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Abstract. Estimating the outcome of a negotiation before it is finished 
allows a party to take effective actions, e.g., exploring outside options, 
or reporting progress to a human user. However, estimating the outcome 
is difficult as many (uncertain) factors affect the course of a negotiation. 
Accordingly, this paper presents a method for predicting the outcome 
of ongoing bilateral negotiations called PrONeg. We predict the future 
trajectories of an agent’s own bids and its opponent’s bids using time 
series forecasting methods. These forecasts are used to determine the 
agent’s outcome utility distribution, along with the probability of reach-
ing an agreement by the end of the negotiation. Finally, we predict the
most likely outcome of the negotiation by combining the outcome util-
ity distribution with preference information available in the negotiation
scenario. Our experiments show that Gaussian processes perform best
in most settings, including balancing predicting true breakoffs without
misclassifying agreements. With its ability to predict the outcome of a
negotiation, PrONeg can potentially serve as a negotiation support sys-
tem in hybrid negotiations.

Keywords: Automated negotiation · Outcome prediction · Time
series forecasting

1 Introduction 

The field of automated negotiation researches efficient ways to reach acceptable 
agreements with multiple parties, finding application in, e.g., procurement [1,24], 
energy market [5] and supply chain management [26]. Negotiating parties often 
invest time and effort to achieve an agreement, yet not all negotiations result in 
satisfactory outcomes. Negotiators therefore seek to know if the ongoing negoti-
ation is worth the time, or whether they should move on to other matters; for 
example by ending the negotiation early or starting a concurrent negotiation.
Therefore, an early prediction of a non-satisfactory outcome or a failed negoti-
ation can save valuable time and resources. Furthermore, the expected outcome
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of the negotiation influences decisions outside the current negotiation, so early 
outcome prediction can facilitate proactive coordination of parallel actions. For 
example, the negotiating agent may want to know the expected expenditure in
order to stay within budget in other, parallel negotiations.

Predicting whether a negotiation ends in agreement, and, if so, predicting 
the agent’s utility of the outcome and the specific outcome of a negotiation, is 
hard for a number of reasons. Firstly, it is crucial to balance predicting breakoffs 
accurately without misclassifying agreements as failures, which can lead to lost 
opportunities; therefore, accurate prediction is necessary. Secondly, even when 
an agreement is correctly anticipated, accurately determining the corresponding 
utility is still hard. An agreement could be near or far ahead, but the exact 
meeting point depends on the course of bidding and the (unknown) strategy 
of both agents. The bidding course of both agents are interdependent, with 
each concession influencing the other party’s subsequent moves. This creates a 
complex dynamic, especially since the preferences of the opponent are private. 
Furthermore, the agents do not have access to information about each other’s 
preferences and strategy. Therefore, the agents typically engage in some trial
and error to reach a mutually beneficial outcome, creating an impression of
randomness in each other’s received utility that is difficult to extrapolate. Finally,
assuming an accurate prediction of the outcome utility, the specific outcome
remains challenging to pinpoint, because different outcomes that are close to each
other w.r.t. the agent’s own utility can be far apart w.r.t. the opponent’s utility.
If the number of outcomes is large, it becomes difficult to identify the exact
outcome.

Existing research has been dedicated to predicting the outcome in human-
human negotiation [27,29] and hybrid human-agent negotiation [9,23]. These 
results cannot be applied in our automated negotiation setting, as their anal-
ysis is focused on factors specific for humans, such as emotional pointers and 
utterances, that are not presen t in automated negotiations. Previous research in
automated negotiations focuses on predicting offers in advance, e.g., the expected
counteroffer [7], but the outlook of one step into the future does not provide 
enough information about the final outcome. Some authors predict the oppo-
nent’s concession curve [30] or research opponent negotiation strategies [6,10,20]. 
Our approach advances the goal of predicting noisy bidding curves to pinpoint-
ing the outcome of a negotiation. While Moosmayer et al. [27] retrospectively 
analyze important factors that predict the outcome, such as the level of reser-
vation value, our model predicts the outcome during the negotiation. Although 
these correlations could b e useful inputs for our model, they do not provide the
tools to predict the outcome in an ongoing negotiation.

We propose a modular, online, risk aware prediction method called PrONeg 
for automated negotiation outcome prediction. Our approach is modular, in the 
sense that it can be applied by any type of agent in bilateral negotiation. This 
is achieved by only relying on the incoming bids of the current negotiation,
without requiring that the agent has an opponent model or any other neces-
sary training phase in advance. During the negotiation, our outcome prediction
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method can be used as an online tool for agent designers to guide their strategy, 
using only the information available at that point, saving the negotiator time and 
energy at an early stage. Risk estimation can aid the agent to make the trade-
off between capturing as many breakoffs as possible and losing opportunities by
ending potentially fruitful negotiations.

