December 2024, vol. 55, no. 4

In such a graph, from vertex vℓ, whose outgoing edges are ℓ − 1 and ℓ, the probability of moving
left, qL, and right qR, respectively, are:

qL =

(
1−p0
p0

)ℓ−1

(
1−p0
p0

)ℓ−1
+
(
1−p0
p0

)ℓ
= p0 and qR =

(
1−p0
p0

)ℓ

(
1−p0
p0

)ℓ−1
+
(
1−p0
p0

)ℓ
= 1− p0.

Thus, you can take steps on this graph by flipping your biased coin, and moving to the left when
you see a 0, and right when you see a 1.

If you begin in v0, and then use D coin flips to walk for D steps, you will end up to the left
of v0 if you see 0s a majority of the time over your D coin flips, and to the right if you see 1s the
majority of the time over your D coin flips. Thus, your position on the line is simply a way to
remember how many more 1s than 0s you’ve seen, so that you can decide, after D steps, what the
majority was.

A quantum walk on a line For the quantum analogue, we need some definitions (this will be
the most technical part of the article). Let G = (V,E) be a weighted undirected graph, with edge
weights {we}e∈E . The total weight of G is defined

W(G) =
∑
e∈E

we.

Let s and t be distinct vertices in V . A unit st-flow on G is a function θ on V × V such that

1. θ(u, v) = −θ(v, u) for all u, v ∈ V ;

2. θ(u, v) = 0 whenever {u, v} ̸∈ E;

3. for all u ∈ V \ {s, t},
∑

v θ(u, v) = 0; and

4.
∑

v θ(s, v) =
∑

v θ(v, t) = 1.

We often think of a flow as water flowing through the graph from s to t: a unit of flow enters at s –
we can imagine this happening through an additional boundary edge at s, which is an edge that is
incident to only one vertex – and exits at t – perhaps also along some boundary edge – and at any
other vertex u, the total incoming flow (flow on edges with θ(v, u) > 0) equals the total outgoing
flow (flow on edges with θ(u, v) > 0). The “probability flows” in Section 2 are examples of flows
from the entrance to the (sometimes more than one) terminal(s). The effective resistance between
s and t is defined:

Rs,t(G) = min
θ

∑
e∈E

θ(e)2

we

where the minimization runs over unit st-flows, and if e = {u, v}, θ(e)2 = θ(u, v)2 = θ(v, u)2. The
effective resistance is so named because it is the resistance across s and t if an appropriate potential
difference is applied, in a network of electrical resistors, one for each edge of G, with conductances
given by the edge weights. This beautiful theory is explained in [DS84]. Such electrical quantities
have long-known connections to the theory of random walks, one of which is the following. Let

ACM SIGACT News 65 December 2024, vol. 55, no. 4

Hs,t(G) be the expected number of steps needed by a random walk on G, starting in s, to reach t
for the first time. Then the following remarkable fact is due to [CRR+96]:

Hs,t(G) +Ht,s(G) = 2W(G)Rs,t(G). (13)

A quantum walk is a kind of quantum algorithm based on a weighted undirected graph. We
now describe a particular type of quantum walk, which is a special case of the electric network
quantum walk framework [Bel13]. Consider a graph Gx (depending in some way on an input x)
with distinct vertices s, t ∈ V that we will refer to as entrance and terminal. Suppose s is a known
vertex, perhaps labelled by 0k for some k, to which we will always append a dangling boundary
edge; and t is an unknown vertex, but we can recognize it, and we want to check if it has a certain
property. If t has the property – suppose this happens precisely when f(x) = 1 – we will also give t
a dangling boundary edge, but otherwise we will not. Note that boundary edges are not really part
of the graph G (they are not in E), but we can assign them weights. We let wu,∅ be the weight of
the boundary edge incident to u, or 0 if there is no such edge. A simple case of this setup is when
G is a line, as shown in Figure 5.

Rejecting Case (f(x) = 0):

Accepting Case (f(x) = 1):

. . .

. . .

s t

s t

Figure 5: The cases distinguished by a quantum walk algorithm (special case of a line).

A classical random walk can distinguish these two cases in (worst-case) maxxHs,t(Gx) expected
steps (which depends on the graph, but even when the graph is a line, it depends on the edge
weights).

