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Abstract In this chapter we consider polynomial optimization problems, asking to 
minimize a polynomial function over a compact semialgebraic set, defined by poly-
nomial inequalities. This models a great variety of (in general, nonlinear nonconvex) 
optimization problems. Various hierarchies of (lower and upper) bounds have been 
introduced, having the remarkable property that they converge asymptotically to the 
global minimum. These bounds exploit algebraic representations of positive polyno-
mials in terms of sums of squares and can be computed using semidefinite optimiza-
tion. Our focus in this chapter lies in the performance analysis of these hierarchies of 
bounds, namely, in how far the bounds are from the global minimum as the degrees of 
the sums of squares they involve tend to infinity. We present the main state-of-the-art 
results and offer a gentle introductory overview over the various techniques that have 
been recently developed to establish them, stemming from the theory of orthogonal 
polynomials, approximation theory, Fourier analysis, and more. 

1 Introduction 

This paper offers a gentle introduction and overview over the design and performance 
analysis of approximation hierarchies for polynomial optimization. In this section 
we will first introduce polynomial optimization, and its use for modeling hard opti-
mization problems arising within a broad range of fields and application domains. 
After that we will explain how to design hierarchies of approximations using sums 
of squares of polynomials as a tractable surrogate for polynomial nonnegativity, and 
how sums of squares of polynomials can be modeled using semidefinite optimization. 
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1.1 Polynomial Optimization 

Throughout we use the following notation. We let R[x] = R[x1, . . . , xn] denote the 
ring of n-variate real polynomials in the variables x = (x1, . . . , xn). For a multi-index 
α ∈ N

n ,  we  let xα = xα1
1 · · · xαn

n denote the associated monomial, whose degree is 
|α α 1 = α1 + . . . + αn .  We  let Nn

d denote the set of sequences α ∈ N
n with 

|α| ≤ d. Any polynomial f ∈ R[x] can be expressed in the monomial basis as f =
α fαxα for some coefficients fα ∈ R. Here, the sum is finite and the largest value 

of |α| for which fα 0 is the degree of f , denoted deg( f ). For an integer d ≥ 0,  we  
let R[x]d denote the set of polynomials with degree at most d. It is a vector space, 
with [x]d = {xα : α ∈ N

n
d} as its standard monomial basis. As we will see later, it is 

sometimes convenient to use other polynomial bases, that are orthogonal with respect 
to some inner product induced by a selected measure on the space Rn . 

The general setting of polynomial optimization is as follows. We are given poly-
nomials f, g1, . . . , gm ∈ R[x] and the goal is to find the minimum value that f takes 
on the feasible region defined by the polynomials g j . In other words, the goal is to 
solve the following optimization problem. 

The polynomial optimization problem 

f min = min{ f (x) : g1(x) ≥ 0, . . . , gm(x) ≥ 0}
= min{ f (x) : x ∈ X}, (1) 

after setting 
X = {x ∈ R

n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (2) 

We also sometimes use the notation f min,X for the minimum value of (1) and 
the notation Se(g) for the set in (2). 

Such a set X is known as a basic closed semialgebraic set. Typical instances 
include the unit sphere S

n−1, the standard simplex n , the unit ball Bn , the box 
[−1, 1]n or [0, 1]n , and the binary cube {±1}n or {0, 1}n , where 

S
n−1 = {x ∈ R

n x 1}, Bn = {x ∈ R
n x 1},

n = x ∈ R
n : xi ≥ 0 (i ∈ [n]),

n

i=1

xi = 1 ,

and x 2 = n
i=1 x2

i denotes the squared Euclidean norm. Throughout we assume 
X is compact. So, problem (1) always has a global minimizer. 

The polynomial optimization problem (1) contains linear programming as a (very) 
special case, when all polynomials f, g1, . . . , gm are linear (i.e., of degree at most 1). 
In this case, efficient optimization algorithms exist (see, e.g., Roos et al. (2005)). But,
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it also models a much broader range of problems, which are generally nonlinear and 
nonconvex. This includes well-known NP-hard problems, already when restricting 
to seemingly simple feasible regions X in (2), such as the simplex, the box, or the 
sphere as we illustrate on some examples in the next section. 

Polynomial optimization has received growing research interest in the past 
decades, when it was realized that algebraic and geometric properties of polyno-
mials could be exploited to design dedicated methods, able to capture the global 
minimum, in contrast to general nonlinear optimization methods where one can often 
only gain information about local minima. In a nutshell, this research direction builds 
on combining real algebraic geometry results (about sums of squares of polynomi-
als) and functional analytical results (about moments of measures) with semidefinite 
optimization. It roots in foundational works, in particular, by Shor (1987), Nesterov 
(2000), Lasserre (2001) and Parrilo (2000, 2003). The field has substantially grown1 

and has a broad literature. We mention some books and overviews that can serve as 
introduction to the topic and give further references to many applications and addi-
tional aspects that are not mentioned in the present paper; in particular, by Lasserre 
(2009), Lasserre (2015), Laurent (2009), Blekherman et al. (2012), Henrion et al. 
(2020), Magron and Wang (2023) and Nie (2023). 

The present paper will focus on the performance analysis of various hierarchies of 
bounds that have been introduced for the polynomial optimization problem (1), based 
on using tailored sums of squares representations for positive polynomials. We will 
recall the definition of these hierarchies of (upper and lower) bounds and discuss 
the main state-of-the-art results that have been shown in recent years about their 
quantitative convergence properties (these are not covered in the literature mentioned 
above). We focus on offering a gentle overview of the main techniques that are needed 
to prove these quantitative results. 

1.2 Examples and Applications 

We begin with mentioning a few instances of the polynomial optimization prob-
lem (1) that capture well-known hard combinatorial optimization problems. 

Consider a graph G = (V, E), where V = [n] = {1, . . . , n} is the set of vertices 
and the pairs in E ⊆ V × V correspond to the edges of G.  A  set I ⊆ V is said to 
be independent (or stable) if it contains no edge and a fundamental combinatorial 
problem is determining the largest cardinality of an independent set, denoted α(G), 
a well-known NP-hard problem (see Garey and Johnson (1979)). Interestingly, this 
problem admits several equivalent reformulations as instances of polynomial opti-
mization over the boolean cube, the box, the simplex, the sphere, respectively:

1 This is witnessed, e.g., by the fact that it has received its own Mathematics Subject Classification 
number 90C23. 
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α(G) = max
i∈V

xi : xi x j = 0 for {i, j} ∈ E, x2
i = xi for i ∈ V ,

α(G) = max
i∈V

xi −
{i, j}∈E

xi x j : x ∈ [0, 1]n ,

1

α(G)
= min xT(I + AG)x : x ∈ R

n
+,

i∈V

xi = 1 ,

1

α(G)
= min (x◦2)T(I + AG)x◦2 : x ∈ R

n,

i∈V

x2
i = 1 ,

where we set x◦2 = (x2
1 , . . . , x2

n )T and AG is the adjacency matrix of graph G.  An  
additional reformulation is in terms of linear optimization over copositive matrices:

α(G) = min{λ : λ(I + AG) − J is copositive},

where J denotes the all-ones matrix. We refer to de Klerk and Pasechnik (2002)  for  
details about the above formulations.

