
Approximation via Duality
in Offline, Online and
Strategic Settings

Danish Kashaev

A combinatorial optimization problem involves finding a solution which minimizes
or maximizes an objective function among a very large set of potential feasible
solutions. Many interesting optimization problems are known to be NP-hard, meaning
that it is unlikely that an efficient (or polynomial-time) algorithm exists to find an
optimal solution for such problems. Naturally, it becomes interesting to study efficient
algorithms which find suboptimal solutions, whose quality can nevertheless still be
proven to be close to the optimal one.

How close can the cost of a given suboptimal solution get to the best possible one?
This thesis studies this question in different settings, where such a solution is either
the output of a classical approximation algorithm, the output of an online algorithm
operating in a more restrictive computational model, or a Nash equilibrium arising in
a game-theoretic context. It explores both upper and lower bounds on this question
for three important classes of combinatorial optimization problems and introduces
new techniques for proving tight results using tools such as linear programming and
semidefinite programming duality.

Danish Kashaev (1997) received a Bachelor’s degree in Mathematics from the University
of Geneva in 2018 and a Master’s degree in Mathematics from ETH Zurich in 2021. The
research for this PhD thesis was conducted at the Centrum Wiskunde & Informatica
(CWI) in Amsterdam between 2021 and 2025.

ISBN: 978-94-6536-004-1

A
pproxim

ation
via

D
uality

in
O
ff
line,O

nline
and

Strategic
Sett

ings
D
anish

K
ashaev

Approximation via Duality in
Offline, Online and Strategic

Settings

Danish Kashaev

Approximation via Duality in
Offline, Online and Strategic

Settings

ILLC Dissertation Series DS-202X-NN

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

The research for this doctoral thesis has been done in the Networks and Opti-
mization research group at the Centrum Wiskunde & Informatica (CWI) in Am-
sterdam and received funding from the Netherlands Organization for Scientific
Research (NWO) through the OPTIMAL (Optimization for and with Machine
Learning) project.

Copyright © 2026 by Danish Kashaev

Printed and bound by Ipskamp Printing

ISBN: 978-94-6536-004-1

Approximation via Duality in
Offline, Online and Strategic

Settings

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 10 februari 2026, te 16.00 uur

door

Danish Kashaev

geboren te Helsinki

Promotiecommissie

Promotor: Prof. dr. G. Schäfer Universiteit van Amsterdam
Co-promotor: Prof. dr D.N. Dadush Universiteit Utrecht

Overige leden: Prof. dr. K. R. Apt Universiteit van Amsterdam
Dr. G. Regts Universiteit van Amsterdam
Dr. R.E.M. Reiffenhäuser Universiteit van Amsterdam
Prof. dr. Karen Aardal TU Delft
Dr. N.K. Olver LSE
Prof. dr. M. Uetz Universiteit Twente
Prof. dr. R.M. de Wolf Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Әниемә һәм әтиемә (to my mom and to my dad)

v

Contents

Acknowledgments xi

Abstract xiii

1 Introduction 1

2 Preliminaries 7
2.1 Combinatorial optimization problems 7

2.1.1 Algorithms and efficiency 7
2.1.2 Complexity classes P and NP 9
2.1.3 NP-Hard problems . 10
2.1.4 Integer programming formulations 11

2.2 Approximation algorithms . 12
2.3 Linear programming . 12

2.3.1 Duality . 13
2.3.2 Extreme points . 13
2.3.3 Relax and round paradigm 14
2.3.4 Integrality of polyhedra 15

2.4 Semidefinite programming . 16
2.4.1 Relaxing quadratic integer programs 17

2.5 Online algorithms . 17
2.5.1 Example: greedy algorithm 18
2.5.2 Fractional and randomized algorithms 19

2.6 Algorithmic game theory and price of anarchy 21
2.6.1 Strategic games and Nash equilibria 21
2.6.2 Price of anarchy . 22
2.6.3 Example: load balancing 23

3 Round and bipartize for vertex cover approximation 25
3.1 Introduction . 25
3.2 Outline . 26
3.3 Preliminaries . 29
3.4 Weight space . 30

vii

3.5 Analysis of the algorithm . 32
3.5.1 Stable set to bipartite . 33
3.5.2 Arbitrary set to bipartite 39

3.6 Algorithmic applications . 41
3.7 Integrality gap and fractional chromatic number 43

4 Online matching on 3-uniform hypergraphs 49
4.1 Introduction . 49

4.1.1 Online hypergraph matching 50
4.1.2 Our contributions . 51
4.1.3 Related work . 52
4.1.4 Chapter organization . 53

4.2 Preliminaries . 53
4.3 Optimal fractional algorithm for 3-uniform hypergraphs 54
4.4 Tight upper bound for 3-uniform hypergraphs 56

4.4.1 Overview of the construction 57
4.4.2 Assumptions on the algorithm 57
4.4.3 Constructing the matchingM(t) 58
4.4.4 Bound for the last phase T 61
4.4.5 Connecting the matchingM(t) to the online nodes 66
4.4.6 Bound for the first T − 1 phases 68
4.4.7 Putting everything together 70

4.5 Integral algorithm for bounded degree hypergraphs 71
4.6 Justification of assumptions in Section 4.4.2 73

4.6.1 Assumption 1: Symmetry 73
4.6.2 Assumption 2: There is an optimal ε-threshold respecting

algorithm . 76
4.7 Integral upper bound for k-uniform hypergraphs 78
4.8 Rounding algorithm for online hypergraph b-matching 80

5 Price of anarchy for scheduling games via vector fitting 83
5.1 Introduction . 83
5.2 Preliminaries . 87
5.3 The semidefinite programming relaxation 90

5.3.1 The primal-dual pair . 90
5.3.2 High-level view of the approach and intuition of the dual . 91
5.3.3 Different inner product spaces 93

5.4 Congestion games with coordination mechanisms 95
5.4.1 Smith’s Rule . 95
5.4.2 The Proportional Sharing policy 97
5.4.3 The Rand policy . 100

5.5 Analyzing local search algorithms for scheduling 104
5.5.1 A simple and natural local search algorithm 105

viii

5.5.2 An improved local search algorithm 107
5.6 Weighted affine congestion games 110
5.7 Recovering the Kawaguchi-Kyan bound for P ||

∑
wjCj 112

5.8 Robust price of anarchy . 114
5.9 Computation of the dual SDPs 116

5.9.1 Taking the dual . 116
5.9.2 Specializing it to the different games considered 117

6 Online load balancing via vector fitting 119
6.1 Introduction . 119

6.1.1 Our contributions . 120
6.1.2 Further related work . 121
6.1.3 Outline of the chapter . 122

6.2 Preliminaries . 122
6.2.1 Problems studied . 122
6.2.2 Hypergraph generalizations 123

6.3 Online load balancing on unrelated machines 123
6.3.1 The greedy algorithm . 123
6.3.2 An improved randomized algorithm 126
6.3.3 An optimal fractional algorithm 130
6.3.4 A lower bound for fractional algorithms 131
6.3.5 A lower bound for independent rounding algorithms . . . 133

6.4 Online scheduling under Smith’s Rule 135
6.4.1 The greedy algorithm . 135
6.4.2 An alternative randomized algorithm 138
6.4.3 A matching lower bound 142

7 A faster algorithm for explorable heap selection 145
7.1 Introduction . 145
7.2 The explorable heap selection problem 149
7.3 A new algorithm . 150

7.3.1 Subroutines . 152
7.3.2 The main algorithm . 155
7.3.3 Proof of correctness . 157
7.3.4 Space complexity analysis 158
7.3.5 Running time analysis . 158

Conclusion 165

Samenvatting 185

Curriculum Vitae 187

ix

Acknowledgments

The end of this PhD degree marks the end of four years of a very interesting
journey in Amsterdam. There are numerous people I would like to thank.

I would first like to thank my advisor Guido Schäfer. Thank you for hiring me
and giving me the opportunity of doing my thesis in this great research institute.
I am grateful for the freedom you gave me in exploring my personal research
interests, encouraging me to start collaborations, the support in the tough mo-
ments, the nice research discussions and the fun moments. I would also like to
thank my co-advisor Daniel Dadush. Thank you for giving me an opportunity to
collaborate together on the heap selection project, the experience of organizing
the group seminar and the research discussions about cut-matching games.

Thank you to Krzysztof Apt, Guus Regts, Rebecca Reiffenhäuser, Karen
Aardal, Neil Olver, Marc Uetz and Ronald de Wolf for agreeing to be part of
my doctorate committee and for taking the time to read my thesis.

I was lucky to have the opportunity to work with great people during this
time, and I thank all my collaborators. I would in particular like to mention
Sander and Cedric (Zhuan Khye). I really enjoyed working with you on our joint
projects and I feel very fortunate that our paths crossed at CWI during my time
as a PhD student.

Thank you to all the nice colleagues and friends that I had during this time at
CWI. Thank you Sven for being my first office mate, our funny foreign language
sessions and for taking me to the Ajax games at the famous Johan Cruijff Arena.
Thanks to Luis Felipe for our sports discussions, table tennis matches and cool
trips to different places in the Netherlands. Thanks Samarth for the bouldering
sessions and the poker discussions. Thanks Sebastiaan for a cool concert. Sid,
thank you for all the tips about the German language. Jens, Ferenc, Simon,
Sander, Cedric, Ruben, Akshay, it was always a pleasure to hang out or have a
drink with you. Thanks also to all the other nice colleagues in our group at CWI,
including Alexander, Andries, Artem, Arthur, Arthur, Ben, Constantinos, Corbi,
Hilde, Ilker, Joakim, Jonas, Leen, Lucas, Mehmet, Michelle, Monique, Solon,
Sophie, Sophie, Twan, Willem, Yasamin.

Thanks to Guido for a very nice course on algorithmic game theory and to
Monique and Sven for another very interesting one on semidefinite programming.
I spent a lot of time doing the homework sets at the beginning of my PhD for

xi

these two courses and became interested in trying to use what I have learned in
my research thanks to the nice lectures that you all gave.

Thank you to my housemates Dyon and Henrik. It was a pleasure living with
you both, I found it very cool to share roughly the same stage of the PhD journey
during all this time with fellow PhD students. I also really appreciate the fact
that we spoke Dutch so often at home, it allowed me to improve at it fast and
made the experience of living in Amsterdam more fulfilling.

Other people from CWI that I would like to thank are Minnie for the always
entertaining conversations and Bikkie for the regular fun discussions at the library
while I was getting the morning coffee. Also thanks to the different colleagues and
fellow PhD students from the other research groups, including Ake, Alexander,
Lisa, Llorenc, Pardeep, Rik, René, Simona, Syver, Toby, Quinten, Xuemei. I
always enjoyed hanging out and having a chat with all of you.

Thanks to all the cool people I met at the different tennis clubs in Amsterdam,
including Buitenveldert, Chip & Charge and Tiebreakers. It was refreshing to
hang out with many interesting people outside of the scientific environment, and
it was a good way to immerse myself more into the Dutch culture. Thanks to
my friends Niels and Andre, I will definitely miss these early Sunday morning
sessions.

It was also very cool to meet fellow Tatar people from different cities in the
Netherlands. Thanks in particular to Ayrat, Almaz and Alsina for the fun meet-
ups.

Thank you to all my close friends from back home in Switzerland. I was
returning home quite often during my doctoral studies and I am glad that I
managed to stay in touch with many of you while living abroad for a few years.

Finally, I would like to thank my family: my mom Goljihan, my dad Rinat,
my sister Kamila and my brother Toufan. You have always been my biggest
support and this thesis would not have been possible without you all.

Danish Kashaev
November 2025, Amsterdam

xii

Abstract

The main questions studied in this thesis can be broadly stated as follows: given
an NP-hard combinatorial optimization problem and a suboptimal solution to
this problem – obtained, for instance, by an efficient approximation algorithm –
how close can this solution get to the optimal one? The quality of a solution
is measured by the worst-case ratio, over all input instances, of the cost of the
solution to that of the optimal one.

The aim of this thesis is to develop new techniques for proving tight bounds on
this question for three fundamental classes of combinatorial optimization prob-
lems: covering, matching, and scheduling. We moreover study this question in
three different, yet related, contexts. The suboptimal solutions considered may be
obtained by a standard approximation algorithm, which has access to the entire
input upfront. In this case, the ratio of interest is called the approximation ra-
tio. A more restrictive computational model reveals the input only partially over
time, requiring an online algorithm to make irrevocable decisions at each step. In
this setting, the relevant measure is the competitive ratio. Finally, the solution
may arise as a game-theoretic equilibrium (for instance, a Nash equilibrium), in
which case the relevant measure is called the price of anarchy.

A unifying theme in all our results is the use of convex programming relax-
ations, such as linear programming (LP) and semidefinite programming (SDP).
In particular, we frequently leverage the power of convex programming duality
to construct carefully chosen dual solutions that guide our various analyses and
help design our algorithms.

We first initiate a beyond the worst-case analysis of the classical vertex cover
problem and its standard LP relaxation. This problem is efficiently solvable on
bipartite graphs, and a 2-approximation algorithm can be obtained by rounding
the LP on general graphs. We introduce new parameters and consider an algo-
rithm which attains bounds that interpolate between these two extremes. For
three-colorable graphs, our result gives an understanding of when the integrality
gap of the LP decreases to one, depending on the graph structure.

Next, we study a generalization of the classic online bipartite matching prob-
lem to hypergraphs, focusing specifically on 3-uniform hypergraphs under online
vertex arrivals. We present an optimal primal-dual fractional algorithm for this
problem and complement it with the construction of an adversarial instance that

xiii

establishes a matching upper bound. We also provide a better than greedy ran-
domized integral algorithm when the online nodes have bounded degree.

We then consider several scheduling and congestion problems under the ob-
jective of minimizing the sum of weighted completion times. We introduce a
dual fitting framework on a single semidefinite program which simultaneously
yields simple proofs of tight bounds for the approximation ratio of local search
algorithms, the competitive ratio of online algorithms, and the price of anarchy
of games. Our results simplify and unify important known results through this
unified framework.

Finally, we consider an online graph exploration problem on a binary heap
related to the branch and bound algorithm to solve integer programs. We provide
a new randomized algorithm improving the best known running time for this
problem at the expense of slightly increased space usage.

xiv

Chapter 1

Introduction

A mathematical optimization problem involves finding a solution that minimizes
or maximizes an objective function, subject to a set of constraints. Such problems
lie at the core of both computer science and mathematics, and they appear in a
wide variety of applications: from logistics and operations research to machine
learning and economics. Over the years, a rich arsenal of algorithmic techniques
has been developed to address these problems. For many optimization problems,
researchers have discovered efficient algorithms, meaning algorithms that run in
time polynomial in the size of the input.

However, many fundamental optimization problems have been shown to be
NP-hard, meaning that they are unlikely to admit efficient algorithms to compute
an optimal solution for every instance. As a consequence, the field of approxi-
mation algorithms has emerged as a central area of research, aiming to design
efficient algorithms that compute solutions whose quality can be proven to be
close to optimal.

Approximation algorithms are important for numerous reasons. In practice,
many optimization problems are NP-hard, and exact optimal solutions are com-
putationally out of reach for large instances. Having an approximation guarantee
provides a worst-case bound on how far a solution can be from optimal. This is
crucial in real-world applications where solutions must meet performance thresh-
olds, even under uncertainty or adversarial conditions. Approximation guarantees
can also act as an objective benchmark for algorithms. If an algorithm achieves
a certain approximation ratio, it becomes a standard against which others are
measured. This drives progress in algorithm design and helps classify problems
by their approximability. This, in turn, allows to build a theory understanding
which algorithmic problems are fundamentally more difficult than others.

In addition to that, approximation algorithms are very interesting from a
mathematical point of view. The field is rich with deep connections having been
found to other areas of mathematics such as combinatorics, graph theory, convex
optimization, probability or game theory. Over the past decades, this area has
seen significant developments: a wide array of approximation techniques such
as greedy methods, dynamic programming, linear and semidefinite programming

1

2 Chapter 1. Introduction

relaxations, local search, and primal-dual frameworks have been developed which
led to algorithms with tight guarantees for numerous classical problems.

While worst-case approximation guarantees provide a foundational under-
standing of algorithmic performance, they can sometimes be too pessimistic. It
can happen that algorithms with poor worst-case guarantees perform remark-
ably well in practice, on real-world or structured inputs. This motivates the
study of beyond worst-case models, which seek to explain an algorithm’s per-
formance under different assumptions. These models include smoothed analysis,
parameterized complexity, stochastic inputs, or inputs augmented with machine
learned predictions. Beyond worst-case analysis provides more nuanced perfor-
mance guarantees, and can often lead to new insights, as well as to the develop-
ment of new algorithmic techniques.

In many real-world applications, decisions must be made sequentially, without
knowledge of the entire input upfront. This is the setting captured by online
algorithms, where the input arrives sequentially over time, and an online algorithm
needs to make irrevocable choices based only on the information available so far.
Such models are central to a wide range of practical problems, including load
balancing in cloud computing, caching in memory systems, ride-sharing or online
auctions. The challenge lies in performing nearly as well as an optimal offline
algorithm that has full knowledge of the entire input sequence in advance. The
performance of an online algorithm is compared to the optimal offline benchmark,
and the measure of quality is called the competitive ratio. It is defined as the
worst-case, over all online inputs, of the ratio between the cost of an online
algorithm and the cost of an optimal offline solution.

Some algorithmic settings also involve strategic agents aiming to minimize
their own cost, often at the expense of global efficiency. Real world examples
include network routing, cloud resource allocation, auctions or ad markets. In
such systems, it becomes interesting to study equilibrium outcomes, where no
agent has an incentive to deviate from their chosen strategy. In this setting, the
price of anarchy provides a formal measure of how bad such equilibrium outcomes
can be compared to the global optimal solution, also called the social optimum.
It is formally defined as the ratio between the cost of a worst-case equilibrium
and the cost of an optimal solution. This setting has connections to classical
approximation algorithms theory, for instance when the output of an algorithm
is guaranteed to be an equilibrium.

A lot of very interesting research has developed in the past decades on ap-
proximation algorithms and the mentioned related settings. There are however
still many interesting open questions and possible research directions. The land-
scape of approximability is still only partially understood, particularly in models
that go beyond the classical offline setting. Problems involving beyond worst-case
models, online decisions or strategic agents introduce new challenges, for which
new tools and modern techniques are still to be discovered.

The aim of this thesis is to contribute to the theory of approximation algo-

3

rithms by developing new techniques and results for different optimization prob-
lems, both in classical offline settings, as well as online or game-theoretic models.
More specifically, we address problems in covering, matching, and scheduling,
exploring both worst-case and beyond worst-case guarantees.

A unifying theme in our results is the use of convex relaxations, in particular
of linear programming and semidefinite programming. These relaxations allow
to find approximate fractional solutions to computationally hard problems in
polynomial time. Beyond their algorithmic tractability, convex relaxations admit
a rich duality theory, which provides deep insights into the structure of optimal
solutions. Throughout this thesis, we frequently leverage convex programming
duality as an analytical tool, as well as a guiding principle in the design and
analysis of our algorithms.

Overview of the results

Beyond the worst-case approximation for vertex cover

The weighted vertex cover problem is one of the most fundamental NP-hard
combinatorial optimization problems. A classical result shows that it admits a
simple 2-approximation by rounding an optimal solution to the standard linear
programming relaxation. On the hardness side, the problem is known to be 2− ε
hard to approximate, assuming the well known unique games conjecture. In the
special case where the input graph is bipartite, the LP relaxation becomes tight:
the underlying polytope is integral, implying that the problem can be solved
exactly in polynomial-time on bipartite graphs.

We initiate a beyond the worst-case study of the problem by assuming an
oracle access to an induced bipartite subgraph of the input graph. Equivalently,
we assume that we have knowledge of a subset of vertices whose removal leaves
the remaining graph bipartite. We tightly analyze a natural algorithm which
takes this subset of vertices to the solution, and then solves the problem on
the remaining bipartite graph optimally. The approximation guarantee obtained
is a bound “interpolating” between the worst-case bound of 2 and the optimal
bound of 1 for bipartite graphs, and takes the form (1 + 1/ρ)(1− α) + 2α, where
ρ ∈ [2,∞] and α ∈ [0, 1]. The parameter ρ is related to the odd girth of the
graph and measures how far the input graph is from being bipartite, whereas
the parameter α is a measure of the “quality” of the bipartizing set. For three-
colorable graphs, we have α = 0 and the bound becomes 1 + 1/ρ, offering an
understanding of how the integrality gap of the standard LP decreases depending
on the input graph structure. We believe the most interesting part of this work
are the techniques used to prove this result, by leveraging LP duality to optimize
over the space of feasible weight functions, and hope that similar techniques can
be applied to other problems.

4 Chapter 1. Introduction

Online matching on hypergraphs

A more restrictive computational model, known as the online model, reveals the
input to an optimization problem incrementally over time. In this setting, an
online algorithm must make irrevocable decisions at each step without knowledge
of future inputs. A central topic in this field is online matching, first introduced
in [KVV90]. In the classical version, one side of a bipartite graph is known in
advance, while vertices on the other side arrive one by one. Upon each arrival,
the algorithm must decide immediately and irrevocably whether to match the
arriving vertex to an available neighbor. The goal is to produce a matching,
i.e. a disjoint subset of edges, of maximum cardinality. It is known that the
right competitive ratio is 1− 1/e for both integral and fractional versions of this
problem.

Since then, a rich body of work has developed around online graph matching
and its variants. However, far less is known about online matching in hypergraphs,
where the complexity of decision-making increases significantly. We study a three-
dimensional generalization of the original problem introduced for bipartite graphs
in the vertex arrival model. Our main contribution is to provide a (e−1)/(e+1)-
competitive fractional algorithm, along with a matching upper bound based on
a carefully constructed adversarial instance. The integral case remains a very
intriguing open problem, where the best known algorithm to date is still the
simple greedy strategy. However, we provide improved guarantees for the integral
case under the assumption that arriving vertices have bounded degree.

The main technical contribution of this work is the construction of the adver-
sarial instance, which combines two hard instances for bipartite graphs under the
vertex arrival and edge arrival models. We moreover develop a more fine-grained
understanding of the behaviour of an arbitrary fractional algorithm, needed to
address the increased complexity of the hypergraph setting.

Semidefinite dual fitting for scheduling problems

Scheduling is a fundamental problem in computer science and operations research,
with applications ranging from cloud computing and manufacturing to traffic
control and network routing. The problem consists of assigning and scheduling a
set of jobs to a set of machines in order to optimize some objective function. In
many real-world scenarios, decisions must be made without complete knowledge
of future events or with the participation of self-interested agents. We investigate
several scheduling problems in two such settings: the online setting, where jobs
arrive over time and decisions must be made irrevocably, and the game-theoretic
setting, where jobs are controlled by selfish agents aiming to minimize their own
cost.

Our main contribution is a unified dual fitting framework based on a single
semidefinite program (SDP), which we use to derive tight bounds in both the

5

online and game-theoretic settings for scheduling problems. This same approach
also proves useful in the classical offline setting, where it allows to tightly analyze
local search algorithms, a powerful class of combinatorial algorithms. Using this
structure, we are able to give simple and unified proofs of numerous important
results in the field, which include the analysis of the price of anarchy of the unre-
lated machine scheduling problem R||

∑
wjCj, the best known deterministic and

randomized coordination mechanisms for this problem, as well the best known
combinatorial approximation algorithm in the offline setting. In the game the-
oretic setting, we also recover the price of anarchy of weighted affine congestion
games and the pure price of anarchy of scheduling on parallel machines. In the
online setting, we recover the best known deterministic and randomized algo-
rithms for the online load balancing problem on unrelated machines, provide an
improved fractional algorithm, and complement this with matching lower bounds.
We also introduce a new model, for which we present an optimal algorithm.

A faster algorithm for explorable heap selection

We study an online graph exploration problem on a heap related to the branch and
bound algorithm. The input is a binary heap, with key values associated to every
node. The key values can only be accessed by traversing through the underlying
infinite binary tree, and the complexity of the algorithm is measured by the
total distance traveled in the tree, where each edge has unit cost. This problem
was originally proposed as a model to study search strategies for the branch-and-
bound algorithm with storage restrictions by Karp, Saks andWidgerson [KSW86],
who gave deterministic and randomized n · exp(O(

√
logn)) time algorithms using

O(log(n)2.5) and O(
√
logn) space respectively. We present a new randomized

algorithm with running time O(n log(n)3) against an oblivious adversary using
O(logn) space, substantially improving the previous best randomized running
time at the expense of slightly increased space usage.

Thesis organization

The thesis is organized as follows. Chapter 2 is devoted to preliminaries needed
to understand the main results. In Chapter 3, we study the vertex cover problem
in a beyond the worst-case setting. Chapter 4 concerns the online matching
problem on 3-uniform hypergraphs. In Chapter 5, we introduce the semidefinite
programming dual fitting technique and show how it can be used to bound the
price of anarchy of games and the approximation ratio of local search algorithms
for scheduling problems. Chapter 6 extends this technique to help design and
analyze online algorithms. Chapter 7 presents the faster randomized algorithm
for the explorable heap selection problem.

6 Chapter 1. Introduction

Publications
Chapter 3 is based on joint work with Guido Schäfer and has appeared in [KS23].
Chapter 4 is based on joint work with Sander Borst and Zhuan Khye Koh and
has appeared in [BKK25]. Chapter 5 is based on a work appearing in [Kas25].
Chapter 6 was at the time of writing still ongoing work, joint with Sander Borst, a
part of which is included in [BK25]. Chapter 7 is based on joint work with Sander
Borst, Daniel Dadush, Sophie Huiberts and has appeared in [BDHK23, BDHK24].

[KS23] Danish Kashaev and Guido Schäfer. Round and bipartize for vertex
cover approximation. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (APPROX/RANDOM 2023), volume 275.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023

[BKK25] Sander Borst, Danish Kashaev, and Zhuan Khye Koh. Online matching
on 3-uniform hypergraphs. In International Conference on Integer Programming
and Combinatorial Optimization, pages 100–113. Springer, 2025

[Kas25] Danish Kashaev. Selfish, local and online scheduling via vector fitting.
To appear in Proceedings of the 2026 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2026), 2026

[BDHK23] Sander Borst, Daniel Dadush, Sophie Huiberts, and Danish Kashaev.
A nearly optimal randomized algorithm for explorable heap selection. In Inter-
national Conference on Integer Programming and Combinatorial Optimization,
pages 29–43. Springer, 2023

[BDHK24] Sander Borst, Daniel Dadush, Sophie Huiberts, and Danish Kashaev.
A nearly optimal randomized algorithm for explorable heap selection. Mathemat-
ical Programming, pages 1–22, 2024

[BK25] Sander Borst and Danish Kashaev. Improved online load balancing in the
two-norm. arXiv preprint arXiv:2511.03345, 2025

Chapter 2

Preliminaries

2.1 Combinatorial optimization problems
A combinatorial (or discrete) optimization problem Π is either a minimization or
a maximization problem. Each instance I of Π can often be described by a finite
set N , called the ground set, a family of subsets of F ⊆ 2N , called the feasible
solutions, and an objective function w : F → Q to minimize or maximize. Here
are a few examples of fundamental combinatorial optimization problems.

Minimum weight spanning tree. The input is a connected graph G = (V,E)
along with a weight function w : E → R≥0. The goal is to find a spanning tree
T ⊆ E of the graph, i.e. an acyclic connected subgraph covering all the nodes, of
minimum weight w(T) :=

∑
e∈T we.

Shortest path. The input is a graph G = (V,E) with a weight function w :
E → R≥0 and two distinguished nodes s, t ∈ V . The goal is to find a path P ⊆ E
between s and t in the graph of minimum weight w(P) :=

∑
e∈P we.

Maximum weight matching. The input is a graph G = (V,E) with a weight
function w : E → R≥0. The goal is to find a disjoint subset of edges M ⊆ E of
maximum weight w(M) :=

∑
e∈M we.

2.1.1 Algorithms and efficiency
An algorithm for an optimization problem Π is a sequence of instructions which
specifies a computational procedure solving every given instance I of Π. Our
focus in this thesis is to develop efficient, or polynomial-time algorithms. The
term efficiency refers here to the running time of the algorithm, defined as the
number of elementary operations needed to solve any instance of a given problem.

The running time of an algorithm is expressed as a function of the size of the
input, defined formally as the number of bits needed to encode it. For example,

7

8 Chapter 2. Preliminaries

the size to encode an integer a ∈ N is dlog2(a + 1)e. We will often consider
problems which take a graph G = (V,E) as an input. Note that it is a priori
unclear what the size of the instance is, since there may be different ways to
encode a graph. Here are two ways possible to encode a graph G = (V,E) with
n nodes and m edges:

• We can store a n× n adjacency matrix A = (aij) with aij = 1 if (i, j) ∈ E
and 0 otherwise. In that case, the size of the instance is n2.

• Another more efficient way is to maintain adjacency lists. For every node
v in V , we maintain a list Lv ⊆ V of the nodes incident to it. Observe that
each edge occurs in two lists, meaning that the size is now n+ 2m.

This illustrates the fact that the size of the instance may depend on the underlying
data structure used to store it.

To simplify the analysis of the running time and avoid dependencies on unim-
portant details, we are often not interested in the exact number of elementary
operations, but only in their order. This means that we are only interested in
determining the running time of an algorithm up to constant factors. The Landau
O, Ω and Θ notations are commonly used for relating expressions of the same
order and are defined as follows.

Definition 2.1.1. Let g : N→ R≥0 be a function. We write f = O(g) if

∃c > 0, n0 ∈ N such that f(n) ≤ c g(n) ∀n ≥ n0.

Moreover, we write f = Ω(g) if g = O(f), and we write f = Θ(g) if f = O(g)
and f = Ω(g) simultaneously.

We are now ready to define efficient algorithms and polynomial-time solvable
problems.

Definition 2.1.2. An algorithm is efficient, i.e. runs in polynomial time if its
running time f : N → R≥0 is bounded by a polynomial in the size of the input,
i.e. there is a polynomial g such that f = O(g). A computational problem is
solvable in polynomial time if there exists an efficient algorithm which solves it
for any given instance.

The three problems introduced in the previous section are in fact examples
of polynomial-time solvable problems. The minimum spanning tree problem can
be solved in time O(m + n log(n)), the shortest path problem can be solved in
time O(n+m) and the maximum weight matching problem can be solved in time
O(n2m).

2.1. Combinatorial optimization problems 9

2.1.2 Complexity classes P and NP

There exist however many fundamental optimization problems for which efficient
algorithms have not been found. Here is an example of such a problem.

Minimum weight vertex cover. The input is a graph G = (V,E) with a
weight function w : V → R≥0. The goal is to find a subset of vertices S ⊆ V
covering all the edges of the graph, i.e. |S ∩ (u, v)| ≥ 1 for every (u, v) ∈ E, of
minimum weight w(S) :=

∑
v∈S wv.

On the other hand, nobody has also been able to disprove that no polynomial-time
algorithm exists for vertex cover. Is this problem (among others) then intrinsi-
cally more difficult than the polynomial-time problems mentioned previously?
Complexity theory aims to understand this question better.

One usually then considers decision problems, which are algorithmic problems
whose output needs to be a yes or no answer. Here are two examples of such
problems.

• Prime. The input is a natural number n ∈ N. The goal is to determine
whether n is prime.

• Graph connectedness. The input is a graph G = (V,E). The goal is to
determine whether G is connected.

There is a natural way to convert any optimization problem into a decision
problem. Let Π be an optimization problem with ground set N , feasible solutions
F ⊆ 2N and an objective function w : F → Q to minimize. We can add a
parameter k ∈ N to the input and ask the following algorithmic question: does
there exist a feasible solution S ∈ F with objective value w(S) ≤ k? Note that
this indeed becomes a decision problem, since the goal of an algorithm is simply
to output yes or no. Clearly, the decision version is an easier problem. However,
having an efficient algorithm for the decision version would (in most cases) also
imply an efficient algorithm for the optimization version, by simply doing a binary
search on k to find the optimal solution.

We now define the complexity class P , which stands for polynomial-time.

Definition 2.1.3. A decision problem Π belongs to the complexity class P if
there exists an efficient (polynomial-time) algorithm which, for every instance I
of Π determines in polynomial time whether I is a yes or a no instance.

We can now also define the complexity class NP , which stands for non-
deterministic polynomial time. This is the class which contains all the decision
problems for which yes instances can be verified by a polynomial-size certificate
in polynomial time. For the decision version of an optimization problem, we say
that S is a certificate if S ∈ F and w(S) ≤ k.

10 Chapter 2. Preliminaries

Definition 2.1.4. A decision problem Π belongs to the complexity class NP if
every yes instance I admits a certificate whose validity can be verified in poly-
nomial time.

2.1.3 NP-Hard problems
It is clear that P ⊆ NP . Several decades of research seem to suggest that there are
problems in NP which are intrinsically harder than the ones in P . However, the
question of whether P 6= NP is still one of the biggest mysteries in mathematics
and computer science: it constitutes one of the seven millennium-prize problems.

In complexity theory, a computational problem Π is called NP-hard if, for
every problem L in NP , there is a polynomial time reduction from L to Π.
Informally, this means that, if a solution for Π can be found in polynomial time,
then the solution to Π can be used to solve L in polynomial time. An efficient
algorithm for an NP-hard problem would then imply that there exists an efficient
algorithm to solve any problem in NP , and it is thus very unlikely that one exists.
Vertex cover is one example of such a problem. Here are additional examples of
NP-hard optimization problems of special interest in this thesis.

Maximum k-set packing. The input is a hypergraph H = (V,H), with a
set of nodes V and a collection H ⊆ 2V of hyperedges, where each hyperedge
h ∈ H has cardinality k ≥ 2. The goal is to find a disjoint subset of hyperedges
M ⊆ H of maximum cardinality. This problem is also sometimes called maximum
matching on k-uniform hypergraphs.

Load balancing. The input is a set of jobs J and a set of machines M . Each
job j ∈ J has a weight wij ∈ R≥0 ∪ {∞} on machine i ∈ M . The goal is to find
an assignment of jobs to machines to minimize the sum of squares of the loads of
the machines

∑
i L

2
i , where Li denotes the total weight of jobs assigned to that

machine.

Scheduling on unrelated machines. The input is a set of jobs J and a set
of machines M . Each job j ∈ J has a weight wj ∈ R≥0 and a processing time
pij ∈ R≥0 ∪ {∞} on machine i ∈M . The goal is to find an assignment of jobs to
machines, along with an ordering of jobs on each machine, in order to minimize
the sum of weighted completion times of the jobs.

Even though these problems are NP-hard, some special cases of them can
be polynomial-time solvable. For instance, the minimum weight vertex cover
problem can be solved efficiently on bipartite graphs. The maximum k-set packing
problem with k = 2 is simply the maximum cardinality (or unweighted, meaning

2.1. Combinatorial optimization problems 11

that w = 1) matching problem. Unweighted scheduling on unrelated machines
(again meaning that w = 1) can also be solved in polynomial-time.

2.1.4 Integer programming formulations
Very often, combinatorial optimization problems can be formulated as an inte-
ger program (or IP), which can be cast in general as the following optimization
problem:

min
x

{
f(x) : Ax ≥ b, x ∈ Zn

≥0

}
where A ∈ Qm×n, b ∈ Qn and where we assume in this thesis that f : Rn → R
is either linear or quadratic in x. Let us illustrate two examples of how NP-hard
problems described in the previous section can be modeled as an IP.

The minimum weight vertex cover problem can be modeled as an integer
program with a linear objective function. The constraints of the program encode
the fact that each edge must have at least one of its endpoints picked in the cover:

min
∑
v∈V

wv xv (2.1.1)

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V.

The load balancing problem can also be modeled as an integer program, but
with a quadratic objective function. The constraints encode the fact that each
job must be assigned to exactly one machine:

min
∑
i∈M

(∑
j∈J

xij wij

)2
(2.1.2)∑

i∈M

xij = 1 ∀j ∈ J

xij ∈ {0, 1} ∀j ∈ J, ∀i ∈M.

It turns out that the maximum k-set packing can be modeled as an IP with a
linear objective function, whereas scheduling on unrelated machines can be cast
as an IP with a quadratic objective function. We leave the exact description of
these programs to later chapters in this thesis.

Solving these integer programs is of course still NP-hard. However, these
formulations will later allow us to formulate convex relaxations, such as linear
or semidefinite programs, which can in fact be solved in polynomial time. We
describe this in more detail in Section 2.3 and Section 2.4.

12 Chapter 2. Preliminaries

2.2 Approximation algorithms
For a given NP-optimization problem Π and an instance I of Π, let us denote by
OPT(I) the objective value of an optimal solution. When the instance is clear
from the context, we will sometimes just write OPT. For NP-hard problems,
since finding an optimal solution is a difficult task, one often wants to find a good
approximate solution in polynomial time, leading to the following definition.
Definition 2.2.1. An approximation algorithm for a minimization problem Π
with approximation ratio α ≥ 1 is a polynomial-time algorithm which, for any
instance I of Π, returns a feasible solution with objective value at most αOPT(I).
This definition can be defined analogously for maximization problems. Let us now
illustrate this definition with a simple example of an approximation algorithm for
the minimum (unweighted) vertex cover problem, which is NP-hard.

Algorithm 2.2.1
Input: Graph G = (V,E)
Output: Vertex cover S ⊆ V

1: Compute a maximal (under inclusion) matching M ⊆ E
2: return S := {v ∈ V : v is matched by M}

Theorem 2.2.2. The above algorithm is a 2-approximation algorithm for the
unweighted minimum vertex cover problem.
Proof:
Observe first that this is indeed a polynomial-time algorithm: a maximal match-
ing can be computed by greedily picking an available edge, removing its endpoints,
and repeating this process. Observe also that it indeed returns a feasible solu-
tion: if an edge is left uncovered by S, it would contradict the maximality of M .
Finally, observe that |M | ≤ OPT, since any feasible vertex cover needs to pick at
least one endpoint of every edge in M , leading to |S| = 2|M | ≤ 2 OPT. 2

2.3 Linear programming
An extremely powerful tool in the design of approximation algorithms is linear
programming. A linear program (or LP) is the problem of optimizing a linear
function subject to linear inequality constraints, a task which turns out to be
efficiently solvable. A minimization LP in canonical form can be written as:

min cTx (2.3.1)
Ax ≥ b

x ≥ 0

2.3. Linear programming 13

where A ∈ Qm×n, b ∈ Qm, c ∈ Qn and n,m ∈ N is the input data. The variables
of this program are the entries of the vector x ∈ Rn. This is thus a linear program
with n variables and m constraints.

