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Chapter 1
Introduction

Computation has been central to human progress for thousands of years. An-
cient civilizations developed tools to perform arithmetic and solve practical prob-
lems. One of the earliest examples is the abacus, believed to have originated in
Mesopotamia, which enabled efficient calculations such as addition and multipli-
cation [Ifr00]. The invention of the modern computer marked a turning point,
enabling computations to be carried out automatically—without human inter-
vention or mistakes. A key insight in constructing these machines is that by
combining many elementary steps, much more complex problems can be solved.
The construction of these complex procedures is captured by the concept of an al-
gorithm: a finite set of precise rules that, when followed step-by-step, transforms
a given input into a desired output. The invention of the automatic execution of
algorithms has led to remarkable advances in nearly every aspect of society, from
the simulation of physical systems to worldwide communication.

The process of developing modern computers has progressed along multiple
fronts, including hardware engineering, software development, and theoretical
computer science. For example, the hardware that executes these elementary
steps has been developed at an exponential rate, following Moore’s law with a
doubling of the number of transistors every two years [Moo+65]. In parallel, com-
putational science focuses on developing more efficient algorithms and analyzing
the resources required to solve specific problems.

The development of algorithms and hardware must often progress in tandem.
A clear example of this is the rise of artificial intelligence, which has significantly
influenced the design of modern computational devices. Most machine learning
algorithms consist of many relatively simple operations—particularly large-scale
matrix multiplications—that can be executed in parallel [Goo+16]. While CPUs
(central processing units) are optimized for sequential and complex logic, GPUs
(graphics processing units) excel at performing many simple tasks simultaneously,
making them far more efficient for matrix-based computations. As a result, the
recent success of machine learning has driven a shift in the types of resources

1



2 Chapter 1. Introduction

needed for efficient computation. For many years, the CPU was considered the
most important component of a computer. Today, however, interest is growing
in more powerful GPUs [CLS25] and in new architectures such as TPUs (tensor
processing units), developed by Google specifically for machine learning tasks
[Jou+17].

With the development of quantum computers on the horizon, the question
of which resources are most important has become more relevant than ever. A
quantum computer operates in a fundamentally different way from a classical
one. Classical computers rely on the principles of classical physics and perform
logical operations on binary strings. In contrast, quantum computers process
information using microscopic physical systems, such as electrons or heavy ions,
that behave according to the laws of quantum mechanics. This enables them to
exploit uniquely quantum phenomena such as superposition and entanglement,
which, when harnessed effectively, can lead to more efficient algorithms.
Feynman and Benioff were among the first to propose a computational model
based on the rules of quantum physics for simulating quantum systems. They
recognized the exponential overhead required to perform such simulations using
traditional computational means [Fey82; Ben80].
However, a quantum computer is not simply a faster classical computer. In fact,
quantum devices are often much slower on a per-step basis. Nevertheless, the use
of superposition and entanglement allows quantum algorithms to solve certain
problems in significantly fewer steps than any known classical algorithm.

The first example of a problem with a provable quantum advantage was given
by Deutsch and Jozsa in 1992. They constructed a problem for which the best
deterministic classical algorithm requires a number of steps that scales with the
input size. In contrast, they developed a quantum algorithm that solves the
problem in just five steps [Deu85]. A key ingredient of their quantum algorithm is
the ability to ask a question to an oracle1 in superposition. However, it should be
noted, that this problem is somewhat contrived, and if one allows for randomized
classical computation with a small probability of error, then the advantage gained
by the quantum algorithm disappears.
The discovery of Deutsch and Jozsa sparked significant interest in the develop-
ment of quantum algorithms. It was soon followed by more sophisticated problems
and accompanying algorithms [BV93; Sim97], establishing the existence of expo-
nential speed-ups by quantum algorithms, even compared to randomized classical
computation2. Among the most notable results are the discoveries by Peter Shor
and Lov Grover. Shor devised an efficient quantum algorithm for factoring large
numbers—a problem for which no efficient classical algorithm is known—which

1An oracle is a black-box function, often encoding a specific problem instance. In many
query-complexity settings (e.g., Deutsch–Jozsa, Simon), it maps a bit string x to a bit f(x) ∈
{0, 1} and can be queried on superpositions of inputs by a quantum algorithm.

2These problems, which allow for provable exponential speed-ups, are all defined with respect
to an oracle.
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forms the basis of modern cryptographic protocols such as RSA [Sho97]. Grover
developed a quantum algorithm that achieves a quadratic speed-up for unstruc-
tured search, an algorithm with numerous applications [Gro96].

These discoveries prompted researchers to search for practical physical imple-
mentations of quantum computation. In classical computation, the transistor, an
electronic implementation of an on/off switch, serves as the fundamental building
block for storing the 1s and 0s (bits). However, it remains an open question which
type of physical system best realizes the qubit, the fundamental unit of quantum
information analogous to the classical bit. There are numerous physical systems
that allow for storing this fundamental unit of quantum information. Some ex-
amples are trapped ions, neutral atoms, and superconducting circuits[Fos+24;
Win+23; Kra+19]. Companies and universities alike are pursuing different phys-
ical realizations, aiming to build the largest quantum computational devices.

Even though the number of qubits has been steadily growing for many of
these different realizations, they all face one fundamental problem. Quantum in-
formation is inherently fragile. Qubits suffer from decoherence, meaning that the
information stored in a qubit is easily lost due to interactions with the environ-
ment around it [Alm+17]. One possible solution to this problem is to isolate the
qubit in an environment with minimal noise, at cryogenic temperatures. However,
even at such low temperatures, when running deeper circuits—such as those re-
quired to generate entanglement—qubits tend to accumulate too much noise and
cause the system to decohere.

An algorithmic solution to this problem was originally suggested by Shor and
Steane (who discovered it separately) and is the implementation of quantum error
correction[Sho95; Ste96]. In quantum error correction one combines multiple
physical qubits into one logical qubit in such a way that the errors in the logical
qubit are exponentially suppressed. However, this requires the physical error rate
to be below a certain threshold value ηc, which depends on the type of error-
correcting code that is used [AB99]. This year (2025) we have seen the first
results of small-scale quantum systems that can operate below this threshold
value and thereby are able to run an error-correcting code for multiple cycles
[Ach+25; Dag+25]. These small-scale experiments are a milestone on the road to
fault-tolerant (error resilient) quantum computation. However, for running more
sophisticated processes, one needs to scale these results to much larger systems.
Estimates for the number of physical qubits required to form one single logical
qubit tend to vary depending on the type of error correction code that is involved.
For instance, in [Gid25] the authors estimate that to run Shor’s algorithm they
require combining 430 physical qubits to form one logical qubit using a surface
code3, the error correcting code used in [Ach+25]. This means that even the

3In the paper the author splits required logical qubits into two categories called hot and
cold patches. These different patches have different requirements. The hot patches require
significantly more physical qubits to create one logical qubit, in total 1352. However, the vast
majority of logical qubits used are part of the cold patches, therefore we give the estimate for
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largest devices can support at most a handful of logical qubits in the current state.
Therefore, it will be necessary to scale the recent architectures to a sufficiently
large size, before fully fault-tolerant quantum computation becomes available.
A natural question to ask is:

Are there other resources that could aid in the development of quantum
computational devices?

In this thesis, we try to tackle this problem from a computational theoretical
perspective.

1.1 Three computational resources
We identify three different points in the development of quantum computational
devices and suggest three different resources that could aid in those settings.

1.1.1 Intermediate measurements
The first setting we investigate is that of pre-error correction quantum compu-
tation. In this situation we do not make use of error correction and instead try
to perform computations with the physically available qubits. This imposes a
severe limit on the achievable depth of quantum computation (i.e., how long a
quantum computer can run) due to the build-up of errors accumulated through
extended runs. Therefore, we consider only constant-depth quantum computation
to be available. To combat the depth restriction, we suggest to make use of inter-
spersed measurements and fast classical computations as an additional resource
to facilitate quantum computation.

1.1.2 Catalysts
The second setting is that of early fault-tolerant quantum computation. This
setting is identified by the access to a restricted number of stable logical qubits.
Therefore, in this setting we focus on space-bounded rather than time-bounded
computations. To combat these space constraints, we draw upon a concept de-
veloped in classical computational theory called catalytic computation. As an
additional resource, a classical space-bounded computational device is given ac-
cess to an additional hard drive, which at the start of the computation contains
arbitrary data. The space-bounded machine can make use of this hard drive in
whichever way it wants, but with the added caveat that it has to return the addi-
tional hard drive to its original state. Thus, the space-bounded machine can use
the hard drive as a catalyst. Access to such a resource gives a surprising amount

the cold patches here.



1.2. Complexity theory 5

of power to a classical space-bounded computational model. In this thesis, we
begin the investigation of quantum catalytic space, asking whether similar results
hold for the quantum setting.

1.1.3 Guiding states
The third setting is the application of quantum computers to the simulation
of quantum chemistry systems. Many consider this one of the most promis-
ing applications of quantum computation [Aar09; Bau+20]. Whilst perhaps the
original vision of the early pioneers of quantum computing was to simulate the
time-dynamics of quantum systems [Fey82; Ben80], for many applications one
is interested in stationary properties. One particularly noteworthy quantity is
the ground state energy (which corresponds to the smallest eigenvalue) of a local
Hamiltonian describing a quantum mechanical system of interest, say a small
molecule or segment of material. It is well known that the problem of estimat-
ing this value up to some additive error is hard, even for fault-tolerant quantum
computers. Therefore, it is generally believed that, without any additional help
or structure, quantum computers are not able to accurately estimate the smallest
eigenvalues of general local Hamiltonians, and there is some evidence that this
hardness carries over to those Hamiltonians relevant to chemistry and materials
science [OGo+22]. In the quantum chemistry community, it is often suggested
that this extra help could come from a classical heuristic that first finds some
form of guiding state: a classical description of a quantum state that can be used
as an input to a quantum algorithm to compute the ground state energy accu-
rately [Liu+22]. In this thesis, we investigate how such an additional resource,
a guiding state, could help in the application of quantum computers to quantum
chemistry.

The application of these resources is inspired by the three different stages
of the development of quantum computational devices. However, all three can
be applicable beyond these stages. Our goal is to analyze these three resources
and draw a conclusion about their use with respect to quantum computational
devices. We analyze them through the lens of computational complexity theory.

1.2 Complexity theory
In computational complexity theory one studies the relative power of compu-
tational models with respect to specific computational problems. The goal of
complexity theory is to classify problems into sets, we call those sets complexity
classes. Giving a concrete description of a complexity class requires us to first
specify three things. First, we need to specify what type of computational prob-
lems, or type of functions, we try to characterize. Second, we need to define the
computational model that attempts to solve these problems, specifying the type
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of resources available for the computation. Last, we need to specify what measure
to which we compare these models.

There are two specifications of computational problems used in this thesis.
The first, and most used in the thesis, are what we call decision problems. To
solve a decision problem, a computational device has to “decide” if a given input
has a specific property or not. An example of such a problem would be to ask
if a given number is odd or even (More details on decision problems found in
Section 2.3 of the Preliminaries). The second type of problems we will care
about, are quantum state preparation problems. In these types of problems, one
asks what type of states a quantum computational model can prepare. These
types of problems will be discussed more thoroughly in Chapter 3.

There are two main computational models that will be discussed in this
thesis, both of which will be extended by giving them access to additional re-
sources. The first is the well-known Turing machine, arguably the defining com-
putational model in theoretical computer science. Introduced by Alan Turing
in 1936 [Tur+36], a Turing machine is an abstract mathematical computation
model capable of performing a sequence of elementary steps to solve complex
logical problems. Turing showed that any computation carried out by a physical
computational device—such as a modern-day computer—can also be performed
by a Turing machine. This model can be made more powerful by providing it
with additional resources, such as randomness and nondeterminism. (A more
detailed discussion of Turing machines can be found in Section 2.3.1 of the pre-
liminaries.) The definition of a Turing machine can also be extended to include
access to quantum operations, resulting in a quantum Turing machine, which we
will discuss briefly in Chapter 6. However, most of quantum complexity theory
is not studied through this model, but rather through the quantum circuit model.
A quantum circuit is a sequence of quantum gates, chosen from a finite set known
as the gate set, applied to qubits in order to perform a computation (more precise
definition of a quantum circuit in Section 2.2.6 of the preliminaries). This model
more closely resembles actual quantum hardware implementations.

Finally, we will compare these models in two measures. The first measure is
the amount of time required to perform a computation. For a Turing machine
this is measured by counting the number of “elementary steps” that the Turing
machine takes. In the quantum circuit model, this is the number of gates in
the circuit. The second measure is the amount of space required to perform a
computation. For a Turing machine, this is measured by the size of work tape, or
the number of bits of working memory the Turing needs during computation. For
the quantum circuit model this is measured by the number of qubits required for
a computation. Sometimes we will not be interested in the actual total number of
gates of a quantum circuit, but instead in its depth. Any sequential gates acting
on a non-overlapping subset of the qubits are considered to be applied in parallel,
on the same layer. The number of layers in a circuit is the circuit depth (more
specifics on these measures can be found in Section 2.2.6 of the preliminaries).
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With these three things specified, we can finally give an example of a com-
plexity class: the complexity class P. The complexity class P contains all decision
problems for which there exists a Turing machine that can decide them in polyno-
mial time. Polynomial time means that the number of steps the Turing machine
has to take to solve the problem, scales at most polynomially with the input size
(a more formal definition can be found in Section 2.3.2 of the preliminaries). In
this thesis, we will make use of this machinery in the following way.

Above, we described three distinct computational settings where we propose
the introduction of additional resources to aid computation. These settings cor-
respond to different constraints on the underlying computational model. For in-
stance, the first setting—pre-error-corrected quantum computation—adheres to
the quantum circuit model with restricted depth, corresponding to the complexity
class QNC0. We augment this model with an additional resource: measurements
combined with fast, intermediate classical computations. We then compare the
resulting complexity class to its unaugmented counterpart. We will demonstrate
that in all three cases, the addition of the specified resource increases the power
of the computational model.

1.3 Organization of the thesis
The organization of this thesis is as follows. In Chapter 2, we start out by giving
the appropriate background for the rest of the thesis. This includes a descrip-
tion of the notation and terminology used, an introduction into the quantum
computational model, and an introduction into complexity theory including the
definition of the most important complexity theoretic models.

In Part One, we start by discussing the paradigm of short depth quantum
computational circuits interspersed with measurements and fast classical compu-
tation. We define a new computational model that captures the power of this
additional resource in constant-depth circuits. We call this model Local Alternat-
ing Quantum Classical Computations, or LAQCC for short. In Chapter 3 we start
by giving a concrete definition of this model and compare it to known compu-
tational models with similar ideas behind it. We give a list of operations based
on results from literature contained in this computational model. Then we dis-
cuss its relation with respect to other complexity theoretic classes in the context
of what we call state complexity. Finally, we give explicit novel constant depth
LAQCC circuits for four classes of states: the uniform superposition of size q (with
q not a power of two), the W state, the (n, k)-Dicke state, and a specific type of
many-body scar states.

In Part Two, we dive into the field of space-bounded computation, and more
specifically try to understand how having access to a full memory can aid in
computation. We start by giving a concrete introduction of the classical catalytic
computational model in Chapter 4. In Chapter 5, we deviate slightly from our
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original path, discussing the classical model of catalytic computation in the pres-
ence of errors. We give a full characterization of the additional power that is
gained by the catalytic model, when it is allowed to make a small number of
errors on reset.

In Chapter 6, we initiate the study of the model of quantum catalytic compu-
tation. First, we give a robust definition of quantum catalytic computation, and
focus on a specific instantiation of this model called quantum catalytic log-space
(QCL for short). We try to compare the quantum catalytic model to its classical
counterpart, however we find that this comparison is much less straightforward
than expected. It turns out that the reset requirement in the quantum setting is
significantly more stringent than in the classical setting, this allows us to give a
polynomial time bound for QCL machines. Something that is not known for the
classical setting, where in a similar model, catalytic log space, only an expected
polynomial-time bound is known. Therefore, we cannot conclude anything yet
about the relative power of the quantum and classical catalytic model. We show
that certain techniques from the classical setting, are also accessible in the quan-
tum setting. This allows us to show that TC1 ⊆ QCL (logarithmic depth threshold
circuits), suggesting that a quantum catalyst gives additional power to the model.
We end this chapter by giving a comparison between the one-clean qubit model
and both quantum and catalytic log-space. We show that in a specific setting,
where the quantum model is not allowed to make intermediate measurements
QUCL is contained in the one-clean qubit model. Furthermore, we show that CL
is contained in the one-clean qubit model.

In Part Three, we discuss a problem central to quantum chemistry, estimating
the smallest eigenvalue of a Local Hamiltonian. The suggested strategy for finding
these eigenvalues consists of the following two steps: First, a classical heuristic
is used to find a guiding state |ψ⟩, a state that has reasonable overlap with the
ground-space of the Hamiltonian. Second, the guiding state |ψ⟩ is used as input
to Quantum Phase Estimation (definition of this protocol in Lemma 7.8.1) to
efficiently and accurately calculate the ground state energy. The second step of
this process is characterized by the Guided Local Hamiltonian problem. In this
problem one is given the description of both a Hamiltonian and a corresponding
semi-classical guiding state as an input and must find the ground state energy
of this Hamiltonian. This problem was first introduced in [GL22] and shown
to be BQP-hard for a set of parameters. In Chapter 7 we extend their results
showing that the problem remains BQP-hard for a broader set of parameters.
Additionally, we extend this problem to the setting of estimating excited state
eigenvalues, instead of the ground-state energy.

We build upon this problem in Chapter 8. There we study Guidable local
Hamiltonian problems, where instead of receiving a classical description of the
guiding state as an input, it is only promised to exist. We show that this problem
is QCMA-hard for a broad range of parameters. This hardness result allows us
to give complexity theoretic evidence that using a classical heuristic to find a
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guiding state is just as powerful as using a quantum heuristic. Furthermore,
we complement our quantum hardness result with a classical containment result
(in NP) for a specific range of parameters. This classical containment result
allows us to give a restriction, analogous to [AG19], on possible gap amplification
procedures required for proving the quantum PCP (probabilistically checkable
proofs) conjecture (more details on this in Chapter 8).
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Chapter 2
Preliminaries

2.1 Notation and terminology
We start by defining some notation that will be used in the thesis. We will denote
N as the set of natural numbers, R as the set of real numbers and C as the set
of complex numbers. Furthermore we write [n] := {0, . . . n − 1} as the set of
numbers 0 up to n − 1. We denote {0, 1}n as the set of all n-bit strings. For
x ∈ {0, 1}n we denote xi as the ith bit in x and we write |x| to signify the length
of the bit string x. For two bit strings x, y ∈ {0, 1}n we write x⊕ y as the bitwise
sum of the two strings, also known as the bitwise XOR between x and y.

Often we are interested in the asymptotic behavior of functions. Let f, g be
two functions from N to N, to analyze their respective asymptotic behavior we
make use of the big-O notation which is defined as follows:

f(n) ∈ O(g(n))⇔ ∃c > 0, N ≥ 0 such that ∀n > N : f(n) ≤ cg(n)

Sometimes we require a stronger notion of an upper bound, which is given by
little-o notation:

f(n) ∈ o(g(n))⇔ ∀c > 0,∃N ≥ 0 such that ∀n > N : f(n) ≤ cg(n)

Similarly we define Ω notation as, used for lower bounds:

f(n) ∈ Ω(g(n))⇔ ∃c,N ≥ 0 such that ∀n > N : f(n) ≥ cg(n)

or for stronger lower bounds we can use ω notation,

f(n) ∈ ω(g(n))⇔ ∀c > 0,∃N ≥ 0 such that ∀n > N : f(n) ≥ cg(n).

Big-O and Ω notation are related as follows:

f(n) ∈ O(g(n))⇔ g(n) ∈ Ω(f(n)).

13
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Finally, we denote f(n) ∈ Θ(g(n)) if both hold, more precisely f(n) ∈ O(g(n))
and f(n) ∈ Ω(g(n)). As a variant ofO notation we also use the following notation:

f(x) ∈ poly(x)⇔ ∃k ∈ N, such that, f(x) ∈ O(xk)

and
f(x) ∈ polylog(x)⇔ ∃k ∈ N, such that, f(x) ∈ O(logk(x))

2.1.1 Dirac notation
In this thesis we make liberal use of bra-ket notation, also known as Dirac nota-
tion, which we will shortly describe here. We use what is called a ket to write

vectors, for instance we write |0⟩ which should be understood as |0⟩ =
(

1
0

)
, sim-

ilarly we write |1⟩ =
(

0
1

)
. When taking conjugate transpose of these vectors we

get: ⟨0| =
(
1 0

)
and ⟨1| =

(
0 1

)
(also known as bra’s). In this notation we

write the inner product as: ⟨i| |j⟩ or even simpler ⟨i|j⟩ = δi,j. Where δi,j = 1 if
i = j and 0 otherwise (also known as the Kronecker delta). Composition of two
vectors is done by taking the tensor product, which is often omitted when writing
bra-ket notation:

|0⟩ ⊗ |0⟩ = |0⟩ |0⟩ = |00⟩ =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0


Given a bit-string x ∈ {0, 1}n we write |x⟩ to signify the state |x⟩ = ⊗n−1

i=0 |xi⟩.
Notation is sometimes slightly abused where for a number i ∈ Z≥0 we can also
write |i⟩, which is identified by the computational basis vector indexed by the
binary expansion of i. It should be clear from the context if the entry of a ket is a
number or a bit string. Furthermore, the dimensionality of these vectors should
be clear from the context.
The vectors we have written so far, consisted of one entry being 1 and the rest of
the entries being 0. We call these types of states computational basis states. In
the next section we will expand on this notation, introducing its use for writing
quantum states.

2.1.2 Hermitian matrices
For any linear operator A ∈ Cm×n, we can make use of Dirac notation and write
it as:

A =
i=m−1,j=n−1∑

i=0,j=0
αi,j |i⟩ ⟨j| ,
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where αi,j ∈ C. For a matrix A, we write A† for its conjugate transpose:

A† =
i=m−1,j=n−1∑

i=0,j=0
ᾱij |j⟩ ⟨i| ,

where ᾱi,j is the complex conjugate of αi,j. A matrix A is called Hermitian if
A = A†. We write λi(A) to denote the ith eigenvalue of a Hermitian matrix
A, ordered in non-decreasing order, with λ0(A) denoting the smallest eigenvalue
(ground energy). We denote eig(A) = {λ0(A), . . . , λdim(A)−1(A)} for the (ordered)
set of all eigenvalues of A.

2.1.3 Norm
Let d ∈ N, for a vector v = (v0, . . . vd−1)T , with vi ∈ C, we write ∥v∥ to denote
the l2 norm of v:

∥v∥ :=

√√√√d−1∑
i=0
|vi|2.

For a matrix M ∈ Cd×d, and 0 < p ≤ ∞ the Schatten p-norm of M is:

∥M∥p := (Tr[(
√
M †M)p])1/p.

There are two particular instances of this norm used in this thesis:

• The Trace-norm (Schatten 1-norm): ∥M∥1 = Tr[
√
M †M ]

• Operator norm (Schatten ∞-norm): ∥M∥∞ = supv∈Cd ∥Mv∥2, which is
equal to the largest singular value of M . This will sometimes be written as
∥M∥, when the context is clear.

2.2 Quantum computation
In this section we give a short overview of the fundamental concepts behind
quantum computation; for a more comprehensive explanation we refer the reader
to [Wol19], or [NC10].

2.2.1 Quantum states
The mathematical description of a quantum state that we use in this thesis is that
of a state living in a Hilbert space H(N). The Hilbert space is a vector space of
dimension N which is equipped with an inner product, and for this thesis can be
understood as isomorphic to CN . What we call pure quantum states, are vectors
in the Hilbert space written as, |ψ⟩ ∈ H(N) with norm 1, ⟨ψ|ψ⟩ = 1.
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When N = 2 we call these states quantum bits or qubits. A qubit is the
fundamental unit of information in quantum computing, and the general state of
the qubit can be written as:

|ψ⟩ = α |0⟩+ β |1⟩ ,
with α, β ∈ C and |α|2 + |β|2 = 1. To create more complex quantum states
we can compose different Hilbert spaces, which is done by taking the tensor
product. For instance, if we combine two qubits the resulting Hilbert space is
H(2)⊗H(2) = H(4). A general n-qubit state therefore lives in the Hilbert space
H(2)⊗n = H(2n), which is isomorphic to C2n .

Interestingly, by adopting the tensor product as composition of quantum states
we can find a fundamental property of quantum states known as entanglement.
A pure quantum state, |ψ⟩ ∈ H(4) is known to be entangled if we cannot write it
as a tensor product of local states, i.e. ∄ |ϕ1⟩ ,∄ |ϕ2⟩ ∈ H(2) s.t. |ψ⟩ = |ϕ1⟩⊗ |ϕ2⟩.
An example of such a state is the well-known EPR (Einstein, Podolsky, Rosen)
state,

1√
2

(|00⟩+ |11⟩).

As stated before, general states can be written as |ψ⟩ ∈ H(N). We can now give
a description of an n-qubit quantum state |ψ⟩:

|ψ⟩ =
∑

i∈{0,1}n

αi |i⟩ ,

where αi ∈ C are called the amplitudes and they satisfy the constrained ∑i |αi|2 =
1. To simplify notation we will sometimes refer to the Hilbert space H without
referring to its dimension, which should be clear from context.

2.2.2 Density matrices
In a more general setting, in quantum information, quantum states can be de-
scribed by density matrices ρ, which are positive semi-definite operators acting
on the Hilbert space H with trace Tr(ρ) = 1. Density matrices describe mixed
states which, beyond pure quantum states, can also capture classical uncertainty.
In other words, they correspond to classical mixtures of pure quantum states.
The density matrix of a pure state is ρ = |ψ⟩ ⟨ψ|. Given an ensemble of states
{|ψi⟩} and corresponding probabilities {pi}, with pi ≥ 0 and ∑i pi = 1, it can be
represented by a mixed state of the form ρ = ∑

i pi |ψi⟩ ⟨ψi|. We will denote the
set of mixed states a Hilbert space H by D(H).

2.2.3 Quantum gates and unitary matrices
Any n-qubit quantum state |ψ⟩ can be transformed into another n-qubit |ϕ⟩ via
unitary operations on H. Let U(N) denote the space of unitary linear operators
on H(N). For any state |ψ⟩ ∈ H(N) and unitary matrix U ∈ U(N) we have that:
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1. U †U = I where U † denotes the conjugate transpose of U and I denotes the
identity matrix.

2. Let |ϕ⟩ = U |ψ⟩ then || |ϕ⟩ || = ||U |ψ⟩ || = 1.

3. U is linear, therefore U |ψ⟩ = ∑2d−1
i=0 αiU |i⟩.

Unitary matrices (unitaries for short) acting on 1, 2, or sometimes 3 qubit
states are commonly referred to as quantum gates, which are the building blocks
for quantum circuits (more on quantum circuits in Section 2.2.6). We will start
by summarizing a set of important elementary gates that will often appear in the
thesis. We begin with the Pauli matrices. There are four Pauli matrices which
all act on a single qubit:

X :=
(

0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
, I :=

(
1 0
0 1

)

Their actions on a one-qubit state can be identified by their actions on the com-
putational basis states:

X |b⟩ = |b⊕ 1⟩ , Y |b⟩ = −i(−1)b |b⊕ 1⟩ , Z |b⟩ = (−1)b |b⟩ , I |b⟩ = |b⟩ ,

with b ∈ {0, 1}, these actions extend to all one-qubit quantum states by linearity.
Together, the Pauli matrices adhere to a group structure, squaring any of them
forms the identity, and multiplying two different Pauli gates creates the third one
up to a phase. More concretely:

2.2.1. Definition. The Pauli group P1 consists of the three Pauli matrices and
the identity, {X, Y, Z, I}, and additional phase factors ±1 or ±i. The n-qubit
Pauli-group Pn is the set of all 4n+1 possible tensors of length n of matrices from
P1, together with a global phase of ±1 or ±i.

Three other important single-qubit gates are the Hadamard gate, the S gate,
and T gate:

H := 1√
2

(
1 1
1 −1

)
, S :=

(
1 0
0 i

)
, T :=

(
1 0
0 ei π

4

)

The S and the T gates can be understood as taking roots of the Z gate: S =
√
Z

and T =
√
S. The Hadamard gate can be applied to n-qubits initialized in the

|0n⟩ state, creates the uniform superposition over all n-qubits:

H⊗n |0n⟩ = 1√
2n

∑
i∈{0,1}n

|i⟩ .
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An important 2-qubit gate is the Controlled-NOT gate:

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


This 2-qubit gate allows interactions between different qubits and can be used
to create (or destroy) entanglement. For instance, when combined with the
Hadamard gate, it can construct the EPR state:

CNOT(H ⊗ I) |00⟩ = CNOT 1√
2

(|00⟩+ |10⟩) = 1√
2

(|00⟩+ |11⟩).

Another useful 2-qubit gate is the SWAP gate, which exchanges two states between
two different registers:

SWAP |ϕ⟩ |ψ⟩ = |ψ⟩ |ϕ⟩ .

Finally, an important 3-qubit gate is the Toffoli gate, which is the reversible
quantum equivalent to the AND gate:

Toffoli |x⟩ |y⟩ |b⟩ = |x⟩ |y⟩ |b⊕ (x · y)⟩ ,

where x, y, b ∈ {0, 1}.

2.2.4 Quantum measurement
Given a quantum state |ψ⟩ = ∑

i∈{0,1}n αi |i⟩, prepared through a sequence of
unitary operations, one might wish to extract information from it. However, we
cannot directly observe or “see” a quantum state. Instead, we can only obtain
classical information by performing a quantum measurement.
Quantum measurements are governed by the Born’s rule, which states that the
probability of obtaining a particular outcome is equal to the square of the ampli-
tude associated with that outcome. The most common type of measurement is
a measurement in the computational basis. When we perform a computational
basis measurement on |ψ⟩, the probability of observing outcome i is given by
|αi|2.
After the measurement, the quantum state collapses to a state consistent with
the observed outcome. Specifically, if we measure and obtain outcome i, the
post-measurement state becomes |i⟩. This process allows us to extract n bits of
classical information from |ψ⟩, but it comes at the cost of irreversibly destroying
the original superposition.

More generally, we can perform a projective measurement. A projective mea-
surement is described by a set of mutually orthogonal projectors {P0, . . . Pm},
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which sum up to identity ∑m
i=0 Pi = I. Given a state |ψ⟩, the probability of

observing outcome i is then given by:

||Pi |ψ⟩ ||2 = ⟨ψ|Pi |ψ⟩

after which the state collapses to
Pi |ψ⟩
||Pi |ψ⟩ ||

.

Note that all the possible post-measurement states are mutually orthogonal, due
to the projectors being mutually orthogonal.

In principle, it is not necessary to measure an entire n-qubit state. Instead one
can opt for measuring only a subset of the qubits. For instance given a quantum
state

α |0⟩ |ϕ0⟩+ β |1⟩ |ϕ1⟩ ,
where ⟨ϕ0|ϕ1⟩ = 0, one can only measure the first qubit. In the language of
projective measurements, this can be understood as the projectors: {|0⟩ ⟨0| ⊗
I, |1⟩ ⟨1| ⊗ I}. Now by following the rules described above, this measurement
gives outcome 0 with probability |α|2 and if the outcome is 0, the state collapses
to

|0⟩ |ϕ0⟩ ,
thereby projecting the latter n−1 qubits into the state |ϕ0⟩. Using measurements
for projecting onto certain quantum states can be a very powerful tool, which will
be extensively studied in Chapter 3.

2.2.5 Quantum channels
More general quantum state transformations that combine unitaries and mea-
surements are quantum channels.

2.2.2. Definition (Quantum channels). A quantum channel is a linear operator
that maps density matrices to density matrices, Φ : D(H1)→ D(H2) (also known
as super operators or completely positive trace preserving (CPTP) maps). It is
also required to have two additional properties: 1) it must be completely positive;
and 2) it must be trace preserving. We denote the set of channels from D(H) to
itself by C(D(H)).

2.2.6 Quantum circuits
Similarly to classical circuits – which are created from AND, OR and NOT gates
acting on input bits – we can combine elementary quantum gates, as described
above, to create more complex quantum unitaries. We call these combinations
of elementary gates quantum circuits. The set of elementary gates we use to
construct a quantum circuit is called the gate set.



20 Chapter 2. Preliminaries

2.2.3. Definition. A quantum circuit is a sequence of gates from a fixed gate
set G. The size of the quantum circuit is the total number of gates. Sequential
quantum gates acting on different qubits are considered to be applied in parallel
on the same layer, the total number of layers of a circuit is the circuits depth, the
total number of qubits on which the circuit acts is its width.

Unlike in the classical setting where any Boolean function can be computed
by a circuit consisting of AND and OR gates, a similar type of universality is not
possible in the quantum setting. This has to do with the fact that the unitary
group is a continuous group, therefore, it is not possible to construct all unitaries
using a finite gate set. Some gate sets allow for approximating all unitaries up to
arbitrary precision, we call such a gate sets universal. A famous example of such
a gate set is:

{H,T,CNOT}.

By the Solovay-Kitaev theorem, the overhead of approximating any 1-qubit uni-
tary using such a finite gate set is at most O(logc(1/ϵ)) for some constant c[DN06].

In chapter 3 we study a computational model with severe restriction on the
depth of a quantum circuit. This requires a more complete gate set to be used;
we refer in this chapter to a continuous gate set, which is:

GPC = {X(θ), Z(θ′),CNOT|θ, θ′ ∈ PC ∩ [0, 2π)} (2.1)

where X(θ) =
(

cos θ
2 −i sin θ

2
i sin θ

2 cos θ
2

)
, Z(θ) =

(
1 0
0 eiθ

)
, and PC is the set of poly-

nomial time computable numbers [NO09]. Note that this gate set is not actually
continuous due to the requirement that the precision of θ and θ′ are bounded by
being polynomially time computable.

An example of a famous gate set that is not universal is a set of gates from the
Clifford group. Circuits constructed from the Clifford group form a well-known
group of quantum circuits that stabilize the Pauli group.

2.2.4. Definition. The Clifford group Cn consists of all n-qubit unitaries that
leave the Pauli group Pn invariant under conjugation. That is, let c ∈ Cn be any
Clifford circuit, then for any P ∈ Pn, there exists a P ′ ∈ Pn, such that cP = P ′c.

The Clifford group is generated by quantum circuits constructed from the gate
set:

{CNOT, H, S}

Any circuit constructed using only these three gates is called a Clifford circuit.

Unsurprisingly, Clifford circuits only cover a small part of the possible quan-
tum circuits. Moreover, on a linear nearest-neighbor architecture, O(n) deep
Clifford circuits suffice to simulate any Clifford unitary of size 2n × 2n [MR18].
The actions of Clifford circuits can be efficiently [Got98] simulated by classical
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computers. Universal quantum computations require additional gates, although
almost any quantum gate suffices. For example, adding the single qubit T -gate,
T : |x⟩ 7→ eiπx/4 |x⟩, to the Clifford group gives a universal gate set.

2.3 Computational complexity theory
In computational complexity theory one is interested in categorizing the difficulty
of solving a problem based on a specific measure. Most often this measure is
time, typically measured in number of steps that is required to solve a problem.
The type of problems that one discusses are traditionally decision problems: A
computational device is given an input, in the form of a bit string x ∈ {0, 1}∗,
and has to decide if the bit string has a certain property or not. This property
can mathematically be specified as a boolean function f : {0, 1}∗ → {0, 1}, which
assigns a value 1 or 0 to every bit string x signifying that x has, or does not
have this property. The set of strings for which f(x) = 1 is called a language:
L := {x ∈ {0, 1}∗|f(x) = 1}. The task of the computational machine is to output
f(x) given input x.

Sometimes we are interested in what is known as a promise problem. We
call a promise problem A = (Ayes, Ano) a tuple of non-intersecting sets, where
Ayes, Ano ⊆ {0, 1}∗ (Ayes ∩ Ano = ∅). Given an x ∈ {0, 1}∗ the machine has
to output yes if x ∈ Ayes and no if x ∈ Ano. If x is not in Ayes or in Ano

the output of the machine is not specified and can be anything. Note that this
reduces to the regular definition of deciding on languages if Ayes ∪Ano = {0, 1}∗.
Any class defined on languages can also be defined using promise problems. Note
that classes defined on languages do not have to be equivalent to the same class
defined on promise problems. In Chapters 7 and 8 we will make use of classes
defined on promise problems instead of languages.

2.3.1 Turing machine
The abstract computational model that is often used to analyze the complexity
of decision problems is called a Turing machine. Here we will give an informal de-
scription of a Turing machine; however, we would like to refer the more interested
reader to [AB09] for a more concrete and in-depth definition. A Turing machine
is a small finite state machine that is equipped with an input tape containing the
input bit string, with the restriction that it can only be read from, a write only
output tape where the machine can write the final answer of a computation, and
a read-write work tape, which the machine can use for intermediate calculations.
Each tape is accessed by the machine through a tape head, which can read and/or
write one bit at the time. The machine itself has a finite set of states, denoted by
Q. The machine contains an internal “register” that can hold one element of Q,
determining the current state of the machine. This state of the machine deter-
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mines the action that the machine will take in the next step of the computation.
A step consists of, (1) reading the bit at every location of the read tape heads,
(2) writing a bit at the location of a write tape head, (3) update the internal
register determining the state of the machine and (4) move the tape heads left,
or right. There are two special states in Q, the start state, in which the machine
is initialized for computation, and the halt state, which signifies the end of the
computation.

There are two measures of complexity of Turing machines relevant to this
thesis. The first is time, which is the number of steps that the Turing machine
takes before it halts. The second is space, which is the maximum number of entries
of the work tape in use by the Turing machine at any one time-step during the
computation. When deciding if a bit string is contained in a language, we say
that a Turing machine accepts the input if at the end of the computation the
Turing machine wrote a 1 on the output tape, and it rejects the string if it wrote
a 0 on the output tape. Furthermore, we say that a Turing machine M runs in
polynomial time, if there exist constants ∃c > 0,∃k ∈ N, such that ∀x ∈ {0, 1}∗,
M halts within time c|x|k + c (where |x| denotes the length of bit string x).
Similarly, a Turing machine M is said to run in logarithmic space if there exists
a constant ∃c > 0, such that for every input x ∈ {0, 1}∗, at every step of the
computation M uses at most c log |x|+ c cells on its work tape.

2.3.2 Classical complexity classes
The goal within complexity theory is to order the difficulty of problems into sets,
we call these sets complexity classes. The most famous of those classes is P,
problems decidable in polynomial time, also known as problems that have an
efficient solution. The definition of P is as follows:

2.3.1. Definition (P). A language L ⊆ {0, 1}∗ is in P (polynomial time) if and
only if there exists a deterministic polynomial-time Turing machine M such that
for every input x ∈ {0, 1}∗,

• if x ∈ L then M accepts x.

• if x /∈ L then M rejects x.

One way to extend a complexity class is to equip the Turing machine with an
additional resource. A natural choice for such a resource is randomness, resulting
in what is known as a probabilistic Turing machine. This modification also ne-
cessitates a slight change to the acceptance criterion: The machine must accept
with sufficiently high probability.

2.3.2. Definition (BPP). A language L ⊆ {0, 1}∗ is in BPP (bounded proba-
bilistic polynomial time) if and only if there exists a probabilistic polynomial-time
Turing machine M , such that for every input x ∈ {0, 1}∗,
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• if x ∈ L then M accepts x with probability at least 2
3 .

• if x /∈ L then M accepts x with probability at most 1
3 .

The choice of the acceptance probability, such as 2
3 , is somewhat arbitrary.

Changing this threshold does not significantly affect the power of the model, as
long as it remains at least polynomially separated from a 1

2 . This is because BPP
supports error reduction: by running the same computation multiple times and
taking the majority vote of the outcomes, one can amplify the success probability.

Another important resource that can be given to a Turing machine is non-
determinism. A non-deterministic Turing machine is granted access to an addi-
tional tape containing a witness—a proposed solution to help determine whether
an input string x belongs to a language. If x is in the language, there exists at
least one witness that causes the machine to accept. However, if x is not in the
language, then the machine must reject regardless of the witness provided.
This captures the idea of problems whose solutions are efficiently verifiable: given
a proposed solution, one can efficiently check if it is correct. An intuitive example
of a problem in this complexity class is determining whether a given Sudoku puzzle
has a solution. While verifying a provided solution is easy, actually finding one
may be much harder.

2.3.3. Definition (NP). A language L ⊆ {0, 1}∗ is in NP (non-deterministic
polynomial time) if and only if there exists a deterministic polynomial-time Turing
machine M and a polynomial p, where M takes as input a string x ∈ {0, 1}∗ and
a p(|x|)-bit witness y, such that for every x ∈ {0, 1}∗,

• if x ∈ L then there exists a witness y ∈ {0, 1}p(|x|) such that M accepts
(x, y).

• if x /∈ L then for every witness y ∈ {0, 1}p(|x|) we have that M rejects (x, y).

2.3.3 Quantum complexity classes
Instead of relying on quantum Turing machines, which serve as the natural quan-
tum analogue of classical Turing machines, we define quantum complexity classes
in terms of the quantum circuit model. Defining complexity classes with respect to
the circuit model instead of the quantum Turing machine model does not change
the power of the class as it has been shown that these two models are equivalent
[NO09]. Using the circuit model requires a specific uniformity condition, we will
use the uniformity condition as provided in [Wol19].

A family of quantum circuits is a set of quantum circuits {Vn}, one for each n.
Each quantum circuit has one dedicated output qubit, which on measurement in
the computational basis produces the outcome of a calculation. A circuit family
recognizes a language L ⊆ {0, 1}∗, if for every n and every input x ∈ {0, 1}n
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on input x the circuit Vn outputs 1 if x ∈ L and 0 if x /∈ L. If Vn outputs
1, we say that Vn accepts input x, and if Vn outputs 0, we say it rejects input
x. Note that this acceptance criterion can also be modified to output 1 with a
certain probability. Furthermore we call a circuit family polynomial-time uniform
if there exists a deterministic polynomial time Turing machine that on input n
outputs a description of Vn.

The most famous quantum complexity class is BQP, bounded quantum poly-
nomial time computations:

2.3.4. Definition (BQP). A language L ⊆ {0, 1}∗ is in BQP (bounded quantum
polynomial time) if and only if there exists a polynomial-time uniform family {Vn}
of polynomial size quantum circuits, such that for every x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Vn accepts x with probability at least 2
3 .

• if x /∈ L then Vn accepts x with probability at most 1
3 .

There also exists a quantum complexity class more equivalent to P, which
requires perfect acceptance and rejection probability. This class is called exact
quantum polynomial time EQP, however, this class is not very natural and widely
used because its definition relies on the choice of gate set. As discussed in Sec-
tion 2.2.6, given a fixed finite gate set it is not possible to construct an exact
quantum circuit for every unitary operator. In fact, most unitaries can only be
implemented approximately. Such approximations introduce a small error with
respect to the target unitary. However, any circuit that decides a language in
EQP must produce the correct outcome with probability exactly 1, which rules
out the use of approximations in EQP.

2.3.5. Definition (EQP). Given a gate set G, a language L ⊆ {0, 1}∗ is in
EQP (exact quantum polynomial time) if there exists a polynomial-time uniform
family {Vn} of polynomial size quantum circuits (constructed from G), such that
for every x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Vn accepts x with probability 1.

• if x /∈ L then Vn rejects x with probability 1.

Similar to the classical case, quantum circuits can be enhanced by adding
additional power such as non-determinism. In the quantum setting there are
two distinct forms of non-determinism that we are interested in. We can have
witnesses more equivalent to the classical setting, where a witness consists of
some polynomially sized bit string. We can also have quantum witnesses, where
a witness consists of a quantum state on a polynomial number of qubits. This
distinction gives two separate complexity classes called Quantum Merlin Arthur
and Quantum Classical Merlin Arthur :
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2.3.6. Definition (QMA). A language L ⊆ {0, 1}∗ is in QMA (Quantum Merlin
Arthur) if and only if there exists a polynomial-time uniform family {Vn} of
polynomial size quantum circuits and a polynomial p, where Vn takes as input
a string x ∈ {0, 1}∗ with |x| = n, and a p(n)-qubit witness quantum state, such
that for every x ∈ {0, 1}∗,

• if x ∈ L then there exists a witness state |ψ⟩ ∈ (C2)⊗p(n) such that Vn

accepts (x, |ψ⟩) with probability at least 2
3 .

• if x /∈ L then for every witness state |ψ⟩ ∈ (C2)⊗p(n), Vn accepts (x, |ψ⟩)
with probability at most 1

3 .

2.3.7. Definition (QCMA). A language L ⊆ {0, 1}∗ is in QCMA (Quantum
Classical Merlin Arthur) if and only if there exists a polynomial-time uniform
family {Vn} of polynomial size quantum circuits and a polynomial p, where Vn

takes as input a string x ∈ {0, 1}∗ with |x| = n, and a p(n)-bit classical witness
y ∈ {0, 1}p(n) written as |y⟩, such that for every x ∈ {0, 1}∗,

• if x ∈ L then there exists a witness y ∈ {0, 1}p(n) such that on input Vn

accepts (x, |y⟩) with probability at least 2
3 .

• if x /∈ L then for every witness y ∈ {0, 1}p(n), Vn accepts (x, |y⟩) with
probability at most 1

3 .

Note that in these proof systems, we can again allow the verifier to accept
with probability other than 2

3 and 1
3 . We sometimes refer to these classes as

QMA[c, s] and QCMA[c, s], where c and s mean the following: We say that in the
YES case (x ∈ L) the acceptance probability is at least c, where c is called the
completeness. Similarly, in the NO case (x /∈ L) the acceptance probability is at
most s, where s is called the soundness. For any class with completeness c and
soundness s such that c − s ≥ 1/poly(n), standard error reduction allows us to
amplify the gap and reduce to the canonical values c = 2

3 and s = 1
3 .

It is still an open question whether QMA and QCMA are equal, or if QMA
is strictly larger than QCMA. There are oracle separations, which suggest that
QMA might be strictly larger than QCMA[AK07; Zha24].

2.3.4 Complexity of space
Additionally, we care about space bounded complexity, here a Turing machine is
not bounded by time, but instead in the space that it is allowed to use. A natural
space bounded class is log-space:
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2.3.8. Definition (L). A language L ⊆ {0, 1}∗ is in L (log-space) if there exists
a Turing machine M using at most r = O(log(n)) space such that for every input
x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then M accepts x.

• if x /∈ L then M rejects x.

Analogous to the time-bounded setting, there exists a quantum version of the
log-space complexity class known as bounded-error quantum log-space. We define
this class using the quantum circuit model; however, doing so requires careful
consideration of the uniformity condition.

In quantum log-space, we consider quantum circuits that act on O(log n)
qubits. This poses a challenge, as there is not enough space to explicitly store the
input string x ∈ {0, 1}n within the circuit. One way to circumvent this is to allow
read-only access to an input register containing x. However, in our approach, we
resolve this by modifying the uniformity condition.

We say that a family of bounded-width quantum circuits {Vx} is log-space
uniform if there exists a deterministic log-space Turing machine that, on input
x, outputs a description of the circuit Vx

1.

2.3.9. Definition (BQL). A language L ⊆ {0, 1}∗ is in BQL (bounded quantum
log-space) if there exists a log-space uniform family of quantum circuits {Vx} of
width w = O(log(n)) such that for every input x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Vx accepts x with probability at least 2
3 .

• if x /∈ L then Vx accepts x with probability at most 1
3 .

2.3.5 Circuit classes
Lastly, we will require the definition of low-depth classical and quantum circuit
classes. We will first recall the definition of a classical circuit from [Wol19].

A Boolean circuit is a finite directed acyclic graph whose internal nodes are
AND, OR and NOT gates. It has n-input nodes, which contain the n-bits of the
input and there are one or more output nodes. Each internal node applies its gate
to the values on its incoming edges. At the end of the computation the output
nodes assume some value. We say that a circuit computes a Boolean function
f : {0, 1}n → {0, 1}m, if the output nodes contain the correct value f(x) for every
input x. The size of the circuit is the number of gates in the circuit, and its depth
is the maximal length of a path from an input node to an output node. The
number of inputs to a node, also called fan-in, can be bounded or unbounded.

1Our definition of log-space (Definition 2.3.8) is defined with respect to decision problems.
Therefore, the output of a log-space calculation, as defined, is only one bit and not a full
description of a circuit. One can easily extent this by equipping the log-space Turing machine
with a write only output tape, on which the full description can be written.
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2.3.10. Definition (NCk). For every k, a language L ⊆ {0, 1}∗ is in NCk if and
only if there exists a family of circuits {Cn} where Cn has poly(n) size, depth
O((log n)k), and consists of bounded-fan-in AND- and OR-gates, such that for
every input x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Cn accepts x.

• if x /∈ L then Cn rejects x.
2.3.11. Definition (ACk). For every k, a language L ⊆ {0, 1}∗ is in ACk if and
only if there exists a family of circuits {Cn} where Cn has poly(n) size, depth
O((log n)k), and consists of unbounded-fan-in AND- and OR-gates, such that
for every input x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Cn accepts x.

• if x /∈ L then Cn rejects x.
2.3.12. Definition (TCk). For every k, a language L ⊆ {0, 1}∗ is in TCk if and
only if there exists a family of circuits {Cn} where Cn has poly(n) size, depth
O((log n)k), and consisting of unbounded-fan-in AND-, OR- and Thresholdt-
gates, where a Thresholdt-gate evaluates to one if and only if the sum of the
inputs is at least t, such that for every input x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Cn accepts x.

• if x /∈ L then Cn rejects x.
These classes also have a quantum equivalent class.

2.3.13. Definition. For every k, a language L ⊆ {0, 1}∗ is in QNCk if and
only if there exists a family of quantum circuits {Vn} where Vn has poly(n) size,
O((log n)k) depth, and consists of single- and two-qubit quantum gates, such that
for every input x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Vn accepts x with probability at least 2
3 .

• if x /∈ L then Vn accepts x with probability at most 1
3 .

Definitions for the quantum versions of ACk and TCk also exist (which will
not be required for this thesis). However, when equipping the class QNCk with
unbounded-fan-in parity gates, all three classes intersect [Gre+02; Moo99; TT13].
The final class is the class of polynomial depth circuits:
2.3.14. Definition (Qpoly). A language L ⊆ {0, 1}∗ is in Qpoly (Quantum
polynomial time) if and only if there exists a family of quantum circuits {Vn},
where Vn has poly(n) depth, poly(n) size, and consists of single- and two-qubit
quantum gates from GPC, such that for every input x ∈ {0, 1}∗, with |x| = n,

• if x ∈ L then Vn accepts x with probability at least 2
3 .

• if x /∈ L then Vn accepts x with probability at most 1
3 .





Part One
Measurements and fast intermediate

classical calculations





Chapter 3
Local Alternating Quantum-Classical

Computation

A major problem in the use of current quantum hardware is that they are unable
to carry out universal quantum computations due to the errors that occur dur-
ing the computation. The magnitude of the individual error is currently above
the value that the Threshold Theorem requires in order to kick-start quantum
error correction and fault-tolerant quantum computation [NC10, Section 10.6].
Although the experimentally achieved fidelity rates are promising and the error
bounds are inching closer to the required threshold, we will have to work for the
foreseeable future with quantum hardware with errors that build up during the
computation. This implies that we can only do a limited number of steps be-
fore the output of the computation has become completely uncorrelated with the
intended one.

In this chapter we will introduce the first resource that can help boost the
power of near-term quantum computations. We take inspiration from the sug-
gested four step process of fault-tolerant quantum computing, not to carry out
error corrected calculations, but to directly enhance short depth quantum calcu-
lations. We show that this can be used to drastically reduce the depth of certain
quantum circuits. To formalize this study, we introduce a new computational
model: Local Alternating Quantum-Classical Computations, or LAQCC for short.

3.1 The four step process
For fault-tolerant quantum computing, we repeat four steps:

1. We apply a number of single and two-qubit quantum gates, in parallel
whenever possible;

2. We perform a syndrome measurement on a subset of the qubits;

31
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3. We perform fast classical computations to determine which errors have oc-
curred and how to correct them;

4. We apply correction terms based on the classical computations.

We then repeat these four steps with a next sequence of gates. These four steps
are essential to fault-tolerant quantum computing.

