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Graph states are fundamental objects in the theory of quantum information due to their simple classical
description and rich entanglement structure. They are also intimately related to instantaneous quantum
polynomial-time (IQP) circuits, which have applications in quantum pseudorandomness and quantum
advantage. For us, they are a toy model to understand the relation between circuit connectivity, entangle-
ment structure, and computational complexity. In the worst case, a strict dichotomy in the computational
universality of such graph states appears as a function of the degree d of a regular graph state [Ghosh et al.,
Phys. Rev. Lett. 131, 030601 (2023)]. In this paper, we study the average-case complexity of simulating
random graph states of varying degree when measured in random product bases and give distinct evidence
that a similar complexity-theoretic dichotomy exists in the average case. Specifically, we consider random
d-regular graph states and prove three distinct results: First, we show two families of IQP circuits of depth
d and show that they anticoncentrate for any 2 < d = o(n'/?) when measured in a random X -Y plane prod-
uct basis. This implies anticoncentration for random constant-regular graph states. Second, in the regime
d = O (n°) with ¢ € (0, 1), we prove that random d-regular graph states contain polynomially large grid
graphs as induced subgraphs with high probability. This implies that they are universal resource states for
measurement-based computation. Third, in the regime of high degree (d ~ n/2), we show that random
graph states are not sufficiently entangled to be trivially classically simulable, unlike Haar-random states.
Proving the three results requires different techniques—the analysis of a classical statistical-mechanics
model using Krawtchouck polynomials, graph-theoretic analysis using the switching method, and analysis

of the ranks of submatrices of random adjacency matrices, respectively.

DOI: 10.1103/52xz-3hpc

I. INTRODUCTION

Graph states play a fundamental role in the theory of
quantum computation and communication [1] as well as
the study of the complexity of physical systems [2]. They
are arguably the simplest quantum states, with a classi-
cal description in terms of simple graphs, exhibiting rich
quantum phenomena. From the perspective of multipar-
tite quantum communication, they are interesting because
local operations can transform the global graph topology
and thus allow flexible routing [3—5]. From the perspec-
tive of many-body physics, they are interesting since they
relate to computationally distinct phases of matter [2].
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In our work, we consider graph states from the per-
spective of understanding quantum properties that lead
to computational speedups. Graph states are prime candi-
dates to study a specific quantum phenomenon, namely,
entanglement, in terms of how it relates to computational
complexity. On the one hand, measuring graph states in
adaptive single-qubit bases allows the execution of arbi-
trary quantum computations through measurement-based
quantum computing [6,7]. These measurements can be
restricted to the X -Y plane of the Bloch sphere [8]. On
the other hand, graph states exhibit a rich multipartite
entanglement structure [9], which is required for quan-
tum speedups [10]. Understanding which properties of
graph states make them generically hard to simulate clas-
sically can therefore yield insights into the mechanisms
underlying quantum speedups.

An insightful model to study these properties is the
family of regular graph states, i.e., graph states whose
underlying graph on n vertices is d-regular for some 0 <
d < n. These states form a family of graph states with
a well-controlled connectivity structure, which relates to
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their entanglement and classical simulability. The degree
of the underlying graph also connects to the circuit depth
required to prepare them, since they are prepared by apply-
ing controlled-phase gates to an initial |+)®" state—all
d-regular graph states can be prepared in depth at most
d+ 1. d-regular graph states are therefore amenable to
preparation on near-term devices with long-range connec-
tivity such as reconfigurable atom arrays [11] and trapped
ions [12]. A recent experiment demonstrated quantum
advantage based on random universal circuits on regular
graphs [12]. In contrast to universal random circuits, graph
states can be implemented via naturally fault-tolerant oper-
ations in certain stabilizer codes [13,14] and are therefore
amenable to early fault-tolerant implementations [11] as
well as tailored error mitigation [15]. Graph state prepa-
rations can also be efficiently verified with the use of
high-quality single-qubit measurements [16]. Thus, ran-
dom regular graph states enable compelling experiments
demonstrating noise-robust quantum advantage [17], effi-
cient verification and benchmarking of generic structured
circuits in long-range-connected architectures [13], and the
first experimental preparations of highly structured states
with applications beyond quantum advantage [18].

In the worst case Ghosh et al. [19] gave a tight connec-
tion between simulability and entanglement: when mea-
sured in an arbitrary X-Y plane product basis, d-regular
graph states are hard to simulate and highly entangled if
and only if 2 < d < n — 3. But both for demonstrating
quantum advantage and when one is aiming to understand
the intrinsic relation between hardness of simulation, mul-
tipartite entanglement, and device connectivity, it is crucial
to study generic states from the family, i.e., random d-
regular graph states [20,21]. This ensures that we are not
drawing conclusions from isolated points in the family and
makes random regular graphs a Goldilocks model to study
those fundamental and practical questions alike [22].

In this paper, we therefore consider the average-case
complexity of simulating uniformly random d-regular
graph states when measured in an arbitrary X-Y plane
product basis. In doing so, we study structured randomness
in order to understand the relation between entanglement
and complexity. From a fundamental perspective, this pro-
vides an alternative to fully random quantum states. From
an experimental perspective, it provides an opportunity
for demonstrating the computational capabilities of quan-
tum processors for more structured circuits, as well as the
potential for fault-tolerant implementations. Importantly,
the setting we consider covers both sampling problems
and universality for measurement-based quantum comput-
ing. We give evidence for the average-case complexity of
these two problems in three distinct regimes of the regu-
larity parameter: (1) the regime of 2 < d = O(1), (2) the
regime of d € ®(n°) for any 1/2 < ¢ < 1, and (3) the
regime of d ~ n/2. To the best of our knowledge, we thus
give the first ensemble of circuits which are classically

intractable for any depth (in particular low depth) above a
constant threshold. The best lower bound we had for such
a threshold was logarithmic depth [13,23-25].

We first give evidence for average-case complexity
in the regime of 2 <d = O(1). To this end, we first
show that the output distributions of instantaneous quan-
tum polynomial-time (IQP) circuits on random highly
connected graphs constructed from d random matchings
measured in a random X -Y plane basis have the anticon-
centration property [26,27] at any depth 2 < d = o(n'/?).
Combined with the fact that for each value of d there
are worst-case hard instances in this family, this provides
evidence for hardness of simulation on the same level of
rigor as is known for other discrete families of IQP cir-
cuits [20,23]. This is the first family of quantum circuits
that we are aware of for which there is evidence of sim-
ulation hardness at any sublinear depth above a constant
threshold, and thus is a result of independent interest. We
use this result to characterize the complexity of random
regular graph states, noting that a random circuit from this
matching model (strictly speaking a slight variation called
the “pairing model’) at a fixed depth d yields a uniformly
random d-regular graph state with probability O(Z_dz).
This implies the anticoncentration property of constant-
regularity graph states and thus gives evidence for their
classical intractability, showing the first main result.

In our second result, we show that a random d-regular
graph with d = ®(n¢) for any 1/2 <c <1 has a grid
graph of polynomial size as an induced subgraph (resulting
from deletion of some of the vertices). Since the grid graph
is a universal resource for measurement-based quantum
computation, this shows that an algorithm for sampling
from the output distribution of those graph states in any
local basis would imply a collapse to the polynomial hier-
archy up to the average-case #P-hardness of a certain
approximation problem [as well as being, in principle,
universal resources for measurement-based quantum com-
puting (MBQC)]. To the best of our knowledge, this is
the strongest known average-case hardness result for any
ensemble of graph states and the corresponding ensemble
of IQP circuits.

Finally, in our third result, we show that uniformly ran-
dom graph states have geometric entanglement bounded
significantly away from the maximum. This makes them
nontrivial and in particular not amenable to the trivial
simulation algorithm of Ref. [28], giving some evidence
for their average-case complexity when measured in any
local basis. We believe similar results will hold for random
cn-regular graphs with 0 < ¢ < 1/2.

Altogether, our results for the average-case behavior
turn out to be qualitatively similar to those for the worst-
case behavior. However, they are rather more difficult to
obtain, and substantial technical work using entirely dif-
ferent tools for each of the results is required, pointing to
different properties of the three regimes: The first result
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requires the analysis of a statistical-mechanics mapping
[13], which we show can be reduced to asymptotic prop-
erties of the Krawtchouk polynomials [29], which have
previously appeared in a variety of contexts [30]. The
second result requires graph-theoretic tools to show prop-
erties of subgraphs of random d-regular graphs. The final
result requires the analysis of the geometric entanglement
entropy, which can be reduced to the study of extremal
probability problems related to the rank of submatrices of
uniformly random adjacency matrices.

Our results demonstrate that computationally universal
or complex states can arise naturally from constrained ran-
domness, and that this constraint can give rise to more
complexity than less structured or completely unstructured
randomness. Indeed, compared with the paradigmatic set-
ting of quantum circuits composed of parallel Haar-
random two-qubit gates, two of our results are particularly
striking. First, our result that random graph states which
can be prepared in constant depth exhibit anticoncentra-
tion is provably not true for constant-depth Haar-random
circuits [25,31,32]. These may still be average-case hard to
simulate, but numerical evidence in low dimensions points
against a low depth threshold for classical intractability
[24]. Second, our result that uniformly random graph states
are not too entangled to be useful for measurement-based
computation is also provably not true for Haar-uniformly
random states [28]. Thus, our results suggests that while
quantum states generated by Haar-random circuits are
complex only in a limited depth regime, graph states gen-
erated by random controlled-Z (CZ) circuits are complex
at almost any depth.

A. Guide for readers

Although the paper is rather long, it is composed of three
parts, each covering a different main result in a fairly self-
contained manner (depending on which result they want
to read about, readers may jump to the relevant section
without needing to read the other parts of the paper):

(1) Anticoncentration results for IQP circuits and
constant-degree regular graph states. A summary
of the results and proof techniques is given in
Secs.IB1,IB2, and I C 1. The results are discussed
in detail and proven in Sec. III, with preliminaries in
Secs. IIA-IIC.

(2) Universality results for random regular graph states
of intermediate degree. A summary of the results
and proof techniques is given in Secs. IB3 and I C 2.
The results are proven in Sec. IV.

(3) Absence of a geometric entanglement barrier for
random graph states of high degree. The main
results and proof techniques are summarized in
Secs. IB4 and 1C3. The results are proven in
Sec. V, with preliminaries in Sec. II D.

Not to be missed in any case is the discussion in Sec. [ E.

B. Results

We present results on uniformly random d-regular graph
states covering three different ranges for the regular-
ity parameter d. We deal, in order, with 2 < d = O(1),
d=0m for c € (0,1), and d ~ n/2. Along the way
we will also prove several results for different random
graph models, such as the pairing and matching mod-
els (described in Sec. IIB) and the uniformly random
graph model. We believe these results to be of independent
interest.

1. Anticoncentration of a family of random pairing and
matching IQP circuits

Our first set of results deals with the average-case hard-
ness of two families of IQP circuits of depth d satisfying
d > 2 and d = o(n'/?). These IQP circuits prepare (not
always regular) graph states of degree at most d. Average-
case hardness of constant-regularity graph states will
follow from those results. To give evidence for average-
case hardness of these depth-d circuits we prove that their
outcome distribution, when measured in a random local
basis in the X -Y plane, anticoncentrates. Moreover, they
contain worst-case hard instances.

We state our theorems in terms of the (normalized)
second moment

my(G,0) =2" Y pox)’
xe{0,1}"

of the outcome distribution pgg of the graph state on G
measured in X -Y-plane angles 6 € [0,27)". We say that
the output distribution anticoncentrates if m, € O(1), since
in that case a constant fraction of the output probabilities
must be on the order of 1/2". Averaging over graphs G and
measurement angles 6, we find the average second moment
my = Egg[m2(G,0)] gives evidence for the #P-hardness
of approximating the outcome probabilities of measur-
ing states corresponding to random graphs G and random
angles 6 up to constant relative error [20]. Intuitively, anti-
concentration prohibits an efficient average-case simulator
which uses trivial approximations by zero to most prob-
abilities of most graph states in its simulation. In this
sense, it gives evidence for the average-case complexity
of random graph states. Assuming additional well-founded
complexity-theoretic assumptions, in conjunction with the
worst-case hardness results of Ref. [19], this gives evi-
dence for the hardness of sampling from such graph states
to the same level of confidence as we have for other
discrete families of circuits. The technical argument is
reviewed in Ref. [20] and, roughly speaking, goes as fol-
lows: The circuit family we consider contains instances
that are provably hard to strongly simulate up to relative
error. Anticoncentration shows that most outcome proba-
bilities have a similar order of magnitude and hence there
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is no detectable structure in the output distribution that
would make a trivial simulation algorithm work. Finally,
the ensembles we consider do not appear to have any
exploitable structure that would help an algorithm designer
to simulate a random instance compared with the worst-
case instance; see also Ref. [33].

Specifically, we consider the following two ensembles
of depth-d IQP circuits, which generate graph states of
degree d. We call the first ensemble the “random pairing
model.” This model is obtained by our choosing a uni-
formly random matching on nd vertices and identifying d
vertices with a qubit. A CZ gate is applied to every edge in
the resulting multigraph. This model (which is well studied
in graph theory [34]) is motivated by the fact that, condi-
tioning on the graph being simple, it generates a uniformly
random d-regular graph state. We associate (simple) graph
states with the multigraphs chosen in these ways by delet-
ing double edges and self-loops. In the second model, the
random matching model, a graph state is generated by
application of CZ gates on d independent, uniformly ran-
dom matchings. In this model, for any constant d, a regular
graph state is generated with constant probability. How-
ever, not all d-regular graph states admit a perfect matching
[35] (and some admit many, making this distribution differ-
ent from the uniformly random regular graphs, even when
conditioning on simplicity). Thus, the regular graph states
generated by perfect matchings are exactly those graph
states with dn/2 edges which can be prepared in optimal
depth d.

We show that the output distribution of both models in
a random X -Y basis anticoncentrates for any d satisfying
d>2andd = o(n'/?).

Theorem 1 (Anticoncentration of random pairing and
matching graph states). Consider random graph states |G)
on n vertices drawn from (1) the random pairing model

(a) (b) 103 J
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myp = 2
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FIG. 1.

on nd vertices or (2) d uniformly random matchings on »
vertices. Then for 2 < d = o(n'/?)

2 ifdisodd,

E = 1
Golm2(G,0)] = o(1) + 3 ifdis even.

(1)

We also show the exact value of Egg[m2 (G, 6)] for dif-
ferent values of n, d and both models in Fig. 1. We observe
not only that the d-dependence of our results is tight, but
also that the convergence to the asymptotic value occurs
rapidly.

The results of Ref. [19] imply that for each value of d
the random pairing model contains worst-case hard graphs.
The random matching model trivially contains such graphs
since for every odd d it contains the hexagonal lattice,
and for every even d it contains the square lattice, both of
which are universal for measurement-based quantum com-
putation [36]. Thus, anticoncentration gives evidence for
the average-case hardness of approximating the outcome
probabilities in both cases. To the best of our knowledge,
Theorem 1 is thus the first to give rigorous evidence for
the hardness of simulating constant-depth circuits with ran-
dom connectivity. In particular, it is the first result for
constant-depth circuits which goes beyond resource states
for MBQC [37—40]. At constant degree, we do not believe
that random regular graphs contain (as induced subgraphs)
large two-dimensional (2D) graphs (with high probability),
which are usually required in MBQC constructions [36].

2. Anticoncentration of constant-degree regular graph
states

Finally we can use our results on the pairing model
to address the average-case complexity of random reg-
ular graph states of constant degree d. Specifically,
Theorem 1 implies that random regular graphs with any
constant degree d > 2 anticoncentrate, giving evidence

d=1 d=3 d=4
""" d=2 —— d=5 ——= d=6
.,:é“‘ -
1 1 1 1 1 1 1
0 10 20 30 40 50 60
n

Exact values of Ego[m2(G,0)] [evaluated via Eq. (105)] for graph states drawn from (a) the random pairing ensemble

G, (d, n) and (b) the random matching ensemble G,,(d, n) for various values of d as a function of n. The opaque (transparent) loosely
dotted lines denote the asymptotic values of m, = 2 (m, = 3) of the average second moment. Solid (dashed) lines represent odd (even)
values of d. Dotted lines represent d = 1,2 for which there is no anticoncentration.
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for their average-case hardness. This statement follows
immediately from the following more general corollary.