Another fundamental combinatorial problem is the maximum cut problem, asking 
for the largest cardinality of a cut in a graph G = (V, E), denoted as mc(G), that 
can be formulated as any of the following polynomial optimization problems: 

mc(G) = max
{i, j}∈E

1

2
(1 − xi x j ) : x ∈ {±1}n ,

mc(G) = max
1

4
xTLG x : x ∈ [−1, 1]n ,

where LG = D − AG is the Laplacian matrix, with D the diagonal matrix having 
the degrees of the vertices as diagonal entries. 

A fundamental question in analysis that can be formulated in terms of polynomial 
optimization is testing whether an n-variate polynomial f is convex. Indeed, f is con-

vex if and only if its Hessian matrix H f (x) = ∂2 f
∂xi ∂x j

(x)
n

i, j=1
is positive semidefinite 

at any x ∈ R
n or, equivalently, if the 2n-variate polynomial F(x, y) = yTH f (x)y is 

nonnegative over Rn × R
n (i.e., its global minimum is 0). It has been shown by 

Ahmadi et al. (2013) that testing whether a quartic polynomial is convex is an NP-
hard problem. This implies hardness of testing global nonnegativity of a quartic 
polynomial. 

So, the above examples show that computing the global minimum of a polynomial 
over simple regions such as the simplex, the sphere, the box, the full space, or the 
boolean box, are computationally hard already when restricting to small degree (at 
most 4). Another notable application which can be cast as instance of polynomial 
optimization problem involving only quadratic polynomials, is the optimal power 
flow problem in energy (see, e.g., Zohrizadeh et al. (2020)). Polynomial optimization 
has a broad modeling power and permits to capture problems from various areas,
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such as probablity, mathematical finance, control, game theory, for which we refer 
to the exposition by Lasserre (2009). 

1.3 Nonnegative Polynomials and Sums of Squares 

A polynomial f ∈ R[x]2d is called a sum of squares (abbreviated as sos) if it can 
be written as a sum of squares of other polynomials, i.e., f = k

j=1 q2
j for some 

q j ∈ R[x] and k ≥ 1. Then, each q j has degree at most d and can be assumed to 
be homogeneous if f is homogeneous. We let denote the set of sums of squares 
of polynomials and set 2d = ∩ R[x]2d . We may use the notation [x] to stress 
which variables are used. 

LetP denote the set of polynomials f that are globally nonnegative (i.e., f (x) ≥ 0
for all x ∈ R

n), and P(X) the set of polynomials that are nonnegative over a given 
set X ⊆ R

n . 
Clearly, every sum of squares of polynomials is globally nonnegative, i.e., the 

inclusion ⊆ P holds. As is well-known, this inclusion is in general strict. By a 
result of Hilbert (1888) we know that any globally nonnegative n-variate polynomial 
with degree 2d is a sum of squares of polynomials only in the following three cases: 
n = 1 (univariate), d = 1 (quadratic), and the exceptional case (n = 2, d = 2) (i.e., 
quartic in two variables). 

A nonnegative polynomial that is not sos 
The first explicit example of a nonnegative polynomial that is not sos was found 
by Motzkin in 1967, it is bivariate with degree 6 and reads 

f (x, y) = x4y2 + x2y4 − 3x2y2 + 1. (3) 

It is depicted in Fig. 1a. To see global nonnegativity one may use the arithmetic-
geometric mean inequality, and use ‘brute force’ to show f is not sos (write 
f as a sum of squares of polynomials and compare coefficients). Also the 
Robinson polynomial 

f (x, y, z) = x6 + y6 + z6 − x2y2(x2 + y2) − x2z2(x2 + z2) − y2z2(y2 + z2) + 3x2y2z2

(4) 
is globally nonnegative but not sos. We refer to Reznick (1996) and Powers 
(2025) (and references therein) for a nice historic discussion and many more 
examples. 

At the 1900 International Congress of Mathematicians in Paris Hilbert asked 
whether every nonnegative polynomial can be written as a sum of squares of rational 
functions (known as Hilbert’s seventeenth problem). This question was settled in 
the affirmative by Artin (1927), a result that started the flourishing field of real
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Fig. 1 a On the left: the Motzkin polynomial (3); b on the right: the optimal degree 16 sum-of-
squares polynomial σ in program (14) 

algebraic geometry (see, e.g., Prestel and Delzell (2001) and Marshall (2008)). A 
landmark result is the Positivstellensatz2 by Krivine (1964) and Stengle (1996) that 
a.o. characterizes the polynomials that are nonnegative on a semialgebraic set X as 
in (2). To cite this result we need the notion of preordering T (g) generated by the 
polynomials g = {g1, . . . , gm} entering the algebraic description of the set X: 

T (g) =
J⊆[m]

σJ

j∈J

g j : σJ ∈ for J ⊆ [m] (5) 

(setting g∅ = 1). Clearly, T (g) ⊆ P(X). Krivine-Stengle show that a polynomial 
f ∈ R[x] is nonnegative on X if and only if p1 f = f 2k + p2 for some polynomials 
p1, p2 ∈ T (g) and some integer k ∈ N. This leads to a sos-type decomposition of f
as f = f 2k/p1 + p2/p1, thus ‘with a denominator’. 

Simpler sos-type decompositions have been shown later under more restrictive 
assumptions, typically assuming strict positivity of f . In particular, Reznick (1995) 
shows a sharper result for homogeneous polynomials: If f is homogeneous and 
satisfies f (x) > 0 for all x ∈ R

n\{0}, then there exists an integer r ≥ 0 such that 
(

n
i=1 x2

i )r f (x) ∈ . 
When the set X is compact, Schmüdgen (1991) shows membership in the pre-

ordering under strict positivity:

2 The terminology of Positivtsellensatz refers to Hilbert’s celebrated Nullstellenzatz that character-
izes the polynomials vanishing at a given complex variety. 
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Schmüdgen’s Positivstellensatz 
If X is compact and f is strictly positive on X, then f ∈ T (g). 

Under the Archimedean condition, Putinar (1993) shows membership in the 
quadratic module Q(g), which is defined as 

Q(g) =
m

j=0

σ j g j : σ j ∈ for j ∈ {0, 1, . . . , m} (6) 

(setting g0 = 1). So, Q(g) ⊆ T (g) ⊆ P(X). The advantage of the quadratic module 
Q(g) over the preordering T (g) is that it involves less terms: m + 1 sos polynomials 
for Q(g), instead of 2m for T (g). 

The Archimedean condition asks that R − n
i=1 x2

i ∈ Q(g) for some R > 0 and 
can be seen as an algebraic certificate of compactness. It is a property of the algebraic 
description of X rather than X itself. It is, however, easy to satisfy, simply by adding 
the inequality of a ball containing X to its description. The Archimedean condition 
holds for most sets X of interest in applications such as the sphere, box, simplex, etc. 

Putinar’s Positivstellensatz 
If Q(g) is Archimedean and f is strictly positive on X, then f ∈ Q(g). 

So, sums of squares belong to a classical topic in real algebraic geometry, with 
a rich history going back to early work by Hilbert. It is only recently that their 
relevance to optimization has been fully appreciated, starting with ground works 
by Shor (1987), Nesterov (2000), Lasserre (2001), and Parrilo (2000, 2003). A key 
ingredient for this link to optimization is the fact that sums of squares can be modeled 
using semidefinite programs, which makes them amenable to numerical algorithms. 
Next, we explain how to model sos polynomials using semidefinite programming, 
and thereafter how to use sos polynomials to define hierarchies of (lower and upper) 
bounds for the original polynomial optimization problem (1). 