The starting point of this chapter is to use the four steps outlined above, not to
carry out error correction and fault-tolerant computation, but to enhance short,
constant-depth, uncorrected quantum circuits that perform single qubit gates and
nearest-neighbor two qubit gates. Since in the long run we will have to implement
error-correction and fault-tolerant computation anyhow, and this is done by such
a four-step process, why not make other use of this architecture? Moreover, on
some of the quantum hardware platforms, these operations are already in place.
Embracing this idea we naturally arrive at the question:

What is the computational power of low-depth quantum-classical circuits
organized as in the four steps outlined above?

We thus investigate circuits that execute a small, ideally constant, number of
stages, where at each stage we may apply, in parallel, single qubit gates and
nearest-neighbor two qubit gates, followed by measurements, followed by low-
depth classical computations of which the outcome can control quantum gates
in later stages. It is not clear, at first, whether such circuits, especially with
constant depth, can do anything remotely useful. But we will see that this is
indeed the case: many quantum computations can be done by such circuits in
constant depth. By parallelizing quantum computations in this way, we improve
the overall computational capabilities of these circuits, as we do not incur errors
on qubits that are idle, simply because qubits are not idle for a very long time.
Furthermore, reducing the depth of quantum circuits, at the cost of increasing
width, allows the circuit to be run faster, reducing the actual clock time of the
calculation.

3.2 The LAQCC model
Our first contribution is to formalize the computational power of low-depth quan-
tum computations leveraging the four-step process. Therefore, we introduce a new
computational model, called Local Alternating Quantum-Classical Computations
(LAQCC). In this model we alternate between running quantum circuits (con-
strained by locality), ending in the measurement of a subset of qubits (step 2),
and fast classical computations based on the measurement results (step 3). The
outcome of the classical computations is then used to control future quantum cir-
cuits (step 4). We allow for flexibility in this model by giving different constraints
to the power of both the quantum circuits and the classical circuits as well as the
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number of alternations between them. Most attention will be given to LAQCC
containing quantum circuits of constant depth, classical circuits of logarithmic
depth and at most a constant number of alternations between them. Any cir-
cuit constructed in this model is considered to be of constant depth. We restrict
ourselves to logarithmic depth classical computations, as this is the first natu-
ral and non-trivial extension beyond constant-depth classical computations, for
measurement-based models. Constant-depth classical computations do however
also have an equivalent constant-depth quantum implementation.

We define the computational model Local Alternating Quantum-Classical Com-
putations (LAQCC) as follows:

3.2.1. Definition (Local Alternating Quantum-Classical Computations). Let
LAQCC(Q, C, d) be the class of circuits such that:

• Every quantum layer implements a quantum circuit Q ∈ Q constrained to
a grid topology;

• After every quantum circuit Q a subset of the qubits is measured;

• Every classical layer implements a classical circuit C ∈ C;

• The classical circuit receives input from the measurement outcomes of pre-
vious quantum layers;

• The classical circuit can control quantum operations in future layers;

• There are d alternating layers of quantum and classical circuits.

The allowed gates in the quantum and classical layers are given by Q and C
respectively. Furthermore, we require a circuit in LAQCC(Q, C, d) to determinis-
tically prepare a pure state on the all-zero initial state.

The grid topology imposed on the quantum operations implies that qubits can
only interact with their direct neighbors on the grid. A circuit in LAQCC(Q, C, d)
can use the results of the classical intermediate layers and control quantum oper-
ations in future layers. In a sense, information is fed forward in the circuit. Note,
as classical computations are in general significantly faster than the quantum
operations, we only count quantum operations towards the depth of the circuit,
unless specified otherwise. A graphic illustration of a general LAQCC circuit can
be found in Figure 3.1.

3.2.2. Remark. There exists ambiguity in the choices for Q, C and d. For ex-
ample, we have LAQCC(QPoly(n),P,O(1)) = LAQCC(QNC0,P,O(poly(n))). This
follows as any P-circuit is in QPoly(n), and we can concatenate poly(n) constant-
depth quantum circuits with trivial intermediate classical computations.
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Q0 Q1

C0
First quantum circuit 

First classical circuit 

Auxiliary qubits to be measured
after the first quantum circuit

First measurement round, the
classical outcome is passed to the
first classical circuit

Qubits measured in a previous round are
reinitialized and can be used again as
additional auxiliary qubits.

The outcome of the first classical circuit
is given to the second quantum circuit

This process is repeated
up to d times

Figure 3.1: Illustration of a general LAQCC circuit.

This ambiguity can be non-trivial: consider for instance

LAQCC(QNC1,NC1,O(1)) ⊆ LAQCC(QNC0,NC1,O(log(n))).

The inclusion from left to right follows immediately by the same argument as
above. It is however not obvious if the logarithmic number of measurement
rounds, allowed in the right hand side, can be simulated by a QNC1 circuit.
Even stronger, in Section 3.3.2 we will show that threshold gates are available in
LAQCC(QNC0,NC1,O(1)). From this fact it follows immediately that any TC1-
circuit is contained in LAQCC(QNC0,NC1,O(log(n))) . It is unclear these circuits
are also contained in LAQCC(QNC1,NC1,O(1))1.

In the remainder of this work, we consider a specific instantiation of LAQCC(Q, C, d).

3.2.3. Notation. We let LAQCC refer to the instance LAQCC(QNC0,NC1,O(1)),
together with a grid nearest-neighbor topology and the quantum gate-set GPC from
Equation 2.1. The classical computations are bounded to polynomial size, loga-
rithmic depth, and of bounded-fan-in.

The class NC1 is a natural non-trivial class beyond constant-depth complexity
classes. As the depth of these circuits remains low, they can be implemented
quickly. In this work, we assume qubits do not decohere during the classical com-
putation. Incorporating the errors throughout the whole LAQCC-computation,

1This is not super surprising, if you completely forget about the quantum operations you
can see that the model that allows for d = O(log(n)) repetitions contains classical circuits of
O((logn)2) depth, which can clearly simulate TC1 circuits. However, the model with a constant
number of repetitions does not.
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including the classical intermediate computations, proves an interesting direction
for future research.

3.2.1 Similar models
There have been many results in the last 25 years using the four-step process in
a similar way as in the LAQCC model. The first and most famous of them can be
found in the paradigm of measurement-based quantum computing [GC99; RB01;
Joz06; CJL08]: A universal form of quantum computing where a quantum state
is prepared and operations are performed by measuring qubits in different bases,
depending on previous measurements and intermediate measurements.

Pham and Svore were the first to formalize the four-step protocol for per-
forming computations [PS13]. They included specific hardware topologies by
considering two-dimensional graphs for imposing constraints on qubit interac-
tions. In their model, they develop circuits for particularly useful multi-qubit
gates, including specifying costs in the width, number of qubits, depth, number
of concurrent time steps, size, and total number of non-Identity operations. As
a result, they find an algorithm that factors integers in polylogarithmic depth.
Browne, Kashefi, and Perdrix showed that the main tool in the work by Pham
and Svore, the fan-out gate, can also be replaced by additional log-depth classical
computations in the measurement-based quantum computing setting [BKP11].

More recently, Piroli, Styliaris, and Cirac introduced a scheme to implement
unitary operations involving quantum circuits combined with Local Operations
and Classical Communication (LOCC) channels: LOCC-assisted quantum cir-
cuits [PSC21]. Similarly to the four-step scheme we just described, they allow for
a short depth circuit to be run on the qubits, followed by one round of LOCC,
in which auxiliary qubits are measured and local unitaries are applied based on
the measurement outcomes. They show that in this model any 1D transitional
invariant matrix-product state (MPS) with fixed bond dimension is in the same
phase of matter as the trivial state. Similar ideas can be found in [TVV23a;
Tan+24]. The definition of LAQCC sharpens the original definition of Pham and
Svore by adding constraints to the intermediate classical computations.

The main result of Piroli, Styliaris, and Cirac, that 1D translational invari-
ant MPS with fixed bond dimension can be prepared by LOCC-assisted circuits,
relies on local symmetries of the MPS. These symmetries allow them to prepare
local states (on a constant number of qubits) and glue them together by do-
ing one round of the appropriate entangling measurement and corrections, after
which they run a round of local unitaries to get the desired result. This general
scheme for preparing states that exhibit an MPS description with the appropri-
ate local symmetries requires only geometrically local unitaries and one round of
measurement and corrections and therefore is accessible in LAQCC. The search
for measurement-based constant depth circuits for states such as Symmetry Pro-
tected Topological (SPT) phases is a broad ongoing field of research [TVV23a;
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Tan+24; Smi+23]. All these schemes have a LAQCC implementation. Note how-
ever that Piroli, Styliaris, and Cirac also suggest a circuit for the W -state. This
circuit uses sequentially and dependent measurement-based corrections of the
auxiliary qubits. These dependent measurements translate to sequential alter-
nations between the quantum and classical circuits and therefore increase the
total depth to linear depth, exceeding the constant-depth constraints imposed by
LAQCC-circuits.

3.3 LAQCC subroutines

Our first investigation of the LAQCC model is to figure out a list of useful gates
and subroutines available to LAQCC circuits. The main workhorse behind most
of these routines is the ability to parallelize Clifford circuits using quantum tele-
portation. We will start out giving an explanation of this in the following section,
after which we will give a list of useful gates and subroutines.

3.3.1 Clifford circuits

The concept of intermediate measurements with subsequent computations is
closely related to measurement-based quantum computing. A famous result from
measurement-based quantum computing is that all Clifford circuits can be paral-
lelized using measurements. In this section we borrow techniques from this result
to show that any Clifford circuit has an LAQCC implementation.

This result is best understood in the teleportation-based quantum computing
model [Joz06], a specific instance of measurement-based quantum computing that
applies quantum operations using Bell measurements. In teleportation, qubits are
measured in the Bell-basis, which projects the measured qubits onto an entangled
two-qubit, or ebit, state, up to local Pauli gates. This projection combined with
an ebit state teleports a quantum state between qubits. After teleportation, one
needs to correct the local Pauli gate created by the Bell measurement. A similar
process can be used to apply quantum gates. However, the Pauli gates that arise
during teleportation have to be corrected before the calculations can proceed,
which necessitates subsequent adaptive operations.

With Clifford circuits, these subsequent operations can be omitted. Clifford
circuits stabilize the Pauli group, allowing for simultaneous measurements and
hence parallelization of the entire Clifford circuit [Joz06]. Consider a simple
example of teleporting a single-qubit quantum state. A Bell-basis measurement
projects two qubits on ∑i∈{0,1} ⟨ii|P a,b ⊗ I, where P a,b = ZaXb and a, b ∈ {0, 1}
correspond to the four possible measurement outcomes.

By using one Bell-basis measurement, we can apply two sequential Clifford



3.3. LAQCC subroutines 37

gates U1 and U2 on a quantum state |ψ⟩, which gives:∑
i,j∈{0,1}

[
(⟨ii| (P a,b ⊗ I)⊗ I

]
U1 ⊗ I ⊗ U2 |ψ⟩ |jj⟩ =

∑
i,j∈{0,1}

⟨i|P a,bU1 |ψ⟩ ⟨i|j⟩U2 |j⟩

=
∑

i∈{0,1}
U2 |i⟩ ⟨i|P a,bU1 |ψ⟩

= U2P
a,bU1 |ψ⟩ .

Note that besides projecting on a Bell state, an initial entangled Bell-state is
required. U2 is a Clifford gate, hence there exists a P â,b̂ such that U2P

a,bU1 |ψ⟩ =
P â,b̂U2U1 |ψ⟩, allowing the correction term to be pushed to the end of the circuit.
Repeating the same argument for multiple Clifford unitaries gives the quantum
state ...P a2,b2

2 U2P
a1,b1
1 U1 |ψ⟩. Due to the conjugation relation of the Clifford and

Pauli gates, all correction terms can be postponed to the end of the computation.

Clifford-ladder circuit

A similar argument holds when looking at Clifford-ladder circuits.

3.3.1. Definition (Clifford-ladder circuit). Let {U i}n−2
i=0 be a collection of n− 1

2-qubit Clifford unitaries. There are two possible types of Clifford-ladder circuits,
a right and a left Clifford-ladder: A right Clifford-ladder circuit Cladder is a circuit
of depth O(n) and width O(n) of the following form:

Cladder =
n−2∏
i=0

U
(i)
i,i+1

where U (i)
i,i+1 denotes that unitary U (i) is applied on qubits i and i+ 1. Similarly

a left Clifford-ladder circuit is a circuit of the form:

Cladder =
n−2∏
i=0

U
(i)
n−(i+2),n−(i+1)

Both right and left Clifford are considered a Clifford ladder circuit

3.3.2. Remark. Note that a ladder circuit does not have to start at either the
first or the last qubit, as the 2-qubit gate I⊗I is also a Clifford gate, furthermore,
note that each 2-qubit Clifford unitary U (i) itself is of constant-depth.

The next lemma shows that any Clifford-ladder circuit has an equivalent
LAQCC circuit. Figure 3.2 shows this mapping graphically. Each two-qubit uni-
tary is parallelized using gate teleportation and with the Clifford commutation
relations, the Pauli correction terms are pushed to the end of the computation.

3.3.3. Lemma. Any Clifford-ladder circuit has an LAQCC implementation of
depth O(1) and width O(n).
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P

Calculate Pauli corrections classically

PCP CP CP

Figure 3.2: Graphical representation of Clifford-ladder circuit parallelization.
Time flows upward and lines represent qubits and boxes quantum gates. A half
circle represents either a Bell-state creation (ends pointing upwards) or a Bell-
state measurement (ends pointing downwards). The Bell-state measurements can
produce Pauli errors P = ZaXb, which are corrected by the boxes CP (correc-
tive Pauli). The computations to determine how errors propagate are performed
classically before the computations.

Proof:
Figure 3.2 shows the construction of a LAQCC circuit of width O(n) and depth
O(1) implementing a Clifford-ladder circuit. The caps and cups denote Bell-state
measurements and Bell-state creation, respectively. What remains to show is that
an NC1 circuit computes the Pauli-correction terms.

The i-th Bell measurement results in Pauli error Pi = ZaiXbi . A Clifford-
ladder circuit of size n hence has an error vector

(
a b
)

of length 2n. The correction
terms that have to be applied have the same form: we can label every corrective
Pauli by an index j, such that P̂j = Z âjX b̂j . This gives a correction vector

(
â b̂
)
.

Note that Pauli matrices anti-commute, hence reordering them will only incur a
global phase. This implies a binary linear map M :

(
a b
)
7→

(
â b̂
)
. As matrix

vector multiplication is in NC1, this error calculation is in NC1 and Clifford-ladder
circuits have an LAQCC implementation. 2

3.3.4. Remark. Constructing the binary linear map M is not in NC1, but it does
follow directly from the quantum circuit. Instead, an L (logspace) precomputation
gives the matrix associated to M .

This result directly implies that in LAQCC we can apply two-qubit gates on
any two non-adjacent qubits.

3.3.5. Corollary. Any SWAP circuit needed to do an operation between non-
adjacent qubits is a Clifford-ladder circuit and hence in LAQCC.
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Parity Sum

Parity measurement

Classical calculation and feedback

Ancilla qubits

Figure 3.3: The quantum circuit to prepare the 3-qubit GHZ state. Double
lines indicate classical information and dotted lines the quantum state at various
points.

This effectively removes the locality constraint in LAQCC for applying a single
2-qubit gate on non-adjacent qubits.

An example of a Clifford-ladder circuit is the creation of a GHZ state. We can
parallelize this directly, for instance following the poor man’s cat state approach
of [Wat+19]. Figure 3.3 shows a LAQCC circuit using 2n− 1 qubits placed on a
line that prepares an n-qubit GHZ state.

A multi-qubit gate that will be very important is the Fanoutn gate, which is
a CNOT gate with one control qubit and n− 1 output qubits.

Fanout4 |b0⟩ |b1⟩ |b2⟩ |b3⟩ = |b0⟩ |b1 ⊕ b0⟩ |b2 ⊕ b0⟩ |b3 ⊕ b0⟩

Hoyer and Spalek have shown that this operation is very powerful when paral-
lelizing unitaries [HŠ05], which will be further discussed in Section 3.3.2. The
Fanoutn gate can be implemented by two Clifford ladder circuits:

3.3.6. Lemma. There is an implementation of the Fanoutn gate by two successive
Clifford-ladder circuits.

Proof:
The circuit of two successive Clifford-ladder circuits for the Fanoutn is as follows:
First, a right Clifford-ladder circuit with the U (i) consist of the successive CNOT
and SWAP gate:

C1 =
n−2∏
i=0

SWAPi,i+1CNOTi,i+1,
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where both the CNOT and the SWAP gate are applied to qubits i and i+ 1. The
first application of this unitary applies the CNOT from the control qubit to the
first output qubit, and then swaps these two qubits, putting the control qubit
next to the second output qubit. This action is repeated until the control qubit is
moved past all output qubits. This results in a state with the correct application
of the Fanoutn gate, up to a reordering of the qubits, as the control qubit has
moved past all output qubits. This ordering is reverted by a left Clifford-ladder
circuit where all the U (i) are the SWAP gate:

C2 =
n−2∏
i=0

SWAPn−(i+2),n−(i+1).

C1 and C2 together apply the Fanoutn gate. 2

3.3.7. Corollary. Fanoutn is accessible in LAQCC.

Clifford-grid circuit

Any Clifford unitary can be mapped to a linear-depth circuit given a linear
nearest-neighbor architecture [MR18]. The most general representation of these
circuits are so-called Clifford-grid circuits.

3.3.8. Definition (Clifford-grid circuit). Let n be the number of qubits. A
Clifford-grid circuit of depth d is a circuit of the form

Cgrid =
d∏

i=0

n
2⊗

j=0
Ui,j,

for Clifford unitaries Ui,j, such that gate Ui,j acts on qubits 2j and 2j + 1 if i is
even, and 2j + 1 and 2j + 2 if i is odd.

The next lemma shows that Clifford-grid circuits also have an efficient LAQCC
implementation.

3.3.9. Lemma. Any Clifford-grid circuit of depth O(n) has an LAQCC implemen-
tation of depth O(1) and width O(n2).

Proof:
Similar to the Clifford-ladder circuits, gate teleportation allows parallelization to
obtain a LAQCC circuit. With a total of O(n2) Clifford gates, this also requires
O(n2) qubits. Figure 3.4 illustrates the transformation.

Any Bell measurement in the circuit can incur a Pauli error, which has to be
dealt with at the end of the circuit. The number of Pauli gates now scales with
O(n2). Similar to the Clifford-ladder circuits, there now is a vector (ab) of length
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O(n2) containing the information of the Pauli errors. The vector of correction
terms, the vector (âb̂), has length O(n).

As these Pauli errors anti-commute, there again is a binary linear map M :
(ab) 7→ (âb̂). The corresponding matrix is rectangular and the error-correction
calculations are in NC1. 2

Figure 3.4: Graphical representation of Clifford-grid circuit parallelization. Every
blue dot represents a qubit and all Clifford gates (boxes) are applied in parallel.
The lines again represent Bell-state creations and Bell-state measurements, indi-
cated by the pink boxes. The propagating Pauli errors can be corrected using the
Bell-state measurement results.

Finding the matrix M for correcting a Clifford-grid circuit is more complex
than for a Clifford-ladder circuit. An error occurring in the grid can have multiple
paths contributing to a single output wire. For the final correction, the parity of
each contributing error-path is needed. This computation is in ⊕L ⊆ NC2 2. A
precomputation again gives the matrix corresponding to the bilinear map M .

3.3.2 Useful gates and subroutines with an LAQCC imple-
mentation

This section groups useful multi-qubit gates with an LAQCC implementation. The
construction of W -states and Dicke states uses these gates, but their use might
be of broader interest.

Before we can give a list of accessible gates and subroutines, we need to
review two algorithms that we will use to construct our gates. The first concerns
Grover’s algorithm with zero failure probability [Lon01]. The second concerns
parallelization of commuting gates using quantum fan-out gates [HŠ05].

Grover’s search algorithm gives a quadratic speed-up for unstructured
search [Gro96]. After sufficient iterations, a measurement returns a target state

2This is not too surprising as simulating Clifford circuits classically is a complete problem
for ⊕L



42 Chapter 3. Local Alternating Quantum-Classical Computation

with high probability. Surprisingly, if the exact number of target states is known,
a slight modification of the Grover iterates allows for returning a target state with
certainty, assuming noiseless computations. Lemma 3.3.13 uses the next lemma
to prepare quantum states instead of to find a target state.

3.3.10. Lemma ([Lon01]). Let L be a set of items and T ⊆ L a set of targets,
with N = |L| and m = |T | both known. Let g : L → {0, 1} label the items in L
and define the oracle Og : |x⟩ |b⟩ 7→ |x⟩ |b⊕ g(x)⟩.

Then, there exists a quantum amplitude amplification algorithm that makes
O(
√
N/m) queries to Og and prepares the quantum state 1√

|T |

∑
x∈T |x⟩.

For the other result, we use the quantum fan-out gate, which we showed that
is accessible in LAQCC in Lemma 3.3.6. Hoyer and Spalek [HŠ05] introduced
this gate and analyzed its properties. The state preparation protocols given in
Section 3.4 use the property that the quantum fan-out gate allows parallelization
of commuting quantum gates [HŠ05].

3.3.11. Lemma. ([HŠ05, Theorem 3.2]) Let {Ui}n
i=1 be a pairwise commuting

set of gates on k qubits. Let Uxi
i be the gate Ui controlled by qubit |xi⟩. Let

T be the unitary that mutually diagonalizes all Ui. Then there exists a quan-
tum circuit, using quantum fan-out gates, computing U = ∏n

i=1 U
xi
i with depth

maxn
i=1 depth(Ui)+4 ·depth(T )+2 and size ∑n

i=1 size(Ui)+(2n+2) ·size(T )+2n,
using (n− 1)k auxiliary qubits.

Gates accessible in LAQCC

Here we give several tables containing useful multi qubit operations accessible in
LAQCC. The tables give the action of the gates on computational basis states
and the number of qubits required to perform them in LAQCC. Their effect on
arbitrary states follows by linearity.

The first two gates directly follow from the Clifford-parallelization results
described in Section 3.3.1.

Gate Operation on basis states Width
Fanoutn |x⟩ |y1⟩ . . . |yn⟩ 7→ |x⟩ |y1 ⊕ x⟩ . . . |yn ⊕ x⟩ O(n)
Permutation(π)n |y1⟩ . . . |yn⟩ 7→

∣∣∣yπ(1)
〉
. . .
∣∣∣yπ(n)

〉
O(n2)

Table 3.1: Operations contained in LAQCC based on Clifford parallelization. Here
π ∈ Sn denotes a permutation of n elements.

In the previous chapter, we saw an implementation of the Fanoutn gate as
Clifford-ladder circuit 3.3.6. Prior works extensively studied the Fanoutn gate, for
instance to construct a constant-depth ORn function with one-sided error [HŠ05]
and with an exact implementation [TT13, Theorem 1], both assuming the Fanoutn
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gate to be a native gate. The ORn gate also implies two other gates, as the
following table shows. The implementation of ORn gate based on [TT13] can be

Gate Operation on basis states Width
ORn |y1⟩ . . . |yn⟩ |x⟩ 7→ |y1⟩ . . . |yn⟩ |ORn(y)⊕ x⟩ O(n log(n))
ANDn |y1⟩ . . . |yn⟩ |x⟩ 7→ |y1⟩ . . . |yn⟩ |ANDn(y)⊕ x⟩ O(n log(n))

Equali |j⟩ |b⟩ 7→

|j⟩ |1⊕ b⟩ if |j⟩ = |i⟩
|j⟩ |b⟩ else

O(n log(n))

Table 3.2: Operations contained in LAQCC based on Fanoutn and local 1-qubit
unitaries.

found in 3.B.1. The ANDn gate is constructed by negating all the inputs and the
final output of the ORn gate. Similarly Equali is implemented by mapping the
bit string i to the all 0 string using X gates, than applying ORn and negating the
output of ORn.
With these unbounded-fan-in OR and AND gates, all AC0 circuits can be imple-
mented. The next step is implementing LAQCC-type modular addition circuits,
which gives circuits to check for equality and greater-than. These three gates
take n-qubit quantum states as input. We introduce the indicator variable 1A for
a Boolean expression A, which evaluates to 1 if A is true. Similarly, |1A⟩ = |1⟩ if
and only if A is true.

Gate Operation on n-qubit integers |x⟩, |y⟩ Width
Addn |x⟩ |y⟩ 7→ |x⟩ |y + x mod 2n⟩ O(n2)
Equality |x⟩ |y⟩ |0⟩ 7→ |x⟩ |y⟩ |1x=y⟩ O(n2)
GreaterThan |x⟩ |y⟩ |0⟩ 7→ |x⟩ |y⟩ |1x>y⟩ O(n2)

Table 3.3: Operations contained in LAQCC based on AC0 circuits.

Addn can be implemented by an AC0 circuit, which by the previous table
is accessible in LAQCC. The implementation of Equality and GreaterThan are
constructed using Addn and can be found in Appendix 3.B.2 and Appendix 3.B.3
respectively. Høyer and Špalek showed that fanout-gates imply efficient constant-
depth implementations of for instance the quantum Fourier transform [HŠ05].
They use this constant-depth quantum Fourier transform to construct a constant-
depth circuit for weighted counting. In particular, this circuit can be used to
calculate the Hamming weight of an n-bit string, and to implement an “Exact t”-
gate and a threshold gate. Appendix 3.B.5 also explains how to modify the
threshold gate to a weighted threshold gate. The implementation of the QFT can
be found in [HŠ05, Theorem 4.12] and the implementation of the Hammingweight
gate in [TT13, Lemma 4]. The implementations of Exactt and Thresholdt can be
found in Appendix 3.B.4 and Appendix 3.B.5 respectively.
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Gate Operation on n-qubit basis state |x⟩ Width
QFT |x⟩ 7→ 1√

2n−1

∑2n−1

j=0 ei2π x·j
2n |j⟩ O(n3 log(n))

Hammingweight |x⟩n |0⟩log(n) 7→ |x⟩n ||x|⟩log(n) O(n log(n))
Exactt |x⟩ |0⟩ 7→ |x⟩

∣∣∣1|x|=t

〉
O(n log(n))

Thresholdt |x⟩ |0⟩ 7→ |x⟩
∣∣∣1∑

i
xi≥t

〉
O(tn log(n))

Table 3.4: Quantum subroutines in LAQCC based on Høyer and Špalek.

3.3.12. Remark. As the Thresholdt gate is in LAQCC, any classical TC0 circuit
is in LAQCC.

Subroutine accessible in LAQCC

This section concludes not with a gate, but with a tool used for preparing uniform
superpositions. This lemma extends Lemma 3.3.10 to preparing states instead of
finding marked items.

3.3.13. Lemma. Given an n-qubit unitary U , that is implementable by a
constant-depth circuit, a basis C and a partition of C in G and B such that |G||C| is
a known constant c. Suppose that U implements the map

U : |y⟩ |b⟩ 7→
|y⟩ |b⊕ 1⟩ if y ∈ G
|y⟩ |b⟩ if y ∈ B

.

Then there exists a LAQCC circuit that prepares the state 1√
|G|

∑
y∈G |y⟩ by using

U a constant number of times.

Proof:
Define |G⟩ = 1√

|G|

∑
y∈G |y⟩ and |B⟩ = 1√

|B|

∑
y∈B |y⟩. As B and G partition C,

it follows that ⟨G|B⟩ = 0. Lemma 3.3.10 implies the existence of a circuit that
prepares the desired state. Below, we explicitly construct the circuit.

First, prepare a uniform superposition ∑2n−1
i=0 |i⟩. Then, iteratively reflect over

the state |B⟩ using U , and reflect over the uniform superposition state ∑2n−1
i=0 |i⟩.

Both reflections have a LAQCC implementation and we only need to apply them
a constant number of iterations.

To reflect over the uniform superposition, we have to implement the operation
2 |s⟩ ⟨s|− I, with |s⟩ = 1√

N

∑2n−1
i=0 |i⟩. To implement this operation, we first apply

a layer of Hadamards, which implements a basis transformation mapping the
uniform superposition state to the all zeroes state; Then apply the Exact0-gate
producing an output qubit that marks only the all zeroes-state and finally negate
the output qubit and applies a Z-gate on it. Running this circuit in reverse,
excluding the Z-gate, resets the output qubit and reverts the basis transformation.
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The last step of Lemma 3.3.13 requires a reflection using an RZ-gate (rotational
Z-gate) instead of the Z-gate. As the Exact0-gate has an LAQCC implementation
(see Table 3.4), this second inversion operation has a LAQCC implementation.

The total number of iterations is O(
√
N/m), where N = |C| and m = |G|.

As their fraction is the constant c, it follows that O(
√
c) = O(1) iterations are

needed. 2

3.3.3 Non-simulatability of LAQCC
Most of the power of LAQCC circuits seems to come from the classical intermediate
calculations, which makes one wonder if these circuits are classically simulatable.
Even if these circuits were indeed efficiently simulatable, they still have value as
“fast” alternatives for state preparation. However, it is unlikely that all LAQCC
circuits can be simulated efficiently by a classical simulator. Lemma 3.3.11 and
the inclusion of the fan-out gate in LAQCC show that circuits consisting of com-
muting gates have an LAQCC implementation and in particular, the class of In-
stantaneous Quantum Polynomial-time (IQP) circuits, first introduced in [SB09],
has equivalent LAQCC implementations.

3.3.14. Definition (Definition 2 [NM14]). An IQP circuit on n qubits is a quan-
tum circuit with the following structure: each gate in the circuit is diagonal in
the Pauli-Z basis, the input state is |+⟩⊗n, and the output is the result of a
measurement in the Pauli-X basis on a specified set of output qubits.

3.3.15. Lemma. Any IQP circuit has an LAQCC implementation.

Proof:
The following LAQCC circuit prepares the desired state: First prepare |+⟩⊗n by a
single layer of Hadamard gates on all qubits. All the gates in the diagonal block
of the IQP circuit commute, therefore we can apply Lemma 3.3.11. This allows us
to parallelize all gates in the diagonal block using poly(n) auxiliary qubits. Next,
we can again apply a layer of Hadamard gates and finally measure the desired
qubits. 2

Bremner, Jozsa, and Shepherd showed that efficient weak classical simulation
of all possible IQP circuits up to small multiplicative error implies a collapse of the
polynomial hierarchy [BJS10]. Note that a circuit family is weakly simulatable if
given the description of the circuit family, its output distribution can be sampled
by purely classical means in poly(n) time.

3.3.16. Lemma (Corollary 1 [BJS10]). If the output probability distributions
generated by uniform families of IQP circuits could be weakly classically simu-
lated to within multiplicative error 1 ≤ c <

√
2 then the polynomial hierarchy

would collapse to the third level, in particular, PH = ∆p
3.



46 Chapter 3. Local Alternating Quantum-Classical Computation

3.3.17. Corollary. If the output probability distributions generated by uniform
families of LAQCC circuits could be weakly classically simulated to within multi-
plicative error 1 ≤ c <

√
2 then the polynomial hierarchy would collapse to the

third level, in particular, PH = ∆p
3.

3.3.4 Relationship LAQCC to QNC1

Let A be an LAQCC-circuit. We can write this circuit as a composition of unitary
quantum layers Ui, measurements Mi and classical calculation layers Ci:

A = MkUkCk . . .MiUiCi . . .M1U1C1,

for some constant k. Any unitary Ui is a QNC0 circuit and any Ci is an NC1-
circuit. The measurements Mi can measure any subset of the qubits. By the
principle of deferred measurements, we can always postpone them to the end
of the circuit using CNOT gates and fresh auxiliary qubits [NC10, Section 4.4].
Furthermore, in Lemma 3.A.1 we show that any NC1 circuit can be replaced
by a QNC1 circuit, which performs the exact same calculation in superposition.
This seems to imply that for any LAQCC circuit there exists a QNC1 circuit that
simulates it. However, when we try to prove this, we run into a problem which
even seems to suggest that this might not be true at all.

The difficulty arises from the unitary applied after the measurement. When
a measurement is performed, the quantum state collapses into a single branch of
the superposition. Based on this measurement outcome, an NC1 circuit deter-
mines which unitary to apply next. However, this unitary may vary significantly
depending on the classical outcome.

If we replace the measurement with a CNOT, the state no longer collapses.
Instead, it remains in a superposition, with each branch of the superposition cor-
responding to a different outcome of the original measurement. In this setting, a
QNC1 circuit replaces the NC1 computation, coherently computing a superposition
of all possible classical outputs. The subsequent unitary must now act coherently
on this superposition, applying the appropriate correction to each branch.

This correction unitary can be significantly more complex than the one used
after a classical measurement. For example, suppose the correction consists of a
single CNOT gate applied between qubits i and j, where i and j are determined
by the output of the NC1 circuit. Replacing the measurement with CNOTs and a
QNC1 circuit produces a superposition over all possible i, j pairs. The correspond-
ing correction must then consist of CNOT gates applied between each possible pair
i, j, controlled on the output of the QNC1 circuit. Without additional auxiliary
qubits, implementing this unitary requires linear depth.
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3.3.5 Complexity results for LAQCC(Q, C, d)
In its current definition, LAQCC(Q, C, d), and hence also LAQCC, are classes of
circuits. When considering the capabilities of LAQCC(Q, C, d) in preparing states,
it is helpful to define a related class that consists of states preparable by a circuit
in LAQCC(Q, C, d).

3.3.18. Definition (StateClassX). Let Hn be a Hilbert space on n qubits, then
define

StateXn,ε = {|ψ⟩ ∈ Hn | ∃X-circuit A : ⟨ψ|A |0⟩⊗n ≥ 1− ε}.

This is the subset of n-qubit states |ψ⟩ such that there exists a circuit corre-
sponding to the class X that prepares a quantum state that has inner product at
least 1− ε with |ψ⟩.

Define StateXε = ⋃
n∈N StateXn,ε.

This definition extends already existing ideas and definitions of state-
complexity [AAS20; RY22; Sus18]. Our definition is very similar to state com-
plexity defined in [MY23], where we are interested in which states are contained
in a class, however we drop the uniformity requirement and instead study the set
of states that can be generated by a specific class of circuits. An example of a
circuit class is StateLAQCC(Q, C, d)n,ε.

3.3.19. Notation. The class StateLAQCC(Q, C, d)n,ε consists of all n-qubit
states |ψ⟩ for which an LAQCC(Q, C, d) circuit exists that prepares a state that
has inner product at least 1− ε with |ψ⟩.

Another example is the circuit class of PostQPoly.

3.3.20. Definition (PostQPoly). The class PostQPoly consists of all
polynomial-sized quantum circuits with one extra qubit, where the out-
come state is considered conditional on the extra qubit being in the one state. If
the extra qubit is in the zero state, the output state may be anything.

The class StatePostQPolyn,ε consists of all n-qubit states |ψ⟩ for which a
polynomial-sized quantum circuit exists that prepares a state that, conditional
on the extra qubit being one, has inner product at least 1− ε with |ψ⟩.

In the definition of LAQCC(Q, C, d), we have freedom to choose Q and C.
If we give more power to both the quantum and the classical routines, we see
that we can solve more complex problems and prepare a wider variety of quan-
tum states. Yet, even with polynomial depth quantum circuits and unbounded
classical computational power, limits exist.
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3.3.21. Notation. The class LAQCC∗ is the instantiation
LAQCC(QPoly(n),ALL, poly(n)): The class of polynomially many alternating
polynomial-sized quantum circuits and arbitrary powerful classical computations,
together with feed-forward of the classical information to future quantum opera-
tions. The quantum computations are restricted to all single-qubit gates and the
two-qubit CNOT gate.

This directly gives us a definition of StateLAQCC∗ε for ε > 0.

3.3.22. Remark. Note that for any non-zero ε, we can restrict ourselves to finite
universal gate-sets. The Solovay-Kitaev theorem [Kit97; NC10] says that any
multi-qubit unitary can be approximated to within precision δ by a quantum
circuit with size depending on δ. Therefore, with a finite universal gate-set, any
LAQCC∗ circuit with a continuous gate-set can be approximated by an LAQCC∗
circuit with gates from the finite set.

Next, we prove StateLAQCC∗ε ⊆ StatePostQPolyε. Following the same decom-
position as in the previous section, we find that any LAQCC∗ can be written
as

Πpoly(n)
i=0 MiUi(yi)Ci(xi) |0⟩⊗poly(n) , (3.1)

where again, Mi denotes the i-th measurement layer, Ui the i-th quantum layer
and Ci the i-th unbounded classical computation layer. The xi ∈ {0, 1}∗ denote
the outcomes of Mi and yi ∈ {0, 1}∗ the bitstring outputted by Ci. Note, all xi

and yi have length at most polynomial in n.

3.3.23. Theorem. It holds that StateLAQCC∗ε ⊆ StatePostQPolyε.

Proof:
Fix ε > 0 and a positive integer n and let |ψ⟩ ∈ StateLAQCC∗ε. By definition,
there exists an LAQCC∗ circuit A = Πpoly(n)

i=0 MiUi(yi)Ci(xi), which prepares a state
|ϕ⟩ with inner product at least 1− ε with |ψ⟩.

Then consider the following PostQPoly-circuit: Let B =
Πpoly(n)

i=0 Equalxi
(xi)Ui(yi) |0⟩⊗poly(n), where the yi are hardwired. The Equalxi

gate replaces the measurement layer Mi, by checking if the subset of qubits that
would be measured are in |xi⟩ computational basis state. It stores the output
in an auxiliary qubit. As a last step, apply an ANDpoly(n)-gate on the auxiliary
qubits, which hold the outputs of the Equalxi

gates, and store the result in an
auxiliary qubit. Conditional on this last auxiliary qubit being one, the circuit
prepares the state |ϕ⟩. 2

Figure 3.5 gives a schematic overview of the proof and the translation of an
LAQCC∗ circuit in a PostQPoly-circuit.
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Figure 3.5: Schematic idea of transforming an LAQCC∗ circuit for generating |ψ⟩
into a PostQPoly circuit.

3.4 State preparation in LAQCC
In this section we consider which quantum states we can prepare using an LAQCC
circuit beyond the stabilizer states and Clifford circuits discussed in the previous
section. Specifically, as noted in the introduction, we consider quantum states
widely used in other quantum algorithms, for benchmarking, and in physics.
First, we show how to create a uniform superposition of computational basis
states for arbitrary q, where q is not a power of 2, a state that is often used as
initial state in other algorithms (including the following other state preparation
protocols presented in this work). We then use this procedure to create W -states,
the uniform superposition over all n-bit strings of Hamming weight 1, using a
compress-uncompress method. This compress-uncompress method generalizes to
preparing Dicke-(n, k) states for k = O(

√
n), uniform superpositions over all n-

bitstrings of Hamming weight k = O(
√
n). Dicke states find many applications,

and especially the compress-uncompress approach might prove useful for entan-
glement distillation protocols. Preparing general Dicke-(n, k) states requires a
novel method to map between two integer representation systems, the factoradic
representation and the combinatorial number representation. Finally, we present
a state preparation protocol for quantum many-body scar states, states often used
in physics, based on the Dicke-(n, k) state preparation protocol for k = O(

√
n).

3.4.1 Uniform superposition of size q

The uniform superposition is often used as an initial state in other quantum
algorithms. A simple Hadamard gate applied to n qubits prepares the uniform
superposition 1√

2n

∑2n−1
i=0 |i⟩. Preparing the state 1√

q

∑q−1
i=0 |i⟩, the superposition

up to size q, for arbitrary q, is less straightforward.
A simple probabilistic approach works as follows: 1) create a superposition

1√
2n

∑2n−1
i=0 |i⟩ with n = ⌈log2(q)⌉ qubits; 2) mark the states i < q using an ancilla

qubit; 3) measure this ancilla qubit. Based on the measurement result, the desired
superposition is found, which happens with probability at least one half.

The next theorem modifies this probabilistic approach to a protocol that de-
terministically prepares the uniform superposition modulo q in LAQCC.
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3.4.1. Theorem. There is a deterministic LAQCC circuit that prepares the uni-
form superposition of size q. This circuit requires O(⌈log2(q)⌉

2) qubits.

Proof:
Let n = ⌈log2(q)⌉ and define G = {i | 0 ≤ i < q} and B = {i | q ≤ i ≤ 2n − 1}.
Construct the unitary

Uq : |y⟩ |b⟩ 7→
|y⟩ |b⊕ 1⟩ if y < q

|y⟩ |b⟩ if y ≥ q
.

The Greaterthan-gate of Table 3.3 implements the operator Uq, note that this
gate requires O(n2) qubits.

As |G|/2n ≥ 1/2 and known, applying Lemma 3.3.13 with the sets G and B
and the constant-depth implementation of Uq, gives an LAQCC algorithm that
boosts the amplitude of |G⟩ to 1. 2

3.4.2. Remark. Note that in Lemma 3.3.13 it was implicitly assumed that
|G| + |B| is a power of two (allowing for a simple reflection over the uniform
superposition state). This LAQCC implementation of creating a uniform super-
position modulo any q removes this requirement.

3.4.2 W -state in LAQCC
In this section we consider the Wn-state and how to prepare this state in LAQCC.
The Wn-state is a uniform superposition over all n-qubit states with a single qubit
in the |1⟩-state and all others in the |0⟩-state:

|Wn⟩ = 1√
n

∑
i

|ei⟩ ,

where |ei⟩ is the state with a one on the i-th position and zeroes elsewhere.
A first observation is that the W -state can be seen as a one-hot encoding of

a uniform superposition over n elements. We can label the n states with non-
zero amplitude of the W -state with an index. More precisely, we want to design
circuits that implement the following map:

|i⟩ |0⟩ 7→ |0⟩ |ei⟩ , (3.2)

with i an index and ei the one-hot encoding of i. This index – which equals the
position of the 1 – compresses the representation from n to log(n) bits. This
compression naturally defines two operations:

Uncompress: |i⟩log(n) |0⟩n 7→ |i⟩log(n) |ei⟩n , (3.3)
Compress: |i⟩log(n) |ei⟩n 7→ |0⟩log(n) |ei⟩n . (3.4)
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Implementing both and combining them implements Mapping 3.2 giving an effi-
cient W -state preparation protocol.

The Compress and Uncompress operations map between a one-hot and
binary representation of an integer i. We call the registers containing the binary
representation index registers, and the register containing the one-hot represen-
tation the system register. The index registers serve as ancilla qubits and the
W -state is prepared in the system register.

3.4.3. Lemma. There exists an LAQCC circuit that, for any n, implements the
Uncompress operation:

1√
n

n−1∑
i=0
|i⟩log(n) |0⟩n 7→

1√
n

n−1∑
i=0
|i⟩ |ei⟩n .

This circuit uses O(n log(n) log(log(n))) qubits placed in a grid pattern of size
n× log(n) log(log(n)).

Proof:
One column of the grid of length n consists of system qubits placed in a line.
Adjacent to this line are log(n) log(log(n)) index qubits. The left grid in Figure 3.6
shows the initial layout. The same figure also shows the steps to prepare the W -
state in the system qubits.

1√
n

n−1∑
i=0
|i⟩log(n) |0⟩

⊗n−1
log(n) |0⟩n

(1)−→ 1√
n

n−1∑
i=0
|i⟩⊗n

log(n) |0⟩n

(2)−→ 1√
n

n−1∑
i=0
|i⟩⊗n

log(n) |ei⟩n

(3)−→ 1√
n

n−1∑
i=0
|i⟩ |0⟩⊗n−1 |ei⟩n

Step (1) uses fanout-gates to create a fully entangled state between the differ-
ent index registers. Step (2) applies Equali gates in parallel from each index
register to its corresponding system qubit to create the state |ei⟩ in the sys-
tem register. Every Equali gate requires additional an additional log log n qubits
to perform. Step (3) uses fanout-gates to disentangle and reset the index regis-
ters. Combined the Uncompress operation maps 1√

n

∑n−1
i=0 |i⟩log(n) |0⟩

⊗n−1
log(n) |0⟩n 7→

1√
n

∑n−1
i=0 |i⟩ |0⟩

⊗n−1 |ei⟩n as required. 2

3.4.4. Lemma. There exists an LAQCC circuit that, for any n, implements the
Compress operation:

1√
n

n−1∑
i=0
|i⟩log(n) |ei⟩n 7→

1√
n

n−1∑
i=0
|0⟩ |ei⟩n .

This circuit uses O(n log(n)) qubits placed in a grid pattern of size n× log(n)).
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H H Equals0

Equals1

Equals2

Equals3

Ancilla 
qubits

Output qubits

Figure 3.6: Circuit for the Uncompress operation for n = 4. Shown is a grid
of 12 qubits: 8 blue index qubits, and 4 black system qubits. This schematic is
simplified, it does not show the additional log log n qubits required to perform
the Equali gates, nor some additional qubits to perform the fanout gate. Each of
the four grids represents a single time slice in the Uncompress operation.

Proof:
To implement Compress, the index registers are uncomputed using parallel
CNOT -operations, controlled by the system register. These controlled gates
commute for different indices in the system register and hence by Lemma 3.3.11
a parallel circuit for the uncomputation exists. The Compress operation, also
shown in Figure 3.7, consists of the operations:

1√
n

n∑
i=0
|i⟩log(n) |0⟩

⊗n−1
log(n) |ei⟩n

(1)−→ 1
n

n∑
i,j=0

(−1)i·j |j⟩log(n) |0⟩
⊗n−1
log(n) |ei⟩n

(2)−→ 1
n

n∑
i,j=0

(−1)i·j |j⟩⊗n
log(n) |ei⟩n

(3)−→ 1
n

n∑
i,j=0
|j⟩⊗n

log(n) |ei⟩n

(4)−→ 1
n

n∑
i,j=0
|j⟩log(n) |0⟩

⊗n−1
log(n) |ei⟩n

(5)−→ 1√
n

n∑
i=0
|0⟩⊗n

log(n) |ei⟩n

Step (1) applies Hadamard gates to the first index register, changing from the
computational to the Hadamard basis, in which the NOT -operation is diagonal;
Step (2) uses fanout-gates to create a fully entangled state in the index registers;
Step (3) applies controlled-Z gates, controlled by the system qubit i and with
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targets the qubits in the i-th index register corresponding to the ones in the
binary representation of i; Step (4) disentangles the index registers using fanout-
gates; and, Step (5) applies Hadamard gates to clean the index register.

The controlled-Z gates in Step (3) apply phases that precisely cancel the
phases already present, which disentangles the index registers from the system
register. 2

H H H H

Z

Z

Z Z

Figure 3.7: Circuit for the Uncompress operation for n = 4. Shown is a grid of
12 qubits: 8 blue index qubits, and 4 black system qubits. Each of the four grids
represents a single time slice in the Compress circuit.

3.4.5. Theorem. There exists a circuit in LAQCC that prepares the |Wn⟩ state.
This circuit requires O(n log(n) log(log(n))) qubits placed in a grid of size n ×
log(n) log(log(n)).

Proof:
The circuit combines the circuits of Theorem 3.4.1, Lemma 3.4.3, and
Lemma 3.4.4. It consists of three steps:

|0⟩⊗n
log(n) |0⟩n

(1)−→ 1√
n

n−1∑
i=0
|i⟩ |0⟩⊗n−1 |0⟩

(2)−→ 1√
n

n−1∑
i=0
|i⟩ |0⟩⊗n−1 |ei⟩

(3)−→ 1√
n

n∑
i=0
|0⟩⊗n |ei⟩

Step (1) prepares the uniform superposition over indices. This can be done either
by applying a layer of Hadamard gates, if n is a power of 2, requiring O(log(n))
qubits, or using Theorem 3.4.1 if n is not a power of 2 requiring O(⌈log(n)⌉2)
qubits; Step (2) is by Lemma 3.4.3 and requires O(n log(n) log(log(n))) qubits;
and, Step(3) is by Lemma 3.4.4 and requires O(n log(n)) qubits. 2
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3.4.3 Dicke states for small k
In this section we generalize our method of preparing the |W ⟩-state in Theo-
rem 3.4.5 to a more general set of states, Dicke states. A Dicke-(n, k) state is the
uniform superposition over bitstrings of Hamming weight k and length n, which
we again assume to be a power of 2 for simplicity:

|Dn
k ⟩ =

(
n

k

)−1/2 ∑
x∈{0,1}n:|x|=k

|x⟩ . (3.5)

For k = 1, this state is precisely the W -state. There exists an efficient determin-
istic method to prepare a |Dn

k ⟩ state that requires a circuit of width O(n) and
depth O(n), independent of k [BE19]. This method starts from the |1⟩⊗k |0⟩⊗k−n

state and relies on a recursive formula for the Dicke state

|Dn
k ⟩ = αk,n

∣∣∣Dn−1
k

〉
⊗ |0⟩+ βk,n

∣∣∣Dn−1
k−1

〉
⊗ |1⟩ .

This relation implies a protocol that is inherently sequential, which is unsuited
for an LAQCC implementation.

Instead, we present an LAQCC approach similar to the W -state preparation
protocol. We apply the Uncompress operation of the W -state in parallel to
put k ones into the bitstring. This method allows for the preparation of Dicke
states with k = O(

√
n), using O(n2 log(n)3) qubits. The bound on k comes from

the fact that using the Uncompress operation in parallel might cause overlaps
to where the 1’s are put into the system register. Having two ones in the same
system qubit in effect negates the Uncompress operation. Following the lines
of the birthday paradox, we find that overlaps between different indices happen
not that often for k = O(

√
n). Lemma 3.3.13 allows us to boost the amplitudes

and make the protocol deterministic.
Again, consider two groups of qubits: Index registers with log(n) qubits each;

and, system registers of n qubits each. Contrary to the W -state, the Dicke state
requires multiple system registers during the preparation. The state is prepared
in only one system register. Denote the index registers with subscripts i1 up to
ik and the system registers with s1 up to sn. For clarity, these indices may be
omitted if it is clear from the context.

The algorithm consists of four steps:

1. Filling: |0⟩i1
. . . |0⟩ik

|0⟩s1
→ 1

nk/2
∑n−1

j1,...,jk=0 |j1⟩i1
. . . |jk⟩ik

|ej1 ⊕ · · · ⊕ ejk
⟩s1

2. Filtering: →
√

(n−k)!
n!

∑n−1
j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩

3. Ordering: → 1√
(n

k)
∑n−1

j1<···<jk
|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk

⟩

4. Cleaning: → 1√
(n

k)
∑n−1

j1<···<jk
|0⟩ . . . |0⟩ |ej1 ⊕ · · · ⊕ ejk

⟩
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Note that after Filling there is a multiplicity in states. First, Filtering removes
those states in which different indices jl are the same, resulting in an incorrect
state in the s1 register. Second, Ordering removes the multiplicity from having
multiple permutations of the index registers creating the same state in the s1
register, by forcing a choice of ordering on the indices. These two steps give a
unique pairing between index registers and system registers allowing the operation
Cleaning.

We will now proof that these four steps are achievable in LAQCC and explicitly
visualize the corresponding circuits for n = 4 and k = 2.

3.4.6. Lemma. An LAQCC circuit exists that implements Filling:

|0⟩i1
. . . |0⟩ik

|0⟩s1
→ 1

nk/2

n−1∑
j1,...,jk=0

|j1⟩i1
. . . |jk⟩ik

|ej1 ⊕ · · · ⊕ ejk
⟩s1
.

This circuit uses O(kn log(n) log(log(n))) qubits.

Proof:
To achieve a circuit implementing Filling we use Uncompress from Lemma 3.4.3
k times in parallel. Since two Uncompress operations commute, hence by
Lemma 3.3.11 k Uncompress operations can be implemented in parallel. Each
of these parallel operations requires an index register, a system register and
O(n log(n) log(log(n))) extra ancilla qubits.