Our method PrONeg is a pipeline consisting of three parts, as visualized in
Fig. 3. Firstly, from the perspective of one agent, the opponent’s utility curve is 
predicted using time series forecasts. We regard the history of received bids as 
a time series of utility values from the perspective of one agent. We also predict 
the agent’s own utility curve. Secondly, we intersect these two predictions using 
Monte Carlo sampling to find a predicted distribution of outcome utilities. We 
sample from both distributions and estimate the likeliest points of agreement. We 
convert the sampled points into a density distribution of outcome utilities and 
an agreement probability. Thirdly, we combine the predicted outcome utility 
distribution from the previous step with the specific scenario to determine how 
likely each specific outcome in the scenario i s. We evaluate our method in a rich
setup that considers negotiations between different types of agents with different
characteristics. We find that predictions of negotiations with agents that use
opponent models are more accurate, and that predictions made closer to the
actual agreement time are also more reliable. The specific outcome prediction
results are promising and can be further enhanced by incorporating opponent
model information.

The overview of the paper is as follows. Section 2 introduces and formal-
izes the notion of negotiation and concession to define the problem of outcome 
prediction. We present the layout and formalization of our proposed method
PrONeg for outcome prediction in Sect. 3, followed by an experimental evalua-
tion of PrONeg applied to a data set of negotiations (Sect. 4), and a discussion 
looking ahead to future research opportunities (Sect. 5). 

2 Problem Setting 

We consider a setting where one agent aims to predict the outcome in a bilateral 
negotiation. The agents negotiate according to the widely used Alternating Offers
Protocol (AOP) [28], where two agents take turns in making bids, until one of 
the agents accepts the bid, ends the negotiation early or until deadline D is 
reached. If no agreement is reached before the deadline D, the negotiation ends
in breakoff.

Both agents have preferences over what the outcome of a negotiation is, 
modeled using a utility function. Each bid b in outcome space Ω has an associated 
utility for both agents, which is a value between 0 and 1 calculated using an
additive utility function Ua : Ω → [0, 1] for Agent a ∈ {1, 2}.

Formally, we can formulate a negotiation with the AOP protocol as the 
sequence of exchanged bids: 

b =  (b1 1, b21, b12, b22, . . . , bx
r , by

r),
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with ba 
i ∈ Ω ∪ {∅} the bid made in round i by Agent a ∈  {1, 2} from outcome 

space Ω. The last bid in round r ≤ D can be posed by either Agent 1 (when 
x =  2,  y =  1,  and  r = r − 1 ) or Agent 2 (when x =  1,  y =  2,  and  r = r). If
the last agent replies with the same bid, i.e. bx

r = by
r , then the negotiation ends

in agreement and has by
r as outcome. Offering the empty set ∅ is interpreted as

ending the negotiation early, associated with a bid sequence ending in by
r = ∅.

An agent seeks the outcome that best aligns with its preferences and maxi-
mizes its utility. However, since both agents have different preferences and must 
agree on the outcome, agents cannot easily get the result they most desire. 
Instead, they attempt to find an outcome that satisfies both agents through 
concession. By sacrificing some of their own utility, they try to align with and 
appeal to the other agent’s interests. Both agents may start at their best option
(maximum utility) and then slowly explore other options while conceding small
parts of their utility until an agreement is reached. From an outside view with
full knowledge of both utility functions, these concessions may look like Fig. 1. 
As the agents do not know the preferences of their opponent, the utility of the 
bids show a chaotic, ‘trial-and-error’ curve in terms of the opponent’s utility, as
can be seen in Fig. 2. The outcome of the negotiation is when the two agents 
concede enough to appeal to the others wishes and ‘meet in the middle’: the
point of agreement.

Fig. 1. The bidding curves of two agents 
in NegMAS, where the lines with 
squares and circles show t he utilities of 
the bids made b y the agents.