1.4 Sums of Squares and Semidefinite Optimization 

We begin with a quick recap on semidefinite optimization, and refer, e.g., to de Klerk 
(2002) for a detailed treatment. A semidefinite program (in primal form) reads 

p∗ = sup C, X A j , X b j ( j ∈ [m]), X ∈ SN
+}. (7) 

Here,C, A1, . . . , Am ∈ SN are symmetric N × N matrices and b ∈ R
m–these are the 

data of the problem– and X ∈ SN+ is the matrix variable, required to be symmetric
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and positive semidefinite (also written as X 0). So, the program (7) is a linear 
program over the cone SN+ of positive semidefinite matrices. Its dual program reads 

d∗ = inf
m

j=1

b j y j :
m

j=1

y j A j − C ∈ SN
+ . (8) 

Weak duality holds: p∗ ≤ d∗, and strong duality p∗ = d∗ holds under some Slater-
type conditions. Semidefinite programs contain linear programs as a special case 
(when all data matrices C, A j are diagonal). The crucial fact is that semidefinite 
programs can be solved efficiently up to any given precision, under some assumptions 
(like knowing a small ball inside the feasible region of (7) and a ball enclosing it). 

As we now see, sums of squares can be modeled with semidefinite programs. As a 
warm-up observe that a quadratic form f = xT Mx is a sum of squares precisely when 
the matrix M is positive semidefinite. Consider now a polynomial f = α∈Nn

2d
fαxα

of even degree 2d for which we wish to decide whether f ∈ . Assume f ∈ , 
i.e., f = q2

1 + · · · + q2
k for some polynomials q j . Then, each q j ∈ R[x]d can be 

written in the monomial basis as q j = [x]Td a j , where a j = ((a j )β)β∈Nn
d
is the vector 

of coefficients of the polynomial q j in the monomial basis [x]d . Thus, we obtain 

f =
k

j=1

q2
j =

m

j=1

[x]Td a j aT
j [x]d = [x]d

k

j=1

a j aT
j [x]d = [x]Td Q[x]d ,

setting Q := k
j=1 a j aT

j . By construction the matrix Q is positive semidefinite and, 
by equating coefficients at both sides of the above polynomial identity, we arrive at 
the following characterization. 

Modeling sums of squares with semidefinite programs 
A polynomial f = α∈Nn

2d
fαxα ∈ R[x]2d is a sum of squares of polynomials 

if and only if the following semidefinite program has a feasible solution: 

Q ∈ SNd+ ,

β,γ∈Nn
d :β+γ=α

Qβ,γ = fα for all α ∈ N
n
2d , (9) 

where the matrix variable Q is indexed by N
n
d and Nd = |Nn

d | = n+d
d . 

Note that the choice of the monomial basis is not important in the above derivation, 
it would work mutatis mutandis using any other polynomial basis of the polynomial 
space (this fact will be used in Sect. 2.2). 

Now that we know how to express sos polynomials using semidefinite programs 
we can also express polynomials inQ(g)2r , the quadratic module truncated at a given 
degree 2r , defined by
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Q(g)2r =
m

j=0

σ j g j : σ j ∈ deg(σ j g j ) ≤ 2r for j = 0, 1, . . . , m , (10) 

or in the truncated preordering T (g)2r defined by 

T (g)2r =
J⊆[m]

σJ

j ıJ

g j : σJ ∈ deg σJ

j∈J

g j ≤ 2r for J ⊆ [m] . (11) 

For this, set d j deg(g j )/2 , so that polynomials in Q(g)2r can be modeled as 
m
j=0 g j [x]Tr−d j

Q j [x]r−d j for some positive semidefinite matrices Q j ∈ SNd j (for 
j = 0, , . . . , m). In other words, membership in the truncated quadratic module can 
be modeled as a semidefinite program. The same holds of course for membership in 
the truncated preordering. 

We now have all tools in hands to define the hierarchies of upper bounds and 
lower bounds for the polynomial optimization problem (1). 

1.5 Upper Bounds 

To define upper bounds on f min the starting point is to observe that problem (1) can 
be reformulated as a linear optimization problem over the setM(X) of positive Borel 
measures supported within the set X: 

f min = min
X

f (x)dν(x) : ν ∈ M(X),
X

dν(x) = 1 . (12) 

The argument is simple: On the one hand, X f dν ≥ f min since ν is a probability 
measure on X. On the other hand, the Dirac delta ν = δx∗ at a global minimizer x∗
of f in X provides a feasible solution to (12) with value f (x∗) = f min. 

Let is now fix a (reference) measure μ ∈ M(X) whose support is equal to X.  The  
next step is that one can restrict the optimization in (12) to the measures ν that have 
a sos density with respect to this given measure μ: 

f min = min
X

f (x)σ (x)dμ(x) : σ ∈
X

σ(x)dμ(x) = 1 (13) 

(Lasserre (2010)). Intuitively, this relies on the fact that the Dirac delta δx∗ can be 
well approximated by sos polynomials. The upper bounds on f min are then obtained 
by restricting the optimization to sos polynomials of a given degree.
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The upper bounds on f min

For any r ∈ N, define the parameter 

ub( f, X, μ)r = min
X

f (x)σ (x)dμ(x) : σ ∈ 2r ,
X

σ(x)dμ(x) = 1 .

(14) 
We have f min ≤ ub( f, X, μ)r+1 ≤ ub( f, X, μ)r . 

As an illustration, we show in Fig. 1a the Motzkin polynomial and in (b) the 
optimal sos density σ for program (14) at order 2r = 16 (which approximates well 
the sum of Dirac functions at the four minimizers (±1,±1)). 

So, the parameter (14) depends on the choice of the reference measureμ on X and 
it can be computed via a semidefinite program (in fact, as an eigenvalue problem as we 
see in Sect. 2.2). In view of (13), the bounds ub( f, X, μ)r converge asymptotically 
to f min as r → ∞. We return to these bounds in Sect. 2, where we will discuss in 
detail the convergence rate of the error range ub( f, X, μ)r − f min as the relaxation 
order r grows. 

For now, we summarize in Table 1 the known results about this convergence rate 
for various classes of compact sets X (and reference measures μ). As we see there, 
one can show a convergence rate in O(1/r2) (up to a log2(r) factor) for a large class 
of compact sets. For instance, one can show a rate in O(log2(r)/r2) for any convex 
body X, and in O(1/r2)when X is ‘round’, which means that there are tangent inner 
and outer balls at any point on its boundary. The convergence rate in O(1/r2) is 
essentially optimal, as can be seen for the case X = [−1, 1] (due to the explicit link 
to extremal roots of orthogonal polynomials, see relation (23) in Sect. 2.3), or for the 
case X = S

n−1 (due to a link to cubature rules, see Sect. 1.7). 