A quantum algorithm can distinguish these two cases in the following number of steps [Bel13]:√
max

x:f(x)=0
W(Gx) · max

x:f(x)=1
Rs,t(Gx). (14)

An important question is, what is meant here by step? What we mean is the quantum analogue
of a classical random walk step, which is to be able to generate, for any vertex u, a superposition
with amplitude proportional to

√
wu,v on the edge going out from u towards v, which we write

mathematically as ∑
v∈V

√
wu,veu,v +

√
wu,∅eu,∅. (15)

Above eu,v is just a vector with a 1 in the (u, v)-position, and 0 everywhere else. A quantum
operation that generates superpositions proportional to (15) can be used to implement a quantum
operation that we call the walk operator, and the walk operator is a transducer that decides between
the accepting and rejecting cases from Figure 5 – that is, it decides the function f – with no
perturbation, and with complexity given by the expression in (14) (see [BJY24, Section 6]). That
is, it’s a perfect transducer.

Let us consider the complexity in (14), and compare13 it to the classical complexity

13The classical complexity counts the number of classical walk steps, or classical samples of an outgoing edge,
whereas the quantum complexity counts the number of quantum walk steps, but for the purposes of this article, we
will assume they are approximately the same difficulty to implement.

ACM SIGACT News 66 December 2024, vol. 55, no. 4

maxxHs,t(Gx). Note that (14) is upper bounded by:√
max
x

W(Gx) · Rs,t(Gx)

which is equal to √
max
x

1

2
(Hs,t(Gx) +Ht,s(Gx)),

by (13). This suggests that we get at best a squareroot speedup over the classical complexity.
However, we will see that we can do better by maximizing separately over the two product terms.

Simple purification So returning to our toy example, suppose you have a quantum subroutine
that outputs a superposition

√
p0e0+

√
1− p0e1 =

√
p0(x)e0+

√
1− p0(x)e1, the quantum version

of a biased coin flip, satisfying one of the conditions in (11). Let f be the function that takes value
f(x) = 0 precisely when p0(x) ≥ 1− ε (the rejecting case), and f(x) = 1 precisely when p0(x) ≤ ε
(the accepting case).

Let G be the line graph of length D, with vertices labelled s = v1, . . . , vD = t, edges labelled
1, . . . , D−1, entrance boundary edge (into s) labelled 0; terminal boundary edge (out of t) labelled
D; and edge weights to be specified momentarily. With one call to the subroutine, we can, for any
ℓ, generate the superposition √

p0eℓ +
√
1− p0eℓ+1, (16)

the quantum analog of sampling a bit, and adding ℓ to the sampled bit. Since the state in (16) is
proportional to: (

1− p0
p0

)ℓ/2

eℓ +

(
1− p0
p0

)(ℓ+1)/2

eℓ+1,

this allows us to implement a quantum walk on G with edge weights set to

wℓ =

(
1− p0
p0

)ℓ

.

Now we want to distinguish between two cases:

Rejecting Case, p0 ≥ 1− ε, f(x) = 0:

Accepting Case, p0 ≤ ε, f(x) = 1:

. . .

. . .

s t

s t

0 1 2 3 D − 1 D

In both cases, there is a boundary edge coming out of t = vD, but in the rejecting case, the
weight of this edge is

wD =

(
1− p0
p0

)D

≤
(

ε

1− ε

)D

= 2−Θ(D),

so it’s almost like the edge is not there. It can be formalized that while a quantum walk of the form
in Figure 5 is a perfect transducer for the associated decision problem (rejecting case vs. accepting
case), the walk we are now describing is a perturbed transducer for the associated decision problem,
with perturbation that can be made arbitrarily small by increasing D.

ACM SIGACT News 67 December 2024, vol. 55, no. 4

Let us now see that this transducer has O(1) complexity, independent of D. I haven’t defined
the complexity of a transducer, but in the case of a quantum walk, it’s just the expression in (14).
So we need to upper bound the total weight of the graph in the rejecting case, and the effective
resistance in the accepting case.

Rejecting case: Suppose p0 ≥ 1− ε. We have:

W(Gx) =
∑

e∈E(G)

we =

D−1∑
ℓ=1

(
1− p0
p0

)ℓ

≤
D−1∑
ℓ=1

(
ε

1− ε

)ℓ

≤ 1

1− ε
1−ε

= O(1). (17)

Accepting case: Suppose p0 ≤ ε. Since the graph is a path, there is only one possibility for a
flow: θ(vℓ, vℓ+1) = 1 on all edges ℓ between s = v1 and t = vD. Thus:

Rs,t(Gx) ≤
∑

e∈E(G)

θ(e)2

we
=

D−1∑
ℓ=1

1

wℓ
=

D−1∑
ℓ=1

(
p0

1− p0

)ℓ

≤
D−1∑
ℓ=1

(
ε

1− ε

)ℓ

= O(1). (18)

Complexity Together (17) and (18) imply that√
max

x:p0(x)≥1−ε
W(Gx) · max

x:p0(x)≤ε
Rs,t(Gx) = O(1).