2.3.1 Duality
Linear programming admits a very important duality theory. Every linear pro-
gram has a corresponding closely related dual linear program. The dual to (2.3.1)
is the following:

max bTy (2.3.2)
ATy ≤ c

y ≥ 0.

Let us call the LP (2.3.1) to be the primal problem. The dual problem now has
m variables and n constraints. Each constraint in the primal corresponds to a
variable in the dual, and each variable in the primal corresponds to a constraint
in the dual.

These two programs satisfy weak duality, which states that the objective value
of any feasible dual solution y is a lower bound on the objective value of any
feasible primal solution x, i.e. bTy ≤ cTx. Moreover, if the optimal objective
value of both of these programs is finite, then strong duality holds, meaning that
bTy∗ = cTx∗ for any optimal primal and dual solutions x∗ and y∗. In addition,
(x, y) is an optimal primal-dual pair if and only if the following complementary
slackness conditions are satisfied:

1. xi > 0 =⇒ (ATy)i = ci

2. yj > 0 =⇒ (Ax)j = bj.

This says that whenever a variable is strictly positive, the corresponding con-
straint in the dual program is tight.

2.3.2 Extreme points
The feasible region of a linear program is a finite intersection of halfspaces and
is called a polyhedron. If a polyhedron is bounded, it is also called a polytope.
For instance, the feasible region for the LP (2.3.1) is the polyhedron P := {x ∈
Rn

≥0 : Ax ≥ b}. The “corners” of this region are called the extreme points and
are formally defined as follows.

Definition 2.3.1. A point x ∈ P is an extreme point of P if it is not the midpoint
of two other points in P , i.e. there does not exist y, z ∈ P with y 6= z such that
(y + z)/2 = x.

14 Chapter 2. Preliminaries

It turns out that, if the optimal LP solution has finite value, then there always
exists an optimal extreme point solution. In fact, a commonly used algorithm in
practice to solve LPs called the simplex method iteratively moves from extreme
point to extreme point while trying to improve the objective value of the solution.

2.3.3 Relax and round paradigm
Linear programming can be used to design approximation algorithms for combi-
natorial optimization problems using the following general paradigm. First, an
integer program (IP) of the problem is formulated. Since an IP is NP-hard to
solve, one can relax the integrality constraints to obtain an LP, which can then be
solved efficiently to obtain an optimal fractional solution. This fractional solution
is then rounded into a feasible integer solution while preserving some guarantees
on the objective value.

Let us illustrate this paradigm for the weighted vertex cover problem, whose
IP we formulated in (2.1.1). Relaxing the integrality constraints gives us a linear
program:

min
∑
v∈V

wv xv (2.3.3)

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≥ 0 ∀v ∈ V.

It turns out that the feasible region of this linear program satisfies the fact that
every extreme point x∗ ∈ RV is half-integral, meaning that x∗v ∈ {0, 12 , 1} for every
v ∈ V . This structural understanding leads to the following 2-approximation
algorithm for this problem.

Algorithm 2.3.1
Input: Weighted graph G = (V,E,w)
Output: Vertex cover S ⊆ V

1: Compute an optimal extreme point solution x∗ to the LP (2.3.3)
2: return S := {v ∈ V : x∗v ≥ 1/2}

Theorem 2.3.2. The above algorithm is a 2-approximation algorithm for the
weighted minimum vertex cover problem.

Proof:
Note first that the algorithm indeed returns a feasible vertex cover: for every
edge (u, v) ∈ E, one of the LP constraints tells us that x∗u + x∗v ≥ 1, meaning
that at least one of those those endpoints will be picked in S. To argue about
the approximation guarantee, observe that

∑
v wvx

∗
v ≤ OPT, since the first term

2.3. Linear programming 15

is the optimal objective value of the LP (2.3.3), whereas the second term is the
optimal objective value of the IP (2.1.1). The objective value of the returned
solution is

∑
v∈S wv ≤ 2

∑
v∈V wvx

∗
v ≤ 2 OPT, where the first inequality follows

from half-integrality of x∗. 2

2.3.4 Integrality of polyhedra
We have seen in the previous section a natural way to relax an integer linear
program by turning it into an efficiently solvable LP. Consider an arbitrary linear
integer program of the following form:

OPT = min
x

{
cTx : Ax ≥ b, x ∈ Zn

≥0

}
where we assume that A and b are integer valued. The natural linear programming
relaxation is then the following:

OPTLP = min
x

{
cTx : Ax ≥ b, x ≥ 0

}
. (2.3.4)

Clearly, since the LP optimizes over a larger domain, we have that OPTLP ≤ OPT.
We now describe a sufficient condition which guarantees that OPTLP = OPT.

Theorem 2.3.3. If the matrix A is totally unimodular (TU), meaning that all
its subdeterminants lie in {−1, 0, 1}, then all the extreme points of the polyhedron
P = {Ax ≥ b, x ≥ 0} are integral.

Since there always exists an optimal extreme point solution to a finite LP, the
above theorem implies that OPTLP = OPT if A is totally unimodular. This is a
very important observation: it means that the integer program can be solved in
polynomial time by simply solving the LP relaxation.

Given a weighted graph G = (V,E,w), let us take A ∈ RE×V to be the edge-
vertex incidence matrix, meaning that Ae,v = 1 if and only if v ∈ e and let us
take c = w. Observe that in that case the LP (2.3.4) now becomes the standard
weighted vertex cover LP (2.3.3). The total unimodularity of this constraint
matrix is characterized by the graph structure.

Theorem 2.3.4. The edge-vertex incidence matrix of a graph is TU if and only
if the graph is bipartite.

Therefore, this tells us that the weighted vertex cover problem is efficiently solv-
able on bipartite graphs: one simply needs to find an optimal extreme point
solution to the LP (2.3.3), which will be guaranteed to be integral by the above
two theorems.

16 Chapter 2. Preliminaries

2.4 Semidefinite programming
In this section, we describe a family of convex programs called semidefinite pro-
grams which generalize linear programs. To do so, we first need to introduce the
following definition.

Definition 2.4.1. A symmetric matrix X ∈ Rn×n is positive semidefinite, de-
noted as X � 0, if the following equivalent conditions hold:

1. xTXx ≥ 0 for all x ∈ Rn

2. All the eigenvalues of X are non-negative

3. There exist vectors v1, . . . , vn ∈ Rk for some k > 0 such that Xij = 〈vi, vj〉
for all i, j ∈ [n].

A matrix X is positive definite, denoted as X � 0, if the first condition above
holds with strict inequality.

We also introduce the trace inner product. For A,B ∈ Rn×n, it is defined as:

〈A,B〉 := Tr(ATB) =
n∑

i,j=1

Aij Bij.

The following optimization problem is then called a semidefinite program (or
SDP):

inf〈C,X〉 (2.4.1)
〈Ai, X〉 = bi ∀i ∈ [m]

X � 0

where the vector b ∈ Rm and the matrices C and Ai for all i ∈ [m] are the input
data. The variable of this program are the entries of the matrix X. If the matrices
C and Ai are diagonal matrices with diagonals c ∈ Rn and ai ∈ Rn, then the above
reduces to the linear program inf{cTx : aTi x = bi ∀i ∈ [m], x ≥ 0}. Any linear
program can in fact be written in this form, hence semidefinite programming
contains linear programming as a special case.

Each SDP of the form (2.4.1) admits a dual semidefinite program

sup
m∑
i=1

yi bi (2.4.2)

m∑
i=1

yi Ai − C � 0

2.5. Online algorithms 17

where the variables are yi ∈ R for all i ∈ [m]. As in linear programming, weak
duality holds, meaning that the objective value of a feasible dual solution is always
upper bounded by the objective value of a feasible primal solution. In contrast to
LPs, strong duality does not always hold. There are however sufficient conditions
for it to hold, for example if the primal program admits a positive definite matrix
X � 0 as a feasible solution (also known as Slater’s condition).

2.4.1 Relaxing quadratic integer programs
We have seen in Section 2.3.3 how LPs allow us to relax integer programs with a
linear objective function. In this section, we describe how SDPs can be used to
relax integer programs with a quadratic objective function. Let us illustrate this
approach on the integer programming formulation of the load balancing problem
(2.1.2), whose objective function we can rewrite as:∑

i∈M

(∑
j∈J

xij wij

)2
=
∑
i∈M

∑
j,k∈J

wij wik xij xik.

The variable of the SDP will be a matrix X with dimension |M ||N |+1. It has one
row/column corresponding to each variable xij for every pair (i, j) ∈M×J of the
original binary quadratic program (2.1.2), in addition to one extra row/column
that we index by 0. A valid SDP relaxation of the form (2.4.1) is then given by:

inf
∑
i∈M

∑
j,k∈J

wij wik X{ij, ik}∑
i∈M

X{ij, ij} = 1 ∀j ∈ N

X{0,0} = 1

X{0, ij} = X{ij, ij} ∀j ∈ N, i ∈M
X � 0.

To see that this is in fact a relaxation to the quadratic program (2.1.2), note that
for any binary feasible assignment x, the rank-one matrix X = (1, x)(1, x)T is a
feasible solution to the SDP with the same objective value. The key observation
that makes this work is the fact that x2ij = xij for xij ∈ {0, 1}, leading toX{ij, ij} =
x2ij = xij = X{0, ij} and X{ij, i′k} = xij xi′k for every (i, j) 6= (i′, k). Such a way
of relaxing binary integer programs (and more general polynomial optimization
problems) has been developed by [Las01].

2.5 Online algorithms
In online algorithms, the instance to a combinatorial optimization problem is
not known fully in advance, but is revealed incrementally over time. An online

18 Chapter 2. Preliminaries

algorithm must then take an irrevocable decision each time a part of the instance is
revealed. Since this definition is slightly problem dependent, we give two concrete
examples of online problems.

Online bipartite matching. The input is a bipartite graph G = (A ∪ B,E),
where A are the offline nodes and B are the online nodes. At each step, a node
v ∈ B arrives and reveals all its incident edges δ(v) ⊆ E. An algorithm must
take an irrevocable decision and decide which edge e ∈ δ(v) (if any) to add to the
matching. The goal is to maximize the cardinality of the obtained matching.

Online load balancing. The input is a set of jobs J and a set of machines
M . At each step, a job j ∈ J arrives and reveals non-negative weights {wij}i∈M .
An online algorithm must decide irrevocably to which machine it wants to assign
this job. The goal is to minimize the sum of squares of the loads of the machines∑

i∈M L2
i , where Li is the total weight of jobs assigned to i ∈M .

The quality of an online algorithm is measured by measuring the worst-case
ratio (over all online instances) of the cost obtained by the algorithm to the cost
of the optimal offline solution (i.e. after the whole instance has been revealed).
This ratio is known as the competitive ratio. For maximization problems, we
adopt in this thesis the convention that the competitive ratio is between 0 and 1.
For minimization problems, we adopt the convention that it is greater or equal
to 1.

Definition 2.5.1. An online algorithm for a minimization problem Π is α ≥ 1
competitive if for any online instance I of Π, it returns a feasible solution of cost
at most α OPT(I), where OPT(I) is the offline optimum. For a maximization
problem, an online algorithm is α ∈ [0, 1] competitive if it returns a feasible
solution of value at least α OPT(I).

2.5.1 Example: greedy algorithm
Let us now illustrate the simplest example of an online algorithm and showcase
how a suitably chosen dual solution can help us analyze it. We consider the online
bipartite matching problem on a graph G = (V,E) = (A∪B,E), whose canonical
primal and dual LP relaxations are given by

max
∑
e∈E

xe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

min
∑
v∈V

yv

yu + yv ≥ 1 ∀(u, v) ∈ E

yv ≥ 0 ∀v ∈ V.

2.5. Online algorithms 19

Observe that the dual is simply the unweighted vertex cover LP (2.3.3).

Algorithm 2.5.1 Greedy algorithm
Input: Bipartite graph G = (A ∪B,E) with online arrivals of nodes in B
Output: Matching M ⊆ E

set M = ∅
when v ∈ B arrives with δ(v) ⊆ E:

pick an arbitrary edge (u, v) ∈ δ(v) disjoint from M if one exists
update M =M ∪ (u, v)

return M

Theorem 2.5.2. The greedy algorithm (Algorithm 2.5.1) is 1/2-competitive for
the online bipartite matching problem.

Proof:
Consider the following process of simultaneously building a primal and dual so-
lution during the execution of the algorithm: whenever the algorithm picks an
edge e = (u, v) ∈M , set xe = 1 and set yu = 1/2, yv = 1/2 for the two endpoints.
Clearly, the objective values of the primal and dual are equal

∑
e∈E xe =

∑
v∈V yv

at all times. In addition, at the end of the algorithm, observe that for any edge
e = (u, v) ∈ E, at least one of its endpoints has a dual value of 1/2, since if this was
not the case, the edge would have been picked by the greedy algorithm. There-
fore, yu + yv ≥ 1/2, implying that 2y is a feasible dual solution. By weak duality,
this implies 2

∑
v∈V yv ≥ OPT and thus |M | =

∑
e∈E xe =

∑
v∈V yv ≥ OPT/2. 2

The above analysis is an example of a primal-dual analysis for online algo-
rithms. It can be extended in a straightforward way to the online matching
problem on k-uniform hypergraphs under vertex arrivals, where each (hyper)edge
e ∈ E now has cardinality k, instead of 2. In that case, it can easily be shown
that the greedy algorithm is 1/k-competitive.

2.5.2 Fractional and randomized algorithms
Observe that the two problems (online bipartite matching and online load balanc-
ing) described at the beginning of Section 2.5 can be equivalently seen as follows.
In the bipartite matching problem, whenever a node v ∈ B arrives and reveals its
incident edges δ(v) ⊆ E, an (integral) online algorithm can irrevocably increase
one of the variables xe for e ∈ δ(v) while staying inside of the feasible region

{x ∈ {0, 1}E : x(δ(v)) ≤ 1 ∀v ∈ A ∪ B}.

A randomized algorithm can make a random choice, i.e. pick a probability dis-
tribution over e ∈ δ(v) inducing random variables Xe ∈ {0, 1} lying in the above

20 Chapter 2. Preliminaries

feasible region. A fractional algorithm can irrevocably increase the variables xe
fractionally while staying inside of the bipartite matching polytope

PM = {x ∈ [0, 1]E : x(δ(v)) ≤ 1 ∀v ∈ A ∪ B}.

The value of a randomized algorithm is then measured as
∑

e∈E E[Xe]. The value
of a fractional algorithm is measured as

∑
e∈E xe.

Similarly, for the load balancing problem, whenever j ∈ J arrives and reveals
the weights {wij}i∈M , an integral algorithm needs to increase one of the variables
xij for i ∈M to one while staying inside of the feasible region{

x ∈ {0, 1}M×N :
∑
i∈M

xij = 1 ∀j ∈ J
}
.

A randomized algorithm can make a random choice inducing random variables
Xij ∈ {0, 1}, and a fractional algorithm needs to irrevocably increase the variables
xij fractionally while staying inside of the polytope

PL =
{
x ∈ [0, 1]M×N :

∑
i∈M

xij = 1 ∀j ∈ J
}
.

The cost of a randomized algorithm in this case is measured as
∑

i∈M E[Li(X)2],
where Li(X) :=

∑
j∈J wijXij. The cost of a fractional algorithm is measured as∑

i∈M Li(x)
2, where Li(x) :=

∑
j∈J wij xij.

In both of these models, the fractional version is an easier problem, as shown
in the following lemma.

Lemma 2.5.3. Any randomized algorithm for the online bipartite matching prob-
lem induces a fractional algorithm with the same value. Similarly, any randomized
algorithm for the load balancing problem induces a fractional algorithm with lower
or equal cost.

Proof:
For the bipartite matching problem, a randomized algorithm induces random
variables Xe ∈ {0, 1} for every e ∈ E. Define a fractional algorithm which sets
xe := E[Xe] for every e ∈ E. Clearly, this is a valid fractional algorithm as
x ∈ PM and the values of both algorithms match.

For the load balancing problem, a randomized algorithm induces random vari-
ables Xij ∈ {0, 1} for every i ∈M, j ∈ J . Define a fractional algorithm by setting
xij := E[Xij] for every i ∈M, j ∈ J . Clearly, we then have x ∈ PL and∑

i∈M

Li(x)
2 =

∑
i∈M

E[Li(X)]2 ≤
∑
i∈M

E[Li(X)2]

where the first equality follows from linearity of expectation and the inequality
follows from Jensen’s inequality. 2

2.6. Algorithmic game theory and price of anarchy 21

2.6 Algorithmic game theory and price of anar-
chy

In previous sections, for a given discrete optimization problem with cost func-
tion C and an optimal solution x∗, we cared about understanding the ratio
C(x)/C(x∗), where x is a (non-optimal) solution obtained through an approx-
imation algorithm or an online algorithm. In the first case, the worst-case of this
ratio over all instances is called the approximation ratio, whereas in the second
case it is called the competitive ratio. In this section, we consider x to be a game
theoretic equilibrium and will care about the ratio C(x)/C(x∗) in this case. The
worst-case bound over all instances will now be called the price of anarchy of the
considered game.

2.6.1 Strategic games and Nash equilibria
Definition 2.6.1. An instance I of a finite strategic game, denoted by Γ =
(N, (Sj)j∈N , (Cj)j∈N), consists of:

• A set N = {1, . . . n} of players

• A strategy set Sj for every player j ∈ N

• A cost function Cj : S1 × · · · × Sn → R for every player j ∈ N .

We will in this thesis adopt the convention that each player j wants to selfishly
minimize his/her own cost function Cj.

We denote a pure assignment by a vector σ = (σ1, . . . , σn), where σj ∈ Sj for
every j ∈ N . It will often be useful to have a notation where a given player j is
the only one to change his/her strategy. For this reason, we denote (σ−j, i) to be
the vector obtained by replacing σj by i ∈ Sj in the jth coordinate of σ. We are
now ready to define our first equilibrium concept.

Definition 2.6.2. An assignment σ ∈ S1× · · ·×Sn is a pure Nash equilibrium if

Cj(σ) ≤ Cj(σ−j, i) ∀j ∈ N, ∀i ∈ Sj.

Intuitively, a pure Nash equilibrium means that, given knowledge of the
choices of the other players, no player can switch his/her strategy to get a better
payoff. Unfortunately, there exist strategic games where pure Nash equilibria do
not exist. One can then consider a generalization of pure Nash equlibria, called
mixed Nash equilibria. In that case, players are allowed to independently ran-
domize their choice over their strategy set. Each player j can thus now pick a

22 Chapter 2. Preliminaries

probability distribution (xij)i∈Sj
. We denote the collection of these distributions

as x = (xij)j∈N,i∈Sj
. The expected cost of a player j is then defined as:

Cj(x) := Eσ∼x[Cj(σ)]

where σ ∼ x is a random assignment where each player independently randomly
picks a strategy according to his/her distribution specified by x. We will refer to
a collection of probability distributions x = (xij)j∈N,i∈Sj

as a mixed assignment.

Definition 2.6.3. A mixed assignment x = (xij)j∈N,i∈Sj
is a mixed Nash equilib-

rium if
Eσ∼x[Cj(σ)] ≤ Eσ∼x[Cj(σ−j, i)] ∀j ∈ N, ∀i ∈ Sj.

It is known that any finite strategic game admits a mixed Nash equilibrium
[Nas24]. Note that when x is binary, meaning that xij ∈ {0, 1} for every j ∈
N, i ∈ Sj, then it simply corresponds to an assignment σ ∈ S1 × · · · × Sn, where
xij = 1 indicates that player j chooses strategy i, i.e. that σj = i. We will
thus sometimes simply refer to x as an assignment, meaning that it can either
be a pure or a mixed assignment. We will also sometimes refer to a mixed Nash
equilibrium as simply a Nash equilibrium.

2.6.2 Price of anarchy
We are interested in analyzing how “inefficient” in terms of cost a Nash equilib-
rium can be. To do so, we first need to define some global objective function,
also called the social cost. In this thesis, we will simply care about the (possi-
bly weighted) sum of costs incurred by the players. We note however that other
definitions are possible, for instance taking the maximum cost incurred by one of
the players.

Definition 2.6.4. The social cost of an assignment x is defined as:

C(x) :=
∑
j∈N

Cj(x).

Remark 2.6.5. For some games, we will have weights wj ≥ 0 for every player j
and define the social cost as C(x) := wjCj(x).

Minimizing the social cost over all pure assignments while disregarding the
game-theoretical aspect is simply a discrete optimization problem. It can be
formulated as the following integer program:

min C(x)∑
i∈Sj

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀j ∈ N, ∀i ∈ Sj

2.6. Algorithmic game theory and price of anarchy 23

where the constraints encode the fact that every player needs to pick exactly one
strategy. An optimal solution to this optimization problem is known as the social
optimum, which we will denote by x∗. We are now ready to define the quantity
of interest to us.

Definition 2.6.6. The price of anarchy of an instance I of a finite strategic game
Γ is defined as

sup
{
C(x)

C(x∗)
: x is a Nash equilibrium

}
.

The price of anarchy of the game Γ is the supremum over all instances I of Γ of
the above quantity.

2.6.3 Example: load balancing
Let us illustrate the notions defined in the previous two subsections on a concrete
example: a weighted load balancing game.

We are given a set of players N and a set of resources E. The strategy set
of every player j ∈ N is a subset of resources Sj ⊆ E with unrelated weights
wij ≥ 0 associated for every i ∈ Sj. Consider a pure assignment x, the load of
a resource i ∈ E is defined as the total weight of players assigned to it and is
formally defined as

ℓi(x) =
∑
j∈N

wij xij ∀i ∈ E.

The cost of a player j ∈ N is then defined as

Cj(x) =
∑
i∈E

ℓi(x) wij xij

meaning that it is the weight multiplied by the load of the resource picked. The
social cost can be written as follows

C(x) =
∑
j∈N

Cj(x) =
∑
i∈E

ℓi(x)
2. (2.6.1)

Observe that the social optimum x∗ is in fact the optimal solution to the IP
(2.1.2) that we formulated previously.

We now show an example of a pure Nash equilibrium for an instance of this
game and show that its price of anarchy can be as high as 1 + ϕ, where ϕ :=
(1+
√
5)/2 ≈ 1.618 is the golden ratio and satisfies the equation ϕ2 = 1+ϕ. This

example is due to [CFK+06].
Let n ∈ N be a natural number. The instance consists of E = [n+1] resources

and N = [n] players. The strategy set of every player j ∈ N is Sj = {j, j+1} and
the weights are defined as w1,1, w2,1 = ϕ for the first player and wj,j = 1, wj+1,j = ϕ
for every j ≥ 2.

24 Chapter 2. Preliminaries

Consider the solution where each player j picks resource j. Then the first
resource has one job of weight ϕ assigned to it and each resource in {2, . . . , n}
only has one job of weight one assigned to it. This is in fact the optimum solution
x∗ and it has cost C(x∗) = ϕ2 + n− 1.

Consider now the solution x where each player j picks resource j + 1. We
claim that this is a pure Nash equilibrium. To see this, observe that the loads
of the resources under this assignment are ℓ1(x) = 0 and ℓi(x) = ϕ for every
i ∈ {2, . . . , n+ 1}. The payoff of every player is then Cj(x) = ϕ2 for every j ≥ 1.
If the first player were to switch to resource 1, he would get a payoff of ϕ2, which
would not be an improvement. If a player j ≥ 2 were to switch to resource j,
then he would get a payoff of 1+ϕ, which is not an improvement since the golden
ratio satisfies 1 + ϕ = ϕ2. Hence, x is a pure Nash equilibrium whose cost is
C(x) =

∑
j∈N Cj(x) = n ϕ2. As n grows, the price of anarchy of this instance

becomes:
C(x)

C(x∗)
=

nϕ2

n− 1 + ϕ2

n→∞−−−→ ϕ2.

This example shows that the price of anarchy of the load balancing game con-
sidered is at least ϕ2 = 1 + ϕ = (3 +

√
5)/2 ≈ 2.618. In Chapter 5, we will

show that this is in fact the right answer by providing a technique proving tight
upper bounds on the price of anarchy for a large class of games similar to the one
considered here.

Chapter 3

Round and bipartize for vertex cover
approximation

In this chapter, we study the weighted vertex cover in a beyond the worst-case
setting. We have seen a 2-approximation algorithm based on rounding the natural
LP relaxation in Algorithm 2.3.1 and the fact that this LP is integral for bipartite
graphs in Section 2.3.4. The question tackled here is roughly the following: can
meaningful guarantees be obtained which somehow interpolate between these two
extremes?

Given the knowledge of an induced bipartite subgraph of the input, we con-
sider a natural rounding algorithm based on the standard LP and tightly charac-
terize its approximation ratio. As a byproduct, we also provide tight bounds on
the integrality gap of the standard LP for three colorable graphs.

3.1 Introduction

In the vertex cover problem we are given a weighted graph G = (V,E,w), where
w : V 7→ R+ is a non-negative weight function on the vertices, and the goal is
to find a minimal weight subset of vertices U ⊂ V that covers every edge of the
graph, i.e.,

min{w(U) | U ⊂ V, |U ∩ {i, j}| ≥ 1 ∀(i, j) ∈ E}.

We denote by OPT an optimal subset of vertices for this problem, and by w(OPT)
the total weight of that solution. The vertex cover problem is known to be NP-
complete [Kar72] and APX-complete [PY88]. Moreover, it was shown to be NP-
hard to approximate within a factor of 7/6 in [Hås01], a factor later improved to
1.36 in [DS05]. It is in fact NP-hard to approximate within a factor of 2− ε for
any fixed ε > 0 if the unique games conjecture is true [KR08].

A natural linear programming relaxation, as well as its dual, is given by:

25

26 Chapter 3. Round and bipartize for vertex cover approximation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≥ 0 ∀v ∈ V

max
∑
e∈E

ye

y(δ(v)) ≤ wv ∀v ∈ V
ye ≥ 0 ∀e ∈ E

For a given graph G, we denote the primal linear program by P (G) and the dual
by D(G). The integrality gap of the standard linear relaxation P (G) on a graph
of n vertices is upper bounded by 2 − 2/n, a bound which is attained on the
complete graph. In fact, a more fine-grained analysis shows that it is equal to
2−2/χf (G), where χf (G) is the fractional chromatic number of the graph [Sin19].
An integrality gap of 2−ε is proved for a large class of linear programs in [ABL02].
It is also known that any linear program which approximates vertex cover within
a factor of 2− ε requires super-polynomially many inequalities [BFPS19].

An important property of P (G) is the fact that any extreme point solution
x∗ is half-integral, i.e., x∗v ∈ {0, 12 , 1} for any vertex v ∈ V [NT75]. This gives
rise to a straightforward rounding algorithm by solving P (G) and outputting all
vertices whose LP variable is at least a half, i.e., U := {v ∈ V | x∗v ≥ 1

2
}. It is

easy to see that this a 2-approximation, because w(U) ≤ 2 w(OPT), see [Hoc82].
Moreover, it is known that P (G) is integral for any bipartite graph [Kuh55]. As
a consequence, the rounding algorithm returns an optimal solution if the graph
is bipartite.

3.2 Outline

Set-up and algorithm
In this chapter, we initiate a beyond the worst-case study of the vertex cover
problem and of its standard linear programming relaxation. As mentioned above,
this simple and natural linear program is extremely powerful for this problem: it
leads to the optimal approximation ratio of 2, under the unique games conjecture,
and its polyhedron has some very nice structural properties since it is integral
for bipartite graphs and half-integral for general graphs. We are in this chapter
interested in having a more fine-grained understanding of it and see whether one
can introduce parameters that allow to somehow interpolate the rounding curve
of this LP in a beyond the worst-case manner.

We consider the following setup. We are given a weighted non-bipartite graph
G = (V,E,w) and an optimal solution x∗ ∈ {0, 1

2
, 1} to P (G). We denote by

Vα := {v ∈ V | x∗v = α} the vertices taking value α and by Gα = G[Vα] the
subgraph of G induced by the vertices Vα for any α ∈ {0, 1

2
, 1}. By a standard

preprocessing step, we may assume that we only work on the graph G1/2, since
any c-approximate solution on this reduced graph can be lifted to a c-approximate
solution on the original graph by adding the nodes V1 to the solution [NT75]. In

3.2. Outline 27

addition, we suppose that we have knowledge of an odd cycle transversal S of
G1/2, meaning that G1/2 \ S is a bipartite graph. Equivalently, S intersects every
odd cycle of G1/2. The question of finding a good such odd cycle transversal is
also tackled later on.

We consider the following simple algorithm, detailed in Algorithm 3.2.1. It
first solves P (G), takes the vertices assigned value one by the linear program to
the solution and removes all the integral nodes from the graph to arrive at G1/2.
The algorithm then takes all the vertices in the set S to the solution, removes
them from the graph and solves another (now integral) linear program to get the
optimal solution on the bipartite remainder. These vertices are then also added
to the solution.

Algorithm 3.2.1
Input: Weighted graph G = (V,E,w), odd cycle transversal S ⊂ V1/2
Output: Vertex cover U ⊂ V

1: Solve the linear program P (G) to get V0 , V1/2 and V1
2: Solve the integral linear program P (G1/2 \ S) to get W ⊂ V1/2
3: return V1 ∪ S ∪W

The main question studied is the following. What is the worst-case approxi-
mation ratio of the algorithm and which weight functions are attaining it?

Our motivation to study this question comes from the structural difference
between the polyhedron of P (G) for bipartite and non-bipartite graphs. In par-
ticular, we are interested in identifying parameters of the problem that enable
us to derive more fine-grained bounds determining the approximation ratio of
the algorithm, and allow to interpolate the rounding curve of the standard linear
program from 1 to 2, depending on how far the graph is from being bipartite.

As it turns out, the odd girth, i.e., the length of the shortest odd cycle, is a
key parameter determining tight bounds on the approximation ratio. It is also a
natural parameter, since a graph is bipartite if and only if it does not contain an
odd cycle. The larger the odd girth, the closer the graph is to being bipartite.
It is also shown in [GKŁ97] that graphs with a large odd girth admit a small-
cardinality odd cycle transversal.

Contributions and high-level view
We first do a pre-processing step and show that we may without loss of generality
focus on weighted graphs G = (V,E,w) where the weights come from a certain
weight space QW . Each edge has a dual weight ye ≥ 0 with a total sum of
y(E) = 1, and the weight on each node is then determined by wv = y(δ(v)). This
follows from the Nemhauser-Trotter theorem, complementary slackness and an
appropriate normalization.

28 Chapter 3. Round and bipartize for vertex cover approximation

We then do the analysis under the assumption that S is a stable set, high-
lighting the main ideas of the analysis and the proof techniques. We show that
the approximation ratio is upper bounded by 1 + 1/ρ, where 2ρ− 1 denotes the
odd girth of the graph G̃ := G/S, where all the vertices in S are contracted into
a single node. Note that the parameter range is ρ ∈ [2,∞], with ρ =∞ naturally
corresponding to the case where G̃ is bipartite. The proof technique involves a key
concept, that we call pairwise edge-separate feasible vertex covers. Constructing
k such covers allows to bound the approximation ratio by 1+1/k. The construc-
tion of ρ such covers to get the result follows from a structural understanding
of the contracted graph G̃. As a byproduct, this structural understanding also
allows to get improved bounds on the integrality gap and the fractional chromatic
number of 3-colorable graphs. In particular, it even manages to compute an exact
formula, depending on the odd girth, for the integrality gap and the fractional
chromatic number of the contracted graph G̃.

We then construct a class of weight functions W ⊂ QW where this upper
bound holds with equality, thus showing that this proof technique obtains tight
bounds and might have additional applications. This result can then be lifted
to the case where S is a general set, by introducing an additional parameter α
counting the total dual sum of the weights on the edges inside S, i.e. α = y(E[S]).
This then leads to an approximation ratio interpolating the rounding curve of the
standard linear program with a tight bound of (1+1/ρ)(1−α)+2α for any values
of ρ ∈ [2,∞] and α ∈ [0, 1].

We then discuss algorithmic applications to find good such sets S and show
that our analysis is optimal in the following sense: the worst case bounds for ρ
and α, which are ρ = 2 and α = 1 − 4/n, recover the integrality gap of 2 − 2/n
of the standard linear programming relaxation for a graph on n vertices.

Implications and related work
Our analysis falls into the framework of beyond the worst-case analysis [Rou21].
In particular, note that an odd cycle transversal always exists: we may simply take
S = V1/2, which recovers the standard 2-approximation algorithm for vertex cover.
Depending on how S is chosen, our algorithm can however admit significantly
better approximation ratios.

Our algorithm also connects to learning-augmented algorithms, which have ac-
cess to some prediction in their input (e.g., obtained for instance through machine
learning). This prediction is assumed to come without any worst-case guarantees,
and the goal is then to take advantage of it by making the algorithm perform
better when this prediction is good, while still keeping robust worst-case guaran-
tees when it is off [BMS20, LV21, PSK18, LLMV20, ACE+20, AGKK20]. In our
case, assuming a prediction on the set S, robustness is guaranteed since we are
never worse than a 2-approximation. In fact, even if the predicted set is not an
odd cycle transversal, one may simply greedily add vertices to it until it becomes

3.3. Preliminaries 29

one, while still guaranteeing a 2-approximation. Otherwise, our results provide a
precise understanding of how the approximation ratio improves depending on the
predicted set S. In addition, once such a set S is found, the parameters α and
ρ can easily be computed to see the improved guarantee on the approximation
ratio.

The odd cycle transversal number oct(G) is defined as the minimum number
of vertices needed to be removed in order to make the graph bipartite. The mini-
mum odd cycle transversal problem has been studied in terms of fixed-parameter
tractability [RSV04, KW14]. In particular, it is the first problem where the it-
erated compression technique has been applied [RSV04], now a classical tool in
the design of fixed-parameter tractable algorithms. The best known approxi-
mation algorithm for it has a ratio of O(

√
log(n)) [ACMM05]. Another rele-

vant concept is the odd cycle packing number ocp(G), defined as the maximum
number of vertex-disjoint odd cycles of G and satisfying ocp(G) ≤ oct(G). The
related maximum stable set problem has been studied in terms of ocp(G) in
[BFMRV14, AWZ17, CFH+20, FJWY22].

A key property implying the integrality of a polyhedron is the total unimodu-
larity (TU) of the constraint matrix describing the underlying problem, meaning
that all the square subdeterminants of the matrix are required to lie in {−1, 0, 1}
(see for instance [Sch98, Sch03]). In general, we believe it is an interesting ques-
tion to study whether one may exploit the knowledge of a TU substructure in an
integer program to obtain improved approximation guarantees through rounding
algorithms. In our case, the knowledge of an odd cycle transveral S is equivalent
to the knowledge of an induced bipartite subgraph G ′ = G \S, for which P (G ′) is
TU. We hope the techniques introduced for the pair (G, S) can help tackle other
problems.

One technique which might also benefit from our analysis is iterative rounding,
which requires solving a linear program at each iteration [LRS11]. Having a better
analysis for the case where the linear program becomes integral could potentially
be used to reduce the number of iterations and allow for better guarantees, since
iterative rounding can terminate at this step without losing solution quality.

Several different algorithms achieving approximation ratios of 2 − o(1) have
been found for the weighted and unweighted versions of the vertex cover problem:
[Kar05, Hal02, BYE83, MS85, BYE81, Hoc83]. Another large body of work is
interested in exact fixed parameter tractable algorithms for the decision version:
[BG93, BFR98, CKJ01, CLJ00, DF92, NR99, NR03, SF99, DF12].

3.3 Preliminaries
We define R+ to be the non-negative real numbers and [k] := {1, . . . , k} to be
the natural numbers up to k ∈ N. For a vector x ∈ Rn, we denote the sum of
the coordinates on a subset by x(A) :=

∑
i∈A xi. A key property of P (G) was

30 Chapter 3. Round and bipartize for vertex cover approximation

introduced by Nemhauser and Trotter in [NT75]. It essentially allows to reduce
an optimal solution x∗ ∈ {0, 1

2
, 1}V to a fully half-integral solution by looking

at the subgraph induced by the half-integral vertices. As before, we denote by
Vα := {v ∈ V | x∗v = α} the vertices taking value α and by Gα = G[Vα] the
subgraph induced by the vertices Vα.

Theorem. 3.3.1 (Nemhauser, Trotter [NT75]). Let x∗ ∈ {0, 1
2
, 1}V be an opti-

mal extreme point solution to P (G). Then, w(OPT(G1/2)) = w(OPT(G))−w(V1).

Corollary 3.3.2. Let x∗ ∈ {0, 1
2
, 1}V be an optimal solution to P (G). If U ⊂

V1/2 is a feasible vertex cover on G1/2 with approximation ratio at most ϕ, i.e.,
w(U) ≤ ϕ w(OPT(G1/2)), then w(U) + w(V1) ≤ ϕ w(OPT(G)).

Proof:
The proof is an easy consequence of Theorem 3.3.1 and the fact that ϕ ≥ 1:

w(U) + w(V1) ≤ ϕ w(OPT(G1/2)) + w(V1) ≤ ϕ w(OPT(G)).

2

The previous corollary thus implies that we may restrict our attention to the
graph G1/2, since any ϕ-approximate solution on this reduced instance can be lifted
to a ϕ-approximate solution on the original graph by adding V1 to the solution.
Note that on the weighted graph G1/2, the solution (1

2
, . . . , 1

2
) is optimal.

For a given set S ⊂ V , we define G ′ := G\S = (V ′, E ′) to be the graph obtained
by removing the set S and all the incident edges to it. Hence, E = E ′∪δ(S)∪E[S]
where δ(S) = {(u, v) ∈ E | u ∈ S, v /∈ S} and E[S] := {(u, v) ∈ E | u ∈ S, v ∈
S}. We also denote by G̃ := G/S = (Ṽ , Ẽ) the graph obtained by contracting all
the vertices in S into a single new node vS ∈ Ṽ . We allow for multiple edges, but
no self-loops. The only edges present in E but not in Ẽ are thus the ones with
both endpoints in S, i.e., E[S].