Fig. 2. Bidding curves from the per-
spective of a single agent: in orange, 
the agent’s own bids (upper line), in 
blue the opponent’s bids (lower line). 
(Color figure online)

3 PrONeg: Outcome Prediction Method 

The exact point of agreement could be valuable information for the agent during 
the negotiation. It is hard to find good outcomes, and it often takes a lot of time
to find mutually acceptable outcomes, since utility functions are private, the
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Fig. 3. Overview of the proposed pipeline PrONeg in three steps.

opponent’s strategies are unknown, and the outcome space can be large. If the 
negotiation has little chance of a good ending, it could be beneficial to end the 
negotiation and save resources. In addition to predicting the chance of success,
it can also be valuable to predict the specific outcome of a negotiation, as that
can affect what is optimal in decisions outside the negotiation. For example,
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a monthly budget imposes constraints on multiple purchases. The agent could 
already act on the expected outcome of the current negotiation and align different
actions well to find good outcomes.

The information we have to estimate the outcome is limited, especially 
because we assume no prior knowledge of the opponent’s preferences. The data 
that is accessible include the agent’s own bids and those received from the oppo-
nent, along with their associated utilities from the perspective of the agent, while
the opponent’s utility of the bid history remains unknown. An example visual-
ization of the information available in an online setting can be seen in Fig. 2, 
showing the agent’s own bidding curve (upper line) and the opponent’s bidding 
curve from the agent’s perspective (lower line). In this example, the agent is 
following a clear downward concession curve, while the opponent is seemingly 
trying a wider palette of offers. As time increases, the trend of the opponent’s 
bidding curve goes up, due to its gradual willingness to concede and their ability
to learn about the agent’s preferences over time. As time continues further, the
two bidding curves may meet in a point of agreement.

Predicting the utility of the point of agreement is a challenging endeavor 
because of the noise of incoming bids and uncertainty about the opponent’s 
preferences and strategy. Even if the prediction of the utility of a negotiation is 
accurate, the specific outcome is still hard to find, because different outcomes 
that are close to each other in utility for one agent, can be far apart for the
other. In a large outcome space, it is even more difficult to find the exact one
outcome. All this makes predicting negotiation outcomes non-trivial.

In essence, the task of predicting the negotiation outcome is finding the 
point where the utility received from the opponent and the agent’s own conces-
sion strategy intersect, and what specific outcome is associated with that. We 
differentiate between three aspects of the outcome of the negotiation: (1) the 
probability of reaching any agreement at all, (2) if there is an agreement, the 
utility of the outcome in expectation, i.e., the expected utility, (3) the probabil-
ity of the specific outcome itself. These aspects are predicted given the history
of bids in an ongoing negotiation at round k ≤ D from the perspective of Agent
1.

We propose a pipeline for outcome prediction called PrONeg (Predicting 
the Outcome of a Negotiation) consisting of three steps, which is visualized in
Fig. 3. Firstly, we predict the course of negotiation, predicting both the utility of 
the bids of the opponent and the utility of the agent’s own bids using time series
forecasting (Step 1 in Fig. 3, Sect. 3.1). Secondly, we construct a distribution over 
the utilities of the potential outcomes using an intersection of the two predictions
(Step 2 in Fig. 3, Sect. 3.2). Thirdly, based on the outcome utility distribution, 
we find the predicted probability over all specific outcomes in the scenario (Step
3 in Fig. 3, Sect. 3.3). 

3.1 Step 1: Time Series Forecasting 

We model the agents’ bids as a series of data points of utilities ordered in time, as
in [30,32]. Formally, we write two utility sequences from the perspective of Agent
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1, u1 
1 with utilities of bids posed by itself, and u1 

2 with utilities of bids posed by 
the opponent, Agent 2, as follows: 

u1 
1 = U1(b1 1),  U1(b1 2),  U1(b1 3),  .  .  .  ,  U1(b1 r) , 

u2 
1 = U1(b2 1),  U1(b2 2),  U1(b2 3),  .  .  .  ,  U1(b2 r) . 

When we model negotiations as numbers ordered in time, they become time 
series, where every round is seen as one unit of time. Therefore, we can apply 
methods from the field of Time Series F orecasting (TSF) to predict their future
values. TSF is a broad field within statistical analysis that contains a variety of
techniques. Classical TSF methods rely on the careful tuning of a model, tak-
ing into account statistical parameters like trend and seasonality to design the
perfect model for the time series at hand.