Corollary 1 (Anticoncentration of random d-regular
graph states). Consider the uniform measure G,.(n) on d-
regular graphs on n vertices, and uniformly random angles
6. Then, for 2 < d = o(n'/?),

Eg~6,molma(G.0)] < G+ o(1))27. )

This corollary is a straightforward consequence of
the fact that conditioning on simplicity in the pairing
model gives rise to uniformly random regular graphs (see
Sec. II B). Corollary 1, together with the worst-case hard-
ness result of Ref. [19], gives evidence that approximating
the outcome probabilities of regular graph states of con-
stant degree measured in random X -Y plane bases is #P-
hard on average. We strongly believe that random regular
graph states also anticoncentrate at super-constant depth,
but leave showing that to future work.

We note that some existing results about IQP circuits can
be rephrased in terms of random graph state models, yield-
ing results similar to Corollary 1 for different models of
random graphs. In particular, Ref. [13] shows that IQP cir-
cuits composed of g, CZ, and Z gates applied uniformly
at random to n qubits anticoncentrate if g = Q (nlogn)
but fail to anticoncentrate for any g = O(n). This directly
translates to the Erdds-Rényi random graph model, in
which an edge is contained in the graph with probabil-
ityp=g/ (;), measured in the =X basis. Reference [13]
gives evidence that Erdés-Rényi random graphs are hard
to simulate for p € Q(logn/n) and suggests that they
are not generically hard to simulate below that threshold.
This is consistent with graph percolation, where famously
Erdés and Rényi [41] showed that if p < 1/2n, a random
graph’s largest connected component has size O(logn),
which implies that it is efficiently simulatable with the use
of tensor-network techniques [10].

3. Universality of regular graphs of intermediate degree

Our second set of results is about the universality of ran-
dom graph states, when the regularity of the graph scales
quite strongly with n. In particular, when d = ®(n¢) for
c € (0,1) we argue that large grid graphs can be found
as induced subgraphs in random regular graphs with high
probability. This implies that the associated graph states
can be turned into universal resource states with the use
of only computational basis measurements. We have the
following theorem:

Theorem 2 (Induced grid graphs). Let G be a ran-
dom d-regular graph on n vertices, with d = n°, where
0.5 < ¢ < 1. Then, with probability 1 — o(1), it contains
a square grid graph on v vertices, for any v = o(n"), with
k =min {(1 — ¢)/2,c/3}, as an induced subgraph.

This theorem is proven with use of the switching tech-
nique due to McKay and Wormald [42]. This is a standard
technique in random regular graph theory, but is usually
applied in situations where the subgraph to be found is of
constant size (whereas for us it must grow reasonably fast
with n). Because of this, and because these techniques are
not widespread in the quantum computing literature, we
give explicit switching calculations in Sec. IV A.

A limitation of this result is the fact that ¢ > 0.5. This
seems to be an unavoidable fact, as the expected number
of grid graphs goes to zero whenever ¢ < 0.5. This thresh-
old behavior is observed even for grid graphs of constant
size [43]. We can get around this limitation by consider-
ing sparsified grid graphs, constructing them by replacing
every edge in an L x L grid graph by L edges and L — 1
vertices in a line. The resulting graphs are very linelike
asymptotically yet are still universal (with a polynomial
space overhead): we can recover the L x L grid graph as a
vertex minor by measuring all the added vertices in the ¥
basis. For these graphs we can prove the following stronger
statement:

Corollary 2 (Sparsified induced grid graphs). Let G be
arandom d-regular graph on n vertices, with d = n¢, where
0.5 < ¢ < 1. Then, with probability 1 — o(1), it contains
a sparsified square grid graph on v vertices, for any
v = o(n"), with k = min{(1 — ¢)/2,c/3}, as an induced
subgraph.

Corollary 9 implies that random n¢-regular graphs of
intermediate degree ¢ € (0, 1) are universal resources for
measurement-based quantum computing when measured
in an arbitrary product basis. Note, however, that finding
the induced sparsified grid graph may be (and probably is)
a computationally difficult problem. Therefore, the stan-
dard reduction from sampling to computing probabilities
of postselected polynomial-time quantum computations
may not be possible in polynomial time. However, since
identifying a grid graph can be done with access to an NP
oracle, the reduction is possible in the polynomial hierar-
chy. Thus, while an efficient exact sampling algorithm in
an arbitrary basis from a grid graph collapses the polyno-
mial hierarchy to the third level [20], it still collapses it
to the fourth level for graphs containing induced sparsified
grid graphs.

Finally it must be noted that the proofs of the above
results explicitly break down in the regime where d = cn
with ¢ € (0,1). More strongly, it is known that in this
regime one cannot find large (much larger than log(n)-
sized) nontrivial induced subgraphs with more than negli-
gible probability [44]. This leads one to suspect that graph
states of linear degree are not universal. We suspect that
it is the case that they are universal on average, but we
have no proof of this. We do provide some evidence in this
direction, which we discuss in the next section.
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4. Absence of a geometric entanglement barrier for
uniformly random graph states

Entanglement is usually considered to be a necessary
condition for universal measurement-based quantum com-
putation. However, it was proven in Ref. [28] that a state
can be “too entangled” to be used as a resource state (and
also that—under the Haar measure—most states are too
entangled in this way). This was done by arguing that if a
resource state has high geometric entanglement, defined as

_ 2
Eo(I¥)) = —log <a§ﬁ?§nn [{a| )] ) 3)

where PROD,, is the set of product states, then any NP-
problem solved by MBQC with [y/) as a resource state can
be solved by a classical computer (with access to random-
ness) in time O (poly(n)2" %)) In light of the failure of
the arguments above in the d = © (n) regime one can won-
der whether this entanglement barrier shows up for random
graph states [of degree cn with ¢ € (0,1)]. We give evi-
dence that this is not the case by proving an upper bound
on the geometric entanglement of uniformly random graph
states.

Theorem 3 (Geometric entanglement upper bound for
graph states). Choose a graph state |G) uniformly at
random. There exist constants ¢ and C such that

P [Eg(IG)) >n— cn1/4/ log(n)] <C. (@)

The proof of this theorem establishes a connection
between the geometric entanglement of random graph
states and the behavior of the ranks of the principal sub-
matrices of random adjacency matrices, which can subse-
quently be analyzed with the use of ideas from extremal
probability and Markov chain Monte Carlo techniques
[45]. This upper bound is strong enough to exclude the
simulation algorithm given in Ref. [28], which now runs

in time 2 (2"1/4). We note that this upper bound does not
directly translate to a similar bound on d-regular graphs
with d = cn. However, these distributions are very similar.
For instance, the sandwich theorem [46] tells us that uni-
formly cn-regular graphs can be closely related to Erdds-
Rényi random graphs with constant acceptance probability
p (our result can be interpreted as evaluating the p = 1/2
point). Furthermore, uniformly random graphs are with
high probability quite regular, with most vertices having
degree n/2 + O(4/n). We leave making these connections
fully rigorous for future work.

We also provide strong evidence that this upper bound
is almost tight, by providing a lower bound on the geo-
metric entanglement of random stabilizer states (which are
equivalent to graph states up to local Clifford operations).

Theorem 4 (Geometric entanglement lower bound for
stabilizer states). Choose a stabilizer state |S) uniformly

at random. There exists a constant ¢ such that
P[E.(1S)) < n—cv/nlogm)] < 027V, (5)

This theorem is a straightforward application of the
representation theory of the Clifford group. Because a con-
stant fraction of stabilizer states are graph states (up to
linear phases, which leave the geometric entanglement
unchanged) this leads to a similar statement for graph
states.

Corollary 3 (Geometric entanglement lower bound for
graph states). Choose a graph state |G) uniformly at
random. There exists a constant ¢ such that

P[E,(IG)) < n—cy/nlogm)] < 0Q2™V").  (6)

We believe [ignoring the log(n) factors] that the O(\/n)
deviation in Corollary 3 is accurate, and the slightly weaker
Q(n'/*) scaling in Theorem 3 is a consequence of the proof
technique. We leave closing the gap between the upper and
lower bounds for future work.

C. Proof ideas

We presented results in three different regimes of regu-
larity. The proof techniques in these three regimes are all
quite different, drawing on results in combinatorics, ran-
dom graph theory, and random matrix theory. Here we
outline, organized by regime, the techniques used in this

paper.

1. Constant-degree graph states and random pairing and
matching IQP circuits

The key result on graph states of constant degree is
Theorem 1, which concerns random IQP circuits gen-
erated from uniformly random matchings. This result
implies anticoncentration of the X-Y plane output distri-
bution of constant-degree regular graph states. To show
this theorem, we use a combination of techniques. First,
we reduce the problem to a purely graph-combinatorial
problem using a statistical-mechanics interpretation of
the expected second moment of the output distribution
described in Ref. [13]. Importantly, this model is dis-
tinct from similar models for quantum circuits with Haar-
random single-qubit gates [47—49] and is significantly
more involved to analyze. The resulting combinatorial
problem, which amounts to counting the number of match-
ings which have an even number of edges crossing
between two arbitrary subsets of vertices, can be further
interpreted as a sum over so-called Krawtchouck polyno-
mials [29]. These have seen use in coding theory [30],
and good bounds are available [50], which allow us (with
a substantial amount of combinatorial elbow grease) to
provide bounds on the expected second moment.
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2. Intermediate-degree graph states

The main results on intermediate-degree graphs (The-
orems 2 and 2) are essentially about proving bounds on
the appearance of induced subgraphs of random d-regular
graphs. Proving such bounds is a well-studied problem
in graph theory, both in the case of d-regular graphs or
Erdds-Rényi graphs and in the induced and standard sub-
graph cases (see, e.g., Ref. [43] or the book by Bollobas
[51]). However, in the literature usually only the case of
constant-sized subgraphs is treated explicitly, whereas we
require bounds for the appearance of induced subgraphs
that grow quite fast with n. Thus, we prove Theorem 2 by
a careful application of existing combinatorial methods, in
particular the method of switchings, introduced by McKay
and Wormald [42], which is particularly effective at ana-
lyzing expectation values of random variables induced by
random d-regular graphs, and the second moment method,
to convert expectation value estimates to statements that
hold with high probability. The difficulty here lies almost
entirely in the care required to get nontrivial estimates for
induced subgraphs growing in size with 7.

3. High-degree graph states

The main results on graph states of high degree are The-
orems 3 and 4, providing lower and upper bounds on the
geometric entanglement. Theorem 4 follows a relatively
standard path, approximating the continuous optimization
in the geometric entanglement by a discrete one through
an e-net, followed by a union bound and a tail bound on
the overlaps with fixed product states. There is some sub-
tlety in that we require a rather small e-net for the union
bound to be nontrivial. To that end we extend a nice trick
from random matrix theory to the geometric entanglement
in Lemma 13, proving that we can obtain a multiplicative
approximation to the maximum in the geometric entangle-
ment using a relatively small e-net. The subsequent tail
bound is then provided by the moments of random sta-
bilizer states, developed in Ref. [52]. Some care must be
taken to choose the right moment here, as the moments of
random stabilizer states grow too fast for a straightforward
exponential generating function approach to work [53].

Proving Theorem 3 is substantially more complicated.
We restrict the optimization in the geometric entangle-
ment to a special subset of product states for which we
can characterize the overlap purely in terms of the corank
of principal submatrices of the adjacency matrix of the
graph state. This reduces bounding the geometric entan-
glement to an extremal probability problem on random
symmetric binary matrices. Inspired by similar arguments
in the theory of Gaussian processes [54], we then bound the
correlation between the coranks of different principal sub-
matrices of a single random adjacency matrix. We prove
that if the overlap between the two matrices is small, then
their coranks are approximately independent. This is then

enough to prove a lower bound on the maximal corank,
via the second moment method (in particular we use the
Bonferroni inequalities). Proving this approximate inde-
pendence is done by reducing the problem to a Markov
chain on the integers N, for which we then prove pre-
cise (nonspectral) upper bounds on the convergence to the
stationary state.

D. Context and prior work

Our work builds on first steps made in Ref. [19] that
classify the simulation complexity and entanglement prop-
erties in the worst case over the choice of d-regular graphs.
There, it was shown that as d is increased, the simula-
tion complexity and entanglement properties undergo two
phase transitions, providing a tight link between com-
plexity and entanglement: for d <2 and d > n — 3 the
entanglement is low and simulating single-qubit measure-
ments in any basis is classically easy for all d-regular
graph, while for any other value of d there is a d-regular
graph for which simulations are classically intractable and
the multipartite entanglement is high. But are these hard
instances isolated in their respective regularity class or are
most instances of a class hard? In many cases, average-case
complexity significantly differs from worst-case complex-
ity, most famously so for NP-problems, where often most
instances are efficiently solvable.

Thus, our results on average-case hardness of random
d-regular graph states significantly strengthen the connec-
tion between the connectivity of a graph and the entan-
glement properties of the corresponding state and provide
complexity-theoretic evidence that classical intractability
is a generic feature of multipartite entangled states. Gen-
erally speaking, though, there are only a few techniques
to address average-case complexity such as random self-
reducibility—these techniques primarily involve reducing
the average-case problem to proving average-case hard-
ness of computing the permanent of a matrix (see, e.g.,
Refs. [26,55,56])—which work for Haar-random gate sets
since they are continuously parameterized but are not
applicable to the discrete randomness of random graphs.
This is why the average-case complexity of random graph
states is a qualitatively different question from both their
worst-case complexity and the average-case complexity of
continuous ensembles.

From a different perspective, our work can be viewed
as a first attempt to answer the question of whether ran-
dom regular graph states are resources for MBQC [and in
the regime of d = ®(n), we answer in the affirmative].
Assessing which graphs form resource states for MBQC
has a rich history [1,7,36,57,58] and has motivated the
idea of computational phases of matter [S9—65]. This ques-
tion has also arisen in the study of the impact of noise
on computational power. Concretely, Browne et al. [66]
studied the impact of erasure noise on MBQC on grid
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graphs in terms of percolation phenomena. Here, at each
lattice site, there is a finite probability that the qubit on
that lattice site is erased, resulting in a random cluster state
as originally introduced by Briegel and Raussendorf [58].
Below a certain value of that probability—known as the
percolation threshold—noisy grid graphs can then be clas-
sically simulated, whereas above that probability, noisy
grid graphs remain universal resource states. Equivalently,
we can view this setting as the random graph state ensem-
ble given by random subgraphs of the grid graph [58],
which is an ensemble rather different from the ones studied
in this paper.

E. Discussion and outlook

To our knowledge, our results are the first to explore
the average-case complexity of random graph states with
bounded degree. They give evidence toward the average-
case complexity of simulating graph states of any degree
2 < d < n/2 using different types of results relating to the
hardness and simulability of random graph states. In partic-
ular, our results interpolate between these degree regimes.
This interpolation runs via the degree of regular graphs and
thus extends the results of Ref. [19] to the average case.

However, they can by no means be said to be the final
word on the average-case complexity of regular graph
states, or low-depth quantum circuits. Thus, they raise a
number of interesting questions. In particular, they have
interesting consequences when related to a variety of dif-
ferent themes in the study of simulating sampling from
quantum circuits. In our discussion, we will discuss each
regularity regime in turn and formulate a number of open
questions and conjectures.

1. Constant-degree graph states and random matching
IQP circuits

Theorem 1 gives evidence for the average-case hard-
ness of simulating a family of random quantum circuits
with random connectivities of any depth larger than 2 and
scaling slower than the system size n. It is the first cir-
cuit family for which anticoncentration has been shown
extending from any constant depth to sublinear depth.