The corresponding circuit consists of five steps starting from the all zero state
|0⟩i1

. . . |0⟩ik
|0⟩s1

. . . |0⟩sk
:

(1)−→ 1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩
1√
2n

2n−1∑
l=0
|l⟩s1
|0⟩s2

. . . |0⟩sk

(2)−→ 1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩
1√
2n

2n−1∑
l=0
|l⟩s1
|l⟩s2

. . . |l⟩sk

(3)−→ 1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩
1√
2n

2n−1∑
l=0

(−1)(2j1 +···+2jk )·l |l⟩s1
|l⟩s2

. . . |l⟩sk

(4)−→ 1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩
1√
2n

2n−1∑
l=0

(−1)(2j1 +···+2jk )·l |l⟩s1
|0⟩s2

. . . |0⟩sk

(5)−→ 1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩s1
|0⟩s2

. . . |0⟩sk

Step (1) brings all index registers in a uniform superposition of size n, use Theo-
rem 3.4.1 if required, and one system register in a uniform superposition of size
2n; Step (2) uses fan-out gates to create entangled copies of the system register;
Step (3) applies a phase flip between every pair of index and system register using
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Uncompress of Lemma 3.4.3, except instead of applying not gates to the system
registers, apply phase gates; Step (4) uses fan-out gates to disentangle and uncom-
pute all but one of the system registers; Step (5) applies Hadamard gates on the
system register to obtain the one-hot representation of the index registers. Step
(3), the step that requires most qubits, requires O(n log(n) log(log(n))) qubits
for every pair of index and system register, of which there are k, resulting in the
requirement of O(kn log(n) log(log(n))) qubits. 2

Figure 3.8 shows these five steps graphically. Ancilla qubits are omitted for
clarity. Note that some of the ji in the index registers may intersect. The next
Filtering step takes care of that.
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Figure 3.8: Circuit to implement Filling, |0⟩i1
. . . |0⟩ik

|0⟩s1
→

1
nk/2

∑n−1
j1,...,jk=0 |j1⟩i1

. . . |jk⟩ik
|ej1 ⊕ · · · ⊕ ejk

⟩s1
. This circuit requires O(kn log(n))

qubits. Here we ilustrate for n = 4 and k = 2. A grid of 24 qubits is shown: 16
blue index qubits and 8 black system qubits. Each of the five grids represents a
single timeslice in the circuit.

3.4.7. Lemma. An LAQCC circuit exists that implements Filtering:

1
nk/2

n−1∑
j1,...,jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ →

√
(n− k)!
n!

n−1∑
j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ .

Proof:
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First note that the state produced by the Filling step,

1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩s1
,

contains states in which some of the indices jl overlap. Let |ψ⟩ =∑
j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩, be the state in which none of the indices

overlap, the desired output state. Then we can write

1
nk/2

n−1∑
j1...jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩s1

= α |ψ⟩+ β
∣∣∣ψ⊥〉 ,

with
∣∣∣ψ⊥〉 containing the states in which at least two of the indices jl overlap.

Note that
〈
ψ
∣∣∣ψ⊥〉 = 0, so α can be exactly calculated by counting the number of

quantum states with distinct ji’s, which gives |α|2 = n!
(n−k)!nk . Lemma 3.A.2 gives

a lower bound on |α|2:
|α|2 = n!

(n− k)!nk
> e

−2k2
n ,

which is at least constant for k = O(
√
n).

The state
∣∣∣ψ⊥〉 is a superposition of states in which the system register state

has Hamming weight less than k, because at least two of the ji’s are the same
causing a cancellation in the system register. We can use this to create a unitary
Uflag that flags

∣∣∣ψ⊥〉. We implement this in two steps:

1
nk/2

n−1∑
j1,...,jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩s1
|0⟩log(k) |0⟩

(1)−→ 1
nk/2

n−1∑
j1,...,jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩s1
||ej1 ⊕ · · · ⊕ ejk

|⟩ |0⟩

(2)−→ 1
nk/2

n−1∑
j1,...,jk=0

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩s1
|0⟩

∣∣∣1|ej1⊕···⊕ejk
|=k

〉
= α |ψ⟩ |1⟩+ β

∣∣∣ψ⊥〉 |0⟩
Where |x| denotes the Hamming weight of bitstring x. Step (1) follows from a
Hamming-weight gate (see Table 3.4), which requires O(n log(n)) qubits; Step
(2) follows from applying an Exactk gate, requiring O(log(n)2) qubits. This same
step also uncomputes the Hamming-weight gate of the first step.

Lemma 3.3.13 now allows us to amplify α to 1 using the oracle Uflag. This
produces the state√√√√(n− k)!

(n)!
∑

j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ ,
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using O(kn log(n)) qubits. 2

To uncompute the index registers, we have to know which one in the system
register corresponds to which index register, as any permutation of the index
registers results in the same state in the system register. The Ordering step
imposes an ordering on the index registers, thereby removing the redundancy in
the ordering.

3.4.8. Lemma. An LAQCC circuit exists that implements Ordering:

√
(n− k)!
n!

n−1∑
j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ →

1√(
n
k

) n−1∑
j1<···<jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ .

This circuit uses O(k2 log(n)2) qubits.

Proof:
The first step of the LAQCC circuit that implements Ordering is to evaluate a
Greaterthan-gate on all pairs of index registers, which requires k copies of each
index register. We require k extra qubits per index register to store the outcome
of the Greaterthan-gates. The copies of the index registers are created by doing
a fan-out gate. Note that the distribution of the index registers should be set up
in such a way that every possible pair can be compared by a Greaterthan-gate.

√
(n− k)!
n!

∑
j1 ̸=... ̸=jk

|j1⟩⊗k |0⟩⊗k . . . |jk⟩⊗k |0⟩⊗k |ej1 ⊕ · · · ⊕ ejk
⟩ (1)−→

√
(n− k)!
n!

∑
j1 ̸=... ̸=jk

[
|j1⟩⊗k |1j1>j2⟩ . . . |1j1>jk

⟩
]
. . .

[
|jk⟩⊗k |1jk>j1⟩ . . .

∣∣∣1jk>jk−1

〉 ]
|ej1 ⊕ · · · ⊕ ejk

⟩ .

Each 1jk>jk′ is an indicator variable that evaluates to one if and only if jk > jk′ .
This step requires O(k2 log(n)2) qubits.

Next, we compute and measure the Hamming weight of the ancilla qubits
|1j1>j2⟩ . . . |1j1>jk

⟩, using the Hamming-weight gate. We measure the calculated
Hamming weights. As all index registers were distinct before measuring, these
measurements directly impose an ordering on the index registers.
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(Hammingweight)−−−−−−−−−−→
√

(n− k)!
n!

∑
j1 ̸=... ̸=jk

[
|j1⟩ |1j1>j2 + · · ·+ 1j1>jk

⟩
]

. . .
[
|jk⟩

∣∣∣1jk>j1 + · · ·+ 1jk>jk−1

〉 ]
|ej1 ⊕ · · · ⊕ ejk

⟩

(measure)−−−−−−→
(
n

k

)−1/2 ∑
j1<···<jk

[
|j1⟩ |0⟩

]
. . .
[
|jk⟩ |k⟩

]
|ej1 ⊕ · · · ⊕ ejk

⟩

This step costs O(k2 log(k)) qubits. Assume without loss of generality that the
measurement outcomes impose the ordering j1 < · · · < jk. Otherwise, a permu-
tation of the index registers achieves the same ordering, using the Permutation
gate from Table 3.1.

Uncomputing the Hamming weights and the Greaterthan-gates gives the state
(
n

k

)−1/2 ∑
j1<···<jk

[
|j1⟩ . . . |jk⟩

]
|ej1 ⊕ · · · ⊕ ejk

⟩ .

2

The Cleaning step cleans the index registers for the Dicke state in a similar
fashion as in the Compress method in the W -state protocol. In the cleaning
process, we have to take the added ordering of the index registers into account.
Suppose the l-th qubit of the system register is a 1. If this is the first 1 in the
system register, it belongs to index register j1, and if it is the m-th 1 it belongs
to index register jm. Computing the Hamming weight of the first l − 1 qubits
gives precisely this information. Combined, this shows that if the l-th qubit is a
1 and the Hamming weight of the first l− 1 qubits equals m, then the l-th qubit
should uncompute the m+ 1-th index register jm+1.

3.4.9. Lemma. An LAQCC circuit exists that implements Cleaning:

1√(
n
k

) n−1∑
j1<···<jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ → 1√(

n
k

) n−1∑
j1<···<jk

|0⟩ . . . |0⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ .

This circuit uses O(n2 log(n)) qubits.

Proof:
The first step, as described above, is to acquire the Hamming weight from all the
substrings of the system register. This requires n copies of the system register
as well as a log(k)-qubit register to store the Hamming weight value. The copies



60 Chapter 3. Local Alternating Quantum-Classical Computation

follow from the fanout-gate.
(
n

k

)−1/2 ∑
j1<···<jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ |0⟩⊗n−1

n |0⟩⊗n
log(n)

(1)−→

(
n

k

)−1/2 ∑
j1<···<jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩⊗n |0⟩⊗n

log(n)
(2)−→

(
n

k

)−1/2 ∑
j1<···<jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩⊗n

n−1⊗
l=0

∣∣∣|(ej1 ⊕ · · · ⊕ ejk
)[l,n]|

〉
,

where |(ej1⊕· · ·⊕ejk
)[l,n]| denotes the Hamming weight of the substring consisting

of qubits l up until n of the system register. Step (1) copies the system qubits
using fan-out gates; Step (2) computes the Hamming weight of all the qubits 1
up until j− 1 using the Hammingweight-gate shown in Table 3.4; Step (3) cleans
the copies of the system register by applying fan-out. This step is omitted from
the equations, but is included in the graphical explanation of the circuit, shown
in Figure 3.9 for n = 4. Note that at the end of the calculation, it is convenient
to teleport the Hamming weight registers next to the system register. There are
now n new registers containing the information of the Hamming weight, we will
refer to them as the Hamming weight registers. This step requires O(n2 log(n))
qubits.

H
am

m
ingw

eight

H
am

m
ingw

eight

Teleport state to correct location

Figure 3.9: Circuit to implement of the Hamming weight calculation of all qubit
strings l to n−1 in four steps in parallel. The black dots represent system qubits,
the pink squares represent log(k) qubit registers that can count the Hamming
weight up until k.

The last step that remains is to clean the k index registers. Cleaning the k
index registers follows similar steps as the Compress method in the W -state
protocol, with the added Hamming-weight information taken into account. This
step requires k copies of the system registers well as k copies of the Hamming-
weight registers. Every index register is paired with one copy of the system
register and a copy of the n Hamming-weight registers. Cleaning the j-th register
consists of five steps, similar to the Compress method of the W -state: Step
(1) applies Hadamard gates to bring the index register to phase space, in which
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CNOT -gates are diagonalized; Step (2) copies the index register; Step (3) uses
the information in the Hamming-weight and system register to apply the phases
to the correct index register qubits; Step (4) cleans the index register copies; and,
Step (5) applies Hadamard gates to reset the index register qubits to the |0⟩ state

Figure 3.10 shows the steps taken to clean a single index register j. The
black dots represent the qubits in the system register and the upper row of blue
dots represent the qubits in index register j. The pink squares represent the
ancilla Hamming weight register, where each square represents a group of log(k)
qubits. This step requiresO(nk log(k) log(n)) qubits. At the end of the Cleaning
operation the state is as desired:

1√(
n
k

) n−1∑
j1<···<jk

|0⟩ . . . |0⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ .

The Cleaning step requires O(n2 log(n)) qubits. 2

H H H H

Z

Z

Z Z

Figure 3.10: Circuit to clean index register j. The black dots represent qubits
in the system register and the blue dots the index register and its copies. The
pink squares represent the ancilla Hamming weight register and its copies. Each
pink square represents a group of log(k) qubits. Each of the five grids represents
a single timeslice in the circuit.

3.4.10. Theorem. For any n and k = O(
√
n) there exists an LAQCC circuit

preparing the Dicke-(n, k) state, |Dn
k ⟩, using O(n2 log(n)) qubits.

Proof:
The circuit combines the circuits resulting from Lemmas 3.4.6, 3.4.7, 3.4.8 and
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3.4.9. It consists of four steps:

|0⟩i1
. . . |0⟩ik

|0⟩s1

(1)−→ 1
nk/2

n−1∑
j1,...,jk=0

|j1⟩i1
. . . |jk⟩ik

|ej1 ⊕ · · · ⊕ ejk
⟩s1

(2)−→
√

(n− k)!
n!

n−1∑
j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩

(3)−→ 1√(
n
k

) n−1∑
j1<···<jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩

(4)−→ 1√(
n
k

) n−1∑
j1<···<jk

|0⟩ . . . |0⟩ |ej1 ⊕ · · · ⊕ ejk
⟩

Step (1) implements Filling using Lemma 3.4.6 requiring
O(kn log(n) log(log(n))) qubits; Step (2) implements Filtering using
Lemma 3.4.7 requiring O(kn log(n)) qubits; Step (3) implements Order-
ing using Lemma 3.4.8 requiring O(k2 log(n)2) qubits; Step (4) implements
Cleaning using Lemma 3.4.9 requiring O(n2 log(n)) qubits. After every step
ancilla qubits are cleaned, so that they can be reused. As k = O(

√
n) the largest

amount of qubits required for a step is Step (4) requiring O(n2 log(n)) qubits. 2

Bärtschi and Eidenbenz posed a conjecture on the optimal depth of quantum
circuits that prepare the Dicke-(n, k) state. They give an algorithm for gener-
ating Dicke-(n, k) states in depth O(k log(n

k
)), given all-to-all connectivity, and

conjecture that this scaling is optimal when k is constant. Our result shows
that there is a LAQCC implementation in this regime, when one has access
to intermediate measurements and feed forward. This does not disprove their
conjecture.

3.4.4 Dicke states for all k using log-depth quantum cir-
cuits

The previous section gave a constant-depth protocol to prepare the Dicke-(n, k)
state for k = O(

√
n). We developed a different method for creating Dicke-(n, k)

states which requires logarithmic (in n) quantum depth to prepare Dicke-(n, k),
but works for arbitrary k. We first define what we mean with logarithmic quantum
depth:

3.4.11. Notation. We let LAQCC -LOG refer to the instance
LAQCC(QNC0,NC1,O(log(n))), similar to LAQCC except that we allow for
a logarithmic number of alterations between quantum and classical calculations.
This results in a circuit of logarithmic quantum depth.

In this section we show a LAQCC -LOG circuit that creates the Dicke-(n, k) state.
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One way of studying the creation of Dicke states is by looking at efficient
algorithms that convert numbers from one representation to another. An example
of this is the Uncompress-Compress method in the W -state protocol, that
converts numbers from a binary representation to a one-hot representation. Dicke
states are a generalization of the W -state, hence the one-hot representation no
longer suffices for preparing the state. Instead, we use a construction based on
number conversion between the combinatorial representation and the factoradic
representation. Below we introduce both representations and present quantum
circuits that map between the two. Theorem 3.4.21 proves that a LAQCC -LOG
circuit can prepare the Dicke-(n, k) state for any k.

Combinatorial number system

An interesting result showed that any integer m ≥ 0 can be written as a sum of k
binomial coefficients [Bec64]. For fixed k, this is even unique as the next lemma
shows.

3.4.12. Lemma ([Bec64]). For all integers m ≥ 0 and k ≥ 1, there exists a
unique decreasing sequence of integers ck, ck−1, . . . , c1 with cj > cj−1 and c1 ≥ 0
such that

m =
(
ck

k

)
+
(
ck−1

k − 1

)
. . .

(
c1

1

)
=

k∑
i=1

(
ci

i

)
.

This lemma allows for the definition of the combinatorial number representa-
tion:

3.4.13. Definition. Let k ∈ N be a constant. Any integer m ∈ N can be
represent by a unique string of numbers (ck, ck−1 . . . , c1), such that ck > ck−1 · · · >
c1 ≥ 0 and ck ≤ m. This string is given by the unique decreasing sequence of
Lemma 3.4.12. We call this string the index representation denoted by mindx(k).

The bit string of k ones at indices (ck, . . . , c1) is the m-th bit string with
k ones in the lexicographical order. This bit string is called the combinatorial
representation. We denote the m-th bit string with k ones as mcomb(k).

The W -state protocol used the conversion between the binary representation
of a number m and its combinatorial representation mcomb(1). A generalized num-
ber conversion is precisely the protocol needed to prepare Dicke states.

A sketch of the protocol would be as follows: given positive integers k and n:
Create a superposition state

(
n

k

)− 1
2 (n

k)−1∑
i=0
|i⟩ |0⟩ ;
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Use number conversion to go from label i to icomb(k)

(
n

k

)− 1
2 (n

k)−1∑
i=0
|i⟩
∣∣∣icomb(k)

〉
;

Use number conversion from icomb(k) to i to clean up the label register
(
n

k

)− 1
2 (n

k)−1∑
i=0
|0⟩

∣∣∣icomb(k)
〉

= |Dn
k ⟩ .

The conversion map from the combinatorial representation to the binary rep-
resentation is given by Lemma 3.4.12. This calculation requires iterative mul-
tiplication and addition, both of which are in TC0, hence this calculation is in
TC0.

The converse mapping, from binary to combinatorial representation for given
k, can be achieved by a greedy iterative algorithm: On input m, find the biggest
ck such that m ≥

(
ck

k

)
and subtract this from m: m̃ = m−

(
ck

k

)
. This gives ck and

a residual m̃. Repeat this process for m̃: Find the largest cj such that m̃ ≥
(

cj

j

)
and update residual m̃ = m̃−

(
cj

j

)
, until all cj are found.

This greedy algorithm is inherently linear in k as it requires all previously
found {ci}k

i=j to find cj−1. Hence, it is not immediately obvious if and how to
achieve this mapping in constant or even logarithmic depth.

Mapping between factoradic representation and combinatorial number
system

A number representation closely related to the combinatorial number representa-
tion is the factoradic representation. This number system uses factorials instead
of binomials to represent numbers.

3.4.14. Definition. A sequence y = (yn−1, yn−2, . . . , y0) of integers, such that
j ≥ yj ≥ 0 is called a factoradic, or more explicitly an n-factoradic. The elements
of an n-factoradic is called an n-digit. An n-factoradic y can represent a number
m between 0 and n!− 1, in the following way

m =
n∑
j

yj · j!. (3.6)

For a given m ∈ {0, . . . , n! − 1}, we call the n-factoradic y obeying the equality
above, the factoradic representation of m. Denote Fact(n) as the set of all n-
factoradics.

The following lemma shows that Equation 3.6 is a bijection, showing that the
factoradic representation is unique.
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3.4.15. Lemma. For k ≥ 0 it holds that:
k∑

i=0
i · i! = (k + 1)!− 1.

Proof:
Proof by induction.
BASE STEP: Let k be 0:

0 · 0! = 1!− 1
INDUCTION STEP: Assume the lemma holds for some j, then
j+1∑
i=0

i · i! = (j+ 1) · (j+ 1)! +
j∑

i=0
i · i = (j+ 1) · (j+ 1)! + (j+ 1)!− 1 = (j+ 2)!− 1,

which completes the proof. 2

This identity allows for using factorials as a base for a number system. The
next lemma gives a log-space algorithm to convert a factoradic representation to
its combinatorial representation.

3.4.16. Lemma. There is a logspace algorithm A that, given k ∈ {0, . . . , n},
and a uniformly random n-factoradic, outputs a uniformly random n-bit string of
Hamming weight k.

Proof:
The algorithm A is given k and an n-factoradic y = (yn−1, . . . , y0). It will then
output an n-bit string ycomb(k) = y

comb(k)
n−1 . . . y

comb(k)
0 ∈ {0, 1}n of Hamming weight

k, one bit at a time, from left to right, according to the following rule. Let
H>n−j = ∑n−1

i=n−j+1 y
comb(k)
i be the Hamming weight of the bits produced before

we reach bit n− j. Then y
comb(k)
n−j is given by:

(A(y))n−j = y
comb(k)
n−j =

1 if yn−j < k −H>n−j

0 otherwise
. (3.7)

This conversion requires comparing an n-digit with a constant and the Hamming
weight of a bitstring. The only information that A needs to remember, as it goes
from bit n − j + 1 to bit n − j , is the Hamming weight H>n−j of the bits it
produced so far, and this can be stored in logarithmic space.

Now note that the number of factoradic n-digit strings that map to the same
combinatorial bit string is always k!(n−k)!: Let ycomb(k) ∈ {0, 1}n have Hamming
weight k. For any bit position ycomb(k)

n−j , there are n− j+ 1− (k−H>n−j) possible
choices for the n-digit yn−j ∈ {0, . . . , n−j} that set ycomb(k)

n−j = 0. For the leftmost
index n − j such that ycomb(k)

n−j = 0, it holds that H>n−j = j − 1, and then there
are n− k possible n-digits yn−j that set ycomb(k)

n−j = 0. Then, for the second index
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n− j such that ycomb(k)
n−j = 0 it holds that H>n−j = j−2, hence there are n−k−1

possible n-digits yn−j causing ycomb(k)
n−j = 0. And so forth. This results in (n− k)!

different possible choices for the (n− k)-many n-digits where ycomb(k) = 0.
Similarly, for the leftmost position n−j where ycomb(k)

n−j = 1, there are k possible
choices for the n-digit yn−j that cause ycomb(k)

n−j = 1. The second leftmost position
n− j gives k − 1 possible choices, and so forth, for a total of k! possible settings
of the k-many n-digits where ycomb(k) = 0.

Combined, we conclude that, for every n-bit string ycomb(k) ∈ {0, 1}n of Ham-
ming weight k, there are exactly (the same number of) k!(n − k)! n-factoradics
y such that A(y) = ycomb(k). Hence, a uniformly random n-factoradic is mapped
by A to a uniformly random n-bit string of Hamming weight k, as claimed. 2

This lemma gives a logspace algorithm to convert a uniformly random n-
factoradic to a uniformly random n-bit string of Hamming weight k, for any k.
It is well known that logspace is contained in TC1, allowing this calculation to be
performed in parallel log-depth when one has access to threshold gates [Joh90].
As we saw in Section 3.3.2, we can compute a threshold gate in LAQCC. Hence,
an LAQCC -LOG can perform any TC1 calculation. We conclude:

3.4.17. Corollary. The following map can be implemented in LAQCC -LOG.

1√
n!

∑
y∈Fact(n)

|y⟩ |0⟩ −→ 1√
n!

∑
y∈Fact(n)

|y⟩ |A(y)⟩ .

In the next lemma, we show that a TC0 circuit can implement the inverse of A.

3.4.18. Lemma. There exists a TC0 algorithm which, when given an n-bit string
ycomb(k) of Hamming weight k, a uniformly-random k-factoradic, and a uniformly-
random (n − k)-factoradic, outputs a uniformly random n-factoradic y among
those such that A(y) = ycomb(k).

Proof:
The conversion can be done in parallel, generating an n-digit for every bit in
ycomb(k) = yn−1 . . . y0 ∈ {0, 1}n. Recall that we are given as input a uniformly-
random k-factoradic Ok−1, . . . , O0 and a uniformly-random (n − k)-factoradic
Zn−k−1, . . . , Z0.

For every bit position n− j, for 1 ≤ j ≤ n, calculate the Hamming weight of
the bits from n − j + 1 to n − 1: H>n−j = ∑n−1

i=j+1 y
comb(k)
i . Recall that iterated

addition is in TC0 [Vol99].
If ycomb(k)

n−j = 1, set yn−j = Ok−H>n−j
. This gives a uniform random n-digit

between 0 and k−H>n−j−1. If ycomb(k)
n−j = 0, set yn−j = k−H>n−j +Zn−k−H>n−j

.
Note that this gives a uniform random n-digit between k−H>n−j and n− j. By
construction, it now follows that A(y) = ycomb(k). Computing each n-digit in this
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way requires summation and indexing, both of which are in AC0 ⊆ TC0 [Vol99].
2

3.4.19. Remark. The above algorithm establishes a bijection (ycomb(k), Z,O)↔
y between triples (ycomb(k), Z,O) with ycomb(k) ∈ {0, 1}n of Hamming weight
k, Z ∈ Fact(n − k) and O ∈ Fact(k) and n-factoradics y ∈ Fact(n). Let
(A(y),Z(y),O(y)) be the image of an n-factoradic y under this bijection. The
previous lemma shows that one can compute y from (ycomb(k), Z,O) in TC0. It
is not hard to see that the map (A(y), y) 7→ (A(y), y,Z(y),O(y)) is also in TC0.
Indeed, to find Z(y) and O(y), we need only invert the two defining equalities
yn−j = Ok−H>n−j

and yn−j = k −H>n−j + Zn−k−H>n−j
.

3.4.20. Corollary. The following map can be implemented in LAQCC.(
n
k

)− 1
2 ∑

ycomb(k)

|0⟩
∣∣∣ycomb(k)

〉
−→ 1√

n!
∑

y∈Fact(n)
|y⟩ |A(y)⟩

where ycomb(k) ranges over all n-bit strings of Hamming weight k.

Proof:
The transformation consists of three steps:(

n

k

)− 1
2 ∑

ycomb(k)

∣∣∣ycomb(k)
〉
|0⟩ |0⟩ |0⟩

(1)−→
(
n

k

)− 1
2 ∑

ycomb(k)

∣∣∣ycomb(k)
〉n−k−1⊗

j=0

j∑
i=0
|i⟩

k−1⊗
j=0

j∑
i=0
|i⟩

 |0⟩
= 1√

n!
∑

ycomb(k)

∣∣∣ycomb(k)
〉 ∑

Z∈Fact(n−k)
|Z⟩

 ∑
O∈Fact(k)

|O⟩

 |0⟩
(2)−→ 1√

n!
∑

y∈Fact(n)
|A(y)⟩

∣∣∣Ẑ(y)
〉 ∣∣∣Ô(y)

〉
|y⟩

(3)−→ 1√
n!

∑
y∈Fact(n)

|A(y)⟩ |0⟩ |0⟩ |y⟩

Step (1) prepares a uniform superposition over all n-factoradics using Theo-
rem 3.4.1. Step (2) is Lemma 3.4.18, and Step (3) follows from Remark 3.4.19. In
the above steps we implicitly used that the inverse of the used LAQCC operations
are also LAQCC operations. Even though it is unclear if this inverse-property
holds in general, it does hold for the considered LAQCC operations. The mea-
surement steps, which might not be reversible, in this algorithm are used to
implement fan-out gates. The inverse of a fan-out gate is the fan-out gate itself
and hence is contained in LAQCC. 2
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3.4.21. Theorem. There exists a LAQCC -LOG-circuit for preparing Dicke-
(n, k) states, for any positive integers n and k ≤ n, it uses O(poly(n)) qubits.

Proof:
The circuit combines the circuits resulting from Lemma 3.4.16 and Lemma 3.4.18.

It consists of three steps:

|0⟩⊗n log(n) |0⟩⊗n (1)−→ 1√
n!

n−1⊗
j=0

j∑
i=0
|i⟩

 |0⟩⊗n =
∑

y∈Fact(n)
|y⟩ |0⟩

(2)−→ 1√
n!

∑
y∈Fact(n)

|y⟩ |A(y)⟩

(3)−→
(
n
k

)− 1
2 ∑

y∈Fact(n)
|0⟩ |A(y)⟩ = |Dn

k ⟩ .

Step (1) prepares a uniform superposition over all n-factoradics using Theo-
rem 3.4.1; Step (2) is by Corollary 3.4.17; and, Step (3) reverses the algorithm of
Corollary 3.4.20. 2

3.4.5 Quantum many-body scar states
There is a particular set of states in many-body physics, called many-body
scar states, which are highly excited states that exhibit atypically low entangle-
ment [Tur+18]. These states exhibit long coherence times relative to other states
at the same energy density and seem to avoid thermalization and thereby they do
not follow the eigenstate thermalization hypothesis. This makes studying the life-
time of quantum many body scar states under perturbations particularly interest-
ing. Studying this lifetime is quite challenging, as even though scarred eigenstates
often have modest entanglement and therefore have efficient matrix product state
representations, perturbations typically couple them to states nearby in energy
which typically have volume-law scaling entanglement, making classical simula-
tions difficult.

An overview paper by Gustafson et al. studied methods of preparing quantum
many-body scar states on quantum computers, with the goal to simulate time dy-
namics directly on the quantum system [Gus+23]. They found several approaches
for generating quantum many-body scars for a particular model, which require
polynomial depth. They look at quantum many-body scar states of the n-qubit
spin-1/2 Hamiltonian of [IS20]:

H = λ
n−1∑
i=2

(Xi − Zi−1XiZi+1) + ∆
n∑

i=1
Zi + J

n−1∑
i=1

ZiZi+1
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The quantum many-body scar states of n-qubits are given by:

|Sk⟩ = 1
k!
√
N (n, k)

(Q†)k |Ω⟩ ,

where N (n, k) =
(

n−k−1
k

)
, |Ω⟩ = |0⟩⊗n and k = 0, . . . , n/2 − 1. The raising

operator Q† is given by:

Q† =
n−1∑
i=2

(−1)iPi−1σ
+
i Pi+1,

with Pj = |0⟩ ⟨0| and σ+
j = Xj + Yj. They show that up to local Z gates these

states are very closely related to Dicke states:∏
i odd

Zi |Sk⟩ = |0⟩ ⊗ Pfib |Dn
k ⟩ ⊗ |0⟩ ,

where Pfib is known as the Fibonacci constraint, which is a projector that removes
all states where there are two ones next to each other:

Pfib = I −
n−1∑
i=1
|11⟩ ⟨11|i,i+1 .

The goal of this section is to show that these states, for k = O(
√
n) are accessible

in LAQCC. First note that by Theorem 3.4.10 there exists a LAQCC protocol to
generate |Dn

k ⟩ up to k = O(
√
n). We will show that there is a LAQCC protocol

that applies Pfib to these |Dn
k ⟩ states. Here we write Pfib |Dn

k ⟩ = |F n
k ⟩ as the part

of the state that adheres to the Fibonacci constraint, and (I − Pfib) |Dn
k ⟩ =

∣∣∣F n
k

〉
as the part of the state that does not. Note that both |F n

k ⟩ and
∣∣∣F n

k

〉
are not

normalized, therefore |Dn
k ⟩ = α |F n

k ⟩ +
√

1− α2
∣∣∣F n

k

〉
for some real α dependent

on k and n. The first step will be to show that there exists a unitary accessible
in LAQCC that flags the state |F n

k ⟩.

3.4.22. Lemma. There exists a unitary Ufib, accessible in LAQCC, that flags all
the states that obey the Fibonacci constraint, more precisely:

Ufib |Dn
k ⟩ |0⟩ = α |F n

k ⟩ |0⟩+
√

1− α2
∣∣∣F n

k

〉
|1⟩

Proof:
Add n extra qubits prepared in |0⟩, one for every sequential pair of qubits. For all
i ∈ {1, . . . , n− 1}, apply a Toffoli gate with control qubits i and i+ 1 and target
qubit the i-th auxiliary qubit. The second step is to apply the ORn gate on the n
auxiliary qubits. The n-th auxiliary qubit is also used as the output qubit. Clean
the extra qubits by again applying Toffoli gates. These steps are accessible in
LAQCC therefore implements the flag unitary with an LAQCC protocol. 2

The second step is to show that α is bounded by a constant in the case that
k = O(

√
n), this is shown using the following two lemma’s.
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3.4.23. Lemma. The total number of bitstrings of length n with k ones, such that
no two ones are adjacent is given by:(

n− k
k

)
+
(
n− k − 1
k − 1

)

Proof:
We can count the number of possible bitstrings, after first noticing that every
1 must be followed by a 0, unless the last bit is a 1. As a result, we have two
situations, in the first, we can consider all possible rearrangements n−k elements,
consisting of k pairs ‘10’ and n − 2k ones. This gives

(
n−k

k

)
possible bitstrings.

In the second situation, the last bit is 1. This leaves k − 1 pairs ‘10’ in a total
of n − k − 1 elements. With the same reasoning, this gives

(
n−k−1

k−1

)
possible

bitstrings. Summing the two situations proves the lemma. 2

We now consider the relative fraction of this type of bitstrings among all
possible bitstrings with Hamming-weight k.

3.4.24. Lemma. Let k = c
√
n for some constant c > 0. Then the following

inequality holds (
n−k

k

)
+
(

n−k−1
k−1

)
(

n
k

) ≥ exp
(
− c2

)
Proof:
We have(

n−k
k

)
+
(

n−k−1
k−1

)
(

n
k

) >

(
n−k

k

)
(

n
k

) = (n− k)!/k!(n− 2k)!)
n!/k!(n− k!) = (n− k)!2

n!(n− 2k)! .

Expanding the factorials and only consider the terms that do not cancel, we
obtain

(n− k)!
n!

(n− k)!
(n− 2k)! = (n− k)(n− k − 1) . . . (n− (2k − 1))

n(n− 1) . . . (n− (k − 1)) .

Both the numerator and denominator have K terms, which we can pair. next we
note that a

b
> a−1

b−1 whenever b > a (and b ̸∈ {0, 1}). Using this idea, we obtain
the following expression:

n− k
n

n− k − 1
n− 1 . . .

n− (2k − 1)
n− (k − 1) > (n− k

n
)k = (1− k

n
)k.

Now using that k = c
√
n, we have

(
1− c

√
n

n

)c
√

n

=

(1− c√
n

)√
n

c


c2

> exp
(
− c2

)
,
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which is a constant. 2

This allows us to construct the state |Sk⟩ using the steps for the Dicke-state
preparation together with Lemma 3.3.13. Note that Lemma 3.3.13 requires us to
implement both U and U †, where U implements the initial superposition. The
Ordering step (Lemma 3.4.8) contains measurements, therefore, it is not obvious
how to implement U †. Still, we can work around this, by applying Lemma 3.3.13
between the Filtering and Ordering step:

3.4.25. Theorem. For any n and k = O(
√
n) there exists a LAQCC circuit

preparing the many-body scar state |Sk⟩, using O(n2 log(n)) qubits.

Proof:
We follow the same steps as for the Dicke-state preparation (see Theorem 3.4.10).
After the second Filtering step however, we apply the unitary Ufib together with
Lemma 3.3.13 to filter out all states with subsequent ones in the state. Note that
by Lemma 3.4.24, the number of states with no consecutive ones is a constant
fraction of the total number of strings of Hamming-weight k.

Furthermore, the state after the Filtering step,√√√√(n− k)!
(n)!

∑
j1 ̸=... ̸=jk

|j1⟩ . . . |jk⟩ |ej1 ⊕ · · · ⊕ ejk
⟩ ,

is still entangled with the index registers. In effect there are many copies of the
Dicke-(n, k) state on the system register, each with a different ordering of the
index registers, however, this does not affect the fraction of states with no con-
secutive ones compared to the states with consecutive ones. Next, the Ordering
and Cleaning steps of the protocol work similarly on the resulting state and will
give the state |Sk⟩. 2

This shows that the states |Sk⟩ can be prepared in LAQCC for k = O(
√
n),

however it does not say anything about larger k. The method described above is
vitally dependent on the fact that α is a constant when k is at most O(

√
n) and

as far as we know can not be extended beyond this situation. However, this is
not to say that this gives a proof that it is not possible for larger k. We simply
do not know how to extend this technique to include k = ω(

√
n), and we suspect

that other techniques are required to find an algorithm in LAQCC preparing this
state for larger k.

3.5 Open problems
Finally, we highlight several open problems that suggest promising directions for
further investigation of the LAQCC model
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Comparing LAQCC and QNC1. As mentioned in Section 3.3.4 it seems natu-
ral that LAQCC would be bounded by QNC1, since the model augments constant-
depth quantum computation with intermediate NC1 classical computations. How-
ever, as it turns out, it is not very clear that this is true. It would be interesting
to find an example where QNC1 and LAQCC differ, or to show containment of
LAQCC.

Bounding LAQCC. So far, the only known upper bound on the LAQCC model is
BQP. While it seems highly unlikely that LAQCC captures the entirety of Qpoly,
no explicit examples are known of states that can be realized within Qpoly but not
in LAQCC. Identifying such states—and characterizing their properties—would
provide valuable insight into the precise computational power of measurement
and feed-forward.

Optimizing our constructions. Although our constructions have constant
depth, they are unlikely to be optimal. In particular, for the preparation of
the Dicke-(n, k) state, the circuit does not scale with n or k, but the constant
overhead is nevertheless very large. It would be interesting to investigate whether
these constructions can be further optimized. One possible direction is to relax
the requirement of exact state preparation and instead allow for small infidelity.
For example, [PSC24] proposes novel protocols for preparing both the W state
and Dicke-(n, k) states with k = O(1), where a small infidelity is tolerated. This
relaxation leads to significantly simpler protocols.

Finding LAQCC circuits for other types of states. Perhaps the most com-
pelling direction is to develop new protocols for state preparation within LAQCC.
By pursuing entirely different approaches, one might discover constant-depth
LAQCC protocols for Dicke-(n, k) states that extend beyond the current restric-
tion of k = O(

√
n) Another particularly interesting target, closely connected

to recently suggested protocols for many-body scar states, is the Bethe ansatz
ground state [Sop+22]. The most interesting regime of the Bethe ansatz state is
at half filling, k = n

2 , however, as far as known to the authors, there exists no
deterministic efficient method of preparing these states, even though they have
relatively low entanglement similar to the |Sk⟩ states. It would be interesting to
see if in an easier regime, maybe k = O(

√
n), one can find a LAQCC circuit for

preparing these types of states.

Complexity of LAQCC∗: Another interesting direction for future work is to
further investigate the inclusion: StateLAQCC∗ε

O ⊆ StatePostQPolyOε . Maybe
one can find an oracle separation between the two classes. One approach is
to use a similar oracle as used in [AK07] to separate QMA and QCMA with
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respect to an oracle and use a counting argument to argue that StateLAQCC∗ε
O ̸=

StatePostQPolyOε , for some oracle O and ε = 1− 1
poly(n) .

One round vs multiple rounds of measurements. The last interesting di-
rection for studying the state complexity of LAQCC is in the fact that the LAQCC
model allows for a constant number, more than one, of rounds of measurements
and corrections. This was required for our three new state generation protocols.
However other models considered only one round of measurements and correc-
tions, for instance in the paper [PSC21]. One may wonder if there is a hierarchy
of model power allowing one or multiple measurements, and if there is a way to
reduce the number of measurements rounds. A starting effort towards classifying
types of states based on such a hierarchy can be found in [TVV23b]. It would
be interesting to see a more extensive complexity theoretic analysis comparing
models with different number of allowed rounds.

3.A Useful lemmas
This section gives two lemmas. The first lemma upper bounds the computational
power of LAQCC. The second lemma helps in preparing Dicke states for k ∈
O(
√
n).

3.A.1. Lemma. Let Π = (Πyes,Πno) be a decision problem in NC1. Then there
is a uniform log-depth quantum circuit that decides on Π.

Proof:
Let B be the uniform Boolean circuit of logarithmic depth deciding on Π. As
Π ∈ NC1, such a circuit exists.

For fixed input size n, write B as a Boolean tree of depth O(log(n)), with at
its leaves the n input bits xi and as root an output bit. This Boolean tree directly
translates in a classical circuit using layers of AND, OR and NOT gates.

Each of these gates has a direct quantum equivalent gate, provided that we
use ancilla qubits: First replace all OR gates by AND and NOT gates. Then
replace all AND gates by Tofolli gates, which has three inputs. The third input
is a clean ancilla qubit and will store the AND of the other two inputs. Finally,
replace all NOT gates by X-gates. 2

3.A.2. Lemma. Let n, k ∈ N and k < n
2 then:

n!
nk(n− k)! > e−

2k2
n
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Proof:
The result follows by a simple computation

n!
nk(n− k)! = e

∑k

i=1 log(1− i
n

)

> e
∑k

i=1
−i

n−i

> e
∑k

i=1
−i

n−k

> e−
k2

n−k

> e−
2k2

n ,

where we use that log(1 + x) ≥ x
1+x

for x > −1.
2

3.B Gate implementations

3.B.1 OR-gate
In this section we discuss the implementation of the ORn-gate and why we can
implement it using local gates in a nearest-neighbor architecture. We show how
the gate works for any basis state |x⟩ = |x1⟩⊗. . .⊗|xn⟩. By linearity, the gate then
works for arbitrary superpositions. The OR-gate by Takahashi and Tani consists
of two steps: First they apply the OR-reduction introduced in Ref. [HŠ05], which
prepares a state on log n qubits such that the OR evaluated on these log n qubits
yields the same result as the OR evaluated on the original n qubits. Second, they
evaluate an exponential circuit on these log n qubits to calculate the OR-gate.
This results in a polynomial-sized circuit for the OR-gate.

Let m = ⌈log2(n+ 1)⌉, then the OR-reduction implements the map

|x⟩ |0⟩⊗m → |x⟩
m⊗

j=1

∣∣∣µ|x|ϕj

〉
,

where φj = 2π
2j and

∣∣∣µ|x|φ

〉
= HRZ(φ · |x|)H |0⟩. The OR-reduced state thus de-

pends on the weighted Hamming weight of x, more precisely, every
∣∣∣µ|x|ϕj

〉
depends

on the entire string x. For every
∣∣∣µ|x|ϕj

〉
this requires a copy of |x⟩ which can be

created by using the fanout gate. The circuit applying the rotation RZ(φ · |x|)
consists of sequential RZ gates, which are diagonal and hence can be implemented
in parallel by Lemma 3.3.11. This results in a circuit of width O(n log(n)) for
creating the OR-reduced state.
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We have for every bitstring x ∈ {0, 1}n that

ORn(x) = 1
2n−1

∑
a∈{0,1}n\{0n}

PAa
n(x),

where PAa
n(x) = ⊕n−1

j=0aixi is the parity of x, weighted by the non-zero binary
vector a. Hence, computing the OR of the input is now reduced to computing all
parities of the subsets of the inputs. The parity gate is equivalent to a fanout-gate
conjugated by Hadamard gates on every qubit, see also Table 3.1.

We now copy the m qubits of the OR-reduced state 2m = n times, using
fanout gates. For each copy we require two additional auxiliary qubits. The
first will hold the result of the parity computation, for which we already have
a nearest-neighbor implementation. We will entangle the second auxiliary qubit
using a fanout-gate to obtain a GHZ-state in these qubits.

We now compute in parallel the parity of the subsets of the inputs. For
every subset we use a single copy of the inputs and we store the result in the
corresponding auxiliary qubit. We then apply a controlled-RZ gate from the first
auxiliary qubit to the second auxiliary qubit in the GHZ state. This prepared
the state (omitting other registers)
1√
2

(|0⟩n−1+(−1)
1

2n−1
∑

a∈{0,1}m\{0m} PAa
m(x) |1⟩⊗n−1) = 1√

2
(|0⟩n−1+(−1)ORn(x) |1⟩⊗n−1).

Uncomputing this final state using a fanout-gate gives a single qubit that holds
the desired answer in its phase. A single Hadamard gate applied to this qubit
will then give the answer in a single qubit.

Combining all steps thus gives an implementation for the OR gate using a geo-
metrically local nearest-neighbor circuit. For more details on the implementation
as well as a proof of correctness, we refer to the original proof [TT13].

3.B.2 Equality-gate
Define the Equality gate on two n-qubit computational basis states as

Equality : |x⟩ |y⟩ |0⟩ 7→ |x⟩ |y⟩ |1x=y⟩ .

This gate is implemented in three steps: (1) subtract the first register from the
second using a subtraction circuit; (2) apply Equal0 on the second register and
store the result in the third register; (3) add the first register to the second,
undoing the subtraction computation:

|x⟩ |y⟩ |0⟩ −→
(1)
|x⟩ |y − x⟩ |0⟩

−→
(2)
|x⟩ |y − x⟩ |1x=y⟩

−→
(3)
|x⟩ |y⟩ |1x=y⟩
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Addition and subtraction both have width O(n2), which, as a result, the Equality-
gate also has.

3.B.3 Greaterthan-gate
Define the Greaterthan gate on two n-qubit computational basis states as

Greaterthan : |x⟩ |y⟩ |0⟩ 7→ |x⟩ |y⟩ |1x>y⟩ .

This gate is implemented in four step: (1) Add an extra clean qubit to the second
register and interpret this as an n+1-qubit register with most significant bit zero;
(2) subtract the first register from the second. The subtraction is modulo 2n+1;
(3) apply a CNOT-gate from most significant bit of the second register to the
third register; (4) add the first register to the second, undoing the subtraction
computation:

|x⟩ |y⟩ |0⟩ −→
(1)
|x⟩ |0y⟩ |0⟩

−→
(2)
|x⟩

∣∣∣y − x mod 2n+1
〉
|0⟩

−→
(2)
|x⟩

∣∣∣y − x mod 2n+1
〉
|1x>y⟩

−→
(3)
|x⟩ |0⟩ |y⟩ |1x>y⟩

This construction works, as after step (2), the most significant bit of the second
register is one, precisely if x is larger than y.

Addition and subtraction both have width O(n2), which, as a result, the
Greaterthan-gate also has.

3.B.4 Exactt-gate
Define the Exactt gate on an n-qubit computational basis state as

Exactt : |x⟩ |0⟩ 7→ |x⟩
∣∣∣1|x|=t

〉
.

Here, |x| denotes the Hamming weight of the n-bit string x.
This gate follows by combining the Hammingweight-gate and the Equality-

gate: First, compute the Hamming weight of x in an ancilla register and then
apply the Equality gate to check that this ancilla register equals t.

Another approach is to modify the circuit forOR slightly. In theOR-reduction
step, add a gate RZ(−φt), which adjusts the angle to be zero precisely if |x| = t

(see Theorem 4.6 of [HŠ05]). Then apply the circuit for OR and negate the
output. The circuit for OR evaluates to zero, precisely if the input had Hamming
weight t.
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3.B.5 Thresholdt-gate
Define the Thresholdt gate on an n-qubit computational basis state as

Thresholdt : |x⟩ |0⟩ 7→ |x⟩
∣∣∣1|x|≥t

〉
.

Taking the OR over the outputs of Exactj-gates for all j ≥ t, gives the
Thresholdt-gate. An improved implementation with better scaling in t is given in
Theorem 2 of [TT13].

A weighted threshold gate uses weights wi and evaluates to one precisely if∑
i wixi ≥ t. Assume without loss of generality that ∑i wixi evaluates to an

integer. Otherwise, we can use the same ideas, but up to some precision.
Use the same OR-reduction as for the normal threshold gate. Instead of

rotations RZ(φ) controlled by xi, we use rotations RZ(wiφ) controlled by xi.
This implements the weighted threshold gate.
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Chapter 4
Catalytic computation

In this part of the thesis, we explore the field of space-bounded complexity. Here,
the central question is not how long it takes to solve a problem, but whether it can
be solved using only a limited amount of memory. This is of particular interest in
near-term quantum computing, as the number of physically achievable qubits is
still very limited, especially in the near-term error-corrected regime. The second
resource we introduce for boosting the power of these devices is aimed at reducing
the space required to run quantum algorithms. This resource is the presence of a
catalyst.

A well-known tool in chemistry to facilitate chemical reactions is a catalyst,
a substance that speeds up the chemical reaction or lowers the required energy
without being altered by the reaction. It can enable processes that, without it,
might be too slow, inefficient, or even impossible, all while being restored to its
original state at the end of the chemical reaction. The concept of a catalyst is
not limited to chemistry and can be found in the field of quantum information
theory. There, catalysts in the form of entangled states are widely recognized for
their counterintuitive abilities to enable (state) transformations that are otherwise
infeasible (see survey by Lipka et al. [LWN24]). A related concept, known as
catalytic embedding, was recently introduced in the context of circuit synthesis
as an alternative to traditional gate approximation methods in quantum circuit
design [Amy+23].

In classical space-bounded computation, Buhrman, Cleve, Koucký, Loff, and
Speelman [Buh+14] introduced the notion of catalytic memory, leading to the
computational model now known as catalytic computing. The central idea is that
a large memory resource, containing arbitrary data, may be made available to a
computation, provided that this memory is returned to its original state at the
end of the process. This model has proven valuable for reducing the amount of
additional working space required in classical computations.

In the quantum setting, we ask whether an analogous notion of quantum cat-
alytic memory could enable similar space reductions. Establishing such a model

81



82 Chapter 4. Catalytic computation

could reveal new trade-offs between space and time in quantum algorithms.
In this chapter, we introduce the theory of classical catalytic computing and

highlight the key questions it raises for quantum analogues. These questions will
guide the investigations of the following two chapters.

4.1 The catalytic computing model
Catalytic computing was originally introduced by Buhrman, Cleve, Koucký, Loff,
and Speelman [Buh+14], and discusses the following idea: What if one gives a
space-bounded machine access to a hard drive that is already full with informa-
tion. During the computation this machine can change the information on the
hard drive as needed, as long as at the end of the calculation the original infor-
mation is perfectly restored. In this way the additional full hard-drive is used
as a catalyst, giving power to the computation without being altered. A graphic
representation of this idea can be found in Figure 4.1

Figure 4.1: An explanatory graphic illustrating catalytic computing. The space-
bounded machine (the “clean space”: s) is represented by the computer, while
the catalyst is depicted as a hard drive containing holiday images. During com-
putation, the machine may temporarily alter these images, but by the end, the
hard drive is restored exactly to its original state.

It is not immediately obvious that such an approach is useful at all, as the
original contents of the hard drive need to be perfectly recovered. Even worse,
this has to happen for any possible instantiation of the hard drive.

To formalize this idea, Buhrman et al. [Buh+14] introduced the catalytic Tur-
ing machine, which models a computation with both limited clean space and an
auxiliary catalytic tape.

4.1.1. Definition (Catalytic Turing Machine). A catalytic Turing Machine is a
space-bounded Turing machine with two work tapes: 1) a read-write work tape
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of length s(n) which is initialized to 0s(n), and 2) a read-write catalytic tape of
length c(n) ≤ 2s(n) which is initialized to an arbitrary state τ ∈ {0, 1}c(n). On
any input x ∈ {0, 1}n and initial catalytic state τ , a catalytic Turing machine has
the property that at the end of the computation, the catalytic tape will be in the
initial state τ .

With the catalytic Turing machine defined, we can formally introduce the
corresponding complexity class, catalytic space.

4.1.2. Definition (Catalytic space). We write CSPACE[s, c] as the class of lan-
guages that can be recognized by catalytic Turing machines with work space
s := s(n) and catalytic space c := c(n).

The main object being studied in [Buh+14] is a more specific parameter setting
of catalytic space, which they call catalytic log-space:

4.1.3. Notation. In the specific setting where s(n) = O(log(n)) and c(n) =
O(poly n), we call the catalytic space class: catalytic log-space, and we write
CL := CSPACE[O(log n), poly n].

Surprisingly, [Buh+14] show that CL can be much more powerful than L, with the
catalytic tape being at least as powerful a resource as non-determinism (NL ⊆ CL),
randomness (BPL ⊆ CL), and more (TC1 ⊆ CL). They also showed that its power
is nevertheless limited and falls far short of PSPACE, namely CL ⊆ ZPP.

Since the original introduction, many works have studied classical catalytic
space from a variety of angles, including augmenting catalytic machines with other
resources such as randomness or non-determinism [Buh+18; Dat+20; Coo+25;
Kou+25], considering non-uniform models such as catalytic branching programs
or catalytic communication complexity [Pot17; CM22], analyzing the robustness
of classical catalytic machines to alternate conditions [BDS22; Bis+24; Gup+24],
and so on.

Perhaps most important, the utility of classical catalytic computation has been
strikingly demonstrated in its use as a subroutine in an ordinary space-bounded
computation: avoiding linear blowups in space when solving many instances of
a problem. The most impactful result is the Tree Evaluation algorithm of Cook
and Mertz [CM24], which was the key piece in Williams’ recent breakthrough on
time and space [Wil25].

4.2 Catalysis in quantum computation
A natural question is to unify the catalytic model with the standard quantum
computational framework. In this part of the thesis, we take a first step toward
that goal by initiating the study of catalytic techniques in the quantum setting.
The classical catalytic model enjoys several properties that appear particularly
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promising for quantum computation, including reversibility[Dul15; Coo+25] and
average-case runtime bounds[Buh+14]. This raises a central question:

How does the computational power of the catalytic model change when it is
allowed to perform quantum operations?

An even more pressing motivation comes from the severe space constraints
in quantum computation. In the classical setting, catalytic subroutines have led
to remarkable reductions in the space required for certain computations[Wil25;
CM24]. If analogous space-saving techniques can be developed in the quantum
setting, they could have a significant impact, particularly for the feasibility of
computations on near-term quantum devices.

4.3 Organization of this part
This part of the thesis contains two chapters. In the first chapter, we will take
a detour from quantum algorithms and discuss classical catalytic computing in
the presence of errors. In this section we give a full classification of the power of
the class of lossy catalytic space, a model in which one is not required to reset
the catalytic space perfectly, but instead up to some small error, in the form of
limited number of bit flips.