Formalization. The time series over a specific interval ua 
s:r, where a is the 

associated agent, s is the start of the interval and r the end, is defined by 
ua 
s:r = Ua(ba 

s),  Ua(ba 
s+1),  .  .  .  ,  Ua(ba 

r) . Given a time series observed at time t 
with a maximum length of r, we find a function f to estimate a distributional 
forecast θ̂ for every time step in the interval [t : r]: 

f(ua 
1:t)  =  (θ̂a 

t+1, θ̂a 
t+2,  .  .  .  ,  ̂θa 

r )  =  ̂θa , 

where f : S∗ −→ S∗∗, with S∗ a set of (utility) values for which each value s in
S∗ holds s ∈ [0, 1], and S∗∗ is a secondary set where each value is a distribution
θ. We note that different regression or forecast techniques can be used to find
this function f , provided that their output is a distribution. Even though our
pipeline is tailored to non-learning distributive methods, trainable algorithms
like Deep Neural Networks can be integrated easily [32], as well as point-wise 
predictors such as linear regression and exponential smoothing, that form p eak
distributions aggregating to a line over all time steps.

3.2 Step 2: Intersection 

When both agents agree on an offer, they have conceded enough to accept the 
utility corresponding to that bid: they meet each other ‘in the middle’. In the 
context of bidding curves, we define an agreement between two agents as the 
point when the forecast bidding curves of the t wo agents intersect each other.
This intersection indicates that both agents have conceded enough to reach a
mutual agreement around this utility score.

We generate possible negotiation scenarios to determine expected points of 
agreement in terms of utility. Our utility forecasts produce a distribution over 
possible curves; we can think of these as different future scenarios, both over 
the agent’s curve and the opponent’s curve. Some combinations of these bidding 
curve scenarios end in failure, others end in agreement with varying outcome
utilities. To reflect these bidding curve scenarios, we take random samples from
the distribution using Monte Carlo sampling. We sample from the agent’s and its
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opponent curve to construct a negotiation scenario. We inspect whether these 
two curves intersect, and if so, what this point of intersection would be. By 
repeating this sampling, w e construct a set of possible outcome utilities. We then
fit a probability density distribution to this set.

Not only does Monte Carlo provide insight in the outcome utility distribution, 
it also produces an agreement probability. By sampling numerous times from 
both bidding curves, we can keep track of the number of times an outcome is 
reached. We average over all sampled scenarios and translate it into an agreement 
probability forecast. We calculate the fraction of sampled combinations that
end in agreement. If only part of the sampled combinations end in agreement,
the agreement probability is strictly between 0 and 1, which allows the agent to
do a risk estimation on the chance of success.

Formalization. We use multiple agreement predictions generated through 
Monte Carlo sampling to estimate the overall agreement probability p and con-
struct an approximate utility probability distribution β̂, which quantifies the 
likelihood of reaching an agreement and characterizes the expected outcome 
utility. A generated forecast scenario is labeled as an agreement if the predicted 
utility curve of the agent is lower than the predicted utility curve of the opponent
before deadline r, that is u1

t <= u2
t given u1

t−1 > u2
t−1, with ua

t ∈ ua
s:r.

Given two distribution vectors of the remaining rounds θ̂1 and θ̂2 for Agent 
1 and 2, respectively, i.e., a predicted distribution of utility at each remaining 
time step for both agents, we predict the agreement probability p, and estimate 
a probability density distribution β̂ over the outcome utility range [0 : 1]. The 
goal is to find an estimator function f such that 

f(θ̂1 , θ̂2)  =  (  ̂β, p), 

with f : S∗∗ × S∗∗ −→ (B, [0, 1]), where B is the set of all possible continuous
distributions in the interval [0, 1]. If both input distributions are peak distribu-
tions in the form of a line, observe that the agreement probability is either 0
or 1, given that two lines either intersect at one point or are parallel and never
intersect.

3.3 Step 3: Scenario Integration 

The predicted outcome utility can help the agent improve strategic decisions, for 
example to decide on ending the negotiation. To assist an agent to decide what 
strategies to pursue in parallel negotiations, merely the predicted utility is not 
enough. Therefore, we extend our prediction on outcome utility to predict the
probability of specific outcomes, linking back to the scenario of the negotiation.

We propose to assign a probability to each outcome based on the probability 
density distribution of the predicted outcome utility of step 2. If an outcome 
utility α has a high associated value in the probability density distribution, then
an outcome with utility α would intuitively also have a high chance of realization.



Predicting the Outcome of Ongoing Automated Negotiations 9

However, an outcome with a high utility from the perspective of the agent may 
not necessarily be so for the opponent. The information of an opponent model 
would b e useful to distinguish between these, if available, to achieve a higher
accuracy.