As I claimed that the left-hand side is the complexity of the perturbed transducer, we see that it
is constant, even when D is arbitrarily large.

Note that in the rejecting case, since p0 > 1 − p0, the effective resistance blows up to 2Θ(D),
but fortunately, we only care about the resistance in the accepting case. Similarly, in the accepting
case, since 1− p0 > p0, the total weight blows up to 2Θ(D), but we only care about the total weight
in the rejecting case.

5 Final Thoughts

While efficient methods of composition are certainly useful in practice, I believe there is also some-
thing we can learn about the power of quantum algorithms relative to classical algorithms by
comparing their different composition capabilities. The picture of what that is is not yet fully
clear. However, I believe we also have something to learn about the right way of abstracting
programs for future quantum computers.

Quantum algorithms are not classical algorithms, and we have probably been trying to force
them unnaturally into the shape of classical algorithms for too long. At the same time, the tempta-
tion to do so is understandable. We understand classical algorithms pretty well, relative to quantum
algorithms, where things seem very mysterious, dramatic speedups are few and far between, and we
don’t really understand for the most part why fast quantum algorithms are fast (at least, not well
enough to produce more fast quantum algorithms). So a model that keeps some classical intuition
is desirable. My two cents is that we’ve been trying to hold onto the wrong classical intuition –
that of circuits – and should borrow more heavily from the intuition of randomized algorithms, to
understand both the similarities and differences between quantum and classical algorithms.

ACM SIGACT News 68 December 2024, vol. 55, no. 4

Transducers give us a way to reason about quantum algorithms that seems more natural for
them as quantum algorithms, rather than some quantum version of a classical algorithm. If we
think about the special case of quantum walks, which are a sort of easy-to-visualize transducer, we
have seen how a quantum walk lets us model a quantum algorithm, even one with error (which is
most of them), as perfect or at least arbitrarily close to perfect objects that easily compose. I would
like to humbly put forth that perhaps transducers are the more quantum model for reasoning about
quantum algorithms that we have been missing.

Acknowledgements I would like to thank Aleksandrs Belovs and Ronald de Wolf for helpful
comments and suggestions on a draft of this article.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[BB19] Eric Blais and Joshua Brody. Optimal separation and strong direct sum for random-
ized query complexity. In Proceedings of the 34th IEEE Conference on Computational
Complexity (CCC), pages 1–17, 2019.

[Bel13] Aleksandrs Belovs. Quantum walks and electric networks. arXiv: 1302.3143, 2013.

[BJY24] Aleksandrs Belovs, Stacey Jeffery, and Duyal Yolcu. Taming quantum time complexity.
Quantum, 8(1444), 2024. arXiv: 2311.15873

[BdW03] Harry Buhrman and Ronald de Wolf. Quantum zero-error algorithms cannot be com-
posed. Information Processing Letters, 87(2):79–84, 2003. arXiv: quant-ph/0211029

[BY23] Aleksandrs Belovs and Duyal Yolcu. One-way ticket to Las Vegas and the quantum
adversary. arXiv: 2301.02003, 2023.

[CRR+96] Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and
Prasoon Tiwari. The electrical resistance of a graph captures its commute and cover
times. Computational Complexity, 6(4):312–340, 1996.

[DJ92] David Deutsch and Richard Jozsa. Rapid solutions of problems by quantum computation.
Proceedings of the Royal Society of London A, 1907:553–558, 1992.

[DS84] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks. Mathematical
Association of America, 1984. arXiv: math/0001057

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In Proceedings of
the 30th IEEE Symposium on Foundations of Computer Science (FOCS), pages 248–253,
1989.

[Jef22] Stacey Jeffery. Quantum subroutine composition. arXiv: 2209.14146, 2022.

[Rei09] Ben W. Reichardt. Span programs and quantum query complexity: The general adver-
sary bound is nearly tight for every boolean function. In Proceedings of the 50th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 544–551, 2009.

ACM SIGACT News 69 December 2024, vol. 55, no. 4

https://arxiv.org/abs/1302.3143
https://arxiv.org/abs/2311.15873
https://arxiv.org/abs/quant-ph/0211029
https://arxiv.org/abs/2301.02003
https://arxiv.org/abs/math/0001057
https://arxiv.org/abs/2209.14146