Similar constructions of universal random circuits based
on regular graphs with perfect matchings were previously
studied numerically and experimentally in Ref. [12]. Since
commuting IQP circuits have often been precursors to
results for random circuits (e.g., in terms of complex-
ity [33,67] and noisy simulation [23,68,69]), our result
may thus also help in the rigorous study of constant-
depth random circuits in arbitrary geometries. In partic-
ular, it is worth considering our results in relation to the
results obtained by Napp et al. [24], who give evidence
that average-case hardness fails for constant-depth Haar-
random circuits, as well as to the results obtained by
DeCross et al. [12], who give evidence that the simulation

complexity of random circuits on different connectivities
remains bounded at very low depths. To see why our
results are different, we observe that both those studies
consider random circuits in which arbitrary single-qubit
rotation gates can be applied throughout the circuit. It
may indeed be that in this case average-case hardness
requires a strictly super-constant circuit depth. At least
depth Q2(loglogn) is required for anticoncentration in
models that are invariant under Haar-random single-qubit
gates [25]. Our results circumvent this lower bound by
restricting the local bases we measure in to the X -Y plane.
Hence, the fact that we measure only in the X-Y plane is
critical to the anticoncentration in constant depth we show.
It remains an interesting question, however, how the sim-
ulation complexity of such random circuits depends on the
circuit depth. As a first step toward this, it would be inter-
esting to consider the random matching IQP circuits with
measurements in a Haar-random single-qubit basis. By the
result in Ref. [25], anticoncentration will fail for constant
depth, and thus this model would be helpful to understand
the mechanism governing the arising lower bound.

It is also interesting to consider the relation of our results
to recent results for simulating noisy IQP circuits [70]. In
Ref. [70] it is shown that noisy IQP circuits at any depth
larger than a noise-dependent constant can be efficiently
classically simulated, and one might think that our results
might yield some leeway to circumvent these results. How-
ever, note that a previous noisy simulation algorithm due
to Bremner et al. [23] will work for any IQP circuits which
anticoncentrate, and therefore also applies to the circuit
families we consider here. Noisy constant-depth IQP cir-
cuits might also be interesting to consider in the context
of the recently discovered transition in the cross-entropy
benchmark (XEB) versus the fidelity [71-74]. While IQP
circuits giving rise to Erd6s-Rényi random graph states
with some edge probability p exhibit the transition in the
XEB [13], this transition may be understood as occur-
ring because in such graphs the probability that no gate is
applied to a particular qubit vanishes only exponentially
in d rather than nd. In contrast, for IQP circuits giving
rise to d-regular graph states, entangling gates are guar-
anteed to be applied to every qubit, and thus the transition
may disappear. This would allow them to be reliably and
(sample-)efficiently benchmarked with the XEB.

2. Intermediate-degree graph states and universality for
measurement-based computation

Our results focus on the question of whether random
graph states can be classically simulated, which is a
priori a question which is distinct from the question of
whether random graph states are universal resources for
measurement-based quantum computation. While some of
our results (in the intermediate regime) explicitly make use
of universal resources, it is interesting to ask in what sense
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or to what extent random graph states in different regimes
can function as universal resource states. To answer this
question, it must first be made clear that the notion of
a “universal resource” can have very different meanings.
A natural notion of universality is one in which we just
ask that for any number of qubits #, the family of states
contains a state on m > n qubits such that with use of
measurements and feedforward an arbitrary unitary can
be implemented on n of the m qubits up to some preci-
sion threshold [36]. Note that this notion is not concerned
with efficiency, and hence the graphs containing a 2D grid
graph in the intermediate regularity regime are certainly
examples of universal resources in this sense. The univer-
sal resource is even efficient in the sense that m = poly(n).
However, note that these graphs cannot be efficiently found
in general, and finding them may require the solution of an
NP-problem (showing this is an interesting open question).
To computationally exploit a universal resource, it is a pre-
requisite that a sufficiently large 2D subgraph can also be
efficiently found, since the only known efficient construc-
tions make use of those graphs. This raises the question of
whether in the intermediate-degree regime certain random
ensembles contain grid graphs as subgraphs that can also
be efficiently found.

In the regimes of very high and very low degree,
whether or not random regular graph states are universal
resources remains an interesting open questions. In partic-
ular, in those regimes, we do not expect there to be large
grid graphs or hexagonal graphs as induced subgraphs
of many regular graphs. But all known ways of compil-
ing a quantum computation in a measurement-based way
make explicit use of the presence of such a subgraph. We
believe the region in which explicit large grid graphs can
be found can be expanded (e.g., into the d = cn regime)
but only by going beyond induced subgraphs. Ideally, one
would like to characterize which regular graphs have large
grid graphs as vertex minors, which is the graph-theoretic
notion capturing the action of local Clifford gates and Pauli
measurements. The vertex minor problem is NP-hard in
the worst case [75], but little is known about its average-
case behavior. Even to understand whether grid graphs on
an exponentially small or even constant subset of qubits
can be found remains an interesting open question. There
might also be resources for measurement-based quantum
computation which are not equivalent to hexagonal or grid
graphs. We think this is a fruitful avenue of future research.

3. High-degree graph states

In the regime of high degree we also lack a full charac-
terization of the complexity of graph states, in particular
the question of classical simulability is not fully settled.
While we have excluded the simulation algorithm given
in Ref. [28], we cannot exclude the existence of more
tailor-made classical algorithms for MBQC with random

linear-degree graph states. In Sec. VC we describe a
simulator where all Pauli measurements are explicitly cal-
culated and only non-Pauli measurements are simulated.
We believe that even this more sophisticated algorithm
fails, but cannot prove it as of yet. We leave this as a
conjecture. It would also be interesting to prove variants
of our results for random cn-regular graph states with
0 < ¢ < 1/2, which we believe can be done through the
sandwich theorems from random graph theory [46].

4. Toward analyzing noisy, architecture-constrained
graph states

Aside from the different regimes of the regularity param-
eter just discussed, an interesting open question raised by
our work is the complexity of graph states that can be
naturally realized in different quantum computing archi-
tectures. The arbitrary connectivity required to generate
the random regular graphs may be difficult to realize in
practice. For instance, while in principle reconfigurable
atom or ion arrays [11,12] arbitrary connectivity between
qubits can be realized, there may be more natural random
ensembles of graph states, for instance, subgraphs of a
high-dimensional hypercube [13]. In other architectures,
such as superconducting qubits, even more constrained
low-dimensional lattice geometries are imposed [76].

A further interesting question in the context of more
realistic circuit ensembles is to what extent noise affects
the output distribution. In the literature on sampling from
the output distributions of random quantum circuits, a
prominent quantity is the XEB score, which generalizes
anticoncentration to noisy circuits and serves as a measure
of the quality of the sampled distribution [67,76,77]. An
important result in this context is that for local noise rates
on the order of < 1/n and where the ideal output distri-
bution anticoncentrates, the XEB can be used as a proxy
of the many-body fidelity of the premeasurement state
[71,74,78], and moreover, that this is the regime in which
there are no exploits that classical algorithms might use
to achieve a high XEB score significantly more efficiently
than brute-force simulations. In contrast, in the regime
where the noise rate is larger than 1/n, such exploits exist
[73]. Similar statements can also be made for IQP circuits
[11,13], and it is an interesting open question to analyze
the XEB for noisy random graph state ensembles.

II. PRELIMINARIES

In this section we recall some assorted facts about
graphs, graph states, and stabilizer states that we will need
throughout the rest of the paper. This is by no means meant
to be an exhaustive introduction. For graph theory (with a
focus on random graphs) we recommend the classic text-
book by Bollobas [51], and good introductions to graph
states and stabilizer states can be found in Refs. [9,79].
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We will also require properties of Krawtchouk polynomi-
als as well as bounding techniques for the convergence of
Markov chains, which we also recall in this section.

A. Graphs, graph states, and stabilizer states

We begin by reviewing some standard graph-theoretic
notions. A graph G is a set of vertices V' (usually the set
[#], and a set of vertices E C V' x V connecting them). We
denote by G the complement graph, which has the same
vertex set, and the complementary set E € V x V of edges.
We will occasionally be somewhat sloppy in notation and
write e € G (e € G) to indicate that e is (not) an edge
in G [and thus e € E (e € E)]. Similarly we will some-
times write subsets of edges as S C G. A subgraph H of
G is obtained from G by considering a subset of the edges
E’ C E, and an induced subgraph H is obtained by con-
sidering a subset of the vertices V' C V, which has edges
E=EUV xV.

The symbol G, 4 refers to an n-vertex d-regular graph,
and G, 4 refers to the complement of the same graph . We
drop the subscripts when the number of vertices and the
regularity parameter are clear from the context. For a graph
G, we define m(G), the density of the graph, as

\Elp
m(G) =max{ ——,H C G,|V|g > 0¢. 7
[V

An n-qubit graph state |G) is defined in terms of an
n-vertex graph G as

=[]

(i):Ugliy ]=1

1 T
CZI" 4 = —1)* Ugx ,
i) == xe%}ﬂ( ) Ve )
®)

where Ug is the upper triangle of the adjacency matrix Ag
of G and the inner product is taken over . Graph states
are a type of stabilizer state (which we denote by |S)),
which means they are the joint +1 eigenvectors of a set of
2" mutually commuting Pauli matrices. There are 2"*~1/2
graph states and 2" [T_,(2" 4+ 1) stabilizer states. A key
property of stabilizer states is the following expectation
value (taken uniformly over the stabilizer states), first
derived in Ref. [52]:

Eis) 15)(SI®" = dYORM. ()

TS +2) /5,

where X, is the set of Lagrangian subspaces of 3’ with
respect to a particular generalized quadratic form, and R(T)
is an n#-qubit representation of this set (which can be given
a semigroup structure). We will need very few properties
of this set (see Ref. [52] for an exhaustive treatment), only

that

t—1
1Sl =]]@ + D, (10)

i=0

tr(18) (BI®' R(T)) < 1 (11

for all states |8). The latter statement follows by combin-
ing Proposition 56 and Theorem 72 in Ref. [80] (a more
direct statement, using a different proof technique, can also
be found as Corollary 6.11 in Ref. [81]).

B. Random graph models

We will consider three different models of random regu-
lar graphs (with regularity parameter d), each with slightly
different properties.

Definition 1 (Uniformly random d-regular graphs).
G(n, d) is the distribution over graphs generated by choos-
ing d-regular graphs uniformly at random.

Definition 2 (Matching model of d-regular multigraphs).
G, (d,n) for n even is the distribution over regular multi-
graphs of degree d generated by choosing d matchings
independently uniformly at random and composing the
result.

Definition 3 (Pairing model of d-regular multigraphs).
G, (d,n) for dn even is the distribution over regular multi-
graphs of degree d generated by choosing a uniformly
random matching M on the set {(i,j) || i € [n],j € [d]} and
adding an edge between i, i whenever @i,7), (;, f ) is an edge
inM.

All of these models can be efficiently sampled from,
even when d is relatively large [82]. Note that the pairing
model allows for both multiple edges between vertices and
self-edges (loops). For d constant, the pairing model and
the uniformly random graph model are related. The follow-
ing lemmas are well known in the graph theory literature
[34]:

Lemma 1. The probability that the pairing model yields
a simple d-regular graph is bounded from below as

P[G is simple] > 2~ (12)

Lemma 2. Conditioned on being simple, the graphs
obtained from the configuration model are uniformly dis-
tributed d-regular graphs.

We have a similar simplicity condition in the matching
model.
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Lemma 3. The probability that the random matching
model yields a simple d-regular graph is bounded from
below as

P[G is simple] > 27¢. (13)

However, in this model, conditioning on simplicity does
not yield a uniform distribution on d-regular graphs. This
can be easily seen by noting that there exist d-regular
graphs that do not contain a perfect matching. The con-
ditional distribution is equivalent to uniformly random
d-regular graphs in a weaker sense, called “contiguity”
[35], meaning that an event that happens with high proba-
bility in one distribution also happens with high probability
in the other. We will not make use of this connection in this
paper and consider the matching model to be interesting in
its own right.

C. Krawtchouck polynomials

Krawtchouk polynomials are a family of polynomi-
als that prominently appear in classical error correc-
tion codes and Boolean analysis. We will need them
in the proof of Theorem 6. We will briefly recap their
definition here as well as a number of upper bounds. The
(binary) Krawtchouk polynomial of degree i and size N is
defined as

N . ! _ x\ /(N —x
KV (x) = ;( 1)q(q)(i_q>. (14)

These polynomials are orthogonal under a binomial mea-
sure (see, e.g., Ref. [30]), i.e.,

N

N N
Z<t>KiN(z)KjN(z) = 2N(i>8if" (15)

t=0

This immediately implies a pointwise upper bound for
integer evaluations of the polynomial of the form

12 ~12
KN ()] < 2V (N ) (]f ) . (16)
1

This is a rather straightforward upper bound but it will ser-
vice almost all of our needs (it is also surprisingly close
to being tight, see Ref. [83]). However, to cover certain
parameter regimes we will also need a more sophisticated
bound from Corollary 16 in Ref. [50] of the form

N (i N-p2\"
ko= (1) (5+ ) - an

D. Drift and minorization of Markov chains

Consider a Markov chain P on a (possibly countably
infinite) state space A'. We will maintain that a Markov
matrix acts from the left, ie., P(x,x) := P(X;y1 = X' | X;
=x) for x,x’ € X. If the Markov chain is irreducible, it
will have a unique stationary distribution 7. Bounding
the convergence time of the Markov chain toward 7 on
unbounded systems is generally tricky. In this paper we use
the drift and minorization method [84], which can bound
convergence from a fixed starting state to the stationary
distribution for an irreducible Markov chain in a way that
does not depend directly on the size of X'. This method
consists of two steps, first bounding the time it takes for the
Markov chain to pool into a “small set,” and then bounding
thermalization within that set. The first requirement (the
“drift”) is the existence of a drift function V' which controls
the convergence to a small set C:

Definition 4 (Drift toward a small set). A function V' :
X — [0, 00] is a drift function (toward a set C C X) for a
Markov chain P if there exists a constant 0 < A < 1 and a
constant b < oo such that

PV(x) < AV(x) + b, (18)

where /. is the indicator function on the set C and PV (x) :=
Y vex P, x)V(X)).

The second requirement is a minorization condition on
the small set C

Definition 5 (Minorization on a small set). A Markov
chain P satisfies a minorization condition on the set C if
there exists a probability distribution v on C and a constant
8 > 0 such that for all x € C we have

P, x") > sv(). (19)

Finally, the drift and minorization conditions are called
“compatible” if there exists a constant d > 2b/(1 — 1)
such that the level set {x € X' || V(x) < d} is included in
the small set C.

If a Markov chain has a drift function and satisfies the
minorization condition on a small set C in a compatible
way, we can bound the convergence of the Markov chain
to its stationary distribution in an exponential way. We will
use the following theorem due to Rosenthal (Theorem 12
in Ref. [85]):

Theorem 5. Let P be a Markov chain on a (count-
able) state space X, compatibly satisfying a drift and
minorization condition with function V(x), small set C, and
parameters A, b, §,d. Let v be an initial distribution and let
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7 be the stationary distribution of P. We now have for all
0 < r <1 that

|P'v =7, <A =8)"+ 1 +2b/(1 =2 +E, (1)
k

142b+rd\'"™ )
S 1 4+ 2Axd + by
x[( . ) 1+ +)],

(20)
where ||-|| 7 is the total variation distance.

Due to the many free parameters this theorem is quite
flexible, but also rather difficult to use (and gives quite
conservative bounds). We will use it in the proof of
Theorem 3.

ITII. ANTICONCENTRATION OF GRAPH STATES
OF CONSTANT DEGREE

In this section we compute the average (normalized)
second moment for two ensembles of random graphs with
degree d which induce measures on d-regular graphs.

First, we compute the average second moment for a ran-
dom multigraph in the random pairing model. Condition-
ing on simplicity will then give results for uniformly ran-
dom d-regular (simple) graphs, as discussed in Sec. II B.
To obtain the result in Theorem 1 for the random matching
model, we will need to slightly adapt the proof of this more
complicated case.