In the second chapter, we introduce quantum catalytic space. We discuss
the relation between quantum catalytic space and its classical counterpart, and
furthermore we show a relation between quantum catalytic computing and the
one clean qubit model, finishing with showing that classical catalytic computing
is contained in the one clean qubit model.



Chapter 5
Lossy catalytic computation

In this chapter, we deviate slightly from our main narrative of aiding quantum
computations and focus instead on a problem in classical catalytic computa-
tion—specifically, the robustness of the catalytic model. This problem is inspired
by our broader efforts to connect quantum and catalytic computation.

A natural issue that arises when working with quantum computers is the pres-
ence of errors. Even when these errors are not due to imperfections in hardware,
they can still occur—for example, from approximating a unitary using a finite
gate set, or from measurements performed during a calculation. These errors
can disturb the catalyst, making it impossible to recover its original state. The
original definition from [Buh+14] is not robust to such errors—it assumes perfect
resetting of the catalytic tape. Therefore, there is a natural question to ask:

What does a model of catalytic computing look like in the presence of error?

This question was first posed by Gupta et al. [Gup+24]. They initiated the
study of lossy catalytic computing, a model of catalytic computation wherein the
catalytic tape need not be exactly restored to its initial configuration at the end
of the calculation. This model, which we refer to as LCSPACE, essentially asks
how robust the core definition of catalytic space is to seemingly small relaxations.
They start by giving a definition of a lossy catalytic Turing machine:

5.0.1. Definition (Lossy catalytic Turing machines). A lossy catalytic Turing
machine with e(n) errors is a catalytic machine where at the end of the compu-
tation on any input x ∈ {0, 1}n and initial catalytic state τ , instead of requiring
that the catalytic tape be in state τ , the catalytic tape can be in any state τ ′
such that τ and τ ′ differ in at most e(n) locations, i.e. ∆(τ, τ ′) ≤ e(n).

This allows for the definition of LCSPACE:

5.0.2. Definition (Lossy catalytic space). We write LCSPACE[s, c, e] as the
class of languages which can be recognized by lossy catalytic Turing Machines with
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workspace s := s(n), catalytic space c := c(n), and e := e(n) errors. Furthermore,
we specify lossy catalytic log-space as the specific parameter setting where s(n) =
O(log n) and c(n) = O(poly n) and write LCL[e] := LCSPACE[O(log n), poly n, e].

To begin, note that LCL[e] with e ≤ poly(n) errors trivially contains the class
SPACE[e] by simply erasing the first e bits of the catalytic tape and using them
as free memory. We have not managed to prove that any space-bounded class
beyond L is contained in ZPP. Given that CL is contained in ZPP, proving an
equivalence between LCL[e] and CL for e = ω(log n) errors would immediately
show that SPACE[e] is contained in ZPP, which is unlikely. The question, then,
is to understand where, in the range of e = 0 to e = O(log n), is the acceptable
number of errors that CL can provably tolerate.

As an initial answer to the previous question, [Gup+24] show that CL gains
no additional power from allowing any constant number of errors on the catalytic
tape, i.e., LCL[O(1)] = CL. This remains the frontier of our knowledge, and
Mertz [Mer23] posed it as an open question to improve this result to any super-
constant number of errors, or, alternatively, to provide evidence against being
able to prove such a collapse.1

5.1 Our results
In this chapter, we completely characterize lossy catalytic space in terms of ordi-
nary catalytic space. Let CSPACE[s, c] denote catalytic machines with free space
s and catalytic space c, and let LCSPACE[s, c, e] be the same with up to e errors
allowed in resetting the catalytic tape. We show that these e errors are equivalent
to an additional e log c free bits of memory, up to constant factor losses.

5.1.1. Theorem. Let s := s(n), c := c(n), e := e(n) be such that e ≤ c1−Ω(1).
Then

LCSPACE[O(s),O(c), e] = CSPACE[O(s+ e log c),O(c)]

Besides characterizing LCSPACE[s, c, e], the main takeaway of Theorem 5.1.1
is that allowing seemingly minor (superconstant) errors in the resetting condition
can give an LCSPACE machine surprising power. A concrete instantiation of this
view is the following direct corollary.

5.1.2. Corollary. For any e := e(n),

LCL[e] = CL implies SPACE[O(e log n)] ⊆ ZPP
1We cannot expect an unconditional separation between CL and any LCL[e]. LCL[e] is con-

tained in PSPACE, simply by the fact that in PSPACE one has access to polynomial clean
memory that does not have to be reset at the end of the computation. Therefore, this clean
memory can act as the catalyst. Now as even separating PSPACE from e.g. TC1(⊆ CL) remains
wide open, we cannot unconditionally separate CL from LCL[e] for any e.
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If we revisit the assumption that we cannot hope to prove SPACE[e log n] is
in ZPP for any e = ω(1), then Corollary 5.1.2 implies the result of [Gup+24] is
optimal with respect to e; any result of the form LCL[ω(1)] = CL is out of reach.

We also show that our proof extends to catalytic machines with addi-
tional power—usual examples include non-determinism, randomness, or non-
uniformity—beyond errors; in fact, any “reasonable” classical catalytic setting
is sufficient.

5.1.3. Theorem. Let CBSPACE be any catalytic model such that SPACE[s] ⊆
CBSPACE[s, 0], and let s := s(n), c := c(n), e := e(n) be such that e ≤ c1−Ω(1).
Then

LCBSPACE[O(s),O(c), e] = CBSPACE[O(s+ e log c),O(c)]

This also gives a barrier to a more efficient removal of errors using additional
resources, as Corollary 5.1.2 also applies to all other variants.

We briefly remark that the e ≤ c1−Ω(1) restriction in all our results is only
required to get the constant stretch in the catalytic tape, and a different version
holds in the general case:

5.1.4. Theorem. Let s := s(n), c := c(n), e := e(n). Then

LCSPACE[s, c, e] ⊆ CSPACE[s+O(e log c), c] ⊆ LCSPACE[s,O(ec), e]

While this version pays an additional factor of e in the catalytic space of the
second inclusion, we also keep the number of errors fixed at exactly e; thus this
result is somewhat incomparable to Theorem 5.1.1.

5.2 Main theorem
In this section we prove Theorem 5.1.1. We will do so via a simulation argument
for each direction in turn.

5.2.1 Simulating errors with space
First, we show that LCSPACE[s, c, e] ⊆ CSPACE[O(s + e log c), O(c)]. In fact, we
will not need any increase in the length of our catalytic tape.

5.2.1. Theorem. Let s := s(n), c := c(n), e := e(n). Then

LCSPACE[s, c, e] ⊆ CSPACE[s+O(e log c), c]
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We note that this was also proven in [Gup+24] for the case of LCL[O(1)], but
we will pursue a different proof, based on error-correcting codes, which will allow
us to generalize to other catalytic models in Section 5.3.
Proof:
Let Me be an LCSPACE[s, c, e] machine. We will devise a CSPACE[s+O(e log c), c]
machine M0 which simulates Me. Note that in this section, we will not use our
parameter restriction on e; this direction holds for every setting of s, c, and e.
We will presume that e ≤ c

log(c) , as the inclusion becomes trivial otherwise.
Our simulation will go via an error-correcting code. In particular we will use

BCH codes2 (BCH), named after Bose, Ray-Chaudhuri, and Hocquenghem [BR60;
Hoc59], which we define as per [DRS04; Dod+06]. We define the mapping
BCH and prove the following lemma in Appendix 5.B.2 (see Corollary 5.B.9,
Lemma 5.B.12 and Lemma 5.B.13).

5.2.2. Lemma. Let q := 2⌈log(c+e)⌉. There exists a mapping BCH : Fq
q → Fq

q with
the following operations:

• Encoding: EncBCH takes as input a string S of length c, plus an additional
(2e+ 1)⌈log(c+ e)⌉ bits initialized in 0, and outputs a codeword Senc:

S + [0](2e+1)⌈log(c+e)⌉ →Enc Senc

Furthermore, all outputs Senc generated this way have minimum distance
δ := 2e+ 1 from one another.

• Decoding: DecBCH takes as input a string S ′enc of length c+(2e+1) log(c+
e), with the promise that there exists a string S of length c such that
EncBCH(S + [0]2e log(c+e)) differs from S ′enc in at most δ/2− 1 = e locations,
and outputs the string S:

S ′enc →Dec S + [0](2e+1) log(c+e)

Furthermore, both EncBCH and DecBCH are in place replacements of the input
strings, they require at most an additional O(e log c) free space of memory.

We now move on to the simulation of our LCSPACE[s, c, e] machine Me. Our
CSPACE[s+O(e log c), c] machine M0 acts as follows:

1. Initialization: use the function EncBCH to encode the initial state τ of the
catalytic tape into a codeword, using (2e + 1)⌈log(c + e)⌉ additional bits
from clean space,

τ + [0](2e+1)⌈log(c+e)⌉ →Enc τenc.

2Technically because of our parameters, they can even be considered Reed-Solomon codes,
which are a special case of BCH codes; nevertheless we follow the presentation of the more
general code form.
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2. Simulation: Run Me using clean space s and the first c bits of τenc as the
catalytic tape. When Me finishes the calculation, we record the answer in
a bit of the free work tape. The catalytic tape is, at this point, in a state
τ ′enc which differs in at most e locations from τenc.

3. Cleanup: use the function DecBCH to detect and correct our resulting cat-
alytic tape τ ′enc:

τ ′enc →Dec τ + [0](2e+1)⌈log(c+e)⌉

Once we finish this process, we output our saved answer and halt.

The correctness of M0 is clear, as it gives the same output as Me. By our error
guarantee on Me and the correctness of Dec, our catalytic tape is successfully reset
to τ . Our catalytic memory is c as before, while for our free workspace we require
s bits to simulate Me, an additional (2e+1)⌈log(c+e)⌉ = (2+o(1))e log c zero bits
for our codewords, and O(e log c) space for EncBCH and DecBCH, for s+O(e log c)
space in total. 2

1. Note. There is an alternative proof of this point, one which gets better param-
eters and relies on an interesting characterization of space, namely the reversibil-
ity of space. This proof is a simplification and extension of the one originally
provided in [Gup+24], and we provide it in Appendix 5.A.

5.2.2 Simulating space with errors
We now show the other direction of Theorem 5.1.1, i.e. CSPACE[s + e log c, c] ⊆
LCSPACE[O(s),O(c),O(e)].

5.2.3. Theorem. Let s := s(n), c := c(n), e := e(n), and ϵ > 0 be such that
e = o(cϵ/(1+ϵ)). Then

CSPACE[s+ e log c, c] ⊆ LCSPACE[s+ log c, (1 + o(1))c, (1 + ϵ)e]

Since s ≥ log c by the definition of a catalytic machine, this achieves the
reverse direction of Theorem 5.1.1 with very small blowups in s and c, and for
e bounded by a small polynomial in c we get a negligible error blowup as well.
Note that we allow ϵ > 1, and so our proof is not limited to e < c1/2; however, we
will pay for larger values of e in the error blowup, and for e = c1−o(1) this factor
becomes superconstant.

To understand our construction, we will first prove a version with looser space
parameters. This result is incomparable to Theorem 5.2.3; although we lose
a factor of e in our catalytic space, in exchange we have no restrictions on e
and no loss in e either. In conjunction with Theorem 5.2.1, this also proves
Theorem 5.1.4.
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0 1 1 0 1 1 0 0τ
000 001 010 011 100 101 110 111

↓
001⊕ 010⊕ 100⊕ 101

↓
0 1 0ind(τ) 0 1 1 0 1 1 1 0τ ⊕ σ110

000 001 010 011 100 101 110 111

↓
001⊕ 010⊕ 100⊕ 101 ⊕110

↓

1 0 0ind(τ)⊕ 110

Figure 5.1: Example of our construction in Lemma 5.2.5 for k = 3 and τ =
01101100: 1) calculating ind(τ) based on the positions of the 1s in τ (blue); 2)
how flipping one bit of τ (magenta) allows us to change ind(τ) (changes in green).

5.2.4. Theorem. Let s := s(n), c := c(n), e := e(n) be such that c is a power of
2. Then

CSPACE[s+ e log c, c] ⊆ LCSPACE[s, c+ e(c+ log c), e]

Proof:
Let M0 be a CSPACE[s+e log c, c] machine. We will devise a LCSPACE[s, c+e(c+
log c), e] machine Me which simulates M0.

Throughout this proof, we will associate [2k] with {0, 1}k in the usual manner,
i.e. subtracting 1 and taking the binary representation, and so we will use them
interchangeably. Our workhorse is the following folklore3 construction:
5.2.5. Lemma. For every k, there exists a mapping ind : {0, 1}2k → {0, 1}k,
computable in space k+ 1, such that the following holds: for any τ ∈ {0, 1}2k and
any y ∈ {0, 1}k,

ind(τ ⊕ σy) = ind(τ)⊕ y
where σy is the vector of length 2k with a single 1 in position y.

Intuitively, Lemma 5.2.5 gives us an easily computable mapping where any
value of the k-bit output string can be given as output by flipping one bit of the
2k-bit input string.
Proof of Lemma 5.2.5:
Let τ ∈ {0, 1}2k be indexed by bitstrings z ∈ {0, 1}k. We will define our mapping
ind as the entrywise sum of all indices z where τz = 1, i.e.

ind(τ)j =
⊕

z∈{0,1}k

zj=1

τz

3This construction is based on the solution to the so-called “almost impossible chessboard
puzzle”; interested readers can find the setup and solution in videos on the YouTube chan-
nels 3Blue1Brown (https://www.youtube.com/watch?v=wTJI_WuZSwE) and Stand-up Maths
(https://www.youtube.com/watch?v=as7Gkm7Y7h4). It can also be seen as the syndrome of
the Hamming code.

https://www.youtube.com/watch?v=wTJI_WuZSwE
https://www.youtube.com/watch?v=as7Gkm7Y7h4
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This is clearly computable in space k+1, as we need only store z and our current
sum. Now note that for any y, flipping the entry τy, i.e. τ ⊕σy, flips every ind(τ)j

entry where yj = 1 and leaves all other ind(τ)j entries unchanged, which gives
ind(τ)⊕ y as claimed. 2

We now show how to simulate our CSPACE[s + e log c, c] machine M0 by an
LCSPACE[s, c + e(c + log c), e] machine Me. First, let τ0 be the first c bits of
catalytic memory, which we will set aside for simulating M0. We will break the
remaining e · (c+ log c) bits of our catalytic tape of Me into e blocks B1 . . . Be of
size 2k + k each, where k = log c (recall that c is a power of 2 by assumption).
Within block Bi, let τi be the first 2k bits and memi be the remaining k bits. Our
algorithm performs as follows:

1. Initialization: for each block i ∈ [e], calculate zi = ind(τi), set yi =
memi ⊕ zi, and update τi to

τ ′i ← τi ⊕ σyi

By Lemma 5.2.5, after this step we have that

ind(τ ′i) = zi ⊕ yi = memi ∀i ∈ [e]

Finally, zero out each block memi:

memi ← 0k ∀i ∈ [e]

2. Simulation: run M0 on catalytic tape τ0 with the work memory from Me

plus {memi}i∈[e], for a total of

s+ ek = s+ e log c

free bits as necessary.

3. Cleanup: when we reach the end of M0’s computation, record the answer
on the free work tape and reset all the blocks memi using ind:

memi ← ind(τ ′i) ∀i ∈ [e]

We then return the saved answer and halt.

The correctness of Me is clear, as we output the same value as M0. We require
c + e(c + log c) catalytic bits plus s free bits for our simulation, while ind can
be computed in space k = log c ≤ s by assumption; Thus all our memory is as
claimed.

We also claim that our lossy catalytic condition is satisfied. Each τ ′i is at most
one error away from τi in the initialization phase, and is never altered again, giving
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a total of e errors. By the property of M0, there are no errors made to τ0 during
the simulation step. Lastly, by the property that ind(τ ′i) = memi, the cleanup
step exactly resets the blocks memi, meaning no further errors are introduced to
the catalytic tape. 2

We now return to Theorem 5.2.3, which requires only a small modification of
the above proof, namely to break the catalytic tape into more, smaller blocks,
which reduces its required length at the cost of a few extra errors. This modifi-
cation works because the number of pure bits represented is logarithmic in the
length of the block, and so making the blocks smaller barely affects the number of
bits represented; for example, c/2 bits in a block still let you represent log(c)− 1
bits, so half the size only loses one bit per block.
Proof of Theorem 5.2.3:
Let M0 be a CSPACE[s + e log c, c] machine. We will devise a LCSPACE[s, (1 +
o(1))c, (1 + ϵ)e] machine Me which simulates M0, where ϵ satisfies e = o(cϵ/(1+ϵ)).

We will have the same approach as Theorem 5.2.4, but now we use (1 + ϵ)e
blocks of length 2k′ + k′, where

k′ =
⌈

log c
1 + ϵ

⌉

Clearly, we make at most (1 + ϵ)e errors by the above analysis, while our free
space is

s+ (1 + ϵ)e · k′ = s+ (1 + ϵ)e ·
⌈

log c
1 + ϵ

⌉
≥ s+ e log c

Finally, we analyze our catalytic memory. Our τ ′i blocks give us a total usage of

(1 + ϵ)e · 2k′ = (1 + ϵ)e · 2⌈log c/(1+ϵ)⌉ ≤ (1 + ϵ)e · (2c1/(1+ϵ))≪ c

where the last line follows because e = o(cϵ/(1+ϵ)). We will use our memory
{τi}i∈[(1+ϵ) log c for the simulation of M0, plus enough extra catalytic memory τ0
needed to reach c total bits. Since M0 exactly resets its catalytic tape this in-
troduces no new errors, and together with the memi blocks, this gives us a total
catalytic memory of

c+ (1 + ϵ)e · k′ = c+ e log c+O(1) = (1 + o(1))c

which completes the proof. 2

5.3 Further consequences
With this, we have concluded our main theorem and proof. We now move to
corollaries and extensions.



5.3. Further consequences 93

5.3.1 Lossy catalytic logspace with superconstant errors
As stated in the introduction, it immediately follows from Theorem 5.1.1 that
proving LCL[e] = CL is likely difficult, if not false, for superconstant values of e.
Proof of Corollary 5.1.2:
This follows immediately from the fact that

LCSPACE[O(log n), poly n, e] = CSPACE[O(log n+ e log(poly n)), poly n]
= CSPACE[O(e log n), poly n]
⊇ SPACE[O(e log n)]

combined with the fact that CL ⊆ ZPP by [Buh+14]. 2

5.3.2 Lossy catalytic space with other resources
As mentioned in Section 5.1, there are many extensions of the base catalytic
model besides LCSPACE, such as randomized, non-deterministic, and non-uniform
CSPACE. So far, however, there has been little discussion of classes where more
than one such external resource has been utilized. In this section we observe that
our proof of Theorem 5.1.1 carries through no matter what base classical catalytic
model we are using, even if we are granted additional resources which the errors
can depend on.
Proof sketch of Theorem 5.1.3:
As earlier, we need to show both directions. We will prove the same two equiva-
lences as in Theorems 5.2.1 and 5.2.3, namely

1. LCBSPACE[s, c, e] ⊆ CBSPACE[s+O(e log c), c]

2. CBSPACE[s+ e log c, c] ⊆ LCBSPACE[s, (1 + o(1))c, (1 + ϵ)e]

In both cases we only need check two computations. First we simulate our ma-
chine M0/Me via a machine Me/M0 (respectively) which is given direct access
to the appropriate amount of work and catalytic memory; by definition this can
be done irrespective of CBSPACE. Second is our two mappings needed to reset
the catalytic tape at the end; since SPACE[s] can implement both our BCH codes
and the mapping ind, by assumption CBSPACE can do so as well. 2

5.3.3 Open problems
Errors in expectation.

A related question asked in [Mer23] is whether or not CL is equivalent to CL
with O(1) errors allowed in expectation over all starting catalytic tapes. This
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represents a different notion of distance between catalytic tapes, in opposition
to Hamming distance, that may be more applicable to settings such as quantum
computation. This question has received some attention in a related form by
Bisoyi et al. [Bis+24], who introduce almost catalytic machines, which perfectly
reset some catalytic tapes and are completely unrestricted on others.

However, no general results are known for expected errors—the results in
[Bis+24] are very structured—and all techniques in our paper fail to restore the
tape in pathological cases where a few starting tapes end up with potentially
many errors. Furthermore, a barrier result was pointed out by an anonymous
reviewer.4

Exact simulation space requirements.

In the current simulation of errors using clean space, we use 4e log c clean space.
By contrast, in our simulation of clean space using errors, we use only (1 + ϵ)e
more errors. If errors can be simulated in clean space e log c instead, then there
is only very low overhead in switching between the two perspectives. This would
tighten the correspondence between errors and space that we establish. However,
since the distance between two codewords required to correct e errors is 2e+ 1, a
different error-correcting code would be necessary to reach clean space e log c.

5.A Simulating errors with space via reversibil-
ity

In this section we give an alternate proof of simulating LCSPACE via CSPACE,
with sharper parameters than those in Theorem 5.2.1.

5.A.1. Theorem. Let s := s(n), c := c(n), e := e(n). Then

LCSPACE[s, c, e] ⊆ CSPACE[s+ (e+ 1) log c, c].

For this proof, we need to invoke a property of space-bounded machines known
as reversibility, which we define now.

5.A.2. Definition. A Turing machine M is (strongly) reversible if the following
conditions hold:

4The main idea is that allowing virtually unlimited error in an exponentially small fraction
of catalytic tapes gives us a strong form of the “compress-or-random” framework of previous
papers; we can simulate a randomized algorithm using the catalytic tape as our source of
randomness, and in the exponentially unlikely event the tape is not sufficiently entropic we
simply erase it and run brute force. Formalizing this intuition and combining it with the results
of [Coo+25; Kou+25] gives a derandomization barrier to showing even LCL[O(1)] = CL in this
lossy setting, namely that randomized TC1, which is not even known to be in P, would reduce
to the lossy code problem.
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1. For any input x, every node v in its configuration graph Gx has both in-
degree and out-degree at most one. Let forx(v) indicate the unique node
with a directed edge (v, forx(v)), and let backx(v) indicate the unique node
with a directed edge (backx(v), v).

2. There exist machines M→ and M← such that for every node v in the config-
uration graph of M , M→(x) sends v to forx(v) and M← sends v to backx(v).

A classical result of Lange, McKenzie, and Tapp [LMT00] shows that every
SPACE[s] machine can be made reversible with no additional space. Dulek [Dul15]
showed the same result for catalytic machines, while Gupta et al. [Gup+24] ex-
tended this to catalytic machines with error; both of the latter results use a very
similar Eulerian tour argument to [LMT00].

5.A.3. Lemma. Let M be a CSPACE[s, c] (resp. LCSPACE[s, c, e]) machine
recognizing language L. Then there exists a reversible CSPACE[s, c] (resp.
LCSPACE[s, c, e]) machine M ′ which recognizes L.

In light of Lemma 5.A.3, it seems that there is nothing interesting to be said
about LCSPACE; after all, can we not simply reverse our machine to the starting
point, wherein there are no errors on the catalytic tape? While this is technically
true, there may be many different starting configurations which reach the same
halting state (τ, v). All such start states can and will be reached by running M←
from (τ, v) for long enough, but without knowledge of which particular start state
we began with, this näıve reversing procedure cannot reset our catalytic tape free
of error.

Nevertheless, a small tweak on this idea, using our additional (e+1) log c bits,
immediately works.
Proof of Theorem 5.A.1:
Let Me be a LCSPACE[s, c, e] machine, and by Lemma 5.A.3 we will assume Me

is reversible. We will devise a CSPACE[s + (e + 1) log c, c] machine M0 which
simulates Me.

We will assume without loss of generality that all start and end states of a
catalytic machine M are distinguished; for example, we traditionally assume any
state with an all-zeroes work tape is a start state. We write start(τ) to indicate
the unique start state of M with initial catalytic tape τ , while we write endx(τ)
to indicate the unique end state reached by M from initial state start(τ) on input
x.

Now let Sx,(τ,v) := {start(τi)}i be the set of start states such that endx(τi) =
(τ, v). Since Me is an LCSPACE[s + log c, c, e] machine, each τi can differ from τ
in at most e locations, and thus

|Sx,(τ,v)| ≤
(
c

≤ e

)
≤ ce+1

2
Our machine M0 thus works as follows:
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1. initialize a counter num start with log
(

c
≤e

)
bits to 0

2. simulate Me using s log c work bits and c catalytic bits, incrementing
num start each time we encounter a start state start(τi), until we reach
an end state (τ, v)

3. record our answer and run Me in reverse, decrementing num start each
time we encounter a start state

4. halt when we reach a start state and num start = 0, and return our recorded
answer

Clearly our algorithm outputs the correct answer, resets the catalytic tape exactly,
and uses at most s+1+(e+1) log c−1 bits of work memory plus c bits of catalytic
memory. 2

We defer this discussion to the appendix for two reasons. First, the error-
correcting approach more directly applies in both directions of Theorem 5.1.1;
while Lemma 5.A.3 connects to Theorem 5.2.3 and can be applied before the final
resetting step, this does not provide any qualitative or quantitative gain. Second,
the reliance on reversibility makes the proof unsuitable to our later generalizations
from Section 5.3.2; in particular, randomized, non-deterministic, and non-uniform
catalytic computations are only reversible in a limited sense, one which rules out
using Lemma 5.A.3.

5.B Space-efficient linear algebra on finite fields

5.B.1 The space complexity of solving linear systems
We prove the space efficiency of various common arithmetic and linear algebra
operations necessary in order to encode and decode BCH codes. First, we intro-
duce the concept of well-endowed rings [BCP83]. This allows us to use earlier
results to argue about the efficiency of various operations on rings without having
to reprove those ourselves. The fields of interest are fields of the form GF (prn)
for a fixed prime p and a sequence rn. Our results will apply to a field whose
size increases asymptotically. Hence the uniformity of the calculations involved
is important. But we assume that p is fixed for all fields.

All these results are expressed in their asymptotic complexity in terms of the
size of the ring or a length function, which may be seen as a measure of the
number of bits necessary to write down a value in a ring.

5.B.1. Definition. A length function ρ for a ring R is a function satisfying that
for any x, y ∈ R

1. ρ(x+ y) ≤ max{ρ(x), ρ(y)}+O(1)
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2. ρ(xy) ≤ ρ(x) + ρ(y) +O(log max{ρ(x), ρ(y)})
An example is the number of bits of an integer.

From here we can define well-endowed rings as those with efficient implemen-
tations of addition, negation and multiplication.

5.B.2. Definition. A ring R with length function ρ is well endowed if there
is a succinct uniform representation in which it has efficient implementations
of addition, negation and multiplication. Addition and negation are considered
efficient if they can be implemented in (logspace-uniform) NC0 and multiplication
is considered efficient if it can be implemented in (logspace-uniform) NC1. The
parameter for NC1 functions is always the length function of the ring.

We now argue that basic arithmetic can be done space efficiently. This is
done in the following steps. First, we argue that the polynomial ring GF (p)[ξ]
is well endowed and therefore we can perform polynomial addition, negation and
multiplication efficiently. Then we argue that we can use this to compute the
remainder of polynomial division efficiently. This allows us to find an irreducible
polynomial to represent the field GF (prn) in order to perform addition, negation
and multiplication efficiently. We finally show that we can evaluate multiplicative
inverses inefficiently and use this to do division. With inefficiently we mean in
space O(log |F |) for a field F whereas addition, negation and multiplication can
be performed in space O(log log |F |).

5.B.3. Lemma. For fixed p, the ring GF (p)[ξ] is well endowed.

Proof:
We argue that finite fields are well-endowed rings. First observe that GF (p)
for a fixed p is always well endowed since the size of the ring is independent
of n so addition, negation and multiplication can be performed in NC0. By
Proposition 3.9 from [BCP83] this means that polynomials over GF (p)[ξ] are also
well endowed. The length function here isO(d) for a polynomial of degree d. Since
they are well endowed, one can perform addition, negation and multiplication in
space O(log d) for polynomials. 2

We use this to compute the remainder.
5.B.4. Lemma. Given polynomials N(ξ) and D(ξ) in GF (p)[ξ] of degree at most
rn, it is possible to compute the remainder R(ξ) using an additional rn +O(log rn)
space. If we can overwrite N(ξ) in place, the additional space necessary is
2⌈log rn⌉+O(1).
Proof:
Suppose that χ ∈ GF (p) is the leading coefficient of D(ξ), we can compute and
store χ−1 in constant space since p is constant. We perform a kind of Gaussian
elimination to compute the remainder:
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1. If the degree of D(ξ) exceeds the degree of N(ξ) then return N(ξ).

2. Let ψ be the leading coefficient of N(ξ), and let z1 be the highest degree of
N(ξ) and z2 be the highest degree of D(ξ). Compute N(ξ)−ψχ−1ξz1−z2D(ξ)
overwriting N(ξ) in the process, this requires log(rn) space to write down
z1−z2. Since we use a fixed field GF (p), this can be done in constant depth.

3. return to step 1.

The maximum number of repetitions is rn, therefore we require log rn space for a
counter. We use O(1) to store ψ and χ. We then compute N(ξ)−χψ−1ξz1−z2D(ξ)
is done coefficient by coefficient. Overall, we manage to compute the remainder
in space rn +O(1) by copying the final remainder to a new part of the space and
then updating it in place during every iteration. If we can overwrite N(ξ) in the
process, then the additional space required is only 2 log(rn) to keep track of a
counter and compute z1 − z2. 2

We can now search for irreducible polynomials.

5.B.5. Lemma. Given a sequence of positive integers rn and a constant prime
p, it is possible to find a degree rn irreducible polynomial in GF (p)[ξ] in space
3rn +O(log rn).

Proof:
It costs O(d) space to store a polynomial over GF (p) of degree at most d. There-
fore, one can iterate over all such polynomials. If we store two such polynomials
and iterate over all pairs, the first can be a candidate irreducible polynomial,
while the second can be a candidate factor of the first polynomial. By using
Lemma 5.B.4 to test whether or not the candidate irreducible polynomial is di-
visible by the candidate factor in additional space rn + O(log rn), we can test if
the candidate irreducible polynomial is irreducible. Irreducible polynomials are
guaranteed to exist, so we must find one eventually. Counting up the total space
cost we have a total of 3rn +O(log rn 2

Together these results allow us to do division in GF (prn).

5.B.6. Lemma. Given a sequence of finite fields Fn = GF (prn) for a constant
prime p, it is possible to compute the multiplicative inverse of an element x ∈
GF (prn) in additional space 4rn + O(log rn) counting the space needed to store
the irreducible polynomial.

Proof:
If x = 0 then there is no multiplicative inverse. Otherwise, try multiplying x by
every possible y and taking the remainder using Lemma 5.B.4 in place in space
O(rn) until one finds a y such that xy = 1. It takes rn space to iterate over
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all possible y. For every x, y, we use another register to store xy. Storing xy
needs an additional 2rn space, since we first need to compute the product as a
product of polynomials and only take the remainder later. Computing xy uses
an additional space O(log rn) since the ring of polynomials over GF (p) is well
endowed. Finally, we can use Lemma 5.B.4 to take the remainder in place in only
⌈log rn⌉+O(1). 2

We can now finally solve linear systems.

5.B.7. Lemma. Given a sequence of finite fields Fn = GF (prn) for a constant
prime p, it is possible to solve a linear system of tn equations and tn unknowns in
tnrn + rn +O(log rn) space if tn = O(|Fn|) and we count the space used to store
the irreducible polynomial for our representation of GF (prn).

Proof:
We presume that the tn linear equations are given as an input, and therefore
written on some input tape. The goal is to find tn variables from GF (prn) sat-
isfying those equations in minimal space. A simple approach is as follows: we
use of brute force search, iterating over all possible tn variables until a solution is
found. Note that this is not time efficient, but it is space efficient. Writing down
a trial solution costs tnrn space. Trying a solution only requires additional space
to write down the intermediate result of the equation being tested; this requires
rn space to write down an element from GF (prn) and additionally O(log(rn))
space to perform multiplication and addition. If one equation is not satisfied, we
reject the trial solution and go to the next one. If all solutions have been tried
and non satisfy the linear system we output 0. 2

5.B.2 An overview of BCH codes
The codes used to correct errors in our catalytic tape are so-called
Bose–Chaudhuri–Hocquenghem (BCH) codes, as described by [Dod+06]. They
showed that there is a sublinear time algorithm for encoding and decoding BCH
codes, we analyze their algorithm and show that it can also be performed in
place using at most logarithmic additional space. A BCH code has the following
components:

1. An alphabet represented by a ‘small’ field GF (q).

2. Codeword length n = qm− 1. Each position of the codeword is represented
by a member of F ∗, where F ∗ is the multiplicative group of F = GF (qm)
for a fixed value m. We may call F = GF (qm) the larger field.

3. Distance δ.
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And we make the following choices.

1. We set q = prn for a prime number p and rn that depends on the size of
the input tape of the machine. Here p is fixed and we set it to p = 2 in this
work.

2. m = 1, therefore the small field equals the large field F = GF (q).

3. δ = 2e+ 1. It is well known that one needs a distance of at least 2e+ 1 to
be able to correct e errors.

Together these choices form a [2rn − 1, 2rn − 1 − δ, δ]-code over an alphabet
of size 2rn . Ensuring that p = 2 means that we can interpret the catalytic tape
as a sequence of elements in GF (q) = GF (2rn), where rn will be chosen later.
Furthermore, we wish to have the property that by extending a word by a small
amount we can turn any word into a codeword. We observe that codewords are
defined as words that satisfy the following property for i = 1, . . . , δ − 1.

si =
∑

x∈F ∗
dxx

i = 0 (5.1)

Here the dx represents the value of the codeword stored at position x. Now
presume we have a word of length n then we extend the word by adding entries,
we call the list of added entries C ⊆ F ∗. The added values can be set arbitrarily,
therefore we obtain the following equations:

si =
∑

x∈F ∗
dxx

i =
∑

x∈F ∗\C
dxx

i +
∑
x∈C

dxx
i = s′i +

∑
x∈C

dxx
i = 0 (5.2)

for

−s′i =
∑

x∈F∗\C
dxx

i . (5.3)

We observe that for every value of i = 1, . . . , δ − 1, we obtain an equation.
Each equation is linear in the dx for x ∈ C. These are the new data points we
must calculate in order to turn an arbitrary word into a codeword. Overall this
yields the encoding linear system with parameter δ − 1 and i = 1, . . . , δ − 1∑

x∈C

dxx
i = −s′i (5.4)

In order to argue that a solution to this system always exists, we need the
small field to equal the large field of the BCH code. This means m = 1. This is
necessary because the value s′i lies in the large field of the code while the values
of dx lie in the small field of the code. If these are the same, we can treat this as
a linear algebra problem.
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5.B.8. Lemma. By setting |C| = 2e = δ − 1, adding this many members of the
alphabet of a BCH code with m = 1, it is always possible to turn any string into
a codeword.

Proof:
As discussed, it is sufficient to show that Equation 5.4 always has a solution.
In order to see this, observe that Equation 5.4 forms a linear system over the
field GF (q) and that the matrix of this system is a Vandermonde matrix. Van-
dermonde matrices are always invertible. Thus a solution to this system always
exists. 2

5.B.9. Corollary. Let S be a data string of n bits and e ≤ 1
2n/ log(n), then

there exists a BCH code, with distance δ = 2e+ 1 and codeword length n+ (2e+
1)⌈log(n+ e)⌉.

Proof:
We set the number of bits required to represent one letter of the code word
to rn = ⌈log(n + e)⌉ therefore q = 2⌈log(n+e)⌉, therefore the alphabet is of size
2⌈log(n+e)⌉. We break the initial data string S into blocks of length ⌈log(n + e)⌉,
these blocks form the initial letters of the word. If ⌈log(n+e)⌉ ∤ n, we pad the last
block of S with additional 0’s, this requires at most ⌈log(n+e)⌉−1 additional bits.
This gives a word consisting of ⌈ n

(⌈log(n+e)⌉)⌉ letters. Now we use Lemma 5.B.8
and add 2e letters of size ⌈log(n + e)⌉, using 2e⌈log(n + e)⌉ of additional bits,
such that these new members abide by Equation 5.4. This creates a codeword of
length n+ (2e+ 1)⌈log(n+ e)⌉ as required. 2

Given that this code exists and has the correct space complexity we will
show that it can be space efficiently computed. Even before doing encoding
and decoding, it is required to do an initialization step:

Algorithm 1 Initialization
1: Input: r ∈ N
2: Compute an irreducible polynomial of degree r in GF (2)[ξ] via the procedure

described in the proof of 5.B.5
3: Pick and save an element that is not 0 and not 1 in GF (2r). We can always

pick this to be the polynomial ξ.
4: return An irreducible polynomial of degree r and a generator of the multi-

plicative group of GF (2r).

We now argue the initialization can be done space efficiently.

5.B.10. Lemma. Given a sequence of fields Fn = GF (2rn), Algorithm 1 can be
performed in space 3rn +O(log rn).
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Proof:
We review each step of Algorithm 1 and review their space cost:

1. For step 1, use Lemma 5.B.5 to find an irreducible polynomial in space
3rn +O(log rn). Only rn is needed to store the result.

2. For step 2, we can pick and save the element of GF (2)[ξ] corresponding to
ξ. This uses O(1) space if always done the same. This does not work for
rn = 1, but we can assume always rn > 2.

2

Encoding requires solving the linear equations given by Equation 5.4, finding
the values dx for x ∈ C, the additional blocks that were appended. Solving these
linear equations requires first calculating the quantities s′i, given by Equation 5.3.
We use the following algorithm to calculate a specific value si. By stopping
prematurely, we can compute s′i.

Algorithm 2 ComputeChecks
1: Input: Integer i such that 0 < i < δ, an integer t such that 0 ≤ t < q,

generator ξ of GF (2rn), and a data string S.
2: Open five registers to store elements of GF (2rn) labelled I, P,M,E,O for

Index, Power, Multiplication, Sum, End and Out.
3: Set all registers to 0.
4: Open an additional register to store elements of {0, 1, . . . , δ − 1} called C.
5: E ← ξt via iterated multiplication. Use register M as a counter.
6: I ← ξ
7: P ← I i via iterated multiplication. Use register C as a counter in this process.
8: M ← P ∗ dx.
9: O ← O +M

10: P,M ← 0.
11: I ← I ∗ ξ
12: Return to step 8 until I = E.
13: return The value si in register S computed on the word.

Now we give the space complexity of Algorithm 2.

5.B.11. Lemma. Algorithm 2 calculates si, or s′i by t < q, on input i, t (stopping
point), and generator ξ. This algorithm uses space 5rn + ⌈log δ⌉ + O(log rn),
counting space rn to store the output.

Proof:
Every element of GF (2rn) uses space rn. We use five of these. We also use one
registers of size ⌈log δ⌉. Multiplication and addition use overhead O(log rn). 2

We present the BCH encoding algorithm, and argue that it is space efficient.
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Algorithm 3 EncodeBCH

1: Input: A data string S.
2: Initialization: We assume that Algorithm 1 has been performed in advance.
3: Compute and store the s′i.
4: Solve the linear system given by Equation 5.4.
5: Append the solution to data string S creating Senc.
6: return Senc a BCH codeword.

5.B.12. Lemma. It is possible to encode a word of length 2rn−δrn with an alpha-
bet Fn = GF (2rn) and distance δ, such that δ = 2e+1, as a codeword of length 2rn

with an additional space overhead of O(δ log n) = (2δ+5)rn+O(log rn)+⌈log(δ)⌉,
where we set, rn = log(e+ n) ≤ log(n) + 1. Furthermore this encoding procedure
is done in place. This implements the function EncBCH .

Proof:
We look at the space complexity of every step of the encoding procedure.

1. Initialization costs 3rn +O(log rn) space by Lemma 5.B.10.

2. For step 3, use Algorithm 2. This means we store δrn values and use
5rn + ⌈log δ⌉+O(log rn) space.

3. For step 4, we use Lemma 5.B.7 which uses δrn + rn +O(log rn)space.

Overall, this adds up to a space cost O(δ log n) = (2δ+5)rn +O(log rn)+⌈log(δ)⌉.
Note also that encoding only blocks to the existing word, making this computation
done in place. 2

That completes encoding. We now move to our analysis of decoding. We
review the mathematics of the decoding.

We now describe the theory of the decoding algorithm. Decoding follows
the procedure described in [DRS04; Dod+06] with some simplifications since we
prioritize space over time. First, the syndrome syn(p) of a message p is computed.
The syndrome is defined as the collection of the si values defined before. From the
syndrome we compute the support of the error, supp(p) = {(x, px)x:px ̸=0} which
is defined as the value of the error px together with its position x. Then the error
can be ‘subtracted’ from the word to give back the original codeword. The error
correction method only works if the number of errors is at most (δ − 1)/2 and
hence we set δ = 2e+1. It is important for space efficiency that we store only the
support of the error, instead of a full error string which would require too much
space. The support on the other hand uses exactly O(e log c) space.
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The decoding algorithm is a variation of Berlekamp’s BCH decoding algo-
rithm. First, define the following polynomials using M = {x ∈ F∗|px ̸= 0}

σ(z) =
∏

x∈M

(1− xz) ω(z) = σ(z)
∑

x∈M

pxxz

1− xz (5.5)

which both have degree at most |M | ≤ (δ − 1)/2. Here σ(z) is known as
the error locator polynomial since the multiplicative inverses of its roots are the
locations of the errors. Similarly, ω(z) is known as the evaluator polynomial since
it gives the error since ω(x−1) = px

∏
y∈M,y ̸=x(1 − yx−1). Note that since these

polynomials have no common zeroes, gcd(σ(z), ω(z)) = 1.
It turns out that σ(z) and ω(z) are the almost unique solutions to the con-

gruence (with parameter δ − 1)

S(z)σ(z) ≡ ω(z) (mod zδ) (5.6)

where S(z) = ∑δ−1
i=1 siz

i. Suppose that σ′(z), ω′(z) are other solutions to this
congruence then

ω(z)σ′(z) ≡ σ(z)S(z)σ′(z) ≡ σ(z)ω′(z) (mod zδ) . (5.7)

Therefore if we restrict the degree of both ω(z) and σ(z) to be polynomials of
degree at most (δ − 1)/2 then as polynomials it is also true that ω(z)σ′(z) =
σ(z)ω′(z) and therefore that ω(z)/σ(z) = ω′(z)/σ′(z). So if we also require
that ω(z) and σ(z) are relatively prime and σ(z) has constant coefficient 1, then
ω(z), σ(z) are unique. We call the linear system over GF (q) from Equation 5.6
the decoding linear system with parameter δ.

After setting the constant term of σ(z) to be 1, the above congruence gives
a linear system with δ unknowns and δ equations with coefficients in the field
GF (q). We use almost the same procedure as described in the encoding step and
making use of Lemma 5.B.7 in order to solve this system. If less than (δ − 1)/2
errors are made, a solution is guaranteed to exist. However, we cannot force σ(z)
and ω(z) to be coprime in the linear system and as a result the solution may not
be unique. Suppose σ(z) and ω(z) have a common factor τ(z). One simple way
of asuring that σ(z) and ω(z) are coprime, is by calculating gcd(σ(z), ω(z)) and
rejecting the solution if it is not 1. It is promised that there is a unique solution
to Equation 5.6 with this property, therefore when we iterate over all possible
solutions, we can add this additional step as a requirement.

Having solved for polynomials σ(z) and ω(z) we can iterate over all possible
values of z ∈ F∗ to find all roots to σ(z) and then compute their inverses using
a similar procedure to that described in the encoding step. The evaluation of
this polynomial can be done space efficiently, similar to the evaluation of si but
much simpler in fact. Afterwards, we can evaluate ω(z) to compute the errors.
This is not necessary when q = 2 and the error is guaranteed to be 1. Once these
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Algorithm 4 DecodeBCH

1: Input: Corrupted data string S ′
2: Initialization: We assume that Algorithm 1 has been performed in advance.
3: Compute the si’s using Algorithm 2.
4: Use Lemma 5.B.7 to solve linear system 5.6 with the additional constrained

that gcd(σ(z), ω(z)) = 1.
5: set j to the degree of σ(z).
6: for i← 0; i < j; i← i+ 1 do
7: Find the ith root, x−1

i of the error locator polynomial according to some
ordering.

8: Compute the quantity α−1
xi

=
(∏

y∈M,y ̸=x(1− yx−1)
)−1

9: Evaluate the evaluator polynomial and compute the errors by multiplying
ω(x−1) by α−1

xi
.

10: Correct S ′ in location xi using α−1
xi
ω(x−1).

11: end for
12: return Senc

have been computed, storing the support of the error is space efficient and the
data string can be corrected. This completes the decoding step. This procedure
is performed by the following algorithm, and we give it space complexity.

5.B.13. Lemma. Algorithm 4 can be performed with space overhead O(e log n) =
(6 + 4e)rn +O(log2 rn), for rn = log(e+ c) ≤ log(c) + 1, including the cost of the
initialization using Algorithm 1. Furthermore, this decoding procedure is done in
place. This implements the function DecBCH .

Proof:
We review the cost of Algorithm 4 step-by-step. Steps that use a trivial amount
of space are omitted.

2. Initialization costs 3rn +O(log rn) space by Lemma 5.B.10.

3. By Lemma 5.B.11, the cost of Algorithm 2 is 5rn + ⌈log δ⌉+O(log rn) and
storing the si’s requires δrn space.

4. There are δ − 2 unknowns of size rn therefore solving the linear system
requires (δ − 2)rn + rn + O(log(rn)) space by Lemma 5.B.7, a further δrn

space is required to compute gcd(σ(z), ω(z)). Note that this space stays
occupied because we have to remember both polynomials.

5. Saving j requires log δ space.

7. Finding the ith root is achieved by iterating over elements of GF (2rn),
requiring rn +O(log rn) space . Inverting the element xi takes rn +O(log rn)
space additionally.
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8. Computing α−1
xi

additionally takes rn +O(log rn) space.

9. Evaluating ω(x−1
i ) requires rn +O(log rn) space.

10. Given α−1
xi

, ω(x−1
i ), and xi, correcting S ′ requires O(log rn) space.

This covers all steps of Algorithm 4 with significant space costs. We ignore
O(log δ) space terms here, since these are all O(log n). This adds up to (5 +
4δ)rn +O(log rn) space. Note that the correction of corresponding errors is done
in place on the codeword. 2



Chapter 6
Quantum catalytic computation

In this chapter, we initiate the systematic study of catalytic techniques in the
quantum setting. Our main goal is to define and study a new complexity-theoretic
model, which we will call quantum catalytic space (QCSPACE). Loosely speak-
ing, we equip a space-bounded quantum computational model with an additional
catalytic tape containing an arbitrary quantum state.

We start by giving a concrete definition of this computational model. This
includes a discussion on the set of states that are considered possible initializations
of the quantum catalytic tape. Important in this discussion is the idea that
quantum catalytic techniques could also be used outside this specific model to
aid space-bounded computation (without the presence of a catalyst), similar to
the catalytic subroutines developed in the classical setting [CM24; Wil25].

We also discuss the underlying computational model on which we define quan-
tum catalytic space. We give a definition for both quantum circuits and quantum
Turing machines, and show that these models are equivalent. This equivalence
follows from a somewhat surprising result: we find a polynomial-time bound
for quantum catalytic log-space computations; the classical analog of this is the
largest open question in catalytic computing.

Furthermore, we prove that quantum catalytic log-space can simulate log-
depth threshold circuits, a class which is known to contain (and believed to
strictly contain) quantum log-space, thus showcasing the power of quantum cat-
alytic space. Finally, we show that both unitary quantum catalytic log-space and
classical catalytic log-space can be simulated in the one-clean qubit model.

6.1 Preliminaries
In this chapter, we require additional information on quantum channels. We will
give a short description of what we need, however, if the reader is interested in
more information on this, we would like to refer them to [NC10]. In addition to
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quantum channels, we also introduce quantum Turing machines, an extension of
Turing machines that can perform quantum operations.

6.1.1 Quantum channels
We denote the identity channel on d qubits by Id, or just I when d is clear from
context.

The Choi matrix of a channel Φ that acts on an input space H of dimension d
is defined by the action of Φ on the first register of a maximally entangled state,
in H⊗H

J(Φ) := (Φ⊗ Id)
1
d

d∑
i,j=1
|i⟩ ⟨j| ⊗ |i⟩ ⟨j|

 = 1
d

d∑
i,j=1

Φ
(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| .

6.1.1. Definition. The trace distance between two density matrices ρ, σ ∈
D(H) is defined by:

||ρ− σ||1 = Tr[
√

(ρ− σ)†(ρ− σ)],

where A† denotes the conjugate transpose of the matrix A, i.e., A† = ĀT .

It is well known that no physical process can increase the trace distance between
two states:

6.1.2. Lemma (Contractivity under CPTP maps [NC10, Theorem 9.2]). Let
Φ ∈ C(D(H)) and ρ, σ ∈ D(H) then the trace distance between ρ and σ cannot
increase under application of Φ:

||Φ(ρ)− Φ(σ)||1 ≤ ||ρ− σ||1

Quantum circuits

We will require a more specific definition of quantum circuits than Definition 2.2.3.
For this, we use similar definitions to those provided by [FR21], which readers
may refer to for more details.

6.1.3. Definition. Let s := s(n), t := t(n), k := k(n), let K be a family of
Turing machines, and let G be a set of k-local operators. A K-uniform space-s
time-t family of quantum circuits over G is a set {Qx}x∈{0,1}n , where each Qx is a
sequence of tuples ⟨i, g, j1 . . . jk⟩ ∈ [t]×G × [s]k such that there is a deterministic
TM M ∈ K which, on input x ∈ X , outputs a description of Qx.

The execution of Qx consists of initializing a vector |ψ⟩ to |0s⟩ within Hs and
applying, for each step i ∈ [t] in order, each gate g to qubits j1 . . . jk such that
⟨i, g, j1 . . . jk⟩ ∈ Qx. The output of Qx is the value obtained by measuring the
first qubit at the end of the computation.
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If G consists of unitary operators, we call these unitary circuits and call each
g a gate. If G additionally consists of measurements together with postprocessing
and feed forward by (classical) K-machines, we call these general circuits and call
each g a channel.

Quantum Turing machines

Our fundamental computation model in quantum computing will be the quantum
analogue of Turing machines [Deu85; BV97], which we define informally below.

6.1.4. Definition (Quantum Turing machine). A quantum Turing machine is
a classical Turing machine with an additional quantum tape and quantum regis-
ter. The quantum register does not affect the classical part of the machine in any
way, except that the qubits in the quantum register can be measured in the com-
putational basis. On doing so, the values read from the measurement are copied
into the classical register, from where they can be used to affect the operation
of the machine. The quantum Turing machine can perform any gate from its
quantum gate set on its quantum registry. We assume this gate set is fixed and
universal. Finally, the tape head on the quantum tape can swap qubits between
the quantum registry and the position that the quantum tape head is located at.
This applies a two-qubit SWAP gate.

We define a number of complexity classes in Section 2.3.3 of the preliminaries
with respect to the quantum circuit model. These complexity classes can also
be defined with respect to quantum Turing machines. It is known that their
definitions are equivalent for quantum polynomial time computations [Yao93]
and logarithmic-space computations [FR21].

6.2 Quantum catalytic space
The first goal of this chapter is to find a proper definition of quantum catalytic
space. There are many choices that have to be made in the model, but we
begin with our general definition up front, leaving questions of machine model,
uniformity, gate set, and initial catalytic tapes. These will be discussed and
clarified in the rest of this section.

6.2.1. Definition (Quantum catalytic machine). A quantum catalytic machine
with workspace s := s(n), catalytic space c := c(n), uniformity K, gate set G, and
catalytic set A is a K-uniform quantum machine M with operations from G acting
on two Hilbert spaces, Hs andHc, of dimensions 2s and 2c respectively. The latter
space, called the catalytic tape, will be initialized to some ρ ∈ A ⊆ D(Hc). We
require that for any ρ ∈ A, if we initialize the catalytic tape to state ρ, then on
any given input x ∈ {0, 1}n, the execution of M(x) halts with the state ρ on the
catalytic tape.
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This gives rise to the following complexity classes:

6.2.2. Definition (Quantum catalytic complexity). QCSPACE[s, c] is the class
of Boolean functions which can be decided with probability 1, by a quantum
catalytic machine with work memory s and catalytic memory c.