Formalization. Let Û2 be the opponent model, i.e., the estimated utility func-
tion of the opponent, Agent 2. For specific outcome prediction, we look for a 
function f based on the probability outcome utility distribution β̂ and optional 
opponent model Û2 such that for all outcomes ω in the outcome space Ω: 

f ̂β,  ̂U2 
(ω)  =  ̂P (ω), 

with P̂ (ω) the predicted chance that ω is the outcome of the negotiation. 
Note that the specific use of these probabilities depends on the goal of the 
agent designer. For instance, an agent aiming to estimate its expected utility 
needs to compare the relative likelihoods o f outcomes, which requires using the
probabilities directly. In contrast, if an agent’s designer has a strategy to select a
bid from the top 10% most likely outcomes, a ranking of all outcomes is sufficient.
A straightforward way to create a ranking is to list all outcomes in decreasing
order of density, an approach also used in the experiments of this paper.

4 Experimental Evaluation PrONeg 

This experiment showcases an implementation of our o utcome prediction pipeline
PrONeg1 and aims to evaluate the performance of different TSF methods over a 
large variety of settings. We evaluate the breakoff prediction and the estimated 
utility of the outcome of all TSF methods in combination with Mon te Carlo sam-
pling. Finally, we test the scenario integration step by evaluating the likeliness
ranking of the real outcome.

4.1 Experimental Setup 

We build a dataset of 8500 negotiations by running tournaments with differ-
ent types of bilateral agents using the well-known negotiation simulation plat-
form NegMAS [25]. The first tournament is run between classic time-dependent
agents [13] (denoted by TDA), which shows a broad variety of bidding curves, 
determined by u =  1− te ·(1−m) ,where t is the fraction of the total negotiation 
time that has passed, e is the concession exponent and m is the minimal accept-
able utility. These time-dependent agents use a static opponent model, assuming 
that the opponent’s utility is the opposite of their own. Furthermore, we intro-
duce an agent type by extending the TDA with the opponent model from 2011
Automated Negotiating Agents Competition (ANAC) winner HardHeaded [18]

1 The implementation and material is available at https://github.com/TamaraCWI-
UU/PrONeg-Predicting-Negotation-Outcomes. 

https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
https://github.com/TamaraCWI-UU/PrONeg-Predicting-Negotation-Outcomes
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and the opponent model of ANAC 2012 winner CUHKagent [16] (implemen-
tation based on [8]) denoted by TDA-HH and TDA-CUHK. To simulate more 
advanced opponent models, we also conduct tournaments with time-dependent 
agents that use a module offering partial yet accurate information about oppo-
nents, improving over time. It enables the agent to disregard unfortunate bids 
where the opponent’s utility is below p · t for p =  0.25 and p =  0.5, referred 
to as TDA (0.25) and TDA (0.5). To effectively test the method’s performance 
in predicting agreement probability , negotiations should result in both agree-
ments and breakoffs: we target at a breakoff rate of 15% to 30%. Preliminary
experiments show that agents with exponents between 0.5 and 8, and minimal
acceptable utility between 0.5 and 0.7, meet this target.

Finally, we run a tournament with four winners of the Automated Negotiating 
Agents Competition (ANAC) 2011, as the bilateral negotiation setting of ANAC 
2011 is the most similar to our setting, providing agents with a relative time 
indication based on the remaining rounds and using a time discount of 0. We
include HardHeaded, AgentK2, IAMhaggler2011 and TheNegotiator [15]  using  
the Genius-bridge in NegMAS,  refer  red to as ANAC.

The tournament uses profiles from the “Party” scenario of ANAC 2011 [15], 
available in Genius, where two friends together organize a party and negotiate 
about its location, type of music and more. This scenario is chosen for its diversity 
and its high outcome density, with 8 unique profiles and 3072 possible outcomes. 
To ensure meaningful negotiations, we selected the 25% most contrasting profile 
combinations by running a test tournament between two linear conceder agents
(m = 0, e = 1) and identifying those with the highest agreement times. This
prevents situations where agents’ preferences align (almost) completely, allowing
agreements to be reached too quickly and bypassing the negotiation process.

All negotiations are run with a deadline of 100, where we evaluate TSF meth-
ods by presenting cut off negotiations, that is a subset of the bidding rounds 
(10, 30, 50, or 70 data points). To ensure meaningful analyses, we exclude 
data instances (cut off negotiations) characterized by constant bidding curves 
with only repeated bids, as these cases do not exhibit any trend at all. Our TSF 
methods generate predictions based on parts o f complete negotiations, enabling
a comparison between the predicted outcome and the actual true outcome value.
Given this, our chosen metric evaluating the accuracy must compare a point (the
actual value) to a distribution (the forecast). First introduced by Matheson and
Winkler [22], CRPS quantifies the difference between the perfect distribution 
of data (a point wise distribution) and the predicted distribution, visualized in
Fig. 4, where F (x) is the CDF of the predicted distribution and y the actual 
outcome value. Intuitively, the CRPS score can be interpreted as the distribu-
tive version of the Mean A verage Error, describing the distance between the
distribution mass and the true outcome, which we aim to minimize.