Theorem 6 (Anticoncentration of random pairing model
graph states: restatement of part (1) of Theorem 1).
Consider the uniform measure G,(n,d) on d-regular
multigraphs chosen from the pairing model. Then, for any
2 <d = o(n'?), we have

2 ifd=1 mod?2
Eggoin G,6)) = o(1 . ’
G~Gpnd 6 (m(G,0)) = o)+ o0

1)

Corollary 4 (Restatement of Corollary 1). Consider
the uniform measure G,(d,n) on d-regular graphs on n
vertices, and uniformly random angles 6. Then for any
constant d

2
EG~g,n.olm2(G,0)] = G +o(1)27.  (22)

Proof. The corollary follows directly from Theorem 6,
observing that the probability that a random multigraph
in the pairing model G < G,(d,n) is simple, is lower
bounded by 1/2d2, and hence, conditioning on the event
that a graph in G, (d, n) is simple yields the statement. W

A. Anticoncentration of a fixed graph state

The proof of Theorem 6 is based on a series of lem-
mas. As a first step, we find an expression for the second
moment of a fixed graph state, averaged over the random
choice of measurement angles. This follows more or less
directly from the discussion in Appendix E of Ref. [13].

Lemma 4. Consider a graph G and a uniformly random
choice of X -Y-plane measurement angles 6. Then we have

Eo(my(G,0)) =27" Y (=DHelBRlL(23)

LRC[n],.LNR=0

where A is the adjacency matrix of G. |4Ag[L, R]| denotes
the sum of the entries of the submatrix Ag[L, R] of A cor-
responding to rows in L and columns in R, and counts the
number of edges crossing between L and R.

Proof. To show the lemma, we use the statistical-
mechanics mapping of second moments of IQP circuits
derived in Ref. [13], extended to arbitrary single-qubit Z
rotations. We keep the discussion of this model brief here
and refer the reader to Appendix E of Ref. [13] for the
derivation of the statistical-mechanics mapping. We start
by observing that the second moment operator

My =Ey [¥) (VI [¥) (V] 24)

of a ensemble of random states |y/) determines the sec-
ond moment of its outcome distribution py, as Eypy (x)* =
(x|®2 M, |x)®?, and thus computing the average second
moment can be reduced to computing the second moment
operator of the underlying state ensemble. For a random
product rotation around the Z axis applied to the |+)®”"
state, the second moment is given by

E, I:e_izj 02 |_|_") (_|_"} 2 07 ]

_1 ®n_i
= (1 +8+X% = > o (25)

Q55®n

where | = [01) (01] 4 |10) (10|, S = |01) (10] + |10) (01|,
X =100) (00| + |11) (11|, and we let S = {I, S, X} be the
set of possible “states” of the statistical-mechanics model.
Next, we observe that

CZ®(P ® Q)CZ%®?

_|-P®0
B V-Xe;

ifP=1,0=SAP=S,0=]I,
else,
(26)
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and that »° . (xx| H®?QH®? |xx) =1, YO =1,5,X.
Hence, the sign of a particular “state” Q € S®" on a graph
|G) is given by the parity of the CZ gates that act on an IS
or Sl pair.

Thus, the second moment of the outcome distribution
Pae of measuring a graph state |G) in the X -Y plane angles
0, averaged over the random choice of 6, can be written as

Elm(G,0)] = 5 Y (D'C9, @)

QES®”

where for G = (V, E) with edge set E we let N(Q,G) =
l{(eo,€1) €E : Qey ® Qe € {I®S,S® I}}| be the num-
ber of edges in the graph G coinciding with an IS or Sl
pair in the state Q. Since this expression depends only on
the locations of the graph edges and | and S states, we can
rewrite it in the form of Eq. (23). |

Importantly, this expression can also be interpreted for
multigraphs, where the elements of the adjacency matrix
are now integers. The crucial number |45[L, R]| featuring
in Eq. (23) thus still counts the number of edges crossing
between the sets L and R.

B. Averaging over matchings

Next, we need to evaluate the average over the ran-
dom choice of (multi)graphs. Since our graphs are defined
in terms of uniformly random matchings, we begin by
analyzing the average parity of edges in a random match-
ing crossing between two disjoint sets L, R C [n]. We first
note some symmetry properties of the average parity in
Lemma 5, and then express the average parity in terms
of Krawtchouk polynonmials in Lemma 6. In the follow-
ing, let M (n) denote the uniform distribution over perfect
matchings of n vertices.

Lemma 5. Consider a random matching M on n vertices
and three disjoint sets L,R,T < [n] covering [n] = RU
LUT. The value of the average parity of the matching
between two sets is invariant under the interchange of

EM(_U\AM(L,R)I —

74> 0
q+q'<IL|

g+q'=|L| mod 2

q=IR|

R, L, T up to factors of 1 as

Bty (=D ERON = By gy (DM EDL - (28)
EMNM(n)(—l)lAM(L’R)I — (—1)\1‘\]EM~M(’1)(_1)|AM(L,T)|.
(29)

Proof. Clearly the average parity is invariant under the
interchange of the arguments, i.e.,
EM(—I)lAM(L’R)l — EM(—I)lAM(R’L)l. (30)
To see Eq. (29), consider a particular matching that has ¢
edges going from L to R [and thus contributes (—1)7 to
the average]. This matching also has 0 < ¢’ < n — g edges
going from L to T. By construction the remaining vertices
in L must be matched to each other. Hence, ¢ + ¢’ = |L|
mod 2 and therefore (—1)¢ = (—1)‘1/(—1)‘“. Since this is
true for every matching the claim follows. ]

Lemma 6. Consider two disjoint sets L,R C [n] such
that |L], |R| < n — |L] — |R|. Then the average parity of the
number of edges of a random matching between L and R is
given by

B ptn (— 1AM ER
1| .
- L|t(n— L] —i— D!
D D (1R Ui ik LETY
i=0 (IL| = )N (m — D!
i=IL| mod 2

where K is the Krawtchouk polynomial of degree i.

Proof. Denote T = [n]\(RU L). Consider a matching
that has ¢ edges between the sets L and R and ¢’ edges
between L and 7. Note that this is possible only if ¢ +
¢ =|L| mod?2 and g+ ¢ < |L|. There are ('f}') (":‘) -q!
ways to choose the first ¢ edges and ('Ll],_q) (';I) - q'! ways
to choose the second set of edges. Once these edges
are fixed, there are (|[L|—g¢—¢ — D!'(n—|L|—qg—
q — D!! ways to complete this edge set to a full matching
of [n]. Hence, we can write

1 LI\ (IR |L|—q)(|T|>
- —1)ig! !
DI ”(q)(q)q( g J\¢

x(Ll—g—¢ —=DNm—I|Ll—q—q — DI, (32)

since there are (n — 1)!! matchings in total. Since ('5‘) =0, if |R| < g we can drop the ¢ < |R| constraint going forward.
We can expand the binomials involving |L| and use the identity (a — 1)!!a!! = a! to rewrite this as

040344-13



GHOSH, HANGLEITER, and HELSEN

PRX QUANTUM 6, 040344 (2025)

Epy (—1)HAu LRI — Z (_1)q<

4.4'>0
q+q' <IL|
g+q'=|L| mod 2

|R|> <ITI> ILI'(n — L] —g —¢' — D!
q

(33)

¢) (LI—q—¢g)(n— DNl

Changing variables ¢, g’ — q,i = q + ¢, we can rewrite this further as

IL|

Apg (LR
Ep (—D)MAn ERI — Z
i>0
i=|L| mod 2

in which we recognize the definition [Eq. (14)] of the
Krawtchouck polynomial. |

C. Proof of Theorem 6

We can now provide a proof of the core result of this
section (Theorem 6). This proof is long, but much of the
conceptual work has been done in previous subsections
(with “merely” some counting remaining).

Proof of Theorem 6. Lemmas 5 and 6 imply that all that
is relevant for the average parity of the edges between two
subsets L, R C [n] is the size of the subsets. Recall that
these sets correspond to | and S states on a subset of the
vertices and let us think of the different states on the ver-
tices as one of three colors (L <> I, R <+ S, T < X). To
analyze the random pairing model, we observe the fol-
lowing: for a fixed choice of L, R C [n] in the sum given
by Eq. (23), the average parity EGM[(—I)lAGM (LRI over
graphs G),; induced by a matching M (the number of
edges between I-colored vertices and S-colored vertices)

i IRI\ (171 \ ILItn = L] =i = D!
2;(_1)q(q)(i—q) (L =)= (34)

is equal to the average parity Ey[(—1)HmLaRal] of two
sets Ly, Ry C [dn] of size |Ly| = |L|d, |R4] = |R|d over the
inducing matching. This is because we can “split up” every
vertex in Gy, into d vertices of the same color. All that mat-
ters for the average parity is the crossings between colors
blowing up the sets L — L;, R — Ry. |

Hence, it follows from Lemmas 4—6 that

EGy~, a0 (m2(Gu, 0)

=27 Y Egyegua(—DI ot (35)

L.RC[n],.LNR=1

=2 )

L,RC[n],LNR=0

]EMNM(”d)(_l)MM[LdaRd]\. (36)

Let us denote (counterintuitively, we are following the
notation in Ref. [13]) |L| =k, |R| = (correspondingly
|Lg4| = dk,|R4| = dI). Then we can use Lemma 6 to get

@dnldmn —k) —i—

dk
EGy~g, a0 [m2 (G, )] = 27" Z Z K0l (37)

LRCMLOR=)  i=0

i=dk :mod 2

n n—k

=2 ()

k=0 [=0

where the second equality counts the number of possible
choices of L, R C [n] with fixed sizes k,/ and in the last
equality we have implicitly defined M, (n, k,[,d). To get a
feeling for what we need to show, consider Fig. 2. There,
we show the term M, (n, k, [, d) for fixed n,d as a function

(dk — ) (dn — D!

dk
donty o (VN d(n — k) — i — !
Z K; @h (dk—iWdn— DI |’ (38)

i=0

i=dk mod 2

=My (nkL.d)

of k, /. There is a clear separation of what is happening. At
the boundaries, i.e., for k =0 or / = 0 or k = [ the terms
are largest, and they decay toward the center.

This suggests dividing up the sum according to this
behavior. We can also see the symmetry under the
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0223986 28 HHANHH s 0223986 28 HAHANNLS G

L L L Y U O U O O O A A A | | N U T T O R A A I U M A A |
(-EEEEEEEEEEEEEEEEER 1.0 (-ENEEEEEEEEEEEEEEE
1-Em N 1-EENE EEEEN EEEEE 0.030
2 -1 | | 2-HAEREEEEEEEENNEEEDN .
3-m ] 3-ENNENEEEEEEEEEEEE
4-m ] - 0.5 4-H] IENENEEEEE EEEEE 0.025
5-1 | | S5-I EEENEEEE "'EEEEEER
6-m ] c-ENEEEEEEEEEEEEEEE 0.020
7-m ] 7-AEEEEEEEEEEEEEEEE :
8 - ] - 0.0 S-EEEEEEEEEEEEEEEEE
9-m ] o-ENEEEEEEEEEEEEEEE 0.015
10 -m | ] 10-EEEN ' EEEEEEEEEEE
11 -m ] 11-H N EEEEEEEEEEEE 0.010
12 -m ] L 0.5 2 -EEEEEEEEEEEEEEEEE :
13- W 13- EEEEEEEEEEEEEEEEE
14 -mmm 14 -AEEEEEEEEEEEEEEEE 0.005
15 -Enm 1I5- A EEEEEEEEEEEEEDE
16 -H 1.0 16-EEEEEEEEEEEEEEEEE 0.000

FIG. 2. Forn = 16,d = 3, we show the dependence on k, ! of M, (n, k,[,d) (left) and 27" (Z) (";k)|Mp (n,k,1,d)| (right) for &,/ > 0
and k + [ < n. The red area corresponds to the region 1 < k <[ < n — k — [ in which we need to achieve a nontrivial bound.

exchange k < [, which we will exploit later. Specifically, = non-negligible one will be case 0 (corresponding to £ = 0,
we will divide the sum over £,/ into four cases. The only [ =0,0rk+1[=n).

1. Case 0

Let us begin by considering the case in which one of L, R, T is the empty set,i.e, k=0VvI=0vn—k—1=0. We
begin by treating the £k = 0 subcase (we label the associated term in the overall sum T7j—); the others will follow by
symmetry:

2" = Z Eptm Mnay (— 1) ARl 4 Z Ept~ Mnay (= 1DHAM LA 4 Z Epre Menay (— 1) A¥tEaRal - (39)

RC[n] LCn] L.RC[n]
LOR=,LUR=[n]
= Z (2 . EMNM(nd)(—l)lAMM’Rd“ + (_1)|Rd‘]EMNM(nd)(_1)|AM[@,Rd]|) ) (40)

RC[n]

Observe that |Ry| =1Id and therefore (—1) =1 for even d and (—1)“ = (—1)! for odd d. By Lemma 5
EGngp (,,’d)(—l)lAGM VR — IEGMNQP(,,,d)(—l)‘AGM IR the second term thus vanishes for odd d and is equal to the
first term for even d.

We can now simplify the remaining sum to |L| < n — |L| using Lemma 5, incurring a factor of 2 and counting the
number of choices of L C n:

n 4 ifd=1 mod?2
To=27" Ese ey (— 1D 1AM PRl ’ 41
k=0 l<nl<1> Memead (= 1) 6 ifd=0 mod?2. @1

Furthermore, we can use Lemma 6 to get

(dn — 1!

Epfemna (—1 MRl — grdn a1
e (21 oD =

(42)

and the fact that Kg’" (dl) = 1 [see Eq. (14)] to get

ro=23 (") 4/2 ifd=1 mod2 _ [2 ifd=1 mod2, “)
) 6/2 ifd=0 mod 2. 3 ifd=0 mod?2.

0<i<n
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It remains to bound the remaining terms. We begin by
defining the sets

We={k,)en:0<k<l<n—k—1), (44)

S = {(k,l) c W;;|2—"<Z><";k> > n_3}. (45)

The set S captures the terms in the sum where we need to
achieve a nontrivial bound. This is because the sum over
k,I runs over at most n” terms and the average over the
parity [the remaining part of Eq. (46)] is bounded by 1,
so the sum over all (k,/) € W} \ S is bounded by O(1/n).
Using Lemma 5, we can always assume that k </ <n —
k — [ (this gives a factor of 3! = 6 in the expression) and
thus compute the remaining £ > 1 terms of Eq. (37) as

Tor=6 Y 2”(Z)<n;k)Mp(n,k,l,d) (46)

1<k<i<n—k-I

—o(/m+6 Y 27 (Z) (" ; k)Mp(n, kL, d).

(k,heS
(47)

We will use different bounds in different regimes of
the sum over k, /€ S, decomposing Ty>; = O(l/n) +
Tease 1 + Tease 2 + Tease3 according to the following three
remaining cases:

(1) Case 1: 1 <k <90logn.
(2) Case2: k > 90logn and 27" (}) ("}*) = n®.

(3) Case3:k>90lognandn™> <27"(}) ("71‘) <nb.

We will now treat each of these cases in turn.