1.6 Lower Bounds 

To define lower bounds on f min the starting point is to observe that the minimum 
value taken by the polynomial f over the set X is equal to the largest scalar λ for 
which the polynomial f − λ is nonnegative over X: 

f min = sup{λ : λ ∈ R, f (x) − λ ≥ 0 for all x ∈ X}. (15) 

Now, we obtain bounds by replacing the positivity condition by membership in either 
the truncated quadratic module Q(g)2r or preordering T (g)2r (see (10), (11)).
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Table 1 Overview of known results on the asymptotic error ub( f, X, μ)r − f min of Lasserre’s 
hierarchy of upper bounds 

X (compact) Error Measure μ References 

Geometric assumption O(1/
√

r) Lebesgue de Klerk et al. (2017) 

Convex body O(1/r) Lebesgue de Klerk and Laurent 
(2018) 

Semialgebraic with 
dense interior, convex 
body 

O(log2(r)/r2) Lebesgue Slot and Laurent (2021) 

S
n−1 O(1/r) Uniform Doherty and Wehner 

(2013) 

S
n−1 O(1/r2) Uniform de Klerk and Laurent 

(2022) 

[−1, 1]n O(1/r2) i (1 − xi )
λdx (λ =

− 1
2 )

de Klerk and Laurent 
(2020) 

[−1, 1]n O(1/r2) i (1 − xi )
λdx (λ ≥

− 1
2 )

Slot and Laurent 
(2022d) 

‘Round’ convex body O(1/r2) Lebesgue Slot and Laurent 
(2022d) 

Bn O(1/r2) (1 x 2)λdx (λ ≥ 0) Slot and Laurent 
(2022d) 

n O(1/r2) Lebesgue Slot and Laurent 
(2022d) 

The lower bounds on f min

For any integer r ≥ deg( f )/2, define the parameters 

lb( f,Q(g))r = sup{λ : λ ∈ R, f − λ ∈ Q(g)2r }, (16) 

lb( f,T (g))r = sup{λ : λ ∈ R, f − λ ∈ T (g)2r }. (17) 

By definition, we have lb( f,Q(g))r ≤ lb( f,T (g))r for all r . Further-
more, we have lb( f,Q(g))r ≤ lb( f,Q(g))r+1 ≤ f min, and lb( f,T (g))r ≤
lb( f,T (g))r+1 ≤ f min. 

As an application of the earlier mentioned Positivstellensätze of Putinar and 
Schmüdgen, if Q(g) is Archimedean (resp., X is compact), then the bounds 
lb( f,Q(g))r (resp., lb( f,T (g))r ) converge to f min as r → ∞ (Lasserre (2001)). 
We return to these bounds in Sect. 3, where we will discuss their asymptotic conver-
gence rates as the relaxation order r grows. We summarize the main known results 
in Table 2 below. As we see, the results depend on the algebraic structure of the 
semialgebraic set X.
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Table 2 Overview of known results on the asymptotic error f min − lb( f, X)r of Lasserre’s hier-
archies of lower bounds. ( The result on the sphere Sn−1 is  shown  in  Fang  and  Fawzi (2021) only 
for homogeneous polynomials f , but it can be extended to general polynomials Blomenhofer et al. 
(2025)) 

X (compact) Error Certificate References 

Archimedean O(1/ log(r)c) Q(g) Nie and Schweighofer 
(2007) 

Archimedean O(1/rc) Q(g) Baldi and Mourrain 
(2023), and Baldi et al. 
(2025) 

General O(1/rc) T (g) Schweighofer (2004) 

[−1, 1]n O(1/r) Q(g) Baldi and Slot (2024) 

S
n−1 O(1/r2) Q(g) (= T (g)) Fang and Fawzi (2021) 

Bn O(1/r2) Q(g) (= T (g)) Slot (2022c) 
n O(1/r2) T (g) Slot (2022c) 

[−1, 1]n O(1/r2) T (g) Laurent and Slot 
(2023) 

1.7 Link to Cubature Rules 

A natural approach to design upper bounds on the minimum value of f over X is 
by minimizing f over a well-chosen finite set of points Xr ⊆ X. For example, for a 
set X ⊆ [0, 1]n , one may take for Xr the set of rational points in X that have a given 
denominator r ≥ 1. This clearly gives a hierarchy of upper bounds that converge 
asymptotically to f min when the denominator r grows. For the simplex X = n , 
we have |Xr | = n+r

r , thus polynomial in n for any fixed r . In fact, the parame-
ters f min,Xr lead to a polynomial-time approximation scheme with convergence rate 
minx∈Xr f (x) − f min = O(1/r) (de Klerk et al. (2006)). However, for the hypercube 
X = [0, 1]n ,  we  have |Xr | = (r + 1)n , which is thus exponential in the dimension n. 
We refer to Martinez et al. (2019) for related work for well-chosen finite meshes on 
X. Let us mention the following simple link to cubature rules. 

Let μ ∈ M(X) with support X. Assume that Xr = {x (i) : i ∈ [N ]} ⊆ X, together 
with positive weights w = (wi )i∈[N ], provides a positive cubature rule for (X, μ)

that is exact at degree deg( f ) + 2r . That is, for any polynomial p with deg(p) ≤
deg( f ) + 2r we have X pdμ = N

i=1 wi p(x (i)). Then, one easily sees that 

ub( f, X, μ)r ≥ min
x∈Xr

f (x) = f min,Xr ≥ f min,X.

Sometimes, this permits to show tightness of the convergence rate for the upper 
bounds ub( f, X, μ)r from information about cubature rules. This is done, e.g., for 
the sphere X = S

n−1 (equipped with the uniform Haar measure) by de Klerk and 
Laurent (2022), who show ub( f, X, μ)r − f min = 1/r2) for linear f .
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2 Performance Analysis of the Upper Bounds 

Recall the set up: X ⊆ R
n is a compact set and μ is a reference measure supported 

by X. Consider the bilinear form , μ on R[x] induced by μ, defined by 

p, q μ =
X

p(x)q(x)dμ(x) for p, q ∈ R[x]. (18) 

If X has a nonempty interior, then this defines an inner product on R[x]. Otherwise, 
if X has an empty interior (e.g., X = S

n−1 is the unit sphere), then this defines an 
inner product on the space R(X) of polynomials on X.  Let Bμ = {Pα : α ∈ N

n} be 
an orthonormal basis of R(X) with respect to this inner product, with the property 
that the set 

Bμ,d = {Pα : α ∈ N
n
d}, sometimes also denoted as the vector [Pα]d , (19) 

is a basis ofR(X)d (the set of polynomials that agree onXwith  a  degree d polynomial) 
for each d ∈ N. 

Our objective here is to give a (rough) overview of the main ideas used to show 
the results in Table 1, where rates in O(1/r2) and in O(log2(r)/r2) are presented. 

The starting point for showing a O(r2) rate is establishing an eigenvalue refor-
mulation for the parameter ub( f, X, μ)r (Sect. 2.2) and a link to extremal roots 
of orthogonal polynomials in the univariate case (Sect. 2.3). In addition, one uses 
some simple ‘tricks’ to reduce the analysis to (at most) quadratic polynomials and 
to simpler sets and measures (Sect. 2.1). 

To show the (slightly weaker) rate O(log2(r)/r2) for much more general sets X
one again follows a univariate strategy, now reducing the search in problem (14) 
to sos polynomials σ(x) = s( f (x)), where s is a univariate sos polynomial (see 
Sect. 2.4). 

2.1 Some Useful Tricks for the Analysis 

We group here some simple facts, useful for the analysis of the upper bounds. 

Lemma 1 (de Klerk et al. (2017)) Let f, g ∈ R[x] satisfy (i) f (x) ≤ g(x) for all 
x ∈ X, and (ii) f and g take the same minimum value on X, i.e., f min,X = g min,X. 
Then, for any r ∈ N, we have ub( f, X, μ)r − f min,X ≤ ub(g, X, μ)r − g min,X.