Evaluated TSF Methods. Firstly, we adapt the Gaussian utility p rediction
module by [30] for the agent IAMHaggler2011 [31]. The IAMHaggler2011 agent 
uses Gaussian process regression with a Matérn covariance function and a linear
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Fig. 4. A visualization of the CRPS metric, adapted from [12]. 

mean function to predict the opponent’s utility curve. As input, they use the 
maximum utility of incoming bids within a small time window to minimize the 
effect of noise. As the agent is tailored to real-time negotiation, we adapt the 
module to suit our round-based negotiation setting. We convert round-based 
bids to a relative timescale and apply time windows accordingly. We also adapt 
the module to predict the agent’s own curve as well. As the agent itself makes
concessions and thus shows decreasing utility over time, we take the minimum
of the agent’s own bids when applying the method to the agent’s own curve.
The original agent is designed for the Genius platform [21] in Java; we use the 
Python implementation provided by NegoLog [11]. 

Secondly, we evaluate the performance of ARIMA, a widely used approach 
to TSF that describes autocorrelations in data [17] and produces distributional 
predictions. ARIMA, which stands for Auto-Regressive Integrated Moving Aver-
age, fits a model to the data based on three parameters: p, the lag order or the 
number of lag observations included in the model; d, the degree of differencing 
or the number of times the time series must be differenced to become stationary;
and q, the order of the moving average or the size of the moving average window.

Finally, we use a naive benchmark method based on the intuition that both 
agents concede equally throughout the negotiation. This method in between esti-
mates the final outcome as the midpoint between the utility of the opponent’s 
initial bid and the agent’s own initial bid. Note that the prediction of in betw een
always corresponds to an agreement (no breakoff), so it is only used for outcome
utility predictions, not as benchmark for the agreement probability.

4.2 Prediction Balance 

ARIMA and Gaussian both produce a distribution over the given input bid 
sequence, allowing Monte Carlo sampling to produce an outcome distribution 
and an agreement probability in the range 0 to 1. We introduce a thresh-
old for the agreement probability, which enables us to classify negotiations as 
either a breakoff (positive classification) or an agreement (negative classifica-
tion). Increasing the threshold raises the number of correctly identified breakoffs
(true positives), but it also leads to more negotiations being incorrectly classified
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Fig. 5. ROC curves of all aggregated 
negotiations for ARIMA and Gaussian 
with window size 0, 5 and 10 for various 
agreement p robability thresholds.

Fig. 6. CRPS results for all aggregated 
negotiations with a decreasing number 
of data points. T he x-axis is inverted to 
reflect increasing difficulty.

as breakoffs (false positives) and reduces the number of correctly identified agree-
ments (true negatives). The ideal threshold therefore depends on the context and 
purpose of the prediction. The ROC (Receiver Operating Characteristic) curve 
illustrates the trade-off between two important metrics: the false positive rate 
(chance of false alarm, which we aim to minimize) and sensitivity (proportion
of correctly identified breakoffs, which we aim to maximize). We evaluate this
trade-off across various thresholds of predicted agreement probability (0, 0.09,
0.19, . . . , 0.99, 1).

In the ROC curve in Fig. 5 visualized for all aggregated negotiations, we 
observe the difference between the TSF methods with different window sizes, 
where window size 0 means no window at all. While ARIMA with no window (0) 
shows a high sensitivity, this comes at a cost: the false positive rate is high, caused 
by too many predicted breakoffs. A window added to the algorithm decreases the 
noise in the input bidding sequence, allowing ARIMA to identify a clearer upward 
trend, and predict more agreements. On the other hand, Gaussian processes with
no window predict almost no breakoffs, with a very low associated sensitivity
(<0.1). When adding a window, the number of correctly identified breakoffs
increase, showing the positive effect of the window size.