BQCSPACE[s, c] is the class of Boolean functions which can be decided with
probability 2/3, by a quantum catalytic machine with work memory s and cat-
alytic memory c.

We further specify to the case of quantum catalytic logspace:

6.2.3. Definition (Quantum catalytic logspace).

QCL =
⋃

k∈N
QCSPACE[k log n, nk]

BQCL =
⋃

k∈N
BQCSPACE[k log n, nk]

6.2.1 Machine model
We begin by defining the two natural choices of base model for quantum catalytic
machines, namely Turing machines and circuits.

6.2.4. Definition (Quantum catalytic Turing machine). A quantum catalytic
Turing machine is defined as in Definition 6.2.1, using quantum Turing machines
as our machine model. We write QCSPACEM (respectively BQCSPACEM, QCLM,
and BQCLM) to refer to QCSPACE with quantum Turing machines.

6.2.5. Definition (Quantum catalytic circuits). A quantum catalytic circuit is
defined as in Definition 6.2.1 with time-2O(s) quantum circuits, that are SPACE(s)
uniform, as our machine model. We write QCSPACEC (respectively BQCSPACEC,
QCLC, and BQCLC) to refer to QCSPACE using quantum catalytic circuits.

Given that CL and related classes are defined in terms of (classical) Turing
machines, the option of circuits seems surprising and perhaps unnatural. For
example, Definition 6.2.5 imposes a time bound as part of its definition, while for
CL there is no known containment in polynomial time. For quantum circuits and
quantum Turing machines without access to the catalytic tape, an equivalence
has long been known; however, Definition 6.2.5 only allows for circuits of length
2O(s), while a generic transformation on s+ c qubit registers would give a circuit
of length 2O(s+c), i.e. requiring an exponential overhead.

The main result of this chapter is to show that these models are in fact equiv-
alent:
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6.2.6. Theorem. For s = Ω(log n), c = 2O(s)

QCSPACEM[O(s),O(c)] = QCSPACEC[O(s),O(c)]

BQCSPACEM[O(s),O(c)] = BQCSPACEC[O(s),O(c)]

For the rest of this section, we will deal with all auxiliary issues, namely the
choice of catalytic tapes and gate set, for quantum circuits alone; while all proofs
can be made to hold for quantum Turing machines without much issue, this is
also obvious by Theorem 6.2.6, which we will prove in Section 6.4.

6.2.2 Catalytic tapes
We now move to discussing the choice of initial catalytic tapes A. Perhaps the
most immediate choice is to put no restrictions on A and allow our catalytic tapes
to come from the set of all density matrices in D(Hc); this will ultimately be our
definition.

6.2.7. Definition. We fix the catalytic set in Definition 6.2.1 to be A = D(Hc).

While this is a natural option, encompassing every possible state on c qubits,
there are other choices one can make. We propose four natural options—density
matrices and three others—and show that all four are equivalent, thus justifying
our choice.

6.2.8. Definition. We define the following catalytic sets:

• Density is the set of all density matrices ρ ∈ D(Hc).

• Pure is the set of all pure states |ψ⟩ ∈ Hc.

• PauliProd = {|PP⟩ : |PP⟩ =
c⊗

i=1
|ϕ⟩i}, is the set of tensor products of eigen-

states of the single-qubit Pauli operators, where |ϕ⟩i ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ ,
|⟳⟩ , |⟲⟩} ⊂ H2.

• EPR = { 1√
2c

∑2c−1
i=0 |i⟩ |i⟩} ⊂ Hc ⊗ Hc is the unique state of c EPR pairs,

where the catalytic tape will be formed of one half of each EPR pair; the
other halves are retained as a reference system, which cannot be operated on
by the quantum circuit. The quantum circuit is of the form Qx = Q̃x ⊗ Ic,
acting as the Identity on the second set of halves of the EPR pairs that is
inaccessible to the circuit.
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6.2.9. Remark. We briefly comment on the fourth set, i.e. EPR. Using classical
catalytic techniques as a subroutine has proven to be very useful, for instance, in
giving an algorithm for tree evaluation in O(log n log(log n)) space [CM24]. One
can also consider using analogous quantum catalytic techniques as subroutines
for quantum computations, albeit this does not appear straightforward due to
inherent quantum limitations. This complication can be effectively modeled by
considering the initial state of the catalytic tape to be the halves of c EPR pairs.

We will now prove that the four classes of quantum catalytic circuits with
initial catalytic states restricted to one of the four sets D(Hc), Hc, PauliProd, and
EPR respectively, are all equivalent. For this we first require the following fact
about the Pauli matrices.

6.2.10. Fact. Any 2d×2d complex matrix can be written as a linear combination
of rank-1 outer products of states from PauliProd over d qubits. In other words,
the complex span of the set of d-qubit tensor products of Pauli eigenstates equals
the set of 2d × 2d complex matrices.

Proof:
Note that all four Pauli matrices can be written as a linear combination of two
of the Pauli eigenstates:

I = |0⟩ ⟨0|+ |1⟩ ⟨1| , X = |+⟩ ⟨+| − |−⟩ ⟨−| ,
Z = |0⟩ ⟨0| − |1⟩ ⟨1| , Y = |⟳⟩ ⟨⟳| − |⟲⟩ ⟨⟲| .

The four Pauli matrices form a basis for 2 × 2 complex matrices. Consequently,
Pauli strings of length d—i.e., tensor products of d Pauli matrices—form a basis
for 2d × 2d matrices. 2

Now we can state the theorem:

6.2.11. Theorem. Let QCCA denote quantum catalytic circuits with initial cat-
alytic tapes coming from A. Then, the following four classes of quantum catalytic
circuits are equivalent:

QCCDensity = QCCPure = QCCPauliProd = QCCEPR

Proof:
First note the obvious implications: for any quantum catalytic circuit Φ,

Φ ∈ QCCDensity =⇒ Φ ∈ QCCPure

Φ ∈ QCCPure =⇒ Φ ∈ QCCPauliProd
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these follow due to the fact that PauliProd ⊂ Pure ⊂ Density. To finish the proof,
we will further show the following two implications.

(1) Φ ∈ QCCPauliProd =⇒ Φ⊗ Ic ∈ QCCEPR

(2) Φ⊗ Ic ∈ QCCEPR =⇒ Φ ∈ QCCDensity

We first prove implication (1). Let Φ be a circuit from QCCPauliProd and consider
the action of Φ⊗ Ic (where the Identity operator acts on the inaccessible halves
of the EPR pairs) on the state 1

2c |0⟩ ⟨0|
∑

i,j |i⟩ ⟨j| ⊗ |i⟩ ⟨j|:

Φ⊗ Ic

 1
2c
|0⟩ ⟨0|

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j|

 = 1
2c

∑
i,j

Φ
(
|0⟩ ⟨0| ⊗ |i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| ,

because Φ being a channel is a linear operator. By theorem 6.2.10, |i⟩ ⟨j| can be
written as a linear combination of rank-1 projectors onto PauliProd states. Since
Φ is catalytic with respect to PauliProd, it follows that

1
2c

∑
i,j

Φ
(
|0⟩ ⟨0| ⊗ |i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| = η ⊗ 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| ,

for some state in η ∈ D(Hs). This shows that Φ ∈ QCCEPR.
Implication (2) requires a similar approach. Let Φ̃ ∈ QCCEPR, then we can

write Φ̃ = Φ⊗ Ic. For a given input state |0⟩ ⟨0| ∈ Hs the action of Φ⊗ Ic must
satisfy

Φ
 1

2c

∑
i,j

|0⟩ ⟨0| ⊗ |i⟩ ⟨j|
⊗ |i⟩ ⟨j| = η ⊗ 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| ,

for some state in η ∈ D(Hs). Since the catalytic state of c EPR pairs is returned
perfectly unaffected for every choice of input state, the effective channel of Φ can
also be written as a tensor product channel: Φ = Γs ⊗ Ξc

1, with the action of Ξc

being
1
2c

∑
i,j

Ξc

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| = 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| .

Note that although the effective channel factorizes into a tensor product across
the work and catalytic registers, without the catalytic tape much larger circuits
may be required to implement Γc. Moving forward, this implies that the Choi
matrix of Ξc is

J(Ξc) =
∑
i,j

Ξc

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| =

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| = J(I),

1It seems that the catalyst does not offer any improvement, because we can write Φ as a
tensor product of the action on the logspace clean qubits and the action of the catalyst, however
this does not need to hold. Only the action as a whole is writable as a tensor product, it might
actually consist of intermediate steps that are not of tensor product form, therefore Γs might
only have an efficient circuit description in the presence of a catalyst.
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and therefore the effective channel Ξc is the identity channel. This gives that for
any state ρ ∈ Hc it must hold that on input |0⟩ ⟨0|, the channel Φ must act as
follows:

Φ(|0⟩ ⟨0| ⊗ ρ) = η ⊗ ρ

2

6.2.12. Remark. In the proof that these channel definitions are equivalent we
actually showed that any channel under one definition also furnishes an instance
of the other definitions. This means that they are also operationally equivalent.
These equivalence proofs therefore have to hold for any type of machine model
that has to adhere to the same restrictions in restoring the state of catalytic space.
In particular it also holds for quantum Turing machines.

6.2.3 Gate set
When discussing quantum circuits, a fundamental issue is the underlying gate
set. Unlike the classical case, unitary operations form a continuous space, and
finite-sized circuits over finite gate sets cannot implement arbitrary unitaries.
However, there do exist finite gate sets of constant locality (that is, fan-in) which
are quantum universal, in the sense that any n-qubit unitary may be approxi-
mated to any desired precision ϵ in ℓ2-distance by a product of l = O(poly log 1

ϵ
)

gates from the universal gate set; this is the celebrated Solovay-Kitaev theorem
[Kit97; DN06; NC10]. From the standpoint of complexity classes, Nishimura and
Ozawa [NO09] also showed that polynomial-time quantum Turing machines are
exactly equivalent to finitely generated uniform quantum circuits.

We note that Definitions 6.2.5 and 6.1.3 do not make reference to any fixed
universal gate set. A potential issue that arises in this regard is that the complex-
ity class being defined may depend in an intricate way on the chosen universal
gate set, since it may not be possible to perfectly reset every initial catalytic
state under our uniformity and resource constraints. If we relax the notion of
catalyticity to mean that the initial catalytic state only has to be reset to within
ϵ trace distance at the end of the computation, one can use the Solovay-Kitaev
theorem to see that every choice of gate set leads to the same complexity class in
Definition 6.2.5. This interesting model resembles classical catalytic space classes
with small errors in resetting, and we leave it as an open question to determine
how it relates to the exact resetting model.

Returning to our setting that requires the quantum catalytic machine to per-
fectly reset the catalytic space to its initial state at the end of the computation,
we will restrict our attention to the case of universal quantum gate sets that
are infinite (for the complexity-theoretic properties of circuit families over such
gate sets, see e.g. [NO02]). In this case, our definition is robust to the choice
of gate set since any unitary may be implemented exactly by finite-sized circuits
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over such gate sets. Consequently changing the gate set does not change the
set of catalytic states that can be reset exactly by the machine. This results in
well-defined catalytic complexity classes independent of the specific choice of gate
set.

6.2.4 Uniformity
Similar to gate sets, the question of uniformity is quite subjective, as different
uniformity conditions will lead to different levels of expressiveness for our ma-
chines.

6.2.13. Definition. We fix the uniformity in Definition 6.2.1 to be K =
SPACE[O(s)].

We choose SPACE[O(s)] as it is the largest class of classical machines a
QCSPACE[s, c] machine should seemingly contain by default. Thus we believe
the choice of SPACE[O(s)]-uniformity is best suited to removing classical unifor-
mity considerations from taking the forefront of the discussion regarding quantum
catalytic space.

The question of how uniformity affects the power of QCSPACE is left to future
work; we only comment briefly here on natural alternative choices. Perhaps the
most immediate would be to consider CSPACE[s, c] uniformity, as it mirrors our
quantum machine. As we will see later, it is not clear how to prove QCSPACE[s, c]
contains CSPACE[s, c] directly, an interesting technical challenge that would be
rendered moot by building it into the uniformity. Similarly we avoid P-uniformity
because it is not known, and even strongly disbelieved, that CL contains P.

6.3 Main results
Now that we have a proper definition of the quantum catalytic model, we can
state our main results. Our main technical contribution is to show that, somewhat
surprisingly, quantum Turing machines and quantum circuits are equivalent even
in the catalytic space setting:
6.3.1. Theorem (Prove in Section 6.4.3). Let L ⊆ {0, 1}∗ be a language, and let
s := s(n) and c := c(n). Then L is computable by a quantum catalytic Turing
machine with workspace O(s) and catalytic space O(c) iff L is computable by a
family of quantum catalytic circuits with workspace O(s) and catalytic space O(c).

While this translation is straightforward in other settings, QCL has no a priori
polynomial time bound, and so there is no obvious way to define the length of
a catalyic circuit without running into trouble. However, we prove that the
result of Buhrman et al. [Buh+14] which shows that CL takes polynomial time
on average can be strengthened in the quantum case, to show that QCL always
takes polynomial time without any error:
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6.3.2. Theorem (Prove in Section 6.4). QCL ⊆ EQP

Such a result is considered the “holy grail” of classical catalytic computing.
In terms of class containments, we focus on two questions: the relationship

of quantum and classical catalytic space, and the relationship of catalytic space
to the one-clean qubit model (DQC1), a pre-existing object of study in quantum
complexity which bears a strong resemblance to catalysis. We show that, while
CL ⊆ QCL is surprisingly out of reach at the moment, this can be shown for
an important subclass of CL, one which captures the strongest known classical
containment:

6.3.3. Theorem. TC1 ⊆ QCL

Prove in Section 6.5. As a consequence, we show that TC1 constitutes a
natural class of functions for which catalysis gives additional power to quantum
computation.

We also show that unitary QCL (QUCL) and classical CL are both contained
in DQC1:

6.3.4. Theorem. BQUCL ⊆ DQC1

Prove in Section 6.6.

6.3.5. Theorem. CL ⊆ DQC1

Prove in Section 6.6. Note that we use a version of DQC1 defined using a
logspace controller instead of a polynomial time controller as may also be done.
These results show how much of the power of DQC1 comes from avoiding the
limitation of the resetting condition on the “dirty” workspace.

6.4 QCL upper bounds
In this section, we will finally return to the question of our quantum machine
model, showing that Turing machines and circuits are equivalent. One major
stepping stone is to show that log-space quantum catalytic Turing machines ad-
here to a polynomial runtime bound for all possible initializations of the catalytic
tape.

Before all else, a remark is in order as to why such a restriction should hold for
a seemingly stronger model, i.e. QCLM, when it is not in fact known for CL. While
quantum catalytic space has access to more powerful computations, i.e. quantum
operations, it also has the much stronger restriction of resetting arbitrary density
matrices rather than arbitrary bit strings. This restriction gives rise to a much
stronger upper bound argument, and in fact rules out one of the main techniques
available to classical Turing machines, namely compress or random arguments
(see c.f. [Dul15; Coo+25]).
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6.4.1 Polynomial average runtime bound
We begin by showing an analogue of the classical result of [Buh+14], i.e. the
average runtime of a quantum catalytic machine for a random initial catalytic
state ρ is polynomial in the number of work qubits. We note that the runtime
of a quantum Turing machine need not be a deterministic function of the input;
M has access to quantum states and intermediate measurements, from which it
is possible to generate randomness which might influence the time that machine
takes to halt.

6.4.1. Definition. Given a quantum catalytic Turing machine M , a fixed in-
put x ∈ {0, 1}n, and an initial catalytic tape ρ, we denote by T (M,x, ρ) the
distribution of runtimes of M on input x and initial catalytic tape ρ.

For an averaging argument to hold, we need to have a quantum notion of
non-overlapping configuration graphs.

6.4.2. Lemma. Let M be a quantum catalytic Turing machine, and let {τi}i form
an orthonormal basis for D(Hc). For all i and t, let ρi,t be the density matrix
describing the state of the classical tape, quantum tape, and internal state of M
at time step t on initial catalytic tape τi. Then if M is absolutely halting, all
elements of the set {ρi,t}i,t are orthogonal.

Proof:
We first consider the states ρi,t for a fixed i. Assume instead that there exists
some times t and t′ where the states are not orthogonal. This means that the
state at time step t can be written as a superposition between the state in time
step t′ and the state ρi,t = pρi,t′ +(1−p)η for some p > 0. This forms a loop in the
configuration graph where part of the state is back at time step t′. The amplitude
of the part of the state in this loop will shrink over time, but never go to zero.
The part of the state that is stuck in the loop will never reach the halting state,
therefore this is in contradiction with the assumption that the quantum Turing
machine is absolutely halting.

Next we consider the states ρi,t for different i. By definition of a quantum
Turing machine, the transformations M can apply to the entire state of the ma-
chine is given by some quantum channel. By Lemma 6.1.2 we know that the
trace distance between the entire state of the machine for separate instances of
the catalytic tape can only decrease by this quantum channel. Therefore we know
that if two instances start out to be orthogonal and end to be orthogonal, they
have to remain orthogonal through the entire calculation. 2

6.4.3. Lemma. Let M be a quantum catalytic Turing machine with workspace s
and catalytic space c, let {ρi}i form an orthonormal basis for D(Hc), and define
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Tmax(M,x, ρ) to be the maximum runtime of machine M on input x on starting
catalytic tape ρ. Then

Ei[Tmax(M,x, ρi)] ≤ 2O(s)

Proof:
Our catalytic machine is defined by a SPACE[O(s)] machine, defined by a tape
of length O(s) and an internal machine of size O(1), which acts on Hs and Hc,
which can be addressed into using log s and log c bits respectively. Since these
quantities plus the Hilbert spaces Hs and Hc define the dimensionality of our
machine, by Lemma 6.4.2 we have that∑

ρ∈{ρi}
Tmax(M,x, ρ) ≤ O(22(s+c+O(s)+O(1)+log s+log c))

and therefore the lemma follows because |{ρi}| ≤ 22c and 2(s + O(s) + O(1) +
log s+ log c) = O(s). 2

This already gives us a nice containment for our QCSPACE[s, c] classes.

6.4.4. Corollary. QCLM ⊆ ZQP

6.4.5. Corollary. BQCLM ⊆ BQP

6.4.2 Equal running times
We now take a further leap, showing that the initial catalytic tape does not affect
the (distribution of the) runtime of our machine M for a fixed input x.

6.4.6. Definition. Let M be a quantum catalytic Turing machine, and let
n ∈ N. We define Tmax(M,n) to be the maximum of the support of T (M,x, ρ),
maximized over x and ρ.

We can first show that given M and only one single copy of a state η ∈ Hc,
this probability distribution can be approximated up to arbitrary precision for
any x.

6.4.7. Lemma. Given catalytic Turing machine M and a single copy of a quan-
tum state η ∈ Hc, T (M,x, η) can be approximated up to arbitrary precision for
any x.

Proof:
Because M is a quantum catalytic Turing machine it has to reset the quantum
state initialized in its catalytic tape perfectly. Therefore we can use the following
approach: first fix some input x, then run the catalytic machine given x as input
and η on its catalytic tape and record the running time. When the machine
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halts, η should be returned on the catalytic tape. This means the test can be
performed again given the same inputs. This test can be run arbitrarily often
giving an arbitrary approximation to T (M,x, η). 2

This gives us the following observation about states with different halting
times:

6.4.8. Lemma. Let M be a quantum catalytic Turing machine, and let ρ1, ρ2 ∈
D(Hc). Assume there exists x ∈ {0, 1}n such that T (M,x, ρ1) ̸= T (M,x, ρ2).
Then ||ρ1 − ρ2||1 = 1, where || · ||1 is the trace distance.

Proof:
The Helstrom bound states that the optimal success probability of any state
discrimination protocol given one copy of an unnown state is:

Psuccess = 1
2 + 1

2 · ||ρ1 − ρ2||1

By Lemma 6.4.7, we know that T (M,x, ρ) can be approximated to any precision
with only one copy of ρ. Given a copy of either ρ1 or ρ2 at random, one can
estimate T (M,x, ρ) and perfectly discriminate between the cases ρ = ρ1 and
ρ = ρ2 giving a protocol with Psuccess = 1. Therefore it follows that

1
2 + 1

2 ||ρ1 − ρ2||1 = 1

and hence ||ρ1 − ρ2||1 = 1. 2

Lemma 6.4.8 is sufficient to show that the halting time of a quantum catalytic
Turing machine is independent of the initial state in the catalytic tape:

6.4.9. Theorem. Let M be a quantum catalytic Turing machine with s-qubit
workspace and c-qubit catalytic space, and let x ∈ {0, 1}n. Then there exists some
value t := t(n) such that T (M,x, ρ) = t for all ρ ∈ D(Hc).

Proof:
Assume for contradiction that there exist ρ1, ρ2 such that T (M,x, ρ1) ̸=
T (M,x, ρ2). By Lemma 6.4.8 it holds that ||ρ1 − ρ2||1 = 1. Consider the
state ρ′ = 1

2ρ1 + 1
2ρ2, and note that only one of T (M,x, ρ′) ̸= T (M,x, ρ1) or

T (M,x, ρ′) ̸= T (M,x, ρ2) can hold, by transitivity. Without loss of generality, let
T (M,x, ρ′) ̸= T (M,x, ρ1), and so ||ρ′ − ρ1||1 = 1 by Lemma 6.4.8. However, by
definition we have that

||ρ′ − ρ1||1 = ||(1
2ρ1 + 1

2ρ2)− ρ1||1 = 1
2

which is a contradiction. 2

Putting theorem 6.4.3 and theorem 6.4.9 together immediately shows that
the runtime of M is bounded by a polynomial in n for every input x and initial
catalytic state ρ:
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6.4.10. Theorem. Let M be a quantum catalytic Turing machine with workspace
s and catalytic space c. Then the maximum halting time is bounded by 2O(s).

This strengthens Corollary 6.4.4 to remove the randomness in the output
probability; this is the quantum equivalent of showing CL ∈ P, considered the
holy grail of open problems in classical catalytic computing:
6.4.11. Corollary. QCLM ⊆ EQP

6.4.3 Turing machines and circuits
We finally prove Theorem 6.2.6 and show the equivalence of our two definitions
of quantum catalytic machines. To do this, we observe, without proof, that
Theorem 6.4.9 extends to any classical observable feature of the initial catalytic
state by the same proof. We will apply this to one other aspect, namely the
transition applied at a given timestep t:
6.4.12. Lemma. Let M be a quantum catalytic Turing machine, and let x ∈
{0, 1}n. Then for every time t, there exists a fixed operation g applied by M at
time t for every ρ ∈ Hc.
This is sufficient to prove Theorem 6.2.6, which we will restate for convenience,
6.2.6. Theorem. For s = Ω(log n), c = 2O(s)

QCSPACEM[O(s),O(c)] = QCSPACEC[O(s),O(c)]
BQCSPACEM[O(s),O(c)] = BQCSPACEC[O(s),O(c)]

Proof:
We only prove the equivalence between QCSPACEC and QCSPACEM; the same
proof applies to BQCSPACEC and BQCSPACEM. Certainly QCSPACEC[s, c] is
contained in QCSPACEM[O(s),O(c)], since QCSPACEC circuits are SPACE[O(s)]
uniform and can be directly simulated by a QCSPACEM machine.

Conversely, given a QCSPACEM[s, c] machine M , we wish to find an equivalent
quantum catalytic circuit in QCSPACEC[O(s),O(c)]. For this, we transform the
transition function of the quantum Turing machine into a quantum channel; since
the transition only takes a finite number of (qu)bits as input, this can always
be done, and we have our transitions act on the same space Hs ⊗ Hc as M .
Then, by using a method similar to that from the proof of Lemma 6.6.8, to
make the machine oblivious, the tape head movement of the quantum Turing
machine will be fixed. If our circuit is the transition function channel copied to
all locations where the tape heads end up, we completely simulate the quantum
Turing machine. We know that Tmax(M,n) is always at most 2O(s) for a machine
M by Theorem 6.4.10, and so the number of such transition function channels
is also at most 2O(s). Therefore, we can simulate M using a quantum circuit of
length 2O(s) as claimed. 2
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6.5 Simulation of TC1

In this section we show that QCL can simulate Boolean threshold circuits. As in
the classical world, the ability to simulate TC1 is also a reason to believe that
catalytic logspace is strictly more powerful than logspace. This follows from the
fact that QL = PL [Wat98], which is itself contained in TC1:

6.5.1. Lemma. QL ⊆ TC1

Since TC1 can compute powerful functions such as determinant, this contain-
ment is largely believed to be strict. Thus Theorem 6.3.3 gives us a candidate
class of problems for separating QL from QCL.

6.5.1 Reversibility and obliviousness
In [Buh+14] the authors showed that TC1 can be simulated by transparent register
programs, which themselves are computable in CL; thus our goal is to extend the
CL simulation of transparent programs to QCL. More broadly, we show that re-
versible, oblivious, time-bounded CL is enough to simulate transparent programs,
and such a model is structured enough that, while we cannot show that all of CL
is in QCL, we can at least prove the containment for this small fragment.

We first make the following definitions which we use for our simulations. We
begin by recalling a result of Dulek [Dul15] which shows that catalytic Turing
machines can be made reversible (see c.f. [Coo+25] for a proof)

6.5.2. Theorem. For every catalytic machine M with space s and catalytic space
c, there exist catalytic machines M→, M← with space s + 1 and catalytic space c
such that for any pair of configurations (τ1, v1), (τ2, v2) of M→ and M←, if M→
transitions from (τ1, v1) to (τ2, v2) on input x, then M← transitions from (τ2, v2)
to (τ1, v1) on input x.

We will also need to consider oblivious machines, i.e. ones where the tape
head movement is solely a function of the input length |x| and does not depend
at all on the content of the catalytic tape c. While any Turing machine can be
made oblivious, it requires relaxing the definition of obliviousness to not forcing
the machine to halt at the same time on every input; we simply require that every
machine that continues to run carries out its execution in an oblivious manner.
We will bar this restriction in this section.

6.5.3. Definition. We say that a CL machine is totally oblivious if the following
holds. Let t, q, h be special registers on the free work tape, all initialized to 0,
representing the time, state, and tape heads of the machine. At each point in
time our machine consist of one mega-step: for every setting of t, q, h there is a
fixed transformation, computable in logspace, which the machine applies to the
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catalytic tape and to q, h, and a mega-step consists of applying each of these
operations, conditioned on the values of t, q, h on the free work tape, in order. At
the end of every mega-step we increment t, and our machine halts iff t reaches a
predetermined step T .

Totally oblivious machines are ones that in essence apply the same bundle
of transformations at every time step, with the information about which one to
to actually apply being written on the free work tape, and the halting behavior
being determined only by the clock.

Such machines are clearly in poly-time bounded CL (see c.f. [Coo+25] for a
discussion of this class), since the clock must fit on the free work tape. This causes
issues when we seek total obliviousness in tandem with reversibility; in general
it is not known, and is highly unlikely, that a polynomially time-bounded Turing
machine can be made reversible while remaining polynomially time-bounded.

However, there is an important class of algorithms which is both reversible
and totally oblivious: clean register programs. For our purposes we will use a very
restricted version of clean register programs (see c.f. [Mer23] for a discussion).

6.5.4. Definition. A register program P is a list of instructions P1 . . . Pt where
each Pi either has the form Rj += xk for some input variable xk or has the
form Rj += qi(R1 . . . Rm) for some polynomial qi. A register program cleanly
computes a value v if for any initial values τ1 . . . τm, the net result of running P
on the registers R1 . . . Rm, where each Rj is initialized to the value τj, is that
R1 = τ1 + v and Rj = τj for all j ̸= 1.

If we think of these registers as being written on the catalytic tape, it is clear
that clean register programs are totally oblivious, as the instruction at every
moment in time is based only on the timestep. This is nearly immediate, although
we note a few minor complications here. We need to preprocess the catalytic tape
to ensure our registers have values over the same ring as our register program;
for example, if we represent numbers mod p using ⌈log p⌉ bits, some initial values
will exceed p. This can be handled obliviously by observing that for either τ
or τ , half the registers are already correct, and so we take one full pass over τ
to keep a count of which case we are in, store this as a bit b (1 iff we need to
flip τ), and XOR τ with b at the beginning and end of the computation. We
subsequently ignore all blocks which are initialized to improper values; when we
go to operate on register Rj, say, as we obliviously pass over the whole catalytic
tape we will count how many valid registers we have seen, and act only when we
see the counter reach j.

Besides being totally oblivious, however, such programs are also reversible, as
every step of the form Rj += c can be inverted by a step of the form Rj− = c.
Thus such programs appear highly constrained in terms of what they can and
cannot achieve. Nevertheless, such programs are sufficient to compute TC1.
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6.5.5. Lemma ([Buh+14]). Let L be a language in TC1. Then L can be decided by
a clean register program, and, hence, by a totally oblivious reversible CL machine.

6.5.2 Simulation by QCL machines
We now show that reversibility plus total obliviousness is sufficient for simulation
by QCL.

6.5.6. Lemma. Let L be a language which can be computed be a totally oblivious
reversible CL machine. Then L ⊆ QCL.

Proof:
Let M be a totally oblivious reversible CL machine. We will treat our quantum
catalytic tape as a superposition over classical catalytic tapes, i.e. a superposition
over computational basis states. It is thus sufficient to show that the operation of
machine M can be simulated by a fixed quantum circuit containing Toffoli gates,
as such a circuit will correctly operate on each of our catalytic basis states in each
branch of the superposition.

By total obliviousness, every step that M takes is a fixed transformation
conditioned on the value of t, q, and h; since we additionally know that such
a step is reversible, it must be isomorphic to a Toffoli gate applied to a fixed
position of the catalytic tape conditioned on some fixed mask applied to t, q,
and h, and furthermore each transformation can be computed by our logspace
controlling machine. Since these operations are fixed for each timestep, we can
move t to our space controlling machine and have it construct a circuit, comprised
of Toffoli gates on q, h, and the catalytic tape, of polynomial length. 2

This is sufficient to prove our main result for this section:

6.3.3. Theorem. TC1 ⊆ QCL

Proof:
Combine Theorem 6.5.5 with Theorem 6.5.6. 2

6.6 Simulating catalytic space in DQC1

Lastly we will discuss the relationship between catalytic computing and a pre-
existing yet closely related quantum model, namely the one clean qubit setting.
We will introduce the model and then prove that it can simulate unitary QCL.
Finally we will show that classical CL is also contained in the one clean qubit
model.
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6.6.1 One clean qubit model
In the one-clean qubit model, first introduced by Knill and Laflamme [KL98], a
quantum machine is given a single input qubit initialized in the zero state and n
qubits initialized in the maximally mixed state. We will formalize the definition
of this computational model:
6.6.1. Definition (One clean qubit). Let {Qx}x be a log-space uniform family
of unitary quantum circuits. The one clean qubit model is a model of computation
in which Qx is applied to the n+ 1-qubit input state

ρ = |0⟩⟨0| ⊗ In

2n
,

where n = |x| and In operator is the identity on n qubits. After execution of Qx

the first qubit is measured, giving output probabilities:
p0 = 2−n Tr[(|0⟩⟨0| ⊗ I)Qx(|0⟩⟨0| ⊗ I)Q†x],
p1 = 1− p0

6.6.2. Remark. Two points stand out in this definition. First, note that Qx are
unitary circuits, and hence do not allow intermediate measurements; such mea-
surements would allow for resetting the qubits initialized in the maximally mixed
state, making the model significantly stronger. Second, in this paper we consider
log-space uniform families of unitary circuits, rather than the more common de-
terministic polynomial-time uniform families, in order to align more closely with
the QCL model that we study.

The one-clean qubit model is a probabilistic model of computation, and hence
we typically talk about computing a function f(x) in terms of success probability
for computing f(x) being bounded away from 1/2. The exact bound on the error
probability does not matter; while we often use 2/3 in defining e.g. BQP, even
a 1/ poly(n) gap is sufficient as there we can employ standard error-correction to
boost our success, namely by running the algorithm multiple times and taking a
majority vote of the outcomes. However, this is not known to be possible in the
one-clean qubit model, as such a machine can only reliably run once.
6.6.3. Definition ([KL98; She06]). DQC1 is the set of all languages L =⊂
{0, 1}∗ for which there exists a one-clean qubit machine M and a polynomial
q(n), such that on input x ∈ L of length n = |x|,

• if x ∈ Lyes then the output probability p1 ≥ 1
2 + 1

q(n)

• if x ∈ Lno then the output probability p0 ≥ 1
2 + 1

q(n)

On the other hand, somewhat surprisingly, the one-clean qubit model is robust
to the number of clean qubits allowed, up to a logarithmic number:
6.6.4. Lemma ([SJ08]). DQCk = DQC1 for k = O(log(n)), where DQCk means
having access to k clean qubits instead of one.
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6.6.2 Containment of unitary QCL in DQC1

We now move on to establishing a formal connection between QCL and DQC1. A
QCL machine is allowed to apply intermediate measurements to its quantum tape
as well as its catalytic tape, which is not possible in DQC1; however, if we restrict
the QCL machine to not make any intermediate measurements we can show that
such a machine can in fact be simulated by the one-clean qubit model.

6.6.5. Definition (QUCL). A QUCL machine is a QCL machine in which the
quantum circuit is unitary. In the final step, the unitary the QUCL machine mea-
sures the first qubit, which then gives the outcome of the calculation. Similarly
we define BQUCL to be BQCL with the unitary restriction.

Using this definition we can give the following proof of containment:

6.3.4. Theorem. BQUCL ⊆ DQC1

Proof:
Let C be a log-space uniform BQUCL quantum channel. Since C is unitary up
until the last measurement step, it preserves all possible density matrices from the
catalytic tape, and in particular it preserves the maximally mixed state In. Let
U be the unitary part of C. The action of U on the work-tape and the catalytic
tape, with the catalytic tape initialized in In, is:

U |0⟩ ⟨0|w ⊗
In

2n
U † = (√p0 |0⟩ ⟨0|w0

|ψ0⟩ ⟨ψ0|w +√p1 |1⟩ ⟨1|w0
|ψ1⟩ ⟨ψ1|w)⊗ In

2n

with |p1| ≥ 2/3 in a ’yes’ instance and |p0| ≥ 2/3 in a ’no’ instance. Note that
this calculation is of the exact form of a log(n)-clean qubit machine and that the
output probabilities are a constant bounded away from 1/2; hence this problem
is in DQCk, and by Lemma 6.6.4 is therefore in DQC1 2

6.6.3 Containment of CL in DQC1

We aim to show that CL ⊆ DQC1. The idea is that CL, as per Theorem 6.5.2,
can always be made reversible. While as discussed before we cannot maintain re-
versibility and total obliviousness, a CL machine can also always be made ‘almost
oblivious’ while maintaining reversibility; the tape head movements are indepen-
dent of the input, but the machine does not know when to halt. Instead, after
any given amount of time, we know that the machine has halted on a fraction
1/ poly(n) of possible initial catalytic states. Since the DQC1 model can be in-
terpreted as sampling from a uniform distribution of computational basis states,
this shows the probability of finding the correct output is 1/2 + 1/ poly(n), which
is sufficient for the proof.
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6.6.6. Definition. A non-halting reversible oblivious catalytic Turing machine
is a reversible oblivious catalytic Turing machine that need not halt absolutely.
In particular, for every input x and initial catalytic state c there exists a time
t(x, c) where the correct output has been written to the output tape and the
catalytic tape has been reset to its initial state. In addition, the output state
has an additional binary cell that indicates whether or not the output has been
determined yet, or is still ‘unknown’ by the machine.

6.6.7. Definition. We say a reversible oblivious catalytic Turing machine halts
with polynomial success probability if there exists polynomials p, q such that for
any valid input x to a promise problem, after time p(|x|) the output tape of
the catalytic Turing machine contains the correct output to the problem on a
fraction of at least 1/q(|x|) when the initial catalytic tapes are taken uniformity
at random. After time p(|x|), the output tape of the catalytic Turing machine
never contains the wrong answer, but it may leave the output undetermined.

We show that any CL machine can be transformed into a reversible oblivious
catalytic Turing machine that halts with polynomial success probability.

6.6.8. Lemma. Any catalytic Turing machine M that has a logarithmic clean
space and polynomial size catalytic tape can be turned into a non-halting obliv-
ious reversible catalytic Turing machine M o with a logarithmic clean tape and
polynomial catalytic tape.

Proof:
By [Dul15; Coo+25], M can always be assumed to be reversible. We claim we can
also make M oblivious by sacrificing the condition that M is absolutely halting.
This also interferes with what is meant by the machine being catalytic, but the
new machine no longer needs to be catalytic.

To make the machine oblivious, we make two modifications. The first applies
to operations on the clean tape. The second applies to operations on the catalytic
tape. On the clean tape, we double the size of the clean tape of M , breaking it
up into pairs. The first entry of the pair stores the original data while the second
keeps track of the position of where the tape head is ‘supposed’ to be. Then by
iterating over all positions on the clean tape of the Turing machine in every step of
the original Turing machine, operations on the clean tape of the Turing machine
can be made oblivious. Similarly, for operations on the catalytic tape, we can
maintain an additional part of the clean tape that keeps track of the position of
the catalytic tape head position. By iterating over all possible positions of the
catalytic tape head and checking if the tape head is ‘really there’, we can make
catalytic tape operations oblivious. 2

We call the machine formed this way M o for oblivious M . Since the catalytic
and clean tape are no more than polynomial length, this procedure adds at most
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a polynomial factor to the runtime. However, since the runtime of M may be
super-polynomial and an oblivious machine has the same runtime for all inputs x
of the same length and catalytic tapes c, the machine does not have enough clean
space to keep a clock to know whether or not it has terminated. This means we
cannot assume it halts. However, we can show that it is halting with sufficient
probability:

6.6.9. Lemma. For any language L in CL that is recognized by a catalytic Turing
machine M , there exists a reversible oblivious catalytic Turing machine N that
halts with polynomial probability that also recognizes L. Furthermore, N also uses
O(log |x|) clean space and polynomial catalytic space.

Proof:
We observe that M o in Lemma 6.6.8 is simulated step-by-step, meaning that
not only do we reach the same outcome, but up to a fixed transformation and a
slower runtime, M o passes through the same intermediate states. If we consider
a modified version of M in the first place, we can ensure that the machine halts
with polynomial success probability. We modify the original machine M to form
the machine M ′ in the following ways:

1. The machine M ′ repeats the original machine M l(n) = 2s(n) times where
s(n) is the length of the clean tape. Each repetition is called a cycle.

2. The space used for writing the output of M originally is extended by one ad-
ditional bit. This bit starts out in 0, signifying the output is ‘undetermined’.
These two bits together are called the output state.

3. After each cycle, the machine cleans itself. This means that it resets the
clean space to the all 0 state, reversing the computation except the output
state, which is left unaltered except for the first cycle.

4. After the first cycle, the correct output of the computation is written to the
output tape and the second bit of the output state is flipped, signifying the
output is ‘determined’. For every subsequent cycle, a counter that counts
up to 2l(n) is incremented by 1, but the output tape is left unchanged.

We claim that the machine M ′o halts with polynomial probability. Suppose
that the runtime of a cycle of M ′ on input x and catalytic tape c is f(x, c).
The expected runtime of a cycle of M ′, f(x), over a uniform distribution of
catalytic tapes for fixed x is at most l(n) by close analysis of the polynomial
expected time bound given in [Buh+14]. Let us examine the output at time
t(x) = t(|x|) = l(n) + 1. Then, by Markov’s inequality on a uniform distribution
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of possible catalytic tapes

P(output undetermined) ≤ f(x)
t(x)

≤ l(n)
t(x)

= l(n)
l(n) + 1 = 1− 1

l(n) + 1

This means that at time t(n), the probability that an output is written to the clean
tape is at least 1/(l(n) + 1) = 1/ poly(n). After the first cycle, the output must
be correct. However, afterwards, we have no control over what is written onto the
output tape. In making the machine reversible and oblivious, it may later change
the value in the output tape, including incorrect values. This is why we repeat
each cycle many times. This is M ′ stalling to preserve the correctness of the
output. Since the cycle is repeated 2l(n) times and each cycle uses time at least
one time step to increment the counter, this means that at time t(x) = l(n) + 1
the value in the output tape is guaranteed to be correct or undetermined.

Let N = M ′o. Then N is reversible, oblivious and halts with polynomial
probability. Since t(x) = l(n) + 1 and l(n) or any upper bound on l(n) (which is
sufficient) is readily computable, this completes the proof. 2

This completes all technical components necessary to show that CL ⊆ DQC1.

6.3.5. Theorem. CL ⊆ DQC1

Proof:
The maximally mixed state of DQC1 can be interpreted as uniformly randomly
sampling computational basis states. If we take these basis states to be the
catalytic tape and use the fact that DQC1 is unchanged if we allow a logarithmic
number of clean qubits, then we can run the machine N from Lemma 6.6.9 by
using unitary gates instead of reversible, oblivious operations. When we measure
the output bit at the end, we get either an undetermined state or the correct
output with certainty. If we get an undetermined state, we output a random bit
and thus output the correct answer with probability 1/2. If not, then we output
the correct answer, which occurs with probability at least 1/ poly(n). 2

6.7 Open problems
Finally, we identify a number of interesting avenues to further explore the power
of quantum catalytic space, and understand its relation to various (quantum)
complexity classes.
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QCL subroutines. Remarkably, classical catalytic subroutines can already be
used to achieve analogous space savings in QCL. Is it possible to identify gen-
uinely quantum subroutines to achieve savings beyond those attained by classical
generalizations? This is not so straightforward because the subset of qubits be-
ing reused in a catalytic subroutine could become entangled with qubits that
cannot be accessed by the subroutine. Therefore, there might be a non-trivial
and inaccessible reference system with respect to which the catalytic property
must hold. While we show the presence of such an inaccessible reference system
does not change the model we define, designing quantum catalytic subroutines
(cf. classical results in [CM24; Wil25]) stands out as a fertile direction for future
work.

Robust QCL. As discussed in Chapter 5, quantum computations are inherently
error-prone. In our definition of QCL, we did not account for possible errors
affecting the catalyst. This omission causes the definition of QCSPACE to depend
on the choice of gate set. In contrast, the strict reset requirement led both to an
equivalence between the different sets of states used to initialize the catalytic tape
and to the time bound established for QCL. It would be interesting to investigate
whether these properties persist when the reset condition is relaxed to allow a
small trace distance error, potentially removing the gate-set dependence. Another
direction is to explore whether the techniques developed in Chapter 5 extend to
the quantum setting. In this case, rather than focusing on trace distance, we
would be concerned with low-weight Pauli errors, akin to those typically addressed
in quantum error correction.

CL vs QCL. While we have started investigating the question, we still have no
simple answer to the relationship between CL and QCL; in fact we have not even
ruled out that CL contains QCL. The primary challenge is that while any CL
machine runs in polynomial time in expectation over the catalytic tape, QCL ma-
chines always run in polynomial time. We do not know how to fit in pathological
cases where CL runs in exponential time, for example, into QCL. Similarly, a
problem or oracle that can separate QCL from CL would also be of interest2.

QNC1 vs QCL. Starting with Barrington’s Theorem [Bar89], a landmark result
in space complexity, a classical line of work [BC92; Buh+14] has shown that
polynomial-size formulas over many different gate sets can be computed using only
logarithmic space, using a reversible, algebraic characterization of computation.

2A candidate oracle for showing a separation between QCL and CL is the oracle relative to
which CL and PSPACE are equivalent, as shown in [Buh+14]. This oracle uses the fact that the
initial catalytic tapes of CL are either compressible or random, using the oracle differently for
either situation. This type of adaptive usage of the oracle, based on the given catalytic state,
seems not to translate to the quantum setting due to Theorem 6.4.9.
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Such a result in the quantum case, i.e. QNC1 ⊆ QL, appears far out of reach, as
this would imply e.g. novel derandomizations in polynomial time. However, such
techniques are also key to the study of catalytic computation, and so perhaps we
can show QNC1 or a similar quantum circuit class is contained in QCL. This would
give a clear indication of the power of quantumness in catalytic computation.

QCL vs DQC1. While we seem to find that QUCL or QCL without intermediate
measurements is contained in DQC1, it is unclear if this still holds when we allow
intermediate measurements.
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Guiding states





Chapter 7
Guided local Hamiltonian problem

In the final part of this thesis, we investigate a problem central to quantum
chemistry: estimating the smallest eigenvalue (ground state energy) of a local
Hamiltonian. To this end, we introduce the notion of a semi-classical guiding
state — a quantum state that admits an efficient classical description and has
non-trivial overlap with the ground space of a local Hamiltonian. We begin by
motivating and introducing the problem, as well as the role of guiding states in
addressing it.

Quantum chemistry and quantum many-body physics are generally regarded
as two of the most promising application areas of quantum computing [Aar09;
Bau+20]. Whilst perhaps the original vision of the early pioneers of quan-
tum computing was to simulate the time-dynamics of quantum systems [Ben80;
Fey82], for many applications one is interested in stationary properties. One par-
ticularly noteworthy quantity is the ground state energy (which corresponds to
the smallest eigenvalue) of a local Hamiltonian describing a quantum mechanical
system of interest, say a small molecule or segment of material.

The precision to which one can estimate the ground state energy plays a cru-
cial role in practice: for instance, in chemistry the relative energies of molecular
configurations enter into the exponent of the term computing reaction rates, mak-
ing the latter exceptionally sensitive to small (non-systematic) errors in energy
calculations. Indeed, to match the accuracy obtained by experimentation for such
values one aims for an accuracy that is smaller than so-called chemical accuracy,
which is about 1.6 millihartree.1 This quantity – which reads as a constant –
is defined with respect to a (physical) Hamiltonian whose norm grows polyno-
mially in the system size and particle dimension, and thus chemical accuracy is
in fact a quantity that scales inverse polynomially in the system size when one
considers (sub-)normalized Hamiltonians, which is often the case in the quantum
computing / Hamiltonian complexity literature.

1This quantity, which is ≈1 kcal/mol, is chosen to match the accuracy achieved by thermo-
chemical experiments.
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7.1 Local Hamiltonian problem
The problem of estimating the ground state energy of a Hamiltonian is formalized
in complexity theory. A physical Hamiltonian is understood to be a Hamiltonian
that only has local interactions, therefore, one considers what is known as a local
Hamiltonian.

7.1.1. Definition (Local Hamiltonian). A k-local Hamiltonian H acting on n-
qubits is a hermitian matrix that can be written as a sum of T = poly(n) local
terms:

H =
T−1∑
i=0

hi,

where every hi is a k-local observable, in other words, a hermitian matrix that
only acts non-trivially on at most k-qubits.

7.1.2. Remark. The terms hi can always be further broken down into a linear
combination of Pauli strings, where the highest weight string is at most the local-
ity of hi. Furthermore, in physics the Hamiltonians considered are often spatially
bounded, meaning that there is some topology to which the qubits adhere, say
on a line, and interactions are limited to be between direct neighbors. Note that
we do not restrict the terms hi to be spatially bounded.

The decision variant of estimating the smallest eigenvalue of a local Hamilto-
nian up to some additive error is known as the local Hamiltonian problem.

7.1.3. Definition (Local Hamiltonian problem). The k-local Hamiltonian
problem LH(k, δ) is:
Input: A k-local Hamiltonian H with ||H|| ≤ 1 acting on n qubits and threshold
parameters a, b ∈ R such that b− a ≥ δ > 0
Promise: The ground state energy is promised to be λ0(H) ≤ a or greater than
λ0(H) ≥ b
Output:

• if λ0(H) ≤ a, output yes.

• if λ0(H) ≥ b, output no.

The local Hamiltonian problem is well-known to be QMA-hard when the required
accuracy δ scales inversely with a polynomial, where QMA is the quantum ana-
logue of the class NP, also known as Quantum Merlin Arthur. Therefore, it is
generally believed that, without any additional help or structure, quantum com-
puters are not able to accurately estimate the smallest eigenvalues of general local
Hamiltonians, and there is some evidence that this hardness carries over to those
Hamiltonians relevant to chemistry and materials science [OGo+22]. A natural
question to ask is then the following:
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How much ‘extra help’ needs to be provided in order to accurately estimate
ground state energies using a quantum computer?

7.2 Guiding states
In the quantum chemistry community, it is often suggested that this extra help
could come from a classical heuristic that first finds some form of guiding state: a
classical description of a quantum state that can be used as an input to a quantum
algorithm to compute the ground state energy accurately [Liu+22]. Concretely,
this comes down to the following two-step procedure [GL22]:

• Step 1 (Guiding state preparation): A classical heuristic algorithm is applied
to obtain a guiding state |u⟩, which is hoped to have ‘good’2 fidelity with
the ground space.

• Step 2: (Ground state energy approximation): The guiding state |u⟩ is used
as input to Quantum Phase Estimation (QPE) to efficiently and accurately
compute the corresponding ground state energy.

There is something special about Step 2 — it is a unique strength of quantum
computers to be able to resolve an eigenvalue (within additive 1/ poly(n) preci-
sion) of a local Hamiltonian given just a guiding state |u⟩ to the corresponding
eigenvector (via QPE).
Secondly, in general, one does not expect a good3 guiding state for arbitrary local
Hamiltonian H to exist, as this would imply QCMA = QMA. And even if such
a guiding state did exist, finding it can still be hard. For example, minimizing
tr(Hρ) over the “simplest” quantum ansatz of tensor product states, i.e. ρ =
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn for ρi ∈ D(C2), remains NP-hard (seen by letting H be a
diagonal Hamiltonian encoding a classical 3-SAT instance).

7.3 Guided local Hamiltonian problem
The second step of the above-mentioned procedure was first formally studied by
Gharibian and Le Gall[GL22]. They introduced the Guided k-local Hamiltonian
problem (GLH(k, δ, ζ)), which can informally be stated as follows (with formal
Definition 7.5.4): given a k-local Hamiltonian H, an appropriate classical ‘repre-
sentation’ of a guiding state |u⟩ promised to have ζ-fidelity with the ground space

2‘Good’ here means at least inverse polynomial in the number of qubits the Hamiltonian
acts on.

3“Good” here meaning a state |ψ⟩ with inverse polynomial fidelity with a ground state, and
with a succinct classical description allowing |ψ⟩ to be prepared efficiently.
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of H, and real thresholds b > a (s.t. b− a ≥ δ), decide if the ground state energy
of H lies above or below the interval [a, b] . In their work they show two results
with respect to k − GLH(k, δ, ζ):

• For any constant k, GLH(k, δ, ζ) can be efficiently solved classically within
constant precision, i.e. for δ ∈ Θ(1) and ζ ∈ Θ(1).

• In contrast, GLH(6, δ, ζ) is BQP-hard for inverse polynomial precision, i.e.
δ ≥ 1/ poly(n), and ζ = 1/2− 1/ poly(n).

The latter regime of inverse-polynomial precision turns out to be the relevant one
for solving quantum chemistry problems in practice.

Four important problems were left open in [GL22]:
Is GLH(k, δ, ζ) still BQP-hard when the guiding state has larger fidelity ζ with
the ground space4, and in particular for ζ arbitrarily close to 1?
Is GLH(k, δ, ζ) still BQP-hard for locality k < 6?
How difficult is GLH(k, δ, ζ) when we are interested in estimating excited state
energies instead of the ground state energy?
Are there physically motivated Hamiltonians for which k-GLH is still BQP-hard?

In this part of the thesis, we continue the agenda toward Step 2 above by
resolving the first three open questions:

• First, we show that BQP-hardness continues to hold even for ζ = 1 −
1/ poly(n) (in the regime of inverse polynomial precision), i.e. even when
we are promised the guiding state |u⟩ is a remarkably good approximation
to the ground state.

• Second, we show that BQP-hardness continues to hold even for k = 2. (Note
that for k = 1, the problem can be solved efficiently classically, even without
a guiding state.)

• Third, we extend the BQP-hardness results to the case when one is inter-
ested in estimating energies of excited states, rather than just the ground-
state. To do so we introduce the Guided Local Hamiltonian Low Energy
problem (GLHLE(k, c, δ, ζ) formal definition 7.5.5), where one is asked to
estimate the c’th eigenvalue of H given an appropriate guiding state. In-
terestingly, we are only able to show BQP-completeness in this setting by
showing that the first point holds, i.e. the BQP-hardness in the regime
ζ ∈ [1

2 + Ω(1/poly(n)), 1− Ω(1/poly(n))].
The fourth question will not be discussed in this thesis. However, in [Cad+23a]
hardness of this problem was proven for physically motivated Hamiltonians. They
include XY model (constraints of the form XX + Y Y ), Heisenberg model (con-
straints of the form XX + Y Y + ZZ), the antiferromagnetic XY model and the
antiferromagnetic Heisenberg model (i.e. “Quantum Max Cut” [GP19]).