2.Casel (1 <k<90logn)

For the first case, we will use the upper bound
for Krawtchouck polynomials due to Derksen, given in
Eq. (17), in order to bound M, (n, k, 1, d):

Mp (na k’ 1> d)

% K400 (g dk!(d(n - k) —i— 1
(dk — ) (dn — D!

i=0
i=dk mod 2
K rdn — k) i (n—k—202\"*
< Y. . +
— i din—k) (n—k)?
i=dk mod 2

@dldmn —k) —i— 1!
(dk —)!(dn — D!~

(48)

To further bound this, we consider the factors of Eq. (48)
individually:

(1) Factor 1: For the first factor, we have the crude
bound

1

(d(" - k)> <d(n—k. (49)

(2) Factor 2: To bound the second factor, we need a
lower bound on /. We get this by noting that k,/ € S
implies that

2(n—k)H(l/(n—k)) > (n - k) > 2 > 2nn_3_k.
! ()
(50)

Taking the logarithm of both sides and using
H(x) <24/x(1 — x), we obtain

I O_ z)>c—6+m%wy
n—=k n—k)~ 2(n —k) '

(5D

Solving the above quadratic inequality, using that
k < 901logn, we get the bound
n—k
2

—k
— Co/nlogn <1< ”T (52)

for some constant Cy and all » larger than some
constant ng. Since [ < n/2, we thus have

2 2
n—k—2I - 1_1+C0ﬁlogn
n—k 2 n—k

(l Cologn )2
<(5+

“\2  /n—90logn//n
< Cilog’(n)

for all n > ng and some constant C;. Moreover,

i - 90 log(n)

<1< Glog’(n). (53
dn—F) = n—0logn = | = C2log’(m- (33)

Altogether, we thus get for all » > n; = const

i n—k—l>2<C1 5 ”
d(n—k)+< I’l—k = Zog(n)a ( )

with constant C,.
(3) Factor 3: For the last factor we have the bound

(d)\(d(n — k) — i — D!
(dk — ) (dn — D!
< (d)dn—k) —i— 1)~ D2 (55)
< (dk)!(dn — 2dk — 1)~ \W+D/2, (56)
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Putting the bounds for factors 1-3 together, we thus find

dk
M, (n,k,1,d) < Z dWR2 — Iy (n — 2k — 1/d)~ D2 (dk)\(C, log n) (57)

i=0
i=dk mod 2
dk
< Y m=0"Pn—2k—1)"%dk)(Clogn)'. (58)
i=dk mod 2

The dominant term in the sum is the i = dk term, for which we have

dk/2
n—k \*? 1
(n 2k 1) =\iz=) com™ (59)
k

This gives us
M, (n,k,1,d) < dk(dk)!\C3n=%? 1og(n)?* (60)

for some constant C3. Now we can go back to upper-bounding the full expression given by Eq. (46). Since / < (n — k) /2
by assumption, we also note that the set S, = {/| (k,[) € S} has size |Si| < /nlog(n)C,. Moreover, we observe that

(n) <n — k) < nkzn—ki, (61)
k ! Vn—k
and thus obtain with a constant Cy

90 log(n) k+1/2

2"\ Tease 1] < 6 on—k dl(dk) ' CF log () * 1 p—dk/2
| Tease 1] < ; = @) log(m)
90 log(n) k+1 2
<6 on= -k " (C4)d/€ log(n)dk+1 (dk)dk+1 —dk/Z (62)
2 M =

Since k%! . 904t log(n)**!' < n?/? for d > 2 and sufficiently large n, the terms in the sum are strictly decreasing in k.
Hence, the sum is dominated by the £ = 1 term and we get for any 2 < d = o(n'/?)

| Tease 11 € O (@ log(m)n=*1) = o(1), (63)
which is all we need.

3. Case 2 [k > 90logn and 27" (}) ("7") > n¥/
From the orthogonality of the Krawtchouk polynomials we have the bound

-1
v ()5

Inserting this into the expression for M), (n, k, I, d) defined in Eq. (38) and using the triangle inequality, we get

dk

M, (n,k,1,d) = Z K () (diNd(n — k) —i— !

(dk — i)!!(dn — D!

i=0
i=dk mod 2
dk 1/2 —1/2
< Z 2d(1-k)/2 din —k) din —k) dk)! dmn—k —i— 1)”- 65)
— i l (dk — ! (dn — D!
i=dk mod 2
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To obtain an upper bound, we first upper-bound the sum over i. To this end, we use the following facts about double
factorials and binomials (for n even):

n! Vn! n\ V2
_ " e - _ v 9n/2
=D =it T onn (n/2) (66)
nH(p) nH(p) nH(p)
2 < n) PR (67)
n+1 /8p(1 — p)n n V2rp(l —p)n

where p € [0,1] and H(p) = —p log(p) — (1 — p) log(1 — p) is the binary entropy with base 2. We then obtain

dn—k\'"?@n—k—i—-D [ @dn—k) " @n—k—i- D) 6

( i ) (dk—ilt <(d(n—k)—i)!i!> (dk — i)!! (68)
<2(d(nk)i)/2( din—k)—i )1/2 (d(n —k))! (69)
- (d(n—k) — /2 i!(dk — i)!

TP i 2Wd(n=k=0/2 (d(n —k))!
(d(n—k)—i)/2
=2 Jrdin =k =) \/ il (dk — i)! (70)

1
= v(d(n—k))!m, (71)

where we used (dk — i)!! > /(dk —i)! and h(1/2) = 1. We observe that this term is maximized at i = |dk/2], since
i!(dk — i)! is minimized at i = |dk/2]. We thus get

<d(n - k)) Y2@dmn—k —i—1Dn _ (din—k)H'”? )
i (dk — i)! = ldk/2]t
Hence, we can upper-bound
Moy i |Kd(,,_k)(dl)|(dk)!(d(n—k)—i—1)!!
PR E = L (dk — )11 (dn — D11
i=dk mod 2
_op (A =0\ (do! (dn— k)
d(n—k)/2
=2 ( dl > W2l dn =11 (73)
We can insert this back into Eq. (46) and get
. n\ (n—k dk oy, e (@A — k) — i — D)II
LESEC ) (k>( Z ) K (74)
8 log(m)<k<l<n—k—I i=dk mod 2
_1 1
dn—n2 (M (n—k d(n—k)) 2 (dk)! ((dn—k)H2
= ) G2 (k)( I )( dl [dk/2]1 (dn— DI (75)

(khes,
8log(n)<k<i<n—k—I
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1

1
3/2 dn—ny2 [P\ (1 — k) (dn— k))‘2 <dn>_2
2 6k (k) ( ! ) ( dl dk (76)

(k,)es,
8log(n)<k<i<n—k—I

3/2 an2 (N (T — k\ (d(n — k)>_;<dn>_5
Z Cd k\/;z (k)( l )( dl dic (77)

(k)eS,
8log(n)<k<i<n—k—I

(k,)EeS,
8log(n)<k<i<n—k—I

A

IA

(/W

IA

where we used (dn — D!! > /(dn — 1)! = (dn)~'/*/dn and C > 6 is a constant, and (j;) > (Z)d in the final line. By
construction, and for d > 3, we now have

1-4 1-4
21472 <(” ; ’”) i (Z) VI (79)
This makes the total sum
| Tcase 2| € O(n_l) =o(1). (80)

4. Case 3 [k = 90log(n) and n=> < 27"(")("7*) < n¥)

This case is subtler and corresponds to the dominant terms of the sum over £, [, which lie in a “ring” of intermediate
values; see Fig. 2(right). The first thing we note is that within this region there is a maximal value £* of k, achieved when

[ =k and
n\ (n—k*
27" =nb. 1
(k)( . ) " &1

We can (numerically) invert this equation to show that
kK" <cen+ Cilogn < c*n (82)

for some constant C; and ¢, := 0.113 < ¢ < 0.114 =: ¢* and sufficiently large n. Similarly we can show that there is a
minimal /, given by

Iy >cn—Cylogn > cun (83)

for some constant C, and sufficiently large n. The minimal k, = 90log(n) further implies a maximal [* = (n —
90log(n))/2.
Now we can use Derksen’s bound:

dk

ak'din — k) —i— D!
Mp(n, k, l’ d) = Z IKld(n_k)(dl)| ( (n ) l )

(dk — ! (dn — 1!

i=0
i=dk mod 2
dk

-y (d(n—k))( i +(n—k—202>i/2(dk)!(d(n—k)—i—l)!!.
i d(n —k) (n — k)2 (dk — i\ (dn — DI

(84)

i=0
i=dk mod 2

This equation is manifestly monotonously decreasing in /, since / < (n — k) /2 for any pair (k, /). Hence, we can insert /, to
obtain an upper bound on Eq. (84). We further split the sum over i into two cases: (1) i > 1301log(n) and (2) i < 130log(n).
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For case (1) we can use Holder’s inequality

dk

d(n — k) i (n—k— 21)2>"/2 i)\ d(n —k) —i— DN
Z ( i )(cl(n—k)+ (n — k)? (dk — i) (dn — 1!

i>1301logn

i=dk mod 2
B i (n —k —21,)2\"? % d(n — )\ (d)!dn — k) — i — D! (85)
max .
= 130logm<i<dk \ d(n — k) (n — k)? , i (dk — )!\(dn — D!
i=dk mod 2 i>1301log(n)

i=dk mod 2

We can upper-bound the second factor by 1 by noting that (d(”;k)) = K,-d =5 0) and adding back in the i < 1301log(n)
terms to the sum. All of these terms are non-negative since the only nonzero term at x = 0 in the definition [Eq. (14)] of
the Krawtchouk polynomials is the ¢ = 0 term. This allows us to recognize the formula for the average parity over all
matchings from Lemma 6 with / = 0, which trivially evaluates to 1. For the maximization we note that 0 <i/d <k <
k* = c*n and [, > c,n, telling us that

( i (n—k—21*)2)i/2 ( i (n—zl*)2>”2
+ < +
dn—k) (n—k)? dn—k)  (n—k*)?

(1 =2e02\" b
< < 0.8927/%2 < p~103 86
_(l—c*+(1—c*)2> = =" (86)

where the last bound follows from the fact that 0.8927/2 decreases in i, and hence we can use the lower bound i > 130log n
to obtain the upper bound.

Finally we deal with the term where i < 1301og(n). This subcase closely resembles case 1 (kK < 90 logn). We will use
the straightforward bound

G“;m)swm—mﬂ (87)
and furthermore bound
i/2
@dn—k) —i— DN = (@dn—k — DI ] [dmn—k —26— 1)~ (88)
=0
dn — k) — D!
= din—k) —i— 1)i2 (89)
W =N\ | oy, (90)

< Y 77
T (d(n— k)2

using i < 130log n and therefore using Taylor’s theorem (d(n — k) — i — 1)=/% < (d(n — k))~/*(1 + O(log*(n)/ (dn))) <
(d(n — k))"2(1 4 o(1)). Analogously, we find

i/2
(dk — ) > dk!! H(dk =207 = (di)(dk)™? > /(dk)! (dk)"/? 91)

t=1

Filling these into Eq. (84), we obtain for case (2)
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1130log(n) ]

(d(n—k))( i (n—k—zl*)2>”2 i)\ (d(n — k) —i — DN
s i d(n — k) (n — k)2 (dk — )\ (dn — DI
i=dk mod 2

_ Y@ —m)! L0 Logm] [(dk)(d(n —k)? ( i n—k— 21*)2”"/2 (4 o(1)
(dn —1)! P dn—k) dn —k) (n—k)?

i=dk mod 2

dn) /@R — )T ™) : —k=21*\1"
_ @y )(d(n)('n DS [d2k(n—k) (d(nl_k)+(” (n_k)2))] (1 + o(1)].
\ : i=0

i=dk mod 2

92)

For the second factor in the sum we can argue that

i (n—k—21,)*\" 1-2¢\2]"

for sufficiently large » using the upper bounds on i and k£ and the lower bound on /. Furthermore the first factor is clearly
bounded by

(d*k(n — k)"* < (dn)" < (dn)">"'1°8™. (94)
Combining all of these, we get
[1301log(n)]

d(n—k) i (n—k—21)*\"? (di\d(n — k) —i — D!
Z ( i )(cl(n—k)Jr (n — k)? ) (dk — i)!(dn — 1)!!

i=0
i=dk mod 2

dn\~'?
< ( dk) (dn) POPEE2(1 + 0(1)). 93)

‘We can further bound this as

—1/2
10g<<ZZ> (dn)13010g(n)+1/2(1 +0(1))> (96)
< —dnH (k,/n)/2 + 130(log(n) + lognlogd) + o(1) 97)
< —dk, log(n/k,)/2 4+ 130(log*(n) + lognlogd) + o(1) (98)
< log?(n)(—45d + 130 4 o(1)) (99)
< —5log’(m(1 — o(1)), (100)

where we have used that 1/ (ZZ) is monotonously decreasing in k, so that we can bound the binomial using the lower bound
k, = 901og(n), and the last bound follows from the assumption 2 < d = o(n'/?). Hence, we have

| Tease 31 < n*n® - O(n™103 + =208y < O(n™'72) = o(1), (101)

which completes the final case.
Putting the three bounds together, we have our result that for 2 < d € o(n'/?)

2 ifd=1 mod?2,

102
3 ifd=0 mod 2. (102)

EGy~c,mao [m2(Gu,0)] = o(1) + {
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Sketch of the proof for the random matching case of Theorem 1. Let us conclude this section by sketching the proof
of the random matching part of Theorem 1. The proof proceeds along the same lines as the proof of Theorem 6 but is
somewhat simpler. We restrict ourselves to outlining the essential difference and leaving the details of adapting the proof

as an exercise for the reader.

The key difference in the proof is the starting point, where instead of averaging over one large matching of dn vertices,

we average over d independent matchings of » vertices:

EG~c, a0 (m2(G,0) = 27" Z

L,RC[n],LNR=9

=2 )

L.RC[n],.LNR=%

=2 >

L,RC[n],LNR=0

and we thus get by Lemmas 5 and 6

]EG’\‘gm (”,d),@ (mZ (G, 0) == 2_n Z
L,RC[n],LNR=Y

E GGy nay (— 1) 103
My~ m(my (— DA IR 1y atg LRI
(EM~M(n)(—1)|AM[L,R]\)d ’ (104)
d
S L IL!(n — |L] —i— D!
> & Mar) 0s)

(LI — D! — DI

i=0
i=|L] mod 2

In the subsequent analysis many aspects of the proof simplify since the d-dependence is isolated to an overall power of

the sum over i.

IV. UNIVERSALITY OF REGULAR GRAPHS OF
INTERMEDIATE DEGREE

In this section, we prove that most regular graphs of
sufficiently high regularity are resources for universal
quantum computation. We prove this by showing that we
can find sufficiently large grid graphs embedded in these
graphs as induced subgraphs.

Our proof consists of a series of lemmas. We start with
an exposition of the “switching method” of regular graph
theory—a counting technique first introduced by McKay
and Wormald [42]—as it is applicable in our context. We
use the switching method to compute the expected number
of grid graphs in a random regular graph. Then we compute
the associated variance. Finally, we apply Chebyshev’s
inequality to make a typicality statement. Our proofs fol-
low the arguments for the estimation of the probability
of subgraphs [43], and induced subgraphs [86] of con-
stant size of random regular graphs. However, we require
estimates for induced subgraphs that grow in size with n,
which means we need to be substantially more careful in
our estimations.

A. An exposition of forward and reverse switching

In our proofs in Sec. IV, we make heavy use of a count-
ing technique called “switching,” which was introduced by
McKay and Wormald [42]. This is a standard technique

(

in the regular-graph theory literature (and combinatorics
more generally); see, e.g., Ref. [87] for a general discus-
sion. Because we need somewhat precise estimates, and
this technique is not very well known in the quantum infor-
mation literature, we do several key calculations explicitly
here (specifically for our problem).

Let ¢, &’ be two collections of edges on the vertex set [#],
withe Neg’ = @ and |e| = s, || = 5. Let uw be an edge in
e, and u'w’ be an edge in ¢’. Define two sets:

Z = {Gn,d | - Gn,d;e/ - En,d} ) (106)

% = {Gn,d | 8\{MW} - Gn,da uw ¢ Gn,d;e/ - Z;n,d} .
(107)

The goal of the switching method is to estimate
|-Z|/|.# . This is done by setting up a relation R between
£, M, and then estimating how many elements of .#
are related to a uniformly random element of .Z (call this
expectation d;). We will also estimate how many elements
of .Z are related to a uniformly random element of . (call
this dy). By a basic double counting argument one can see
that

di|Z| = |R| = do|A|. (108)
This means we can estimate the ratio by estimating d;, d
(note that this part is not specific to the sets in question).
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We now set up the relation (which is specific to these sets).
We do this by relating a graph G' € .# to a graph G €
£ if G’ can be reached from G by a forward switching.
Equivalently, we will see that this means G’ can be reached
from G by reverse switching.

Given a graph G € .Z, we will choose two edges u;w;
and u,w, of G\¢, delete these edges together with the edge
uw, and insert the new edges wu, wiuy, wou. This produces
a graph G’. We will choose u;wy and u,w; of G\& such that
all six endpoints of the edges are distinct and, in addition,
wuy, wip, wou are not edges of G and are not in &’.

We can provide an estimate for how many ways this
forward switching can be performed (and thus estimate d ).

Lemma 7. Given ¢, &’ defined as above, there are

B O(s) 3 O(s) )
n—0@)-d n—0@)
(109)

d*(n — O(d))* - (1

ways to perform a forward switching from .Z to ./ .