3.4 Weight space
By Corollary 3.3.2, we may assume that every weighted graph G we work with
has the property that the fully half-integral solution x = (1

2
, . . . , 1

2
) is an optimal

solution to the linear program P (G). In this section, we characterize the weight
functions satisfying this assumption.

Lemma 3.4.1. Let G = (V,E) be a graph and let w : V → R+ be a weight
function. The feasible solution (1

2
, . . . , 1

2
) to the linear program P (G) is optimal

if and only if there exists y ∈ RE
+ satisfying y(δ(v)) = wv for every v ∈ V .

3.4. Weight space 31

Proof:
By complementary slackness, a feasible solution x ∈ RV

+ to the primal P (G) and
a feasible solution y ∈ RE

+ to the dual D(G) are optimal if and only if:

xv > 0 =⇒ y(δ(v)) = wv ∀v ∈ V

and
ye > 0 =⇒ xu + xv = 1 ∀e = (u, v) ∈ E.

If x = (1
2
, . . . , 1

2
) is an optimal solution, then, by strong duality, there exists an

optimal dual solution y and this solution needs to satisfy y(δ(v)) = wv for every
v ∈ V . Conversely, if there exists a dual solution y satisfying y(δ(v)) = wv for
every v ∈ V , then the pair x = (1

2
, . . . , 1

2
) and y satisfy both the conditions of

complementary slackness, implying that x is optimal. 2

Such instances have been called edge-induced in [CFH+20, FJWY22], in the
sense that the dual values on the edges are free parameters, and the weights on
the nodes are determined once the dual values are fixed. Such instances also
satisfy:

w(V) =
∑
v∈V

wv =
∑
v∈V

y(δ(v)) =
∑
v∈V

∑
e∈E

ye 1{e∈δ(v)} =
∑
e∈E

ye
∑
v∈V

1{e∈δ(v)} = 2 y(E).

Observe that the approximation ratio of a feasible solution U ⊂ V is defined as
w(U)/w(OPT(G)) and is invariant under scaling of the weights. We thus make a
normalization ensuring that the optimal LP solution has objective value one, i.e.,
w(V)/2 = y(E) = 1, to get the following weight space polytope:

QW :=
{
w ∈ RV

+ | ∃y ∈ [0, 1]E such that y(E) = 1 and wv = y(δ(v)) ∀v ∈ V
}
.

It turns out that the vertices of the polytope QW have a one-to-one correspon-
dance with the edges of the graph. We denote by 1v ∈ RV the indicator vector
of a vertex v ∈ V .

Theorem 3.4.2. The polytope QW of a graph G = (V,E) can be expressed as:

QW = conv
({

1u + 1v

∣∣ (u, v) ∈ E}).
Moreover, 1u + 1v is an extreme point of QW for every edge (u, v) ∈ E.

Proof:
Let w ∈ QW and y ∈ RE

+ such that y(δ(v)) = wv for every v ∈ V , as well as
y(E) = 1. Observe that:

w =
∑

(u,v)∈E

y(u,v)
(
1u + 1v

)
.

32 Chapter 3. Round and bipartize for vertex cover approximation

By looking at this equality coordinate by coordinate, for a fixed vertex v ∈ V ,
the contribution from the left hand side is wv whereas the contribution from the
right hand side is y(δ(v)). We have thus managed to decompose an arbitrary
w ∈ QW into a convex combination of the vectors

{
1u + 1v

∣∣ (u, v) ∈ E}.
Let (u, v) ∈ E and let us now show that w̄ := 1u + 1v is an extreme point of

QW . Firstly, it is clear that w̄ ∈ QW , the dual solution satisfying complementary
slackness being y(u,v) = 1 and ye = 0 for every e ∈ E \ (u, v), and the sum
of all the weights being indeed equal to two. Suppose for contradiction that
there exist distinct w1, w2 ∈ QW such that w̄ = 1

2
(w1 + w2). Notice that, since

the weight vectors are required to be non-negative, w̄z = w1
z = w2

z = 0 for every
z ∈ V \{u, v}. Thus, we can assume without loss of generality that w1

u = w2
v = 1+ϵ

and w1
v = w2

u = 1 − ϵ for some ϵ > 0. However, the fully half-integral solution is
now not an optimal LP solution on the weights w1 and w2. Indeed, on the weight
function w1, the feasible solution V \ {u} has objective value 1 − ϵ, whereas the
fully half-integral solution has weight 1. Similarly, on the weight function w2, the
feasible solution V \ v has objective value 1− ϵ. By Lemma 3.4.1, w1, w2 /∈ QW ,
leading to a contradiction. The weight function w̄ thus cannot be written as a
non-trivial convex combination of two other points in the polytope QW and is
therefore an extreme point (or a vertex) of QW . 2

We end this section by showing that this normalization of the weight space
allows us to get a convenient lower bound on w(OPT(G)).

Lemma 3.4.3. Let G = (V,E) be a graph. For any w ∈ QW , w(OPT(G)) ≥ 1.

Proof:
Since w ∈ QW , we know that the fully half-integral solution is an optimal linear
programming solution, showing 1 = w(V)/2 ≤ w(OPT(G)), by feasibility of
OPT(G). 2

3.5 Analysis of the algorithm
This section is devoted to the analysis of the approximation ratio of the algorithm.
We assume that we are given as input a pair (G, S) consisting of a weighted graph
and an odd cycle transversal S ⊂ V . By Corollary 3.3.2, we may assume that
the weight function satisfies w ∈ QW . By the previous section, there are dual
edge weights ye ≥ 0 such that wv = y(δ(v)) for every v ∈ V and which satisfy∑

e∈E ye = 1.
The algorithm is now very simple. First, take the vertices in S ⊂ V to the

cover and remove them from the graph. Then solve the integral linear program

3.5. Analysis of the algorithm 33

P (G \ S) and take the vertices having LP value one to the cover. The approxi-
mation ratio, given a weight function w ∈ QW , is thus defined as

R(w) :=
w(S) + w(OPT(G \ S))

w(OPT(G)) . (3.5.1)

For simplicity of notation, we omit the dependence on w of OPT(G) and OPT(G \
S). As a reminder, the bipartite graph G \ S is denoted by G ′ = (V ′, E ′). The
vertex contracted graph G/S is denoted by G̃ = (Ṽ , Ẽ) and the contracted node
is denoted by vS.

3.5.1 Stable set to bipartite
We assume in this section that S is a stable set. We will then generalize the
results obtained here in a natural way to the most general setting of an arbitrary
set S. We now state our main theorem of this section.

Theorem 3.5.1. Let (G, S) be the input to the rounding algorithm, with S being
a stable set. For any w ∈ QW , the approximation ratio satisfies

R(w) ≤ 1 +
1

ρ

where 2ρ − 1 is the odd girth of the contracted graph G̃ and satisfies ρ ∈ [2,∞].
Moreover, this bound is tight and is attained for a class of weight functions
W ⊂ QW .

Remark 3.5.2. We define the odd girth of a bipartite graph as being ∞.

Definition 3.5.3. Let (G, S) be a pair consisting of a graph with an odd cycle
transversal S. For a feasible vertex cover U ⊂ V \ S of the bipartite graph
G ′ = G \ S, we define

EU :=
{
(u, v) ∈ E

∣∣ u ∈ U, v ∈ U or u ∈ U, v ∈ S
}
.

In words, these are the edges with either both endpoints in the cover U , or with
one endpoint in U and one in S.

Definition 3.5.4. Let (G, S) be a pair consisting of a graph with an odd cycle
transversal S. Feasible vertex covers U1, . . . , Uk of the bipartite graph G ′ = G \
S are defined to be pairwise edge-separate if the edge sets {EU1 , . . . , EUk

} are
pairwise disjoint.

Remark 3.5.5. We will often say that covers are pairwise edge-separate for the
pair (G, S). It is however worth emphasizing that these covers are defined on the
bipartite graph G ′ = G \ S.

34 Chapter 3. Round and bipartize for vertex cover approximation

This definition turns out to be the key concept for us in order to prove im-
proved bounds on the approximation ratio of the algorithm, as shown by the next
lemma.

Lemma 3.5.6. Let (G, S) be the input to the rounding algorithm, with S being
a stable set. If there exists k pairwise edge-separate feasible vertex covers of the
bipartite graph G ′ = G \ S, then, for every w ∈ QW , the approximation ratio of
the algorithm satisfies

R(w) ≤ 1 +
1

k
.

Proof:
Let w ∈ QW and let y ∈ RE

+ be the corresponding dual solution satisfying wv =
y(δ(v)) and y(E) = 1. We denote by {U1, . . . , Uk} the pairwise edge-separate
covers of G ′ = (V ′, E ′). We can now write down the weights of S and every
feasible cover Ui with the help of the dual variables:

w(S) =
∑
v∈S

wv =
∑
v∈S

y(δ(v)) = y(δ(S))

w(Ui) =
∑
v∈Ui

wv =
∑
v∈Ui

y(δ(v)) = y(E ′) + y(EUi
) ∀i ∈ [k]

The first equality holds because S is a stable set and thus only has edges crossing
the set. The second equality holds because every Ui counts the dual value ye
of every e ∈ E ′ at least once, by feasibility of the cover, and thus giving a
contribution of y(E ′). The edges in EUi

then give an additional contribution of
y(EUi

).
By Lemma 3.4.3, the approximation ratio satisfies:

R(w) =
w(S) + w(OPT(G \ S))

w(OPT(G)) ≤ w(S) + w(OPT(G ′)) ≤ w(S) +min
i∈[k]

w(Ui)

= y(δ(S)) + y(E ′) +min
i∈[k]

y(EUi
) = 1 +min

i∈[k]
y(EUi

) ≤ 1 +
1

k
.

The last equality follows from the fact that E = E ′∪δ(S) and y(E) = 1. The last
inequality follows from the fact that the edge sets {EUi

}i∈[k] are pairwise disjoint
and have a dual sum of at most one, since the total sum of the edges of the graph
is y(E) = 1. This minimum can thus be upper bounded by 1/k. 2

In order to prove the upper bound in Theorem 3.5.1, we thus need to construct
ρ pairwise edge-separate covers of G ′ = G \S. The key for being able to do that is
to analyze the structure of the contracted graph G̃ = G/S, where S is contracted
into a single node vS.

3.5. Analysis of the algorithm 35

Lemma 3.5.7. Let (G, S) be a graph with an odd cycle transversal S. If the
contracted graph G̃ contains an odd cycle, then there exists ρ edge-separate feasible
covers for the pair (G̃, vS), where 2ρ− 1 is the odd girth of G̃.

Proof:
We now dive deeper into the structure of the bipartite graph G \ S = G̃ \ vS.
By assumption, this graph admits a bipartition A ∪ B of the vertices. Let us
assume that it has k connected components A1 ∪ B1, . . . , Ak ∪ Bk, all of which
are bipartite as well, where A =

⋃
iAi and B =

⋃
iBi. We now fix an arbitrary

such component Aj ∪ Bj.

• If vS has an incident edge to both Aj and Bj, then this component contains
(if including vS) an odd cycle of G̃. This holds since any path between a
node in Aj and a node in Bj has odd length.

• If vS has incident edges with only one side, we assume without loss of
generality that this side is Aj. One could simply switch both sides in the
other case while still keeping a valid bipartition of the graph G̃ \ vS.

• If vS does not have incident edges with either of the two sides, then Aj∪Bj is
a connected component of G̃. We call such components dummy components
and denote by Ad ∪ Bd the bipartite graph formed by taking the union of
all the dummy components.

We denote NA(vS) = N(vS) ∩ A and NB(vS) = N(vS) ∩B. We now split the
graph into layers, where each layer corresponds to the nodes at the same shortest
path distance from NA(vS). More precisely, we define

Li :=
{
v ∈ A ∪ B | d(NA(vS), v) = i

}
for i ∈ {0, . . . , q} (3.5.2)

where d(NA(vS), v) represents the unweighted shortest path distance between v
and a vertex in NA(vS). The parameter q is defined to be the maximal finite
distance from NA(vS) in the graph G̃. An important observation is the fact that
these layers are alternatingly included in one side of the bipartition, see Figure
3.1 for an illustration of the construction.

If the graph G̃ is not connected, note that d(NA(vS), v) =∞ for the vertices v
lying in dummy components. In order to add the dummy components to the layers
and keep alternation between the two sides of the bipartition, we define the last
two layers to either be {Lq+1 := Ad, Lq+2 := Bd} or {Lq+1 := Bd, Lq+2 := Ad},
depending on which side of the bipartition the last connected layer Lq lies. We
now have that Li ⊂ A if i is even, and Li ⊂ B if i is odd. In fact,

A =

⌊l/2⌋⋃
i=0

L2i and B =

⌈l/2⌉⋃
i=1

L2i−1,

36 Chapter 3. Round and bipartize for vertex cover approximation

L0 L1 ... L2ρ−3

Figure 3.1: The layers of a bipartite graph G̃ \ vS = (A ∪B,E ′) with ρ = 4. The
blue square vertices correspond toN(vS), where the two left ones are L0 = NA(vS)
and the two right ones are NB(vS).

where the parameter l ∈ N represents the index of the last layer: if G̃ is connected,
then l = q, otherwise l = q + 2. Notice also that L0 = NA(vS). However, NB(vS)
may now have several different vertices in different layers, see Figure 3.1.

Let C ⊂ V be an arbitrary odd cycle of G̃. Notice that this cycle contains
vS, a vertex from NA(vS) and a vertex from NB(vS), since G̃ \ vS is bipartite and
therefore does not contain an odd cycle. Any odd cycle C in G̃ thus corresponds
to an odd path between a vertex in NA(vS) = L0 and a vertex in NB(vS). By
the assumption that the shortest odd cycle length of G̃ is 2ρ − 1, the first layer
having a non-empty intersection with NB(vS) is L2ρ−3. A shortest odd cycle of
length 2ρ− 1 therefore corresponds to an odd path of length 2ρ− 3 between L0

and a vertex in L2ρ−3 ∩NB(vS), see Figure 3.1 for an illustration. We now define
edges connecting two consecutive layers Li and Li+1 as follows:

E[Li,Li+1] := {(u, v) ∈ E ′ | u ∈ Li, v ∈ Li+1} ∀i ∈ {0, . . . , l − 1}.

We also denote by

δA(vS) = {(vS, u) ∈ Ẽ | u ∈ A}, δB(vS) = {(vS, u) ∈ Ẽ | u ∈ B}

the incident edges to vS respectively connecting to A and B.
We are now ready to construct our desired ρ pairwise edge-separate covers

of G̃ \ vS, that we denote by U1, . . . , Uρ and illustrated in Figure 3.2. Firstly,
notice that taking one side of the bipartition is a feasible vertex cover. We thus
define Uρ = A and Uρ−1 = B. Observe that we then have EUρ = δA(vS) and
EUρ−1 = δB(vS).

We now construct ρ−2 additional covers with the help of the layers. If ρ 6= 2,
fix a j ∈ [ρ−2], and start the cover Uj by taking the two consecutive layers L2j−1

and L2j. Complete this cover by taking remaining layers alternatingly (hence
always skipping one) until covering every edge of the graph. Notice that this
cover has an empty intersection with N(vS). We then have that

EUρ = δA(vS), EUρ−1 = δB(vS), EUj
= E[L2j−1,L2j] ∀j ∈ [ρ− 2],

which are all pairwise disjoint edge sets, finishing the proof. 2

3.5. Analysis of the algorithm 37

EU4 = δA(vS)EU3 = δB(vS)

EU1 = E[L1,L2] EU2 = E[L3,L4]

Figure 3.2: The ρ feasible covers of G ′ constructed in the proof of Lemma 3.5.7.

We now have all the tools to prove the upper bound of Theorem 3.5.1.
Proof:
Asume first that ρ <∞, meaning that G̃ contains an odd cycle. By Lemma 3.5.7,
there exists ρ pairwise edge-separate covers for the pair (G̃, vS). These covers are
then still edge-separate for the pair (G, S), since the bipartite graph is the same
in both cases, i.e. G ′ = G̃ \ vS = G \ S. This finishes the proof by Lemma 3.5.6.

If ρ = ∞, then G̃ is bipartite, with a bipartition Ã ∪ B̃. Assume without
loss of generality that vS ∈ Ã. Note that Ẽ = E ′ ∪ δ(vS) and thus 1 = y(Ẽ) =
y(E ′) + y(δ(vS)). Any feasible cover of G ′ = G \ S needs to count the dual
value of every edge in E ′ at least once. Taking the cover Ã \ vS counts every
edge in E ′ exactly once, showing that w(OPT(G \ S)) = y(E ′). Hence, R(w) ≤
w(S) + w(OPT(G \ S)) = y(δ(vS)) + y(E ′) = 1. 2

We now show that this bound is tight and is attained for a class of weight
functions w ∈ W for any such graph G and stable set S. For the case where ρ =∞,
it is clear that the approximation ratio always satisfies R(w) ≥ 1, showing that
the bound in Theorem 3.5.1 is tight for any w ∈ QW .

We thus assume that ρ < ∞. Let C be all the shortest odd cycles (of length
2ρ−1) of the graph G̃, each of which is containing vS. For every such cycle C ∈ C,
we define the following dual function on the edges yC : Ẽ → R+: set both dual
edges incident to vS to 1/ρ and then alternatingly set the dual edges to 0 and
1/ρ along the odd cycle. For any edge outside of C, set its dual value to 0. Such
a solution clearly satisfies yC(Ẽ) = 1. We now take the convex hull of all these
functions:

Y :=
{
y : Ẽ → R+ | y =

∑
C∈C

λCyC ,
∑
C∈C

λC = 1, λC ≥ 0 ∀C ∈ C
}
.

Because of the one-to-one correspondence between the edge sets Ẽ and E, due to
the fact that S is a stable set, we can naturally define a weight function on the
original vertex set once we fix a y ∈ Y by setting wv := y(δ(v)) for every v ∈ V .

38 Chapter 3. Round and bipartize for vertex cover approximation

1
ρ

1
ρ

1
ρ

λ1
ρ

λ2
ρ

1
ρ

1
ρ

Figure 3.3: An example of a weight function w ∈ W obtained by a convex
combination of two basic weight functions of shortest odd cycles.

We define the space of all such weight functions as

W := {w : V → R+ | wv = y(δ(v)) ∀v ∈ V, y ∈ Y} .

Theorem 3.5.8. For any weight function w ∈ W, the approximation ratio sat-
isfies

R(w) = 1 +
1

ρ

where 2ρ− 1 is the odd girth of G̃ and satisfies ρ ∈ [2,∞).

Proof:
Let C be the set of all the shortest odd cycles (of length 2ρ − 1) of the graph G̃
and let w ∈ W with the corresponding y =

∑
C∈C λ

CyC . Notice that, for any
subset of vertices U ⊂ V ′ of the bipartite graph G ′, we can count its weight as

w(U) =
∑
v∈U

wv =
∑
v∈U

y(δ(v)) =
∑
v∈U

∑
C∈C

λCyC(δ(v))

=
∑
v∈U

∑
C∈C

λC

ρ
1{v∈C} =

1

ρ

∑
C∈C

λC
∑
v∈U

1{v∈C} =
1

ρ

∑
C∈C

λC |U ∩ C|. (3.5.3)

The end of the proof now heavily uses the decomposition of G̃ into layers described
in (3.5.2). Notice that every odd cycle C ∈ C intersects each layer Li for i ∈
{0, . . . , 2ρ − 3} exactly once. Therefore, by (3.5.3), w(Li) = 1/ρ for every i ∈
{0, . . . , 2ρ− 3}. We now claim that

w(OPT(G)) = 1, w(OPT(G ′)) = ρ− 1

ρ
and w(S) =

2

ρ
.

The fact that w(OPT(G)) ≥ 1 follows from Lemma 3.4.3. For the reverse inequal-
ity, notice that it is possible to take a feasible cover by taking exactly ρ layers in
addition to the zero weight vertices, for instance L0 ∪ L2 ∪ L3 ∪ L5 · · · ∪ L2ρ−3,
showing w(OPT(G)) ≤ 1.

3.5. Analysis of the algorithm 39

0

1

2

1

G/S is bipartite

0

1 + 1/ρ

2

1

G/S is not bipartite

Figure 3.4: The plot of the approximation ratio R(w) with respect to the param-
eter α ∈ [0, 1].

Observe now that w(OPT(G ′)) = w(OPT(G \ S)) = w(OPT(G̃ \ vS)). After
removal of vS, every cycle C ∈ C becomes a path of length 2ρ − 3 (and thus
consisting of 2ρ−2 vertices), with one vertex in each layer Li for i ∈ {0, . . . , 2ρ−3}.
By feasibility, OPT(G ′) has to contain at least ρ− 1 vertices for every such path.
Using (3.5.3), we infer w(OPT(G ′)) ≥ (ρ−1)/ρ. For the reverse inequality, taking
ρ − 1 layers alternatively, such as L0 ∪ L2 ∪ L4 · · · ∪ L2ρ−4, as well as the zero
weight vertices, builds a feasible cover of weight exactly (ρ− 1)/ρ.

Finally, notice that w(S) = w(vS) = 2/ρ because every C ∈ C contains vS.
By combining the three equalities, we get the desired result

R(w) =
w(S) + w(OPT(G ′))

w(OPT(G)) = 1 +
1

ρ
.

2

3.5.2 Arbitrary set to bipartite
We now consider the setting where S is now an arbitrary set. Our guarantee
on the approximation ratio will now also depend on the total sum of the dual
variables on the edges inside of the set S. We denote this sum by

α := y(E[S]) ∈ [0, 1].

Theorem 3.5.9. For any w ∈ QW , the approximation ratio satisfies

R(w) ≤
(
1 +

1

ρ

)
(1− α) + 2α with α ∈ [0, 1] and ρ ∈ [2,∞]

where 2ρ − 1 denotes the odd girth of the contracted graph G̃. Moreover, these
bounds are tight and are attained for any α ∈ [0, 1] and any ρ ∈ [2,∞].

40 Chapter 3. Round and bipartize for vertex cover approximation

Proof:
Upper bound for ρ < ∞. We consider first the case where ρ < ∞. The

proof essentially follows the same arguments as the one of Lemma 3.5.6 with the
α parameter incorporated, and we thus only highlight the main differences. We
decompose the weight of the set S with respect to the dual variables. The edges
in E[S] are counted twice, whereas the edges in δ(S) are counted once:

w(S) = 2α + y(δ(S)). (3.5.4)

Consider the contracted graph G̃ = G/S = (Ṽ , Ẽ) and denote by vS the contracted
node. The edge set of this graph is now Ẽ = δ(S) ∪ E ′ , since the edges in E[S]
have been collapsed. By Lemma 3.5.7, we can construct ρ edge-separate covers
U1, . . . , Uρ ⊂ Ṽ \ vS for the pair (G̃, vS). These covers are still edge-separate for
the pair (G, S), implying

w(OPT(G \ S)) ≤ min
i∈[ρ]

w(Ui) = y(E ′) +min
i∈[ρ]

y(EUi
) ≤ y(E ′) +

1− α
ρ

. (3.5.5)

The first inequality holds since every Ui is a feasible cover of G \ S. The second
equality holds by counting the weight of a cover Ui in terms of the dual edges.
The last inequality holds because the edge sets {EUi

}i∈[ρ] are pairwise disjoint,
and their total dual sum is at most 1− α. Combining Lemma 3.4.3, (3.5.4) and
(3.5.5),

R(w) ≤ 2α + y(δ(S)) + y(E ′) +
1− α
ρ

= 1 + α +
1− α
ρ

=

(
1 +

1

ρ

)
(1− α) + 2α.

Upper bound for ρ = ∞. The only change with respect to the previous
proof is the bound on w(OPT (G \ S)) in (3.5.5). We denote the contracted
graph by G̃ = G/S and by vS the contracted vertex. Suppose G̃ admits the
bipartition (Ã ∪ B̃, Ẽ) and assume without loss of generality that vS ∈ Ã. Note
that Ẽ = E ′ ∪ δ(vS).

Any feasible cover of G \S needs to count the dual value of every edge in E ′ at
least once. Taking the cover Ã\vS counts every edge in E ′ exactly once, showing
that w(OPT (G \ S)) = y(E ′). Hence, using y(E) = α + y(δ(S)) + y(E ′) = 1, we
get

R(w) ≤ 2α + y(δ(S)) + y(E ′) = 1 + α.

Tight instance for ρ < ∞. An example of a tight instance can be con-
structed as follows. We first construct G/S: take an odd cycle of length 2ρ − 1
with a distinguished node vS and assign dual value (1− α)/ρ to both edges inci-
dent to it. Alternatively assign dual values 0 and (1−α)/ρ along the odd cycle for
the remaining edges. In order to construct G, replace vS by a triangle S with dual
edges set to α, 0 and 0, where the two previous incident edges to vS are adjacent
to the endpoints of the edge with value α. Note that we replace it with a triangle

3.6. Algorithmic applications 41

instead of a single edge in order to avoid G becoming bipartite. Similarly to the
proof of Theorem 3.5.8, one can check that

w(S) = 2α +
2 (1− α)

ρ
; w(OPT (G \ S)) = (1− α)(ρ− 1)

ρ
; w(OPT (G)) = 1.

Therefore,

R(w) = 2α +
2 (1− α)

ρ
+

(1− α)(ρ− 1)

ρ
=

(
1 +

1

ρ

)
(1− α) + 2α.

Tight instance for ρ = ∞. Let G be an arbitrary odd cycle. Consider an
arbitrary edge (u, v) ∈ E and assign it dual value α. The set S is defined to
be S = {u, v}. Assign dual value zero to the edge (u,w) ∈ E, where w is the
second neighbour of u in the cycle. For the remaining edges, arbitrarily assign
dual values, while ensuring that they sum up to 1 − α. The fact that one edge
is equal to zero is necessary in order to get the exact formula w(OPT (G)) = 1, a
feasible cover showing w(OPT (G)) ≤ 1 being the following: take both endpoints
of the edge (u,w) and take remaining vertices alternatively (hence always skipping
one) along the odd cycle. All the edges are counted once, except for (u,w),
which is counted twice but has value zero. Moreover, w(S) = 2α + y(δ(S)) and
w(OPT (G \ S)) = y(E ′), where E ′ is the edge set of the bipartite graph G \ S.
Therefore,

R(w) = 2α + y(δ(S)) + y(E ′) = 1 + α.

2

3.6 Algorithmic applications
We focus in this section on efficient ways to find odd cycle transversals with a low
value for the α parameter. In fact, once such a set S is found, there can also be
freedom in the choice of the dual solution in order to optimize the α parameter.
This motivates the following definition.

Definition 3.6.1. Let (G, S, y, w) be a graph with an odd cycle transversal S ⊂
V , weights w ∈ QW and a dual solution y ∈ RE

+. A tuple (G ′, S ′, y′, w′) is
approximation preserving if

w(S) + w(OPT(G \ S)) ≤ w′(S ′) + w′(OPT(G ′ \ S ′)).

Moreover, we say that α ∈ [0, 1] is valid for the pair (G, S) if there exists an
approximation preserving (G ′, S ′, y′, w′) such that α = y′(E[S ′]).

42 Chapter 3. Round and bipartize for vertex cover approximation

Finding a valid α ∈ [0, 1] would directly allow us to use it in the bound of Theorem
3.5.9, where the ρ parameter would correspond to the one of the approximation
preserving graph. We present here an application if a coloring of a graph can be
found efficiently.

Theorem 3.6.2. Let G = (V,E) be a graph with weights w ∈ QW that can be
k-colored in polynomial time for k ≥ 4. There exists an efficiently findable set
S ⊂ V bipartizing the graph and a valid α such that α ≤ 1 − 4/k, leading to an
approximation ratio of

R(w) ≤ 2− 4

k

(
1− 1

ρ

)
.

Proof:
Let us denote by V1, . . . , Vk the k independent sets defining the color classes of
the graph G. We assume without loss of generality that they are ordered by
weight w(V1) ≤ w(V2) · · · ≤ w(Vk). Since w(V) = 2, the two color classes with
the largest weights satisfy w(Vk−1) + w(Vk) ≥ 4/k. We define the bipartizing set
to be the remaining color classes: S := V1 ∪ · · · ∪ Vk−2. We denote by y ∈ RE

+ the
dual solution satisfying complementary slackness and y(E) = 1.

We now define an approximation preserving (G ′, S ′, y′, w′) in the following
way. Let G ′ = Kk be the complete graph on k vertices, denoted by {v1, . . . , vk}.
The weights are defined to be

w′(vi) := w(Vi) and y′(vi, vj) := y(E[Vi, Vj])

for every i, j ∈ [k]. These clearly satisfy the complementary slackness condition
y′(δ(vi)) = w′(vi) for every i ∈ [k]. The bipartizing set is defined to be S ′ :=
{v1, . . . , vk−2}. This tuple is approximation preserving since w(S) = w′(S ′) and
w(OPT(G \ S)) ≤ w′(OPT(G ′ \ S ′)). In order to prove the theorem, we still need
to tweak the dual solution y′ to ensure α := y′(E[S ′]) ≤ 1 − 4/k. Observe that
w′(vk−1) + w′(vk) ≥ 4/k.

1. If y′(vk−1, vk) = 0, then the result follows since in that case y′(δ(S ′)) ≥ 4/k
and thus y′(E[S ′]) ≤ 1− 4/k.

2. If y′(E[S ′]) = 0, then the result trivially follows as well.

Suppose thus that y′(E[S ′]) > 0 and y′(vk−1, vk) > 0. Pick an arbitrary edge
(vi, vj) ∈ E[S ′] satisfying y′(vi, vj) > 0 and consider the 4-cycle (vi, vj, vk−1, vk).
Notice that alternatively increasing and decreasing the dual values on the edges
of this cycle by a small amount ϵ > 0 gives another feasible dual solution
satisfying the complementary slackness condition. More formally, we set ϵ :=
min{y′(vi, vj), y′(vk−1, vk)}, decrease y′(vi, vj) and y′(vk−1, vk) by ϵ, while increas-
ing y′(vj, vk−1) and y′(vk, vi) by the same amount. Observe that this leads to

3.7. Integrality gap and fractional chromatic number 43

either (vi, vj) or (vk−1, vk) dropping to dual value zero. We can repeat this pro-
cedure until either y′(E[S ′]) = 0 or y′(vk−1, vk) = 0, finishing the proof of the
theorem. 2

We now claim that this result is optimal in the following sense. Consider
an n-vertex graph. It is known that the integrality gap of the standard linear
programming relaxation for vertex cover is upper bounded by 2 − 2/n, a bound
which is attained on the complete graph. This implies that any approximation
algorithm lower bounding w(OPT) by comparing it to the optimal LP solution,
as we do in Lemma 3.4.3, cannot do better than 2−2/n in the worst case. Setting
ρ = 2 in Theorem 3.6.2, which corresponds to the worst case since ρ ∈ [2,∞],
recovers this bound and a result of Hochbaum in [Hoc83].

3.7 Integrality gap and fractional chromatic num-
ber

We focus in this section on proving tight bounds for the integrality gap of 3-
colorable graphs. A key result that we use in this section is given by Singh in
[Sin19], which relates the integrality gap with the fractional chromatic number of
a graph. The latter is denoted as χf (G) and is defined as the optimal solution of
the following primal-dual linear programming pair. We denote by I ⊂ 2V the set
of all independent sets of the graph G. Solving these linear programs is however
NP-hard because of the possible exponential number of independent sets.

min
∑
I∈I

yI∑
I∈I,v∈I

yI ≥ 1 ∀v ∈ V

yI ≥ 0 ∀I ∈ I

max
∑
v∈V

zv∑
v∈I

zv ≤ 1 ∀I ∈ I

zv ≥ 0 ∀v ∈ V

Note that χf (G) = 2 if and only if G is bipartite.

Theorem. 3.7.1 (Singh, [Sin19]). Let G = (V,E) be a graph. The integrality gap
of the vertex cover linear programming relaxation P (G) satisfies

IG(G) = 2− 2

χf (G)
.

We first focus on graphs with the existence of a single vertex whose removal
produces a bipartite graph. The following theorem generalizes the result given
for the cycle graph in [ABL02, SU11] and turns out to be the same formula as
for series-parallel graphs [GX16].

44 Chapter 3. Round and bipartize for vertex cover approximation

L0 L1 ... L2ρ−3

vp

Figure 3.5: An optimal dual solution constructed in the proof of Theorem 3.7.2.
Each node on a shortest odd cycle is assigned a fractional value of 1/(ρ− 1).

Theorem 3.7.2. Let G = (V,E) be a non-bipartite graph and vp ∈ V such that
G \ vp = (A ∪ B,E ′) is bipartite. Then,

χf (G) = 2 +
1

ρ− 1
,

where 2ρ− 1 is the odd girth of G.

Proof of Theorem 3.7.2:
We prove this theorem by constructing feasible primal and dual solutions of ob-
jective value 2+1/(ρ− 1). By weak duality, these two solutions are then optimal
for their respective linear programs, hence proving the theorem.

We first construct the dual solution. Let C be the set of all the shortest odd
cycles of G. For any such cycle C ∈ C, define the dual solution zC ∈ RV by

zCv =

{
1/(ρ− 1) if v ∈ C
0 if v ∈ V \ C

This solution is feasible since any independent set in an odd cycle of length 2ρ−1
has size at most ρ− 1. Indeed, fix an independent set I ∈ I, then:∑

v∈I

zCv =
∑

v∈I∩C

1

ρ− 1
=
|I ∩ C|
ρ− 1

≤ 1.

Moreover, the objective value of this solution is:∑
v∈V

zCv =
∑
v∈C

1

ρ− 1
=

2ρ− 1

ρ− 1
= 2 +

1

ρ− 1
.

Let us now construct the primal solution. We will do so by constructing
2ρ − 1 independent sets Ik ∈ I and assigning to each of them a fractional value
of y(Ik) = 1/(ρ− 1). All the other independent sets are assigned value zero. We
split the bipartite graph G \ vp into the layers

Li := {v ∈ A ∪ B | d(NA(vp), v) = i} for i ∈ {0, . . . , l}.

3.7. Integrality gap and fractional chromatic number 45

Figure 3.6: The 2ρ − 1 independent sets Ik constructed in the optimal primal
solution. The blue nodes correspond to {Uk | k ∈ [2ρ − 1]}, whereas the orange
nodes correspond to {R1, R2}.

as explained in (3.5.2). As a reminder, any shortest odd cycle corresponds to a
path between L0 = NA(vp) and L2ρ−3 ∩NB(vp). The original vertex set V is thus
decomposed into {vp} ∪L0 ∪ · · · ∪ Ll, where each layer is an independent set and
only has edges going out to vp or its two neighbouring layers.

Let us first focus on the subgraph consisting of the vertices in {vp}∪
⋃2ρ−3

i=0 Li,
where any shortest odd cycle has exactly one vertex per layer (per abuse of
notation, we say that {vp} is also a layer in this situation). For convenience of
indexing, we rename these layers as L̃1, . . . , L̃2ρ−1 where L̃1 = vp and L̃i = Li−2

for i > 1. We now create 2ρ−1 independent sets on this subgraph in the following
way. The first independent set is defined as U1 = L̃1∪L̃4∪L̃6 · · ·∪L̃2ρ−2, where we
take the first layer L̃1, skip two before taking the next one and then continue by
taking the remaining layers alternatingly (hence always skipping one), see Figure
3.6. Note that the layer following L̃2ρ−1 is assumed to be L̃1. This procedure
generates in fact a distinct independent set by starting at L̃k for any k ∈ [2ρ− 1]
and we denote the corresponding independent set by Uk. Notice that each layer is
contained in exactly ρ−1 of the constructed independent sets {Uk | k ∈ [2ρ−1]}.

We now focus on the subgraph consisting of the vertices in
⋃

i>2ρ−3 Li. We
can construct two different independent sets there by taking either the odd or

46 Chapter 3. Round and bipartize for vertex cover approximation

even indexed layers, i.e.

R1 :=
⋃

i odd, i>2ρ−3

Li and R2 :=
⋃

i even, i>2ρ−3

Li.

We now define our final 2ρ− 1 independent sets on the full graph as:

Ik :=

{
Uk ∪R1 if vp /∈ Uk

Uk ∪R2 if vp ∈ Uk

∀k ∈ [2ρ− 1].

These are in fact independent sets: in the first case, the first layer in R1 is L2ρ−1

whereas the last layer in Uk has index at most 2ρ − 3, meaning that there are
no two neighbouring layers. In the second case, since vp ∈ Uk, we have that
L2ρ−3 /∈ Uk, by construction of Uk. The last layer in Uk thus has index at most
2ρ−4, whereas the first layer in R2 is L2ρ−2, meaning again that there are no two
neighbouring layers. In addition, there is no edge between vp and R2, because
the only even indexed layer having edges sent to vp is L0 = NA(vp).

We now define our primal solution as

y(Ik) =
1

ρ− 1
∀k ∈ [2ρ− 1],

and y(I) = 0 for every other independent set I ∈ I. We now show this is a feasible
solution, i.e. that every vertex v ∈ V belongs to at least ρ − 1 independent
sets in {Ik | k ∈ [2ρ − 1]}. For v ∈ {vp} ∪

⋃2ρ−3
i=0 Li, such a vertex lies by

construction in exactly ρ− 1 independent sets {Uk | k ∈ [2ρ− 1]}, and thus also
of {Ik | k ∈ [2ρ − 1]}. For v ∈

⋃
i>2ρ−3 Li, if v belongs to an even indexed layer,

then it is contained in ρ − 1 of the desired independent sets. If it belongs to an
odd indexed layer, then it is contained in ρ of them. Therefore,∑

I∈I,v∈I

yI =

2ρ−1∑
k=1

y(Ik) 1{v∈Ik} =
1

ρ− 1

2ρ−1∑
k=1

1{v∈Ik} ≥ 1.

The objective value of this primal solution is clearly 2 + 1/(ρ − 1). We have
constructed feasible primal and dual solutions with the same objective value. By
weak duality, this finishes the proof of the theorem. 2

We now consider the case where G = (V,E) is a graph with chromatic number
χ(G) = 3.

Theorem 3.7.3. Let G = (V,E) be a 3-colorable graph with color classes V =
V1 ∪ V2 ∪ V3. Then,

χf (G) ≤ 2 + min
i∈{1,2,3}

1

ρi − 1

where 2ρi − 1 is the odd girth of the contracted graph G/Vi for each i ∈ {1, 2, 3}.
Moreover, equality holds if one color class only contains one vertex.