4A local-Hamiltonian does not need to have a unique groundstate, therefor we require fidelity
with the entire groundspace, and not with a specifick state.
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7.4 Main result
We can summarize our result in the following theorems:

7.4.1. Theorem (BQP-hardness). For any fidelity ζ ∈ (0, 1−1/ poly(n)), locality
k ≥ 2, some integer 0 ≤ c ≤ O(poly(n)) (c’th excited state), and precision
δ = 1/ poly(n), GLHLE(k, c, δ, ζ) (guided local Hamiltonian low energy problem)
is BQP-hard.

The proof of this theorem follows from Propositions 7.7.1, 7.7.3 and 7.7.8.
Furthermore, the problem is contained in BQP when:

7.4.2. Theorem (Containment in BQP of GLHLE).

(i) GLHLE(k, 0, ζ, δ) is contained in BQP for k = O(log(n)), ζ = Ω(1/ poly(n)),
and δ = Ω(1/ poly(n)).

(ii) GLHLE(k, c, ζ, δ) for c ≥ 1 is contained in BQP when k = O(log(n)), ζ =
1
2 + Ω(1/ poly(n)), and δ = Ω(1/ poly(n)).

The reason for the separation of Theorem 7.4.2 into parts (i) and (ii) is as follows:
when the fidelity of the guiding state with the target eigenstate is sufficiently
above 1/2 (in this case 1/2+1/ poly(n)), then by inputting this state to quantum
phase estimation and measuring, one can choose the most frequently observed
output to be the estimate of the energy of the target state (since we know that
the fidelity with any other eigenstate will be smaller than the fidelity with the
target state). On the other hand, if the fidelity is not sufficiently above 1/2,
then it might be the case that the guiding state has significant fidelity with other
eigenstates, and that the energies of these states will be measured with equal or
higher probability than that of the target eigenstate. In this case, it is impossible
to decide (in polynomial time) which energy corresponds to the target state, and
which to the other, unwanted states, unless the target state is the groundstate
(case (i)), in which case we can employ the variational principle and simply choose
the smallest energy. A formal proof of Theorem 7.4.2 can be found in Section 7.8.

7.5 Preliminaries
As we saw in the Section 7.1, the local Hamiltonian problem is defined with re-
spect to a promise on its input. Therefore, all complexity classes in this part of the
thesis will be defined with respect to promise problems (and not languages). Re-
member that a (promise) problem A = (Ayes, Ano) consists of two non-intersecting
sets Ayes, Ano ⊆ {0, 1}∗ (the yes and no instances, respectively). We have that
Ainv = {0, 1}∗ \ Ayes ∪ Ano is the set of all invalid instances, and we do not care
how a verifier behaves on problem instances x ∈ Ainv (it can accept or reject
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arbitrarily, see the paragraph ‘oracle access’ for a more elaborate discussion on
what this entails). All previously defined classes, such as NP, can be understood
in this chapter as a promise class.

7.5.1 Semi-classical states
Before we formally introduce the guided local Hamiltonian problem, we need to
define what we mean by a guiding state. To do so, we borrow the definition
given by Gharibian and Le Gall [GL22]. They require a guiding state to have
two properties: First, a guiding state must have an efficient classical description
(which is given as an input to the problem). Second, they require that it is
efficient to classically sample from the distribution described by the state, given
its description5. States with these two properties are called “semi-classical” states.
In Chapter 8 we will dive deeper into what types of “semi-classical” states are
actually interesting in this setting. For this part of the thesis, the following
definitions are sufficient. One type of semi-classical state we use in this chapter is a
polynomial-size variant of the notion of subset states, first introduced in [GKS15].

7.5.1. Definition (Semi-classical subset state). We say that a normalized state
|u⟩ ∈ C2n is a semi-classical subset state if there is a subset S ⊆ {0, 1}n with
|S| = poly(n) such that

|u⟩ = 1√
|S|

∑
x∈S

|x⟩ .

A semi-classical subset state can be efficiently described by the description
of S. It is clear that we can efficiently sample from the probability distribution
that outputs x ∈ {0, 1}n with probability |⟨x|u⟩|2, i.e., according to the uniform
distribution over S.

We next introduce a generalized version of a semi-classical subset state.

7.5.2. Definition (Semi-classical encoded state). We say that a normalized
state |u⟩ ∈ C2m , where n < m and m ∈ O(n), is a semi-classical encoded
state if there is a subset S ⊆ {0, 1}n with |S| = poly(n) and a set of isome-
tries V1, V2, . . . , Vn, where each Vi maps a 1-qubit state to an O(1)-qubit state,
such that

|u⟩ = 1√
|S|

∑
x∈S

V1(|x1⟩)⊗ V2(|x2⟩)⊗ · · · ⊗ Vn(|xn⟩).

A semi-classical encoded state is indeed a semi-classical subset state if the
encoding is trivial (i.e. V1 = V2 = · · · = Vn = I). A semi-classical encoded state
can be described by S and isometries V1, V2 . . . , Vn. We can also efficiently sample
from the semi-classical encoded state, as we show in the following lemma.

5The requirement of sampling access for a guiding state is motivated by the existence of an
efficient classical algorithm for the GLH problem with constant precision, given a guiding state
with sampling access, as shown in [GL22].
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7.5.3. Lemma. Given the description of an m-qubit semi-classical encoded state
|u⟩, we can classically efficiently sample from the probability distribution that
outputs x ∈ {0, 1}m with probability |⟨x|u⟩|2.

Proof:
Assume we are given the description, S ⊆ {0, 1}n and V1, V2, ..., Vn, of the semi-
classical encoded state

|u⟩ = 1√
|S|

∑
x∈S

V1(|x1⟩)⊗ V2(|x2⟩)⊗ · · · ⊗ Vn(|xn⟩).

Let P (y0, y1, ..., yi−1) = |(⟨y0, y1, ..., yi−1| ⊗ I) |u⟩ |2 be the probability that the
measurement outcome of the first i qubits of |u⟩ in the computational basis is
y0, y1, ..., yi−1. For each i ∈ [m], we can efficiently calculate P (y0, y1, ..., yi−1) be-
cause |S| = poly(n) and V1(|x1⟩)⊗ V2(|x2⟩)⊗ · · · ⊗ Vn(|xn⟩) is a product state of
O(1)-qubit states. Then, we can also efficiently calculate the conditional proba-
bility

P (z|y0, y1, ..., yi−1) = P (y0, y1, ..., yi−1, z)
P (y0, y1, ..., yi−1)

.

If the bits y0, y1, ..., yi−1 have already been sampled, we compute
P (z|y0, y1, ..., yi−1) and sample the next bit by tossing a coin with bias
P (0|y0, y1, ..., yi−1). In this way, we can classically efficiently sample from the
probability distribution that outputs x with probability |⟨x|u⟩|2.

2

7.5.2 Formal definition of GLH(k, δ, ζ)
Given the definitions of semi-classical states, we can formally state the guided
local Hamiltonian problem6:

7.5.4. Definition (Guided Local Hamiltonian problem). The k-local guided
Hamiltonian problem GLH(k, δ, ζ) is:
Input: A k-local Hamiltonian H with ∥H∥ ≤ 1 acting on n qubits, the descrip-
tion of a semi-classical encoded state |u⟩ ∈ C2n , threshold parameters a, b ∈ R
such that b− a ≥ δ > 0, and a bound on the fidelity ζ.
Promises: ∥Π0 |u⟩ ∥2 ≥ ζ, where Π0 denotes the projection on the ground space
of H; furthermore, either λ0(H) ≤ a or λ0(H) ≥ b holds.
Output:

6This definition of GLH is very similar to the definition of GLH∗(k, a, b, δ) in [GL22]. The
difference is that while the guiding states used in [GL22] are restricted to semi-classical subset
states (Definition 7.5.1), in our definition we use the more general concept of semi-classical
encoded states (Definition 7.5.2).
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• If λ0(H) ≤ a, output yes.

• If λ0(H) ≥ b, output no.

We next define the guided local Hamiltonian low energy (GLHLE) problem,
which can be viewed as a generalization of GLH by considering arbitrary eigen-
states of Hamiltonians. For an n-qubit HamiltonianH, we denote Πc the projector
onto the space spanned by the states of H that have energy λc(H).

7.5.5. Definition (Guided Local Hamiltonian Low Energy). The k-local
guided Hamiltonian low energy problem GLHLE(k, c, δ, ζ) is:
Input: A k-local Hamiltonian H on n qubits such that ∥H∥ ≤ 1, the description
of a semi-classical encoded state |u⟩ ∈ C2n , threshold parameters a, b ∈ R such
that b− a ≥ δ > 0, a bound on the fidelity ζ, and a constant c ∈ N≥0.
Promise: ∥Πc |u⟩ ∥2 ≥ ζ, where Πc denotes the projection on the subspace
spanned by the cth eigenstate(s), ordered by non-decreasing energy, of H, and
either λc(H) ≤ a or λc(H) ≥ b holds.
Output:

• If λc(H) ≤ a, output yes.

• If λc(H) ≥ b, output no.

7.5.6. Remark. When c = 0, GLHLE(k, 0, δ, ζ) is the same problem as
GLH(k, δ, ζ).

Our BQP-hardness proof for Theorem 7.4.1 will be based on the construction
by Gharibian and Le Gall [GL22], therefore, we first discuss their construction
and then show how we improve on it.

7.6 Gharibian and Le Gall’s construction
In this section we will briefly restate Gharibian and Le Gall’s original construc-
tion [GL22]. They start their reduction from circuit evaluation.

BQP-hard circuit: Let Π = (Πyes,Πno) be a promise problem in BQP, and
x ∈ {0, 1}n an input. Let U = UT . . . U1 be a poly-time uniformly generated
quantum circuit consisting of 1- and 2-qubit gates Ui, deciding on Π. More
precisely, U takes an n-qubit input register A, and a q(n) = poly(n)-qubit work
register B and outputs, upon measurement, a 1 on the first qubit with probability
at least α (resp. at most β) if x ∈ Πyes (resp. x ∈ Πno). We can assume w.l.o.g.
α = 1− 2−n, β = 2−n by the fact that BQP allows for error-reduction.

Then they use the well-known Kitaev clock construction to map the BQP-
circuit to a Hamiltonian.
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Circuit to Hamiltonian mapping: Consider Kitaev’s original 5-local clock
Hamiltonian [KSV02]:

Hx
KF = ∆(Hin +Hclock +Hprop) +Hout, (7.1)

constructed from the BQP verifier circuit U , where ∆ is to be chosen later, with
the separate terms being:

Hin := (I − |x⟩ ⟨x|)A ⊗ (I − |0 . . . 0⟩ ⟨0 . . . 0|)B ⊗ |0⟩ ⟨0|C ,
Hout := |0⟩ ⟨0|out ⊗ |T ⟩ ⟨T |C ,

Hclock :=
T∑

j=1
|0⟩ ⟨0|Cj

⊗ |1⟩ ⟨1|Cj+1
,

Hprop :=
T∑

t=1
Ht, (7.2)

where,

Ht :=− 1
2Ut ⊗ |t⟩ ⟨t− 1|C −

1
2U
†
t ⊗ |t− 1⟩ ⟨t|C

+ 1
2I ⊗ |t⟩ ⟨t|C + 1

2I ⊗ |t− 1⟩⟨t− 1|C . (7.3)

Here A is the same input register as in the BQP circuit, similarly B is the work
register and C denotes the ‘clock’ register consisting of T = poly(n) qubits. This
Hamiltonian has several useful properties based on U :

• If U accepts with at least probability α, then λ0(H(5)) ≤ 1−α
T

.

• If U accepts with at most probability β, then λ0(H(5)) ≥ Ω(1−β
T 3 ).

Furthermore, we can split Hx
KF into two separate terms:

H1 := Hin +Hclock +Hprop

H2 := Hout

where H1 has the following property:

7.6.1. Lemma (Lemma 2.2 of [GY19] (based on Lemma 3 of [GK12])). The
smallest non-zero eigenvalue of H1 is at least π2/(64m3) for m ≥ 1.

Furthermore, the null space of H1 (zero-energy space) is spanned by what is
known as history states:

|ψhist⟩ = 1√
T

T∑
t=1

Ut . . . U1 |x⟩A |0 . . . 0⟩B |t⟩C , . (7.4)
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In the special case of reducing from a BQP-verifier circuit there is only one such
history state, because there is no witness as input for the BQP-verifier circuit.
The first trick that the authors use is that changing the prefactor ∆ does not
increase the energy of the history state, but it does for any state that is not
a history state. This allows them to increase the overlap between the history
state and the ground state of the Hamiltonian (for a more precise statement see
Proposition 7.7.1).

Then they construct poly-sized subset state that has significant overlap with the
history state.

Guiding state: Consider the following semi-classical guiding state in [GL22]

|u⟩ = 1√
T

N∑
t=1
|x⟩A |0 . . . 0⟩B |t⟩C . (7.5)

In general, this guiding state has at most O(1/(TN)) fidelity with the history
state and therefore an even smaller fidelity with the actual ground state of Hx

F K .
In order to meet the promise that ∥ΠHx

F K
|u⟩ ∥2 ≥ ζ in both the yes- and no-case,

Gharibian and Le Gall use the following two tricks:

Pre-idling trick: To control the yes case, they use what is known as the pre-
idling trick. By pre-idling the circuit U that is in the clock Hamiltonian – i.e.
applying N identity gates before the first actual gate – the fidelity between |u⟩
and the history state can be increased. This increases the number of gates from
T to M = T +N . Denote the weighted and pre-idled Hamiltonian by Ĥx

KF . This
also slightly changes the energy bounds on Ĥx

KF , redefining::

α̂ = 1− α
M

β̂ = 1− β
M3

(more details in Proposition 7.7.1).

Block-encoding the Hamiltonian: Finally, by block-encoding Ĥx
F K into a

larger Hamiltonian H ′xF K , which acts on n + r + M + 1 qubits (adding another
single-qubit register D), one can add another Hamiltonian (in their case a scaled
identity term) in another block such that the ground space in the no-case is
trivial, only increasing the locality in the construction by 1. By setting this
specific qubit in the guiding state to the |+⟩ state, one ensures that it has fidelity
with both the no- and yes-cases.
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The final Hamiltonian is then

H ′xF K := α̂ + β̂

2 IABC ⊗ |0⟩ ⟨0| 0D + Ĥx
F K ⊗ |1⟩ ⟨1| 1D, (7.6)

where Ĥx
F K = ∆ (Hin +Hclock +Hprop) +Hout. The guiding state becomes

|u⟩ := |x⟩A |0 . . . 0⟩B
(

1√
M

M∑
t=1
|t⟩
)

C

|+⟩D . (7.7)

Since the overall construction starts from a 5-local Hamiltonian, the last trick in-
creases the locality to 6 and restricts the fidelity to be at most 1/2−Ω(1/ poly(n)).

7.7 Our construction for BQP-hardness
In this section, we discuss how we achieve our three improvements in the BQP-
hardness construction of [GL22]. We will build on the construction described
above and prove our main theorem by proving three separate propositions.

7.7.1 Improved fidelity
Our first result is the improvement of the fidelity ζ. The construction of [GL22]
cannot exceed ζ = 1/2, but our construction achieves fidelity ζ = 1− 1/ poly(n).
First, let us explain why the construction of [GL22] cannot exceed fidelity ζ = 1/2.
In their construction, their last trick is to split the Hilbert space to deal with the
yes and no-case separately. It is clear that a ground state of H ′xF K is |ψ⟩ ⊗ |1⟩ in
the yes-case, where |ψ⟩ is a ground state of H ′. For the no case, a ground state is
|ϕ⟩⊗|0⟩, where |ϕ⟩ can be any state. Therefore, it can then be easily observed that
the optimal guiding state (i.e. the guiding state that has the maximum fidelity
with ground states in both the yes and the no-cases) is written as |ϕ⟩ ⊗ |+⟩ for
a certain choice of |ϕ⟩, which shows that the fidelity cannot exceed 1/2 in this
construction.

To overcome the problem, we realize that both in the yes and the no-case the
history state is the ground state of H1, the only term giving energy to the history
state is H2. The main idea is to use a large energy penalty term to rule out all
low-energy states which do not look like “history states”, both in the yes and
no-case. We then show that the corresponding guiding state can be chosen as
the semi-classical subset state introduced in [GL22] Equation 7.5. To obtain this,
we notice that the ground state of our Hamiltonian is gapped and unique. This
is because we are doing a reduction from BQP (as opposed to QMA). In other
words, there is no QMA “proof” to be plugged into the history state construction,
and therefore there is a unique low-energy history state. In sum, this allows us
to remove the block encoding approach of [GL22]. Additionally, this allows us to
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show that there is a gap between the ground state and first excited state of the
Hamiltonian. This gives us our first proposition.

7.7.1. Proposition. For any ζ ∈ (0, 1− Ω(1/ poly(n))), there exist a, b ∈ [0, 1]
such that b − a = δ, with δ = 1/ poly(n) such that the problem GLH(5, δ, ζ) is
BQP-hard. Moreover, it is still BQP-hard with the additional two promises that

1. H has a non-degenerate ground state separated from the first excited state
by a spectral gap γ ∈ Ω(1/ poly(n)), with γ ≥ δ, in both cases λ0(H) ≤ a
and λ0(H) ≥ b. (We call such instances γ-gapped GLH(k, δ, ζ).)

2. The guiding state is restricted to be a semi-classical subset state.

Proof:
We start by using the same BQP-hard verifier circuit as in Paragraph 7.6, which
we restate here for completeness. Let Π = (Πyes,Πno) be a promise problem in
BQP, and x ∈ {0, 1}n an input. Let U = UT . . . U1 be a poly-time uniformly
generated quantum circuit consisting of 1- and 2-qubit gates Ui, deciding on Π.
More precisely, U takes an n-qubit input register A, and a q(n) = poly(n)-qubit
work register B and outputs, upon measurement, a 1 on the first qubit with
probability at least α (resp. at most β) if x ∈ Πyes (resp. x ∈ Πno). We can
assume w.l.o.g. α = 1 − 2−n, β = 2−n by the fact that BQP allows for error-
reduction.

We will also need the following Lemma, known as the projection lemma:

7.7.2. Lemma (Kempe, Kitaev, Regev [KKR06]). Let H = H1 + H2 be the sum
of two Hamiltonians operating on some Hilbert space H = S + S⊥. The Hamil-
tonian H1 is such that S is a zero eigenspace and the eigenvectors in S⊥ have
eigenvalue at least J > 2∥H2∥∞. Then,

λ(H2|S)−
∥H2∥2

∞
J − 2∥H2∥∞

≤ λ(H) ≤ λ(H2|S),

where recall λ(H2|S) denotes the smallest eigenvalue of H2 restricted to space S.

Our construction is now as follows. First, pre-idle the verifier by updating U
to an M := (T + N)-gate circuit (N to be chosen shortly as needed), where the
first N gates are I, and the last T gates are the original circuit U . Consider the
5-local clock Hamiltonian of Equation 7.1:

H = ∆(Hin +Hclock +Hprop) +Hout, (7.8)

where Hprop is now using our new M -step U , and ∆ ≥ 0 is some constant to be
set as needed. As defined, H has poly(n) norm. The corresponding low-energy
history state is

|ψhist⟩ = 1√
M + 1

M∑
t=0

Ut · · ·U1 |x⟩A |0 · · · 0⟩B |t⟩C , (7.9)
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so that
⟨ψhist|Hout |ψhist⟩ = 1− p

M + 1 , (7.10)

for p the acceptance probability of the verifier U .
Finally, set the semi-classical subset state as:

|u⟩ = |x⟩A |0 · · · 0⟩B
(

1√
N

N∑
t=1
|t⟩
)
. (7.11)

We will first show that, by setting ∆ as needed, the history state has signifi-
cant overlap with the ground state, in both the yes and no-case. Then we will
show that, by setting N as needed, the history state and |u⟩ have large overlap,
concluding that |u⟩ and the ground state have overlap 1− 1/poly(n).

Fidelity between |ψhist⟩ and the ground space of H. Let N denote the
null space Null(Hin + Hprop + Hclock), where N is 1-dimensional (since we are
embedding a BQP computation) and spanned by |ψhist⟩. Let |E0⟩ be an arbitrary
ground state of H. Write |E0⟩ = η1 |ψhist⟩+η2

∣∣∣ψ⊥hist

〉
for |ψhist⟩ ∈ N ,

∣∣∣ψ⊥hist

〉
∈ N⊥,

and |η1|2 + |η2|2 = 1. Then, since H ′ ⪰ 0 (since Hin, Hprop, Hout, Hclock ⪰ 0 and
∆ ≥ 0), and where λ(H) is the smallest eigenvalue of H,

λ(H) = ⟨E0|H |E0⟩ (7.12)
≥ ⟨E0|∆(Hin +Hprop +Hclock) |E0⟩
= |η1|2 ⟨ψhist|∆(Hin +Hprop +Hclock) |ψhist⟩ (7.13)

+ |η2|2
〈
ψ⊥hist

∣∣∣∆(Hin +Hprop +Hclock)
∣∣∣ψ⊥hist

〉
= |η2|2

〈
ψ⊥hist

∣∣∣∆(Hin +Hprop +Hclock)
∣∣∣ψ⊥hist

〉
≥ |η2|2

π2∆
64M3 , (7.14)

where the second statement holds since Hout ⪰ 0, the third and fourth since
(Hin +Hprop +Hclock) |ψhist⟩ = 0, and the last by Lemma 7.6.1. We conclude that

|⟨E0|ψhist⟩|2 ≥ 1− 64M3λ(H)
π2∆

≥ 1− 64M3

π2∆ ⟨ψhist|Hout |ψhist⟩

= 1− 64M3(1− p)
π2∆(M + 1)

≥ 1− 32M2(1− p)
π2∆ , (7.15)

where the second statement holds by the fact that ⟨E0|H |E0⟩ ≤ ⟨ψhist|H |ψhist⟩ =
⟨ψhist|Hout |ψhist⟩. The third statement follows by Equation (7.10).
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Fidelity |u⟩ with the ground state. The fidelity between |u⟩ and the history
state is

|⟨u|ψhist⟩|2 =
∣∣∣∣∣∣

N∑
t=1

1√
N(M + 1)

∣∣∣∣∣∣
2

= N

M + 1 = N

T +N + 1 .

Set N = 2T k+1, for k ∈ Θ(1) to be chosen shortly. Then,

|⟨u|ψhist⟩|2 = 2T k+1

T + 2T k+1 + 1 ≥
1

1 + 1
T k

≥ 1− 1
T k
, (7.16)

where the last bound follows from the Taylor series for 1/(1−x), which converges
for any |x| < 1.

The triangle inequality combined with Equation (7.15) and Equation (7.16)
now yields

|⟨E0|u⟩|2 ≥ 1−
(

32M2(1− p)
π2∆ + 1

T k

)2

≥ 1−
(

32(T + 2T k+1)2

π2∆ + 1
T k

)2

, (7.17)

where we have used identity ∥|v⟩⟨v| − |u⟩⟨u|∥tr = 2
√

1− |⟨u|v⟩|2, and that p ≤ 1.
We set p = 0, which covers both the yes and no cases. By choosing k ∈ Θ(1)
and ∆ ∈ poly(n) appropriately, we can now guarantee the desired claim that
|⟨E0|u⟩|2 ≥ 1 − 1/r(n) for large enough n, for polynomial r from the statement
of the proposition.

We still need to make sure that the spectral gap scales as δ = 1/poly(n)

Correctness for YES and NO cases. In the YES case, i.e. when x ∈ Πyes,
we have by Equation (7.10) that

λmin(H) ≤ ⟨ψhist|H |ψhist⟩ = ⟨ψhist|Hout |ψhist⟩ = 1− p
M + 1 ≤

1
2n(M + 1) = a.

(7.18)
For the NO case, i.e. when x ∈ Πno, a bit of care is needed, as the naive
approach of applying Hölder’s inequality to tr(H(|E0⟩⟨E0| − |ψhist⟩⟨ψhist|)), to-
gether with Equation 7.15, is troublesome, as both ∥H∥∞ and |⟨E0|ψhist⟩|2 in-
crease monotonically with ∆. Thus, we instead apply Lemma 7.7.2, which, for
H1 = ∆(Hin +Hprop +Hclock) and H2 = Hout, says,

λ(H) ≥ λ(H2|S)−
∥H2∥2

∞
J − 2∥H2∥∞

≥ ⟨ψhist|Hout |ψhist⟩ −
1

∆π2

64M3 − 2

≥ 1− p
M + 1 −

128M3

∆π2

≥
1− 1

2n

2M + 1 −
128M3

∆π2 = b. (7.19)
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This gives decision gap:

δ = b−a =
1− 1

2n

M + 1−
128M3

∆π2 −
1

2n

(M + 1) =
1− 1

2n−1

M + 1 −
128M3

∆π2 ≥ 1
2(M + 1)−

128M3

∆π2

For large enough (but fixed polynomial) ∆ = Ω(M3), we thus have that the
decision gap δ = O(1/M) is at least an inverse polynomial, as required.

Spectral gap of H Let |E1⟩ be the first excited state of H. Then we can write
|E1⟩ as ξ1 |ψhist⟩+ ξ2

∣∣∣ψ⊥hist

〉
, where |ψhist⟩ ∈ N and

∣∣∣ψ⊥hist

〉
∈ N⊥. It follows that:

|ξ2|2 = 1− | ⟨ψhist|E1⟩ |2 = 1− |(η1 ⟨E0|+ η2
〈
E⊥0

∣∣∣) |E1⟩ |2 ≥ 1− 1/poly(n) ≥ 1
2 ,

where we used ⟨E0|E1⟩ = 0 and Equation 7.15. This gives the following lower
bound on the first excited-state energy:

⟨E1|H |E1⟩ ≥ |ξ2|2
π2∆

64M3 ≥
π2∆

128M3 ,

following the exact same derivation as for Equation 7.14. We can use the energy
of the history state to bound the energy of the ground state from above, for this
we use Equation 7.10 and set p = 0 (accounting for both the yes and no-case).
This gives

γ = π2∆
128M3 −

1
M + 1 ,

which for sufficiently (but at most polynomially) large ∆ scales inverse polyno-
mially with n, and it holds that γ ≥ δ. What is left is to rescale ||H|| by a
sufficiently large polynomial such that ||H|| ≤ 1, completing the proof. 2

7.7.2 Extension to excited states
Our second result is to extend the GLH(k, δ, ζ) problem to the question of excited
state energy estimation, we call this the Guided k-Local Hamiltonian Low Energy
(GLHLE(k, c, δ, ζ)) problem. In Ref. [JGL10], the authors show that determining
the cth excited state energy of a k-local Hamiltonian (k ≥ 3), where c = poly(n),
is QMA-complete – even if all the c − 1 energy eigenstates and corresponding
energies are known. In their construction, they embed a k-local Hamiltonian H,
encoding the QMA computation, in a Hamiltonian H ′ living on a larger Hilbert
space. This allows them to add up to a polynomial number of artificial eigenstates
to H ′ below the ground state of H. Finding the cth eigenvalue of H ′ is then
just as hard as finding the ground state of H. We show that this construction
translates to the setting with guiding states. As a bonus, we will later show that
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the unguided problem of estimating eigenstate energies is QMA-hard for k = 2,
which was left open in [JGL10].

The next proposition extends the result to excited states, at the cost of in-
creasing the locality of the construction by one.

7.7.3. Proposition. For any ζ ∈ (0, 1−Ω(1/poly(n))) there exist a, b ∈ [−1, 1]
with b − a = δ ∈ O(1/poly(n)) and some number 0 ≤ c ≤ poly(n) such that
GLHLE(6, c, δ, ζ) is BQP-hard even when,

1. For all 0 ≤ i ≤ c, λi(H) is non-degenerate and is separated by a gap
γ ∈ Ω(1/poly(n)) from both λi−1(H) and λi+1(H) with γ ≥ δ. (We call
such instances γ-gapped GLHLE(k, c, δ, ζ))

2. The guiding state is restricted to be a semi-classical subset state.

Proof:
We will reduce directly from the BQP-complete Hamiltonian H as defined in
Eq. 7.8. Again, let |u⟩ be the semi-classical guiding state as in Equation 7.11
such that |⟨u|E0⟩| ≥ ζ. Consider the following 6-local Hamiltonian H(c) on m+ 1
qubits7:

H(c) = H(z) ⊗ |0⟩ ⟨0|+H(s) ⊗ |1⟩ ⟨1| , (7.20)

where

H(z) =
d∑

i=0
2i |1⟩ ⟨1|i +

m∑
i=d+1

2d+1 |1⟩ ⟨1|i −
(
c− 1

2

)
I,

H(s) = 1
2
H + I/4
∥H∥+ 1/4 −

1
4I,

where we have that d = ⌈log2(c)⌉. H(z) has exactly c states with negative energy,
with the smallest eigenvalue being −c+ 1

2 and the largest eigenvalue at ∑d
i=0 2i +∑m

i=d+1 2d+1−
(
c− 1

2

)
= 2d+1+2d+1(m−d)− 1

2−c. The spectrum jumps in integer
steps of 1, and has as largest negative (resp. smallest non-negative) energy value
−1

2 (resp. 1
2). Since eig(H(s)) ∈ [−1/4, 1/4], we must have that H(s) sits precisely

at the cth excited state level (or c+1th eigenstate level) in H(c). Therefore, given
a guiding state |u⟩ for H such that |⟨u|E0⟩| ≥ ζ, one has that the guiding state
|u(c)⟩ = |u⟩⊗|1⟩ is also semi-classical and must have |⟨u(c)|E(c)

c ⟩| ≥ ζ, where |ψ(c)
c ⟩

denotes the cth excited state of H(c). Since this construction of H(c) and |u(c)⟩
provides a polynomial time reduction from an instance of GLH(k, δ, ζ) to one of
GLHLE(k, c, δ, ζ), whenever c = O(poly(n)), we must have that GLHLE(k, c, δ, ζ)
is BQP-hard whenever k ≥ 6.

7Note that this gadget can be trivially changed such that estimating the n highest energy
states is BQP-hard.
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The gap between λi(H(c))− λi−1(H(c)) = 1 and λi+1(H(c))− λi(H(c)) = 1 for
all i < c− 1 by construction. The gap between λc(H(c))−λc−1(H(c)) = 1

4 +λ(H),
and the gap between λc+1(H(c)) − λc(H(c)) = γ as before. The norm of the new
Hamiltonian is bounded by |H(c)| = O(poly(n)), hence after normalization we
retain λc(H(c))− λc−1(H(c)) ≥ λc+1(H(c))− λc(H(c)) = Ω(1/poly(n)). 2

7.7.3 Reducing the locality
Our third result is BQP-hardness of GLHLE(k, c, δ, ζ) for k = 2. We will do the re-
duction by making use of perturbative gadgets. Perturbative gadgets are standard
techniques from the Hamiltonian complexity toolbox and are used to transform
one Hamiltonian into another whilst approximately preserving the (low-energy)
spectrum. We will use such gadgets here, and will be particularly interested
in those that preserve not only the low-energy spectrum of the original Hamil-
tonian, but also the structure of the low-energy eigenstates. In [CMP18], the
authors introduce the following definition of simulation, and demonstrate via the
use of perturbative gadgets that there are families of Hamiltonians which can be
‘reduced’ to different families of Hamiltonians with simpler/lower locality interac-
tions. This was later more extensively studied by [ZA21]. Note that these results
originally only applied to qubits, but can be extended to qudits [PM21].

7.7.4. Definition (Approximate Hamiltonian simulation [CMP18; ZA21]).
We say that an m-qubit Hamiltonian H ′ is a (∆, η, ϵ)-simulation of an n-qubit
Hamiltonian H if there exists a local encoding E(H) = V (H ⊗ P + H̄ ⊗ Q)V †
such that

1. There exists an encoding Ẽ(H) = Ṽ (H ⊗ P + H̄ ⊗Q)Ṽ † such that Ẽ(1) =
P≤∆(H′) and ∥V − Ṽ ∥ ≤ η, where P≤∆(H′) is the projector onto the subspace
spanned by eigenvectors of H ′ with eigenvalue below ∆,

2. ∥H ′≤∆ − Ẽ(H)∥ ≤ ϵ, where H ′≤∆ := P≤∆(H′)H
′.

Here, V is a local isometry that can be written as V = ⊗iVi, where each Vi is an
isometry acting on at most 1 qubit, and P and Q are locally orthogonal projectors
such that P + Q = I, and M̄ is the complex conjugate of M . Moreover, we say
that the simulation is efficient if m and ∥H ′∥ are at most O (poly(n, η−1, ϵ−1,∆)),
and the description of H ′ can be computed in poly(n) time given the description
of H.

In this framework, one approximately simulates the original Hamiltonian H in
the low-energy subspace of H ′. Here the different parameters are to be understood
as follows: ∆ is the cutoff point to which energy level the simulating Hamiltonian
is accurate, ϵ is the accuracy to which each individual energy is approximated,
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and η is a parameter that controls the precision to which states are approximated.
There is a corresponding encoding of a state which can be taken to be

Estate(ρ) = V (ρ⊗ σ)V † (7.21)

for σ such that Pσ = σ (if P ̸= 0). If ρ is the eigenvector of H with eigenvalue
α, then Estate(ρ) is approximately the eigenvector of H ′ with eigenvalue α′ ∈
[α− ϵ, α+ ϵ].

In [ZA21], it is shown that there exist families of Hamiltonians that can effi-
ciently simulate any O(1)-local Hamiltonian. They call such families of Hamil-
tonians strongly universal Hamiltonians.8 We use the construction of strongly
universal Hamiltonians of [ZA21] to show Proposition 7.7.8. Formally, the strong
(and weak) universality is defined as follows:

7.7.5. Definition (Strong and weak universality [ZA21]). A family of Hamilto-
nians H = {Hm} is weakly universal if given any ∆, η, ϵ > 0, any O(1)-local, n-
qubit Hamiltonian can be (∆, η, ϵ)-simulated. Such a family is strongly universal
if the simulation is always efficient.

The following result is shown in [ZA21]:

7.7.6. Theorem ([ZA21]). Any non-2SLD S-Hamiltonian on a 2D-square lat-
tice is strongly universal.

This result is stronger than what we require in our proof; however, their proof
consists of a list of reductions where they show as an intermediate result that:

7.7.7. Lemma. Any O(1)-local Hamiltonian can be efficiently simulated by a spa-
tially sparse 2-local Hamiltonian with no Y-terms.

This was already proven in [CMP18] Lemma 22, when interested in weak
universality and without the Hamiltonian being spatially sparse. Beyond this
framework, we are additionally interested in the mapping of Equation 7.21, and
whether this mapping preserves the semi-classical subset property of our guiding
states. To verify this we give an overview of the construction by [ZA21] up to
these spatially sparse 2-local Hamiltonians and show that the gadgets used for
every step indeed retain the semi-classical subset property as required.

The next proposition brings the locality down from k (= 6) to 2.

7.7.8. Proposition. Any γ-gapped GLHLE(k, c, δ, ζ) with k ∈ O(1), δ =
1/ poly(n), ζ ∈ (0, 1 − Ω(1/ poly(n))), 0 ≤ c ≤ poly(n), and γ = Ω(1/ poly(n)),

8It would be possible to show Theorem 7.4.1 by modifying the verifier circuit Ũx follow-
ing [OT08] to make the constructed Hamiltonian spatially sparse. We believe Proposition 7.7.8
is interesting because the reduction holds for arbitrary O(1)-local Hamiltonian even if it is not
originally spatially sparse.
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s.t. γ ≥ δ, with a semi-classical subset state as a guiding state can be reduced to
γ′-gapped GLHLE(2, c, δ′, ζ ′) with δ′ = 1/ poly(n), ζ ′ = (0, 1− Ω(1/ poly(n))) and
γ′ = Ω(poly(n)), and with a semi-classical encoded subset state as guiding state
in polynomial time.

Proof:
Let H and |u⟩ be arbitrary inputs of γ-gapped GLHLE(k, c, δ, ζ) with k ∈ O(1),
δ = 1/ poly(n), γ ≥ δ, ζ = (0, 1− Ω(1/ poly(n))), and c = O(poly(n)).

From Lemma 7.7.7, we can efficiently find a 2-local Hamiltonian H ′ that is a
strong (∆, η, ϵ)-simulation of H given the description of H. We take ϵ < (b−a)/2,
b′ = b − ϵ, a′ = a + ϵ and ∆ = O(ϵ−1∥H∥2 + η−1∥H∥). Because there is a gap
between energy levels λi+1(H) − λi(H) ≥ γ ≥ 2ϵ for any 0 ≤ i ≤ c, we have
that none of them mix. Also this means that λc(H ′) ≤ a′ if λc(H) ≤ a, and
λc(H ′) ≥ b′ if λc(H) ≥ b′ and b′ − a′ ∈ O(1/ poly(n)) as needed.

The simulation framework gives us the existence of desirable eigenvectors in
the simulated Hamiltonian. What remains is to show that (i) the encoded state
of |u⟩ still has 1 − 1/ poly(n) fidelity with cth excited state of H ′ and (ii) the
encoded state is still a semi-classical subset state after the simulation by a 2-local
Hamiltonian.

(i) Verification of the fidelity. The fidelity can be analyzed by the following
lemma:
7.7.9. Lemma (Simulation of a gapped excited state). Suppose the cth excited
state |Ec⟩ of H is non-degenerate and separated from both the c − 1’th excited
state and c+ 1th excited state by a gap γ. Suppose H ′ is a (∆, η, ϵ)-simulation of
H such that 2ϵ < γ. Then H ′ has a non-degenerate cth excited state |E ′c⟩ and

∥Estate(|Ec⟩)− |E ′c⟩ ∥ ≤ η +O(γ−1ϵ).

Proof:
This is a slight modification of Lemma 2 of [BH17]. First, the non-degeneracy
of the cth excited state of H ′ follows because the ith smallest eigenvalues of
H and H ′ differs by at most ϵ for all 0 ≤ i ≤ dim(H) − 1, and ϵ satisfies
2ϵ < γ. Consider H as an unperturbed Hamiltonian and V := Ẽ†H ′Ẽ − H as
a perturbation. Then, the perturbed Hamiltonian H + V = Ẽ†H ′Ẽ has a non-
degenerate cth excited state Ẽstate(|E ′c⟩). The first-order perturbation theory for
eigenvectors gives ∥ |Ec⟩ − Ẽ†state(|Ec⟩)∥ ∈ O(γ−1ϵ). Therefore, it follows that
∥Ẽstate(|Ec⟩) − |E ′c⟩ ∥ = ∥Ẽstate(|Ec⟩) − Ẽstate(Ẽ†state(|E ′c⟩))∥ ∈ O(γ−1ϵ) using that
Ẽstate is an isometry and |E ′c⟩ ∈ Im(Ẽstate) . Finally, by using ∥Estate− Ẽstate∥ ≤ η,
∥Estate(|Ec⟩)− |E ′c⟩ ∥ ≤ η +O(γ−1ϵ) follows. 2

Now we can take sufficiently small ϵ and η to ensure ∥Estate(|u⟩) − |E ′c⟩ ∥ ≤
ζ ′ = ζ− 1/ poly(n). Because the Hamiltonian simulation is efficient, the operator
norm ∥H ′∥ and the number of qubits of H ′ are in poly(n).
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(ii) Verification of the semi-classical property. We start from a semi-
classical subset state |u⟩ = 1/

√
|S|∑x∈S |x⟩. We show that after the simulation

of the original k-local Hamiltonian H where k ∈ O(1) by an 2-local Hamiltonian,
the corresponding encoding Estate(|u⟩) is a semi-classical encoded subset state.
To verify that this holds, we sketch the construction of the strong Hamiltonian
simulation introduced in [ZA21] up to spatially sparse 2-local Hamiltonians with
no Y-terms. First, they construct a spatially sparse 5-local Hamiltonian [OT08]
using a quantum phase estimation circuit and some additional modification. This
procedure may be thought of as a “Hamiltonian-to-circuit” (then this circuit goes
back to a Hamiltonian by circuit-to-Hamiltonian) construction. Then, they per-
turbatively simulate the spatially sparse Hamiltonian with known techniques in
the literature [OT08; CMP18; PM17] to reduce to a 2-local Hamiltonian. We ver-
ify that the corresponding encoding of every reduction preserves the semi-classical
property of states. In the following, we give an overview of their construction.

(1) Arbitrary k-local Hamiltonian → spatially sparse 5-local Hamilto-
nian. Let H be a target O(1)-local Hamiltonian. Assume that H can be written
as H = ∑

i Ei |ψi⟩ ⟨ψi| where {Ei} and {|ψi⟩} are the eigenvalues and eigenvec-
tors of H. In [ZA21], they showed that there is a spatially sparse quantum circuit
U sparse

PE that approximately estimates the energy of H, i.e.

U sparse
PE

∑
i

ci |ψi⟩ |0m⟩ ≈
∑

i

ci |ψi⟩
∣∣∣Ẽi

〉
|other⟩ ,

where {ci} are arbitrary coefficients and {|Ẽi⟩} are approximations of {Ei}.
The circuit U sparse

PE is implemented first by constructing U sparse
NN that consists of

1D nearest-neighborhood interactions. Then, U sparse
NN is converted into a spatially

sparse circuit using ancilla qubits and swap gates.
Then they combine uncomputation and idling to construct

U = (Idling)(U sparse
PE )†(Idling)U sparse

PE .

They apply circuit-to-Hamiltonian construction for this U to construct a spatially
sparse 5-local Hamiltonian Hcircuit. They use first-order perturbation theory to
show that Hcircuit simulates H in its low-energy subspace. The encoding of Hcircuit
to the low energy subspace of H is approximated by the map: H → H ⊗ |α⟩ ⟨α|.
Here, |α⟩ is a subset state with poly(n)-size subset S ′ that is related to the
history state of the idling steps after uncomputation. For details, see the proof
of Proposition 2 of [ZA21]. Then, the corresponding encoding of the state is

|u⟩ → |u⟩ ⊗ |α⟩ .

The encoded state is also a semi-classical subset state if |u⟩ is a semi-classical
subset state.
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(2) Spatially sparse 5-local Hamiltonian→ Spatially sparse 10-local real
Hamiltonian [CMP18] Lemma 22. In this simulation, the state is encoded
by attaching polynomially many |+y⟩ where |+y⟩ is the +1 eigenvector of Pauli
Y matrix:

|u⟩ → |u⟩ ⊗ |+y⟩ ⊗ · · · ⊗ |+y⟩ . (7.22)

This encoding does not map a semi-classical subset state into a semi-classical
state but maps into a semi-classical encoded state. The reason is as follows. Let
Vy be a unitary such that |+y⟩ = Vy |0⟩, and |u⟩ = 1/

√
|S|∑x∈S |x⟩. Then, the

right-hand side of eq. (7.22) can be written as

|u⟩ ⊗ |+y⟩ ⊗ · · · ⊗ |+y⟩ = 1√
|S|

∑
x∈S×{0...0}

I ⊗ · · · ⊗ I ⊗ Vy ⊗ · · · ⊗ Vy |x⟩ .

This is a semi-classical encoded state with a subset S×{0...0} and a local isometry
(this is indeed a local unitary) I ⊗ · · · ⊗ I ⊗ Vy ⊗ · · · ⊗ Vy.

(3) Spatially sparse 10-local real Hamiltonian→ Spatially sparse 2-local
Hamiltonian with no Y -terms [OT08; CM16]. This can be done first by
simulating the 10-local real Hamiltonian with an 11-local Hamiltonian whose
Pauli decomposition does not contain any Pauli Y terms [CMP18, Lemma 40].
In the corresponding encoding, |1⟩ states are attached for the polynomially many
mediator qubits introduced in the simulation. Then, we can use subdivision gad-
gets and 3-to-2 gadgets [OT08]. In this simulation, polynomially many mediator
qubits are introduced, and the encoding of states is just to add |0⟩ states for each
of the mediator qubits. The resulting Hamiltonian can be written in the form∑

i<j αijAij + ∑
k(βkXk + γkZk), where Aij is one of the interactions of XiXj,

XiZj, ZiXj or ZiZj.
Clearly, by attaching polynomially many |1⟩ and |0⟩ states, a semi-classical

encoded subset state is mapped to another semi-classical encoded subset state:

|u⟩ → |u⟩ |x⟩ ,

where x ∈ {0, 1}poly(n) is some string of 0’s and 1’s corresponding to the attached
mediator qubits. This concludes the proof of Proposition 7.7.8. 2

7.8 Containment in BQP
In this section we show that GLHLE(k, c, δ, ζ) is contained in BQP – i.e. we prove
Theorem 7.4.2, which we restate below for convenience. First, we recall some basic
facts about combining Hamiltonian simulation with quantum phase estimation.
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7.8.1. Lemma (Quantum eigenvalue estimation). Let H be an O(log n)-local
Hamiltonian acting on n qubits, with eigenvectors |ψj⟩ and corresponding eigen-
values λj ∈ [0, 1]. Then there is a quantum algorithm that, given as input an
eigenvector |ψj⟩, will output with probability at least p an ϵ-approximation of λj

(i.e. an estimate λ̃j such that |λ̃j − λj| ≤ ϵ) in time poly(n, 1/ϵ, 1/p).

This is by now a commonly used quantum algorithm; for details and proofs of
correctness, see e.g. [GL22; CM18].

7.4.2. Theorem (Containment in BQP of GLHLE).

(i) GLHLE(k, 0, ζ, δ) is contained in BQP for k = O(log(n)), ζ = Ω(1/ poly(n)),
and δ = Ω(1/ poly(n)).

(ii) GLHLE(k, c, ζ, δ) for c ≥ 1 is contained in BQP when k = O(log(n)), ζ =
1
2 + Ω(1/ poly(n)), and δ = Ω(1/ poly(n)).

Proof:
Recall that the fidelity of the guiding state with the target eigenstate is at
least ζ. Containment in BQP follows from the standard quantum algorithm of
Lemma 7.8.1. If we input an arbitrary n-qubit state |ϕ⟩ to the algorithm of
Lemma 7.8.1, it follows that we will obtain an ϵ-approximation of λj with proba-
bility ≥ p · | ⟨ψj|ϕ⟩ |2, and hence if we input the guiding state |u⟩, we will obtain
an ϵ-approximation to the target eigenstate with probability ≥ p · ζ. For the case
c = 0, with ζ = Ω(1/ poly(n)), we can therefore obtain an ϵ-approximation to the
ground state energy with probability ≥ 1/r(n), for r some polynomial, in time
poly(n, 1/ϵ). To distinguish the case that the ground state energy is ≤ a or ≥ b,
with b−a ≥ δ, setting ϵ < δ is sufficient. With δ = 1/O(poly(n)), this takes time
poly(n), proving part (i) of the theorem.

For the case c > 0, with ζ = 1
2+Ω(1/ poly(n)), we can choose p > 1−1/ poly(n)

sufficiently large so that with probability at least p · ζ > 1− 1/ poly(n) we obtain
an ϵ-approximation to the target energy λ. Again by choosing ϵ < δ we can
decide whether λ ≤ a or λ ≥ b with probability ≥ 1

2 + 1/ poly(n). By repeating
poly(n) times and taking a majority vote, we can decide which is the case with
probability, say, 2/3 by a Chernoff bound, proving part (ii) of the theorem.

2



Chapter 8
The guidable local Hamiltonian problem

In the previous chapter 7, we discussed a “practical” strategy for finding the
stationary properties of a quantum mechanical system, with particular focus on
the ground state of local Hamiltonians. As a reminder, we restate this strategy,
which boils down to the following two-step procedure:

• Step 1 (Guiding state preparation): A classical heuristic algorithm is applied
to obtain a guiding state |u⟩, which is hoped to have ‘good’ fidelity with
the ground space.

• Step 2: (Ground state energy approximation): The guiding state |u⟩ is used
as input to Quantum Phase Estimation (QPE) to efficiently and accurately
compute the corresponding ground state energy.

In the previous chapter we studied the complexity of the second step, which
can be formalized as the Guided Local Hamiltonian Problem (GLH). We showed
that GLH is BQP-hard for a broad range of parameters (such as the fidelity
between |u⟩ and the ground space, and the precision δ).
In this chapter we extend on the study of the GLH problem from Chapter 7,
diving deeper into the different types of states we consider as “guiding states”.
Here we study ‘Merlinized’ versions of GLH – in which guiding states are no
longer given as part of the input but instead are only promised to exist – and
use these as a way to gain some insight into important theoretical questions in
quantum chemistry and complexity theory. In the subsequent paragraphs, we
introduce some of the motivating questions guiding the study of the complexity
of these so-called ‘guidable’ local Hamiltonian problems.

8.0.1 Ansätze for state preparation.
Step 1 of the aforementioned two-step procedure generally requires one to have
access to classical heuristics capable of finding guiding states whose energies can
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be estimated classically (as a metric to test whether candidate states are expected
to be close to the actual ground state or not). Furthermore, these ‘trial states’
should also be preparable as quantum states on a quantum computer, so that
they can be used as input to phase estimation in Step 2. In [GL22], inspired by
a line of works that focused on the dequantization of quantum machine learning
algorithms [Tan19; Chi+20; JLS20], a particular notion of ‘sampling-access’ to
the guiding state u is assumed. Specifically, it is assumed that one can both
query the amplitude of an arbitrary basis state, and additionally that one can
sample basis states according to their l2 norm with respect to the overall state
u.1 Whilst this can be a somewhat powerful model [CHM21], it is closely related
to the assumption of QRAM access to classical data, and thus in the context of
quantum machine learning (where such access is commonly assumed), it makes
sense to compare quantum machine learning algorithms to classical algorithms
with sampling access to rule out quantum speed-ups that come merely from hav-
ing access to quantum states that are constructed from exponential-size classical
data.

However, for quantum chemistry and quantum many-body applications, this
type of access to quantum states seems to be somewhat artificial. Furthermore,
many Ansätze actually used in practice are not of the form of sampleable states.
Therefore, the first question that we answer in this chapter is if there is a more
natural set of “semi-classical states”, which is more closely related to the heuristics
used in practice (in Section 8.2).

Finally, one may ask whether the fact that the ground state preparation in
Step 1 considers only classical heuristics might be too restrictive. Quantum
heuristics for state preparation, such as variational quantum eigensolvers [Til+22]
and adiabatic state preparation techniques [AL18], have attracted considerable
attention as possible quantum approaches within the NISQ era. However, one
can argue that even in the fault-tolerant setting, such heuristics will likely still
be viable approaches to state preparation, in particular when used in conjunction
with Quantum Phase Estimation (Corollary 8.4.2).

8.0.2 The quantum PCP conjecture.
Arguably the most fundamental result in classical complexity theory is the Cook-
Levin Theorem [Coo71; Lev73], which states that satisfiability problems (SAT)
are NP-complete. The probabilistically checkable proof (PCP) theorem [Aro+98;
AS98], which originated from a long line of research on the complexity of in-
teractive proof systems, can be viewed as a ‘strengthening’ of the Cook-Levin

1In this work we slightly abuse notation by making a distinction between the vector repre-
senting a quantum state, which we will denote as ‘u’, and that same vector instantiated as a
quantum state (e.g. living on a quantum computer), which we will denote by ‘|u⟩’. Of course,
these are the same mathematical object (u = |u⟩ ∈ C2n), and we only use the different notation
to make our theorem statements and proofs clearer.
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theorem. In its proof-checking form, it states that all decision problems in NP
can be decided, with a constant probability of error, by only checking a con-
stant number of bits of a polynomially long proof string y (selected randomly
from the entries of y). There are also alternative equivalent formulations of the
PCP theorem. One is in terms of hardness of approximation: it states that it
remains NP-hard to decide whether an instance of constrained satisfaction prob-
lem (CSP)2 is either completely satisfiable, or whether no more than a constant
fraction of its constraints can be satisfied.3 It is straightforward to show that
this formulation is equivalent to the aforementioned proof-checking version: one
simply samples a clause at random and checks whether it is satisfied, which with
constant probability detects a violated clause.