However, what characterizes as the most useful predictor depends on both 
the negotiation setting and the agent designer’s goal. Overall, Gaussian with a 
window size of 10 outperforms the others across all negotiations when the desired 
false positive rate is around 15%. This effect is even more pronounced when we 
focus on time-dependent agent negotiations. In negotiations with ANAC agents 
only, Gaussian with window size 5 performs slightly better when aiming for 15%
false positive rate, though the differences are small. Accordingly, the rest of the
experiments we focus on ARIMA and Gaussian with a window size of 5 and 10.
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4.3 Early Predictions 

Outcome prediction in ongoing negotiations saves time and effort by ending 
unpromising negotiations. Earlier predictions, though harder, sa ve the most time
and thus are valuable. Figure 6 shows the trend between the number of data 
points—the number of rounds with associated bidding utilities presented to the 
TSF method—and the average CRPS of utility. We see that a smaller number 
of data points generally results in a worse result, i.e., a larger error from the real 
agreement utility (utility CRPS). However, early predictions should not only be 
characterized by the number of data points. For example, a negotiation cut off 
for prediction after 10 rounds with an agreement at 12 has few data points (10) 
but only requires 2 rounds of looking ahead, which is easier than a negotiation 
cut off at 10 but lasting much longer, e.g., until round 63. This is clearly visible 
when looking at a small number of data points (10) and a large number of rounds
until agreement (>70) compared to a small number of rounds until agreement
(<20). In this case, Gaussian with window size 5 yields an average CRPS of
0.13 (>70) and 0.05 (<20), performing better than the benchmark in between,
showing the same effect with an average CRPS of 0.17 (>70) and 0.10 (<20).

4.4 Negotiator Types 

Table 1. The average (utility) CRPS for different methods and agent types.

The negotiations included in the tournament data can be split into categories of 
agent types: Time dependent agents with different opponent models (CUHK and 
HH), time dependent agents with simulated opponent models (0.25, 0.5), and 
complex, behavior-based agents (ANAC). Negotiations that show more t rend,
i.e., when the associated agents learned better with more advanced opponent
models, would be expected to be easier to predict. Table 1 shows the average 
(utility) CRPS categorized for different types of agent negotiations. As one can 
see, time dependent agents with a static opponent model show low CRPS values 
across all methods, which i s surpassed in the negotiation with time dependent
agents extended with simulated opponent models (0.25 and 0.5).

However, the CRPS values of negotiations between TDA with CUHK and 
HardHeaded opponent models do not show this improvement; instead, all meth-
ods (except for in between) show worse results compared to other TDA agent
negotiations. This could be due to how well the opponent models CUHK
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and Hardheaded perform. We would expect that the percentage of breakoffs 
between agents decreases when combined with an increasingly advanced oppo-
nent model, because they better estimate their opponent preferences to find 
middle ground. This effect is visible when comparing the percentage of breakoffs 
between TDA, TDA (0.25) and TDA (0.5) with 33%, 26% and 14% of breakoffs, 
respectively. However, the percentage of breakoffs is much higher for T DA with
HardHeaded and TDA with CUHK, namely 53% and 64%, respectively. This
suggests that the opponent modeling did not function properly, which could
explain why the CRPS values of these types of agents show worse results.

Despite employing opponent models, ANAC agents exhibit worse results in 
terms of CRPS values. The percentage of breakoffs is only 15%, which indicates 
that the quality of opponent modeling might not cause the effect of higher CRPS 
values. Instead, one should note that the interactions of ANAC agents are more 
complex than TDA agent s, as they are behavior based agents, reacting on the
bids from the opponent. This increases the complexity of the bidding curves,
yielding a harder prediction challenge and resulting in higher CRPS scores.

Fig. 7. The percentage of negotiations where the real outcome has a ranking below 
15%, shown for different opponent model thresholds.

4.5 Specific Outcome Prediction 

The last step of the PrONeg’s prediction pipeline predicts the specific outcome 
probabilities based on the outcome utility prediction. Some agent strategies could 
benefit from a ranking of all potential outcomes in order of likeliness to deter-
mine what selection of outcomes one should focus on and choose from. Of all 
predictions that predicted ‘agreement’ for negotiations that ended in agreement, 
we test the ranking of the real agreemen t, and show this as a percentage of all
3072 outcomes. The opponent models with thresholds of 0.25 and 0.5 are used
to filter out outcomes where the opponent’s utility falls below these respective
values. Figure 7 shows the percentage of negotiations where the real outcome has 
a ranking below 15%, for different opponent models over TSF methods ARIMA
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and Gaussian with window size 5 and 10. Gaussian with window size 10 per-
forms best with an opponent model threshold of 0.5, predicting that the real out-
come is in the most likely 15% of outcomes in 77% of all predicted negotiations. 
Even with threshold 0, this percentage is 63%. However, one can see the effect of 
a good opponen t model, increasing the scores significantly. An advanced oppo-
nent model would be necessary to increase the percentage of negotiations even
further or to decrease the percentage threshold of likely outcomes.