3.7. Integrality gap and fractional chromatic number 47

Proof:
We prove this theorem by constructing three feasible solutions of value 2+1/(ρi−
1) for each i ∈ {1, 2, 3} to the primal linear program of the fractional chromatic
number on the graph G.

Fix an i ∈ {1, 2, 3} and consider the graph G̃ := G/Vi = (Ṽ , Ẽ) with odd girth
2ρi − 1. We denote the contracted node by ṽ ∈ Ṽ . Since this graph is bipartite
if we were to remove ṽ, we know that its fractional chromatic number is equal to
2 + 1/(ρi − 1) by Theorem 3.7.2. Let {Ĩk, k ∈ [2ρi − 1]} be the independent sets
in the support of the optimal primal solution of the graph G̃ constructed in the
proof of this theorem. For each of these independent sets, we extend them to the
original graph in the following way:

Ik =

{
Ĩk if ṽ /∈ Ĩk
(Ĩk \ ṽ) ∪ Vi if ṽ ∈ Ĩk.

In words, if ṽ happens to belong to Ĩk, we replace it by Vi to get a valid inde-
pendent set in the original graph. Assigning fractional value y(Ik) = 1/(ρi − 1)
for every k ∈ [2ρi − 1] yields a feasible primal solution with objective value
2 + 1/(ρi − 1). Since we can do this for every i ∈ {1, 2, 3}, and the optimal
minimum value of the primal linear program is at most the objective value of any
of these feasible solutions, the proof is finished.

Moreover, this upper bound is in fact tight, since it holds with equality when
one of the color classes only contains one vertex by Theorem 3.7.2. 2

It is now straightforward to extend this result for the integrality gap by The-
orem 3.7.1.

Corollary 3.7.4. Let G = (V,E) be a 3-colorable graph with color classes V =
V1 ∪ V2 ∪ V3. The integrality gap IG(G) of the standard linear programming
relaxation P (G) satisfies:

IG(G) ≤ 1 + min
i∈{1,2,3}

1

2ρi − 1

where 2ρi − 1 is the odd girth of the contracted graph G/Vi for each i ∈ {1, 2, 3}.
Moreover, equality holds if one color class only contains one vertex.

Chapter 4

Online matching on 3-uniform
hypergraphs

In this chapter, we study an online matching problem on 3-uniform hypergraphs
under adversarial vertex arrivals. It is straightforward to see that the greedy algo-
rithm obtains a competitive ratio of 1/3 for this problem by adapting Algorithm
2.5.1 and its analysis in Theorem 2.5.2.

Our main result here is to settle the fractional version of this problem. We
first provide an algorithm achieving a competitive ratio of (e−1)/(e+1) ≈ 0.462.
As our main contribution, we then show that this algorithm is in fact optimal
by constructing an adversarial instance proving a matching upper bound. We
moreover provide a randomized integral algorithm beating the greedy algorithm
when the online nodes have bounded degree.

4.1 Introduction
Online matching is a classic problem in the field of online algorithms. It was first
introduced in the seminal work of Karp, Vazirani and Vazirani [KVV90], who
considered the bipartite version with one-sided vertex arrivals. In this setting,
we are given a bipartite graph where vertices on one side are known in advance
(offline), and vertices on the other side arrive sequentially (online). When an
online vertex arrives, it reveals its incident edges, at which point the algorithm
must decide how to match it (or not) irrevocably. The goal is to maximize
the cardinality of the resulting matching. Karp et al. [KVV90] gave an elegant
randomized algorithm Ranking, which achieves the optimal competitive ratio of
1− 1/e.

In certain applications, each offline vertex may be matched more than once.
Examples include matching online jobs to servers, or matching online impressions
to advertisers. This is the online b-matching model of Kalyanasundaram and
Pruhs [KP00b], where b ≥ 1 is the maximum number of times an offline vertex
can be matched. As b and the number of online vertices tend to infinity, it in

49

50 Chapter 4. Online matching on 3-uniform hypergraphs

turn captures the fractional relaxation of the Karp et al. [KVV90] model. This
means that the algorithm is allowed to match an online node fractionally to
multiple neighbours, as long as the total load on every vertex does not exceed
1. For this problem, it is known that the deterministic algorithm Balance (or
Water-Filling) achieves the optimal competitive ratio of 1− 1/e.

4.1.1 Online hypergraph matching
The online bipartite matching problem can be naturally generalized to hyper-
graphs as follows. For k ≥ 2, let H = (V,W,H) be a k-uniform hypergraph
with offline vertices V , online vertices W and hyperedges H. Every hyperedge
h ∈ H contains k − 1 elements from V and 1 element from W . Just like before,
the online vertices arrive sequentially with their incident hyperedges, and the
goal is to select a large matching, i.e., a set of disjoint hyperedges. The greedy
algorithm is 1/k-competitive. On the other hand, no integral algorithm can be
2/k-competitive 1.

For the fractional version of the problem, Buchbinder and Naor [BN09] gave a
deterministic algorithm which is Ω(1/ log k)-competitive. They also constructed
an instance showing that any algorithm is O(1/ log k)-competitive. In fact, their
results apply to the more general setting of online packing linear program (LP), in
which variables arrive sequentially. In the context of hypergraphs, this means that
the hyperedges arrive sequentially. Note that for k-uniform hypergraphs, there
is a trivial reduction from this edge-arrival model to our vertex-arrival model on
(k + 1)-uniform hypergraphs, by adding degree 1 online nodes.

The aforementioned results show that asymptotically, both integral and frac-
tional versions of the online matching problem on k-uniform hypergraphs are
essentially settled (up to constant factors). However, our understanding of the
problem for small values of k (other than k = 2) remains poor. Many applications
of online hypergraph matching in practice have small values of k. For instance,
in ride-sharing and on-demand delivery services [PSST22], k − 1 represents the
capacity of service vehicles, which is often small. Another example is network
revenue management problems [MRST20]. In this setting, given a collection of
limited resources, a sequence of product requests arrive over time. When a prod-
uct request arrives, we have to decide whether to accept it irrevocably. Accepting
a product request generates profit, but also consumes a certain amount of each
resource. The goal is to devise a policy which maximizes profit. In this context,
k− 1 represents the maximum number of resources used by a product. As Ma et
al. [MRST20] noted, many of these problems have small values of k. In airlines,
for example, k− 1 corresponds to the maximum number of flight legs included in
an itinerary, which usually does not exceed two or three.

1In [TU24], it is shown that no algorithm can be (2+ f(k))/k-competitive for some positive
function f with f(k) = o(1). In Section 4.7, we give a simple construction showing that no
integral algorithm can be 2/k-competitive.

4.1. Introduction 51

4.1.2 Our contributions
Motivated by the importance of online hypergraph matching for small values of
k, we focus on 3-uniform hypergraphs, with the goal of obtaining tighter bounds.
Our main result is a tight competitive ratio for the fractional version of this
problem.

Theorem 4.1.1. For the online fractional matching problem on 3-uniform hyper-
graphs, there is a deterministic (e−1)/(e+1)-competitive algorithm. Furthermore,
every algorithm is at most (e− 1)/(e+ 1)-competitive.

The deterministic algorithm in Theorem 4.1.1 belongs to the class of Water-
Filling algorithms. It uses the function f(x) := ex/(e + 1) to decide which
hyperedges receive load. In particular, for every online vertex w, the incident
hyperedges h = {u, v, w} ∈ δ(w) which minimize ϕ(h) := f(x(δ(u))) + f(x(δ(v)))
receive load until ϕ(h) ≥ 1.

Our main contribution is proving a matching upper bound in Theorem 4.1.1.
For this, it suffices to consider deterministic algorithms because every randomized
algorithm induces a deterministic fractional algorithm with the same expected
value. This, in turn, allows us to construct an instance which is adaptive to the
actions of the algorithm. The key idea is to combine two hard instances for online
matching on bipartite graphs [KVV90, GKM+19].

We start with the instance in [GKM+19], designed for the edge-arrival model.
In this instance, edge arrivals are grouped into phases, such that the size of
an online maximum matching increases by one per phase. At the end of every
phase, as long as the total fractional value on the revealed edges exceeds a certain
threshold, the next phase begins. Otherwise, the instance terminates. For our
purpose, we want a more fine-grained control over the actions of the algorithm.
So, we apply thresholding at the node level instead, based on fractional degrees,
to determine which nodes become incident to the edges arriving in the next phase.

In our construction, we will have multiple copies of this modified edge-arrival
instance. The edges in these instances are connected to the online nodes to form
hyperedges. The way in which they are connected is inspired by the instance
in [KVV90], originally designed for the vertex-arrival model. The idea behind
this vertex-arrival instance is to obfuscate the partners of the online nodes in an
offline maximum matching, which is also applicable in our setting.

Our next result concerns the online integral matching problem on k-uniform
hypergraphs. We show that one can do better than the greedy algorithm if
the online nodes have bounded degree. It is achieved by the simple algorithm
Random: for every online vertex w, uniformly select a hyperedge among all the
hyperedges incident to w which are disjoint from the current matching.

Theorem 4.1.2. For the online matching problem on k-uniform hypergraphs
where online vertices have maximum degree d, the competitive ratio of Random

52 Chapter 4. Online matching on 3-uniform hypergraphs

is at least
min

(
1

k − 1
,

d

(d− 1)k + 1

)
.

Note that in Theorem 4.1.2, the first term is at most the second term if and only if
d ≤ k− 1. Moreover, Random is at least as good as the greedy algorithm, since
the latter is 1/k-competitive. For 3-uniform hypergraphs, the bound becomes
1/2 for d ≤ 2 and 1/(3− 2/d) otherwise, thus interpolating between 1/3 and 1/2.
Note that for d ≤ 2, the bound is optimal, since the online matching problem on
graphs under edge arrivals is a special case of this setting (with k = 3, d = 1),
for which an upper bound of 1/2 is known even against fractional algorithms on
bipartite graphs [GKM+19].

Since every randomized algorithm for integral matching induces a determinis-
tic algorithm for fractional matching, the upper bound of (e−1)/(e+1) ≈ 0.4621
in Theorem 4.1.1 also applies to the integral problem on 3-uniform hypergraphs.
However, the best known lower bound is 1/3, given by the greedy algorithm.
An interesting question for future research is whether there exists an integral
algorithm better than greedy on 3-uniform hypergraphs.

4.1.3 Related work
Since the online matching problem was introduced in [KVV90], it has garnered
a lot of interest, leading to extensive follow-up work. We refer the reader to
the excellent survey by Mehta [Meh13] for navigating this rich literature. The
original analysis of Ranking [KVV90] was simplified in a series of papers [BM08,
DJK13, GM08, EFFS21]. Many variants of the problem have been studied, such
as the online b-matching problem [KP00b], and its extension to the AdWords
problem [BJN07, DJ12, HZZ20, MSVV07]. Weighted generalizations have been
considered, e.g., vertex weights [AGKM11, HTWZ19] and edge weights [FHTZ22].
Weakening the adversary by requiring that online nodes arrive in a random order
has also been of interest [KMT11, MY11, KRTV13]. Another line of research
explored more general arrival models such as two-sided vertex arrival [WW15],
general vertex arrival [GKM+19], edge arrival [BST19, GKM+19], and general
vertex arrival with departure times [HKT+20, HTWZ20, ABD+23].

In contrast, the literature on the online hypergraph matching problem is rel-
atively sparse. Most work has focused on stochastic models, such as the random-
order model. Korula and Pal [KP09] first studied the edge-weighted version under
this model. For k-uniform hypergraphs, they gave an Ω(1/k2)-competitive algo-
rithm. This was subsequently improved to Ω(1/k) by Kesselheim et al. [KRTV13].
Ma et al. [MRST20] gave a 1/k-competitive algorithm under ‘nonstationary’ ar-
rivals. Pavone et al. [PSST22] studied online hypergraph matching with delays
under the adversarial model. At each time step, a vertex arrives, and it will
depart after d time steps. A hyperedge is revealed once all of its vertices have

4.2. Preliminaries 53

arrived. Note that their model is incomparable to ours because every vertex has
the same delay d.

In the prophet IID setting, every online node has a weight function which
assigns weights to its incident hyperedges, and these functions are independently
sampled from the same distribution. For this problem, [MSV24] gave aO(log(k)/k)
upper bound on the competitive ratio. We refer to [MSV24] for an overview of
known results in related settings.

Hypergraph matching on k-uniform hypergraphs is a well-studied problem in
the offline setting. It is NP-hard to approximate within a factor of Ω(log(k)/k)
[HSS06]. Moreover, the factor between the optimal solution and the optimal value
of the natural LP relaxation is at least 1/(k − 1 + 1/k) [CL12].

A special case that has also been studied is the restriction to k-partite graphs,
where the vertices are partitioned into k sets and every hyperedge contains exactly
one vertex from each set. This setting is called k-dimensional matching, and the
optimal solution is known to be at least 1/(k − 1) times the optimal value of
the standard LP relaxation [CL12]. For k = 3, the best known polynomial time
approximation algorithm gives a (3/4− ε)-approximation [Cyg13].

4.1.4 Chapter organization
In Section 4.2, we give the necessary preliminaries and discuss notation. Sec-
tion 4.3 presents the optimal primal-dual fractional algorithm for 3-uniform hy-
pergraphs, which shows the first part of Theorem 4.1.1. Section 4.4 complements
this with a tight upper bound, proving the second part of Theorem 4.1.1. The
proof of Theorem 4.1.2 is shown in Section 4.5.

4.2 Preliminaries
Given a hypergraphH = (V,H) with vertex set V and hyperedge setH, the maxi-
mum matching problem involves finding a maximum cardinality subset of disjoint
hyperedges. The canonical primal and dual LP relaxations for this problem are
respectively given by:

max
∑
h∈H

xh∑
h∈δ(v)

xh ≤ 1 ∀v ∈ V

xh ≥ 0 ∀h ∈ H

min
∑
v∈V

yv∑
v∈h

yv ≥ 1 ∀h ∈ H

yv ≥ 0 ∀v ∈ V.

We denote by OPTLP(H) the offline optimal value of these two LPs. We denote by
OPT(H) the objective value of an offline optimal integral solution to the primal
LP, which clearly satisfies OPT(H) ≤ OPTLP(H).

54 Chapter 4. Online matching on 3-uniform hypergraphs

The online matching problem on k-uniform hypergraphs under vertex ar-
rivals is defined as follows. An instance consists of a k-uniform hypergraph
H = (V,W,H), where V is the set of offline nodes and W = (w1, w2, . . .) is
the sequence of online nodes. The ordering of W corresponds to the arrival order
of the online nodes. Every hyperedge h ∈ H has exactly one node in W and
k − 1 nodes in V . When an online node w ∈ W arrives, its incident hyperedges
δ(w) are revealed. A fractional algorithm is allowed to irrevocably increase xh for
every h ∈ δ(w), whereas an integral algorithm is allowed to irrevocably pick one
of these hyperedges, i.e., setting xh = 1 for some h ∈ δ(w).

Given an algorithm A and an instance H, we denote by V(A,H) :=
∑

h∈H xh
the value of the (fractional) matching obtained by A on H. An integral algorithm
is ρ-competitive if for any instance H, V(A,H) ≥ ρ OPT(H). Similarly, a frac-
tional algorithm is ρ-competitive if for any instance H, V(A,H) ≥ ρ OPTLP(H).

In this thesis, we focus on 3-uniform hypergraphs. For a 3-uniform instance
H = (V,W,H), we denote by Γ(H) = (V,E) the graph on the offline nodes with
edge set

E :=
{
(u, v) ∈ V × V, ∃w ∈ W s.t. {u, v, w} ∈ H

}
. (4.2.1)

We remark that Γ(H) is not a multigraph. In particular, an edge (u, v) ∈ E
can have several hyperedges in H containing it. A fractional matching x on the
hyperedges H naturally induces a fractional matching x′ on the edges E, i.e.,
x′e =

∑
h:e⊆h xh for every e ∈ E. The value obtained by an algorithm A can thus

also be counted as V(A,H) =
∑

h∈H xh =
∑

e∈E x
′
e. For an offline node u ∈ V ,

we denote its load (or fractional degree) as ℓu = x(δ(u)) ∈ [0, 1].

4.3 Optimal fractional algorithm for 3-uniform
hypergraphs

In this section, we present a primal-dual algorithm for the online fractional match-
ing problem on 3-uniform hypergraphs under vertex arrivals. This algorithm will
turn out to be optimal with a tight competitive ratio of (e− 1)/(e+1) ≈ 0.4621.
We define the following distribution function f : [0, 1]→ [0, 1]:

f(x) :=
ex

e+ 1
. (4.3.1)

When an online node w arrives, our algorithm chooses to uniformly increase the
primal variables of the hyperedges {u, v, w} for which f(x(δ(u))) + f(x(δ(v)))
is minimal. We note that this belongs to the class of water-filling algorithms
[KP00b]. For this reason, we define the priority of a hyperedge h = {u, v, w} as:

ϕ(h) := f(x(δ(u))) + f(x(δ(v))). (4.3.2)

4.3. Optimal fractional algorithm for 3-uniform hypergraphs 55

Figure 4.1 shows the possible values of x(δ(u)) and x(δ(v)) such that ϕ(h) ≤ 1.
We now present the algorithm.

Algorithm 4.3.1 Water-filling fractional algorithm for 3-uniform hypergraphs
Input : 3-uniform hypergraph H = (V,W,H) with online nodes W .
Output : Fractional matching x ∈ [0, 1]H

when w ∈ W arrives with δ(w) ⊆ H:
set xh = 0 for every h ∈ δ(w)
increase xh for every h = {u, v, w} ∈ argminh∈δ(w){ϕ(h)} at rate 1
increase yu and yv at rates f(x(δ(u))) and f(x(δ(v)))
increase yw at rate 1− f(x(δ(u)))− f(x(δ(v)))

until x(δ(w)) = 1 or ϕ(h) ≥ 1 for every h ∈ δ(w).
return x

Theorem 4.3.1. Algorithm 4.3.1 is (e − 1)/(e + 1)-competitive for the online
fractional matching problem on 3-uniform hypergraphs.

Proof:
We first show that the algorithm produces a feasible primal solution. Note that
the fractional value of a hyperedge h is only being increased if ϕ(h) ≤ 1. If
x(δ(v)) = 1 for some offline node v then for any hyperedge h 3 v, we have:

ϕ(h) = f(x(δ(u))) + f(x(δ(v))) ≥ f(1) + f(0) =
e+ 1

e+ 1
= 1,

where u denotes the second offline node belonging to h. The value of the hyper-
edge h will thus not be increased anymore, proving the feasibility of the primal
solution.

In order to prove the desired competitive ratio, we show that the primal-dual
solutions constructed during the execution of the algorithm satisfy:

V(A) =
∑
h∈H

xh =
∑

v∈V ∪W

yv and (4.3.3)∑
v∈h

yv ≥ ρ ∀h ∈ H. (4.3.4)

This is enough to imply the desired competitiveness of our algorithm, since y/ρ ∈
RV

+ is then a feasible dual solution, giving:

V(A) ≥
∑

v∈V ∪W

yv ≥ ρ OPTLP.

Note that (4.3.3) holds at the start of the algorithm. Let us fix a hyperedge
h = {u, v, w} ∈ H. When xh is continuously being increased at rate one, the

56 Chapter 4. Online matching on 3-uniform hypergraphs

duals on the incident nodes yu, yv and yw are being increased at rate f(x(δ(u))),
f(x(δ(v))) and 1− f(x(δ(u)))− f(x(δ(v))) respectively. Observe that these rates
sum up to one. Hence, V(A) =

∑
h∈H xh and

∑
v∈V ∪W yv are increased at the

same rate, meaning that (4.3.3) holds at all times during the execution of the
algorithm.

We now show that (4.3.4) holds at the end of the execution of the algorithm.
Let us fix an online node w ∈ W . For a given hyperedge h ∈ δ(w), note that the
algorithm only stops increasing xh, as soon as either ϕ(h) ≥ 1 or x(δ(w)) = 1 is
reached. We distinguish these two cases for the analysis.

Let us first focus on the first case, meaning that ϕ(h) ≥ 1 has been reached
for every h ∈ δ(w). Consider an arbitrary h = {u, v, w} ∈ δ(w). For every unit
of increase in x(δ(u)), yu will have been increased by f(x(δ(u))). If we denote
by ℓu := x(δ(u)) and ℓv := x(δ(v)) the fractional loads on u and v after the last
increase on the hyperedges adjacent to w, then:

yu =

∫ ℓu

0

f(s)ds = f(ℓu)− f(0) and yv =

∫ ℓv

0

f(s)ds = f(ℓv)− f(0),

(4.3.5)

where we have used the fact that f is an antiderivative of itself. Therefore,

yu + yv + yw ≥ yu + yv = f(ℓu)− f(0) + f(ℓv)− f(0)

= ϕ(h)− 2f(0) ≥ 1− 2f(0) =
e− 1

e+ 1
.

Suppose now that x(δ(w)) = 1 has been reached. In particular, this means
that for each {u, v, w} ∈ δ(w), the rate at which yw was increased must have been
at least 1− f(ℓu)− f(ℓv) at all times, where ℓu and ℓv denote the fractional loads
on u and v after that the algorithm has finished increasing the edges incident to
the online node w. Hence, we have:

yw ≥ 1 · (1− f(ℓu)− f(ℓv)).

By using (4.3.5) we see that:

yu + yv + yw ≥ f(ℓu) + f(ℓv)− 2f(0) + (1− f(ℓu)− f(ℓv)) = 1− 2f(0) =
e− 1

e+ 1
.

This proves (4.3.4), and thus completes the proof of the theorem. 2

4.4 Tight upper bound for 3-uniform hypergraphs
We now prove the second part of Theorem 4.1.1, i.e., every algorithm is at most
(e−1)/(e+1)-competitive for the online fractional matching problem on 3-uniform
hypergraphs under vertex arrivals.

4.4. Tight upper bound for 3-uniform hypergraphs 57

4.4.1 Overview of the construction
We construct an adversarial instance that is adaptive to the behaviour of the
algorithm. The main idea is to combine the vertex-arrival instance of Karp et
al. [KVV90] and the edge-arrival instance of Gamlath et al. [GKM+19] for bipar-
tite graphs.

We start by giving a high-level overview of the construction. The offline
vertices of the hypergraph are partitioned into m sets C1, . . . , Cm, which we call
components. Each component will induce a bipartite graph with bipartition Ci =
Ui ∪ Vi, where |Ui| = |Vi| = T .

The instance consists of T phases. In each phase t ∈ {1, . . . , T}, the adversary
first selects a bipartite matchingM(t)

i on each component Ci. Taking the union of
these matchings gives a larger matching on the offline nodes: M(t) :=

⋃m
i=1M

(t)
i .

After selecting the matchingM(t) at phase t, the adversary selects the online
nodes, with their incident hyperedges, arriving in that phase. The set of online
nodes arriving in phase t is denoted by W (t). Each node w ∈ W (t) connects to
a subset of edges E(w) ⊆ M(t), meaning that the hyperedges incident to w are
{{w} ∪ e : e ∈ E(w)}.

We briefly explain how the matchingsM(t)
i are constructed and how the edges

E(w) are picked:

1. On each component Ci, the matching M(t)
i is constructed based on the

behaviour of the algorithm in phase t−1. It draws inspiration from the edge-
arrival instance in [GKM+19], together with the function f(x) = ex/(e+1)
defined in (4.3.1). The exact construction is described in Section 4.4.3 and
illustrated in Figures 4.2 and 4.3.

2. For every online node w ∈ W (t), the edge set E(w) ⊆ M(t) is selected
based on the behaviour of the algorithm during phase t. This part can be
seen as incorporating the vertex-arrival instance in [KVV90]. The exact
construction is described in Section 4.4.5 and illustrated in Figure 4.6.

To summarize, the instance is a hypergraph H = (V,W,H) with offline nodes V ,
online nodes W and hyperedges H given by

V :=
m⋃
i=1

Ci =
m⋃
i=1

Ui ∪ Vi W :=
T⋃
t=1

W (t) H :=
T⋃
t=1

⋃
w∈W (t)

{{w} ∪ e : e ∈ E(w)}.

4.4.2 Assumptions on the algorithm
To simplify the construction and analysis of our instance, we will make two as-
sumptions on the algorithm. First, we need the following definition, which relates
the behaviour of an algorithm to the priority function ϕ defined in (4.3.2).

58 Chapter 4. Online matching on 3-uniform hypergraphs

ln(e+1
2
)

1

0 ln(e+1
2
) 1

Figure 4.1: An illustration of the region R = {(a, b) ∈ [0, 1]2 : f(a) + f(b) ≤
1}. The symmetric point at the boundary of the region has both coordinates
ln((e + 1)/2) ≈ 0.62. When an online node w arrives, a threshold respecting
algorithm ensures that the fractional matching x satisfies (x(δ(u)), x(δ(v))) ∈ R
for every hyperedge h = {u, v, w} ∈ δ(w) with xh > 0 at the end of that iteration.

Definition 4.4.1. Fix ε ≥ 0. Let x be the fractional solution given by an al-
gorithm A after the arrival of an online node w. We say that A is ε-threshold
respecting on w if ϕ(h) =

∑
v∈h\{w} f(x(δ(v))) ≤ 1+ ε for all incident hyperedges

h ∈ δ(w) with xh > 0. We also call A threshold respecting if ε = 0.

Remark 4.4.2. We emphasize that the property in Theorem 4.4.1 only needs to
hold for the fractional solution x after w has arrived, and before the arrival of the
next online node. In particular, it is possible that ϕ(h) > 1+ ε in later iterations.
For a hyperedge h = {u, v, w} ∈ δ(w), Figure 4.1 shows the possible values of
x(δ(u)) and x(δ(v)) such that ϕ(h) ≤ 1.

The two assumptions that we make are the following. In Section 4.6, we show
that they can be made without loss of generality.

1. The algorithm is ε-threshold respecting on all online nodes in the first T − 1
phases for some arbitrarily small ε > 0.

2. The algorithm is symmetric on each component Ci = Ui ∪ Vi. In particu-
lar, for every t ∈ {1, . . . , T}, the tth vertices of Ui and Vi have the same
fractional degrees throughout the execution of the algorithm.

4.4.3 Constructing the matching M(t)

In this section, we construct the matching M(t)
i for every component i ∈ [m]

and phase t ∈ [T]. We will only describe the matchings for a single component
Ci, i.e., M(1)

i ,M(2)
i , . . . ,M(T)

i , because the same construction applies to other

4.4. Tight upper bound for 3-uniform hypergraphs 59

M(1)
i M(2)

i M(3)
i M(4)

i M(5)
i

Figure 4.2: The partial matchings M(t)
i if the fractional algorithm ensures that

every edge reaches the threshold at the end of every phase, meaning that f(ℓ(t)u)+

f(ℓ
(t)
v) ≥ 1 for every (u, v) ∈ M(t)

i . The maximum matching at the end of phase
5 has size five and consists ofM(5)

i .

components. Intuitively, the value obtained by the algorithm in the first T − 1
phases is already limited by Assumption 1. So, the goal of this construction is
to prevent the algorithm from gaining too much value in the last phase T . In
particular, we will show that it can only obtain O(

√
T) + ε O(T 2) in the last

phase on every component Ci.
The matchingsM(1)

i , . . . ,M(T)
i are adaptive to the behaviour of the algorithm

in every phase. It is essentially the instance of [GKM+19] with our threshold
function incorporated. The vertex set of these matchings is on a bipartite graph,
with T nodes on both sides of the bipartition. Let us denote this bipartition as
Ui = {1, . . . , T} and Vi = {1, . . . , T}. We index them the same way due to the
symmetry assumption of the algorithm (Assumption 2). Each matching M(t)

i

satisfies the invariant that (u, v) ∈M(t)
i if and only if (v, u) ∈M(t)

i .
For an offline node u ∈ V , we denote its load (or fractional degree) at the

end of phase t as ℓ(t)u = x(t)(δ(u)) ∈ [0, 1], where x(t) is the fractional matching
generated by the algorithm at the end of phase t.

• M(1)
i is a matching of size one that consists of the single edge (1, 1).

• At the end of phase t, we will call a node active if it is incident to an edge
e = (u, v) ∈ M(t)

i satisfying ϕ(e) = f(ℓ
(t)
u) + f(ℓ

(t)
v) ≥ 1. All other nodes

are said to be inactive and will not be used in any of the matchings of later
phases. Let σt(1) < σt(2) < . . . < σt(rt) be the active nodes in Ui at the
end of phase t, where rt denotes the number of such active nodes. By the
aforementioned invariant and Assumption 2, the active nodes in Vi are also
σt(1) < σt(2) < . . . < σt(rt).

• The matching at phase t+ 1 is then of size rt + 1 and is defined as:

M(t+1)
i :=

{(
σt(k), σt(rt + 2− k)

)
, k ∈ {1, . . . , rt + 1}

}
,

60 Chapter 4. Online matching on 3-uniform hypergraphs

M(1)
i M(2)

i M(3)
i M(4)

i M(5)
i

Figure 4.3: In this example, the algorithm does not increase the edge (1, 3), and
thus by symmetry the edge (3, 1), up to the threshold during phase t = 3. Hence,
f(ℓ

(3)
1) + f(ℓ

(3)
3) < 1 and nodes 1 and 3 become inactive from that point on. The

maximum matching at the end of phase 5 still has size five and consists ofM(5)
i ,

in addition to the two edges (1, 3) and (3, 1) that are below the threshold.

where we define σt(rt +1) := t+1 for convenience. In particular, note that
t + 1 ∈ Ui and t + 1 ∈ Vi are two fresh nodes with zero load, which are
always part of the matchingM(t+1)

i , but not part of any matching from a
previous phase. Clearly, the invariant is maintained. Figures 4.2 and 4.3
illustrate the construction.

Let us denote qt := (rt + 1)/2. Observe that the nodes σt(k) ∈ Ui and
σt(k) ∈ Vi for every k ∈ {1, . . . , dqte} form a vertex cover of the matchingM(t+1)

i ,
meaning that every edge of the matching in phase t+1 is covered by one of these
active nodes at phase t. Intuitively, this construction ensures that as t gets large,
these nodes have a high fractional degree. Consequently, the algorithm does not
have a lot of room to increase the fractional value on any edge ofM(t+1)

i , due to
the degree constraints. In order to upper bound the value that the algorithm can
get in phase t + 1, we will thus lower bound the fractional degree of the active
nodes σt(i) for i ∈ {1, . . . , dqte}. For this reason, we define:

ℓ(t, i) := x(t)
(
δ(σt(i))

)
=

∑
e∈δ(σt(i))

x(t)e .

In words, this is the fractional degree of the ith active node at the end of phase t.
One can now see {ℓ(t, i)}t,i as a process with two parameters, which depends on
the behaviour of the algorithm. To analyze this process, we will relate it to the
CDF of the binomial distribution B(t, 1/2). We will in fact show that

⌈qT−1⌉∑
i=1

2(1− ℓ(T − 1, i)) = O(
√
T) + ε O(T 2). (4.4.1)

Since the left-hand side is the residual capacity of the vertex cover ofM(T)
i , this

will yield an upper bound on the value obtained by the algorithm in component

4.4. Tight upper bound for 3-uniform hypergraphs 61

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

(a) t = 11, qt = 6

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

(b) t = 101, qt = 51

Figure 4.4: Plot of the ℓ(t, i) process for two different values of t if the algorithm
exactly matches the threshold at every phase. Observe that, since t is odd,
(σt(qt), σt(qt)) ∈M(t)

i with the load of node σt(qt) staying at ln((e+1)/2) ≈ 0.62.

Ci during the last phase. For intuition, Figure 4.4 provides an example of ℓ(t, i)
if the algorithm exactly reaches the threshold for every edge.

4.4.4 Bound for the last phase T

In this section, we prove the following theorem by showing (4.4.1).

Theorem 4.4.3. During the last phase T , the value gained by the algorithm in
each component Ci is at most O(

√
T) + ε O(T 2).

In order to be able to get a lower bound on ℓ(t, i), we now relate it to a process
which is simpler to analyze, defined as follows on N× Z/2:

ψ(t, y) = Pr
X∼B(t, 1

2
)

[
X <

t

2
+ y

]
+

1

2
Pr

X∼B(t, 1
2
)

[
X =

t

2
+ y

]
,

where B(t, 1
2
) is the binomial distribution with parameters t and 1

2
(see Figure

4.5 for an illustration). An important property of this function that will help us
prove Theorem 4.4.3 is the following upper bound:

∞∑
y=0

(
1− ψ

(
t,
y

2

))
≤ 1 +

1

2

√
t ∀t ≥ 1. (4.4.2)

We then relate the process ℓ(t, i) to a linear transformation of the process ψ(t, i),
by defining:

ξ(t, i) := a ψ (t, qt − i) + b− εt,

where a := 2−2 ln
(
(e+1)/2)

)
≈ 0.76 and b := 2 ln

(
(e+1)/2

)
−1 ≈ 0.24. Here,

a and b are chosen such that whenever the algorithm exactly hits the threshold

62 Chapter 4. Online matching on 3-uniform hypergraphs

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1.0

(a) t = 11

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1.0

(b) t = 101

Figure 4.5: Plot of ψ(t, y) for two different values of t, the horizontal axis repre-
sents y ∈ Z/2.

for every edge, we have ξ(t, t/2) = ln((e + 1)/2) = ℓ(t, t/2) for all even t and
limt→∞ ξ(t, x) = 1 = limt→∞ ℓ(t, x) for all x. Let us now state the properties we
need from the ψ function.

Claim 4.4.1. The function ψ satisfies the following properties:

1. For all t, ψ(t, t+1
2
) = 1.

2. For all t, ψ(t, y) is nondecreasing in y.

3. For all t, we have: ψ(t, 0) = 1
2
.

4. For all t and y, we have: ψ(t+ 1, y) = 1
2
ψ(t, y − 1

2
) + 1

2
ψ(t, y + 1

2
).

5. For all t, we have
∑∞

y=0(1− ψ(t,
1
2
y)) ≤ 1 + 1

2

√
t.

Proof:
The first two statements follow directly from the definition. The third statement
follows from the symmetry of B(t, 1

2
) around t

2
. For the fourth statement, let

X ∼ B(t, 1
2
) and Y ∼ B(1, 1

2
) be independent. Then, we have:

ψ(t+ 1, y) = Pr
[
X + Y <

t+ 1

2
+ y

]
+

1

2
Pr
[
X + Y =

t+ 1

2
+ y

]
= Pr[Y = 1]Pr

[
X <

t

2
+ y − 1

2

]
+ Pr[Y = 0]Pr

[
X <

t

2
+ y +

1

2

]
+

1

2
Pr[Y = 0]Pr

[
X =

t

2
+ y +

1

2

]
+

1

2
Pr[Y = 1]Pr

[
X =

t

2
+ y − 1

2

]
=

1

2
ψ

(
t, y − 1

2

)
+

1

2
ψ

(
t, y +

1

2

)
.

4.4. Tight upper bound for 3-uniform hypergraphs 63

Now, let us prove the last statement. Let X ∼ B(t, 1
2
) and observe that 1 −

ψ(t, y) ≤ Pr[X ≥ t
2
+ y], leading to:

∞∑
y=0

(1− ψ(t, 1
2
y)) ≤

∞∑
y=0

Pr
[
X − t

2
≥ y

2

]
≤

∞∑
y=0

Pr
[∣∣∣∣X − t

2

∣∣∣∣ ≥ y

2

]

≤ 1 + 2 E
[
|X − t

2
|
]
≤ 1 + 2

√√√√E

[(
X − t

2

)2
]

= 1 + 2
√

Var [X] = 1 +
1

2

√
t.

where the last inequality follows by Jensen’s inequality. 2

We need one additional lemma before being able to get a lower bound for the
loads of the nodes. As a reminder, rt is the number of active nodes on each side
of the bipartition at the end of phase t and qt := (rt+1)/2. For every active node
u = σt(i), where i ≤ rt, let us define dt(u) = |i− qt|. This quantity measures the
distance, in index, between node u and the active node at position qt.

Lemma 4.4.4. Let u = σt(i) for i ≤ rt, then the following holds:

dt(u) ≤ dt−1(u) +
1

2
if i < qt and dt(u) ≤ dt−1(u)−

1

2
if i > qt.

Proof:
Let S be the set of indices i ≤ rt−1 + 1 such that σt−1(i) is not active after
phase t. Let j be such that σt−1(j) = u. Consider the case that i < qt. Let
c = |s ∈ S : i < s < rt−1 + 2− i|. We have dt(u) = qt − i = qT−1 +

1
2
− 1

2
c− i ≤

qT−1 +
1
2
− i = dt−1(u) +

1
2
. The proof for i > qt is similar. 2

We are now ready to prove the desired lower bound on the loads.

Lemma 4.4.5. For every t ∈ {1, . . . , T − 1} and i ∈ {1, . . . , dqte}, we have

ℓ(t, i) ≥ ξ(t, i),

where qt = (rt + 1)/2 and rt is the number of active nodes at the end of phase t,
when rt ≥ 1.

Proof:
We will prove this statement by induction on t. For the base case, consider t = 1.
There are two possibilities, either the edge (1, 1) does not make it to the threshold,
i.e. 2f(ℓ(1)1) < 1, in which case rt = 0, qt = 0, and the statement is then trivially
satisfied. If the edge (1, 1) makes it to the threshold, then 2f(ℓ

(1)
1) = 2f(ℓ(1, 1)) ≥

64 Chapter 4. Online matching on 3-uniform hypergraphs

1, which is equivalent to ℓ(1, 1) ≥ ln((e+1)/2) by definition of f(x) = ex/(e+1).
Observe that in this case rt = qt = 1, leading to

ℓ(1, 1) ≥ ln((e+ 1)/2) =
a

2
+ b = a ψ(1, 0) + b = ξ(1, 1) + εt ≥ ξ(1, 1),

where we have used the fact that ψ(1, 0) = 1/2.
Suppose now by induction that the statement holds for t − 1, let rt be the

active nodes at the end of phase t, let qt := (rt + 1)/2 and consider an arbitrary
i ∈ {1, . . . , dqte}. Let us first consider the case where i = qt = (rt + 1)/2, which
can only occur when rt is odd. Observe that this means the edge (σt(i), σt(i))

belongs to the matchingM(t)
i and exceeds the threshold, i.e. ℓ(t, i) ≥ ln((e+1)/2).