Naturally, quantum complexity theorists have proposed proof-checking and
hardness of approximation versions of PCP in the quantum setting. Given the
close relationship between QMA and the local Hamiltonian problem, the most
natural formulation is in terms of hardness of approximation: in this context, the
quantum PCP conjecture roughly states that energy estimation of a (normalized)
local Hamiltonian up to constant precision, relative to the operator norm of the
Hamiltonian, remains QMA-hard. This conjecture is arguably one of the most
important open problems in quantum complexity theory and has remained un-
solved for nearly two decades. Under the assumption NP ̸= QMA, the quantum
PCP conjecture implies that there exist Hamiltonians for which all low-energy
states have no efficient classical description from which their energy can be evalu-
ated efficiently classically. In a recent breakthrough result, the NLTS conjecture
was proven to be true, which (amongst other things) means that constant-depth
quantum circuits – for which the energies can be computed efficiently, as shown
by a standard light cone argument – are not expressive enough to estimate the
ground state energies of all Hamiltonians up to even constant precision [ABN22].
However, there have also been some no-go results: for example, a quantum PCP
statement cannot hold for local Hamiltonians defined on a grid, nor on high-degree
or expander graphs [BH13].

One way to shed light on the validity of the quantum PCP conjecture can
be to study PCP-type conjectures for other ‘Merlinized’ complexity classes. Up
until this point, PCP-type conjectures have not been considered for other classes
besides NP and QMA.4 However, there is the beautiful result of [AG19], which
studies the possibility of a gap amplification procedure for the class MA by consid-

2A more general formulation of satisfiability where the question is whether there exists an
assignment to a set of variables, each taking values from a fixed domain, that satisfies a collection
of specified constraints.

3The transformation of a CSP to another one which is hard to approximate is generally
referred to as gap amplification, and is realised in Dinur’s proof of the PCP theorem [Din07].

4This is barring a result by Drucker which proves a PCP theorem for the class AM [Dru11];
though there is no direct relationship between QMA and AM and hence it is not clear whether
this gives any intuition about the likely validity of the quantum PCP conjecture.



158 Chapter 8. The guidable local Hamiltonian problem

ering a particular type of Hamiltonian: uniform stoquastic local Hamiltonians.
The authors show that deciding whether the energy of such a Hamiltonian is
exactly zero or inverse polynomially bounded away from zero is MA-hard, but
that the problem is in NP when this interval is increased to be some constant.
Consequently, this implies that there can exist a gap-amplification procedure for
uniform stoquastic Local Hamiltonians (in analogy to the gap amplification pro-
cedure for constraint satisfaction problems in the original PCP theorem) if and
only if MA = NP – i.e. if MA can be derandomized. Since MA ⊆ QMA, this result
also shows that if a gap amplification procedure for the general local Hamilto-
nian problem would exist that ‘preserves stoquasticity’, then it could also be
used to derandomize MA. Here we ask a similar question about gap amplification
as [AG19], however instead of considering gap amplification of stoquastic Hamil-
tonians we study gap amplification of what we will call guidable Hamiltonians
with consequences for the class QCMA (Section 8.7).

8.1 Preliminaries

8.1.1 Notation
We write λi(A) to denote the ith eigenvalue of a Hermitian matrix A, ordered in
non-decreasing order, with λ0(A) denoting the smallest eigenvalue (ground state
energy).

8.1.2 Some basic definitions and results from complexity
theory

All complexity classes in this part of the thesis will be defined with respect to
promise problems (and not languages). Remember that a (promise) problem
A = (Ayes, Ano) consists of two non-intersecting sets Ayes, Ano ⊆ {0, 1}∗ (the yes
and no instances, respectively). We have that Ainv = {0, 1}∗ \ Ayes ∪ Ano is
the set of all invalid instances, and we do not care how a verifier behaves on
problem instances x ∈ Ainv (it can accept or reject arbitrarily, see the paragraph
‘oracle access’ for a more elaborate discussion on what this entails). All previously
defined classes, such as NP, can be understood in this chapter as a promise class.
We will require two additional classes in this chapter, the first of which is very
similar to NP, but with the additional power that the Turing machine can run in
quasi-polynomial time:

8.1.1. Definition (NqP). A promise problem A = (Ayes, Ano) is in NqP if and
only if there exists a deterministic quasi-polynomial time Turing machine M , i.e.
running in time 2O(logc(n)) for some constant c > 0, and a polynomial p, where
M takes as input a string x ∈ {0, 1}∗ and a p(|x|)-bit witness y and decides on
acceptance or rejection of x such that
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• if x ∈ Ayes then there exists a y ∈ {0, 1}p(n) such that M accepts (x, y).

• if x ∈ Ano then for every y ∈ {0, 1}p(n) we have that M rejects (x, y).

The second class we require is a more specified version of QCMA, which ,fol-
lowing Section 2.3.2, will be defined in the quantum circuit model.

8.1.2. Definition (UQCMA). The class UQCMA[c, s] (unique QCMA) has the
same definition as QCMA but with the extra constraint that if x ∈ Ayes then
there exists only a single string y∗ such that Vn accepts (x, |y∗⟩) with probability
≥ c(= 2/3), and otherwise for all y ̸= y∗ we have that V accepts (x, |y⟩) with
probability ≤ s(= 1/3).

Unlike QMA, it is known that a lot of the behaviours exhibited by the classical
complexity classes NP and MA hold for QCMA as well. An example of this,
and one that we use later, is a result from [Aha+22] stating that there exists
a randomized reduction from QCMA to UQCMA, analogous to Valiant-Vazirani
theorem for NP [VV85].

8.1.3. Lemma (Randomized reduction from QCMA to UQCMA [Aha+22]). Let
⟨Un, p1, p2⟩ describe a promise problem in QCMA, where Un is the description
of a quantum circuit which takes an input x of length |x| = n and a witness
y with length |y| = poly(n). Denote p1 and p2 with p1 − p2 = 1/ poly(n) for
the completeness and soundness, respectively. Then there exists a randomized
reduction to a UQCMA instance ⟨Ũn, p̃1, p̃2⟩, with p̃1 − p̃2 = 1/ poly(n) such that:

• If there exists a witness y which makes Un accept (x, y) with probability ≥ p1
then there exists a single y∗ which makes Ũn accept (x, y∗) with probability
≥ p̃1 and accept (x, y) for all other y ̸= y∗ with probability ≤ p̃2.

• If Un accepts with probability ≤ p2 for all y then Ũn accepts with probability
≤ p̃2 for all y.

This randomized reduction succeeds with probability Ω(1/|y|).

Another one of these properties is the equivalence of one-sided and two-sided error
in the acceptance and rejection probabilities, which just as in the MA setting holds
for QCMA (assuming robustness under the choice of the universal gate-set that is
used to construct the verification circuits). Formally, this is established via the
following lemma.

8.1.4. Lemma (Perfect completeness QCMA [Jor+12]). Let G = {H,X,Toffoli}
be a fixed gate set. For any c, s ∈ [0, 1] satisfying c − s := δ ≥ 1/q(n) for some
polynomial q : N→ R>0, we have that

QCMAG[c, s] ⊆ QCMAG[1, s′],

where s′ = 1− 1
2δ

2 − 1
2δ

3.
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8.1.3 Locality reducing perturbative gadgets
We will make use of perturbative gadgets to reduce the locality of our constructed
Hamiltonian. We will rely on the same construction, based on strong Hamiltonian
simulation, as we did in Chapter 7. We can summarize this construction in the
following Lemma:
8.1.5. Lemma (‘Classical evaluability’-preserving eigenstate encodings).
Suppose H is an arbitrary k-local Hamiltonian on n qubits with a non-
degenerate ground state |g⟩ separated from excited states by a gap γ. Then H
can be efficiently (∆, η, ϵ) simulated by a 2-local Hamiltonian H ′ on m = poly(n)
qubits which has a non-degenerate ground state |g′⟩, such that

∥Estate(|g⟩)− |g′⟩ ∥ ≤ η +O(γ−1ϵ),
where Estate(·) appends only states of a semi-classical form as a tensor product to
|g⟩, i.e. preserves the classical evaluability as in Definition 8.2.2.
Proof:
This follows immediately from the proof of Proposition 7.7.8 in Chapter 7, while
making the observation that all encodings up to the Spatially sparse 2-local Hamil-
tonian (with Pauli interactions with no Y -terms) only append states that satisfy
the definition of poly-sized subset states (see the proof of Theorem 8.5.3 in the
main text) to the original eigenstate of H. 2

8.2 Classically evaluatable states
Our first contribution is a new class of “semi-classical” quantum states that is
more closely related to what is used in practice. Let us first introduce Gharibian
and Le Gall’s definition of query and sampling access to quantum states [GL22],
which slightly generalizes the original definition as first proposed by Tang used
to dequantize quantum algorithms for recommendation systems [Tan19].
8.2.1. Definition (Query and sampling access, from [GL22]). We say that we
have query and ξ-sampling access to a vector u ∈ CN if the following three
conditions are satisfied:

(i) we have access to an O (poly(log(N))-time classical algorithm Qu that on
input i ∈ [N ] outputs the entry ui.

(ii) we have access to an O (poly(log(N))-time classical algorithm SQu that
samples from a probability distribution p : [N ]→ [0, 1] such that

p(j) ∈
[
(1− ξ) |uj|2

∥u∥2 , (1 + ξ) |uj|2

∥u∥2

]
for all j ∈ [N ].
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(iii) we are given a real number m satisfying |m− ∥u∥| ≤ ξ∥u∥.

We simply say that we have sampling access to u (without specifying ξ) if we
have 0-sampling access.

Here we propose a new class of quantum states, conceptually different from
those of Definition 8.2.1, which we will call classically evaluatable quantum states.
Our main motivations for doing so are the following:

1. It seems rather difficult to find Ansätze that are used in practice for ground
state energy estimation that satisfy all conditions of Definition 8.2.1. As
one of the main motivations of this work is to investigate the power of
quantum versus classical state preparation when one has access to Quantum
Phase Estimation, we wanted to define a class of states that can both be
prepared efficiently on a quantum computer and which contains a large class
of Ansätze commonly used in practice.

2. Analogous to Dinur’s construction, one would expect that determining if a
local Hamiltonian has ground state energy (exponentially close to) zero or
some constant away from zero is QMA-hard if the quantum PCP conjecture
is true. However, there are arguments from physics5 on why one might ex-
pect this problem to be in NP [PH11]. To study the question of containment
in NP it is necessary to be able to work with states within a deterministic
setting, and therefore it does not make sense to rely on a form of sampling
access which inherently relies on a probabilistic model of computation.

There is a third benefit of these states, which will not be discussed in this thesis,
but which we will state here for completeness. Being able to study containment
in NP comes with the additional advantage of being able to make statements
about whether the problem admits a PCP by the classical PCP theorem. No
such theorem is currently known for MA, this is exploited further in [WFC23]
where the authors introduce a new type of ‘quantum’ PCP. This new type of
quantum PCP will not be discussed in this thesis, but we would like to refer the
interested reader to [WFC23].

We will define these quantum states in a slightly more general setting for
completeness – by allowing for probabilistic computation of expectation values as
well – but this will not be important for the remainder of this work.

8.2.2. Definition (ϵ-classically evaluatable and quantumly preparable states).
We say a state u ∈ C2n is ϵ-classically evaluatable if

5In this setting the LH problem becomes equivalent to determining whether the free energy
of the system becomes negative at a finite temperature. One expects then that at such tem-
peratures, the system loses its quantum characteristics on the large scale, making the effects of
long-range entanglement become negligible. Hence, this means that the ground state of such a
system should have some classical description, which places the problem in NP [Ara11].
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(i) there exists a classical description of u, denoted as desc(u), which requires
at most poly(n) bits to write down, and

(ii) there exists a classical probabilistic algorithmOQu which, given desc(u) and
the matrix elements of some k-local observable O with ∥O∥ ≤ 1, computes
an estimate ẑ such that |ẑ−⟨u|O |u⟩ | ≤ ϵ in time poly(n, ϵ, 2k), with success
probability ≥ 2/3.

Furthermore, we say a state u ∈ C2n is also quantumly preparable if

(iii) there exists a quantum circuit V of at most poly(n) 1- and 2-qubit gates
that prepares u as a quantum state, i.e. |u⟩. The description of V can be
computed efficiently using some efficient classical algorithm AV , which only
takes desc(u) as an input.

Finally, if ϵ = 0 and the algorithm used in (ii) is deterministic instead of proba-
bilistic, we simply say that u is classically evaluatable.

Note that it is not required that u is normalized, however by requirement (ii) it is
possible to calculate the norm of u. Normalization is of course required for u to be
quantumly preparable. Also note that if condition (iii) holds, condition (ii) (for
ϵ > 0) is no longer necessary in order to work with the class of states as a suitable
Ansatz provided that one has access to a quantum computer, since there exist
quantum algorithms to estimate the expectation values of the observables up to
arbitrarily precise inverse polynomial precision. However, the current definition
allows one to adopt the two-step classical-quantum procedure of classical Ansatz
generation and quantum ground state preparation, as described in Section 7.2.

To demonstrate the practical relevance of Definition 8.2.2, we give four exam-
ples of Ansätze which all satisfy the required conditions to be (ϵ-)classically eval-
uatable and quantumly preparable. The first two examples will also be perfectly
samplable, as in Definition 8.2.1, of which the proofs are given in Appendix 8.A.

8.2.3. Example (Matrix-product states; bounded bond and physical dimensions).
Matrix-product states are quantum states of the following form

|u⟩ =
∑
{s}

Tr[A(s1)
1 A

(s2)
2 . . . A(sn)

n ] |s1, . . . , sn⟩ ,

where si are qudits of ‘physical’ dimension p (si ∈ {0, 1, . . . , p− 1}), the A(si)
i are

complex, square matrices of bond dimension D, and n denotes the total number
of qudits. We say that the bond dimension is bounded if it is at most polynomial
in n, and that the physical dimension is bounded if it is taken to be some constant
independent of n. MPS are also 0-samplable, which is shown in Appendix 8.A.

Conditions check:
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(i) The MPS is fully determined by the set of matrices {Asi
i }, and can be

described explicitly using at most npD2 = poly(n) complex numbers.

(ii) One can compute the inner product ⟨u|M |u⟩ in time at most n(2D3χp +
D2χ2p2) for any (even n-local) operatorM having a matrix product operator
decomposition with bond dimension χ [Sch11; Orú14]. Since O is k-local,
it can be represented by an MPO with bond dimension at most pk, and so
⟨u|O|u⟩ can be computed in a maximum time of n(2D3pk+1 + D2p2k+2) =
poly(n,D, 2k) when p is constant.

(iii) An MPS on n qubits with bond dimensionsD can be prepared on a quantum
computer up to distance ϵ using at most O(nD log(D)2 log(n/ϵ)) 1- and 2-
qubit gates and requiring ⌈log(D)⌉ additional ancilla qubits. A method for
constructing such a circuit can be found in Appendix 8.B and is based on
[Sch+05].

8.2.4. Example (Stabilizer states). Gottesmann and Knill [Got98] showed that
there exists a class of quantum states, containing states that exhibit large en-
tanglement, that can be efficiently simulated on a classical computer. These
states are called stabilizer states and are those generated by circuits consisting
of Clifford gates, C = ⟨CNOT, H, S⟩ where S =

√
Z is a phase gate, start-

ing on a computational basis state. Any measurement of local Pauli’s on these
states can be efficiently classically simulated. Amongst other things, stabilizer
states have been used to formulate error correcting codes [Ste03], study entan-
glement [Ben+96], and in evaluating quantum hardware through randomised
benchmarking [Kni+08]. Stabilizer states are also 0-samplable, again shown in
Appendix 8.A.

Conditions check:

(i) Any stabilizer state can be described by a linear depth circuit consisting of
Clifford gates starting on the |0n⟩ state [MR18]. A possible description of
such a circuit is a list of tuples (q1, q2, t, g), where q1 (resp. q2) denotes the
first (resp. second) qubit that g ∈ C acts on at depth t. This description
takes at most Õ(n2) bits to write down.

(ii) The Gottesman-Knill [Got98] theorem shows that stabilizer states allow for
strong classical simulation and efficient classical computation of probabili-
ties for Pauli measurements. This in particular allows for the calculation of
expectation values in time poly(2k).

(iii) The description is given as a quantum circuit, which can be implemented
to prepare the quantum state.
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We will now give two examples of Ansätze that have been shown to not be
ξ-samplable, even up to some large constant values of ξ.

8.2.5. Example (Constant depth quantum circuits). Constant depth quantum
circuits are circuits that, given some fixed gate set G with just local operations,
are only allowed to apply at most t = O(1) consecutive layers of operations from
G on some initial quantum state, which we take to be the all-zero state |0 . . . 0⟩.
An example of constant depth quantum circuits that are used as classical Ansätze
would be the simple case of the product state Ansatz, where one only considers one-
qubit gates applied per site. Product state Ansätze are widely used in classical
approximation algorithms to Local Hamiltonian problems, see for example [BH13;
GP19]. In [TD04] it was shown that the ability to perform approximate weak
sampling from the output of a constant depth quantum circuit up to relative
error 0 < ξ < 1/3 implies that BQP ⊆ AM, which means that it is unlikely that
constant depth quantum circuits are ξ-samplable for any ξ < 1/3.

Conditions check:

(i) By definition.

(ii) ⟨u|O |u⟩ = ⟨0|U †OU |0⟩, where U †OU is a k2t-local observable (via a
light-cone argument), and hence we can compute ⟨0|U †OU |0⟩ in time
O
(
2O(k2t) · poly(n)

)
which is poly(2k) if t = O(1).

(iii) This holds again by definition.

By combining Example 8.2.4 and Example 8.2.5 we find that any state of the form
UC |0n⟩, with U a constant-depth circuit and C a Clifford circuit, is also classically
evaluatable and quantumly preparable. Our final example is of a class of states
that are not perfectly classically evaluatable, but are ϵ-classically evaluatable for
any ϵ = 1/ poly(n).

8.2.6. Example (Instantaneous quantum polynomial (IQP) circuits). IQP cir-
cuits start in |0n⟩ and apply a polynomial number of local gates that are di-
agonal in the X-basis, followed by a computational basis measurement [BJS10].
An equivalent definition would be to consider circuits with gates that are diago-
nal in the Z-basis, but then sandwiched in two layers of Hadamard gates (again
followed by a measurement in the computational basis). It is well known that
IQP circuits are difficult to sample from: if IQP circuits could be weakly simu-
lated to within multiplicative error 1 ≤ c <

√
2, then the polynomial hierarchy

would collapse to its third level [BJS10]. Hence, they are not ξ-samplable for any
ξ <

√
2 − 1. However, we will show that states generated by IQP circuits are

ϵ-classically evaluatable for all ϵ = 1/ poly(n).

Conditions check:
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(i) This follows by definition, since all gates are local and there are only a
polynomial number of them.

(ii) This is a corollary from Theorem 3 in [BJS10], where it is shown that one can
exactly sample basis states on O(log n) qubits according to their l2-norm.
Let C be an IQP-circuit of n qubits which produces the state |u⟩ = C |0n⟩
before the final measurement, and let S ⊆ [n] with |S| = k be the qubits
on which a k-local observable O acts. Following the proof of Theorem 3
in [BJS10], the state right before the last layer of Hadamard is given by

|ϕ⟩ = 1√
2n

∑
x∈S,y∈[n]\S

eif(x,y) |x, y⟩ ,

where the pair x, y ∈ {0, 1}n denotes the bit string state corresponding to
the concatenation (with the correct indexing) of the bit strings x ∈ {0, 1}|S|
and y ∈ {0, 1}n−|S|. Here f(x, y) is a phase function which can be computed
efficiently, by accumulating the relevant diagonal entries of the successive
commuting gates. Since O does not act on the qubits with indices [n] \ S,
and they only get acted upon by Hadamards, further measurements on this
register should not influence any POVM that only acts on S by the no-
signaling principle. By this observation, the protocol is now very simple:
one samples a random bit string y′ ∈ {0, 1}n−|S| and computes the random
variable

Xi = 1
2|S|

∑
x,x′∈{0,1}|S|

⟨x| e−if(x,y′)H⊗|S|OH⊗|S|eif(x,y′) |x′⟩ ,

which can be done exactly in time poly(2k) since f(x, y′) can be computed
efficiently. Since ∥O∥ ≤ 1, We have that E[X2

i ] ≤ 1 and |E[Xi]| ≤ 1,
and therefore Var[Xi] = E[X2

i ] − E[Xi]2 ≤ 2. Therefore, taking s = c/ϵ2

samples of Xi (which are independent random variables) and computing
ẑ = 1

s

∑
i∈[s] Xi ensures that

|ẑ − ⟨u|O |u⟩ | ≤ ϵ,

with probability ≥ 2/3, provided that c ≥ 6. This follows from a simple
application of Chebyshev’s inequality.

(iii) This follows also by definition.

In general quantum states will not be classically evaluatable (as that would imply
QMA = NP as they could be used as witnesses for the QMA-hard local Hamilto-
nian problem), and some other notable examples of classes of states which are not
expected to be classically evaluatable are Projected Entangled Pair States (PEPS)
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(since computing expectation values of local observables is #P-hard [Sch+07]) and
collections of local reduced density matrices (to check whether they are consistent
with a global quantum state is QMA-hard [Liu06; BG22]).

We have seen that constant-depth quantum circuits are not even approx-
imately samplable (under the conjecture that BQP ̸⊂ AM [TD04]). We can
formalize this in the following proposition which relates ξ-samplable states to ξ-
classically evaluatable states. First, we need the following Lemma which is almost
a direct corollary of the proof of Theorem 4.1 in [GL22].6

8.2.7. Lemma. Given query access to a s-sparse Hermitian matrix A ∈ CN×N

with ∥A∥ ≤ 1, query and ξ-sampling access to a vector u ∈ CN with ∥u∥ ≤ 1 as per
definition 8.2.1, for any ξ ≤ ϵ/8 and ϵ ∈ (0, 1] there exists a classical randomized
algorithm which with probability ≥ 1−1/ poly(N) outputs an estimate ẑ ∈ R such
that ∣∣∣ẑ − u†Au∣∣∣ ≤ ϵ

in time O∗(s/ϵ2).

Proof:
Since we have query access to the entries of A and those of u, we can compute the
ith entry of the vector Au in time O(s). The lemma follows then directly from
the proof of Theorem 4.1 in [GL22], taking v = u and replacing their P (

√
A†A)

with our Hermitian A (this also makes the estimation of the imaginary part in
the proof in [GL22] redundant). 2

8.2.8. Theorem. For any ξ > 0, any ξ-samplable state is also O(ξ)-classically
evaluatable. On the other hand, there exist states that are perfectly classically
evaluatable but not ξ′-samplable for all 0 < ξ′ < 1/3, unless BQP ⊆ AM.

Proof:
Let u ∈ CN be a ξ-samplable state with N = 2n. The first part of the proposition
follows by checking the two conditions.

(i) u is described by giving the algorithms Qu and SQu. Both these algorithms
run in O(poly(log(N)))-time, which implies that both have an efficient de-
scription of length at most O(poly(log(N))) (in terms of local classical op-
erations, i.e. logic gates).

(ii) This follows directly from Lemma 8.2.7, since the global operator represen-
tation of a k-local observable O acting on a k-subset of n qubits can be
written as N×N Hermitian matrix A = O⊗I where A has sparsity s = 2k.

6We cannot use their theorem directly, as it only works for even polynomials and we are
interested in the polynomial P (x) = x.



8.3. The guidable local Hamiltonian problem 167

This shows that any ξ-samplable state is at least 8ξ-classically evaluatable. The
second part follows directly from [TD04], Theorem 3, which shows that the abil-
ity to perform approximate weak sampling from the output of a constant depth
quantum circuit up to relative error 0 < ξ < 1/3 implies that BQP ⊆ AM, ob-
structing the ability to satisfy condition (ii) in Definition 8.2.1. By Example 8.2.5,
we already showed that constant-depth quantum circuits produce classically eval-
uatable states, completing the proof. 2

This gives rise to a (conjectured) hierarchical structure of states as depicted
in Figure 8.1. An interesting observation is a supposedly significant leap in the
hierarchy when we allow for a small error ϵ in the definition of ϵ-classically eval-
uatable states. A straightforward way to explain this is by considering how it
affects our ability to determine a global property of a quantum state, like its
energy with respect to a Hamiltonian H.

Let H be a sum of m log-local terms, i.e. H = ∑m−1
i=0 Hi, satisfying ∥H∥ ≤ 1. If

one wants to evaluate the energy of an ϵ-classically evaluatable state with respect
to H up to accuracy ϵ′, then ϵ has to be less than ϵ′/m since in the worst case the
error grows linearly with the number of terms. Instead, ξ-samplable states have a
requirement on the accuracy of sampling, which is a property of the global state.
[GL22] shows that this property can be used for energy estimation, where the
requirement on ξ only depends on the precision with which one wants to measure
the energy. We see this reflected in Theorem 8.2.8, which shows that if a state has
the property of being ξ-samplable this implies that the state is O(ξ)-classically
evaluatable, but not the other way around. However, we are not aware of any
classes of states which are provably only ξ-samplable for a constant, but small,
ξ > 0 (all examples that we give in this work are in fact 0-samplable).

For the remainder of our work, we will focus on (0-)classically evaluatable
states, which by Definition 8.2.2 means that OQu is deterministic. A notable
advantage of this approach, as opposed to 0-samplable states, lies in its compat-
ibility with deterministic algorithms, allowing us to give NP containment results
(see Section 8.6).

8.3 The guidable local Hamiltonian problem
Our main focus is on a new family of local Hamiltonian problems, which we call
Guidable local Hamiltonian problems. Let us define this class of local Hamiltonian
problems, which can be viewed as ‘Merlinized’ versions of the original guided local
Hamiltonian problem. We make a distinction between different types of promises
one can make with respect to the existence of guiding states: we either assume
that the guiding states are of the form of Definition 8.2.2 (with or without the
promise that the states are also quantumly preparable), or that there exists an
efficient quantum circuit that prepares the guiding state.
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Figure 8.1: Visualization of the (conjectured) relations between classes of quan-
tum states considered in this work, given a Hilbert space of a fixed dimension.
For MPS, we only consider states with polynomially-bounded bond and local di-
mension. We take ξ ≤ ϵ/8 ≤ 1/3, such that by Theorem 8.2.8 we have that (i) all
ξ-samplable states are also ϵ-classically evaluatable and (ii) constant-depth and
IQP circuits are not ξ-samplable. One also expects that there are quantum states
(which can be prepared by a polynomial time quantum circuit) which are neither
classically evaluatable nor samplable, or else QMA (QCMA) would be in NP or
MA, respectively.
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8.3.1. Definition (Guidable Local Hamiltonian Problems). Guidable Local
Hamiltonian Problems are problems defined by having the following input,
promise, one of the extra promises and output:
Input: A k-local Hamiltonian H with ∥H∥ ≤ 1 acting on n qubits, threshold
parameters a, b ∈ R such that b− a ≥ δ > 0 and a fidelity parameter ζ ∈ (0, 1].
Promise: We have that either λ0(H) ≤ a or λ0(H) ≥ b holds, where λ0(H)
denotes the ground state energy of H.
Extra promises: Denote Πgs for the projection on the subspace spanned by the
ground state of H. Then for each problem class, we have that either one of the
following promises hold:

1. There exists a classically evaluatable state u ∈ C2n for which ∥Πgsu∥2 ≥ ζ.
Then the problem is called the Classically Guidable Local Hamiltonian
Problem, shortened as CGaLH(k, δ, ζ). If u is also quantumly prepara-
ble, we call the problem the Classically Guidable and Quantumly
Preparable Local Hamiltonian Problem, shortened as CGaLH∗(k, δ, ζ).

2. There exists a unitary V implemented by a quantum circuit composed of
at most T = poly(n) gates from a fixed gate set G that produces the state
|ϕ⟩ = V |0⟩ (with high probability), which has ∥Πgs |ϕ⟩ ∥2 ≥ ζ. Then the
problem is called the Quantumly Guidable Local Hamiltonian prob-
lem, shortened as QGaLH(k, δ, ζ).

Output:

• If λ0(H) ≤ a, output yes.

• If λ0(H) ≥ b, output no.

A guidable local Hamiltonian problem variant for a different class of guiding states
was already introduced in [GL22], where they consider the class of samplable
states as in Definition 8.2.1 as guiding states. They didn’t give any hardness
results on this problem.

The QGaLH(k, δ, ζ) problem is very similar to the Low Complexity Low Energy
States (LCSES) problem from [WJB03], but differs in some key ways. In the low
complexity low energy states problem one is promised that for all states {|ϕ⟩} that
can be prepared from |0 . . . 0⟩ with a polynomially bounded number of gates from
a fixed gate set, one has that either there exists at least one such |ϕ⟩ such that
⟨ϕ|H |ϕ⟩ ≤ a or for all these |ϕ⟩ we have ⟨ϕ|H |ϕ⟩ ≥ b. Instead, in QGaLH(k, δ, ζ)
one is promised that there exists a state |ψ⟩ which can be prepared efficiently
on a quantum computer that has fidelity ζ with the ground space of H. This
promise in the fidelity does not imply that the energy of this |ψ⟩ is necessarily
low, as it might have a large fidelity with states in the high-energy spectrum of
H. Nevertheless, it does imply that in the yes-case there exists a low complexity
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low energy state |ϕ⟩. One can make use of the state |ψ⟩ that has significant
overlap with the ground state and use Lin and Tong’s filtering method [LT20]
to project |ψ⟩ onto a state |ϕ⟩ with energy at least inverse polynomially close
to the ground state (which implies |ϕ⟩ can be prepared by a quantum circuit).
However, in the no-case this promise on the fidelity implies that every possible
state |ψ⟩ has energy ⟨ψ|H |ψ⟩ ≥ b−O(1/ exp(n)), as even in the no-case it is still
possible to approximate the ground state energy up to polynomial precision. This
is different from the no-case of the low complexity low energy states problem,
where there might exist states with energy lower than a, as long as these states are
not preparable by a polynomial-time quantum circuit, making the QGaLH(k, δ, ζ)
problem more restrictive than the low complexity low energy states problem. In
principle, this could be remedied by relaxing the requirement in QGaLH(k, δ, ζ)
from having fidelity with the ground space to having fidelity with the space of
states with sufficiently low energy in the yes-case only. All our results that follow
would still hold, and this new problem could then be seen as a generalisation of
the low complexity low energy states problem.

8.4 Summary of main results

8.4.1 QCMA completeness of the guidable local Hamilto-
nian problem

With these definitions we can give our main result with respect to guidable local
Hamiltonian problems:

8.4.1. Theorem (Complexity of guidable local Hamiltonian problems). For
k = 2 and δ = 1/ poly(n), we have that both CGaLH∗(k, δ, ζ) and QGaLH(k, δ, ζ)
are QCMA-complete when ζ ∈ (1/ poly(n), 1− 1/ poly(n)).

The proof of which can be found in Corollary 8.5.4 and Theorem 8.5.6. A direct
corollary of the above theorem is the following.

8.4.2. Corollary (Classical versus quantum state preparation). When one
has access to a quantum computer (and in particular quantum phase estimation),
then having the ability to prepare any quantum state preparable by a polynomially-
sized quantum circuit is no more powerful than the ability to prepare states from
the family of classically evaluatable and quantumly preparable states, when the
task is to decide the local Hamiltonian problem with precision 1/ poly(n).

It should be noted that our result does not imply that all Hamiltonians which
have efficiently quantumly preparable guiding states also necessarily have guiding
states that are classically evaluatable. All this result says is that for any instance
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of the guidable local Hamiltonian problem with the promise that there exist guid-
ing states that can be efficiently prepared by a quantum computer, there exists an
(efficient) mapping to another instance of the guidable local Hamiltonian problem
with the promise that there exist guiding states that are classically evaluatable
and quantumly preparable. Whilst this reduction is efficient in the complexity-
theoretic sense, it might not be for practical purposes, as it would likely remove all
the physical structure present in the original Hamiltonian. Hence, the main im-
plication of our result is not that these kinds of reductions are of practical merit,
but that at least from a complexity-theoretic point of view the aforementioned
classical-quantum hybrid approach of guiding state selection through classical
heuristics combined with quantum energy estimation is at least as powerful as
using quantum heuristics for state preparation instead.

8.4.2 Classical containment of CGaLH

We complement our quantum hardness results with classical containment results
(of the classically guidable local Hamiltonian problem), obtained through a de-
terministic dequantized version of Lin and Tong’s ground state energy estimation
algorithm [LT20]. Here CGaLH is just as CGaLH∗ but without the promise of the
guiding state being quantumly preparable.

8.4.3. Theorem (Classical containment of CGaLH). CGaLH(k, δ, ζ) is NP-
complete for k = O(log(n)), and constants δ ∈ (0, 1] and ζ ∈ (0, 1]. Furthermore,
when ζ = 1/ poly(n) we have that CGaLH(k, δ, ζ) is in NqP.

The proof of this theorem can be found in Section 8.6. Through a more careful
analysis of when exactly the quantum hardness vanishes, the picture of Figure 8.2
emerges, which characterises the complexity of CGaLH∗(k, δ, ζ) for relevant param-
eter settings in the desired precision and promise on the fidelity. One additional
result to mention, is that when the overlap between the guiding state becomes
very close to one, ζ = 1 − 1/ exp(n), the problem remains in NP even when the
promise gap becomes polynomially small, δ = 1/ poly(n) (Theorem 8.6.7).7

7After this work, Jiang published a work on a similar problem for a different class of states
than we consider [Jia23]. Jiang shows that if the ground state admits a polynomial-time al-
gorithm to compute the amplitudes, the class of states for which this is possible being called
succinct, the corresponding local Hamiltonian problem is MA-complete even in the inverse
polynomial precision setting. However, since our proof of Theorem 8.5.3 uses as a witness
polynomial-sized subset states, which are succinct, it also shows that Jiang’s problem is QCMA-
hard when it is only promised that there exists a succinct state with only at most 1−1/ poly(n)
overlap with a ground state. Hence, Jiang’s result is similar to our Theorem 8.6.7 in that if
the ground state itself becomes (exponentially close to) a special class of states, the problem
becomes classically solvable.
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Figure 8.2: Complexity characterization of CGaLH∗(k, δ, ζ) over parameter regime
δ and ζ, for k = O(1). Any classification indicates completeness for the respective
complexity class, except for NqP, for which we only know containment (indicated
by the ‘†′). Here completeness for certain parameter combinations means that for
all functions of the indicated form, the problem is contained in the complexity
class, and for a subset of these functions the problem is also hard. The results
for QPCP[O(1)] and QMA follow directly from [Aha+09] and [KSV02].

8.4.3 Two implications for the quantum PCP conjecture
Finally, we use our obtained results on CGaLH to obtain an interesting result and
a new conjecture related to the quantum PCP conjecture.
First, our classical containment results of CGaLH∗ with constant promise gap can
be viewed as no-go theorems for a gap amplification procedure for QPCP having
certain properties, as illustrated by the following result.

8.4.4. Theorem. (Informal; No-go results for Hamiltonian gap amplification)
There cannot exist a gap amplification procedure for the local Hamiltonian problem
that preserves the fidelity between the ground space of the Hamiltonian and any
classically evaluatable state up to a

• multiplicative constant, unless QCMA = NP, or

• inverse-polynomial multiplicative factor, unless QCMA ⊆ NqP.

A more precise version of Theorem 8.4.4 can be found in Section 8.7 as Theo-
rem 8.7.5. This result is analogous to the result of [AG19], which rules out a gap
amplification procedure that preserves stoquasticity under the assumption that
MA ̸= NP.8 Moreover, we point out that many Hamiltonian gadget construc-
tions do satisfy such fidelity-preserving conditions, and indeed are precisely those

8Or taking a different view, proving the existence of such gap amplifications would allow one
to simultaneously prove that MA can be derandomized (or even RP if it exhibits some additional
properties) [AG19].
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that were used in Chapter 7 to improve the hardness results for the guided local
Hamiltonian problem.9

Second, we can use our results to formulate a stronger version of the NLTS theo-
rem (and an alternative to the NLSS conjecture [GL22]), which we will call the No
Low-energy Classically-Evaluatable States conjecture. This conjecture can hope-
fully provide a new stepping stone towards proving the quantum PCP conjecture.

8.4.5. Conjecture. (Informal; NLCES conjecture) There exists a family of lo-
cal Hamiltonians {Hn}n∈N on n qubits, and a constant β > 0, such that for
sufficiently large n for every classically evaluatable state u ∈ C2n as per Defini-
tion 8.2.2, we have that

⟨u|Hn |u⟩ ≥ λ0(Hn) + β .

Again, a more precise statement can be found in Section 8.7 as Conjecture 8.7.6.
Just as is the case for the NLSS conjecture and the NLTS theorem, the NLCES
conjecture would, if proven to be true, not necessarily imply the quantum PCP
conjecture. For example, it might be that there exist states that can be efficiently
described classically but for which computing expectation values is hard (just as,
for example, tensor network contraction is #P-hard in the worst case [Sch+07;
BMT15]). Furthermore, as we have shown in this work, states with high energy
but also a large fidelity with the ground state suffice as witnesses to decision
problems on Hamiltonian energies, and these would not be excluded by a proof
of the NLCES conjecture above. To make this more concrete, we also formulate
an even stronger version of the NLCES conjecture, which states that there must
be a family of Hamiltonians, for which no classically evaluatable state has good
fidelity with the low energy spectrum (Conjecture 8.7.7).

8.5 QCMA-completeness of guidable local Hamil-
tonian problems

In this section we prove that Guidable Local Hamiltonian problems are QCMA-
hard in the inverse polynomial precision regime. Our construction is based on

9For a quantum version of gap amplification, one would typically expect locality-reducing
Hamiltonian gadgets as part of the procedure, to compensate for a “powering step” which con-
sists of taking powers of the Hamiltonian (which therefore increases locality). It is already
known that the current best-known locality-reducing gadgets [Bra+08] cannot be used because
they increase the norm of the Hamiltonian by a constant factor, which results in an unman-
ageable decrease of the relative promise gap. Our result shows that even if one would find
better constructions that don’t have this effect, they would still have to satisfy the additional
constraints as described in Theorem 8.7.5.
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a combination of the ideas needed to show BQP-hardness for the Guided Local
Hamiltonian problem 7 and the small penalty clock construction of [DGF22].

The first obstruction one encounters in adopting the ideas from the BQP-hardness
proofs of the Guided Local Hamiltonian problem to the guidable setting is the fact
that QCMA verifiers, unlike BQP, have a proof register. In QCMA the promises
of completeness and soundness are always with respect to computational basis
state witnesses. Hence, these might no longer hold when any quantum state
can be considered as witness: for example, in the no-case there might be highly
entangled states which are accepted with probability ≥ 2/3. When considering
a circuit problem, the verifier can easily work around this by simply measuring
the witness and then proceeding to verify with the resulting computational basis
state. However, there is also another trick, which retains the unitarity of the
verification circuit – and which we will denote as the ‘CNOT-trick’ from now on
– to force the witness to be classical, first used in proving QCMA-completeness of
the Low complexity low energy states problem in [WJB03]. Since the authors do
not explain the precise mechanism behind the workings of this CNOT-trick, we
provide a short proof of the lemma below.

8.5.1. Lemma (The ‘CNOT-trick’). Let p(n) : N → R>0, q(n) : N → R>0 be
polynomials. Let Un be a quantum polynomial-time verifier circuit that acts on
an n-qubit input register A, a p(n)-qubit witness register B and a q(n)-qubit
workspace register C, initialized to |0⟩⊗q(n). Denote Π0 for the projection on
the first qubit being zero. Let Q be the Marriott-Watrous operator of the circuit,
defined as

Q =
(
⟨x| ⊗ Iw ⊗ ⟨0|⊗q(n)

)
U †nΠ0Un

(
|x⟩ ⊗ Iw ⊗ |0⟩⊗q(n)

)
. (8.1)

Consider yet another additional p(n)-qubit workspace D initialized to |0⟩⊗p(n), on
which Un does not act. Then by prepending Un with p(n) CNOT-operations, each
of which is controlled by a single qubit in register B and targeting the correspond-
ing qubit in register D, the corresponding Marriott-Watrous operator becomes
diagonal in the computational basis.

Proof:
Denote UCNOT for the 2p(n) qubit operation that acts on the two registers B and
D, and that for each l ∈ [p(n)] applies a CNOT controlled by qubit l in register B
and targets qubit l in register D. Consider the new verifier circuit Ũn = UnUCNOT
that acts on the registers A,B,C and D, with the corresponding Mariott-Watrous
operator Q̃. Let |i⟩ and |j⟩ for i, j ∈ [2p(n)] be arbitrary computational basis
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states. Then we have

⟨i| Q̃ |j⟩ =
(
⟨x| ⊗ ⟨i| ⊗ ⟨0|⊗q(n) ⊗ ⟨0|⊗p(n)

)
UCNOTU

†
nΠ0

UnUCNOT
(
|x⟩ ⊗ |j⟩ ⊗ |0⟩⊗q(n) ⊗ |0⟩⊗p(n)

)
=
(
⟨x| ⊗ ⟨i| ⊗ ⟨0|⊗q(n) ⊗ ⟨i|

)
U †nΠ0Un

(
|x⟩ ⊗ |j⟩ ⊗ |0⟩⊗q(n) ⊗ |j⟩

)
= ⟨i| |j⟩

(
⟨x| ⊗ ⟨i| ⊗ ⟨0|⊗q(n)

)
U †nΠ0Un

(
|x⟩ ⊗ |j⟩ ⊗ |0⟩⊗q(n)

)
= δi,j ⟨i|Q |j⟩ ,

where we used the fact that V and Π0 themselves do not act on register D. Hence,
the operator Q̃ is diagonal in the computational basis, where its entries are taken
from the diagonal of Q. 2

The next obstruction one faces is that in the QCMA setting there might be
multiple proofs which all have exponentially close, or even identical, acceptance
probabilities. The analysis of the BQP-hardness proof fails to translate directly
to this setting, and another technique is needed. For this, we resort to the small-
penalty clock construction of [DGF22]. The key idea is to use a Feynman-Kiteav
circuit-to-Hamiltonian mapping modified with a tunable parameter ϵ, which maps
a quantum verification circuit Un, consisting of T gates from a universal gate set
of at most 2-local gates, taking input x and a quantum proof |ψ⟩ ∈ (C2)⊗ poly(n)

to a k-local Hamiltonian of the form

Hx
F K = Hin +Hclock +Hprop + ϵHout. (8.2)

The value of k depends on the used construction. Intuitively, the first three terms
check that the Hamiltonian is faithful to the computation and the last term shifts
the energy level depending on the acceptance probability of the circuit. Just
as in [DGF22], we will use Kempe and Regev’s 3-local construction. A precise
description of the individual terms in (8.2) can be found in [KR03], and will not be
relevant for our work, except for the fact that theHx

FK has a polynomially bounded
operator norm. The ground state of the first three terms H0 = Hin+Hclock+Hprop
is given by the so-called history state, which is given in [KR03] by

|ψhist(ϕ)⟩ = 1√
T + 1

T∑
t=0

Ut . . . U1 |ϕ⟩ |0⟩
∣∣∣t̂〉 , (8.3)

where |ϕ⟩ is the quantum proof and t̂ the unary representation of the time step
of the computation given by

t̂ = | 1 . . . 1︸ ︷︷ ︸
t

0 . . . 0︸ ︷︷ ︸
T−t

⟩.
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From the construction in [KR03], it is easily verified that if Un accepts (x, |ϕ⟩)
with probability p then we have that the corresponding history state has energy

⟨ψhist(ϕ)|Hx
F K |ψhist(ϕ)⟩ = ϵ

1− p
T + 1 . (8.4)

Though the core idea behind the small-penalty clock construction is identical to
the one used in the BQP-hardness proof – rescaling the weight of the Hout term as
compared to the other terms in a Feynman-Kitaev circuit-to-Hamiltonian map-
ping – the analysis differs: using tools from the Schrieffer-Wolff transformation
one can find precise bounds on intervals in which the energies in the low-energy
sector must lie, gaining fine control over the relation between the acceptance
probabilities of the circuit and the low-energy sector of the Hamiltonian. The
main lemma we use from [DGF22] is adopted from the proof of Lemma 26 in
their work.

8.5.2. Lemma (Small-penalty clock construction, adopted from Lemma 26 [DGF22]).
Let Un be a quantum verification circuit for inputs x, |x| = n, where Un consists
of T = poly(n) gates from some universal gate-set using at most 2-local gates.
Denote P (ψ) for the probability that Un accepts (x, |ϕ⟩), and let Hx

FK be the
corresponding 3-local Hamiltonian from the circuit-to-Hamiltonian mapping
in [KR03] with a ϵ-factor in front of Hout, as in Eq. (8.2). Then for all ϵ ≤ c/T 3

for some constant c > 0, we have that low-energy subspace Sϵ of H, i.e.

Sϵ = span{|Φ⟩ : ⟨Φ|H |Φ⟩ ≤ ϵ}

has that its eigenvalues λi satisfy

λi ∈
[
ϵ
1− P (ϕi)
T + 1 −O(T 3ϵ2), ϵ1− P (ϕi)

T + 1 +O(T 3ϵ2)
]
, (8.5)

where {|ψi⟩} are the eigenstates of the Mariott-Watrous operator of the circuit Un

given by Eq. (8.1).

Having a QCMA-verifier with the CNOT-trick of Lemma 8.5.1 ensures that in
Lemma 8.5.2 all |ϕi⟩ are computational basis states, as the CNOT-trick diagonal-
izes the Mariott-Watrous operator. The key idea is now to exploit the fact that
QCMA, unlike for what is known for QMA, is a ‘well-behaved’ class in the sense
that is equal to UQCMA (under randomized reductions).

8.5.3. Theorem. CGaLH(k, δ, ζ) is QCMA-hard under randomized reductions for
k ≥ 2, ζ ∈ (1/ poly(n), 1− 1/ poly(n)) and δ = 1/ poly(n).

Proof:
Let us first state a ‘basic version’ reduction, which uses basis states as guiding
states which trivially satisfy the conditions of Definition 8.2.2, for which we prove
completeness and soundness, and finally improve its parameters in terms of the
achievable fidelity and locality domains.
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Figure 8.3: Illustration of the key ideas to construct the desired witness dis-
tribution in the yes-case in the first part of the reduction. The blue lines are
witnesses, for which their position with respect to the y-axis represents the corre-
sponding acceptance probabilities. The dark red lines represent the completeness
and soundness parameters. a)→ b) represents the randomized reduction from a
QCMA-problem to a UQCMA one, b)→ c) the error reduction and finally d)→ e)
The spectra of Hyes and Hno when x ∈ Ayes. Hyes follows from the circuit-to-
Hamiltonian mapping with the small penalty resulting in a Hamiltonian with fine
control over its low-energy subspace, allowing one to ensure that its ground state
is unique and can be made exponentially close to the history state correspond-
ing to the unique accepting witness. The light blue shaded area represents the
fact that we do not know the exact energy values corresponding to non-accepting
witnesses, except for the fact that they are separated from λ0(Hyes) by at least
γ(Hyes) = Ω(1/T̃ 6) for our choice of ϵ. Hno is chosen such that its ground state
energy lies exactly in the gap of Hyes in the sc Yes-case. Observe that if one was
able to show that QMA ⊆r UQMA, one could use the same proof construction
to show QMA-hardness of inverse-poly-gapped Hamiltonians, for which we only
yet know that they are QCMA-hard. QCMA-hardness for inverse-poly-gapped
Hamiltonians was already shown in [Aha+22] (in fact they even show it for 1D
Hamiltonians), and rediscovered in this work.
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The reduction Let ⟨Un, p1, p2⟩ be a QCMA promise problem. By using
Lemma 8.1.3, there exists randomized reduction to a UQCMA promise prob-
lem ⟨Ûn, p̂1, p̂2⟩, p̂1 − p̂2 ≥ 1/q(n) for some polynomial q, which uses witnesses
y ∈ {0, 1}p(n) for some polynomial p(n) and uses at most T = poly(n) gates. We
will now apply the following modifications to the UQCMA instance:

1. First, we force the witness to be classical by adding another register to
which we ‘copy’ all bits of y (through CNOT operations), before running
the actual verification protocol – i.e. we use the CNOT trick of Lemma 8.5.1,
which diagonalizes the corresponding Marriot-Watrous operator in the com-
putational basis.

2. We apply error reduction to the circuit. This is done by applying
the so-called “Marriot and Watrous trick” for error reduction, described
in [MW04], which allows one to repeat the verification circuit several times
whilst re-using the same witness. It is shown in [MW04], Theorem 3.3, that
for any quantum circuit Vn using T = poly(n) 2-qubit gates which decides
on acceptance or rejection of an input x, |x| = n, using a p(n)-qubit witness
|ψ⟩ for some polynomial p, satisfying completeness and soundness proba-
bilities c, s such that c− s ≥ 1/q(n) there is another circuit Ṽn that again
uses a p(n)-qubit witness |ψ⟩ but has completeness and soundness 1− 2−r

and 2−r, respectively, at the cost of using T̃ = O(q2rT ) gates.

Let the resulting protocol be denoted by ⟨Ũn, c̃, s̃⟩, where Ûn has an input register
A, a witness register W and ancilla register B, uses T̃ = O(q2rT ) gates and has
completeness and soundness C = 1 − 2−r and ŝ = 2−r. We denote y∗ for the
(unique) witness with acceptance probability ≥ C in the yes-case. We keep r as
a parameter to be tuned later in our construction. We will also write P (y) :=
Pr[Û accepts (y)]. Now consider the 4-local Hamiltonian

Hx = Hyes ⊗ |0⟩ ⟨0|D +Hno ⊗ |1⟩ ⟨1|D , (8.6)

where Hyes = Hx
FK is the Hamiltonian given by Eq. (8.2) using the circuit Ûn and

parameter ϵ and Hno is given by

Hno =
R−1∑
i=0
|1⟩ ⟨1| 1i + bI, (8.7)

where R is the total size of the registers A, W , B and the clock register C, and
b > 0 is yet another tunable parameter. Note that Hno has a unique ground state
with energy b given by the all zeros state, and the spectrum after that increases
in steps of 1 (and so it in particular has a spectral gap of 1). We also have that
∥Hno∥ = R+b = poly(n). As a guiding state in the yes-case will use the following
basis state

|uyes⟩ = |x⟩A |y
∗⟩W |0 . . . 0⟩B |0⟩C |0⟩D , (8.8)
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which satisfies (⟨ψhist(y∗)| ⟨0|D) |uyes⟩ = 1/
√

(T + 1) = O(1/ poly(N)), with
|ψhist(y∗)⟩ being the history state of witness y∗ for Hamiltonian Hyes. In the
no-case, we will show that the state

|uno⟩ = |0 . . . 0⟩AW BC |1⟩D , (8.9)

will be in fact the ground state. We will show that setting b := O(1/T̃ 7) and
ϵ := O(1/T̃ 5), our reduction achieves the desired result.

Completeness Let us first analyse the yes-case. By Lemma 8.5.2, we have
that the eigenvalue λ(y) corresponding to the witness y∗ is upper bounded by

λ(y∗) ≤ ϵ
2−r

T̃ + 1
+O(T̃ 3ϵ2).