Using Taylor’s expansion, one can see that any polynomial f admits an upper 
estimator g on X that satisfies the assumptions (i), (ii) of Lemma 1 and that is (linear 
or) quadratic.



162 M. Laurent and L. Slot

The next lemma permits to reduce the analysis for a pair (X, w), where X is 
equipped with the absolutely continuous measure w(x)dx, to a possibly simpler pair 
(X, w), where X ⊆ X and w ≤ w ‘look the same’ around a minimizer. 

Lemma 2 (Slot and Laurent (2022d)) Let X ⊆ X be compact sets, where X (resp., 
X) is equipped with an absolutely continuous measure w(x)dx (resp., w(x)dx). Let 
x∗ ∈ X be a minimizer of f in X. Assume the following conditions hold: 

(i) X, X are ‘locally similar’ at x∗: X ∩ Bn(x∗ = X ∩ Bn(x∗ for some 0
(with Bn(x∗ the ball centered at x∗ with radius ). 

(ii) w(x) ≤ w(x) for all x ∈ int(X). 
(iii) w, w are ‘locally comparable’ at x∗: C · w(x) ≤ w(x) for x ∈ int(K ) ∩

Bn(x∗ for some 0 and C > 0. 

Then, there exists a (linear or) quadratic polynomial g such that f (x) ≤ g(x) for all 
x ∈ X, f min,X = g min,X, and ub( f, X, w)r − f min,X ≤ 2

C ( ub(g, X, w)r − g min,X). 

The up-shot of these two lemmas can be summarized as follows. 

Recipe for analyzing the upper bounds 
It suffices to analyze the convergence rate of the range ub( f, X, μ)r − f min

for (linear or) quadratic f and ‘simple’ sets X (like the box [−1, 1]n or the 
ball Bn). 

2.2 Reformulation as an Eigenvalue Problem 

We begin with giving an eigenvalue reformulation for the parameter ub( f, X, μ)r

from (14). For this, we express the polynomial σ ∈ 2r entering the definition of the 
parameter ub( f, X, μ)r using the orthonormal basisBμ,r , ordered as the vector [Pα]r

(as in (19)). So, we can write σ Q, [Pα]r [Pα]Tr , where Q is the matrix variable 
(indexed byBμ,r ). Then, we have X f σdμ Q, Mμ,r ( f ) and X σdμ = Tr(Q), 
after defining the matrix 

Mμ,r ( f ) =
X

f Pα Pβdμ
α,β∈Nn

r

.

In this way we arrive at the following eigenvalue reformulation: 

ub( f, X, μ)r = min Mμ,r ( f ), Q Q 0, Tr(Q) = 1} = λmin(Mμ,r ( f )),

(20) 
showing that the parameter ub( f, X, μ)r is equal to the smallest eigenvalue of the 
matrix Mμ,r ( f ). Some remarks are in order here: this computation relies on the 
matrix Mμ,r ( f ), which in turn requires to be able to integrate a polynomial on the
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set X w.r.t. the measure μ. Thus, for practical computation one needs to restrict to 
some relatively easy sets equipped with well-understood measures. 

Estimating this smallest eigenvalue remains a difficult problem in general. How-
ever, there is a situation where it is very well-understood: in the univariate case for 
the interval X = [−1, 1] equipped with a ‘nice’ measure. We first consider this case, 
which will form the basis for understanding the general multivariate case. 

2.3 Univariate Case: Links to Roots of Orthogonal 
Polynomials 

Here, we consider the univariate case n = 1 and the interval X = [−1, 1] equipped 
with a measure μ supported on [−1, 1]. Consider as above the orthonormal basis 
Bμ = {Pk : k ≥ 0} of R[x] w.r.t. the inner product , μ. Then, the polynomials Pk

satisfy the well-known 3-term recurrence: there exist scalars ak, bk (k ≥ 0) such that 

x Pk = ak−1Pk−1 + bk Pk + ak Pk+1 for k ≥ 0 (setting a−1 = 0). (21) 

Observe that for the polynomial f = x , the matrix Mμ,r (x) = 1
−1 x Pi Pj dμ

r

i, j=0
(also known as the Jacobi matrix) is tri-diagonal and its eigenvalues are the roots of 
the degree r + 1 orthogonal polynomial Pr+1. In particular, 

λmin(Mμ,r (x)) = smallest root of the orthogonal polynomial Pr+1 (w.r.t. μ).

(22) 
We refer, e.g., to Dunkl and Xu (2014) for background on orthogonal polynomials. 

From now on, we will assume that the reference measure μ is of Jacobi-type. 

Jacobi-type measures on [−1, 1]
The Jacobi-type measure is dμ(x) = (1 − x)λ(1 + x)λ dx , where λ, λ > −1; 
the associated orthogonal polynomials are known as the Jacobi polynomials. 
The case whenλ = λ = −1/2 is of special interest; then, the 3-term recurrence 
(21) reads x Pk = (Pk−1 + Pk+1)/2 and the associated orthogonal polynomials 
are the Chebychev polynomials. 
The reason for restricting to Jacobi-type measures is that the behaviour of the 
extremal roots of their associated orthogonal polynomials is well-understood: 
The smallest root of Pr is −1 + 1/r2) (Dimitrov and Nikolov (2010), and 
Driver and Jordaan (2012)). 

As observed earlier, it suffices to analyze the upper bounds for linear or 
quadratic f . 

For linear f = x , since the smallest root of Pr+1 is−1 + 1/r2), by combining 
with relations (20) and (22), we directly obtain the error analysis
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ub(x, [−1, 1], μ)r − f min = λmin(Mμ,r (x)) + 1 = 1

r2
(23) 

(from de Klerk and Laurent (2020)). 
We now consider the case when f is quadratic. We distinguish two cases, depend-

ing whether f has a minimizer in the boundary or in the interior of [−1, 1].  In  the  
former case, f admits a linear upper estimator; then we can apply Lemma 1 and use 
(23) to conclude that ub( f, [−1, 1], μ)r − f min = O(1/r2). 

So, assume now f = x2 + cx with a ∈ (−2, 2), so that f attains its minimum 
value in (−1, 1). Then, one needs to estimate the smallest eigenvalue of the matrix 
Mμ,r ( f ), a difficult task in general. Indeed, Mμ,r ( f ) is a 5-diagonal matrix, with 
its entries depending on the parameters ak, bk in the 3-term recurrence (21) and the 
parameter c in the definition of f . Estimating this smallest eigenvalue is, however, 
easier in the Chebyshev case. 

In the case when the measureμ is of Chebyshev-type, i.e., dμ = (1 − x2)−1/2dx , 
the matrix Mμ,r ( f ) is ‘almost’ a circulant matrix: After modifying its first two rows 
and columns it can be made a circulant matrix, whose eigenvalues can be explic-
itly computed. Combining with an interlacing argument, one can show again that 
ub( f, [−1, 1], μ)r − f min = O(1/r2) (de Klerk and Laurent (2020)). Combining 
this with using Lemma 2 one can show the same result for a general measure μ with 
weight (1 − x2)λ when λ ≥ −1/2 (Slot and Laurent (2022d)). 

In summary, we have ub( f, [−1, 1], μ)r − f min = O(1/r2) for any polynomial 
f , in the case when [−1, 1] is equipped with a measure μ with Jacobi weight (1 −
x2)λ and λ ≥ −1/2. This error estimate in O(1/r2) extends then to the box [−1, 1]n , 
equipped with a product of such measures. 