Using the fact that ψ(t, 0) = 1/2 for all t, i = qt and the exact same arguments
as above, we get

ℓ(t, i) ≥ ln((e+1)/2) =
a

2
+b = aψ(t, 0)+b = aψ(t, qt−i)+b = ξ(t, i)+εt ≥ ξ(t, i).

Consider now the case where i < qt. Let e = (u, v) = (σt(i), σt(rt+1− i)) ∈M(t)
i

and observe that e exceeds the threshold, i.e. f(ℓ
(t)
u) + f(ℓ

(t)
v) = f(ℓ(t, i)) +

f(ℓ(t, rt + 1 − i)) ≥ 1. Let us pick indices j, k such that u = σt−1(j) and v =
σt−1(rt−1 + 1− k). Observe that:

ℓ(t, i) = ℓ(t− 1, j) + x(t)e and ℓ(t, rt + 1− i) = ℓ(t− 1, rt−1 + 1− k) + x(t)e .

If k = 0, then v has not appeared in any of the prior matchings, so ℓ(t−1)
v = 0.

In particular, we have f(ℓ(t−1)
v) = f(0) = 1− f(1) ≤ 1 + ε− f(ξ(t− 1, k)).

Otherwise, we have (σt−1(k), v) ∈ M(t−1)
i and by using the fact that the

algorithm is ε-threshold respecting, we get f(ℓ(t− 1, k)) + f(ℓ
(t−1)
v) ≤ 1 + ε. By

using the inductive hypothesis ℓ(t− 1, k) ≥ ξ(t− 1, k), we get

f(ℓ(t−1)
v) ≤ 1 + ε− f(ξ(t− 1, k)).

Since edge e exceeds the threshold at the end of phase t, we have f(ℓ(t−1)
u +x

(t)
e)+

f(ℓ
(t−1)
v + x

(t)
e) ≥ 1, which leads to

x(t)e ≥ − ln
(
f(ℓ(t−1)

u) + f(ℓ(t−1)
v)

)
≥ − ln

(
1 + ε− f(ξ(t− 1, k)) + f(ℓ(t−1)

u)
)

≥ f(ξ(t− 1, k))− f(ℓ(t−1)
u)− ε = f(ξ(t− 1, k))− f(ℓ(t− 1, j))− ε,

where we have used the fact that f(x) = ex/(e+ 1) is an increasing function and
ln(1 + x) ≥ x.

4.4. Tight upper bound for 3-uniform hypergraphs 65

Finally, since we have h′(ℓ(t−1)
u) = f(ℓ

(t−1)
u) ≥ h

(
ln((e+ 1)/2)

)
= 1/2:

ℓ(t, i) = ℓ(t−1)
u + x(t)e ≥ ℓ(t−1)

u + h′(ℓ(t−1)
u)

(
ξ(t− 1, k)− ℓ(t− 1, j)

)
− ε

=
1

2
ℓ(t− 1, j) +

1

2
ξ(t− 1, k)− ε

≥ 1

2
ξ(t− 1, j) +

1

2
ξ(t− 1, k)− ε

=
a

2

(
ψ
(
t− 1, dt−1(u)

)
+ ψ

(
t− 1, dt−1(v)

))
+ b− εt

≥ a

2

(
ψ
(
t− 1, dt(u) +

1

2

)
+ ψ

(
t− 1, dt(v)−

1

2

))
+ b− εt

=
a

2

(
ψ
(
t− 1, dt(u) +

1

2

)
+ ψ

(
t− 1, dt(u)−

1

2

))
+ b− εt

= a ψ (t, qt − i) + b− εt
= ξ(t, i)

where we have the inductive hypothesis in the second inequality, Lemma 4.4.4 in
the third inequality and the fourth property of the ψ function in the second to
last inequality. 2

We are now ready to bound the value obtained by the algorithm in the last
phase and thus prove Theorem 4.4.3.
Proof of Theorem 4.4.3:
Consider the end of phase T − 1. Observe that the nodes σT−1(k) ∈ Ui and
σT−1(k) ∈ Vi for k ∈ {1, . . . , dqT−1e} form a vertex cover of the final matching
M(T)

i . Because of the degree constraints, this means that the value the algorithm
can gain on the last phase T is at most twice the following expression:

⌈qT−1⌉∑
k=1

(
1− ℓ(T − 1, k)

)
≤

⌈qT−1⌉∑
k=1

(
1− ξ(T − 1, k)

)

= a

⌈qT−1⌉∑
k=1

(
1− ψ(T − 1, qT−1 − k)

)
+ ε(T − 1)dqT−1e

≤ ε T 2 + a
∞∑

y=−1

(
1− ψ

(
T − 1,

y

2

))
≤ ε T 2 + a

(
2 +

1

2

√
T − 1

)
= O(

√
T) + ε O(T 2).

The first equality uses the relation 1 − b = a, the second inequality is due to
qT−1 = (rT−1 + 1)/2 ≤ T/2 and the change of index y := 2(qT−1 − k), while the
last inequality is by (4.4.2) and ξ(t,−1) ≤ 1 for all t ≥ 1. 2

66 Chapter 4. Online matching on 3-uniform hypergraphs

M :

W :

w1

e1

w2

e2

w3

e3

. . .

. . .

wn

en

Figure 4.6: An illustration of the instance constructed in Lemma 4.4.6

4.4.5 Connecting the matching M(t) to the online nodes

In this section, we connect the matchingM(t) = ∪mi=1M
(t)
i to the online vertices

to form hyperedges, for every phase t ∈ [T]. The way in which they are connected
is similar to the vertex-arrival instance of [KVV90] for bipartite graphs. The main
idea is to obfuscate the partners of the online nodes in the optimal matching.

The following construction is an adaptation of the vertex-arrival instance for
bipartite graphs [KVV90] to tripartite hypergraphs. Given a graph matchingM
on the offline nodes, the first online node connects to every edge in M. After
the algorithm sets fractional values on every edge ofM, the second online node
connects to M \ {e1}, where e1 is the edge in the matching with the lowest
fractional value. More generally, for every k ∈ {1, . . . , |M|}, the kth online node
connects to the |M|−k+1 edgesM\{e1, . . . , ek−1}, and ek is defined as the edge
having the lowest fractional value among them at the end of the kth iteration.
This instance is illustrated in Figure 4.6.

We now state the guarantee obtained by this construction, parametrized by
the maximum (fractional) degree ∆ ∈ [0, 1] attained by an offline node.

Lemma 4.4.6. For any graph matching M = (V,E), there exists an online
tripartite hypergraph instanceH = (V,W,H) such that Γ(H) =M and OPT(H) =
|M|. Moreover, for any fractional algorithm A whose returned solution x satisfies
x(δ(v)) ≤ ∆ for all offline nodes v ∈ V , we have

V(A,H) ≤ (1− e−∆)|M|+ 3/2.

Proof:
Let n := |M|. By construction of the instance, observe that x(e1) ≤ 1/n. More
generally, it is easy to see that:

ℓ∑
k=1

x(ek) ≤
ℓ∑

k=1

k∑
i=1

1

n− i+ 1
∀ℓ ∈ {1, . . . , n}. (4.4.3)

The inner sum in (4.4.3) reaches ∆ approximately when k ≈ (1− e−∆)n. For
higher values of k, it is thus better to use the bound x(ek) ≤ ∆, which holds by

4.4. Tight upper bound for 3-uniform hypergraphs 67

assumption. By defining p := be−∆nc and q := n − p, we can now compute a
precise upper bound on the total value generated by the algorithm using (4.4.3):

V(A,H) =
n∑

k=1

x(ek) ≤
q∑

k=1

k∑
i=1

1

n− i+ 1
+

n∑
k=q+1

∆ =

q∑
i=1

q∑
k=i

1

n− i+ 1
+ p∆

=

q∑
i=1

q − i+ 1

n− i+ 1
+ p∆ = q − (n− q)

q∑
i=1

1

n− i+ 1
+ p∆

= p∆+ (n− p)− p
n∑

i=n−q+1

1

i
= p∆+ n− p− p(Hn −Hp) (4.4.4)

In order to get the desired result for every value of n ≥ 1, we now need to tightly
approximate the difference of the harmonic numbers Hn −Hp. In particular, the
well known bounds ln(n)+ 1/n ≤ Hn ≤ ln(n+1) for every n ∈ N are not enough
in this case. We use the equality

Hn = ln(n) + γ + ϵ(n) for some 0 < ϵ(n) <
1

2n
(4.4.5)

where γ = limn→∞(Hn − ln(n)) ≈ 0.58 is Euler’s constant. Moreover, recall that

e−∆n− 1 ≤ p ≤ e−∆n. (4.4.6)

Using (4.4.5) and (4.4.6) together gives:

Hn −Hp = ln
(
n

p

)
+ ϵ(n)− ϵ(p) ≥ ln

(n

e−∆n

)
− 1

2p
= ∆− 1

2p

(4.4.7)

Finally, plugging (4.4.6) and (4.4.7) into (4.4.4) gets us the desired result for every
value of n ∈ N :

V(A,H) ≤ p∆+ n− p− p
(
∆− 1

2p

)
= n− p+ 1

2
≤ (1− e−∆)n+

3

2
.

2

The way now in which we apply this construction is by partitioning the match-
ingM(t) into submatchings based on the load (or fractional degree) of the vertices,
and applying Lemma 4.4.6 on each submatching separately. More precisely, let
us fix η := |M(t)|−1/3 and N := d2/ηe. We partition the edges of the matching
M(t) into N2 submatchings as follows

M(t)(i, j) :=

{
(u, v) ∈M(t) : ℓu ∈

[
i− 1

N
,
i

N

]
, ℓv ∈

[
j − 1

N
,
j

N

]}
for all i, j ∈ [N]. Then, we apply the construction illustrated in Figure 4.6 to
each submatchingM(t)(i, j). This finishes the description of our instance.

68 Chapter 4. Online matching on 3-uniform hypergraphs

4.4.6 Bound for the first T − 1 phases
Recall from Section 4.4.1 that our instance consists of T phases. For ease of
analysis, we will split the total value gained by the algorithm into the value
gained in each phase. For an algorithm A, let V (t)(A) denote the value obtained
by A in phase t. The next lemma upper bounds V (t)(A) for a threshold-respecting
algorithm A, in terms of the loads of the offline nodes at the end of phase t− 1.
Recall that W (t) is the set of online nodes which arrive during phase t.

Lemma 4.4.7. If A is threshold-respecting on W (t), then

V (t)(A) ≤
∑

(u,v)∈M(t)

(
1− f(ℓ(t−1)

u)− f(ℓ(t−1)
v)

)
+ 15 |M(t)|2/3.

Proof:
Since we are considering a threshold-respecting algorithm, we can compute an
upper bound on the amount that the algorithm can put on an edge e ∈M(t)(i, j)
while staying below the threshold:

∆(i, j) := max
{
x : f

(
i− 1

N
+ x

)
+ f

(
j − 1

N
+ x

)
≤ 1

}
= ln

(
e+ 1

exp
(
i−1
N

)
+ exp

(
j−1
N

)) .
A simpler way to write this equation is as follows:

exp(−∆(i, j)) = f

(
i− 1

N

)
+ f

(
j − 1

N

)
.

By Lemma 4.4.6, we know that there exists sets of online nodes W (t)(i, j) which,
together with the matchings M(t)(i, j), form online hypergraphs H(t)(i, j) such
that

V
(
A,H(t)(i, j)

)
≤
(
1− exp(−∆(i, j)

) ∣∣∣M(t)(i, j)
∣∣∣+ 3

2
∀i, j ∈ [N].

Now, observe that for an edge {u, v} ∈ M(t)(i, j) with loads ℓ(t−1)
u and ℓ(t−1)

v , we
have

f

(
i− 1

N

)
≥ f

(
ℓ(t−1)
u − 1

N

)
≥ f(ℓ(t−1)

u)− 1

N
.

The first inequality follows from the fact that f is a non-decreasing function. The
second inequality follows from the fact that f ′(x) = f(x) ≤ 1 for every x ∈ [0, 1].
Similarly, we have

f

(
j − 1

N

)
≥ f(ℓ(t−1)

v)− 1

N
.

4.4. Tight upper bound for 3-uniform hypergraphs 69

Hence, the value gained by the algorithm in phase t can be upper bounded as

V (t)(A) =
N∑

i,j=1

V
(
A,H(t)(i, j)

)
≤

N∑
i,j=1

(
1− f

(
i− 1

N

)
− f

(
j − 1

N

)) ∣∣∣M(t)(i, j)
∣∣∣+ 3

2
N2

≤
N∑

i,j=1

∑
(u,v)∈M(t)(i,j)

(
1− f(ℓ(t−1)

u)− f(ℓ(t−1)
v) +

2

N

)
+

3

2
N2

=
∑

(u,v)∈M(t)

(
1− f(ℓ(t−1)

u)− f(ℓ(t−1)
v)

)
+

2

N
|M(t)|+ 3

2
N2

≤
∑

(u,v)∈M(t)

(
1− f(ℓ(t−1)

u)− f(ℓ(t−1)
v)

)
+ η|M(t)|+ 14η−2.

For the last inequality, since N = d2/ηe, we have used the bounds 2/N ≤ η
and N2 ≤ (2/η + 1)2 = (4 + 4η + η2)/η2 ≤ 9/η2 because η ∈ (0, 1]. In fact,
η = |M(t)|−1/3 so the bound becomes

V (t)(A) ≤
∑

(u,v)∈M(t)

(
1− f(ℓ(t−1)

u)− f(ℓ(t−1)
v)

)
+ 15|M(t)|2/3.

2

From the definition of f and the construction of the matchingM(t), we can
convert the previous bound into the following expression. We remark that the
threshold-respecting property is only used in the proof of Lemma 4.4.7.

Lemma 4.4.8. If A is threshold-respecting on W (t), then

V (t)(A) ≤ e− 1

e+ 1
m+ 15 t2/3m2/3.

Proof:
By splitting the matchingM(t) based on the m components, we can rewrite the
bound in Lemma 4.4.7 as

V (t)(A) ≤
m∑
i=1

∑
(u,v)∈M(t)

i

(
1− f(ℓ(t−1)

u)− f(ℓ(t−1)
v)

)
+ 15 |M(t)|2/3. (4.4.8)

Fix a component i ∈ [m], and let Ei :=
{
e ∈ M(t−1)

i | f(ℓ(t−1)
u) + f(ℓ

(t−1)
v) ≥ 1

}
be the subset of edges in the matchingM(t−1)

i which exceed the threshold at the

70 Chapter 4. Online matching on 3-uniform hypergraphs

end of phase t−1. By the construction ofM(t)
i in Section 4.4.3, we know that its

node set consists of the nodes incident to Ei, in addition to two new fresh nodes
whose load is 0 at the end of phase t− 1. This allows us to expand the inner sum
in (4.4.8) as:∑

(u,v)∈M(t)
i

1− f(ℓ(t−1)
u)− f(ℓ(t−1)

v) = 1− 2f(0) +
∑

(u,v)∈Ei

1− f(ℓ(t−1)
u)− f(ℓ(t−1)

v)

≤ 1− 2f(0) =
e− 1

e+ 1

where the inequality follows from definition of Ei. Plugging this into (4.4.8) with
the bound |M(t)| ≤ tm (which is immediate by the construction in Section 4.4.3)
yields the desired result. 2

For an ε-threshold-respecting algorithm, we pick up an extra εtm term.

Corollary 4.4.9. If A is ε-threshold-respecting on W (t) for some ε ≥ 0, then

V (t)(A) ≤ e− 1

e+ 1
m+ 15 (tm)2/3 + εtm.

Proof:
Fix an edge e ∈ M(t). Let h1, h2, . . . , hk be the hyperedges arriving in phase t
which contain e, denoted such that hi arrives before hj if and only if i < j. Let
j ∈ [k] be the smallest index such that ϕ(hj) > 1 immediately after A assigns
xhj

to hj. Let zhj
≥ 0 be the largest value such that ϕ(hj) ≥ 1 if A were to

assign xhj
− zhj

to hj instead. Define zhi
:= 0 for all i < j, and zhi

:= xhi
for all

i > j. Since A is ε-threshold-respecting on W (t), we have
∑k

i=1 zhi
≤ ε because

f is convex and f ′ = f .
Let z be the vector obtained by repeating this procedure on every edge e ∈

M(t). Then, 1⊤z ≤ εtm as |M(t)| ≤ tm. Moreover, observe that the algorithm
which assigns x−z in phase t is threshold-respecting onW (t). Thus, we can apply
Lemma 4.4.8 to obtain the desired upper bound on 1

⊤(x− z). 2

4.4.7 Putting everything together
In this section, we complete the proof of Theorem 4.1.1. Since we assumed that
the algorithm is ε-threshold respecting in the first T − 1 phases, we can apply
Corollary 4.4.9 to upper bound the value obtained in the first T − 1 phases as

T−1∑
t=1

(
e− 1

e+ 1
m+ εtm+O

(
(tm)2/3

))
≤ e− 1

e+ 1
Tm+ εT 2m+O

(
T 5/3m2/3

)
.

4.5. Integral algorithm for bounded degree hypergraphs 71

By Theorem 4.4.3, the value gained by the algorithm on each component Ci

during the last phase T is at most O(
√
T + εT 2). Hence, the algorithm gains at

most O(
√
Tm+ εT 2m) in the last phase.

We now argue that our instance H = (V,W,H) has a perfect matching.

Lemma 4.4.10. Our adversarial instance H = (V,W,H) satisfies

OPT(H) = Tm.

Proof:
We prove that for every t ∈ [T], there exists a hypergraph matching of size tm at
the end of phase t. Let Ci be a component with bipartition Ui = [T] and Vi = [T].
It suffices to show that there exists a graph matching M̃(t)

i with vertex set [t] on
each side. This is because M̃(t) := ∪mi=1M̃

(t)
i can be extended to a hypergraph

matching in H by our construction (see Lemma 4.4.6). Let E(t)
i ⊆ M

(t)
i be the

edges whose endpoints are not active at the end of phase t. Then, a simple
inductive argument on t ≥ 1 shows that ∪t−1

s=1E
(s)
i ∪ M

(t)
i is a graph matching

with vertex set [t] on each side (see Figure 4.3 for an example). 2

By Lemma 4.4.10, the competitive ratio of the algorithm is at most

e− 1

e+ 1
+O(εT + T 2/3m−1/3 + T−1/2).

Hence, letting m → ∞, picking T = o(
√
m) such that T → ∞ and setting ε =

o(1/T), we conclude that the competitive ratio is upper bounded by (e−1)/(e+1),
thus finishing the proof of Theorem 4.1.1.

4.5 Integral algorithm for bounded degree hy-
pergraphs

In this section, we show that Random (Algorithm 4.5.1) performs better than
the greedy algorithm when the online nodes have bounded degree. We prove
Theorem 4.1.2, restated below.

Theorem 4.5.1. Algorithm 4.5.1 is ρ-competitive for k-uniform hypergraphs whose
online nodes have degree at most d, where

ρ = min
(

1

k − 1
,

d

(d− 1)k + 1

)
.

Proof:
Let the algorithm be denoted byA. We prove the result via a primal-dual analysis,

72 Chapter 4. Online matching on 3-uniform hypergraphs

Algorithm 4.5.1 Random algorithm for bounded degree hypergraphs
Input : k-uniform hypergraph H = (V,W,H) with online arrivals of each w ∈
W with |δ(w)| ≤ d.
Output : MatchingM⊂ H

setM← ∅
when w ∈ W arrives with δ(w) ⊆ H:

pick uniformly at random h ∈ δ(w) among the hyperedges that are disjoint
fromM

set yv = min
(

1
k−1

, d
(d−1)k+1

)
for all v ∈ h \ {w}

set yw = max
(
0, d−k+1

(d−1)k+1

)
return M

where the random primal solution is given by xh := 1{h∈M} for every h ∈ H and
the random dual solution is the vector y ∈ [0, 1]V ∪W constructed during the
execution of the algorithm. Observe that the objective values of both solutions
are equal at all times during the execution of the algorithm:

V(A) = |M| =
∑
h∈H

xh =
∑

v∈V ∪W

yv. (4.5.1)

This holds since every time a hyperedge h ∈ H is matched by the algorithm,
increasing the primal value V(A) by one, the dual objective increases by

∑
v∈h yv.

Two easy computations that we omit show that the latter is also equal to one in
both cases where d ≤ k − 1 and d ≥ k − 1.

We will now show that, in expectation, the dual constraints are satisfied up
to a factor of ρ, i.e.

E

[∑
v∈h

yv

]
≥ ρ ∀h ∈ H. (4.5.2)

This will imply the theorem, since the random vector E[y]/ρ will then be a feasible
dual solution, leading to E[V(A)] = E

[∑
v∈V ∪W yv

]
≥ ρ OPTLP by (4.5.1) and

(4.5.2).
To show this inequality, let h ∈ H be an arbitrary hyperedge incident to some

online node w ∈ W . We now consider the following probabilistic event upon the
arrival of w:

E :=
{
∃v ∈ h \ {w} which is already matched at the arrival of w

}
.

We will show (4.5.2) by conditioning on E and on its complementary event Ē ,
which states that all nodes in h \ {w} are unmatched when w arrives, and that
the hyperedge h is thus available and considered in the random choice of the

4.6. Justification of assumptions in Section 4.4.2 73

algorithm in this step. In the first case, if E happens, then some offline node
u ∈ h \ {w} has already had its dual value set to yu = min

(
1

k−1
, d
(d−1)k+1

)
= ρ in

a previous step of the algorithm, leading to

E

[∑
v∈h

yv

∣∣∣ E] =
∑
v∈h

E [yv | E] ≥ E
[
yu | E

]
= ρ.

Otherwise, if Ē happens, we know that with probability at least 1/d, the algorithm
adds h to the matching. Summing the dual values of the offline nodes contained
in h gives ∑

v∈h\{w}

E
[
yv | Ē

]
≥ 1

d
· (k − 1) ·min

(
1

k − 1
,

d

(d− 1)k + 1

)
.

Furthermore, since the algorithm will always match w to a hyperedge in this case,
we have:

E
[
yw | Ē

]
= max

(
0,

d− k + 1

(d− 1)k + 1

)
.

Adding those terms together, we get:∑
v∈h

E
[
yv | Ē

]
≥ 1

d
· (k − 1) ·min

(
1

k − 1
,

d

(d− 1)k + 1

)
+max

(
0,

d− k + 1

(d− 1)k + 1

)
= min

(
1

d
,

k − 1

(d− 1)k + 1

)
+max

(
0,
d− (k − 1)

(d− 1)k + 1

)
≥ min

(
1

d
,

k − 1

(d− 1)k + 1
+

d− (k − 1)

(d− 1)k + 1

)
≥ ρ.

This shows that (4.5.2) holds, and hence proves that the algorithm is ρ-competitive.
2

4.6 Justification of assumptions in Section 4.4.2
In this section, we justify the two assumptions made on the algorithm in Sec-
tion 4.4.2.

4.6.1 Assumption 1: Symmetry
We start by justifying the symmetry assumption. For a vertex-arrival hypergraph
H, we denote V (H) as the set of offline nodes, W (H) as the set of online nodes,
and H(H) as the set of hyperedges.

74 Chapter 4. Online matching on 3-uniform hypergraphs

Definition 4.6.1. Given a vertex-arrival hypergraph H = (V,W,H), an auto-
morphism is a permutation σ of the offline nodes V such that for every S ⊆ V
and w ∈ W ,

S ∪ {w} ∈ H ⇐⇒ {σ(v) : v ∈ S} ∪ {w} ∈ H.

For S ⊆ V , we write σ(S) := {σ(v) : v ∈ S} for the sake of brevity. For a
hyperedge h = S ∪ {w} where S ⊆ V and w ∈ W , we denote σ(h) := σ(S) ∪ w.
We also denote the relabelled hypergraph after applying σ to H as

σ(H) := (σ(V),W, {σ(h) : h ∈ H}).

Definition 4.6.2. Given a vertex-arrival hypergraph H = (V,W,H), let Σ be
a subset of its automorphisms. We say that H is Σ-symmetric. A fractional
matching x in H is Σ-symmetric if xh = xσ(h) for all h ∈ H and σ ∈ Σ. An
algorithm A is Σ-symmetric onH if it outputs a Σ-symmetric fractional matching
given H.

Since the construction of our vertex-arrival instance depends on the behaviour
of the algorithm, we will overload the notation H as follows. An (adaptive vertex-
arrival) instance is a function H which takes as input an algorithm A and outputs
a vertex-arrival hypergraph H(A). For i ≥ 1, let Hi(A) be the subgraph of H(A)
right after the arrival of the ith online node wi. We assume that H1(A) = H1(A′)
for any pair of algorithmsA andA′. Note that this implies V (H(A)) = V (H(A′)).

Definition 4.6.3. Let Σ be a subgroup of permutations of V such that H(A)
is Σ-symmetric for every Σ-symmetric algorithm A. Given an algorithm A, we
define the Σ-symmetrization of A, denoted symΣ(A), as the algorithm that sets:

xh :=
1

|Σ|
∑
σ∈Σ

x′σ(h) ∀h ∈ H(H),

where x′σ(h) is the value that A would assign to hyperedge σ(h) when running on
H(symΣ(A)).

We make a couple of observations about symΣ(A). First, symΣ(A) is well-
defined for any algorithm A. Recall that we assumed H1(A) = H1(A′) for any
other algorithm A′. In particular, H1(A) = H1(symΣ(A)). For every i ≥ 1, when
the ith online node wi arrives in H(symΣ(A)), A assigns fractional values to the
hyperedges in δ(wi). This defines how symΣ(A) assigns fractional values to the
hyperedges in δ(wi), which in turn determines what the next set of hyperedges
δ(wi+1) will be in H(symΣ(A)).

Next, symΣ(A) is Σ-symmetric. For any hyperedge h ∈ H(H(symΣ(A))) and
permutation τ ∈ Σ, we have

xτ(h) =
1

|Σ|
∑
σ∈Σ

x′σ(τ(h)) =
1

|Σ|
∑
σ∈Σ

x′σ(h) = xh,

4.6. Justification of assumptions in Section 4.4.2 75

where the second equality is due to Σ being a group. Note that for a Σ-symmetric
algorithm A, we have symΣ(A) = A.

We now show that one only needs to define the behavior of a Σ-symmetric
instance H for a Σ-symmetric algorithm A. That is, any Σ-symmetric instance H
defined for Σ-symmetric algorithms can be extended to a Σ-symmetric instance
H′ defined for all algorithms.

Lemma 4.6.4. Let H(A) be a Σ-symmetric instance defined for all Σ-symmetric
algorithms A. There is an instance H′ defined for all algorithms, such that for
any algorithm A:

• H′(A) is Σ-symmetric,

• H′(A) = H(symΣ(A)),

• V(A,H′) = V(symΣ(A),H).

Proof:
We define H′(A) := H(symΣ(A)) for any algorithm A. This immediately gives
the first two properties. For the last property, let x be the output of symΣ(A)
on H(symΣ(A)) and let x′ be the output of A on H′(A) = H(symΣ(A)). By
definition, we have xh := 1

|Σ|
∑

σ∈Σ x
′
σ(h) for every hyperedge h ∈ H(H(symΣ(A))).

Hence, ∑
h

xh =
∑
h

1

|Σ|
∑
σ∈Σ

x′σ(h) =
1

|Σ|
∑
σ∈Σ

∑
h

x′σ(h) =
∑
h

x′h.

2

In Section 4.4.2, we assumed that the algorithm treats the kth vertex in Ui,
say ui,k, and the kth vertex in Vi, say vi,k, symmetrically. If our constructed hy-
pergraph H was symmetric with respect to these vertices, i.e. if the permutation
σ swapping ui,k and vi,k for all i and k was an automorphism of H, then Lemma
4.6.4 would show that this assumption can be made without loss of generality.
In particular, using the subgroup Σ = ({σ, e}, ◦) where e is the identity permuta-
tion, it shows that H can be extended to all algorithms A so that A and symΣ(A)
have the same performance.

However, one part of the instance that breaks this symmetry is the con-
struction given in the proof of Lemma 4.4.6 and illustrated in Figure 4.6. As
a reminder, this construction is repeatedly applied to submatchings of M(t) in
Section 4.4.5. Let us fix one such submatching and denote it byM :=M(t)(i, j).
As described in Section 4.4.3 and illustrated in Figure 4.3, if some ui,k ∈ M,
then vi,k ∈ M and the submatching is symmetric with respect to this pair,
i.e. σ(e) ∈ M for every edge e in M. However, due to the Lemma 4.4.6 con-
struction, e ∪ {w} might be a hyperedge in H for some online vertex w, while
σ(e ∪ {w}) = σ(e) ∪ {w} might not be a hyperedge in H.

76 Chapter 4. Online matching on 3-uniform hypergraphs

To fix this, the construction can be slightly tweaked in the following way. An
important observation is that the horizontal edges inM (between ui,k and vi,k)
are not isomorphic to any other edge in the hypergraph, whereas each of the
diagonal edges (non-horizontal edges) are isomorphic to exactly one other edge
inM. For this reason, we can first apply the Lemma 4.4.6 construction on just
the horizontal edges ofM.

We can then apply a slightly modified construction to the diagonal edges,
where the pairs of isomorphic edges are treated in the same way. In the original
construction, a newly arriving online vertex w would be connected to all edges
in M that were incident to the previous online vertex, except for the one with
the smallest fractional value. In the modified construction, we instead consider
the online vertices in groups of two. For every two consecutive online vertices, we
connect them to all edges inM that were incident to the previous online vertex,
except for the diagonal pair with the smallest total fractional value. This ensures
that the symmetry between the diagonal edges is respected.

This modified construction would slightly worsen the upper bound in Lemma
4.4.6. Let Mhor be the set of horizontal edges in M and Mdiag be the set of
diagonal edges inM. By applying Lemma 4.4.6 to the horizontal edges, we get
that the value of the matching is at most (1 − e−∆)|Mhor| + 3/2. The value of
the diagonal edges is at most twice the value of the original construction from
Lemma 4.4.6 applied to a transversal of the pairs of diagonal edges, which is at
most (1−e−∆)· 1

2
|Mdiag|+3/2 by Lemma 4.4.6. So the total value of the matching

is at most:

(1− e−∆)|Mhor|+ 3/2 + 2 ·
(
(1− e−∆) · 1

2
|Mdiag|+ 3/2

)
= (1− e−∆)|M|+ 9/2.

This results in a constant of 9/2 instead of 3/2 in Lemma 4.4.6, and a constant
of 42 instead of 15 in Lemma 4.4.7, Lemma 4.4.8 and Corollary 4.4.9. This
does not affect the asymptotic upper bound for large m. Hence, it shows that
Theorem 4.1.1 also holds for non-symmetric algorithms.

4.6.2 Assumption 2: There is an optimal ε-threshold re-
specting algorithm

Next, we justify that we restrict to ε-threshold respecting algorithms in our proof.
Let H be the instance constructed in Section 4.4.1. Let f be the function given
by

f(x) :=
ex

e+ 1
,

and recall the definition of ε-threshold respecting with respect to f (Definition
4.4.1).

4.6. Justification of assumptions in Section 4.4.2 77

For any algorithm A and ε > 0, we now show that there exists an algorithm
A′ which is ε-threshold respecting on all online nodes before the last phase. More-
over, there exists an instance H′ such that the performance of A on H′ matches
the performance of A′ on H.

Lemma 4.6.5. Let H be the instance constructed in Section 4.4.1. For any
algorithm A and ε > 0, there exists an algorithm A′ which is ε-threshold respecting
on all online nodes before the last phase. Furthermore, there exists an instance
H′ such that

V(A,H′(A))
OPT(H′(A))

=
V(A′,H(A′))

OPT(H(A′))
.

Proof:
From H, we construct a new instance H′ as follows. Let N = d2/εe. For every
offline node v in H, create N offline copies in H′, denoted v′1, v

′
2, . . . , v

′
N . The

new algorithm A′ will be defined based on the behaviour of A on H′. When the
ith online node wi arrives in H(A′) for i ≥ 1, at most N copies of wi arrives
sequentially in H′(A), denoted w′

i,1, w
′
i,2, When the jth copy w′

i,j arrives, for
every edge h = S ∪ wi in Hi(A′), add the edge h′j := {v′j : v ∈ S} ∪ w′

i,j to
H′(A). Now, let x′i,j denote the solution given by A in H′ after the arrival of w′

i,j.
Consider the following averaged solution

xi,j(h) :=
1

N

∑
k

x′i,j(h
′
k) ∀h ∈ H(Hi(A′)).

If j = N , or wi appeared before the last phase and there exists a hyperedge
h ∈ δ(wi) such that ∑

v∈h\{wi}

f(xi,j(δ(v))) ≥ 1,

then w′
i,j+1, . . . , w

′
i,N will not arrive in H′. In this case, A′ sets x(h)← xi,j(h) for

all h ∈ δ(wi) in H. Otherwise, we proceed to let the (j + 1)th copy w′
i,j+1 arrive

in H′. This completes the description of A′.
Clearly, x is a fractional matching in H(A′). Moreover,

V(A′,H(A′)) =
∑
h

x(h) =
V(A,H′(A))

N
.

Next, we claim that N ·OPT(H(A′)) = OPT(H′(A)). Based on the construction
of H, the offline optimal matching in H(A′) covers all the online nodes in the
last phase, and the online nodes on which A′ is strictly threshold respecting. Let
WOPT denote the union of these two sets. For each wi ∈ WOPT, observe that wi,j

is present in H′(A) for all j ∈ [N] by our construction of H′. Hence, the offline
optimal matching in H′(A) covers the following online nodes

{wi,j : wi ∈ WOPT, j ∈ [N]}.

78 Chapter 4. Online matching on 3-uniform hypergraphs

So, N · OPT(H(A′)) = OPT(H′(A)) as desired.
It is left to show that A′ is ε-threshold respecting on all online nodes before

the last phase. Pick such an online node wi and let wi,j be its last copy in H′(A).
Note that xi,j is the output of A′ in Hi(A′). For any h ∈ δ(wi), we have

∑
v∈h\{wi}

f(xi,j(δ(v))) ≤
∑

v∈h\{wi}

f

(
xi,j−1(δ(v)) +

1

N

)
(x′i,j(δ(w′

i,j)) ≤ 1)

≤
∑

v∈h\{wi}

(
f(xi,j−1(δ(v)) +

1

N

)
(f is 1-Lipschitz)

< 1 +
2

N
(due to |h| = 3 and the construction of H′)

≤ 1 + ε

2

4.7 Integral upper bound for k-uniform hyper-
graphs

In this section, we prove a strong upper bound against any randomized integral
algorithm, showing that the greedy algorithm is almost optimal, since it achieves
a competitive ratio of 1/k.

Theorem 4.7.1. For the online matching problem on k-uniform hypergraphs, no
randomized integral algorithm can be 2/k-competitive.

Proof:
We prove that any randomized integral algorithm is at most (2 − 2−k+1)/k-
competitive. To do so, we make use of Yao’s principle [Yao77]: it suffices to
construct a randomized instance for which any deterministic integral algorithm
is at most (2 − 2−k+1)/k-competitive in expectation. Let us now describe our
randomized construction H = (V,W,H) for any k ∈ N.

• The offline nodes are partitioned into k − 1 blocks: V = C1 ∪ · · · ∪ Ck−1,
where |Ci| = 2(k−i) for each i ∈ {1, . . . , k−1}, meaning that |V | = k(k−1).

• The instance first consists of k − 1 phases with online nodes w1, . . . , wk−1

arriving, all of which are incident to 2 hyperedges. For every i ∈ {1, . . . , k−
1}, both hyperedges incident to wi are disjoint on the offline nodes V and
they will both contain (k − i) nodes from Ci, as well as 1 node from each
Cj for j ∈ {1, . . . , i− 1}.

4.7. Integral upper bound for k-uniform hypergraphs 79

• We now construct a random subset of hyperedges H1 ⊆ H in the following
way. At the arrival of wi for every i ≤ k − 1, pick one of the two incident
hyperedges uniformly at random and put it in H1. We denote by V (H1)
the offline nodes spanned by H1.

• Our construction will now satisfy the following property. For every i ∈
{1, . . . , k − 1}, after the arrival of wi and the random choice described
above, we have that

|Cj \ V (H1)| = k − i ∀j ∈ {1, . . . , i}. (4.7.1)

After a certain phase i − 1 ≤ k − 2, the two hyperedges incident to wi in
the next iteration are then both constructed as follows: take k − i nodes
from Ci and complete it by arbitrarily picking one node from Cj \ V (H1)
for every j ≤ i− 1.

• After phase k − 1, we have that |Cj \ V (H1)| = 1 for every j ≤ k − 1,
by invariant (4.7.1). The instance now makes one more online node wk

incident to one hyperedge arrive, whose offline nodes are Cj \ V (H1) for
every j ∈ {1, . . . , k − 1}. Let us also add this hyperedge to H1.

Let us first show that (4.7.1) holds by induction. In the first phase, both
hyperedges partition C1 on the offline nodes, since |C1| = 2(k − 1). One of them
is chosen to enter H1, meaning that C1 \ V (H1) = k − 1 after phase 1. Let
us now fix a phase i ≤ k − 1 and suppose that (4.7.1) holds for all previous
phases. By construction, Ci is completely covered by the two hyperedges arriving
at phase i, since |Ci| = 2(k − i) and both of these hyperedges contain k − i
nodes from Ci. One of these hyperedges enters H1 at the end of phase i, meaning
that |Ci \ V (H1)| = k − i indeed holds. For any other Cj with j < i, note that
|Cj \ V (H1)| = k − i + 1 at the beginning of phase i, by induction hypothesis.
Both hyperedges coming at phase i intersect Cj at two different nodes, one of
which enters V (H1) by the random choice, meaning that |Cj \ V (H1)| drops by 1
and equals k − i, thus showing (4.7.1).

Observe that, by construction, the hyperedges in H1 are all disjoint from each
other. Since we add one hyperedge to H1 for every online node, we get that
OPT(H) = k.