Proof. The number of choices of u;w; is

2 <%i — #forbidden cases) , (110)

where nd/2 is the total number of edges of the graph and
we multiply by 2 because u;w; and w;u; represent two sep-
arate cases when the new edges are inserted. The forbidden
cases are summarized as follows:

(1) There are at most s choices of u;w; such that u;w;
isin €.

(2) There are at most (d — 1) choices such that w = uy;
that is, the endpoints will not be distinct.

(c) There are at most

O ((d—1)?* +5d) (111)

choices of u;w; such that wi; and wju, are either in
Gorine'.

Hence,
#forbidden cases = O (s + (d — 1) + (d — 1)* + 5'd)
=0 (s+d* +54d). (112)

Putting everything together, we find the number of choices
of uiwq is
nd—O(s+d +s4d). (113)

By a similar argument, the number of choices of u,w; is
also given by Eq. (113). Hence, the total number of choices

of uIwi and UpW) is

(d(n — OW@) — O(s +5'd))’

2o own. (1 Cs+sd
=d (n— O®W)) (1 n—0OW) -d
Ouan )
(n—O@)>* - d&*
— 20 2. (1= 9© e )
=d*(n— Od)) (1 n—0W@)-d n—0@)"
(114)
]

We still need to estimate d,. To do this we define
an inverse operation called “reverse switching,” mapping
graphs in .# to graphs in .Z.

Starting from a graph G € .# we delete edges
wuy, wiup, wou of G'\e and insert edges uw, ujwy, uowy.
Again, we allow only switchings for which all six vertices
are distinct, and u; wy, upw, are not edges of G’ and are not
in &’. This operation produces a graph which belongs to .Z.
Note also that the existence of a reverse switching from G’
to G implies the existence of a forward switching from G
to G'. Hence, counting the number of reverse switchings
for a random G’ € .# is equivalent to calculating d5.

We can again provide an estimate of the number of ways
in which this reverse switching can be performed.

Lemma 8. Given ¢, ¢’ defined as above, there are

N s O(s)
& — Od)) (1 —0 <Zz) _ m) (115)

ways to perform a reverse switching from .23 to ..

Proof. Note that u and w are vertices in G’. Hence, the
number of choices of wu; and w,u such that they are in
G'\¢ is

d—1-0())? = (- 0%)?>. (116)
The number of choices of wju, is
nd )
2 (7 — #forbidden cases) . (117)

The forbidden cases are summarized as follows:

(1) There are at most s choices of wju, such that u;w,
isine.

(2) Our having already picked w, u;, w;, and u, there are
O(d — 1) choices such that the endpoints of wyiu,
will not be distinct.
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(3) There are at most

O(d - 1)> +5'd) (118)

choices of wyu, such that u;w;, and u,w, are either
in G orin €’

Hence,

O(s+@d—1+d-1)?*+54d)
=0 (s+d*+5d). (119)

#forbidden cases =

Taken together, the total number of choices of wu, wiuy,
and wou 1s

d— O (d(n — O@) — Os + 5'd))
= (d— 0©)* (d(n — Od)) = O(s + s'd))

Y B O(s — 2s5') B O(s)
=4 -0 (1 d-(1—0W@) n-0@
s O(s's* — 5%) 52
_O<Zz>_d2-(n—0(d)) +O<E)
_ 0<—S3>>
&> - (n—O(d))
= & (n — O(d)) (1 ) (2) _ %) . (120)

From the description of the processes, the following
corollary is immediate.

Corollary 5. G is reachable from G’ by forward switch-
ing if and only if G’ is reachable from G by reverse
switching.

We can also estimate the relative sizes of two other sets
given by

g = {Gn,d | 8\{HW} - Gn,d; 8/\{u/wl} - Gn,d’ ulw/ € Gn,d}s

(121)

wd | €\{uw} € Gy s € \{u'w

=1{G }
{Gua | e\fuw} € Gpa;€\{'W} C Guasuw € Gua;u'w & Gyal, (126)
{G }
{G b

wd | eNuw} € Goase\[u'w)} C Guasuw ¢ Gua;u'w' € Goal,

n,d | 8\{MW} - Gndag \{M/W/} - Gnda uw ¢ Gnda u'w ¢ Gnd

% = {Gn,d | 8\{MW} - Gn,d;s/ - En,d} (122)
using forward and reverse switching. Just as before, given
a graph G € .Z, we will choose two edges 11wy and upw,
of G\e such that all six endpoints u/, w', u;, wy, up, and w;
are distinct and, in addition, w'uy, wiu,, wou/ are not edges
of G and are not in &’. Then we will forward-switch to get
a graph G’ in .. Similarly, we can reverse-switch to go
from a graph in .# to a graph in .Z.

B. Expected number of induced subgraphs

We plan to use the second moment method to prove
Theorem 2. To do this we first calculate the expected num-
ber of graphs isomorphic to a fixed graph H of a given size
that show up as induced subgraphs of a randomly sampled
d-regular graph. In the next subsection we then specialize
to grid graphs. Throughout, this graph will be represented
by a set of edges ¢ and a set of nonedges &’. This latter part
is required because we want to find induced subgraphs.

To compute the expected number of induced subgraphs
we first need to prove a few subsidiary lemmas. The first
allows us to “peel off” edges from the sets ¢, &’, without
changing the probability of observing these sets too much.
This lemma explicitly relies on the switching technique:

Lemma 9. Let d = n° for any choice of constant 0 <
¢ < 1,andlet g, ¢’ be two collections of edges on the vertex
set [n], withe Ng’ =P and |¢| = s, |¢'| = s'. Let uw be an
edge in &, and let #'w’ be an edge in ¢’. Then we have

IP>[‘9 - Gn,d; 8/ - Gn,d]

~(i=ii=a) () (- )

x P [8\{uw} C Gua, &'\{t'w (123)
where
s O(s')
o= 1-0 (3) T =0 (124)
T 1__0%w __ 0w "
m—0@nd _ n—0(d)

Proof. Note that uw € € and u'w’ € €. Let

}CG,,d,uweG,,d,uw eG,,d R (125)

(127)
(128)

040344-24



RANDOM REGULAR GRAPH STATES ARE COMPLEX...

PRX QUANTUM 6, 040344 (2025)

By suppressing the redundancies in notation, we can rewrite the same equations more succinctly as

NN
I

I
I

N
Il
r—— r—— pr—— ——

By definition, we have

IP)[F,‘ - Gn,da g g Gn,d]
P [e\{fuw} C Gpa, &'\ (W'} S Gpa]

= 92”1| (133)
4]+ | 2| + 4]+ |4
EAEER
+
- +|1$2|+\3$4|' (134)
121 1+12351
To prove the lemma, it is enough to show that
| _ad |4 aed
==1_= - = .o
2 Iy A A a2 R i

We first prove that }.,2”1 ]/|.,§f3| =ad/(n—d). Given a
graph G € .7}, we will perform forward switching to get a
graph in .%3. We choose two edges uyw; and uow, of G\¢,
delete these edges together with the edge uw, and insert the
new edges wuy, wiuy, wou. We will choose uyw; and u,w,
of G\ ¢ such that all six endpoints of the edges are distinct
and, in addition, wu, wiu,, wou are not edges of G and are
not in ¢’. Then it is easy to see that the graph obtained from
G by a forward switching belongs to .%5. By Eq. (114), the
number of possible forward switchings is

dm—awyo 0) OW)>.

T m—0W)-d n— 0@
(136)

Similarly, by applying reverse switching, we can go from
25 to 4. By Eq. (120), the number of possible reverse
switchings is

O
n— O

fm-@u»@-@(%-

g ). (137)

Since 4 N4 =0and L N4 = @,theratioof|.,%| +
4/ and | ] + |4

2]+ 14| _|Bug)
FESrARNEEA

(138)

Gn,d | e C Gn,d;g/ c Gn,d} 5
Gn,d | e C Gn,d;g/\{u/w/} - (_;n,da M/W/ S Gn,d} )
Gn,d | 8\{UW} - Gn,da uw ¢ Gn,d;g/ - Gn,d} 5

Gn,d | 8\{UW} - Gn,da uw ¢ Gn,d;g/\{u/wl} - an,da u/w’ € Gn,d} .

(129)
(130)
(131)
(132)
[
Moreover,
LU Ly ={Gua | e\uw) S Guas '\ u'n)
g En,d, M/W/ ¢ an,d} > (139)

-i/ﬂl Uc% = {Gn,d | 8\{MW} - Gn,d; 8/ - an,d} . (140)

Once again, by the forward and reverse switching argu-
ments as in Sec. IV A 1, we can show that

LHUZ d
LV 4] ad (141)
Lus| n—-d

Hence, the lemma follows. |

Next we need a useful intermediate result regarding the
probability of finding a subgraph (not induced) in a ran-
dom regular graph. The proof is a modification of that in
Ref. [43]. We will use this result in the proof of our main
result.

Lemma 10. Letd = n° for any choice of 0 < ¢ < 1. Let

¢ be a fixed disjoint collection of edges on the vertex set
[n] of size s and let uw be an edge in €. Then

Ple C Gual = (%) (Z) Ple\{uw} € Gual,

(142)
where
1-0()
(n—=O(d))-d
Proof. Let us define two sets
2o = {e € Gual, (144)
2 = {e\fuw} C Gya : {uw} ¢ Goa}. (145)

Given G € %), we apply a forward switching operation
to get a graph in .4}, and given a graph G € .2}, we
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apply reverse switching to get a graph in .%. By similar
arguments as in Sec. [V A,

% a-d
= = . 146
2 T n—d (146
Now
1ol
PleCGul _ 14l _ 1=z
Ple\uw) € Goal 141+ 141 1+ 2
d no
=—-———). 147
n<n—d(1—a)) (147
From Eq. (147), the lemma follows. ]

Corollary 6. Let d = n¢ for any choice of 0 < ¢ < 1.
Let uw be an edge. Then

Pluw ¢ Gyq] = <1+@) (1 —fl>.
n n

Proof. The proof follows from Lemma 10 by setting
s=1. |

(148)

With Lemmas 9 and 10 we can estimate the probabil-
ity that we observe an induced subgraph on a fixed set of
vertices.

Lemma 11. Let d = n° for any choice of 0 < ¢ < 1.
Let ¢, ¢’ be fixed disjoint collections of edges on the ver-
tex set [n], of size s, respectively. If we assume that
s-s = o(d), then

Ple € Gua, €' S Gual = (1 — o(1)) (g) <1 - g) :
(149)

Proof. Without loss of generality, let s < s'. By recur-
sively applying Lemma 9, we have

Ple C Gua €' S G4l

~(=ati=a) (3) (-3)

x P\ {ujw),uswh, ... ,uw)} € G,a]  (150)
for choices of edges
{uyw), upwh, ... uwl} € € (151)
that are picked at each round, where
1-0() - %5
o= " ) 0w (152)

T m=0W)d ~ n—0d)

When s - s = o(d),

(%) — (1= o(1)). (153)
Let the remaining edges in €’ be
(U Wy pse W) (154)
So, by Corollary 6,
P [{u;Hw;H, 7 = @n,d]
= (1 + M) (1 - é>S/S. (155)
n n
When ss” = o(d),
(1 + O(d(+/_s))> =14o0(1). (156)
From this observation, the lemma follows. |

With these lemmas, we can finally prove the main result
of this subsection, namely, an estimate of the expected
number of induced subgraphs isomorphic to a fixed graph
H (the size of which possibly grows with n).

Corollary 7. Let d = n° for any choice of 0 < ¢ < 1.
Let H be a fixed graph with e edges and v vertices with
e((5) —e) = o(d). Let Yy denote the number of induced
copies of H in G,4 and let aut() be the number of
automorphisms of H. Then

" ‘ ()
E(t) = (1 —o(1y) % (d> (1 _ i’) :

aut(H) n n

(2)-e
oo (-0
n

Proof. For each copy H' of H, define the indicator ran-
dom variable Jy such that Jy» = 1 if and only if H' is an
induced subgraph of G, 4. By Lemma 11,

IRVENOE

Moreover, there are exactly (ﬁ)v! Jaut(H) copies of H, and
by the linearity of expectation, Eq. (157) holds. |

(157)
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C. Expected number of grid graphs

Here we specialize the results of the previous subsection
to grid graphs. For a square grid on v vertices (where we
assume v to be a square), the number of edges

e =2v—2Jv.

The number of edges in the complement of the grid graph
is given by

(159)

2
-5
=" . Y 1oum. (160)
Hence, the condition
v
((2> — e) e =o(d) (161)

of Corollary 7 implies v = o(d'/?).

Corollary 8. Let d = n° for any choice of 0 < ¢ < 1.
Let G, 4 be a random d-regular graph on »n vertices and let
H be a grid graph having v vertices for any v satisfying
v?-d = O(n) and v = o(d'/?). Let Yy denote the number
of induced copies of H in G, 4. Then

d*\’
E(Yy) =0 <<—) ) . (162)
n
Proof. By applying Corollary 7, we have
a\ @—e
E(Yy) =0 |n"d° (1 — —) . (163)
n

The proof follows from combining the following obser-
vations: (1) v—e=—v+2,/v =—-0(), (2) n' ¢ =
nO0, (3) d*=d°®, and (4) (1-(d/m)D =
ef(-*)(vzd/n). [

Observe that E(Yy) in Eq. (162) is greater than 1 when
d = o(J/n).

D. Expected number of sparsified square grid graphs

In the previous section we noted that grid graphs are
expected to appear whenever d = w(4/n). We can push
this lower bound on the degree further down by consider-
ing instead sparsified grid graphs. These are constructed
from regular L x L grid graphs by replacing each edge
with L — 1 vertices and L edges connected in a line. These
graphs, on 2L(L — 1)*> + L? vertices, are still universal
resource states, as measuring all but one of the qubits on
each line in the Y basis, which is equivalent to applying the
local complementation operation on that vertex, gives back

the L x L grid graph. If we choose the number of vertices
v = 2L(L — 1)? + L?, the number of edges in a sparsified
grid graph is given by e = 2L*(L — 1). The number of
edges in the complement is given by
2L(L — 1)* + L?

z=< ( 2) + )—2L2(L—1). (164)
With this information we can reprove Corollary 8 for
sparsified grid graphs:

Corollary 9. Let d = n¢ for any choice of 0 < ¢ < 1.
Let G, 4 be a random d-regular graph on » vertices and let
H be a sparsified grid graph having v vertices for any v
satisfying v -d = O(n) and v = o(d'/?). Let Yy denote
the number of induced copies of H in G, 4. Then

1+1/n\ V
IE(YH)=®<(dn > )

Hence, for any ¢ > 0 such that d = ®(n°) the expecta-
tion value of E(Yy) is asymptotically growing.

(165)

E. Upper bound on the variance for grid graphs

We currently have a good estimate of the expected num-
ber of induced subgraphs isomorphic to a square grid.
However, we would like to show that a large fraction of
graphs includes at least one such induced graph. We can
do this with the second moment method (which is really
just Chebychev’s inequality).

For each copy H' of H in K,, we define the indicator
random variable Jyr = 1 if and only if H' is an induced
subgraph of G, 4. Then

Yy = Ju (166)
H/
and
Var(Yy) = Y Cov(Jp,Jyr)
H/,H//
=Y EUnJur) —EUEUT).  (167)
H/,H//

We can now calculate the variance:

Lemma 12. Let d = n° for any choice of 0 < ¢ < 1. Let
G,q be a random d-regular graph on n vertices and let
H be a grid graph having v vertices for any v satisfy-
ing v2-d = O), v=o0(d/?), and d = w(n"®). Let Yy
denote the number of induced copies of H in G, 4. Then

Var(Yy) = o (E(Yn)?). (168)
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After proving Lemma 12, we extend it to the case of the =~ Now we calculate
sparsified grid, as defined in Sec. IV D. This immediately
leads to the main theorem: Z EnIur) — EJg)EJg))
IVHNNVH)|<1
Theorem 7 (Restatement of Theorem 2). Let G be a ran-

dom d-regular graph on n vertices, with d = n®, where = Z o(E(r)EWym)

0.5 < ¢ < 1. Then, with probability 1 — o(1), it contains VHDOVH)|<1

a square grid graph on v vertices, for any v = o(n¥), with J\ 2 A\ 2()—2

k=min{(1 — ¢)/2,c/3}, as an induced subgraph. < Z 0 ((_> ( — _> )
VDV <1 "

Proof. Let Yy be the number of copies of H in G, 4.