5 Discussion 

This paper introduces a general pipeline for outcome prediction in ongoing nego-
tiations called PrONeg. Outcome prediction allows agents to end negotiations 
early if there is little hope for a good ending. Moreover, agents can adjust their 
strategies i n parallel negotiations based on the expectation what specific out-
come the negotiation will have, for example by imposing budget constraints in
one-to-many negotiations [14]. 

Despite these benefits, this research is the first attempt to predict the o ut-
come of an ongoing automated negotiation. In Table 2, we provide a compar-
ison between the challenges of previous negotiation prediction studies. One 
line of researc h explores predicting the outcome in human-to-human negotia-
tions [27,29] and hybrid human-agent negotiations [9,23]. However, these types of 
negotiations rely heavily on human psychological processes for their outcome [4], 
while automated negotiations often strip the human aspects of a negotiation. An 
automated agent is less susceptible to the psychological effects o f anchoring or
perspective taking that often influence human decision-making [19]. Neverthe-
less, valuable techniques have been developed, for example Moosmayer et al. [27] 
used neural networks to predict human negotiation outcomes and study the 
relationship between reference points and outcomes of business-to-business price
negotiations.

Table 2. Comparison of selected negotiation prediction studies.

Challenge Research 
Predicting Human-to-human Negotiation Outcomes Moosmayer et al. [27], Van Poucke 

et al. [29] 
Predicting Hybrid Negotiation Outcomes Chawla et al. [9], Mell et al. [23] 
Predicting Automated Negotiation Offers Carbonneau et al. [7], Williams et 

al. [30], Yesevi et al. [32] 
Predicting Automated Negotiation Strategies Brzostowski et al. [6], Hou et 

al. [10], Li et al. [20] 
Predicting Automated Negotiation Outcomes This Researc h

Another important line of research in automated negotiations focuses on 
predicting offers in advance, e.g., the expected counteroffer [7,32]. The Gaus-
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sian method designed b y [30] extends the prediction to the complete opponent’s 
negotiation curve, allowing us to use their technique as time series forecasting 
module in PrONeg. Beyond predicting an o pponent’s offers, opponent model-
ing research also explores the estimation of agent strategies [6,10,20], a topic 
comprehensively reviewed in [2]. 

Trainable Forecast Methods. Our work opens up interesting directions to 
research further. The current experimental setup is the first step in understand-
ing the use of TSF methods in outcome prediction. Though the results are 
promising, we strive for a better accuracy for application purposes, especially in 
recognizing breakoffs, and extend to a broader variability of settings like contin-
uous negotiations with unknown deadlines. We invite new research to explore
other TSF methods for dynamical model selection, and broaden the scope to
trainable algorithms as well. For example, [32] employ two deep learning-based 
approaches to predict one bid ahead, indicating of the possibilities in feeding 
machine learning algorithms the traces of bids made to p redict future bids.
We have begun exploring deep learning methods for outcome prediction, with
promising initial results.

Tactical Guidance. Agent’s strategies can use the outcome prediction method 
PrONeg to end negotiation early when needed. Further research could analyze 
how the module performs within a complete negotiating agent. This module 
could be expanded to guide the agent’s strategy and provide tactical information 
to adjust the current bidding strategy. However, this requires further opponent
modeling, e.g., how the opponent is expected to react on our (hypothetical)
bidding curve [3] and integrating this in the intersection step. Agents could test 
different hypothetical bidding curves, and choose what curve is associated with 
their most favorable outcome. If the prediction is lower than wished for, the agent 
can adapt its strategy accordingly and aim for more. If the probability of any
agreement at all is below a preferred level, the agent can adjust the strategy and
concede more.

Negotiation Support. Connecting the realms of automated and human nego-
tiations, there is a growing body of research on automated agents that negoti-
ate with humans in natural language. In an attempt to improve such natural
language bots, Chawla et al. [9] analyzed the language used in bilateral buyer-
seller negotiations and used this data to train a prediction model (BERT), whic h
attempts to predict the outcome of these human-to-human negotiations, and
Mell et al. [23] use a machine learning model trained on detected emotions among 
other parameters based on the text messages that go back and forth. Future nego-
tiation systems may be able to combine these techniques for human negotiations 
based on text interpretations with the current research on the (abstract) course
of bidding to make more accurate predictions for agent-assisted negotiations and
provide more advanced strategy recommendations.
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