Let us now upper bound the value that any deterministic algorithm can get
on this randomized instance. The key observation is that, if the algorithm picks a
hyperedge h ∈ δ(wi) which is not placed in H1 for some phase i ∈ {1, . . . , k− 1},
then it cannot pick any hyperedge arriving in later iterations. This holds, since
in that case, Ci \ V (H1) ⊆ h, and any hyperedges arriving in later iterations
necessarily intersect Ci \ V (H1) by construction.

Let us denote by Vi the maximum expected value that a deterministic algo-
rithm can get if we were to start the instance from phase i and go up to phase k.

80 Chapter 4. Online matching on 3-uniform hypergraphs

Clearly, Vk = 1. For a phase i ∈ {1, . . . , k − 1}, the algorithm can either choose
not to select anything, or it picks a hyperedge and cannot pick anything in later
iterations with probability 1/2. We thus get the following recurrence relation:

Vi = max
{
Vi+1,

1

2
+

1

2
(1 + Vi+1)

}
= max

{
Vi+1, 1 +

1

2
Vi+1

}
.

It is easily checked that the solution to this recurrence is a geometric series Vk−i =∑i
j=0 2

−j and thus V1 =
∑k−1

j=0 2
−j = 2 − 2−k+1. We have therefore just shown

that any algorithm is at most (2− 2−k+1)/k competitive. 2

4.8 Rounding algorithm for online hypergraph
b-matching

In this section, we consider the online b-matching problem on k-uniform hyper-
graphs, in which every (offline and online) node v can be matched to at most
b hyperedges. We show that, for b = Ω(log k), any fractional algorithm can be
converted to a randomized integral algorithm while incurring a small loss in the
competitive ratio.

LetA be a fractional algorithm that is ρ-competitive and letH = (V,W,H) be
an online k-uniform hypergraph instance. We denote by x ∈ [0, 1]H the fractional
solution constructed by A on the instance H. The rounding algorithm is now
quite simple and is similar to the methods used in [EOJ12, RT87, SS95].

Fix some small 0 < ϵ < 1 and initialize two empty sets of hyperedges S,M←
∅. Upon the arrival of an online vertex w ∈ W with δ(w) ⊆ H and xh ∈ [0, 1] for
every h ∈ δ(w), the rounding algorithm is as follows:

• For all h ∈ δ(w), independently add h to S with probability x′h := (1−ϵ)xh.

• If h was added to S, add it toM as long as it does not violate the degree
constraints.

The solution outputted is M ⊆ H. Let us denote this rounding algorithm by
R(A, ϵ).

Lemma 4.8.1. Let A be a ρ-competitive fractional algorithm. The randomized
integral algorithm R(A, ϵ) achieves a competitive ratio of at least (1 − ϵ)(1 −
k exp(−ϵ2b/3)) · ρ.

Proof:
Consider an arbitrary node v ∈ V ∪W . To bound the probability that v is matched
to more than b hyperedges in S, we use a Chernoff bound [Doe19, Theorem 1.10.1].
Fix a node v and a hyperedge h, and let Xv,h =

∑
h′∈δ(v)\{h} 1{h′∈S}. Note that

4.8. Rounding algorithm for online hypergraph b-matching 81

µ := E[Xv,h] ≤ (1 − ϵ)b. If µ = 0, it is clear that xv,h ≤ b, so assume µ > 0. We
now have:

Pr [Xv,h ≥ b] ≤ exp
(
−min

((
b− µ
µ

)2

,
b− µ
µ

)
µ/3

)

≤ exp
(
−min

(
(b− µ)2

µ
, b− µ

)
/3

)
≤ exp

(
−min

(
ϵ2b, ϵb

)
/3
)
≤ exp(−ϵ2b/3),

where the second inequality follows from b− µ ≥ ϵb and the last inequality from
b/µ ≥ 1. We now upper bound the probability that a hyperedge h cannot be
included inM because of the degree constraints:

Pr[h ∈ S \M | h ∈ S] ≤
∑
v∈h

Pr [Xv,h ≥ b] ≤ k exp(−ϵ2b/3).

Hence, we have:

E[|M|] =
∑
h∈H

Pr[h ∈M] =
∑
h∈H

Pr[h ∈ S] (1− Pr[h ∈ S \M | h ∈ S])

≥
∑
h∈H

x′h
(
1− k exp(−ϵ2b/3)

)
=
(
1− k exp(−ϵ2b/3)

)
(1− ϵ)

∑
h∈H

xh

≥
(
1− k exp(−ϵ2b/3)

)
(1− ϵ)ρ OPTLP.

2

If b = C · log(k) for some C > 6, then by choosing ϵ =
√

6/C we get that
the competitive ratio is at least (1 −

√
6/C)(1 − 1

k
)ρ. By using the Ω(1/ log k)-

competitive fractional algorithm from [BN09], this gives an Ω(1/ log k)-competitive
integral algorithm for this setting.

Chapter 5

Price of anarchy for scheduling games
via vector fitting

In this chapter, we introduce a semidefinite programming relaxation allowing to
relax scheduling and congestion problems which can be cast as a binary integer
quadratic program, an example of which we have introduced in (2.1.2). We then
provide a dual fitting technique on this SDP allowing to tightly upper bound the
price of anarchy of these games in a simple and unified way. We also illustrate
how the same technique can be adapted to tightly upper bound the approximation
ratio of local search algorithms.

In the next chapter, we will show how this technique can be adapted to analyze
the competitive ratio of different online algorithms for such scheduling problems.

5.1 Introduction
A standard way of quantifying inefficiency of selfish behaviour in algorithmic
game theory is the price of anarchy, introduced in [KP99]. It is defined as the
ratio between the cost of a worst-case Nash equilibrium and the cost of a so-
cial optimum. This definition can be used to understand inefficiency of pure or
mixed Nash equilibria, and can also be extended to more general notions, such
as correlated or coarse-correlated equilibria.

Developing tools to bound the price of anarchy is a central question, and sev-
eral approaches have been proposed in the literature to tackle this problem. One
technique that has been very successful for a variety of games is the smoothness
framework, introduced in [Rou15]. One advantage of this approach is that it
automatically bounds the price of anarchy for all the different notions of equilib-
ria mentioned above, yielding bounds on the robust price of anarchy of a game
[Rou15].

Another possible avenue is to use convex relaxations to help bound the price
of anarchy, as done in [KM14]. The high-level approach is to formulate a convex
relaxation of the underlying optimization problem of a given game, and to con-

83

84 Chapter 5. Price of anarchy for scheduling games via vector fitting

struct a feasible solution to the dual of that relaxation, whose cost can then be
compared to the cost of an equilibrium. Bounding the ratio between the cost of
the equilibrium and of the feasible dual solution then yields an upper bound on
the price of anarchy by weak duality.

In this chapter, we build on this approach and show that a single convex
semidefinite programming relaxation can be used to obtain tight (robust) price
of anarchy bounds for several different congestion and scheduling games. This
relaxation can in fact be obtained using the first round of the Lasserre hierarchy
[Las01], and the proofs bounding the price of anarchy through the dual of that
relaxation are surprisingly simple and essentially follow the same template for all
the games considered. In addition to bounding the price of anarchy, it turns out
that the same approach also allows to bound the approximation ratio of local
optima for machine scheduling.

As a main illustration of this technique, we consider the following model of
congestion games. We are given a set of players N and a set of resources E.
The strategy set for each player j ∈ N is a collection of subsets of resources
and is denoted by Sj ⊆ 2E. Each player has a resource-dependent processing
time pej ≥ 0 and a weight wj ≥ 0. Once each player chooses a strategy, if a given
resource e ∈ E is shared by several players, then e uses a coordination mechanism,
defined as a local policy for each resource, in order to process the players using
it. One natural example of such a coordination mechanism is to order the players
by increasing Smith ratios, defined as the ratio between the processing time on a
resource and the weight of a given player [Smi56].

This model is a generalization of the unrelated machine scheduling game
R||
∑
wjCj, where each job needs to selfishly pick a machine to minimize its

own weighted completion time, while knowing that each machine uses a coordi-
nation mechanism to process the jobs assigned to it. In our model, the set of
resources E is the set of machines, and the strategy set of each player is a sub-
set of the machines. An important special case of our model, which generalizes
R||
∑
wjCj, is the following selfish routing game. We are given a directed graph

G = (V,E) and a set of players N . Each player j wants to pick a path between
a source node sj ∈ V and a sink node tj ∈ V . The strategy set Sj for player
j ∈ N is the set of all paths between sj and tj. A parallel link network where each
player has the same source and sink node exactly corresponds to the R||

∑
wjCj

scheduling problem.
The work of [CCG+11] considers three different coordination mechanisms for

R||
∑
wjCj. Their main results are that Smith’s Rule leads to a tight price of

anarchy of 4, and this can be improved to (3+
√
5)/2 ≈ 2.618 and 32/15 ≈ 2.133

by respectively considering a preemptive mechanism called Proportional Sharing,
as well as a randomized one named Rand. The latter two results in fact bound
the coordination ratio of the coordination mechanism, meaning that the cost of a
worst-case Nash equilibrium is compared to the cost of an optimal solution under
Smith’s Rule, since this is always how an optimal solution processes the jobs once

5.1. Introduction 85

an assignment is given [Smi56]. The proof technique they use to obtain their
results is based on the smoothness framework [Rou15]. In order to exploit the
structure of the problem, they map strategy vectors into a carefully chosen inner
product space, where the social cost is closely related to a squared norm in that
space. Generalizing their results to selfish routing games was mentioned as an
open question.

The inner product space structure developed in [CCG+11] turns out to have
a natural connection to semidefinite programming, since the latter can be seen as
optimizing over inner products of vectors. In this work, we study this connection
and show that it leads to simple dual fitting proofs that allow to tightly bound
the price of anarchy, as well as the approximation ratio of local optima, for several
different congestion and scheduling games in a unified way. We hope that this
new approach might turn out to be useful in other contexts as well.

Our contributions
Our main contribution is a unified dual fitting technique on a single semidefinite
program to bound the price of anarchy, as well as the approximation ratio of local
optima, for a class of games whose underlying optimization problem can be cast
as a binary quadratic program. We illustrate the applicability of this approach
for different scheduling and congestion games. The semidefinite program used
can be obtained by applying one round of the Lasserre/Sum of Squares hierarchy
to the exact binary quadratic program.

We show that the three bounds of respectively 4, (3 +
√
5)/2 ≈ 2.618 and

32/15 ≈ 2.133 for the policies Smith’s Rule, Proportional Sharing and Rand
can be obtained through our approach in the above congestion game model. This
yields alternative and simple proofs of these results in a more general model, which
avoid the use of minimum norm distortion inequalities, as done in [CCG+11]. We
moreover show that the last bound can be improved from 2.133 to 2 for the natural
special case where the processing times are proportional to the weight of a given
player on every feasible resource. This means that every resource has a real-value
λe ≥ 0, interpreted as the processing power, and the processing time of every
player satisfies pej ∈ {λewj,∞} for every e ∈ E, j ∈ N . The importance of this
model in a scheduling setting has been mentioned in [KST17]. This improvement
from 2.133 to 2 can also be obtained for general instances if one considers the
price of anarchy of the game, rather than the coordination ratio. This means that
the cost of a worst-case Nash equilibrium is now compared against an optimal
solution using the Rand policy, rather than Smith’s Rule.

Moreover, we show that the same approach (on the same relaxation) can be
used to bound the approximation ratio of local optima of local search algorithms
for machine scheduling under the sum of weighted completion times objective.
We first consider a natural algorithm whose local optima simply ensure that
no job can decrease the global objective function by switching to a different

86 Chapter 5. Price of anarchy for scheduling games via vector fitting

machine. Observe the analogy with Nash equilibria, which ensure that no job
can improve its own objective (or completion time) by switching machines. We
recover the approximation ratios of (3 +

√
5)/2 ≈ 2.618 and (5 +

√
5)/4 ≈ 1.809

for the scheduling problems R||
∑
wjCj and P |Mj|

∑
wjCj given in [CM22].

In addition, we also analyze an improved local search algorithm for R||
∑
wjCj

attaining a bound of (5 +
√
5)/4 + ε ≈ 1.809 + ε [CGV17], and show an almost

matching lower bound of 1.791. To the best of our knowledge, this is the currently
best known combinatorial approximation algorithm for this problem.

As a further illustration of the technique, we apply it to two classical games
and show that it yields simple proofs of known tight bounds. We first show
how to get the tight bound of (3 +

√
5)/2 for the price of anarchy of weighted

affine congestion games. While a dual fitting proof through a convex relaxation
of this bound is already provided in [KM14], this result showcases the versatility
of our SDP relaxation and of the fitting strategy. In addition, a dual fitting proof
of the Kawaguchi-Kyan bound of (1 +

√
2)/2 for the pure price of anarchy of

the scheduling game P ||
∑
wjCj is also provided through the same relaxation.

We note that the dual fitting strategy used for this result uses a reduction to
worst-case instances of [Sch11].

Further related work
There is a vast literature on exact or approximation algorithms for scheduling
problems under the (weighted) sum of completion times objective. We adopt
the standard three-field notation α|β|γ of [GLLK79]. The problem with un-
weighted completion times R||

∑
Cj is polynomial time solvable [Hor73, BCJS74].

For P ||
∑
Cj on parallel machines, the shortest first policy gives an optimal so-

lution which also turns out to be a Nash equilibrium [CM67]. On the other
hand, the weighted completion times objective is NP-hard even for P ||

∑
wjCj

[LKB77]. A PTAS is known for P ||
∑
wjCj [SW00], while R||

∑
wjCj is APX-

hard [HSW98]. Constant factor approximation algorithms are however possible,
with major results being a simple 3/2-approximation by rounding a convex relax-
ation [Sku01, SS99] and the first algorithm breaking the 3/2-approximation using
a semidefinite relaxation [BSS16]. We note that the primal semidefinite program
that we use is very similar to their relaxation. Building on this, subsequent im-
provements have been made [IS20, IL23, Har24] with the current best (to the best
of our knowledge) approximation algorithm for this problem obtaining a ratio of
1.36 + ε [Li24]. In the special case where Smith ratios are uniform, an improved
bound of (1 +

√
2)/2 + ε has been obtained [KST17].

Scheduling problems have also been vastly studied from a game theoretic
perspective. For P ||

∑
wjCj, the pure price of anarchy of Smith’s Rule coincides

with the approximation ratio of a simple greedy algorithm and was shown to be
(1 +

√
2)/2 ≈ 1.207 in a classic result of [KK86]. A much simpler proof of this

result is shown in [Sch11]. Interestingly, the mixed price of anarchy of this game

5.2. Preliminaries 87

is higher, with a tight bound of 3/2 even for P ||
∑
Cj [RS13]. For the unweighted

version, Smith’s Rule in fact reduces to the shortest processing time first policy,
under which [HU11] shows an upper and lower bound of respectively 2 for the
robust price of anarchy and e/(e − 1) ≈ 1.58 for the pure price of anarchy of
Q||
∑
Cj. For related machines, it is still an interesting open question whether

the upper bounds of respectively 2 and 4 for Q||
∑
Cj and Q||

∑
wjCj can be

improved.
Coordination mechanisms were introduced in the work of [CKN04] for P ||Cmax

and a selfish routing/congestion game. Four different scheduling games under
four different policies were analyzed in [ILMS09] under the makespan objective.
Upper and lower bounds for different coordination mechanisms for R||Cmax can be
found in [AJM08, Car13, FS10, CDNK11, AH12]. Further work on coordination
mechanisms for the makespan objective has been done in [BIKM14, CF19, Kol13].

The literature for the sum of completion times objective is somewhat sparser.
The work of [CCG+11] considers R||

∑
wjCj and shows that the policies Smith’s

Rule, Proportional Sharing and Rand respectively give bounds of 4, 2.618 and
2.133 on the robust price of anarchy. The first two bounds are tight, with match-
ing lower bounds given in [CQ12] and [CFK+06]. The latter two coordination
mechanisms can in fact be interpreted as a cost-sharing protocol [CGV17]. Us-
ing similar techniques, [ACH14] extend some of the previous results to multi-job
scheduling games. Coordination mechanisms for a more general model with re-
lease dates and assignment costs have been studied in [BIKM14].

The study of the price of anarchy for weighted congestion games was initiated
in [KP99] for parallel links under the maximum load (or makespan) objective.
Tight bounds for parallel links have been shown in [CV07]. For general networks
under the MinSum objective with affine latency functions, the works of [AAE05,
CK05] establish that the price of anarchy is 5/2 for the unweighted version and
(3 +

√
5)/2 in the weighted case. Other models have been studied in [ADG+11,

CFK+06, BGR14, STZ04, FOV08]. To the best of our knowledge, the literature on
coordination mechanisms for congestion/selfish routing games is relatively sparse
[CKN04, CMP14, BKM14].

5.2 Preliminaries
Game format. All the games considered are of the following form. A set of
players N is given. Each player j ∈ N has a strategy set Sj, and we denote by
xij ∈ {0, 1} the binary value indicating whether the player chooses strategy i ∈ Sj.
If xij ∈ [0, 1], then this corresponds to the probability of player j independently
choosing strategy i. The (expected) cost incurred by the player is denoted by
Cj(x) and is a quadratic (possibly non-convex) function of x. Given weights
wj ≥ 0 for every player j ∈ N , the total social cost is the weighted sum of costs
incurred by every player, and we denote it by C(x) =

∑
j wjCj(x).

88 Chapter 5. Price of anarchy for scheduling games via vector fitting

Scheduling. One example falling in this class are scheduling games. Given
is a set of jobs J = N , which are the players, and a set of machines M . The
strategy set of every player is a subset of the machines Sj ⊆ M . We adopt the
standard three-field notation α|β|γ of [GLLK79], with α denoting the machine
environment, β denoting the constraints, and γ denoting the objective function.
The most general such problem we consider is R||

∑
wjCj, where each job j ∈ N

has unrelated processing times pij ∈ R+ ∪ {∞} for each i ∈ M . If pij = ∞,
we will without loss of generality assume that i /∈ Sj. Once an assignment x is
fixed, the optimal way to process the jobs for each machine is to order them by
increasing Smith ratios, which we denote as δij := pij/wj. We denote k ≺i j if k
precedes j in the ordering of machine i, meaning that δik ≤ δij. We assume ties
are broken in a consistent way. The completion time of every job is then

Cj(x) =
∑
i∈M

xij

(
pij +

∑
k≺ij

pikxik

)
.

Observe that this is indeed a quadratic function in x. If every job has the same
processing time pij = pj on every machine, this model is denoted by P ||

∑
wjCj.

If pij ∈ {pj,∞}, then the model is denoted as P |Mj|
∑
wjCj.

Congestion model. We consider the following model of congestion games,
which generalize the scheduling games described above. We are given a set of
players N and a set of resources E. The strategy set for each player j ∈ N is
denoted by Sj ⊆ 2E and is a collection of subsets of resources. Each player has a
resource-dependent processing time pej ≥ 0 and a weight wj ≥ 0. Without loss
of generality, we assume that for every feasible strategy i ∈ Sj of a player j ∈ N ,
we have that pej < ∞ for every e ∈ i (otherwise simply remove i from Sj since
it is not a valid strategy). The Smith ratio is defined as δej = pej/wj for every
e ∈ E, j ∈ N . We denote k ≺e j if δek ≤ δej, meaning that k has a smaller Smith
ratio than j on the resource e ∈ E, where ties are broken in a consistent manner.
For a given assignment (xij)j∈N,i∈Sj

, we denote

zej :=
∑

i∈Sj :e∈i

xij.

We invite the reader to think about pure assignments. In that case, xij ∈ {0, 1}
is binary and indicates whether or not player j chooses strategy i ∈ Sj, whereas
zej ∈ {0, 1} takes value one if j uses the resource e ∈ E, i.e. chooses a strategy
i ∈ Sj containing resource e ∈ E. In the case of mixed assignments, xij ∈ [0, 1]
represents the probability of player j independently choosing strategy i, whereas
zej ∈ [0, 1] represents the probability of player j using resource e. Once an
assignment x is fixed, Smith’s Rule is again the optimal way for every resource
to process the jobs, and the cost incurred by a player j ∈ N is given by:

Cj(x) =
∑
i∈Sj

xij
∑
e∈i

(
pej +

∑
k≺ej

pek zek

)
.

5.2. Preliminaries 89

Nash equilibria. An assignment x is a Nash equilibrium if no player can get
a lower cost by changing his/her strategy. The price of anarchy is defined as the
ratio between the cost of a worst-case Nash equilibrium and the cost of an optimal
solution. Unless explicitly stated otherwise, we consider mixed Nash equilibria,
meaning that the following set of constraints is satisfied:

Cj(x) ≤ Cj(x−j, i) ∀j ∈ N, ∀i ∈ Sj (5.2.1)

where x−j refers to the assignment of all players other than j. In Section 5.8, we
show how to extend our results to a more general equilibrium concept, namely a
coarse-correlated equilibrium.

Coordination mechanisms. In the scheduling setting, a coordination mech-
anism is a set of local policies, one for each machine, deciding on how the jobs
assigned to it should be processed. Smith’s Rule is one example of such a policy,
which is in fact optimal in terms of the social cost. However, picking a different
policy may help improve the price of anarchy. One policy that we consider is a
preemptive mechanism called Proportional Sharing, where the jobs are scheduled
in parallel, with each uncompleted job receiving a fraction of the processor time
proportional to its weight. Another mechanism is Rand, which orders the jobs
randomly by ensuring that the probability of job j being scheduled before k is
δik/(δij + δik) for every pair of jobs j, k. The reader is referred to [CCG+11] for
details. In our congestion model, each resource uses one of these coordination
mechanisms to process the players using that resource. Note that this modifies
the cost Cj(x) incurred by every player, and thus also the social cost C(x).

Coordination ratio and price of anarchy. We make a distinction between
the coordination ratio of a coordination mechanism and the price of anarchy of
the game. The coordination ratio measures the ratio between a worst-case Nash
equilibrium and an optimal solution if every resource uses Smith’s Rule to process
the players. In contrast, the price of anarchy of the game compares to a weaker
optimal solution where each resource uses the chosen mechanism to process the
players.

Outline of the chapter. The semidefinite programming relaxation and a high-
level view of the approach is presented in Section 5.3. The analysis of the coordi-
nation ratio and the price of anarchy of Smith’s Rule, Proportional Sharing and
Rand for our congestion model are presented in Section 5.4. The analysis of local
optima for machine scheduling is done in Section 5.5. The analysis for the price
of anarchy of weighted affine congestion games is shown in Section 5.6. The pure
price of anarchy of P ||

∑
wjCj is presented in Section 5.7.

90 Chapter 5. Price of anarchy for scheduling games via vector fitting

5.3 The semidefinite programming relaxation

5.3.1 The primal-dual pair
We assume in this section some basics on semidefinite programs (SDPs), which
can be found in Section 2.4. Let N be a set of players, with each player j ∈ N
having a strategy set Sj. An exact quadratic program to compute the social
optimum is given by

min C(x)∑
i∈Sj

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀j ∈ N, ∀i ∈ Sj.

Since we assume C(x) to be quadratic in x, the social cost can be written as

C(x) = C{0,0} + 2
∑

j∈N,i∈Sj

C{0,ij} xij +
∑
j,k∈N

i∈Sj ,i
′∈Sk

C{ij, i′k}xij xi′k (5.3.1)

for some symmetric matrix C of dimension 1+
∑

j∈N |Sj|, which has one row/column
corresponding to each xij, in addition to one extra row/column that we in-
dex by 0. The above equation (5.3.1) can be written in a compact way as
C(x) = 〈C,X〉 := Tr(CTX), where X is the rank one matrix X = (1, x)(1, x)T ,
where the notation (1, x) refers to a vector in dimension 1 +

∑
j∈N |Sj| obtained

by appending a coordinate with value 1 to x.
We now consider a semidefinite convex relaxation of the above quadratic pro-

gram, which can essentially be obtained through the Lasserre/Sum of Squares
hierarchy [Las01]. The variable of the program is a positive semidefinite matrix
X of dimension 1+

∑
j∈N |Sj|, which has one row/column corresponding to each

xij, in addition to one extra row/column that we index by 0.

min〈C,X〉∑
i∈Sj

X{ij, ij} = 1 ∀j ∈ N

X{0,0} = 1

X{0, ij} = X{ij, ij} ∀j ∈ N, i ∈ Sj
X{ij, i′k} ≥ 0 ∀(i, j), (i′, k) with j, k ∈ N

X � 0

To see that this is in fact a relaxation to the previous quadratic program, note
that for any binary feasible assignment x, the rank-one matrixX = (1, x)(1, x)T is
a feasible solution to the SDP with the same objective value. The key observation

5.3. The semidefinite programming relaxation 91

that makes this work is the fact that x2ij = xij for xij ∈ {0, 1}, leading toX{ij, ij} =
x2ij = xij = X{0, ij}. The dual to this relaxation, written in vector form, is the
following. The computation of the dual is shown in Section 5.9.1. We call this
relaxation (SDP-C).

max
∑
j∈N

yj−
1

2
‖v0‖2 (5.3.2)

yj ≤ C{ij, ij} −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, i ∈ Sj

〈vij, vi′k〉 ≤ 2 C{ij, i′k} ∀(i, j) 6= (i′, k) with j, k ∈ N

The variables of this program are real-valued yj ∈ R for every j ∈ N , as well
as vectors v0 ∈ Rd and vij ∈ Rd for every j ∈ N, i ∈ Sj in some dimension
d ∈ N. This will be the relaxation used for every dual fitting argument in this
thesis. Depending on the problem we are considering, the matrix C, which only
depends on the total social cost, is then picked accordingly. The computation of
this matrix for every game considered is shown in Section 5.9.2.

5.3.2 High-level view of the approach and intuition of the
dual

We describe here a high-level view of the dual fitting approach and of its main
ideas. We also provide some intuition in how the dual program (5.3.2) is used.
For clarity, we illustrate the concepts on a simple concrete toy example that we
introduced in Section 2.6.3: a weighted load balancing game, which is a special
case of an affine weighted congestion game later analyzed in full detail in Section
5.6. Let us remind the reader of the setting.

Example: load balancing. We are given a set of players N and a set of
resources E. The strategy set of every player j ∈ N is a subset of resources
Sj ⊆ E with unrelated weights wij ≥ 0 associated for every i ∈ Sj. Consider a
pure assignment x, the load of a resource i ∈ E is defined as the total weight of
players assigned to it and is formally defined as ℓi(x) =

∑
j∈N wijxij. The cost

of a player j is then defined as Cj(x) =
∑

i∈E ℓi(x) wij xij, meaning that it is
the weight multiplied by the load of the resource picked. The social cost can be
written as follows

C(x) =
∑
j∈N

Cj(x) =
∑
i∈E

∑
j,k∈N

wijwikxijxik =
∑
j,k∈N

i∈Sj ,i
′∈Sk

wijwikxijxi′k1{i=i′}. (5.3.3)

Note that the social cost can also be written in a simple way as C(x) =
∑

i∈E ℓi(x)
2.

The above equation is however written in the form (5.3.1).

92 Chapter 5. Price of anarchy for scheduling games via vector fitting

Specializing the dual SDP. After understanding what the social cost looks
like as a quadratic function in the form (5.3.1), we are able to write down the
dual program (5.3.2) for a considered game. In our example, the above equation
tells us that the matrix C has diagonal entries C{ij, ij} = w2

ij and non-diagonal
entries C{ij, i′k} = wij wik 1{i=i′}, meaning that we can write down the dual as:

max
∑
j∈N

yj −
1

2
‖v0‖2 (5.3.4)

yj ≤ w2
ij −

1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj (5.3.5)

〈vij, vi′k〉 ≤ 2 wij wik 1{i=i′} ∀(i, j) 6= (i′, k) with j, k ∈ N. (5.3.6)

Given any Nash equilibrium (or local optimum) x, the goal is to use this dual
program to construct a feasible solution with objective value at least ρ C(x) for
some ρ ∈ [0, 1]. By weak duality, this would directly imply an upper bound of
1/ρ for the price of anarchy (or approximation ratio).

Correspondence between the SDP constraints and the Nash conditions.
The key insight is that the first set of constraints (5.3.5) of the SDP has the same
structure as that of the Nash equilibria inequalities (5.2.1). Our goal is to pick a
fitting which will ensure that this set of constraints corresponds to (or is implied
by) these equilibrium conditions. Fix a Nash equilibrium x and let us write down
what the Nash conditions imply for our toy example:

Cj(x) ≤ wij (ℓi(x) + wij) = w2
ij + wij ℓi(x) ∀j ∈ N, ∀i ∈ Sj.

A natural way to achieve the desired correspondence is to have the following:

yj ∼ Cj(x) , w2
ij −

1

2
‖vij‖2 ∼ w2

ij , −〈v0, vij〉 ∼ wij ℓi(x) (5.3.7)

where the ∼ notation indicates that both quantities are within a fixed constant
(which should be the same for all three cases above) of each other. For local
search algorithms, the Nash inequalities get replaced by local optima conditions.

Picking the vector fitting. Observe that the second correspondence above
implies that ‖vij‖2 ∼ w2

ij. The second set of SDP constraints (5.3.6) tells us that
for i 6= i′, one should have 〈vij, vi′k〉 ≤ 0. We will in fact ensure tightness of this
constraint by fitting such two vectors to be orthogonal. A very natural candidate
for the fitting of vij in our example thus becomes the following choice:

vij ∈ RE defined as vij(e) = α wij 1{i=e}

5.3. The semidefinite programming relaxation 93

for some constant α ∈ [0,
√
2] to be determined. The upper bound on α follows

again from the second set of SDP constraints (5.3.6), since we now get 〈vij, vi′k〉 =
α2 wij wi′k 1{i=i′} under our fitting.

How should v0 now be picked? There are two desirable properties to be
satisfied: we want−〈v0, vij〉 ∼ wijℓi(x) as mentioned above, in addition to relating
‖v0‖2 to the social cost C(x), since it appears in the objective function of the SDP.
A very natural candidate becomes the following:

v0 ∈ RE defined as v0(e) = −β ℓe(x)

where β ≥ 0 is to be determined. Note that we now indeed get −〈v0, vij〉 =
αβ wij ℓi(x) and ‖v0‖2 = β2 C(x), since (5.3.3) can be rewritten as C(x) =∑

i∈E ℓi(x)
2.

Optimizing the constants. How should α and β be picked? We have seen
that α ∈ [0,

√
2] and β ≥ 0. Observe that under our fitting, constraints (5.3.5)

now become yj ≤ (1 − α2/2) w2
ij + αβ wij ℓi(x). Correspondence (5.3.7) then

tells us to set 1 − α2/2 = αβ and yj = αβCj(x). The objective value (5.3.4)
of the SDP then becomes (αβ − β2/2) C(x). Since we want to pick α and β to
maximize the dual objective in order to get the best possible bound on the price of
anarchy/approximation ratio, we would want to solve the following optimization
problem:

max{αβ − β2/2 : 1− α2/2 = αβ, α ∈ [0,
√
2], β ≥ 0}.

Solving this optimization problem would give a price of anarchy bound of (3 +√
5)/2, which is tight in this setting by a lower bound construction of [CFK+06].

At the high-level, this is the approach used to derive the results in this chapter.
We invite the reader to keep this intuition even for more complex games.

5.3.3 Different inner product spaces
In order to construct a feasible solution to this SDP, one needs to construct
vectors v0 and {vij}j∈N,i∈Sj

living in a Euclidean space Rd for some d > 0, in
addition to real values {yj}j∈N such that both sets of constraints of the SDP are
satisfied. Note that the inner product is the standard Euclidean one where, for
given f, g ∈ Rd, it is defined as 〈f, g〉 :=

∑d
i=1 figi. For some games, it will be

more convenient to work in a different inner product space, as done in [CCG+11].
Let us fix a finite set E, where each e ∈ E induces a finite set of positive real
values 0 = δ

(e)
0 ≤ δ

(e)
1 ≤ · · · ≤ δ

(e)
n . We define the following inner product space:

F(E) :=

{
f : E × [0,∞)→ R+ : f(e, t) =

n∑
j=1

αej 1
{
δ
(e)
j−1 ≤t≤ δ

(e)
j

}; αej ∈ R

}
.

94 Chapter 5. Price of anarchy for scheduling games via vector fitting

In words, each element satisfies the fact that f(e, ·) is a step-function with break-
points at δ(e)1 ≤ · · · ≤ δ

(e)
n for every e ∈ E. A valid inner product for two

f, g ∈ F(E) is then given by:

〈f, g〉 :=
∑
e∈E

∫ ∞

0

f(e, t) g(e, t) dt. (5.3.8)

Another inner product space we will consider is the following. Let us fix E
to be a finite set and K ∈ N. For any positive-definite matrix M ∈ RK×K ,
we can consider the space G(E,M) := RE×[K] where the inner product for two
f, g ∈ G(E,M) is given by:

〈f, g〉 :=
∑
e∈E

f(e, ·)T M g(e, ·). (5.3.9)

We now argue that we can work in these spaces without loss of generality.
Lemma 5.3.1. Any feasible dual fitting to (SDP-C) obtained in the inner product
spaces F(E) and G(E,M) can be converted into a feasible dual fitting with the
same objective value in a standard Euclidean space Rd for some d > 0 endowed
with the standard inner product.
Proof:
For both spaces, we argue that a collection of elements in it can be mapped
to a collection of vectors in a standard Euclidean space while preserving all the
pairwise inner products (and thus also preserving the norms). This then clearly
implies the claim.

We first show the statement for F(E). Let us denote the difference between
two breakpoints as ∆

(e)
j := δ

(e)
j − δ

(e)
j−1. For each element f ∈ F(E), define

f ′ ∈ RE×[n] as f ′(e, j) := f
(
e, δ

(e)
j−1 + ∆

(e)
j /2

)√
∆

(e)
j . By computing the integral

of a step function, we clearly have that for f, g ∈ F(E),

〈f, g〉 =
∑
e∈E

n∑
j=1

∆
(e)
j f
(
e, δ

(e)
j−1 +∆

(e)
j /2

)
g
(
e, δ

(e)
j−1 +∆

(e)
j /2

)
= 〈f ′, g′〉.

Note that the last inner product is the standard Euclidean one, thus showing the
claim for F(E).

We now show the claim for G(E,M). Let us write a rank-one decomposition
of the positive definite matrix M =

∑K
j=1 uju

T
j , which can for instance be done

through the spectral decomposition. For each f ∈ G(E,M), we define a modified
f ′ ∈ RE×[K] as f ′(e, j) := f(e, ·)Tuj. For f, g ∈ G(E,M), we then have:

〈f, g〉 =
∑
e∈E

K∑
j=1

f(e, ·)Tuj uTj g(e, ·) =
∑
e∈E

K∑
j=1

f ′(e, j)g′(e, j) = 〈f ′, g′〉.

2

5.4. Congestion games with coordination mechanisms 95

5.4 Congestion games with coordination mech-
anisms

5.4.1 Smith’s Rule
The first coordination mechanism we consider is Smith’s Rule. If x is a mixed
assignment, each player first independently picks a strategy according to his/her
distribution specified by x to get an assignment. Once an assignment is set, each
resource orders the players using it by increasing Smith ratios and processes them
in that order. The cost incurred by a player j on a resource e that he/she is using
is then pej +

∑
k≺ej

pek zek. The total cost incurred by a player is the sum of the
costs incurred on all the resources used. More formally, the completion time of
player j ∈ N under Smith’s Rule is defined to be:

Cj(x) =
∑
i∈Sj

xij
∑
e∈i

(
pej +

∑
k≺ej

pek zek

)
. (5.4.1)

The outer sum only has one term for a binary assignment. For a mixed assignment
x, the expression above is the expected cost, by the law of total probability and
independence. The social cost is the sum of weighted completion times:

C(x) :=
∑
j∈N

wj Cj(x) =
∑
e∈E

∑
j∈N

wj pej zej +
∑
e∈E

∑
j∈N,k≺ej

wj pek zek zej, (5.4.2)

where the second equality follows by using the definition of Cj(x) and changing
the order of summation. Moreover, if x is a Nash equilibrium, the following
inequalities are satisfied:

Cj(x) ≤
∑
e∈i

(
pej +

∑
k≺ej

pekzek

)
∀j ∈ N, ∀i ∈ Sj. (5.4.3)

The dual semidefinite relaxation (5.3.2) then becomes the following, we call it
(SDP-SR). The computation of the cost matrix C in this setting is shown in
Section 5.9.2.

max
∑
j∈N

yj −
1

2
‖v0‖2 (5.4.4)

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

(5.4.5)
〈vij, vi′k〉 ≤

∑
e∈i∩i′

wj wk min {δej, δek} ∀(i, j) 6= (i′, k) with j, k ∈ N

(5.4.6)

96 Chapter 5. Price of anarchy for scheduling games via vector fitting

We note that, in order to bound the coordination ratio of a coordination mech-
anism, one needs to construct a feasible dual solution to this relaxation, since it
gives a valid lower bound on the optimal solution. Indeed, once an assignment is
fixed, the optimal ordering on every resource is to schedule the players according
to Smith’s Rule [Smi56].

Theorem 5.4.1. For any Nash equilibrium x of the above congestion game, where
each resource uses the Smith’s Rule policy, there exists a feasible (SDP-SR) solu-
tion with value at least 1/4 C(x). This implies that the price of anarchy and the
coordination ratio is at most 4.

Remark 5.4.2. This bound is tight, with a matching lower bound given in
[CQ12] even for scheduling on restricted identical machines with unit process-
ing times.

Proof:
We assume that the SDP vectors live in the inner product space F(E). By Lemma
5.3.1, this is without loss of generality. Let us fix β = 1/2, we now state the dual
fitting for (SDP-SR):

• v0(e, t) := −β
∑

k∈N wk zek 1{t≤δek}

• vij(e, t) := wj 1{e∈i} 1{t≤δej} ∀j ∈ N, ∀i ∈ Sj

• yj := β wj Cj(x) ∀j ∈ N.

Let us now compute the different inner products and norms that we need. For a
job j ∈ N and a strategy i ∈ Sj, we have

‖vij‖2 =
∑
e∈i

w2
j δej =

∑
e∈i

wj pej.