On the other hand, we have that for any y ̸= y∗

λ(y) ≥ ϵ
1− 2−r

T̃ + 1
−O(T̃ 3ϵ2) = Ω

( 1
T̃ 6

)
for our choice of ϵ and r ≥ 1. Hence, for our choice of ϵ we must have that the
ground state |E0⟩ of Hyes is unique and has a spectral gap that can be bounded
as

γ(Hyes) ≥ ϵ
1− 2−r+1

T̃ + 1
−O

(
T̃ 3ϵ2

)
= Ω

( 1
T̃ 6

)
, (8.10)

for some r ≥ Ω(1) (we will pick r to be much larger later). Let us consider the
fidelity of the history state |ψhist(y∗)⟩ with the actual ground state. First, we have
that the energy of |ψhist(y∗)⟩ is upper bounded by

⟨ψhist(y∗)|Hyes |ψhist(y∗)⟩ ≤ ϵ
2−r

T̃ + 1
= O

(
2−r

T̃ 6

)
,

which follows directly from Eq. 8.4 and the fact that P (y∗) ≥ 1 − 2−r. We can
write |ψhist(y∗)⟩ in the eigenbasis of Hyes as

|ψhist(y∗)⟩ = α |E0⟩+
√

1− α2
∣∣∣E⊥0 〉 ,

for some real number α ∈ [0, 1], where |E0⟩ is the actual ground state of Hyes and∣∣∣E⊥0 〉 another state orthogonal to |E0⟩. We have that the energy of |ψhist(y∗)⟩ is
upper bounded by

⟨ψhist(y∗)|Hyes |ψhist(y∗)⟩ ≤ ϵ
2−r

T̃ + 1
= O

(
2−r

T̃ 6

)
.
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On the other hand, the energy of |η(y∗)⟩ is lower bounded by

⟨ψhist(y∗)|Hyes |ψhist(y∗)⟩ = α2 ⟨E0|Hyes |E0⟩+ (1− α2)⟨E⊥0 |Hyes|E⊥0 ⟩ ≥ Ω
(

1− α2

T̃ 6

)
,

using the fact that Hyes is PSD. Combining the upper and lower bounds, we find

α2 = | ⟨ψhist(y∗)|E0⟩ |2 ≥ 1−O
(
2−r

)
, (8.11)

which can be made ≥ 1− 2−cT̃ for some r = cT̃ +O(1). Hence, we have that the
fidelity of |uyes⟩ with the unique ground state of H can be lower bounded as

|⟨uyes|E0⟩|2 ≥ 1−
(√

1− | ⟨uyes| (|ψhist(y∗)⟩ |0⟩)|2 +
√

1− |(⟨ψhist(y∗)| ⟨0|) |E0⟩ |2
)2

≥ 1−
(√

1− 1
T̃ + 1

+ 2−cT̃ /2
)2

≥ Ω
( 1
T̃

)
,

as desired.

Soundness We have that all witnesses y get accepted by Û with at most an
exponentially small probability, and hence have that Hyes ⪰ Ω(1/T̃ 6). By our
choice b we have therefore ensured that the ground state in the no-case must
be the state given by Eq. (8.9), which has energy b = Ω(1/T̃ 7). Hence, the
promise gap between yes and no cases is δ = Ω(1/T̃ 7) = Ω(1/q2T 8) = 1/ poly(n).

We will use similar tricks as used to proof Theorem 7.4.1 to improve the basic
construction in terms of the fidelity range and locality.

Increasing the fidelity range Note that in the no-case we already have that
the ground state is a semi-classical poly-sized subset state. However, in the yes-
case, the ground state is a history state with only inverse polynomial fidelity with
the state |uyes⟩. To work around this, we apply the same trick as for Proposi-
tion 7.7.1: by pre-idling the circuit with a polynomial number of identities, of
which we denote the total number by N , and guiding state to

∣∣∣unew
yes

〉
= 1√

N

N−1∑
t=0
|x⟩A |y

∗⟩W |0 . . . 0⟩B |t⟩C |0⟩D , (8.12)

which satisfies

|
〈
unew

yes

∣∣∣ (|ψhist(y∗)⟩ |0⟩)|2 = N

N + T̃ + 1
.



8.5. QCMA-completeness of guidable local Hamiltonian problems 181

Since the history state itself has an exponentially close fidelity with the ground
state by equation Eq. (8.11), we have that the guiding state itself has an inverse
polynomially close to 1 fidelity with the unique ground state |ψ⟩ of large enough
N . For the new pre-idled circuit we have to replace in all our results throughout
our construction T̃ by T̃ +N and we have that the fidelity becomes

∣∣∣〈unew
yes

∣∣∣E0
〉∣∣∣2 ≥ 1−

(√
1− |

〈
unew

yes

∣∣∣ (|ψhist(y∗)⟩ |0⟩)|2 +
√

1− |(⟨ψhist(y∗)| ⟨0|) |E0⟩ |2
)2

≥ 1−
(

1− N

N + T̃ + 1
+ 2−c(T̃ +N)/2

)2

≥ 1− 1
r(n) ,

for any positive polynomial r for some choice of N ∈ poly(T̃ ).

Classical evaluatability and quantum preparability We will check each
condition of Definition 8.2.2 for

∣∣∣unew
yes

〉
. Condition (i) follows directly from the

definition of polynomially-sized subset states. For condition (ii) we have that
⟨u|O |u⟩ = 1

|S|
∑

i,j∈S ⟨i|O |j⟩ can be computed efficiently for any O for which we
have query access to its matrix elements, since each ⟨i|O |j⟩ corresponds to a
query to the element Oi,j. Hence, when |S| = poly(n) this can be done efficiently
for any k. Finally, for condition (iii), we have that such states can be trivially
prepared using poly(n) quantum gates by using a series of controlled rotations
on each qubit at a time. For instance, a very simple application of the algorithm
from Grover-Rudolph [GR02] would suffice.

Reducing the locality Finally, we show how to reduce the locality of the
constructed Hamiltonian. Assume that we have already increased the fidelity as
above, so that the number of gates in the circuit is now M = T̃ +N . The spectral
gap of H, denoted as γ(H), can be lower bounded as

γ(H) ≥ min
[
γ(H|x∈Ayes), γ(H|x∈Ano)

]
= min

[
δ,Ω

( 1
M6

)
− Ω

( 1
M7

)]
= δ = Ω

( 1
M7

)
= 1/ poly(n).

Since the ground state is unique and inverse-polynomially gapped (in both the
yes- and no-case), we can apply Lemma 8.1.5 to obtain a 2-local Hamiltonian
H ′ which (∆, η, ϵ)-simulates H, where we can take ∆ = 1/ poly(n) ≥ γ(H)
sufficiently large, η, ϵ = 1/ poly(n) ≤ δ ≤ γ(H) sufficiently small to ensure
that the ground energy remains below some a′ in a yes instance and above
some b′ in a no instance, such that b′ − a′ = δ = 1/ poly(n) and so that
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∥Estate(|g⟩)− |g′⟩ ∥ ≤ η+O(γ−1ϵ), where |g⟩ is |uyes⟩ in a yes instance or |uno⟩ in
a no instance, |g′⟩ is the ground state of H ′, and Estate(|g⟩) is as in Lemma 8.1.5.
That is, H ′ approximates H in the low energy spectrum (below ∆) in a way
that the eigenvalues are perturbed by at most some small inverse-polynomial,
and where the ground state can be approximated by the old ground state, plus
some semi-classical state added as a tensor product. Finally, note that we can
obtain ∥H∥ ≤ 1 by simply scaling down by some polynomial, as required by the
problem definition. Note that this will not change any of the statements as all
relevant parameters and coefficients are (inverse) polynomials in n, albeit of very
large degree.

Finally, we can ensure ∥H∥ ≤ by scaling H with an inverse polynomially large
factor. 2

Since polynomially-sized subset states are also samplable (see [GL22]), our proof
would also go through if one considers a variant of the guidable local Hamiltonian
problem which considers samplable states as in Definition 8.2.1 instead. We have
the following corollary.

8.5.4. Corollary. CGaLH∗(k, δ, ζ) is QCMA-complete, where the hardness is
under randomized reductions, for k ≥ 2, ζ ∈ (1/ poly(n), 1 − 1/ poly(n)) and
δ = 1/ poly(n).

Proof:
Hardness follows from Theorem 8.5.3. Containment follows trivially from the fact
that the yes-and no-cases can be distinguished by using desc(u) as a witness,
and a verifier circuit that prepares the quantum state |u⟩ (which can be done
efficiently possible because of the extra condition on u) followed by quantum
phase estimation to an accuracy strictly smaller than the promise gap δ, see
Theorem 2 in [CFW22]. 2

Now that we have established QCMA-completeness for CGaLH∗, we get QCMA-
completeness for QGaLH for free for the same range of parameter settings, as the
latter is a generalization of the former (containing CGaLH∗ as a special case), and
containment holds by the same argument as used in the proof of Corollary 8.5.4.
However, with just a little bit of more work we can see that QCMA-hardness for
QGaLH actually persists for a larger range of parameter settings. For this, we will
use the following lemma by [LT20].

8.5.5. Lemma (Ground state preparation with a-priori ground energy bound [LT20]).
Suppose we have a Hamiltonian H = ∑

k λk(H) |ϕq⟩ ⟨ϕq|, where λk(H) ≤ λk+1(H),
given through its (α,m, 0)-block-encoding UH . That is, we have access to a
(n+m)-qubit unitary operator U such that that

α(⟨0|⊗m ⊗ I)U(|0⟩⊗m ⊗ I) = H.

Also suppose we have an initial state |ψ⟩ prepared by some circuit Uprep with
the promise that | ⟨ϕ0| |ψ⟩ |2 ≥ Γ, and that we have the following bounds on the



8.5. QCMA-completeness of guidable local Hamiltonian problems 183

ground energy and spectral gap: λ0(H) ≤ µ−∆/2 < µ+ ∆/2 ≤ λ1(H), for some
µ,∆ ∈ R. Then the ground state can be prepared to fidelity 1− ε with probability
1− ν with the following costs:

1. Query complexity: O
(

α
Γ∆

(
log

(
α
∆

)
log

(
1
Γ

)
log

(
log(α/∆)

ν

)
+ log

(
1
ε

)))
queries to

UH and O
(

1
Γ log

(
α
∆

)
log

(
α/∆

ν

))
queries to Uprep,

2. Number of qubits: O
(
n+m+ log( 1

Γ)
)
,

3. Other one- and two-qubit gates: O
(

mα
Γ∆

(
log

(
α
∆

)
log

(
1
Γ

)
log

(
log(α/∆)

ν

)
+ log

(
1
ε

)))

8.5.6. Theorem. QGaLH(k, δ) is QCMA-complete for k ≥ 2, δ = 1/ poly(n) and
ζ ∈ (1/ poly(n), 1− 1/ exp(n)).

Proof:
This follows immediately from the proof of Theorem 8.5.3, where the used history
states themselves can be prepared by a quantum circuit of at most poly(n) gates.
In the locality reduction, we can only ensure that we remain inverse polynomially
close to the original ground state. However, due to Lemma 8.5.5, this fidelity
is enough to guarantee the existence of a quantum circuit, still polynomial in n,
that produces a new quantum state which is inverse exponentially close to the
actual ground state. Let Uprep be the quantum circuit that creates |u⟩ = Uprep |0⟩.
Let us assume the worst case setting in our construction of Theorem 8.5.3, where
we have that Γ = ζ = 1/ poly(n), α = O(1), ∆ = γ(H) = Ω(1/M7), and
µ = λ0(Hno) = Ω(1/M7). Let m = O(1). Since the inverse fidelity ε appears only
logarithmically in Lemma 8.5.5, we can prepare a state that is exponentially-close
in fidelity with (exponentially) high probability 1− ν in

O
(
poly(n)M7

(
log

(
poly(n)M7

)
log (poly(n)) log

(
log(M7)

ν

)
+ log (exp(n))

))
= Õ (poly(n))

queries to UH (the block encoding of H) and single qubit gates, as well as

O
(
poly(n) log

(
M7

)
log

(
M7

ν

))
= Õ (poly(n))

queries to Uprep. 2
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8.6 Classical containment via spectral amplifi-
cation

To complement our quantum hardness results with classical containment results in
certain parameter regimes, we will use a technique based on the dequantization of
the quantum singular value transformation as described in [GL22]. Our algorithm
differs conceptually from the one proposed in [GL22] in the following ways:

• We consider a different (and less restrictive) input model: whereas [GL22]
considers access to states of the form of Definition 8.2.1, we use states that
adhere to the requirements as in Definition 8.2.2.

• For our purposes, we only consider local Hamiltonians (which are Hermitian
sparse matrices) and not arbitrary sparse complex matrices. This simplifies
the algorithm in the sense that we can view functions on these Hamiltonians
as acting on the spectrum instead of the singular values.

• We also simplify the algorithm by tailoring it exactly to ground state de-
cision instead of estimation problems, which allows us to use a different
function acting on H as compared to [GL22] to solve the relevant problems.

Let us introduce and prove bounds on the complexity of the spectral amplification
algorithm in the next subsection. In the subsequent subsection, we will utilize this
algorithm to put classical complexity upper bounds on CGaLH(k, δ, ζ) in specific
parameter regimes.

8.6.1 Spectral amplification

Let H = ∑m−1
i=0 Hi be a Hamiltonian on n qubits which is a sum of k-local terms

Hi, which satisfies ∥H∥ ≤ 1. Since H is Hermitian, we can write H as

H =
2n−1∑
i=0

λi |ψi⟩ ⟨ψi| ,

where λi ∈ [−1, 1] (by assumption on the operator norm) denotes the i’th eigen-
value of H with corresponding eigenvector |ψi⟩. Consider a polynomial P ∈ R[x]
of degree d, and write

P (x) = a0 + a1x+ · · ·+ adx
d.
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The polynomial spectral amplification of H for P is then defined as

P (H) = a0I + a1H + · · ·+ adH
d

= a0I + a1

2n−1∑
i=0

λi |ψi⟩ ⟨ψi|+ · · ·+ ad

2n−1∑
i=0

λd
i |ψi⟩ ⟨ψi|

=
2n−1∑
i=0

P (λi) |ψi⟩ ⟨ψi| .

Now for α ∈ [−1, 1], denote

Πα =
∑

{i:λi≤α}
|ψi⟩ ⟨ψi| (8.13)

for the projection on all eigenstates of H which have eigenvalues at most α,
which we will call a low-energy projector of H. Note that for any α ≥ λ0,
we must have that ΠgsΠα = ΠαΠgs = Πgs. We can utilize such a projector to
solve CGaLH(k, δ, ζ), simply by computing ∥Πα |u⟩ ∥ for α = a given a classically
evaluatable state u. To see why this works, note that in the yes-case, for the
witness desc(u) we have that ∥Πa |u⟩ ∥ ≥ ∥Πgs |u⟩ ∥ ≥

√
ζ and in the no-case

we have that ∥Πa |v⟩ ∥ = 0 for all states, which means that the two cases are
separated by

√
ζ. However, it is unlikely that an efficient description exists of Πa,

and even if it did, it would not be k-local and therefore ∥Πa |u⟩ ∥ would not even
be necessarily efficiently computable.

The idea is now to approximate this low-energy projector Πα by a polynomial
in H. To see this, note that Πα can be written exactly as

Πα = 1
2 (1− sgn(H − αI)) ,

where sgn(x) is the sign function, which for our purposes is defined on R :→ R
as

sgn(x) =
1 if x > 0,
−1 if x ≤ 0.

From [HC17] we can then use the polynomial approximation of the sign function,
which can subsequently be shifted to obtain the desired approximate low-energy
projector Π̃a.

8.6.1. Lemma (Polynomial approximation to the sign function, from [HC17]).
For all δ′ > 0, ϵ′ ∈ (0, 1/2) there exists an efficiently computable odd polynomial
P ∈ R[x] of degree d = O

(
log(1/ϵ′)

δ′

)
, such that

• for all x ∈ [−2, 2] : |P (x)| ≤ 1, and
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• for all x ∈ [−2, 2] \ (−δ′, δ′) : |P (x)− sgn(x)| ≤ ϵ′.

Lemma 8.6.1 is, for the required conditions, optimal in its parameters δ′, and
ϵ′ [HC17]. Since Lemma 8.6.1 holds on the entire interval [−2, 2], choosing any
α ∈ [−1, 1] and scaling the sgn(x) function with the factor 1/2 will ensure that
the error, as in the lemma, will be ≤ ϵ/2. Let qα(x) : R → [0, 1] defined as
qα(x) = 1

2(1− sgn(x−α)) be this function, with polynomial approximation Qα ∈
R[x] of degree d. Note that Qα can be written as a function of P as Qα(x) =
1
2(1 − P (x − α)). We will write Π̃α = Qα(H) for the corresponding polynomial
approximation of the approximate low-energy ground state “projector”. Note that
Π̃α is Hermitian (since H is Hermitian), but that Π̃α is no longer necessarily a
projector and therefore Π̃2

α ̸= Π̃α. If we now replace Πα in ∥Πα |u⟩ ∥ by Π̃α, we
get ∥Π̃α |u⟩ ∥ =

√
⟨u| Π̃†αΠ̃α |u⟩ =

√
⟨u| Π̃2

α |u⟩ =
√
⟨u| (Qα(H))2 |u⟩, which means

that we have to evaluate up to degree 2d powers of H. The next lemma will give
an upper bound on the number of expectation values that have to be computed
when evaluating a polynomial of H of degree d.

8.6.2. Lemma. Given access to a classically evaluatable state u, a Hamiltonian
H = ∑m−1

i=0 Hi, where each Hi acts on at most k qubits non-trivially, and a polyno-
mial P [x] of degree d, there exists a classical algorithm that computes ⟨u|P (H) |u⟩
in O(md) computations of ⟨u|Oi |u⟩, where the observables {Oi} are at most kd-
local.

Proof:
We have that

⟨u|P (H) |u⟩ = ⟨u|
(
a0I + a1H + · · ·+ adH

d
)
|u⟩

= a0 + a1 ⟨u|H |u⟩+ · · ·+ ad ⟨u|Hd |u⟩ .

Let l ∈ [d] be the different powers for which we have to compute ⟨u|H l |u⟩. We
have that for each l that

H l =
(

m−1∑
i=0

Hi

)l

consists of at ml terms when fully expanded and is Hermitian. However, when
the sum is expanded, not every summand is necessarily Hermitian and therefore a
local observable. However, we do have that for every kl-local summand Qj,l there
exists another summand Qj′,l which has all the terms of Qj but in reverse order,
unless the Qj contains only powers of a single term. Grouping those together, we
can write

H l =
m+ ml−m

2∑
j=1

Q̂j,l,
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where each Q̂j,l is 2l local and has ∥Q̂j,l∥ ≤2. We can now simply absorb the factor
2 into the coefficients al′ , l′ ∈ {0, 1, . . . , d}, such that all Q̂j,l satisfy ∥Q̂j,l∥ ≤ 1.
The total number of local observables that have to be computed is now equal to

d∑
l=1

m+ ml −m
2 = m(md + dm− d− 1)

2(m− 1) = O(md),

completing the proof. 2

All that remains to show is that for constant promise gap δ, using a good enough
approximation Π̃α with a suitable choice of α, will ensure that we can still distin-
guish the two cases in the CGaLH(k, δ, ζ) problem in a polynomial (resp. quasi-
polynomial number of computations in m when ζ = Ω(1) (resp. ζ = 1/ poly(n)).

8.6.3. Theorem. Let H = ∑m−1
i=0 Hi be some Hamiltonian, and desc(u) be a

description of a classically evaluatable state u ∈ C2n. Let a, b ∈ [−1, 1] such that
b− a ≥ δ, where δ > 0 and let ζ ∈ (0, 1]. Consider the following two cases of H,
with the promise that either one holds:

(i) H has an eigenvalue ≤ a, and ∥Πgs |u⟩ ∥2 ≥ ζ holds, or

(ii) all eigenvalues of H are ≥ b.

Then there exists a classical algorithm that is able to distinguish between cases (i)
and (ii) using

O
(
m

c

(
log(1/
√

ζ))/δ

))

computations of local expectation values, for some constant c > 0.

Proof:
Let Π̃α := Qα(H), where Q is a polynomial of degree d, be the approximate
low-energy projector that approximates Πα = 1

2 (1− sgn(H − (αI))). We set
α := a+b

2 , δ′ := δ/2 and ϵ′ = 1/10. We propose the following algorithm:

1. Compute ∥Π̃a |u⟩ ∥ using a polynomial of degree 2d where d =
O(log(1/ϵ′))/δ′, for ϵ′ := 1

10
√
ζ and δ′ = δ/2.

2. If ∥Π̃α |u⟩ ∥ ≥ 9
10
√
ζ, output (i) and output (ii) else.

Clearly, by Lemma 8.6.2, we have that this can be done in at most

O
(
m

c

(
log(1/
√

ζ))/δ

))
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computations of expectation values of local observables, for some constant c. Let
us now prove the correctness of the algorithm. Note that we can write Π̃α as

Π̃α =
2n−1∑
i=0

Q(λi) |ψi⟩ ⟨ψi| ,

where we have that 
1−
√
ζ/2 ≤ Q(λi) ≤ 1 if λi ≤ a,

0 ≤ Q(λi) ≤ ζ/2 if λi ≥ b,

0 ≤ Q(λi) ≤ 1 else,

by Lemma 8.6.1. Let us analyse both case (i) and (ii) separately.

(i) H has an eigenvalue ≤ a, and ∥Πgs |u⟩ ∥2 ≥ ζ holds:

∥Π̃α |u⟩ ∥ ≥ ∥Π̃αΠgs |u⟩ ∥
= ∥ΠαΠgs |u⟩ − (Πα − Π̃α)Πgs |u⟩ ∥

= ∥Πgs |u⟩ −

 ∑
i:λi≤α

|ψi⟩ ⟨ψi| −
2n−1∑
i=0

Q(λi) |ψi⟩ ⟨ψi|

Πgs |u⟩ ∥

= ∥Πgs |u⟩ −

 ∑
i:λi≤α

(1−Q(λi)) |ψi⟩ ⟨ψi| −
∑

i:λi>α

Q(λi) |ψi⟩ ⟨ψi|

Πgs |u⟩ ∥

≥ ∥Πgs |u⟩ −

 ∑
i:λi≤α

1
10 |ψi⟩ ⟨ψi|

Πgs |u⟩ ∥

= ∥Πgs |u⟩ −
1
10

 ∑
i:λi≤α

|ψi⟩ ⟨ψi|

Πgs |u⟩ ∥

= ∥Πgs |u⟩ −
1
10ΠαΠgs |u⟩ ∥

= ∥Πgs |u⟩ −
1
10Πgs |u⟩ ∥

= (1− 1
10)∥Πgs |u⟩ ∥

≥ 9
10
√
ζ.

(ii) all eigenvalues of H are ≥ b:
We must have that

∥Π̃α |u⟩ ∥ ≤
1
2
√
ζ,

since λi ≥ b for all i ∈ {0, . . . , 2n − 1}.
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Hence, we have that the promise gap between both cases is lower bounded by

9
10
√
ζ − 1

2
√
ζ = 2

5
√
ζ,

which is 1/ poly(n) when ζ ≥ 1/ poly(n). 2

8.6.4. Remark. It should be straightforward to adopt the same derivation as
above to a more general setting by considering sparse matrices, a promise with
respect to fidelity with the low-energy subspace (i.e. all states with energy ≤
λ0 + γ for some small γ), as well as ϵ > 0 for ϵ-classically evaluatable states (see
Definition 8.2.2). However, this would likely put constraints on γ and ϵ, where
ϵ in principle has to scale inversely proportional to the number of local terms in
the Hamiltonian.

Figure 8.4: Illustration of the approximate low-energy projector Πα in both the
yes-case with α = a+b

2 . The orange crosses correspond to the energy values,
and the attached shaded lines indicate the fidelity of the guiding state with the
space spanned by all eigenstates |ψl⟩ of H that have energy at most λi. The
polynomial approximation of the shifted sign function is displayed as Qα(x), and
the ϵ′-error approximation regimes are indicated with the blue-shaded areas. In
the red regime we do not have tight bounds on the error, except that the function
values are in [0, 1]. For small enough ϵ, in the yes-case the contribution of the
ground state to the value of ∥Π̃α |u⟩ ∥2 should be larger than that computed in the
no-case due to contributions of higher energy values, as a result from an inexact
implementation of the low-energy projector. In the no-case, all energy values will
be larger than b.
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8.6.2 Classical hardness and containment
All results in this section also hold when ‘CGaLH’ is replaced by ‘CGaLH∗’, as the
containment trivially follows since CGaLH generalises CGaLH∗ and the hardness
construction uses a diagonal (i.e. classical) Hamiltonian, of which the ground
states are basis states and can thus be prepared on a quantum computer. To be
able to make completeness statements when we consider NP, let us start by first
proving a (straightforward) hardness result.

8.6.5. Lemma. CGaLH(k, δ, ζ) is NP-hard for k ≥ 2, δ ≤ O(1) and ζ ≤ 1, where
k, δ, ζ can also be functions of n.

Proof:
We will prove this by a reduction from gapped 3-SAT. Let γ-3-SAT be a
promise decision problem where we are given a formula ϕ(x) = 1

m

∑m−1
i=0 Ci with

Ci = xi1 ∨ xi2 ∨ xi3 , with the promise that either ϕ(x) = 1 (output yes) or
ϕ(x) ≤ γ (output no), where γ ∈ (0, 1). From (one of) the (equivalent) PCP
theorem(s) we know that there exists a constant γ ∈ (0, 1) for which deciding
on the correct output (we are allowed to output anything if the promise doesn’t
hold) is NP-hard [H̊as01]. Next, we apply the gadget from [AL21], which maps
ϕ(x) to a 2-SAT instance with formula ϕ′(x) = 1

10m

∑m−1
i=0

∑
j∈[10] C

′
i,j. Here we

have that ϕ′(x) has the property that for every clause Ci there are 10 corre-
sponding clauses C ′i,j, j ∈ [10] such that, if a given assignment x satisfies a
clause Ci of ϕ(x), then exactly 7 clauses of C ′i,j can be satisfied, and for those Ci

that are not satisfied by x, at most 6 clauses of C ′i,j are satisfied. Note that if
ϕ(x) = 1, we then must have that ϕ′(x) = 7/10, and that if ϕ(x) ≤ γ, we have
that ϕ′(x) ≤ 7γ/10 + 6(1 − γ)/10 = (γ + 6)/10. Hence, it is still NP-hard to
distinguish between those cases, and the promise gap between the yes- and the
no-case is 1

10(1− γ) =: γ′, which is some constant. Let us now map ϕ′(x) into a
2-local diagonal Hamiltonian H ′ such that ⟨x|H ′ |x⟩ = ϕ(x), which can be done
by a representation of the clauses as diagonal matrices. By our choice of ϕ′(x),
we have already ensured that the Hamiltonian is (sub)-normalized. To turn the
problem into a minimization problem, one can simply invert the spectrum by
letting H = I −H ′ (note that H ′ ⪰ 0). The eigenvectors of H are basis vectors –
and thus themselves classically evaluatable states for which ζ = 1 = O(1) – and
its eigenvalues are precisely the function evaluations of 1− ϕ′(x). Hence, setting
a := 3/10 and b := (4− γ)/10 gives us δ = γ′ = O(1). 2

Theorem 8.6.3 now gives us a very easy way to establish the following upper
bounds on CGaLH(k, δ, ζ) when the required precision δ is only constant. Com-
bined with Lemma 8.6.5, we obtain the following result, reminiscent of Theorem
5 in [GL22].
8.6.6. Theorem. CGaLH(k, δ, ζ) is NP-complete for k = O(log(n)), and con-
stants δ ∈ (0, 1] and ζ ∈ (0, 1]. Furthermore, when ζ = 1/ poly(n) we have that
CGaLH(k, δ, ζ) is in NqP.
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Proof:
NP-Hardness follows from Lemma 8.6.5. The containment statements follow from
Theorem 8.6.3, in which the proposed algorithm for m = O(nk), δ ∈ (0, 1] con-
stant runs in polynomial time when ζ is constant and in quasi-polynomial time
when ζ = 1/ poly(n) (using the fact that O(nlog(n)) = 2O(logc(n)) for some constant
c > 0). 2

Moreover, by a little more careful inspection one can show that the problem’s
hardness depends on how ζ and δ relate to one another, as shown in the following
theorem.

8.6.7. Theorem. Let f(n) : N → R>0, g(n) : N → R>0 be some functions with
the property that there exists some constant n0 (which is known), such that for
all n ≥ n0 we have that 1/g(n)− 1/f(n) > 0. Then we have that CGaLH(k, δ, ζ)
is NP-complete for k ≥ 2, δ = 1/g(n) and ζ ≥ 1− 1/f(n).

Proof:
Hardness: NP-hardness follows again trivially from Lemma 8.6.5, by taking
g(n) = O(1) and letting f(n) be some arbitrarily large function such that
f(n) ≫ g(n), which gives a loose lower bound on ζ which can be as large as
exactly 1.
Containment: To prove this we split the regime into the n ≥ n0 case and the
n < n0 case, giving separate algorithms for both cases.

n < n0 case: In this setting we have that n ∈ [1, n0], which is a constant.
Hence, we can simply diagonalize the full Hamiltonian and compute its ground
state energy in time upper bounded by some constant.

n ≥ n0 case: As always, denote Πgs for the projector on the ground space of H.
The verifier expects to be given a desc(u) such that ∥Πgs |u⟩ ∥2 ≥ 1− 1/f(n) and
checks if ⟨u|H |u⟩ ≤ a + 1/f(n). Let us now check completeness and soundness
of this simple protocol. By the definition of the problem, we must have that
∥H∥ ≤ 1. We can write |u⟩ = α1 |ϕ0⟩ + α2

∣∣∣ϕ⊥0 〉 for |α1|2 + |α2|2 = 1. Here |ϕ0⟩
lives in the ground space of H and

∣∣∣ϕ⊥0 〉 in the subspace orthogonal to the ground
state. Note that |α2|2 = 1 − ∥Πgs |u⟩ ∥2 ≤ 1

f(n) . Therefore, we must have that in
the yes-case

⟨u|H |u⟩ = |α1|2 ⟨ϕ0|H |ϕ0⟩+ |α2|2
〈
ϕ⊥0
∣∣∣H ∣∣∣ϕ⊥0 〉

≤ a+ |α2|2
〈
ϕ⊥0
∣∣∣H ∣∣∣ϕ⊥0 〉

≤ a+ ∥H∥/f(n)
≤ a+ 1/f(n).
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In the no-case, we can simply evoke the variational principle

⟨u|H |u⟩ ≥ λ0(H) ≥ b = a+ 1/g(n) > a+ 1/f(n),

for all |u⟩, by the assumption of the functions for n ≥ n0. Therefore, the two
cases are separated, and can therefore be distinguished from one another (using
the fact that for our definition of classically evaluatable states the expectation of
local observables can be computed exactly10). 2

8.7 Implications to the quantum PCP conjec-
ture

In this final section, we consider some implications from all previous sections to
the quantum PCP conjecture. We find that our results allow us to give a no-
go result for the existence of quantum gap amplification procedures exhibiting
certain properties (unless QCMA = NP or QCMA ⊆ NqP), and our results allow
us to pose a conjecture which generalizes NLTS (now a theorem [ABN22]) and
provides an alternative to NLSS [GL22].11

8.7.1 Definition of QPCP
For completeness, we will start by giving the definition of quantum probabilis-
tically checkable proof systems, or QPCP, following the definition of [Aha+09;
AAV13]. Then we will state the QPCP conjecture. We will be mostly interested
in the gap amplification variant of the QPCP conjecture, which we state at the
end of this section.

8.7.1. Definition (Quantum Probabilistically Checkable Proofs (QPCP)). Let
n ∈ N be the input size and p, q : N → N, c, s : R≥0 → R≥0 with c − s > 0. A
promise problem A = (Ayes, Ano) has a (p(n), q(n), c, s)-QPCP-verifier if there
exists a quantum algorithm V which acts on an input |x⟩ and a polynomial
number of ancilla qubits, and takes as additional input a quantum state
|ξ⟩ ∈ (C2)⊗p(n), from which it is allowed to access at most q(n) qubits, followed
by a measurement of the first qubit after which it accepts only if the outcome is
|1⟩, such that

Completeness. If x ∈ Ayes, then there is a quantum state |ξ⟩ such that
the verifier accepts with probability at least c,

10In practice, one would want the difference to be large enough to be able to detect them
with machine precision.

11See also [Cob+23], which proposes a closely-related conjecture independently of this work.
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Soundness. If x ∈ Ano, then for all quantum states |ξ⟩ the verifier accepts
with probability at most s.

A promise problem A = (Ayes, Ano) belongs to QPCP[p, q, c, s] if it has a
(p(n), q(n), c, s)-QPCP verifier. If p(n) ≤ poly(n), c = 2/3, and s = 1/3, we
simply write QPCP[q].

Using the above notion quantum probabilistically checkable proofs (QPCPs) one
can formulate the quantum PCP conjecture.

8.7.2. Conjecture (QPCP conjecture - proof verification version). There ex-
ists a constant q ∈ N such that

QMA = QPCP[q].

The celebrated PCP theorem states that any NP problem can be reformu-
lated such that a probabilistically checkable proof system, can verify the prob-
lem by only checking a constant number of bits from a polynomially sized wit-
ness [Aro+98; AS98]. It also implies that there exists a constant α such that it
is NP-hard to decide for a constraint satisfaction problem (CSP) with ‘promise
gap’ α. Dinur [Din07] showed that this implication can be obtained directly, by
reducing from a CSP with inverse polynomial promise gap to one with a constant
promise gap, whilst retaining NP-hardness. This type of reduction is commonly
referred to as gap amplification.

As in the classical PCP theorem, there exist a gap amplification formula-
tions of the QPCP conjecture. In the context of the quantum complexity classes
(notably QMA), ‘quantum’ CSPs are generalized by local Hamiltonian problems.
The formulation of the quantum PCP conjecture in terms of inapproximability
of local Hamiltonians is:

8.7.3. Conjecture (QPCP conjecture - gap amplification version). There ex-
ists a (quantum) reduction from the local Hamiltonian problem with promise gap
1/ poly(n) to another instance of the local Hamiltonian problem with promise gap
Ω(1).

It is well known that, at least under quantum reductions, both conjectures are in
fact equivalent:

8.7.4. Fact ([Aha+09]). Conjecture 8.7.2 holds if and only if conjecture 8.7.3
holds.
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8.7.2 Gap amplifications
We now consider the implications of Section 8.6 to gap amplifications of guidable
local Hamiltonian problems.

8.7.5. Theorem (No-go’s for quantum-classical gap amplification). There can-
not exist

1. A polynomial time classical reduction from an instance of CGaLH(k, ζ, δ)
with k ≥ 2, some constant ζ > 0, and δ = 1/ poly(n) to some
CGaLH(k′, ζ ′, δ′) with k′ ≥ 2, some constant ζ ′ > 0, and δ′ = Ω(1),

unless QCMA = NP, and

2. A quasi-polynomial time classical reduction from an instance of
CGaLH(k, ζ, δ) with k ≥ 2, ζ = 1/ poly(n), and δ = 1/ poly(n) to some
CGaLH(k′, ζ ′, δ′) with k′ ≥ 2, ζ ′ = 1/ poly(n), and δ′ = Ω(1),

unless QCMA ⊆ NqP.

Proof:
These all follow directly from Theorem 8.6.6. 2

One can also interpret the no-go results for gap amplifications (points 1 and 2
in the above theorem) in a more general setting: if one wants to prove the QPCP
conjecture through a gap amplification procedure a la Dinur, the procedure needs
to have the property that it doesn’t preserve ‘classically evaluatable’ properties
of eigenstates (it cannot even maintain an inverse polynomial fidelity with such
states) unless at the same time showing that QCMA = NP (or QCMA ⊆ NqP,
which is also very unlikely)! Hence, this result can be viewed as a ‘QCMA-
analogy’ to the result from [AG19], where the authors showed that the existence
of quantum gap amplifications that preserve stoquasticity of Hamiltonians would
imply that NP = MA. We also point out that it is possible that – even though the
complexity of QGaLH and CGaLH∗ was in the inverse polynomial precision regime
the same when 1/ poly(n) ≤ ζ ≤ 1− 1/ poly(n) – it might very well be that their
complexities will differ when considering a constant precision, as our containment
results of Section 8.6 crucially use the properties of classically evaluatable states.

8.7.3 Classically evaluatable states and QPCP
Finally, we close by formulating a new conjecture which can be viewed as a
strengthening of the NLTS theorem, or as an alternative to the NLSS conjec-
ture of [GL22] in light of our results, and which must hold if the quantum PCP
conjecture is true and QMA ̸= NP.
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8.7.6. Conjecture (No Low-Energy Classically-Evaluatable States (NLCES )).
There exists a family of local Hamiltonians {Hn}n∈N, where each Hn acts on n
qubits, and a constant β > 0, such that for sufficiently large n we have that for
all classically evaluatable states |u⟩ ∈ C2n as in Definition 8.2.2 it holds that
⟨u|H |u⟩ ≥ λ0(Hn) + β.

Taking into account our results about the containment of the constant-gapped
classically guidable local Hamiltonian problem in NP – namely the insight that
what really matters is the fidelity of a classically evaluatable state with the low-
lying energy subspace of the Hamiltonian, and not the energy of the classically
evaluatable state itself – we can also define a stronger version of the NLCES
conjecture, which must hold if the quantum PCP conjecture holds.

8.7.7. Conjecture (Strong-NLCES conjecture). There exists a family of local
Hamiltonians {Hn}n∈N, where each Hn acts on n qubits, and a constant β > 0,
such that for sufficiently large n we have that for all classically evaluatable states
|u⟩ ∈ C2n, as in Definition 8.2.2, we have that ∥Πλ0(Hn)+β |u⟩ ∥2 = o(1/ poly(n)).
Here Πλ0(Hn)+β is the projector onto the space spanned by eigenvectors of H with
energy less than λ0(Hn) + β.

Note that the NLCES Conjecture is strictly weaker than the Strong-NLCES
conjecture, and that both do not necessarily imply the QPCP conjecture.

8.7.4 Open questions and future work
The (strong) NLCES conjecture. It would be interesting to see whether
the family of Hamiltonians used to prove the well-known NLTS conjecture, or
constructions inspired by the proof thereof (in particular Hamiltonians that arise
from error-correcting codes), can also be used to prove (weaker versions of) our
NLCES conjecture (see Conjecture 8.7.6). Note that our NLCES conjecture is
strictly stronger than NLTS, since it includes all states that can be prepared by
constant depth quantum circuits (i.e. those states covered by the NLTS conjec-
ture), but also includes states that require super-constant quantum depth, for
example arbitrary Clifford circuits12, matrix-product states, etc.

The classical guiding state existence assumption. As discussed
in [Cad+23a], the existence of practical quantum advantage based on the previ-
ously mentioned two-step procedure is only expected if there exist guiding states,
quantum or classical, that have not too much (exponentially close) but also not
too little (exponentially small) fidelity with the ground space of the Hamiltonian
under study. Whilst there is some literature that (partially) explores this direc-
tion [Bur+21; Tub+18; Lee+23], it would be useful and interesting to study this

12This has in fact recently been proven for Clifford circuits, see [Cob+23].
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assumption in the special case of Ansätze that describe classically evaluatable and
quantumly preparable states. This could provide numerical evidence to support
the results that we have shown from a complexity-theoretic perspective: that
classical heuristics combined with quantum phase estimation is indeed the right
way to approach fault-tolerant quantum advantage in chemistry.

8.A Perfect sampling access of MPS and stabi-
lizer states

In this appendix we show that both matrix product states (MPS) and stabilizer
states are samplable states, by checking all three conditions of Definition 8.2.1.

Matrix product states: Let u be a N = 2n-dimensional vector described by
an MPS of n particles, bounded bond dimension D and local particle dimension
d.

(i) Let î be the bit representation of i. The algorithm Qu can simply be the
evaluation of Tr[A(s1)

1 A
(s2)
2 . . . A(sn)

n ] for s = î, which can be done via a naive
matrix multiplication algorithm in time O(nD3), and thus clearly runs in
time O (poly(log(N)) when d = O(poly(n), D = O(poly(n).

(ii) We will use that expectation values that are a tensor product of
1-local observables can be computed efficiently for a MPS im time
O(nd2D3) [VMC08]. We assume that m is already known (see item (iii)),
and that our MPS is therefore normalized. The algorithm SQu works as fol-
lows: one computes the probability that the first qubit is 1 by computing the
expectation value of the 1-local projector Π1 = |1⟩ ⟨1|1. Let p1 = ⟨u|Π1 |u⟩
and p0 = 1 − p1. The algorithm now samples a bit j1 ∈ {0, 1} according
to distribution {p0, p1}, and computes the expectation value of the 2-local
projector Πj11 to obtain pj1,1 and pj1,0, from which again a bit is sampled
according to the distribution pj1,0, pj1,1. This procedure is repeated for all
n − 2 remaining sites, which yields a sample j with probability |uj|2. The
total time complexity of this procedure is O(n2d2D3) = O(poly(logN)),
when d = O(poly(n)) and D = O(poly(n)), as desired.

(iii) m can easily be computed by considering the overlap of the MPS with itself,
which can be done in time O(npD3) as the overlap can be viewed as the
expectation value of a 0-local observable.

Stabilizer states: Let u ∈ C2n , N = 2n, be a stabilizer state on n qubits.
(i) This follows from the fact that basis states are stabilizer states, and that

there exists an algorithm Qu that computes inner products between stabi-
lizer states in time O(n3) = O(poly(logN)) [AG04].
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(ii) This follows from the fact that stabilizer states can be strongly simulated
(i.e. marginals can be computed), which allows for weak simulation as
shown in [TD04] at overhead n for the cost of strong simulation. Using the
strong simuation algorithm as in [AG04], this gives an algorithm SQu that
runs in time O(n3) = O(poly(logN)).

(iii) m = 1 by definition.

8.B MPS to circuit construction
In this section, we show that any MPS on n qubits with bond dimension D can be
implemented on a quantum computer up to distance ϵ, with respect to the 2-norm,
in O(nD log(D)2 log(Dn/ϵ)) one- and two-qubit gates and a O(npoly(D))-time
classical pre-calculation. The result is based on a result from [Sch+05]. For
completeness we will first repeat their result. Let HA = CD and HB = C2 be
the Hilbert spaces characterising a D-dimensional ancillary system and a single
qubit, respectively. Then every MPS of the form

|ψ⟩ = ⟨ϕF |Vn . . . V1 |ϕI⟩

with arbitrary maps Vk : HA 7→ HA ⊗HB, and |ϕI⟩ , |ϕF ⟩ ∈ HA is equivalent to
a state

|ψ⟩ =
〈
ϕ̃F

∣∣∣ Ṽn . . . Ṽ1

∣∣∣ϕ̃I

〉
with Ṽk : HA 7→ HA⊗HB isometries and such that the ancillary register decouples
in the last step

Ṽn . . . Ṽ1

∣∣∣ϕ̃I

〉
= |ϕF ⟩ ⊗ |ψ⟩ .

Note that this is the canonical form of the MPS and can be found using
O(npoly(D)) classical pre-calculation time. The isometries are of size 2D×D act-
ing on the auxiliary system sequentially and create one qubit each. Every Ṽk can
be embedded into a unitary Uk : HA⊗HB 7→ HA⊗HB of size 2D×2D, acting on
the auxiliary system and a qubit initialised in |0⟩ such that Uk

∣∣∣ϕ̃k

〉
⊗|0⟩ = Ṽk

∣∣∣ϕ̃k

〉
.

This gives the quantum circuit

Un . . . U1

∣∣∣ϕ̃I

〉
|0⟩⊗n =

∣∣∣ϕ̃F

〉
|ψ⟩ .∣∣∣ϕ̃I

〉
is a state in HA which can be generated on ⌈log(D)⌉ qubits, up to normali-

sation. By the Solovay-Kitaev theorem, this state can be prepared up to distance
ϵ by a circuit of

O(⌈log(D)⌉2D log(⌈log(D)⌉2D/ϵ)) = O(D log(D)2 log(1/ϵ)

two and one-qubit gates. The unitaries Uk act on ⌈log(D)⌉+ 1 qubits hence they
can be approximated up to error ϵ in

O((⌈log(D)⌉+1)2(D+1) log((⌈log(D)⌉+1)2(D+1)/ϵ)) = O(D log(D)2 log(D/ϵ)).
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Note that because every unitary incurs an error ϵ the entire error can be bounded
by nϵ, setting individual error to ϵ′ = ϵ

n
ensures that the generated state is

at most ϵ far from the desired state. This results in a circuit of complexity:
O(nD log(D)2 log(nD/ϵ)) generating the MPS up to normalisation.
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Abstract

Empowering Quantum Computation with:
Measurements, Catalysts, and Guiding States
Over the past decade, there has been significant progress in the development of
physical quantum computational devices. As of this year (2025), we are beginning
to see the first implementations of quantum devices with active error correction.
Nevertheless, many milestones remain before fully error-corrected quantum com-
putation becomes available. A natural question is whether additional resources
might aid in the development of these devices. In this thesis, we identify three
stages in the progression of quantum devices and propose three corresponding re-
sources that can enhance their computational capabilities. While these resources
are motivated by specific stages of device development, their applicability extends
beyond these regimes.

In Part One, we study the pre–error-correction regime, where computations
are performed directly on physical qubits without error correction. As errors
accumulate with circuit depth, this regime is effectively restricted to constant-
depth circuits, severely limiting computational power (e.g., long-range entangle-
ment generation). To mitigate this, we introduce the model of Local Alternat-
ing Quantum–Classical Computations (LAQCC), which augments constant-depth
quantum circuits with intermediate measurements and fast intermediate classical
computations. We show that LAQCC substantially extends the range of feasible
computations beyond that of bare constant-depth circuits.

In Part Two, we consider the early fault-tolerance regime, where computations
are constrained by the number of available logical qubits rather than runtime.
Motivated by the classical catalytic space model, we define a quantum analogue in
which a space-bounded quantum machine is given access to an auxiliary catalytic
register, initialized in an arbitrary quantum state, which can be altered during
the computation, as long as it is restored at the end of the computation. We
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show that this catalytic resource extends the computational power of quantum
space-bounded machines.

In Part Three, we study the problem of estimating the ground-state energy of
a Local Hamiltonian, a central task in quantum chemistry. A common approach is
to first generate a guiding state—a state with nontrivial overlap with the ground
space—via a classical heuristic, and then apply Quantum Phase Estimation to
approximate the smallest eigenvalue. The second step of this procedure, estimat-
ing the ground state energy given a guiding state, has been formalized as the
Guided Local Hamiltonian problem [GL22], which is known to be BQP-hard for
certain parameter regimes. We extend this result by showing that hardness per-
sists over a broader range of parameters. Then we study an alternative version
of this problem, the Guidable Local Hamiltonian problem, in which one is not
given a guiding state, but instead only promised that it exists. We use this to
give complexity-theoretic evidence that classical heuristics for generating guiding
states are, in this setting, as powerful as quantum heuristics. Furthermore, we
use this problem to give restrictions on possible gap-amplification procedures,
analogous to [AG19], required for proving the quantum PCP (probabilistically
checkable proofs) conjecture.



Samenvatting

In de afgelopen tien jaar is er flinke vooruitgang geboekt in de ontwikkeling van zo-
geheten quantumcomputers. Computers die gebruikmaken van het spooky gedrag
van de allerkleinste deeltjes. Dit jaar zijn bijvoorbeeld de eerste experimentele
ruisonderdrukkende systemen gëımplementeerd. In deze systemen worden fouten
die tijdens een berekening ontstaan gedetecteerd en gecorrigeerd. Zulke fouten
komen vaak voor bij quantumsystemen, doordat quantuminformatie inherent
kwetsbaar is.

Toch zijn we nog ver verwijderd van een volledig stabiele quantumcomputer,
die gebruikt kan worden om volledige quantumberekeningen uit te voeren. Dit
roept de volgende vraag op:

Zijn er computationele hulpmiddelen die de ontwikkeling van
quantumcomputers kunnen vergemakkelijken?

In deze thesis identificeren we drie specifieke fases in de ontwikkeling van quan-
tumcomputers. Voor elk van die drie fases stellen we een hulpmiddel voor dat
de rekenkracht van de quantumcomputer kan versterken. We onderzoeken deze
hulpmiddelen met behulp van de complexiteitstheorie. Hoewel we deze hulpmid-
delen in hun context bestuderen, zijn ze breder inzetbaar in de ontwikkeling van
quantumcomputers.

In het eerste deel van dit proefschrift kijken we naar quantumberekeningen die
nog geen gebruik kunnen maken van ruisonderdrukking. Deze fase heeft twee ken-
merken. Ten eerste kunnen alle fysiek aanwezige qubits worden gebruikt om een
berekening uit te voeren. Ten tweede is de toegestane diepte van de berekeningen
zeer beperkt, doordat in diepere berekeningen te veel ruis ontstaat. Door deze
beperking is het alleen mogelijk om constantedieptecircuits uit te voeren. Dit
type circuits is zeer beperkt in zijn computationele kracht. Het is bijvoorbeeld
niet mogelijk om qubits die niet bij elkaar in de buurt liggen te verstrengelen.

Het eerste hulpmiddel dat we bespreken in dit proefschrift is erop gericht
om de computationele kracht van deze constantedieptecircuits te versterken. We
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versterken deze circuits door ze af te wisselen met tussentijdse metingen van
een deel van de qubits en snelle tussentijdse klassieke berekeningen toegepast
op de uitkomst van deze metingen. Om de impact van dit nieuwe hulpmiddel
te bestuderen, introduceren we een nieuw computationeel model geheten: Lo-
cal Alternating Quantum Classical Computations (afgekort LAQCC). In dit deel
laten we zien dat er veel meer berekeningen mogelijk zijn in LAQCC ten opzichte
van constantedieptecircuits, wat aantoont dat dit hulpmiddel de computationele
kracht van constantedieptecircuits inderdaad aanzienlijk vergroot.

In het tweede deel van dit proefschrift kijken we naar de kracht van quantum-
computers die toegang hebben tot ruisonderdrukking die zich nog in een vroeg
stadium bevindt. Deze fase wordt gekenmerkt door stabiele qubits, waarop lange
berekeningen kunnen worden uitgevoerd zonder dat er fouten ontstaan, met als
limiterende factor dat een machine alleen toegang heeft tot een gering aantal
van dit soort qubits. Berekeningen in deze fase zijn niet zozeer gelimiteerd door
de tijd die het kost om ze uit te voeren, maar door het geheugen dat ervoor
nodig is. Het hulpmiddel dat we bekijken in deze situatie is het toevoegen van
een zogeheten geheugencatalysator. Dat is een extra stuk geheugen dat zich aan
het begin van een berekening in een arbitraire quantumtoestand bevindt. Deze
toestand mag door de quantumcomputer worden aangepast tijdens de bereken-
ing, maar moet aan het eind van de berekening hersteld zijn. Dit hulpmiddel
is gebaseerd op een klassieke versie hiervan, het zogeheten catalytische ruimte-
model. Om deze geheugencatalysator te bestuderen introduceren we het quan-
tumcatalytische ruimtemodel. In dit deel laten we zien dat de toevoeging van een
geheugencatalysator de kracht van quantumcomputers met een beperkt geheugen
vergroot.

In het derde en laatste deel van dit proefschrift bestuderen we een compu-
tationeel probleem dat belangrijk is in de quantumchemie, het vinden van de
grondtoestandenergie van een lokale Hamiltoniaan. Een standaardmanier om dit
probleem op te lossen is als volgt: Eerst gebruikt men een klassieke heuristische
methode om een zogeheten guiding state te vinden. Dit is een quantumtoestand
die een significante overlap heeft met de grondtoestand. De tweede stap is om
het quantumfasebenaderingsalgoritme toe te passen op deze toestand. De kans
dat dit resulteert in het vinden van de grondtoestandenergie is afhankelijk van de
overlap tussen de guiding state en de grondtoestand. In dit deel van het proef-
schrift bestuderen we de complexiteit van de tweede stap van deze aanpak: we
onderzoeken hoe moeilijk het is om de grondtoestandsenergie van de Hamilto-
niaan te vinden, gegeven een guiding state. Dit probleem heet de Guided Local
Hamiltonian problem. De complexiteit hiervan is voor het eerst bestudeerd door
Gharibian en Le Gall [GL22]. Zij tonen aan dat dit probleem BQP-moeilijk is
voor een brede set aan parameteres. In dit proefschrift laten we zien dat BQP-
moeilijkheid geldt voor een nog grotere set aan parameters.

Wij bestuderen ook het Guidable Local Hamitonian Problem. In dit probleem
wordt de guiding state niet gegeven als input, maar wordt wel beloofd dat zo’n
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toestand bestaat. We laten zien dat dit probleem QCMA-moeilijk is. Dit geeft
complexiteitstheoretisch bewijs dat klassieke heuristische methodes even goed
werken voor het vinden van een guiding state quantumheuristische methodes.
Verder gebruiken we dit probleem om te bewijzen dat er beperkingen zijn aan de
technieken die men gebruikt om te proberen de quantum PCP (probabilistically
checkable proofs) conjecture te bewijzen.
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at the Polder it was clear to me that you would become a dear friend. I want
to thank you for your ever-present joyful spirit, for inviting me into the Catalan
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