_ & . I d 2e d 2(5)—2e
Observe that v = o(n*), with & = min {(1 — ¢)/2,¢/3}, —oln (2 1-¢
satisfies v2 - d = O(n) and v = o(d'/?). n n

From the calculations in Corollary 8 and Lemma 12, by

2
applying Chebyshev’s inequality, we have =0 (E (Yh) ) : (171)
Var(Yy) The second line follows from Eq. (170). The third line fol-

P(Yp=0) < E(Yy)2 = o(D). (169)  lows from Lemma 11. The fourth line follows from the fact

that there are
Hence, with probability 1 — o(1), Yy is nonzero, where the N2
probability is taken over the randomness in the choice of ((v) (n o 1) ) <" o v) + <n> . (" o v)) @h
G,.q- This completes the proof. [ | 1/\v—1 v—1 v v (aut(H))?
= o (n”) (172)
Now we prove Lemma 12.

choices of H' and H” such that |V(H") N V(H")| < 1.

(2) Shared induced subgraph. For the second case, let
the intersection of H' and H” be a nonempty graph F with
vp vertices and er edges. For a fixed F, there are at most

Proof of Lemma 12. We estimate the variance of Yy by
dividing it into three cases, depending on what the overlap
of H' and H” looks like:

(1) One common vertex. Let H and H” have at most one

rtex | . Then, by L 11, _ 3
vertex in common. Then, by Lemma (v) . (n UF) | (n v) o (n2v—v1:)
AN O vr) \v—vr) \v—vr
E(Us i) = (1 - o(1)) (—) (1——) (173)
n n
= (1 — 0o(1)) EUJg)EWJxn). (170) choices of H' and H”. Hence,

> EUwda) —BUmEUs) < Y EUudur)

EH')NE(H" )% E(H')NE(H" )%}
< Y o) EUnun)
FCH,ep>0
d 2e—ep d 2(3)—26+6F—(U§)
_ 2v—vp [ 2 _ =
=\ 2 () (0
FCH,ep>0
2e Y _2e er—v er—(F
Yy n2v6_’1 1_g ) Z neF —VF l_g’ =)
n n der n
FCH,er>0
=0 (E(Yy)?) (174)
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when

eF—VF eF— (UF)
o (1—%1) o). (75

der
FCH ., ep>0

The fourth line follows from Eq. (157). Note that the
number of subgraphs of F is given by

26F = per/logn (176)
Now
nEF—VF d eF_(Uﬁp)
> e (1-9)
FCH,ep>0
e —Vf d eF—(lg:)
— yer/logn . ”dT <1 — ;) =o(l) (177)
whenever
nep—vp 1
Zr =0 (nEF/logn> . (178)
This estimation holds whenever
d> n1+1/logn7v1:/eF. (179)

By the definition of the density m(H), one sufficient
condition for Eq. (179) to hold is

d> n1+1/10gn71/m(H). (180)
Note that the other term
a\eF (%)
(1 - —) = o(1). (181)
n

If we choose H to be a grid graph, it is easy to see that
m(H) is at most 2. Therefore,
d=wn®) (182)
makes the overall term negligible.
(3) Empty shared induced subgraph. Now we consider

the case when H’ and H” have ¢ vertices in common but no
edges in common. There are

v n—t n—uv (v—20! 2_ (1)
() (2 (20 () =

(183)

such cases. The second inequality of Eq. (170) follows
from the following estimations:

Again by Lemma 11, we have

d\ 2% 2\ 2(0)—2e=()
EWUuJur) = (14 0(1)) <;> (1 - —> .

n
(185)

In Eq. (185), we subtract (é) edges from the exponent of
the term on the extreme right because we are counting them
twice—once in the complement set of H' and again in the
complement set of H”. Hence,

> EBUnJur) — EUn)EUL))

EH)NEH")=0
VH)NV(H")| <t

= 2

EH)NEH")=0
[VHNV(H")| <t

B pes (d 2e d 2(3)=2¢=(3)
ey

EWuJur)

1>2
~ a(d 2@( ~ 21)2(5)—2@ _t( - il)—(ﬁ)
—o(n (n) 1 p gn 1 p,

=0 (E(Yn)?). (186)

The last line follows from the fact that

a\ @
an<1 — —) = o(1). (187)
=2 n
Therefore, putting everything together, we have
Var(Yy) = o (E(Yy)?), (188)
which is the lemma statement ]

Corollary 10. Let G, 4 be arandom d-regular graph on n
vertices and let H be a sparsified square grid graph having
v vertices for any v satisfying v? - d = O(n), v = o(d'/?),
and d = n° for any constant 0 < ¢ < 1. Let Yy denote the
number of induced copies of H in G, 4. Then

Var(Yy) = o (E(Yy)?). (189)

Proof. The proof is the same as that of Lemma 12
with the observation that in the second case, if H is the
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sparsified square grid graph, the local density is bounded as

m(H) < :}/E T (190)

Hence,
pl+/logn=1/m() . Um+1/ o _ e g (191)
for any constant 0 < ¢ < 1. ]

V. GEOMETRIC ENTANGLEMENT OF
HIGH-DEGREE GRAPH STATES

In this section we investigate the computational com-
plexity of random regular graph states of high degree,
ie., d =cn with ¢ € (0,1). We will use uniformly ran-
dom graphs as a proxy for graphs of high degree. We
suspect that these graphs are universal with high proba-
bility. However, the proofs given in the previous section
explicitly break down in the regime where d = cn. More
strongly, it is known that in this regime one cannot find
large [much larger than log(n)-sized] nontrivial induced
subgraphs with more than negligible probability [44]. This
leads one to suspect the contrary of our earlier asser-
tion, namely, that graph states of high degree are almost
never universal resources. Indeed this is the case for Haar-
random states [28], which with high probability have geo-
metric entanglement so high that MBQC measurements
can be effectively simulated by coin flips. In this section
we show that this is not the case for random graph states
by providing (almost matching) upper and lower bounds
on the (expected) geometric entanglement. This is not
proof positive of universality, but at least we avoid one
known barrier. At the end of the section we discuss exten-
sions to this simulation barrier specific to stabilizer states,
conjecturing that this too can be avoided.

A. Lower bound on geometric entanglement

In this section we prove Theorem 4 and Corollary 3.
We begin by extending a nice trick from compressed
sensing (see, e.g., Lemma 4.4.1 in Ref. [88]) on approxi-
mating extremal singular values of matrices through e-nets
(we found essentially this argument in Ref. [89] but it is
probably folklore in the tensor community).

Lemma 13. Consider an n-qubit state [) and let 4./, be
a (In(3/2)/n)-net of the set of single-qubit states. We then
have

max  [(a|y)* <2 max [(Bly)]%. 192
l)ePROD), |ﬂ>€Aﬁ?3/2)/n o

Proof. Consider a state |o*) such that maxq)eprop
(aly) > = [(*|¥) 2. Writing  |a*) = @7, |af), we

choose for each |a;k) a state |B;) € Ain3/2)/n such that
[lec) = 18] < In(3/2)/n. We can write

e 19| = KBl + [ef | — (BiDIY)]
i=1

< [{BlY)| + Z <’:> (In(3/2)/n) [{o* )]
i=1
(193)

using the fact that |«*) maximizes the overlap with |y)
over normalized product states so that |{(a*|) — (B|¥)]| <
llee) — |8) | [{e* |3} |. The bound then follows from apply-
ing this fact for every tensor factor and H |a;k) — 1Bi) || <
In(3/2)/n. Now note that

n

3 (’Z) (In(3/2)/n)’

i=1

1
=1 +In(GB/2)/n)" —1 <GP _ 1= 5 (194)

We can thus invert the relation above to get the lemma
statement. |

This lemma allows us to get a multiplicative approxima-
tion to the maximum overlap using a relatively weak (and
thus small) e-net for the product states.

Recall that we are trying to lower-bound the geomet-
ric entanglement. This is equivalent to upper-bounding the
maximization over product states. The probability that the
geometric entanglement is small is equal to the probabil-
ity that the maximization of the overlap is large. Now, we
upper-bound this probability. Combining the above argu-
ment with the union bound and the formula for average
stabilizer states Eq. (9), we obtain the following theorem:

Theorem 8 (Restatement of Theorem 4). Choose a stabi-
lizer state |S) uniformly at random. There exists a constant
¢ such that

P [E(1S) < n — cv/nlog(m] < 027", (195)
Proof. We begin by noting that
P [E,(IS)) <n— 5]

_pl_ 2 _

=P i log (aegllggDn (o) > <n 8}

=P| max [(«|S)* > 2_"+5]
_|a)ePROD,,

<P| max [(BIS)] = 277", (196)
| 1B)e4f,
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where A1n3/2)/x 18 a In(3/2) /n-net for the set of single-qubit states. We know that there exists such a net of size |Ain3/2)/u| <
(5n/1n(3/2)) [90]. Using the union bound and Markov’s inequality, we can upper-bound this latter quantity as

]P’[ max  |(BlY)* < 2_"”_1} < 2"
|5>€AEE’3/2)M

1/t

(197)

> B

®
1BYEA1ns /2y

for some integer ¢ > 1 (we will specify this later) Next we use the concavity of x!/” and the duality formula described in

Eq. (9) to obtain
1/t

2n—6—1]ES

®
|ﬁ>€Aln?3/2)/n

Choosing ¢ = +/n and working out, we obtain
1/t

2n—8+1ES Z |<,3|S>|2t < 5ﬁ2—8210g(n)ﬁ2ﬁ.

®
1BYeAn(s /2)/n

(199)

Thus, setting § = 2 log(n)+/n, we obtain what we set out
to prove. |

The above statement holds for uniformly random stabi-
lizer states. We can lift it to a statement about graph states
by noting that the probability that a uniformly random sta-
bilizer state has full support on the computational basis
states is bounded from below by a constant C. This is a
standard fact, but we prove it here for completeness:

Corollary 11 (Restatement of Corollary 3). Choose a
graph state |G) uniformly at random. There exists a con-
stant ¢ such that

P[E;(1G) < n—cv/nlog(m] < 0Q™").  (200)

Proof. Consider the stabilizer states of full support:

|SU,b> — 27}1/2 Z (_l)xTUx ibe |X> ,

xe{0,1}"

(201)

with U a binary upper triangular matrix and b € Zj. We
will argue that all pairs U, b correspond to different quan-
tum states. For two such states we can compute the inner
product:

_ T T
(SyalSup) =27" Y (=1 WHDpard),
xe{0,1}*

(202)

The matrix U+ V' mod 2 is again upper triangular, and
hence a theorem due to Dickson (Theorem 4, p. 438,

Z (IS < 2" N Ay |27 4 DY |:

—2

~

(

Chapter 5, paragraph 2 [91]) tells us that there exists an
invertible binary matrix P such that P(U+ V)P~! =D
with

rank(U+V) /2

x'Dx = Z

i=1

X2i—1X2;- (203)

Note that the rank of U + V' is always even, so this is sen-
sible. Absorbing the map P into the summation, we can
write

—n XT X (X T a
(SralSus) =27" Y (=D PP (204)
xef0,1)
For this overlap to be 1, we must have
(_1)xTDxl~(Px)T(a+b) =1 (205)

for all x € {0, 1}". This immediately implies that i’ (@+b)
= +1 and hence that a + b = 2z for some z € {0, 1}". Fur-
thermore, we must have x’Dx + x"(PTz) = 0 for all x €
{0, 1}". Setting PTz = 2/, we can write this as

r/2
/ /
0= E X2iX2it1 + X2iZ5; + X2i4125141
i=0
n/2
/ /
+ E X2iZy; + X2i+12554 1
i=r/2+1

(206)

where 7 is the rank of D = U+ V. Clearly z,, =z}, | =
0 for i > r/2. Moreover, if » > 1, it is easy to see (by
explicit enumeration) that for any choice of zj,z; one of
the evaluations of xox| + xoz, + x;z] is always nonzero.
Hence, we must have » = 0, which implies D = 0. This
also implies a + b = 0, since P is invertible. Hence, we
must have U = V' and a = b, which is what we set out to
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argue. With this it is clear that the set {|SU,b>} 4 18 of size
27n=D/2 5 221 Comparing this with the total number of
stabilizer states 2" []'_, (2" + 1), we see that

n —1
2@"!‘2"! [zn 1_[(21 + 1):|

i=1

n
— 2@4—2}1—}'1—@ 1_[(1 4 2—i)—1

i=1

> ﬁ(l +2)7 =0

i=1

(207)

where C~! & 2.3842 (by numerical evaluation). Now we
can prove the actual corollary statement by noting that (1)
the geometric entanglement of |S), is independent of b
and (2) the set {|S)y,}» contains exactly one graph state
(namely, b = 0). From this we can see that

Pig [E.(IG) =n—3§] = Piss) [Ec(|Sup) <n—3],
(208)

where on the right-hand side we choose U, b uniformly at
random. Since conditioning on inclusion in a subset under
a uniform distribution yields a uniform distribution on that
subset, we can say that

Pisy,) [E¢(|Sup) < n—38] < C'Pps) [Eo(IS) <n— 6],
(209)

which is what we wanted to show. [ |

B. Upper bound on geometric entanglement

The main goal of this section is to provide a proof of
the upper bound in Theorem 3. The proof of this statement
is substantially more difficult than the proof of the associ-
ated lower bound in Corollary 3. We begin by proving a
lemma that exactly characterizes the maximal overlap of
a random graph state with the set of real stabilizer prod-
uct states: R, = {|0),|1),|+),|—)}®". This is a relatively
small subset of all product states, and therefore gives a
lower bound on the maximal overlap, which translates into
an upper bound for the expected geometric entanglement
since the overlap enters with a minus sign.

Lemma 14. Consider the set of real stabilizer product
states R, = {|0),|1), |+), |—)}®". We then have

EG(E,(1G))) < Eg [— log<|glea]§ 1G] s)lz)}

=n—Eg [?é?ﬁﬁ (N rank(AG[S]))} ,
(210)

where Ag[S] = 4¢[S,S] is the adjacency matrix of G
restricted to the index set S.

Proof. The first inequality is obvious from the definition
of the geometric entanglement E,. Now note that we
can specify any state |s) € R, by a set S C [n] indi-
cating the Hadamard basis part of the state and two
bitstrings x5 € {0,1}S! and yg € {0, 1}"5 encoding the
phase and computational basis states in S, S so that |s) =
2718172 ZZE{O,I}M(—I)"STZ |z) [v5). To ease the notation, let
us assume without loss of generality that S = {1,...,|S|},
i.e., the submatrix Ag[S] is just the top-left corner of Ag.
Then

max | (G|s)|> = 27" P max max max
Is)ERn SClr] xge(0,1}181 yse(0,1)7—1SI

2
X Z (—1)(Z’ys)TUG<Zays>+szs

z€{0,1}I8!
(211)

where we recall that Uy is the adjacency matrix of G with
the lower triangular part set to zero. Splitting the matrix
Ug into submatrices Ugg, Ugs, Ugg, Usg, we can write the
phase inside the summation as

(z,v3) Uz, y35) + xkz
= 2"Ussz + (x{ + yIUL + yIUsg) z + y{ Usgys.
212)

The final term in this equation contributes only a global
phase, while the middle one can be absorbed in the maxi-
mization over xs. Hence, we get

max | (G]s)|> =27 ¥ max max
Is)ERn SC[n] xgef0,1}I51

% Z (_ 1)zTUSSz+x§z

ze{0,1}I51

(213)

Next we use a theorem due to Dickson (Theorem 2 in
Chap. 15 in Ref. [91]), which tells us that there exists an
invertible binary matrix Pgsg such that PSSUSSPS}1 = Dgg
with

rank(Ugg)/2

E 22i—122;-

i=1

ZTDSSz == (2 1 4)

Note that the rank of Ugg is always even, so this equation
makes sense. Absorbing Pgs in the sum over z and subse-
quently into the maximization over xg, we obtain
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2
T T
max | (G|s)]> =max max | Y (—1)7 P (215)
IsYERp SCln] xge{0,1}I51
ase{O,l}S
Using the definition of Dgg, we see that this equation factorizes, and we obtain
2\ rank(Uss)/2
max | (G|s)> = 27" ¥ max | max D (—paeiatng (216)
Is)ERy SC[n] | y1.12€{0,1}

The inner maximization can easily be solved to obtain

max | <G| S>|2 — 2—n—|S\ 2rank(USS)'
Is)ERR

(217)
Noting that rank(Uss) = rank(4s[S]), we obtain the
lemma statement. |

This means that the expected geometric entanglement
can be controlled by the average rank of submatrices of
random adjacency matrices. To determine this, we will
need two facts from probability theory and classical coding
theory:

Fact 1 (Bonferroni inequalities). Let {E;};cq be a count-
able set of events. Then

P (UE) <> P&,

(union bound)

i€ i€
P(UE,) > ZIP’(Ei) — % Z P(E;VE)).
i€ ieQ ij €QLi#]
(Bonferroni)

Our goal will be to use the second inequality to lower-
bound the probability that any submatrix 4s[S] of a ran-
dom adjacency matrix 4 has excessive rank deficit. We
can characterize the distribution of this rank for a fixed S
exactly.