For v0, we give an upper bound with respect to C(x):

1

β2
‖v0‖2 =

∑
e∈E

∑
j,k∈N

wj wk zej zek

∫ ∞

0

1{t≤δej}1{t≤δek} dt

=
∑
e∈E

∑
j,k∈N

wjwkzejzek min{δej, δek}

=
∑
e∈E

∑
j∈N

w2
j z

2
ej δej + 2

∑
e∈E

∑
j∈N,k≺ej

wjwkzejzekδek

=
∑
e∈E

∑
j∈J

wj pej z
2
ej + 2

∑
e∈E

∑
j∈N,k≺ej

wj pek zej zek

≤ 2 C(x). (5.4.7)

5.4. Congestion games with coordination mechanisms 97

The last equality uses the definition of the Smith Ratio δej = pej/wj, whereas the
last inequality follows from the fact that z2ej ≤ zej (since zej ∈ [0, 1]) as well as
the definition of the social cost (5.4.2). In addition, for any (i, j) 6= (i′, k) with
j, k ∈ N , we have

〈vij, vi′k〉 =
∑
e∈E

wj wk 1{e∈i} 1{e∈i′}

∫ ∞

0

1{t≤δej}1{t≤δek} dt

=
∑
e∈i∩i′

wj wk min {δej, δek} (5.4.8)

and observe that this tightly satisfies the second set of SDP constraints (5.4.6).
Finally,

〈v0, vij〉 = −β
∑
e∈i

∑
k∈N

wj wk zek min{δej, δek}.

Let us now check that this is a feasible solution to (SDP-SR). The second set of
constraints is satisfied due to (5.4.8). The first set of constraints (5.4.5) under
the above fitting becomes:

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ β wj Cj(x) ≤
1

2

∑
e∈i

wj pej + β
∑
e∈i

∑
k∈N

wj wk zek min{δej, δek}

⇐⇒ Cj(x) ≤
∑
e∈i

(
pej +

∑
k∈N

wk zek min{δej, δek}
)

⇐⇒ Cj(x) ≤
∑
e∈i

(
pej +

∑
k≺ej

pek zek +
∑
k⪰ej

wk zek δej

)
.

We have simplified both sides by β wj = 1/2 wj in the third line, which holds
by definition of β := 1/2. We have also used the definition of the Smith ratio
δek = pek/wk in the last line. This set of constraints is now clearly satisfied by
the Nash conditions (5.4.3). The objective function of this SDP can now be lower
bounded using (5.4.7):∑

j∈N

yj −
1

2
‖v0‖2 ≥ β

∑
j∈N

wj Cj(x)− β2C(x) =
(
β − β2

)
C(x) =

1

4
C(x).

2

5.4.2 The Proportional Sharing policy
In this section, we consider a preemptive policy for every resource named Propor-
tional Sharing. Once an assignment is fixed, each resource splits its processing

98 Chapter 5. Price of anarchy for scheduling games via vector fitting

capacity among the uncompleted jobs proportionally to their weights. Given an
assignment x, the completion time of player j ∈ N is defined to be:

Cj(x) =
∑
i∈Sj

xij
∑
e∈i

(
pej +

∑
k≺ej

pek zek +
∑
k≻ej

wk zek δej

)
.

For this policy, it is in fact more intuitive to understand the definition by looking
at the weighted completion time:

wjCj(x) =
∑
i∈Sj

xij
∑
e∈i

(
wjpej +

∑
k∈N\{j}

wjwk min{δej, δek} zek
)
.

The social cost is the sum of weighted completion times:

C(x) :=
∑
j∈N

wj Cj(x) =
∑
e∈E

∑
j∈N

wj pej zej + 2
∑
e∈E

∑
j∈N,k≺ej

wj pek zek zej. (5.4.9)

Observe that there is now a factor 2 in front of the second term if one compares
it to the Smith Rule policy. Moreover, if x is a Nash equilibrium, the following
inequalities are satisfied:

Cj(x) ≤
∑
e∈i

(
pej +

∑
k≺ej

pekzek +
∑
k≻ej

wk zek δej

)
∀j ∈ N, ∀i ∈ Sj. (5.4.10)

We first need a small lemma about two parameters that will play a key role in
the dual fitting. The first property will ensure feasibility of the solution, whereas
the second one will be the constant in front of the objective function.

Lemma 5.4.3. Let α, β ≥ 0 be defined as α2 := 2/
√
5 and β := 1/α− α/2. The

following two properties hold:

• 1− α2/2 = αβ

• αβ − β2/2 = 2/(3 +
√
5)

Proof:
The first property is immediate by definition of β. For the second property, we
get

αβ − β2

2
= 1− α2

2
− 1

2

(
1

α
− α

2

)2

=
3

2
− 5α2

8
− 1

2α2
=

2

3 +
√
5
.

2

Theorem 5.4.4. For any Nash equilibrium x of the above congestion game, where
each resource uses the Proportional Sharing policy, there exists a feasible (SDP-
SR) solution with value at least 2/(3 +

√
5) C(x), implying that the coordination

ratio is at most (3 +
√
5)/2.

5.4. Congestion games with coordination mechanisms 99

Remark 5.4.5. This bound is tight, with a matching lower bound given in
[CFK+06] even for the price of anarchy of the game.

Proof:
The proof is very similar to the one of Theorem 5.4.1, but with the modified
constants α2 := 2/

√
5 and β := 1/α− α/2 stated in Lemma 5.4.3. We now state

the dual fitting.
• v0(e, t) := −β

∑
k∈N wk zek 1{t≤δek}

• vij(e, t) := α wj 1{e∈i} 1{t≤δej} ∀j ∈ N, ∀i ∈ Sj

• yj := αβ wj Cj(x) ∀j ∈ N.
Using the same computations as in Theorem 5.4.1, we compute the different inner
products and norms that we need.

• ‖v0‖2 = β2

(∑
e∈E

∑
j∈N

wj pej z
2
ej + 2

∑
e∈E

∑
j∈N,k≺ej

wj pek zej zek

)
≤ β2C(x)

• ‖vij‖2 = α2
∑

e∈iwj pej

• 〈v0, vij〉 = −αβ
∑

e∈i
∑

k∈N wj wk zek min{δej, δek}

• 〈vij, vi′k〉 = α2
∑

e∈i∩i′ wj wk min {δej, δek}
The main difference with Smith’s Rule which allows us to get an improved bound
is the fact that the upper bound on the squared norm of v0 is a factor 2 stronger
in this case (see (5.4.7)), due to the new definition of the social cost C(x) given
in (5.4.9). To see that this solution is feasible, note that the second set of SDP
constraints (5.4.6) is satisfied due to the last computation above and the fact that
α2 ≤ 1. The first set of constraints (5.4.5) under the above fitting reads:

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ αβ wj Cj(x) ≤
(
1− α2

2

)∑
e∈i

wj pej + αβ
∑
e∈i

∑
k∈N

wj wk zek min{δej, δek}

⇐⇒ Cj(x) ≤
∑
e∈i

(
pej +

∑
k∈N

wk zek min{δej, δek}
)

⇐⇒ Cj(x) ≤
∑
e∈i

(
pej +

∑
k≺ej

pek zek +
∑
k⪰ej

wk zek δej

)
.

The third equivalence follows from the first property of Lemma 5.4.3. We see
that this is satisfied due to the Nash conditions (5.4.10). The objective value of
the solution can now be lower bounded as follows:∑
j∈N

yj −
1

2
‖v0‖2 ≥ αβ

∑
j∈N

wjCj(x)−
β2

2
C(x) =

(
αβ − β2

2

)
C(x) =

2

3 +
√
5
C(x)

100 Chapter 5. Price of anarchy for scheduling games via vector fitting

where the last equality follows by the second property of Lemma 5.4.3. 2

5.4.3 The Rand policy
In this section, we consider a randomized policy named Rand. If x is a mixed
assignment, each player first independently picks a strategy according to his/her
distribution specified by x. We denote by N(e) ⊆ N the (possibly random)
subset of players using resource e ∈ E. Each resource then orders the players
using it randomly in a way ensuring that for any pair j, k ∈ N(e), the probability
that j comes after k in the ordering is exactly equal to δej/(δej + δek). Such a
distribution can be achieved by sampling one player j ∈ N(e) at random with
probability δej/

∑
k∈N(e) δek, putting that player at the end of the ordering, and

repeating this process. The expected completion time of every player is thus given
by:

Cj(x) =
∑
i∈Sj

xij
∑
e∈i

(
pej +

∑
k ̸=j

δej
δej + δek

pek zek

)
.

The social cost is the sum of weighted completion times:

C(x) :=
∑
j∈N

wj Cj(x) =
∑
e∈E

∑
j∈N

wj pej zej +
∑
e∈E

∑
j∈N,k ̸=j

δejδek
δej + δek

wjwk zejzek.

(5.4.11)

Moreover, if x is a Nash equilibrium, the following inequalities are satisfied:

Cj(x) ≤
∑
e∈i

(
pej +

∑
k ̸=j

δej
δej + δek

pek zek

)
∀j ∈ N, i ∈ Sj. (5.4.12)

We now state a small lemma about some constants that will be important for the
fitting. The first property will ensure that our dual fitting is feasible, whereas the
second property will be the constant in front of the objective value of our SDP
solution, thus determining the coordination ratio.

Lemma 5.4.6. Let α, β ≥ 0 be defined as α := 1 and β := 3/4. The following
two properties hold:

• 1− α2/4 = αβ

• αβ − β2/2 = 15/32

Proof:
The proof is immediate. 2

5.4. Congestion games with coordination mechanisms 101

Theorem 5.4.7. For any instance of the above congestion game under the Rand
policy, and for any Nash equilibrium x, there exists a feasible (SDP-SR) solution
with value at least 15/32 C(x). This implies that the coordination ratio is at most
32/15 ≈ 2.133.

Proof:
For simplicity of presentation, let us assume without loss of generality that the
processing times are scaled such that the Smith ratios δej = pej/wj with pej <∞
are all integral. Moreover, let us take K ∈ N large enough such that δej ≤ K
for all pairs (e, j) ∈ E ×N such that pej <∞. Consider the matrix M ∈ RK×K

given by
Mr,s :=

r s

r + s
∀r, s ∈ {1, . . . , K}.

A key insight shown in [CCG+11] is that this matrix is positive-definite. By
Lemma 5.3.1, we can thus assume that the SDP vectors live in the space G(E,M).
Let α, β be defined as in Lemma 5.4.6, we now state the dual fitting:

• v0(e, r) := −β
∑

k∈N wk zek 1{δek=r}

• vij(e, r) := α wj 1{e∈i} 1{δej=r} ∀j ∈ N, i ∈ Sj

• yj := αβ wj Cj(x) ∀j ∈ N.

Let us now compute the different inner products and norms that we need. For
every j ∈ N, i ∈ Sj:

1

α2
‖vij‖2 =

∑
e∈i

M{δej ,δej}w
2
j =

∑
e∈i

δej
2
w2

j =
1

2

∑
e∈i

wj pej.

For the squared norm of v0, we give an upper bound with respect to C(x):

1

β2
‖v0‖2 =

∑
e∈E

K∑
r,s=1

Mr,s v0(e, r) v0(e, s) =
∑
e∈E

∑
j,k∈N

wj wk zej zek M{δej ,δek}

=
∑
e∈E

∑
j,k∈N

δejδek
δej + δek

wj wk zej zek ≤ C(x). (5.4.13)

where the last inequality holds by (5.4.11) and z2ej ≤ zej. For any pair (i, j) 6=
(i′, k) with j, k ≥ 1:

1

α2
〈vij, vi′k〉 =

∑
e∈i∩i′

M{δej ,δek}wj wk =
∑
e∈i∩i′

wj wk
δej δek
δej + δek

. (5.4.14)

102 Chapter 5. Price of anarchy for scheduling games via vector fitting

Finally, we have:

−1
αβ
〈v0, vij〉 =

∑
e∈i

∑
k∈N

wj wk zek M{δej ,δek} =
∑
e∈i

∑
k∈N

δejδek
δej + δek

wj wk zek

= wj

∑
e∈i

∑
k∈N

δej
δej + δek

pek zek

where the last equality follows by plugging in the definition of δek = pek/wk.
Let us now check that this solution is indeed feasible for (SDP-SR). The

second set of constraints (5.4.6) is satisfied due to (5.4.14), the fact that α = 1,
as well as observing that rs/(r + s) ≤ min{r, s} for all r, s ≥ 0. The first set of
constraints (5.4.5) under the above fitting gives:

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ αβ wj Cj(x) ≤
(
1− α2

4

)∑
e∈i

wj pej + αβ wj

∑
e∈i

∑
k∈N

δej
δej + δek

pek zek

⇐⇒ Cj(x) ≤
∑
e∈i

(
pej +

∑
k∈N

δej
δej + δek

pek zek

)
.

We have simplified both sides by αβ wj = (1 − α2/4)wj in the last equivalence,
which holds by the first property of Lemma 5.4.6. These inequalities are now
clearly satisfied by the Nash conditions (5.4.12), implying that our fitted solution
is in fact feasible. The objective value of our solution can be lower bounded as:∑

j∈N

yj −
1

2
‖v0‖2 ≥ αβ

∑
j∈N

wjCj(x)−
β2

2
C(x) =

(
αβ − β2

2

)
C(x) =

15

32
C(x)

where the last equality follows from the second property of Lemma 5.4.6. 2

We now show that this bound can be improved if we consider the natural
special case where the processing time of each player is proportional to its weight
for every resource. This means that every resource has a real-value λe ≥ 0, and the
processing time of every player satisfies pej ∈ {λewj,∞} for every e ∈ E, j ∈ N .
Observe that this means that the Smith ratios are uniform for the jobs assigned
to a resource: δej = pej/wj = λe. The only difference with respect to the previous
proof will be a change of constants α, β.

Lemma 5.4.8. Let α, β ≥ 0 be defined as α := 2/
√
3 and β := 1/

√
3. The

following two properties hold:

• 1− α2/4 = αβ

5.4. Congestion games with coordination mechanisms 103

• αβ − β2/2 = 1/2

Proof:
The proof is immediate. 2

Theorem 5.4.9. If the Smith ratios are uniform for every resource, for any
instance of the above game and any Nash equilibrium x, there exists a feasible
(SDP-SR) solution with value at least 1/2C(x). This implies that the coordination
ratio of the game is at most 2.

Proof:
Let α, β be as in Lemma 5.4.8. The only part of the proof of Theorem 5.4.7
which breaks down under these new constants is the fact that the second set of
constraints (5.4.6) of the SDP might be violated, since we now have α2 = 4/3 > 1.
Indeed (5.4.14) states that:

〈vij, vi′k〉 = α2
∑
e∈i∩i′

wj wk
δej δek
δej + δek

.

The proof of Theorem 5.4.7 used the easy observation that rs/(r+s) ≤ min{r, s}
for every r, s ≥ 0 to argue feasibility of the solution. Observe that this bound
is very close to tight when s � r (or vice versa). In the case of uniform Smith
ratios, we can get an improved bound since δej = δek = λe:

〈vij, vi′k〉 = α2
∑
e∈i∩i′

wj wk
λe
2
≤
∑
e∈i∩i′

wj wk λe =
∑
e∈i∩i′

wj wk min{δej, δek}

where the inequality follows since α2/2 = 4/6 ≤ 1. By the second property of
Lemma 5.4.8, the objective value can now be lower bounded as∑

j∈N

yj −
1

2
‖v0‖2 ≥ αβ

∑
j∈N

wjCj(x)−
β2

2
C(x) =

(
αβ − β2

2

)
C(x) =

1

2
C(x).

2

We now show that this bound of 2 can also be attained for arbitrary instances
if we consider the price of anarchy of the game, rather than the coordination
ratio, meaning that we now compare against the optimal solution under the Rand
policy. More precisely, we compare against the best possible assignment x, whose
expected cost is measured if every resource uses the Rand policy to process the
players. Note that this cost is always higher than the cost if every resource were
to use Smith’s Rule. In that case, a relaxation giving a valid lower bound on the
social optimum is the following, we call it (SDP-RAND). The computation of the

104 Chapter 5. Price of anarchy for scheduling games via vector fitting

cost matrix C to plug-in in (5.3.2) in this setting is once again left to Section
5.9.2.

max
∑
j∈N

yj −
1

2
‖v0‖2

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

〈vij, vi′k〉 ≤ 2
∑
e∈i∩i′

wj wk
δej δek
δej + δek

∀(i, j) 6= (i′, k) with j, k ∈ N

Theorem 5.4.10. For any instance of the above game under the Rand policy,
and for any Nash equilibrium x, there exists a feasible (SDP-RAND) solution with
value at least 1/2 C(x). This implies that the price of anarchy of the game is at
most 2.

Proof:
The proof is identical to the one of Theorem 5.4.7, but the modified constants α, β
stated in Lemma 5.4.8. This new choice of constants is not valid for (SDP-SR),
due to the fact that α2 > 1. Indeed, equation (5.4.14) means that the second set
of constraints (5.4.6) of (SDP-SR) might now be violated. However, the second
set of constraints of (SDP-RAND) is always satisfied, since α2 ≤ 2. The objective
function guarantee follows from the second property of Lemma 5.4.8. 2

5.5 Analyzing local search algorithms for schedul-
ing

We now show that this approach can also be useful to bound the approximation
ratio of local search algorithms. We focus on the R||

∑
wjCj scheduling problem,

for which the (SDP-SR) relaxation (5.4.4) becomes the following:

max
∑
j∈J

yj −
1

2
‖v0‖2

yj ≤ wjpij −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ J, ∀i ∈ Sj

〈vij, vi′k〉 ≤ wj wk min{δij, δik} 1{i=i′} ∀(i, j) 6= (i′, k) with j, k ∈ J.

Given an assignment x ∈ {0, 1}M×J , the completion time of every job j ∈ J is:

Cj(x) =
∑
i∈M

xij

(
pij +

∑
k≺ij

pikxik

)
.

5.5. Analyzing local search algorithms for scheduling 105

Let us also define the following quantity for every j ∈ J :

Dj(x) =
∑
i∈M

∑
k≻ij

wk pij xij xik (5.5.1)

and let us denote the weighted sum of processing times as:

η(x) =
∑
i∈M

∑
j∈J

wj pij xij. (5.5.2)

The total cost can then be written in the following ways:

C(x) =
∑
j∈J

wjCj(x) = η(x) +
∑
i∈M

∑
j∈J

∑
k≺ij

wj pik xij xik (5.5.3)

C(x) = η(x) +
∑
j∈J

Dj(x) = η(x) +
∑
i∈M

∑
j∈J

∑
k≻ij

wk pij xij xik. (5.5.4)

5.5.1 A simple and natural local search algorithm
A natural and simple local search algorithm for this problem is to move a job
from one machine to another if that improves the objective function. If such
an improvement is not possible, then a local optimum x ∈ {0, 1}M×J has been
reached. Such a local optimum is called a JumpOpt in [CM22], and it is shown
that the local optimality implies the following constraints. We provide a proof
for the sake of completeness.

Lemma 5.5.1. For any local optimum JumpOpt solution x of the scheduling
problem R||

∑
wjCj, the following constraints are satisfied:

wjCj(x) +Dj(x) ≤ wj pij +
∑

k∈J\{j}

wjwk min{δij, δik} xik ∀j ∈ J, ∀i ∈M.

Proof:
Fix a job j assigned to machine i∗ ∈M in the local optimum x and let us assume
that this job switches to machine i ∈ M . The difference of weighted completion
times for job j is

wj

(
pij +

∑
k≺ij

pikxik

)
− wj

(
pi∗j +

∑
k≺∗

i j

pi∗kxi∗k

)
.

Moreover, the only other jobs for which the completion time is modified are the
jobs assigned to i∗ and i coming after j in the ordering of the respective machine.
Due to the switch of j, these jobs assigned to i∗ have their completion time
decreased, whereas the ones assigned to i have their completion time increased.
The total difference in cost for these jobs is then∑

k≻ij

wk pij xik −
∑
k≻i∗j

wk pi∗j xi∗k.

106 Chapter 5. Price of anarchy for scheduling games via vector fitting

Since x is a local optimum for the global objective function, the total difference
in cost (i.e. the sum of the two expressions above) should be non-negative. After
rearranging the terms, this is equivalent to

wj

(
pi∗j +

∑
k≺i∗j

pi∗kxi∗k

)
+
∑
k≻i∗j

wk pi∗j xi∗k ≤ wj

(
pij +

∑
k≺ij

pikxik

)
+
∑
k≻ij

wk pij xik.

Observe that this is exactly the statement of the lemma, finishing the proof. 2

We now show that we can recover the tight approximation ratio of (3+
√
5)/2

given in [CM22] using our dual fitting approach. Observe the analogy with the
proof strategy for the price of anarchy in the previous section. The main difference
is that the Nash conditions are replaced by the local optimality conditions of
Lemma 5.5.1, and the y variables are fitted differently.

Theorem 5.5.2. For any JumptOpt local optimum x of the scheduling problem
R||
∑
wjCj, there exists a feasible (SDP-SR) solution with value at least 2/(3 +√

5) C(x).

Proof:
We assume that the SDP vectors belong to the space F(M), which is without loss
generality by Lemma 5.3.1. Let us fix α, β as in Lemma 5.4.3, i.e. α2 := 2/

√
5

and β := 1/α− α/2. We now state the dual fitting:

• v0(i, t) := −β
∑

k∈J wk xik 1{t≤δik}

• vij(i
′, t) := α wj 1{t≤δij} 1{i=i′} ∀j ∈ J, ∀i ∈ Sj

• yj := αβ
(
wj Cj(x) +Dj(x)

)
∀j ∈ J.

The desired inner products and norms can be computed to be the following, using
essentially the same computations as in the proof of Theorem 5.4.1:

1

β2
‖v0‖2 = 2C(x)− η(x) − 1

αβ
〈v0, vij〉 =

∑
k∈J

wj wk min{δij, δik} xik

1

α2
‖vij‖2 = wj pij

1

α2
〈vij, vi′k〉 = wj wk min {δij, δik} 1{i=i′}.

The second set of SDP constraints is satisfied due to the last computation above
and the fact that α2 ≤ 1. The first set of constraints under this fitting gives:

yj ≤ wjpij −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ αβ
(
wj Cj(x) +Dj(x)

)
≤
(
1− α2

2

)
wj pij + αβ

∑
k∈J

wj wk xik min{δij, δik}.

5.5. Analyzing local search algorithms for scheduling 107

These are satisfied by Lemma 5.4.3, which states that 1− α2/2 = αβ, as well as
the local optimality conditions of Lemma 5.5.1. The objective function can now
be lower bounded as:∑

j∈J

yj −
1

2
‖v0‖2 = αβ

(
2C(x)− η(x)

)
− β2

2

(
2C(x)− η(x)

)
=

2

3 +
√
5

(
2C(x)− η(x)

)
≥ 2

3 +
√
5
C(x) (5.5.5)

where the first equality follows from (5.5.3) and (5.5.4), the second equality follows
from the second property of Lemma 5.4.3 and the inequality follows from η(x) ≤
C(x). 2

We now show as in [CM22] that one can get an improved bound for the restricted
identical machines setting, denoted by P |Mj|

∑
wjCj. The improvement comes

from the fact that for a JumpOpt solution x and an optimal solution x∗, we have
η(x) = η(x∗) =

∑
j∈J wjpj in this setting. This means that, instead of bounding

η(x) ≤ C(x) in the last step of (5.5.5), we can now use the stronger upper bound
η(x) ≤ C(x∗).

Theorem 5.5.3. For any JumptOpt local optimum x of the scheduling problem
P |Mj|

∑
wjCj, there exists a feasible (SDP-SR) solution with value at least 2/(3+√

5) (2C(x)− C(x∗)). By weak duality, this implies that the approximation ratio
of x is at most (5 +

√
5)/4 ≈ 1.809.

Proof:
By upper bounding η(x) ≤ C(x∗) in the last step of (5.5.5), we get the first state-
ment of the theorem. By weak duality, and since the dual solution constructed
is feasible, we get that

2

3 +
√
5

(
2C(x)− C(x∗)

)
≤ C(x∗) ⇐⇒ C(x)

C(x∗)
≤ 5 +

√
5

4
.

2

5.5.2 An improved local search algorithm
In this subsection, we show how our approach allows to analyze an improved local
search algorithm for R||

∑
wjCj by [CGV17] achieving an approximation ratio

of (5 +
√
5)/4 + ε ≈ 1.809 + ε for every ε > 0. To the best of our knowledge,

this is the best currently known combinatorial approximation algorithm for this
problem. We ignore here the issue of the running time and simply analyze the
quality of a local optimum, referring the reader to [CGV17] for further details.

108 Chapter 5. Price of anarchy for scheduling games via vector fitting

Let us fix the constant γ := (9 +
√
5)/19 ≈ 0.591. For each job j ∈ J and an

assignment x, we keep a potential function

fj(x) =
∑
i∈M

xij

(
wj pij + γ

∑
k ̸=j

wjwk min{δij, δik} xik

)
∀j ∈ J.

If a job j ∈ J can pick a different machine than the one it is currently on and
decrease its potential function fj(x), then this constitutes an improving move for
the local search algorithm. If several improving moves exist, the algorithm picks
the one giving the largest decrease in fj(x). For a local optimum x, we get the
following constraints:

fj(x) ≤ wj pij + γ
∑
k ̸=j

wjwk min{δij, δik} xik ∀j ∈ J, ∀i ∈M. (5.5.6)

As usual with this approach, we first need a small lemma about important con-
stants.

Lemma 5.5.4. Let α, β, γ ≥ 0 be defined as α2 = (
√
5 + 1)/5, β2 = (

√
5− 1)/5

and γ = (9 +
√
5)/19. The following properties hold:

• αβ/γ = 1− α2/2

• αβ(2γ − 1)/γ = β2/2

• 2αβ − β2 = 4/(5 +
√
5)

Proof:
The proof consists of simple computations and is omitted. These equations can
also be checked on a computer. 2

Theorem 5.5.5. For any local optimum x of the above local search algorithm
for R||

∑
wjCj, there exists a feasible (SDP-SR) solution with value at least

4/(5 +
√
5) C(x).

Proof:
We assume that the SDP vectors belong to the space F(M), which is without
loss of generality by Lemma 5.3.1. Let us fix α, β, γ as in Lemma 5.5.4. We now
state the dual fitting:

• v0(i, t) := −β
∑

k∈J wk xik 1{t≤δik}

• vij(i
′, t) := α wj 1{t≤δij}1{i=i′} ∀j ∈ J, ∀i ∈ Sj

• yj :=
αβ
γ
fj(x) ∀j ∈ J

5.5. Analyzing local search algorithms for scheduling 109

The desired inner products and norms can be computed to be the following, using
essentially the same computations as in the proof of Theorem 5.4.1:

1

β2
‖v0‖2 = 2C(x)− η(x) − 1

αβ
〈v0, vij〉 =

∑
k∈J

wj wk min{δij, δik} xik

1

α2
‖vij‖2 = wj pij

1

α2
〈vij, vi′k〉 = wj wk min {δij, δik} 1{i=i′}.

The second set of SDP constraints is satisfied due to the last computation above
and the fact that α2 ≤ 1. The first set of constraints under this fitting gives:

yj ≤ wjpij −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ αβ

γ
fj(x) ≤

(
1− α2

2

)
wj pij +

αβ

γ
γ
∑
k∈J

wj wk min{δij, δik} xik.

These are satisfied by Lemma 5.5.4, as well as the local optimality conditions
(5.5.6). To argue about the objective, it can be checked (through a simple com-
putation that we omit) that:∑

j∈J

fj(x) = 2γ C(x)− (2γ − 1) η(x).

The objective function then becomes:∑
j∈J

yj −
1

2
‖v0‖2 =

αβ

γ

(
2γ C(x)− (2γ − 1) η(x)

)
− β2

2

(
2C(x)− η(x)

)
=
(
2αβ − β2

)
C(x)−

(
αβ (2γ − 1)

γ
− β2

2

)
η(x)

=
(
2αβ − β2

)
C(x) =

4

5 +
√
5
C(x)

where the two last equalities follow from Lemma 5.5.4. 2

We now provide an almost matching lower bound instance, inspired by con-
structions in [CFK+06, CM22]. We believe that the upper bound of (5+

√
5)/4 ≈

1.809 is tight.

Theorem 5.5.6. There exists an instance of R||
∑
wjCj with a local optimum

to the above local search algorithm with approximation ratio at least 1.791.

Proof:
Let λ ≈ 1.33849 be the positive solution to the equation λ2 = 1+γλ. We consider
an instance with jobs J = [n] and machines M = [n+1]. The weights of the jobs
are defined as w1 = λ and wj = 1/λj−1 for every j ≥ 2. The feasible machines

110 Chapter 5. Price of anarchy for scheduling games via vector fitting

are Sj = {j, j+1} for every j ∈ J with processing times p1,1, p2,1 = λ for the first
job and pj,j = λj−1, pj+1,j = λj+1 for every j ≥ 2.

The feasible solution where each job j gets assigned to machine j has cost∑
j∈J wj pj,j = λ2 + (n − 1), showing that the optimum solution x∗ satisfies

C(x∗) ≤ n− 1 + λ2.
We now claim that the solution x where each job j gets assigned to machine

j + 1 is a local optimum. To see this, observe that the first job clearly cannot
decrease his potential function f1(x) since p1,1 = p2,1 and no other job is assigned
to machine 1 or 2. For j ≥ 2, we have fj(x) = wj pj+1,j = λ2. If job j were to be
reassigned to machine j, then

fj(x−j, j) = wj pj,j + γ wj−1wj min{δj,j−1, δj,j} = 1 + γ λ,

which shows that x is a local optimum, by definition of λ. The cost of this
solution is then

∑
j∈N wj pj+1,j = nλ2. The approximation ratio of this solution

now satisfies
C(x)

C(x∗)
≥ nλ2

n− 1 + λ2
n→∞−−−→ λ2 ≈ 1.79154.

Picking n large enough thus finishes the proof. 2

5.6 Weighted affine congestion games
In this section, we consider the classic weighted affine congestion game. The
price of anarchy of this game was settled in [AAE05, CK05] with a tight bound of
(3 +
√
5)/2 and this bound can also be obtained through a dual fitting argument

on a convex program [KM14]. We show here how to recover this bound in a
simple way through our approach. For simplicity of presentation, we assume
in this section that the Nash equilibria considered are pure, extensions to more
general equilibrium notions can be found in Section 5.8.

The setting is the following. There is a set N of players and a set E of
resources. The strategy set for each player j ∈ N is denoted by Sj ⊆ 2E and is
a collection of subsets of resources. Let us also assume that we have unrelated
weights wej ≥ 0 for every j ∈ N, e ∈ E. Given a strategy profile x, the load of a
resource is given by:

ℓe(x) :=
∑
j∈N

wej

∑
i∈Sj : e∈i

xij.

The cost incurred by a player j for a pure assignment x is then given by

Cj(x) :=
∑
i∈Sj

xij
∑
e∈i

wej (ae ℓe(x) + be)

5.6. Weighted affine congestion games 111

where ae, be ∈ R≥0 for every e ∈ E. The social cost then becomes:

C(x) :=
∑
j∈N

Cj(x) =
∑
e∈E

ae ℓe(x)
2 + be ℓe(x) (5.6.1)

where the last equality holds by changing the order of summation and using the
definition of ℓe(x).

The Nash equilibrium conditions imply the following constraints for every
j ∈ N, i ∈ Sj:

Cj(x) ≤
∑
e∈i

wej

(
ae (ℓe(x) + wej) + be

)
=
∑
e∈i

wej(ae wej + be) +
∑
e∈i

wej ae ℓe(x).

(5.6.2)

Indeed, if a player j ∈ N decides to switch to a strategy i ∈ Sj, then the load on
every edge e ∈ i can go up by at most wej. The semidefinite relaxation (5.3.2) in
this special case becomes the following, we call it (SDP-CG).

max
∑
j∈N

yj −
1

2
‖v0‖2

yj ≤
∑
e∈i

wej(ae wej + be)−
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

〈vij, vi′k〉 ≤ 2
∑
e∈i∩i′

ae wej wek ∀(i, j) 6= (i′, k) with j, k ∈ N

Theorem 5.6.1. For any instance of the above game, and any Nash equilibrium
x, there exists a feasible (SDP-CG) solution with objective value at least 2/(3 +√
5)C(x).

Proof:
The vectors of the SDP will live in the space RE. Let α, β ≥ 0 be defined as in
Lemma 5.4.3. We now state the dual fitting:

• v0(e) := −β
√
ae ℓe(x)

• vij(e) := α
√
ae wej 1{e∈i} ∀j ∈ N, i ∈ Sj

• yj = αβ Cj(x) ∀j ∈ N

Let us now compute the different inner products and norms that we need.

• ‖v0‖2 = β2
∑

e∈E ae ℓe(x)
2 ≤ β2 C(x)

• ‖vij‖2 = α2
∑

e∈i ae w
2
ej

112 Chapter 5. Price of anarchy for scheduling games via vector fitting

• 〈v0, vij〉 = −αβ
∑

e∈i ae wej ℓe(x)

• 〈vij, vi′k〉 = α2
∑

e∈i∩i′ ae wej wek

Let us now check feasibility of the solution. The second set of constraints is
satisfied by the fourth computation above and the fact that α2 = 2/

√
5 ≤ 2.

The first set of constraints is satisfied due to the Nash conditions (5.6.2). Indeed,
under the above fitting, for every j ∈ N, i ∈ Sj, the first set of SDP constraints
read:

αβ Cj(x) ≤ (1− α2/2)
∑
e∈i

ae w
2
ej +

∑
e∈i

wej be + αβ
∑
e∈i

ae wej ℓe(x).

If there was a factor of (1 − α2/2) ≤ 1 multiplying the term
∑

e∈iwej be, then
this would be equivalent to (5.6.2) because of the first condition of Lemma 5.4.3.
Not having this term only increases the right hand side and thus ensures that
this set of constraints is satisfied, implying that the SDP solution is feasible. The
objective function can now be lower bounded as:∑
j∈N

yj −
1

2
‖v0‖2 ≥ αβ

∑
j∈N

Cj(x)−
β2

2
C(x) =

(
αβ − β2

2

)
C(x) =

2

3 +
√
5
C(x)

where the last equality follows by the second property of Lemma 5.4.3. 2

5.7 Recovering the Kawaguchi-Kyan bound for
P ||
∑
wjCj

In this section, we show that we can recover the optimal bound of (1+
√
2)/2 for

the pure price of anarchy of the scheduling game on parallel machines P ||
∑
wjCj,

where each machine uses increasing Smith ratios to schedule the jobs. To do so, we
make use of a sequence of reductions to worst-case instances provided in [Sch11].
The first assumption that we can make is that wj = pj for every job j. The
(SDP-SR) dual semidefinite program shown in (5.4.4) and used in Section 5.5 for
R||
∑
wjCj in this special case becomes the following. We denote the set of jobs

by J and the set of machines by M .

max
∑
j∈J

yj −
1

2
‖v0‖2

yj ≤ p2j −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ J, ∀i ∈M

〈vij, vi′k〉 ≤ pj pk 1{i=i′} ∀(i, j) 6= (i′, k) with j, k ∈ J

5.7. Recovering the Kawaguchi-Kyan bound for P ||
∑
wjCj 113

Moreover, the reduction in [Sch11] states that we may assume the instance
only has two different processing times ε, p > 0, where ε is an arbitrarily small
constant. Jobs with processing time ε are called small jobs, and the total workload
of these jobs is |M |, i.e. the total number of small jobs is |M |/ε. Jobs with
processing times p are called large jobs and the total number of large jobs is
k < |M |, i.e. strictly less than the number of machines. In addition, in a pure
Nash equilibrium x:

• All small jobs are started and completed in the interval [0, 1].

• All large jobs are started at 1.

In this reduced instance, it is also possible to get an exact expression for the
optimum solution. In particular, define α := m/(m − k) and β := (m + pk)/m,
an optimal solution x∗ then has cost:

C(x∗) =

{
kp2 + m−k

2
α2 if p ≥ α

1
2

(
kp2 +mβ2

)
if p ≤ α

It can then be shown that in both cases C(x)/C(x∗) ≤ (1 +
√
2)/2 through a

simple calculus analysis. The reader is referred to [Sch11] for details.
We show here that we can construct a feasible dual solution to the SDP

matching the objective value of C(x∗), showing that the SDP does not have an
integrality gap on such a reduced instance and thus implying that the price of
anarchy is at most (1 +

√
2)/2 by a dual fitting proof.

Theorem 5.7.1. For any instance of the above game on the reduced instance,
there exists a feasible (SDP-SR) solution with objective value C(x∗), implying that
the price of anarchy is at most (1 +

√
2)/2.

Proof:
The vectors in our dual fitting will live in the space RM . Let us denote the total
number of machines by m = |M |, and let us set α := m/(m− k). We denote by
1 the all ones vector and by ei the ith standard basis vector.

We now state the dual fitting for the case where p ≥ α:

• v0 = −α 1

• If j is a large job, then set vij = α ei and yj = p2 + α2/2

• If j is a small job, then set vij = ε ei and yj = εα

Let us check that this solution is indeed feasible. Clearly, if i 6= i′, then 〈vij, vi′k〉 =
0 by orthogonality of ei and ei′ . For two jobs j 6= k, we have that 〈vij, vik〉 ≤
‖vij‖ ‖vik‖ ≤ pjpk where we use Cauchy-Schwarz for the first inequality and the

114 Chapter 5. Price of anarchy for scheduling games via vector fitting

fact that α ≤ p if some job is large for the second inequality. This shows that the
second set of SDP constraints is satisfied.

Moreover, the first set of constraints is satisfied as well, as the SDP inequalities
yield yj ≤ p2 + α2/2 for large jobs and yj ≤ ε2/2 + εα for small jobs, which is
satified by our choice of yj. The objective value of this dual solution is then:∑

j∈J

yj −
1

2
‖v0‖2 = k

(
p2 +

α2

2

)
+
m

ε
εα− 1

2
mα2 = kp2 +

m− k
2

α2

where the first equality follows since the number of small jobs is m/ε and the last
equality follows by observing that mα = (m− k)α2 by definition of α.