Similarly, to establish the rate O(1/r2) for the other sets in Table 1, one uses the 
result (23) for the univariate case, combined with the results of Lemmas 1 and 2 
(see Slot and Laurent (2022d) for the ball, simplex, and round convex bodies), and 
possibly some ‘integration trick’ (see de Klerk and Laurent (2022) for the sphere). 

2.4 Another Analysis Technique Using Needle Polynomials 

At this point there remains to explain how to show the (slightly weaker) rate 
O(log2(r)/r2) presented in Table 1 for general compact setsX like semialgebraic sets 
(with dense interior) and convex bodies. For this the key idea is again to follow a uni-
variate approach, as explained by Slot and Laurent (2021). Instead of searching over 
all (multivariate) sos polynomials σ ∈ R[x] in program (14), the idea is to restrict the 
search to univariate sos polynomials s ∈ R[x] and then set σ(x) = s( f (x)).  In  this  
way one arrives at the following (weaker) bounds (introduced by Lasserre (2021)):
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ub#( f, X, μ)r = min
X

f (x)s( f (x))dμ(x) : s ∈ R[x]2r sos,
X

s( f (x))dμ(x) = 1

= min
f (X)

xs(x)d f#μ(x) : s ∈ R[x]2r sos,
f (X)

s(x)d f#μ(x) = 1 ,

(24) 

where f#μ denotes the univariate measure obtained by taking the push-forward of μ
by f . Then, we have ub( f, X, μ)rd ≤ ub#( f, X, μ)r if d = deg( f ). 

In view of relations (20) and (22), the analysis of the bounds ub#( f, X, μ)r relies 
on the smallest roots of the orthogonal polynomials w.r.t. the push-forward measure 
f#μ. However, these orthogonal polynomials are not well understood in general, so 
another approach is needed. Up to translation one may assume that f min = 0. Then, 
the idea is to find a univariate sos polynomial s that approximates well the Dirac 
delta at the origin. For this, one can employ the so-called needle polynomials (from 
Kroó (2015)) that are widely used in the literature of approximation theory. We refer 
to Slot and Laurent (2021) for the technical details and extension to compact sets 
satisfying a suitable geometric assumption. 

3 Performance Analysis of the Lower Bounds 

We turn now to the lower bounds. Let X = {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0} be 

as in (2). We assume that the quadratic module Q(g) is Archimedean. Recall that 
this implies that, for any f , the bounds lb( f,Q(g))r and lb( f,T (g))r converge to 
f min as r → ∞ by Putinar’s and Schmüdgen’s Positivstellensätze, respectively. In 
this section, we outline the main ideas used to obtain the convergence rates presented 
in Table 2. For ease of writing, we will use the letter C to refer to eitherQ(g) orT (g). 
A useful observation is the following. 

Observation 1 Let f ∈ R[x]. Then, for any 0 and r ∈ N, we have 

f min − lb( f,C)r ≤ ⇐⇒ f − f min + ∈ C2r .

Thus, in order to prove convergence rates for Lasserre’s hierarchies of lower 
bounds, it suffices to find low-degree sos-representations of f − f min + . In what 
follows, we discuss two methods of obtaining such representations. We give particular 
attention to the so-called polynomial kernel method in Sect. 3.1 below, as it reveals 
an interesting connection between the analysis of the lower bounds and the upper 
bounds discussed in Sect. 2. 

Throughout this section, we set d = deg( f ), which should be thought of as being 
fixed, while the relaxation order r will grow.
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3.1 Analysis via the Polynomial Kernel Method 

The polynomial kernel method (PKM) has been successful for proving strong 
convergence rates for optimization over certain distinguished sets X, including 
X = S

n−1, Bn n, [−1, 1]n . It was initially described3 in the special case X = S
n−1

by Fang and Fawzi (2021), who use it to show a convergence rate in O(1/r2) in that 
setting. It was later applied by Laurent and Slot (2023) and Slot (2022c), to prove 
rates in O(1/r2) for optimization over [−1, 1]n and n, Bn , respectively. The latter 
work by Slot (2022c) is the first to describe the technique in full generality, and we 
follow its exposition here. 

Suppose we were able to construct a linear operator K : R[x] → R[x] with the 
following three properties: 

K(1) = 1, (P1) 

K p ∈ C2r for all p ∈ P(X), (P2) 

max
x∈X

|K−1 f (x) − f (x)| ≤ (P3) 

Then, we claim that ( f − f min) + ∈ C2r (which shows that f min − lb( f,C)r ≤
by Observation 1). Indeed, by (P3), we have K−1 f (x) ≥ f (x) − ≥ f min −

on X.  Using  (P1), we obtain K−1( f − f min + = K−1 f − f min + ∈ P(X). 
By (P2), we may then conclude that 

f − f min + = K K−1 f − f min + ∈ C2r .

3.1.1 Constructing Linear Operators 

It remains to construct operators K that enjoy these special properties. For this, 
we rely on the theory of (polynomial) reproducing kernels.  Let μ be a (sufficiently 
nice) measure supported on X. Then, any polynomial K ∈ R[x, y] induces a linear 
operator K on R[x] via convolution: 

K p(x) :=
X
K(x, y)p(y)dμ(y) (p ∈ R[x]). (25)

3 Earlier, weaker analyses of the lower bounds on S
n−1 due to Reznick (1995) and Doherty and 

Wehner (2013) already relied on the PKM implicitly. 
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The goal is to chooseK in such a way that K satisfies (P1)-(P3). For (P2), it suffices 
to chooseK so that the polynomial x K(x, y) lies in C2r for all fixed y ∈ X.  This  
is a consequence of Tchakaloff’s Theorem, which allows us to write the integral (25) 
as (positively weighted) finite sum over a cubature rule (see Laurent and Slot (2023)). 
To establish (P1) and (P3), it turns out that it is enough to control the eigenvalues of 
K. The eigenvalues of K can be related to the polynomialK directly if we make the 
assumption that it is of the form 

K(x, y) =
α 1≤2r

λα Pα(x)Pα(y) (λα ∈ R), (26) 

where {Pα : α ∈ N
n} is an orthonormal basis of R[x] w.r.t. μ, ordered so that 

deg(Pα) α 1 for all α. Indeed, by orthonormality, the eigenvalues of K are then 
given by the coefficients λα in (26). If we set λα = 1 for all α, the resulting polyno-
mial is called the reproducing kernel for R[X]2r w.r.t. μ. Its associated operator K
acts as the identity on R[x]2r . It thus satisfies (P1) and (P3) (for = 0). However, it 
does not have an sos-representation in general, and so it does not satisfy (P2). The 
idea is to perturb the reproducing kernel slightly, choosing λα ≈ 1 (for all |α| ≤ d), 
in such a way that all three properties hold. The following lemma makes the relation 
between the λα and properties (P1), (P3) precise. 

Lemma 3 Let K be as in (26), with λ0 = 1 and λα ∈ (1/2, 1] for all α 1 ≤ d. 
Then, its associated linear operator K satisfies (P1), and 

max
x∈X

|K−1 f (x) − f (x)| ≤ γ ·
|α|≤d

(1 − λα) · ( fmax − fmin).

for some constant γ > 0 depending only on X and d (but not on f ). 

The inequality in Lemma 3 above can be improved in certain special cases (such 
as X = S

n−1). In particular, the constant γ can be bounded nontrivially, but this is 
beyond the scope of this survey. 