Fact 2 (Random adjacency matrices). Consider the set
of n x n binary symmetric matrices with zeros on the
diagonal (i.e., adjacency matrices). Choosing a matrix
A uniformly from this set, we have P(rank(4g) = 24 +
1) =0)and

s h 22[_2 2h—1
P (rank(4dg) = 2h) = 27"/ 2| =X— | 2" - 1),
(rank(4g) = 2h) 11%—15( )

(218)

with 72 € [0, [1/2]].

ay,a2€{0,1}

The formula above, found in Theorem 2 in Chap. 15
in Ref. [91] (see Ref. [92]), can be both upper-bounded
and lower-bounded by a Gaussian. We have the following
lemma, which follows from a straightforward calculation:

Lemma 15. Consider a uniformly random adjacency
matrix 4 as in Fact 2. We have the following approxima-
tion:

e2 =% (=2h)

—2 2 2 2

< P (rank(4) = 2h)

(=212 _ (n—2h)
2 2 2

< NG

with & € [0, [1/2]].

This immediately translates into a tail bound on the rank
deficiency of a submatrix Ag[S] for a fixed S.

Lemma 16. Consider a uniformly random » x n adja-
cency matrix 4 and a set of indices S C [n] and define
the event Es(?) = {|S| — rank(4) > ¢} with ¢ € [0, |S]]. We
have

6_2

P (Es(n) > Tz*?%. (220)

This allows us to control the first term in the Bonferroni
inequality. To characterize the second term will we need to
do substantially more work. First we note that the rank of
two submatrices A[S], A[S] is independent conditioned on
the rank of the intersection matrix A[S N .S'].

Lemma 17. Consider a uniformly random » x n adja-
cency matrix 4 and two sets of indices S,S" C [n], with
SNS =:1. Conditioned on the rank of the intersection
(rank(A[I])) the ranks of A[S] and A[S’] are independent,
ie.,
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P (rank(A[S]) = i, rank(4[S']) = ')
LI71/2]

= Z PP (rank(A[S]) = i| rank(4[I]) =) P (rank(4[S']) = i’ | rank(4[[]) =) P (rank(4[I]) =) .

Jj=0

Proof. Certainly A[S] and A[S’] are independent
conditioned on the intersection A[/], since the matrix
elements A[S] and A[S'] outside the intersection are inde-
pendent. It is thus sufficient to establish that the rank
of A[S] depends only on the rank of A[/] (and similarly
for A[S']). Consider two matrices By, B; with rank(B;) =
rank(B;). From Dickson’s theorem we know there exists
an invertible matrix R; such that B, = R;B;R!. Now
consider the induced distributions P (A[S]|A[/] = By)
and P (A[S']|A[I] = B}). We have P (4[S]|A[I] = B))

P ((]1 @ RyHA[STA @ RTY) 14l = B,). Clearly

rank((]l ® R7HA[S'|1 & RT ‘1)) — rank(4[S']), which
gives us the desired result. |

With the above we can control the joint probability
of the rank of two submatrices A[S],A[S'] in terms of
only their intersection. Next we will show that if |S| is
much larger than |/|, then the rank of A[S], conditioned
on the rank of A[/], is close to maximal with high prob-
ability (provided that the rank of A[/] is not too small).
We do this by a reduction of the problem to an infinite-
dimensional Markov chain together with precise bounds
on its convergence rate.

Lemma 18. Consider a uniformly random » x n adja-
cency matrix 4 and two sets of indices S,/ C [n], with
I € S. Also consider integers 7, such that |S| — i, || —J
are even. There exists a constant p < 1 — 107> such that

PP (rank(4[S]) < |S] — i|rank(4[I]) = |[| —j)

ON0)

<&M T 7.2 piSIEH (222)

fori>0ando > 1.

Proof. The main strategy of this proof is to rewrite the
left-hand side of Eq. (222) in terms of the convergence
properties of a (formally infinite) Markov chain P and then
use classical Markov chain bounding techniques (in partic-
ular the drift and minorization method [84,85]) to provide
bounds on these convergence properties.

To construct the Markov chain, consider an m x m sym-
metric Boolean matrix 4 of rank r (with zeros on the
diagonal). We will now symmetrically add a vector v €
{0, 1} to the rows and columns. If we add the column
first, the probability that rank((v A)) = ris 27" and the

(221)

(

probability that rank((v 4)) =r+1is 1 —2""" In the
second case it is clear that

T
rank((S 2)) =r+2

since column and row rank are always the same. In the first
case we note that there exists an x subject to Ax = v. This
immediately implies that

v! e vix\ (0

A7 v ) \v)’
because v'x = xT4x = 0 by the symmetry of 4 and the fact
that we are working over the field . This implies that

0 o
rank((u 4 )) =r
(this elegant argument is due to Sloane and MacWilliams;
see Lemma 3 in Chap. 15 in Ref. [91]). The sequential
adding of random k columns (and rows) to a matrix 4 of
rank r, and considering their rank, thus induces a sequence

of random variables Ry = r, R, ..., R;. From the above
discussion, this sequence is a (time-dependent) Markov

(223)

r—m _nor—m

chain with transitions » — r, =27 r+ 2 (where m
takes the role of time).

Changing variables from the rank Rj to the rank defi-
ciency Dy = m + k — Ry, we obtain another Markov chain,
whose transition probabilities no longer depend on the
ambient matrix dimension m (it is now homogeneous
and formally infinite dimensional). The associated Markov
generator is given explicitly as

M(],l) :ZP(Dk+1 =]’Dk = l)

2 ifj =i+,
={1-27 ifj =i—1, (224)
0 ifj —i > 1

for i,j € N. This Markov chain is irreducible, but is peri-
odic with period 2. Hence, it is natural to consider Q = M?,
which will be aperiodic, but decomposes into even and
odd irreducible aperiodic subchains. We will now bound
the convergence of the Markov chain Q with initial state e,
(the unit vector with 1 on the rth position). We will treat the
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even subchain in detail (with the odd subchain being anal-
ogous), so we assume that » is even. The stationary state
of M? on the even subspace can be found by appropriately
taking the limit of Eq. (218) to n — oc:

i—t __

; 00 22tt
JTN/Z—>R1—>C12771_[ ST
=3+

«TTa-2

t=i+1

(225)

where C > 1 is some appropriate normalization. The above
makes intuitive sense, because it corresponds to the situa-
tion where |S| is much larger than |/|, and thus the rank
distribution of A[|S|] stops depending on /. One can also
explicitly verify that 7 is an eigenvector of M? with eigen-
value 1. We will use the drift and minorization method (see
Theorem 5) to bound convergence to this distribution. For
this bounding method we need to provide a drift function
JV:N/2 — R and a small set C C N/2. We will choose
V(i) = 2" and C = {0,2}. It is tedious but straightforward
to check that P? satisfies the conditions of Theorem 5 with
parameters A = 0.55,b =2, = 0.2,d = 9,r = 0.001 (all
the difficulty lies in choosing the parameters). This bounds
the convergence of the Markov chain in total variation
distance as

H T —M 2ke,

:01 + :02 (6 + 2r) = 7Pk2r> (226)

I =

with p = max{p;, p2}and p; <1 =107, 00 <1 —1073.

We obtain the same expression for the odd subchain.
Mapping back to our original question, we see that

P (rank(A[S]) < [S| — i|rank(4[/]) = [I| —j)
=P (Dygj—yz = i |rank(4[I]) = |I| — )
<> (M ey ), (227)

where we recall that e; is ith unit vector on RY and (-),
denotes the 7th element. Using the triangle inequality on
(M|S|7|[|€|]\_j — ) + m, we obtain

P (rank(A[S]) < |S] — i|rank(4[I]) = |/| —j)]

0 P
< 7o £ 3 = 7pIIY 420
t=i

using the definition of the distribution 7 and the basic
upper bound [72, , ,(2*7//2%) < 2. [ |

With this lemma under our belt it is finally time to prove
the main theorem of this section.

Theorem 9 (Restatement of Theorem 3). Choose a graph
state |G) on n qubits uniformly at random, where we
assume n = k* for some integer k. We have

E¢ (Eg(1G)) <n—Q(n'*/logn)).  (228)

Proof. We begin by upper-bounding the geometric

entanglement of a graph state |G) in terms of the max-

imal rank deficiency of the principal submatrices of the
adjacency matrix of G. Lemma 14 tells us that

Ec (E¢(IG) < n—Eg [?c%zi NE rank(AG[S]»} .
(229)

We can further upper-bound this by maximizing only over
sets .S that are pairwise far away in edit distance [93].
Define the set of sets Q by dividing [#] up into intervals of
size «/n (which is an integer by assumption) and taking all
sets S C [n] that contain \/n/2 such intervals. This implies

that all S € Q have size |S| = n/2, that |Q| = (f/z) and

that all sets in Q are pairwise distant (at least v/n ) in edit
distance.

Since |S| =n/2 for S € Q, we can lower-bound the
expected maximal rank deficiency (over Q) by defining
the events Eg(f) = {rank(4) < n/2 — t}; recall Lemma 16.
From the Markov and Bonferroni inequalities (Fact 1) we
see

Eg [max(lSI — rank(4g[S ]))] > ﬂP(U Es(t)) (230)

SeQ

2

S,8'€Q,5#£8"

1
> P(Es@) — P (Es(t) U Es (1))

SeQ

(1) 2)

(231)

We can give a lower bound of the first term (1) using
Lemma 16:

(1) =Y P(Es(n/2—1) >

SeQ

l 2( Vn )efz;f
1¢ \n2 '
(232)

It remains to upper-bound the second term (2). To this
end, we first recall Lemma 17, which implies that the
joint probability P (Es(f) U Eg(f)) depends only on the
size of the intersection / = SN §’. The size of this inter-
section can take values |I| = 0,/n,...,n/2 — /n. Given
a set S € Q, for each value of w € [0,/n/2 — 1] there

are (*v/f) (Iﬁw) sets S' € Q satisfying |SNS'| = wy/n.
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Let us choose representatives Sy := [n/2], S, := [n/2 — /nw,n — /nw] with I,, := Sy N S, of size |1,,| = wy/n. We can
then write

@)= ), PE®DUEs®) (233)
S,8'€Q, S£S'
t

= Y. ) P(rank(4[S]) =iV rank(4[S]) =) (234)

§,8'€Q, S#8 i,i'=0

ISNS’| ¢

= Y Y ) P(ank([S]) = i | rank(4[]]) = j) P (rank(4[S]) = i | rank(4[I]) =) P (rank(4[]) = j))

5,.8'€Q, S£8 j=0 ii'=j

(235)

~ Ji Vn/2—1 - NG wyn/2 it . .

= ( i /2) ; (Q ( 7 /2_W> ,2_; MX_;P(rank(A[So]) = i|rank(d[L,]) = /)
x P (rank(A[S,]) = i | rank(A[],,]) = j ) P (rank(4[1,]) =) (236)

2
(A NTE (a2 R [ N N N
= (ﬁ/2> ; ( . )( a2~ W) ; ; PP (rank (A[So]) = i | rank(4[I,,]) =) | P (rank(4[L,,]) =) .
(237)
In the last line we used that since [Sy| = |S],| we have

P (rank(A4[So]) = i| rank(4[/,]) = j) = P (rank(4[S,,]) = i| rank(4[L,]) = ). (238)

Next we use Fact 2, which tells us the rank of 4[1,,] is likely nearly maximal. To make this precise we introduce a constant
a > 1 which will be precisely determined later, and split the sum over j intoj < |/,,| — af and j > |[,,| — at. Focusing
on this sum, we see

L/nw/2] | nj2—t 2

D | 2o Paank([So)) = i rank(d[L,)) =) | P (rank(A[L,]) =) (239)
Jj=0 i=/

L/aw/2] [ nj2—t 2

< ) | D Plank([So]) = i rank(A[L,]) =) (240)
J=at i=j
L/rw/2|—at—1 a2 /2l n/2—t
F Y S R N B k(A8 = i rank(A[L,]) = /)

Jj=0 i=J
— -2
L/aw/2) [ nj2—i LJw/2)—at—1 ., ,
Jnw/2]— Vw/2]—
< Y | Y Plrank(so]) = ifrank(A[LD) =) | +&2 Y 2m T (241)
j=at | i=j i J=0
— -2
Laws2] [ nj2—t Lvnw/2]—at—1 2 i
< Y | Y Plank([S)) = ilrank[n,]) =) |+ Y 2 PEEERMEEE L o)
j=at | i i j=0

where we have used Fact 2 to upper-bound P (rank(4[/]) =;) in the second term, and have trivially bounded
P (rank(A[/]) =) < 1 in the first. It remains to use Lemma 18 to bound the first term. We obtain
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Ji/2—1 w2 [n)2—t
\/z ﬁ/2 \/5/2 _@4_@ 2ia (Jn/2—w)/n _(0(7*1)2
mf(ﬁ/z DI O W7 R DD D DRI A t2e
w=0 j=at \ i=j
(243)

Setting =5, /log [( ﬁz)]

C > 0) and obtain

SeQ

g

4 7. 2% (W12

- ¢, log | (

which is what we set out to prove.

Eg (max g — rank(46[S])

1 Vn/2-1

—e
4

)

_p 4t

(

i

(@r—1)2

+2.277 1

7

C. Structured simulation algorithms

The upper bound on the geometric entanglement derived
above is strong enough to break the simulation algorithm
derived in Ref. [28]. However, better simulation algo-
rithms might be found by exploiting the extra structure
that graph states provide. In particular, we can think of
any MBQC procedure as a sequence of measurements in
the eigenbases of the X, Y,X — Y,X + Y operators [36].
On a graph state the first three measurements can be simu-
lated classically in polynomial time. We can thus envision
an improved simulation algorithm where we classically
simulate the X, Y, Z measurements and simulate the X +
Y,X — Y measurements by coin flips. The efficacy of this
algorithm depends critically on how the overlap with a
random graph state fluctuates with respect to tensor prod-
ucts of the eigenstates of X + Y, X — Y. As these states are
highly magical, it is possible that their overlap with stabi-
lizer states fluctuates much less than the maximal overlap
with arbitrary stabilizer states (which, as we saw above, is
dominated by contributions from product stabilizer states).
We believe that this is not the case (and thus that this
algorithm does not work), but cannot prove it as of yet.
We think this is an interesting question in its own right, so
we leave it as a conjecture.

and o = 10, we can evaluate the resulting expression (packing all numbers into a constant

w Vnj2—w j=at i=j

(244)

Conjecture 1. If we label the set of eigenstates of X +
Y,X — Yas 7, there exist ¢, C > 0 subject to

il

with the probability taken uniformly over graph states.

max |(«|G) > = 27"
la)yeT®n

] >C,  (245)
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