3.1.2 A Connection to the Upper Bounds 

In general, it is not obvious how to choose the λα such that (P2) holds. However, 
for the aforementioned special choices of X, one can rely on special structure of 
the reproducing kernel to make this problem tractable. For instance, in the original 
application of the PKM by Fang and Fawzi (2021) for the sphere Sn−1, the classical 
Funk-Hecke formula tells us that, for any k ∈ N,

α 1=k

Pα(x)Pα(y) = Gk(x · y) (x, y ∈ S
n−1),
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where Gk is the Gegenbauer polynomial of degree k. These are the (univariate) 
orthogonal polynomials on the interval [−1, 1] w.r.t to weight w(t) = (1 − t2)

n−3
2 . 

Assuming that the λα in (26) depend only on |α|, the polynomial K then equals 

K(x, y) =
2r

k=0

λkGk(x · y).

Write q(t) := 2r
k=0 λkGk(t). Note that if q ∈ [t]2r is a (univariate) sum of squares, 

then K(x, y) lies in the quadratic module of the sphere for fixed y ∈ S
n−1, and 

so K will satisfy (P2). In light of Lemma 3, we thus wish to select the λk so 
that λ0 = 1 (P1); q ∈ [t]2r (P2); and d

k=1(1 − λk) is as small as possible (P3). 
Remarkably, the optimal selection of the λk corresponds to a particular instance of 
Lasserre’s upper bounds. This correspondence allows us to transport the analysis 
of these bounds in Sect. 2 to our present setting. Indeed, by orthogonality, and after 
choosing the right normalization of the Gegenbauer polynomials Gk , we have that 
λk = 1

−1 Gk(t)q(t)w(t)dt . Now set g(t) = d − d
k=0 Gk(t). Then, we have that 

1

−1
g(t)q(t)w(t)dt =

d

k=1

(1 − λk).

Thus, choosing the λk optimally reduces to solving the optimization problem 

opt := inf
q∈ [t]2r

1

−1

d

k=1

g(t)q(t)w(t)dt

d
k=1(1−λk )

:
1

−1
q(t)w(t)dt

λ0

= 1 .

We recognize this as the program (14) that defines the upper bound ub(g, [−1, 1])r

for the minimization of g on [−1, 1].  As gmin = 0 (attained at t = 1), we may con-
clude that opt = O(1/r2), and a convergence rate of the lower bounds on S

n−1 of 
the same order follows. We refer to Fang and Fawzi (2021) (and the exposition in 
Slot (2022b)) for details. 

For X ∈ {Bn n}, one has (more complicated) analogs of the Funk-Hecke for-
mula. This allows one to establish a correspondence between upper and lower bounds 
similar to the above. For X = [−1, 1]n , there is no such formula. However, the repro-
ducing kernel has a product structure in that case, which can be exploited to obtain 
representations of K in the truncated preordering. We refer to Slot (2022c), Slot 
(2022b) and Laurent and Slot (2023) for details.
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Recipe for analyzing the lower bounds (I): Polynomial kernel method 
Convergence rates for Lasserre’s hierarchy of lower bounds may be obtained 
from sum-of-squares representations of (perturbed) reproducing kernels on X. 
For distinguished semialgebraic sets X, such representations can be found via 
the hierarchy of upper bounds. 

3.2 Analysis via Algebro-Geometric Reduction 

We now discuss a technique employed first by Schweighofer (2004), Nie and 
Schweighofer (2007), Baldi and Mourrain (2023) and Baldi et al. (2025), to prove 
convergence rates for Lasserre’s lower bounds on general (compact, Archimedean) 
semialgebraic sets X = Se(g) (as in (2)). With respect to the polynomial kernel 
method, this technique yields weaker guarantees, but it does not rely on special 
structure of the set X. We follow the exposition of Baldi and Mourrain (2023). 

Suppose that, for a given polynomial f , we wish to show that f − f min + ∈
Q(g)2r for some small 0. The idea is to embed the (potentially complicated) 
set X in a simple semialgebraic set Y = Se(h) ⊇ Se(g) = X. For instance, Y might 
be a (scaled) ball, simplex or box. Following Baldi and Mourrain (2023), let us fix 
Se(h) = [−1, 1]n for concreteness. Using specialized results on the convergence of 
Lasserre’s hiearchy on [−1, 1]n (e.g., those obtained via the PKM), we know that, 
for some = O(1/r2), 

f − fmin,Y + ∈ T (h)2r . (27) 

This fact is not immediately useful to us, for two reasons. First, we wish to obtain a 
representation in Q(g), not T (h). Second, the minimum fmin,Y of f on Y might be 
(much) smaller than f min = fmin,X. The first issue is resolved by proving an inclusion 
T (h)2r ⊆ Q(g)2r+ . Note that the existence of such an inclusion is not surprising, 
as Y ⊇ X, and thus P(X) ⊇ P(Y). Nonetheless, careful arguments are needed to 
control the additional degree term , but we do not discuss these here. The second 
issue is more serious. It is resolved as follows: Suppose we were able to construct 
a regularizing polynomial q ∈ Q(g) with the property that fmin,X ≤ ( f − q)min,Y. 
Then, setting f̃ = f − q, we could apply (27)  to f̃ , and use the inclusion of T (h)

in Q(g) to obtain, for some ˜ = O(1/r2), 

f̃ − f̃min,Y + ˜ ∈ T (h)2r ⊆ Q(g)2r+ .

Using the identity f − fmin,X + ˜ = ( f̃ − f̃min,Y + ˜ + q + f̃min,Y − fmin,X, com-
bined with f̃min,Y ≥ fmin,X and q ∈ Q(g) , this gives us the representation

f − fmin,X + ˜ ∈ Q(g)max{2r+ }.
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Note that ˜ depends on the degree of q, which may be substantially larger than d. 
Therefore, ˜ in general. In addition to the extra degree terms , this is what 
explains the weaker rates obtained from this technique compared to the PKM. 

3.2.1 Construction of the Regularizing Polynomial 

It remains to construct the polynomial q ∈ Q(g) described above. As mentioned, 
this construction has a large impact on the quality of the resulting convergence 
guarantees. In fact, it is arguably the construction of q that sets apart the results of 
Nie and Schweighofer (2007), Baldi and Mourrain (2023)  and  Baldi  et  al. (2025), 
leading to stronger rates in the latter works. We give a sketch of the construction in 
Baldi and Mourrain (2023). 

Recall that after setting f̃ = f − q, we want that f̃min,Y ≥ fmin,X.  Thus,  we  wi  sh
that q 0 on Y\X, and q ≈ 0 on X (as q ∈ Q(g), we know that q ≥ 0 on X). 
Without loss of generality, assume that the polynomials g j defining X satisfy −1 ≤
g j (x) ≤ 1 for all x ∈ Y and j ∈ [m]. The idea is to first construct a univariate sum-
of-squares polynomial h ∈ [t], with the property that, for some small η > 0,  we  
have h(t) ≈ 0 for t ∈ [η, 1] and h(x) ≈ 1 for t ∈ [−1,−η]. This can be done via 
Chebyshev approximation, see Baldi and Mourrain (2023, Sect. 2.3). Then, we set 
q(x) = M · m

j=1 g j (x)h(g j (x)), with M > 0. Note that q ∈ Q(g) by definition. 
Note further that, for x /∈ X sufficiently far from the boundary bd(X), at least one 
g j (x) < −η, whence gi (x)h(gi (x)) 0, whereas for x ∈ X sufficiently far from 
bd(X),  all g j (X) ∈ [η, 1], whence q(x) ≈ 0. It remains to analyze the situation for x
close to bd(X), where (some of the) constraints g j (x) are close to 0. There, a careful 
comparison of the gradients ∇ f of f and ∇g j of the constraints g j is required to 
finish the argument. This comparison involves the so-called Łojasiewicz-constant 
of g, which appears in the exponent of the final convergence rate. See Baldi and 
Mourrain (2023) for details. 

Recipe for analyzing the lower bounds (II): Algebro-geometric reduction 
Convergence rates for Lasserre’s hierarchy of lower bounds on general semi-
algebraic sets may be derived from rates on special sets (such as the simplex 
or hypercube), through delicate algebraic and geometric arguments. 

3.3 Extensions 

We end this section with some recent extensions of the techniques described above.
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3.3.1 Algebro-Geometric Reduction for the Hypercube 

Baldi and Slot (2024) use a variation of the reduction technique described above to 
prove convergence rates in O(1/r) for the Putinar-type lower bounds on [−1, 1]n , 
based on the quadratic module (recall that Laurent and Slot (2023) only show rates 
for the stronger Schmüdgen-type bounds, based on the preordering). This extension 
shows that the algebro-geometric method can also be useful for analyses on specific, 
rather than general sets X. The main difference w.r.t. the above is that the ‘simple’ 
set Y ⊇ [−1, 1]n used in Baldi and Slot (2024) depends on f, r (while it was static 
before). In fact, somewhat remarkably, Y = Se(h) = [1 − η, 1 + η]n is itself just 
a scaled hypercube, with η = η( f, r) > 0. The use of a dynamic Y eliminates the 
need for the regularizing polynomial q, permitting to prove stronger rates than those 
in Baldi and Mourrain (2023) and Baldi et al. (2025) (which would give a rate in 
O(1/ 10

√
r) in this setting). On the other hand, proving an inclusionT (h) ⊆ Q(g)with 

proper degree bounds is more complicated. See Baldi and Slot (2024) for details. 

3.3.2 Sparse Polynomial Optimization 

As we have seen in Sect. 1.4, the semidefinite programs used to model Lasserre’s 
hierarchies in n variables at degree r involve matrices of size Nr = n+r

r . These SDPs 
are thus intractable already for moderately large values of n. To address this issue, 
variants of Lasserre’s hierarchy of lower bounds that exploit sparsity of the underlying 
polynomial optimization problem have been proposed in the literature, see Magron 
and Wang (2023) for an overview. A recent work by Korda et al. (2024) extends 
both of the techniques discussed in Sect. 3 to this setting, yielding a performance 
analysis for the sparse bounds. Furthermore, the convergence rates achieved there 
are stronger than those of Sect. 3 for sufficiently sparse POPs (relative to the size of 
the resulting SDPs). 

3.3.3 Generalized Moment Problems 

Polynomial optimization is a special case of the generalized problem of moments 
(GPM), which asks to minimize a linear function over the cone of positive Borel 
measures on R

n under some linear conditions on the moments. Lasserre’s approxi-
mation hierarchies naturally extend to the GPM, see Lasserre (2009) and de Klerk 
and Laurent (2019). Convergence rates for these extended hierarchies have been 
established, especially in the context of dynamical systems, optimal control and 
volume estimation, by Korda et al. (2017), Korda and Henrion (2018), Schlosser 
et al. (2024a) and Schlosser and Tacchi (2024b). The analyses in the latter two recent 
works rely directly on (a combination of) existing convergence results for polynomial 
optimization discussed above.
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4 Discussion 

Tightness of the Performance Analysis 

As we have seen, the convergence rates for the hierarchy of upper bounds presented 
in Sect. 2 are essentially tight (up to log-factors). For the lower bounds, the situation 
is much less clear. The literature on ‘worst-case’ examples for the lower bounds is 
mostly qualitative in nature, see, e.g., Scheiderer (2005) and Powers and Scheiderer 
(2001). On the quantitative side, Baldi and Slot (2024) recently showed that the 
Putinar-type lower bounds onX = [−1, 1]n converge at a rate no better than 1/r8). 
Note that this negative result is still rather far away from the best-known positive 
result in that setting, which is in O(1/r). It is an interesting research direction to prove 
negative results on the convergence of the lower bounds that either match the positive 
results more closely; or apply to more general X; or apply to the Schmüdgen-type 
bounds. 

Exponential Convergence Under Local Optimality Conditions 

A common feature of the convergence rates in Table 2 is that they are subexponential, 
in particular no better than O(1/rc) for some constant c > 0 depending on the set X
and the type of certificate. In light of the negative results mentioned above, these 
are likely ‘optimal’ (up to improving the exponent c). On the other hand, Bach and 
Rudi (2023)  show  an  exponential convergence rate for the Schmüdgen-type bounds
on X = [−1, 1]n , which holds under an additional assumption on the objective func-
tion f . Roughly speaking, f should have a (strictly) positive definite Hessian at 
its global minimizer x∗ ∈ [−1, 1]n , see Bach and Rudi (2023) for details.4 Under 
this assumption, f − f min can be written as a sum of squares of smooth functions 
(not necessarily polynomials). In turn, these smooth functions can be approximated 
by polynomials via (truncated) expansion in the Fourier basis, leading to a sum-of-
squares representation of f − f min. The exponential convergence rate for Lasserre’s 
lower bounds then follows from the fact that the Fourier coefficients of a smooth func-
tion decay exponentially quickly. As the approach of Bach and Rudi relies primarily 
on Fourier analysis, it seem likely that it could be extended to other distinguished X, 
such as X = S

n−1. More unclear is whether it could also be used to prove guarantees 
for general semialgebraic sets X, which we believe is an interesting open question.

4 Note that this assumption holds generically. Under a similar assumption, Nie (2014) showed earlier 
that the hierarchy of lower bounds has finite convergence for general X = Se(g), i.e., f − f min
belongs to Q(g)r for some r ∈ N. However, his result gives no quantitative information on r . 
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Optimization Over Finite Semialgebraic Sets 

In this survey, we have focused on the setting whereX ⊆ R
n is an infinite set. Sum-of-

squares hierarchies have been extensively studied for optimization over finite semial-
gebraic X as well, particularly for (subsets of) the boolean hypercube: X ⊆ {−1, 1}n

(or X ⊆ {0, 1}n). A key difference in the finite setting is that the hierarchies always 
converge in a finite number of steps (under a minor condition on the description 
of X), see Nie (2013). In fact, they converge in n) steps for a semialgebraic subset 
of the boolean cube, see Laurent (2023) and Fawzi et al. (2016). For this reason, 
asymptotic analysis as r → ∞ does not make sense. Rather, one often fixes the level 
r ∈ N of the hierarchy, and lets the number of variables n tend to infinity. There 
is a large literature on this regime in the theoretical computer science community, 
see, e.g., Barak and Steurer (2014) and references therein. One could also consider 
a ‘hybrid’ regime, where r = c · n for some constant c > 0 and n, r → ∞ simul-
taneously. In this regime, the polynomial kernel method (see Sect. 3.1) yields error 
guarantees for the upper and lower bounds on X = {−1, 1}n , see Slot and Laurent 
(2022a) for details. 
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