For the case where p ≤ α, we define β := (m+ pk)/m. We now state the dual
fitting:

• v0 = −β 1

• If j is a large job, then set vij = p ei and yj = p2/2 + β p

• If j is a small job, then set vij = ε ei and yj = εβ

Similarly to before, the second set of constraints is satisfied by orthogonality of
the standard basis vectors and the fact that ‖vij‖ = pj for all jobs (either small
or large). The first set of constraints yields yj ≤ p2/2 + βp for large jobs and
yj ≤ ε2/2 + εβ for small jobs, which is clearly satisfied by our choice of yj. The
objective value of this dual solution is then:∑

j∈J

yj −
1

2
‖v0‖2 = k

(
p2

2
+ βp

)
+
m

ε
εβ − mβ2

2

=
kp2

2
+ β(kp+m)− mβ2

2
=

1

2
(kp2 +mβ2)

where the last equality follows by observing that mβ2 = (m + pk)β by the defi-
nition of β. 2

5.8 Robust price of anarchy
In this section, we describe how our proofs can be adapted to give bounds on
the coarse-correlated price of anarchy, meaning that we can now generalize our
results by considering coarse-correlated equilibria, instead of mixed (or pure) Nash
equilibria.

Let N be a game with a strategy set Sj and payoff function Cj for every player
j ∈ N . A distribution σ over S1 × · · · × Sn is a coarse correlated equilibrium if

EX∼σ[Cj(X)] ≤ EX∼σ[Cj(X−j, i)] ∀j ∈ N, i ∈ Sj. (5.8.1)

5.8. Robust price of anarchy 115

Note that this generalizes a mixed Nash equilibrium. In that case, σ is a product
distribution, i.e. every player j picks a random strategy independently from its
own distribution, which we denoted by (xij)i∈Sj

previously. We note that our
formulas for Cj(x) - see for instance (5.4.1) - for non-binary x (i.e. interpreting
x as a collection of probability distributions rather than an integer assignment)
implicitly use this independence assumption, meaning that the current proofs
do not directly go through for coarse-correlated equilibria. Let us first rewrite
(SDP-C) (5.3.2) in a more convenient matrix form for this argument.

max
∑
j∈N

φj−
1

2
Y{0,0}

φj ≤ C{ij, ij} −
1

2
Y{ij,ij} − Y{0,ij} ∀j ∈ N, i ∈ Sj

Y{ij,i′k} ≤ 2 C{ij, i′k} ∀(i, j) 6= (i′, k) with j, k ∈ N
Y � 0

One way to generalize our results is to consider random dual (SDP-C) so-
lutions, i.e. doing a dual fitting on a realization X ∼ σ, which induces binary
random variables {Xij}j∈N,i∈Sj

and {Zej}j∈N,e∈E. For any price of anarchy dual
fitting argument in this chapter, first replace every occurence of respectively xij
and zej by Xij and Zej, in which case v0 and every yj become random variables
(note that every vij is always deterministic). To get a feasible dual solution, we
now set Ya,b := EX∼σ[〈va, vb〉] for every indices a, b as well as φj := EX∼σ[yj].

The second set of constraints of (SDP-C) is always satisfied deterministically
in our fittings, while the first set of constraints is satisfied by considering expec-
tations, due to inequality (5.8.1). Moreover, Y is positive semidefinite since it is
a convex combination of positive semidefinite matrices.

We thus get a feasible solution with objective value V satisfying

V ≥ ρ EX∼σ[C(X)]

for some desired bound ρ ∈ [0, 1]. Since the dual solution is feasible, we have
V ≤ C(x∗), where x∗ is the social optimum. Combining these two equations
gives:

EX∼σ[C(X)] ≤ 1

ρ
C(x∗)

hence yielding a bound on the coarse-correlated price of anarchy.

116 Chapter 5. Price of anarchy for scheduling games via vector fitting

5.9 Computation of the dual SDPs

5.9.1 Taking the dual
Recall that our primal semi-definite programming relaxation is the following.

min〈C,X〉∑
i∈Sj

X{ij, ij} = 1 ∀j ∈ N

X{0,0} = 1

X{0, ij} = X{ij, ij} ∀j ∈ N, i ∈ Sj
X{ij, i′k} ≥ 0 ∀(i, j), (i′, k) with j, k > 0

X � 0

It can be easily checked that the following form of semidefinite programs is a
primal-dual pair. The dual variables (λi)i and (µj)j respectively correspond to the
equality and inequality constraints, whereas the matrix variable Y corresponds
to the semidefinite constraint.

min〈C,X〉
〈Ai, X〉 = bi ∀i
〈Bj, X〉 ≥ 0 ∀j

X � 0

max
∑
i

biλi

Y = C −
∑
i

λiAi −
∑
j

µjBj

Y � 0, µ ≥ 0

Observe that our above primal SDP is in fact of that form. Let us denote by
(yj)j∈N , z and (σij)j∈N,i∈Sj

the dual variables respectively corresponding to the
three sets of equality constraints. Let us denote by µ{ij,i′k} ≥ 0 the dual vari-
ables corresponding to the inequality (or non-negativity) constraints. The dual
objective then becomes

∑
j∈N yj + z.

All the games considered will satisfy the fact that the objective matrix is all
zeros in the first row and column: C{0,0} = 0 and C{0,ij} = 0 for every j ∈ N and
i ∈ Sj. The dual matrix equality then becomes:

Y{0,0} = −z

Y{0, ij} =
σij
2

∀j ∈ N, i ∈ Sj

Y{ij, ij} = C{ij, ij} − yj − σij − µ{, } ∀j ∈ N, i ∈ Sj
Y{ij, i′k} = C{ij, i′k} − µ{ij, i′k} ∀(i, j) 6= (i′, k) with j, k > 0

Note that we can now eliminate the dual variables z and σ by the first two
equalities. Moreover, we can eliminate the µ ≥ 0 variables by replacing the last

5.9. Computation of the dual SDPs 117

two equalities by inequalities. Let us now do the change of variable Y ′ = 2Y
and let the vectors of the Cholesky decomposition of Y ′ be v0 and (vij)j∈N,i∈Sj

,
meaning that Y ′

a, b = 〈va, vb〉 holds for all the entries of Y ′. The dual SDP in
vector form can then be rewritten as:

max
∑
j∈N

yj−
1

2
‖v0‖2

yj ≤ C{ij, ij} −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, i ∈ Sj

〈vij, vi′k〉 ≤ 2 C{ij, i′k} ∀(i, j) 6= (i′, k) with j, k > 0

5.9.2 Specializing it to the different games considered
Let us now describe how the objective matrix C looks like for the different games
that we need. Recall from Section 5.3.1 that we need to pick a symmetric matrix
C such that C(x) = 〈C,X〉 = Tr(CTX) where X = (1, x)(1, x)T is a binary rank
one matrix and C(x) is the social cost. By definition of the trace inner product,
this is equivalent to:

C(x) = C{0,0} + 2
∑

j∈N,i∈Sj

C{0,ij} xij +
∑
j,k∈N

i∈Sj ,i
′∈Sk

C{ij, i′k}xij xi′k.

Recall also that x2ij = xij since xij ∈ {0, 1}. Hence, if the social cost does not
have constant terms, we will always be able to pick C such that C{0,0} = 0 and
C{0,ij} = 0 for every j ∈ N, i ∈ Sj, which we do for all the games below.

For the congestion game under the Smith Rule policy, the social cost in (5.4.2)
can be written as:

C(x) =
∑
j∈N

wj Cj(x) =
∑
j∈N
i∈Sj

e∈i

wj pej xij +
1

2

∑
j∈N,k ̸=j
i∈Sj ,i

′∈Sk

e∈i∩i′

wj wk min{δej, δek} xij xi′k.

Therefore, the objective matrix C is the following:

C{ij, ij} =
∑
e∈i

wj pej , C{ij, i′k} =
1

2

∑
e∈i∩i′

wj wk min{δej, δek}.

If one considers the scheduling problem R||
∑
wjCj under Smith’s Rule, which is

a special case of the previous setting, then

C{ij, ij} = wj pij , C{ij, i′k} =
1

2
wj wk min{δij, δik} 1{i=i′}.

For the congestion game under the Rand policy, the social cost in (5.4.11) gives

C{ij, ij} =
∑
e∈i

wj pej , C{ij, i′k} =
∑
e∈i∩i′

wj wk
δejδek
δej + δek

.

118 Chapter 5. Price of anarchy for scheduling games via vector fitting

For the weighted affine congestion game, we have seen that

C(x) :=
∑
j∈N

Cj(x) =
∑
e∈E

ae ℓe(x)
2 + be ℓe(x)

where ℓe(x) =
∑

j∈N wej

∑
i∈Sj : e∈i xij. The objective matrix in that case is

C{ij, ij} =
∑
e∈i

wej(ae wej + be) , C{ij, i′k} =
∑
e∈i∩i′

ae wej wek.

Chapter 6

Online load balancing via vector fitting

In this chapter, we show how our SDP dual fitting technique can be adapted to
tightly bound the competitive ratio of online algorithms for two different online
scheduling problems: online load balancing on unrelated machines and online
R||
∑
wjCj with an optimal ordering on each machine. We recover the best

known competitive ratios for deterministic and randomized algorithms for the first
model. We also show an improved fractional algorithm, along with a matching
lower bound. For the second model, we provide a deterministic and a randomized
algorithm achieving a competitive ratio of 4, and show that this is optimal by
presenting a matching lower bound.

6.1 Introduction
Scheduling a set of jobs over a collection of machines to optimize some objective
function is one of the most important research topics in computer science theory
and practice. In many practical scenarios, decisions must be made without com-
plete knowledge of future events. This motivates the study of online scheduling,
where jobs arrive over time and must be assigned to machines irrevocably upon
arrival, without knowledge of future job characteristics.

In this work, we provide an SDP dual fitting framework to analyze online
scheduling problems whose offline optimal solution can be modeled as a quadratic
integer program. All our algorithms are analyzed in a unified way, by making a
set of constraints correspond to an equilibrium condition satisfied by the online
algorithm at every time step. Similar approaches were developed in [AGK12,
JLM25, IKMP14, GGKS19, GMUX20, IKM17, Jäg23, LM22, GKP12] by using
convex programs or time-indexed linear programs. However, to the best of our
knowledge, this is the first time semidefinite programs are used for such argu-
ments.

We apply our technique to two such problems. The first one concerns the
load balancing problem on unrelated machines, where the objective is to mini-
mize the square of the L2 norm of the loads of the machines. This problem has

119

120 Chapter 6. Online load balancing via vector fitting

originally been studied in [AAG+95], who showed that the greedy algorithm is
3+2
√
2 ≈ 5.828-competitive. This algorithm is in fact optimal among determinis-

tic algorithms [Car08]. Improving on the greedy strategy by using randomization
was a challenging open question for more than a decade until a 5-competitive ran-
domized algorithm was shown by [Car08], and this is currently the best known
algorithm to date.

We then study the problem of minimizing the sum of weighted completion
times on unrelated machines, denoted as R||

∑
wjCj. In the offline setting, this

is in fact only an assignment problem, since the optimal ordering on every machine
is to schedule the jobs according to increasing Smith ratios, defined as the ratio
between the processing time and the weight of a job. We consider an online
model where jobs arrive one by one and need to irrevocably be assigned to a
machine upon arrival. When assigned, a job then enters the schedule in the right
position with respect to the Smith ratio. Equivalently, the arrival order is an
online decision, but the ordering on each machine can be made offline. This
model has previously been studied in [GMUX20].

6.1.1 Our contributions
Our main contribution of this chapter is to extend the unified dual fitting ap-
proach to online scheduling problems. The Nash equilibria or local optima in-
equalities of the previous chapter are now replaced by inequalities satisfied by an
online algorithm at every time step. Using this structure, we are able to obtain
numerous results in a unified way. To the best of our knowledge, this is the first
time such SDP dual fitting arguments are used in online algorithms.

We first study the online load balancing problem on unrelated machines, where
the goal is to minimize the sum of squares of the loads. We first analyze the greedy
algorithm for a generalized model where each job can be assigned to hyperedges of
machines and show that it is (3+2

√
2) ≈ 5.828-competitive, generalizing a result

of [AAG+95]. The greedy algorithm is known to be optimal among deterministic
algorithms, however an improved 5-competitive randomized algorithm has been
shown by [Car08]. We show how to recover this result through our approach, as
well as providing a matching lower bound for any independent randomized round-
ing algorithm. Finally, we provide an optimal 4-competitive fractional algorithm,
along with a matching lower bound.

We then study an online model for the scheduling problem R||
∑
wjCj. Each

job arrives online and needs to be assigned to a machine at its arrival by an
online algorithm. When a job is assigned to a machine, it enters the position in
the schedule at the right position with respect to the Smith ratio. Equivalently,
the ordering of the jobs on each machine is an offline decision. It is shown in
[GMUX20] that the greedy algorithm is 4-competitive. We show that this greedy
algorithm can be analyzed through our approach in a more general hypergraph
model and provide an alternative randomized algorithm in the standard model

6.1. Introduction 121

achieving the same bound of 4. We also show a matching lower bound, even
against fractional algorithms.

6.1.2 Further related work
In the offline setting, the unrelated machine scheduling problem R||

∑
wjCj is

APX-hard [HSW98]. Constant factor approximation algorithms are however pos-
sible, with a simple 3/2-approximation achievable by rounding a convex relax-
ation [Sku01, SS99]. A 3/2 − c approximation for some absolute constant c > 0
has been shown in [BSS16]. Building on this, subsequent improvements have been
made [IS20, IL23, Har24] with the current best (to the best of our knowledge) ap-
proximation algorithm for this problem obtaining a ratio of 1.36+ε [Li24]. In the
special case where Smith ratios are uniform, an improved bound of (1+

√
2)/2+ε

is known [KST17].
The unrelated load balancing problem to minimize the square of the L2 norm

admits an easy 2-approximation by rounding a convex program [AE05]. The best
known approximation algorithm obtains a bound of 4/3 and is given in [IL23]
by using a time-indexed LP and the Shmoys-Tardos rounding algorithm [ST93].
For the more general Lp norm with p < ∞, [AAG+95] show how to get a Θ(p)
approximation. In a breakthrough, [AE05] improved this to a 2-approximation
by using (again) the Shmoys-Tardos rounding algorithm. Further improvements
have been made in [KMPS09] by a new dependent rounding approach. The L∞
norm corresponds to the makespan minimization problem. It is known to be NP-
hard to approximate within a factor of 1.5, and a 2-approximation is given in the
classic result of [ST93].

In the online unrelated setting to minimize the square of the L2 norm, [AAG+95]
show that the greedy algorithm is 3+ 2

√
2 ≈ 5.828-competitive. This was shown

to be a tight bound in [CFK+06] even in the restricted identical machines set-
ting, and this bound is even best possible among deterministic algorithms [Car08].
Improving this bound was an open question for more than a decade until a 5-
competitive randomized algorithm was shown by [Car08]. In fact, this approach
improved the best known bounds for the more general Lp norm for many values
of p > 0. Improvements have been made for the unit weight setting on re-
lated machines [STZ04, CFK+06]. In particular, the greedy algorithm is ≈ 4.06-
competitive on restricted parallel machines under unit weights [CFK+06].

Many other models of online scheduling of jobs on machines have been studied.
One natural model consists of jobs having a release date and arriving online
at that point in time, where the objective is to minimize an objective function
depending on the weighted flow time of jobs. In this model, strong lower bounds
are known, even for preemptive algorithms [KTW96, GK07, CKZ01]. Given
these lower bounds, such scheduling problems have been considered in the speed
augmentation model, where each machine is allowed to run at a ε-fraction faster
speed than the offline optimum [CGKM09, IM11, KP00a, BP03]. Dual fitting

122 Chapter 6. Online load balancing via vector fitting

approaches on LPs and convex programs for different scheduling problems have
been developed in [AGK12, JLM25, IKMP14, GGKS19, GMUX20, IKM17, Jäg23,
LM22, GKP12].

6.1.3 Outline of the chapter
In Section 6.2, we formally introduce the two online problems studied. We then
study the first model in Section 6.3 and the second model in Section 6.4.

6.2 Preliminaries

6.2.1 Problems studied
Online unrelated load balancing. A set of resources E is given. A set of
jobs N arrives online in an adversarial order. Each time a job j ∈ N arrives, it
reveals a subset Sj ⊂ E of resources it can be assigned to with unrelated weights
wij ≥ 0 associated with every i ∈ Sj. An online integral algorithm needs to
irrevocably pick a resource i ∈ Sj to assign that job to. We denote by xij ∈ {0, 1}
the indicator variable of whether the algorithm assigns j to i. The load of a
resource i ∈ E is the total amount of weight assigned to it and is denoted as:

Li(x) =
∑
j∈N

wij xij.

Since jobs arrive online, we order them as N = {1, . . . n}, where job j arrives
before job k if j < k. For each resource i ∈ E, we denote the load over time as

L
(j)
i (x) =

∑
k≤j

wik xik ∀j ∈ N.

In words, this is the load of a resource after job j arrived. Observe that the final
load is Li(x) = L

(n)
i (x) and we define L(0)

i := 0 for convenience. The goal of
the problem is to minimize the following objective function, which is the sum of
squares of the loads:

C(x) =
∑
i∈E

Li(x)
2.

Online unrelated weighted completion time. A set of resources E is given.
A set of jobs N arrives online in an adversarial order. Each time a job j ∈ N
arrives, it reveals a weight wj ≥ 0, and a subset Sj ⊂ E of resources it can be
assigned to with unrelated processing times pij ≥ 0 for every i ∈ Sj. Once every
job has arrived, every resource reorders the jobs assigned to it by increasing Smith
ratios δij := pij/wj. We denote the order induced by this rule on each resource

6.3. Online load balancing on unrelated machines 123

by k ≺i j (whenever δik ≤ δij), where ties are broken arbitrarily. The completion
time of every job is defined as:

Cj(x) =
∑
i∈Sj

xij

(
pij +

∑
k≺ij

pik xik

)
.

The goal of the problem is to minimize the sum of weighted completion times:

C(x) :=
∑
j∈N

wj Cj(x).

6.2.2 Hypergraph generalizations
We also consider the following generalizations of these models.

Load balancing. A generalization of this problem is when each j ∈ N now
has a collection Sj ⊆ 2E of subsets or hyperedges of resources it can be assigned
to. In that case, we denote by xij ∈ {0, 1} the indicator variable of whether j is
assigned to the hyperedge i ∈ Sj and zej =

∑
i∈Sj :e∈i xij whether j is assigned to

a hyperedge containing e ∈ E. The load of a resource e is still the total amount
of weight assigned to it:

Le(x) =
∑
j∈N

wej zej =
∑
j∈N

wej

∑
i∈Sj :e∈i

xij.

The goal of the problem is again to minimize
∑

e∈E Le(x)
2.

Smith’s Rule. Similarly to above, each j ∈ N now has a collection Sj ⊆ 2E

of subsets or hyperedges of resources it can be assigned to. We denote again
zej =

∑
i∈Sj :e∈i xij and the completion time of a job is now defined as follows:

Cj(x) =
∑
i∈Sj

xij
∑
e∈i

(
pej +

∑
k≺ej

pek zek

)
.

The goal of the problem is still to minimize
∑

j∈N wjCj(x).

6.3 Online load balancing on unrelated machines

6.3.1 The greedy algorithm
We now consider the following algorithm named Greedy for the hypergraph
model. Whenever a job j ∈ N arrives, Greedy picks i ∈ Sj (i.e. sets xij = 1)
which gives the least increase in the global objective function. The key property
of the greedy algorithm is the following lemma.

124 Chapter 6. Online load balancing via vector fitting

Algorithm 6.3.1 Greedy algorithm
when j ∈ N arrives:

Set xij = 1 for i ∈ Sj giving the minimal increase in the objective function
return x

Lemma 6.3.1. For any solution (xij)j∈N,i∈Sj
constructed by Greedy, the fol-

lowing inequalities are satisfied:∑
e∈E

(
L(j)
e (x)

)2−∑
e∈E

(
L(j−1)
e (x)

)2 ≤∑
e∈i

(
w2

ej + 2 L(j−1)
e (x) wej

)
∀j ∈ N, ∀i ∈ Sj.

Proof:
Let us fix an arbitrary j ∈ N . By definition of the greedy algorithm, whenever
j ∈ N arrives, one has the following inequality:∑

e∈E

(
L(j)
e (x)

)2 ≤∑
e∈E

(
L(j−1)
e (x) + wej1{e∈i}

)2
∀i ∈ Sj.

Expanding out the right hand side and rearranging terms gives:∑
e∈E

(
L(j)
e (x)

)2 −∑
e∈E

(
L(j−1)
e (x)

)2 ≤∑
e∈E

(
w2

ej1{e∈i} + 2 L(j−1)
e (x) wej1{e∈i}

)
.

2

We will now analyze the competitive ratio of Greedy through a dual fitting ar-
gument on the following semidefinite programming relaxation that we call (SDP-
LB). This program is a specialization of (5.3.2).

max
∑
j∈N

yj −
1

2
‖v0‖2

yj ≤
∑
e∈i

w2
ej −

1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

〈vij, vi′k〉 ≤ 2
∑
e∈i∩i′

wej wek ∀(i, j) 6= (i′, k) with j, k ∈ N

We will do the fitting in a way to ensure that the first set of constraints is satisfied
due to the inequalities of Lemma 6.3.1. We first need two constants that will play
a key role in the fitting. The first property will ensure feasibility of the solution,
whereas the second one will be the constant in front of the objective function
determining the competitive ratio.

Lemma 6.3.2. Let α, β ≥ 0 be defined as α2 =
√
2 and β = (2 − α2)/α =

(
√
2− 1)α. The following properties hold:

6.3. Online load balancing on unrelated machines 125

• 1− α2/2 = αβ/2

• (αβ − β2)/2 = 1/(3 + 2
√
2)

Proof:
The first property is immediate by definition of β. The second property consists
of simple computations and is omitted (it can also be checked on a computer). 2

Theorem 6.3.3. For any instance of the online load balancing problem, and
any solution (xij)j∈N,i∈Sj

obtained by Greedy, there exists a feasible (SDP-LB)
solution with objective value at least

1

3 + 2
√
2

∑
e∈E

Le(x)
2.

By weak duality, this implies that the competitive ratio of Greedy is at most
3 + 2

√
2 ≈ 5.828.

Remark 6.3.4. This generalizes the result given in [AAG+95] for the “standard”
online weighted load balancing problem. Moreover, this bound is tight with a
matching lower bound given in [CFK+06] for restricted identical machines. In
fact, it even turns out that this algorithm is best possible among deterministic
(integral) algorithms [Car08].

Proof:
The vectors of the SDP will live in the space RE. Let α, β ≥ 0 be defined as in
Lemma 6.3.2. We now state the dual fitting:

• v0(e) := −β Le(x)

• vij(e) := α wej 1{e∈i} ∀j ∈ N, i ∈ Sj

• yj :=
αβ
2

[∑
e∈E
(
L
(j)
e (x)

)2 −∑e∈E
(
L
(j−1)
e (x)

)2] ∀j ∈ N

Let us now compute the different inner products and norms that we need.

• ‖v0‖2 = β2
∑

e∈E Le(x)
2

• ‖vij‖2 = α2
∑

e∈i w
2
ej

• 〈v0, vij〉 = −αβ
∑

e∈i wej Le(x)

• 〈vij, vi′k〉 = α2
∑

e∈i∩i′ wej wek

126 Chapter 6. Online load balancing via vector fitting

Let us now check feasibility of the solution. The second set of constraints is
satisfied by the fourth computation above and the fact that α2 ≤ 2. The first set
of constraints turns out to be satisfied due to the inequalities valid for Greedy
stated in Lemma 6.3.2. Indeed, under the above fitting, for every j ∈ N, i ∈ Sj,
the first set of SDP constraints reads:

yj ≤
(
1− α2

2

)∑
e∈i

w2
ej +

αβ

2

∑
e∈i

2 wej Le(x).

By our choice of fitting for yj and the first property of Lemma 6.3.2, the constant
terms cancel out on both sides of the inequality. These inequalities are then
clearly satisfied by Lemma 6.3.1, since L(j−1)

e (x) ≤ Le(x). To argue about the
objective function, observe that∑

j∈N

yj =
αβ

2

∑
j∈N

[∑
e∈E

(
L(j)
e (x)

)2 −∑
e∈E

(
L(j−1)
e (x)

)2]
=
αβ

2

∑
e∈E

Le(x)
2

where the last equality follows from exchanging the summations, observing that
the inner sum is telescoping and that L(n)

e (x) = Le(x) is the final load on every
resource. The objective function is therefore equal to:∑

j∈N

yj −
1

2
‖v0‖2 =

(
αβ

2
− β2

2

) ∑
e∈E

Le(x)
2 =

1

3 + 2
√
2

∑
e∈E

Le(x)
2

where the last equality follows by the second property of Lemma 6.3.2. 2

6.3.2 An improved randomized algorithm
In this section, we show how to improve on the greedy algorithm in the standard
model using randomization, yielding a 5-competitive algorithm. The algorithm
we use is due to [Car08] and is called Balance. Whenever j ∈ N arrives, we
consider the following potential functions fij : [0, 1]→ R for every i ∈ Sj:

fij(t) := w2
ij + 4 wij

(
E
[
L
(j−1)
i (X)

]
+ t wij

)
. (6.3.1)

The algorithm Balance then defines a probability distribution (xij)i∈Sj
which

ensures that
xej > 0 =⇒ fej(xej) ≤ fij(xij) ∀i ∈ Sj.

For convenience, we also let xej = 0 if e /∈ Sj. Observe that this means that for
every e ∈ Sj with xej > 0, we get that fej(xej) = λ for some constant λ, whereas
fej(xej) ≥ λ if xej = 0. In particular, we also get the following inequality:∑

e∈E

xej fej(xej) ≤ fij(xij) ∀i ∈ Sj. (6.3.2)

6.3. Online load balancing on unrelated machines 127

Algorithm 6.3.2 Waterfilling and independent rounding algorithm
when j ∈ N arrives:

Compute (xij)i∈Sj
such that

∑
i xij = 1 and (6.3.2) holds

Assign j to i ∈ Sj, i.e. set Xij = 1 with probability xij
return X

This holds since the left hand side equals to λ, due to
∑

e∈E xej = 1. Balance
can be seen as a waterfilling algorithm.

We show how to analyze this algorithm using our dual SDP framework, yield-
ing a simpler proof of this result. We state the result here for the standard model,
meaning that Sj ⊆ E for every j ∈ N . Observe that now, both indices i ∈ Sj
and e ∈ E refer to elements of E. We will use both interchangeably whenever
convenient. In this model, the dual SDP becomes:

max
∑
j∈N

yj −
1

2
‖v0‖2

yj ≤ w2
ij −

1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

〈vij, vi′k〉 ≤ 2 wij wi′k 1{i=i′} ∀(i, j) 6= (i′, k) with j, k ∈ N.

Similarly to the greedy algorithm, we first need a lemma stating key inequal-
ities satisfied by this algorithm. Let us first define

δ(j)e (x) := E
[
L(j)
e (X)

]2 − E
[
L(j−1)
e (X)

]2
,

∆(j)
e (x) := E

[
L(j)
e (X)2

]
− E

[
L(j−1)
e (X)2

]
. (6.3.3)

The first quantity is the difference, after j has arrived, between the squares of the
first moment of the load of a resource e, whereas the second one is the difference
of the second moments. Let us now expand the definition of these terms. Observe
that for every e ∈ E, we have L(j)

e (X) = L
(j−1)
e (X) +Xej wej, meaning that the

squares of the random loads vary as follows:

L(j)
e (X)2 − L(j−1)

e (X)2 = Xej w
2
ej + 2 L(j−1)

e (X)Xej wej

where we use the fact that X2
ej = Xej, since it is a binary random variable. The

term ∆
(j)
e (x) is simply the expectation of the above equation and can be written

as follows:

∆(j)
e (x) = xej w

2
ej + 2 E[L(j−1)

e (X)] xej wej (6.3.4)

where we use that E[Xej] = xej and the fact that Balance makes independent
random choices for different jobs, meaning that the random variables L(j−1)

e (X)

128 Chapter 6. Online load balancing via vector fitting

and Xej are independent. In addition, we get:

δ(j)e (x) =
(
E[L(j−1)

e (X)] + xej wej

)2 − (E[L(j−1)
e (X)]

)2
= x2ej w

2
ej + 2 E[L(j−1)

e (X)] xej wej. (6.3.5)

Observe that the only difference between δ(j)e (x) and ∆
(j)
e (x) is the square for xej

in the first term, which will crucially be exploited in the following lemma, which
states key inequalities satisfied by Balance needed for the dual fitting.

Lemma 6.3.5. For any solution (xij)j∈N,i∈Sj
constructed by Balance, the fol-

lowing inequalities are satisfied for every j ∈ N :∑
e∈E

(
δ(j)e (x) + ∆(j)

e (x)
)
≤ w2

ij + 4 wij E [Li(X)] ∀i ∈ Sj.

Proof:
We first compute

δ(j)e (x) + ∆(j)
e (x) = xejwej

(
wej + wejxej + 4 E[L(j−1)

e (X)]
)
.

Observe now that E[L(j)
e (X)] = E[L(j−1)

e (X)] + wejxej, which means that we can
upper bound the above by:

δ(j)e (x) + ∆(j)
e (x) ≤ xejwej

(
wej + 4 E[L(j)

e (X)]
)

= xej
(
w2

ej + 4 wej E[L(j)
e (X)]

)
= xej fej(xej)

where we use the definition (6.3.1) in the last equality. By the equilibrium con-
dition (6.3.2), we get:∑

e∈E

(
δ(j)e (x) + ∆(j)

e (x)
)
≤ fij(xij) ∀i ∈ Sj.

Looking again at the definition (6.3.1) finishes the proof. 2

We also need a lemma about the right constants for the dual fitting.

Lemma 6.3.6. Let α, β ≥ 0 be defined as α = 2
√

2/5 ≈ 1.265 and β =
√
2/5.

The following properties hold:

• 1− α2/2 = αβ/4

• αβ/4 = 1/5

Proof:
The proof is immediate. 2

We are now ready to analyze Balance using our dual fitting approach.

6.3. Online load balancing on unrelated machines 129

Theorem 6.3.7. For any instance of the online load balancing problem, and
any solution (xij)j∈N,i∈Sj

obtained by Balance, there exists a feasible (SDP-LB)
solution with objective value at least

1

5

∑
e∈E

E
[
Le(X)2

]
.

By weak duality, this implies that the competitive ratio of Balance is at most 5.
Proof:
The vectors of the SDP will live in the space RE. Let α, β ≥ 0 be defined as in
Lemma 6.3.6. We now state the dual fitting:

• v0(e) := −β E [Le(X)]

• vij(e) := α wej 1{e=i} ∀j ∈ N, i ∈ Sj

• yj =
1
5

∑
e∈E

(
δ
(j)
e (x) + ∆

(j)
e (x)

)
∀j ∈ N.

Let us now compute the different inner products and norms that we need.

‖v0‖2 = β2
∑
e∈E

E[Le(X)]2 ‖vij‖2 = α2 w2
ij

〈v0, vij〉 = −αβ wij E[Li(X)] 〈vij, vi′k〉 = α2 wij wi′k 1{i=i′}.

The second set of constraints of the SDP is satisfied due to the last computation
above and the fact that α2 = 8/5 ≤ 2. The first set of constraints under the
above fitting reads:

yj ≤ w2
ij −

1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ 1

5

∑
e∈E

(
δ(j)e (x) + ∆(j)

e (x)
)
≤
(
1− α2

2

)
w2

ij +
αβ

4
4 wij E[Li(X)].

Observe that 1 − α2/2 = αβ/4 = 1/5 by Lemma 6.3.6, meaning that this set
of constraints is now satisfied by Lemma 6.3.5. To argue about the objective
function, observe that∑

j∈N

yj =
1

5

∑
e∈E

∑
j∈N

(
δ(j)e (x) + ∆(j)

e (x)
)
=

1

5

∑
e∈E

(
E [Le(X)]2 + E

[
Le(X)2

])
by the definition of the moment increments in (6.3.3) and the fact that the sum
is telescoping. Hence, the objective function is∑

j∈N

yj −
1

2
‖v0‖2 =

∑
j∈N

yj −
β2

2

∑
e∈E

E[Le(X)]2 =
1

5

∑
e∈E

E
[
Le(X)2

]
where the second equality follows from β2/2 = 1/5 since the definition of β states
β =

√
2/5. 2

130 Chapter 6. Online load balancing via vector fitting

6.3.3 An optimal fractional algorithm
In this section, we show how to get a 4-competitive optimal fractional algorithm.
The algorithm is still of waterfilling type but with the following potential functions
fij : [0, 1]→ R for every i ∈ Sj:

fij(t) := 2 wij

(
L
(j−1)
i (x) + t wij

)
. (6.3.6)

We call the following algorithm FracBalance.

Algorithm 6.3.3 Optimal fractional waterfilling algorithm
when j ∈ N arrives:

Compute (xij)i∈Sj
such that (6.3.2) holds for the new definition of fij

return x

At every time step j ∈ N , let us denote the increments as

δ(j)e (x) = L(j)
e (x)2 − L(j−1)

e (x)2 ∀e ∈ E.

This is in fact exactly the same formula as for the increment of the square of the
first moment in the randomized integral case. However, the key difference here is
that the total cost is now also determined by summing up these increments:∑

e∈E

Le(x)
2 =

∑
e∈E

∑
j∈N

δ(j)e (x).

Lemma 6.3.8. For any solution (xij)j∈N,i∈Sj
constructed by FracBalance, the

following inequalities are satisfied for every j ∈ N :∑
e∈E

δ(j)e (x) ≤ 2 wij Li(x) ∀i ∈ Sj.

Proof:
Let us compute:

δ(j)e (x) =
(
L(j−1)
e (x) + wejxej

)2 − L(j−1)
e (x)2 = xej wej

(
2 L(j−1)

e (x) + xejwej

)
≤ xej fej(xej).

By the equilibrium condition (6.3.2), we get:∑
e∈E

δ(j)e (x) ≤ fij(xij) ∀i ∈ Sj.

By definition of fij given in (6.3.6), we then get that for every i ∈ Sj:

fij(xij) = 2 wij

(
L
(j−1)
i (x) + xij wij

)
= 2 wij L

(j)
i (x) ≤ 2 wij Li(x).

2

6.3. Online load balancing on unrelated machines 131

Theorem 6.3.9. For any instance and any solution (xij)j∈N,i∈Sj
obtained by

FracBalance, there exists a feasible (SDP-LB) solution with objective value at
least

1

4

∑
e∈E

Le(x)
2.

By weak duality, this implies that the competitive ratio of FracBalance is at
most 4.

Proof:
The vectors of the SDP will live in the space RE. Let α =

√
2 and β = 1/

√
2.

We now state the dual fitting:

• v0(e) := −β Le(x)

• vij(e) := α wej 1{e=i} ∀j ∈ N, i ∈ Sj

• yj =
1
2

∑
e∈E δ

(j)
e (x) ∀j ∈ N

Let us now compute the different inner products and norms that we need.

‖v0‖2 =
1

2

∑
e∈E

Le(x)
2 ‖vij‖2 = 2 w2

ij

〈v0, vij〉 = −wij Li(x) 〈vij, vi′k〉 = 2 wij wi′k 1{i=i′}.

The second set of constraints of the SDP is satisfied due to the last computation
above. The first set of constraints under the above fitting reads:

yj ≤ w2
ij −

1

2
‖vij‖2 − 〈v0, vij〉 ⇐⇒

1

2

∑
e∈E

δ(j)e (x) ≤ wij Li(x).

These are clearly satisfied by Lemma 6.3.8. The objective function now becomes:∑
j∈N

yj −
1

2
‖v0‖2 =

1

2

∑
e∈E

Le(x)
2 − 1

4

∑
e∈E

Le(x)
2 =

1

4

∑
e∈E

Le(x)
2.

2

6.3.4 A lower bound for fractional algorithms
In this section, we show that our fractional algorithm is optimal by providing a
matching lower bound against any fractional algorithm.

Theorem 6.3.10. For any ε > 0, there exists an online instance to the on-
line unrelated load balancing problem such that any fractional algorithm has a
competitive ratio of at least 4− ε.

132 Chapter 6. Online load balancing via vector fitting

. . .

σ(3)

σ(2)

σ(1)
w1

w2

w3

0 0.2 0.4 0.6 0.8 1

1

2

3

4

w1 w2 w3

wn

Figure 6.1: Illustration of the instance and of the weight distribution (for n = 10).

Proof:
Let n ∈ N, the instance will satisfy E = N = [n]. Consider a uniformly at random
permutation σ : [n]→ [n] of the resources. The feasible resources for every job j
will now be:

Sj = {σ(i) : j ≤ i ≤ n} ∀j ∈ [n].

Consider the function f : [0, 1]→ R defined as f(x) = 1/
√
1− x. The weights of

the instance are then defined as

wej = wj = f

(
j − 1

n

)
∀j ∈ N, ∀e ∈ Sj.

Observe that the weights do not depend on the resource/machine, meaning that
the lower bound will hold even in the restricted identical machines setting. To
simplify computations, we will below often use the following lower and upper
approximations of a sum by an integral for an arbitrary increasing function g :
[0, 1]→ R and any k ≤ n:

∫ (k−1)/n

0

g(x)dx ≤ 1

n

k∑
i=1

g

(
i− 1

n

)
≤ 1

n
g

(
k − 1

n

)
+

∫ (k−1)/n

0

g(x)dx. (6.3.7)

Consider the solution x∗ where each job j ∈ N is assigned to σ(j) ∈ E. This
is in fact the optimal offline solution with value:

n∑
i=1

Li(x
∗)2 =

n∑
i=1

f

(
i− 1

n

)2

≤ f

(
n− 1

n

)2

+ n

∫ (n−1)/n

0

f(x)2 dx

= n+ n

∫ (n−1)/n

0

1

1− x
dx = n+ n

(
log (1)− log

(
1

n

))
= n (log(n) + 1). (6.3.8)

Let us now fix an arbitrary deterministic online fractional algorithm A gen-
erating a solution that we will denote by x. At the arrival of j ∈ N , due to the

6.3. Online load balancing on unrelated machines 133

random permutation, we have that E[xσ(i),j] = E[xσ(i′),j] for every i, i′ ≥ j. Since
the fractional algorithm exactly sends a total fractional value of one, we get that:

E[xσ(i),j] =
1

n− j + 1
∀i ∈ {j, . . . , n}.

We therefore get that for every i ∈ E:

E
[
Lσ(i)(x)

]
=

i∑
j=1

wσ(i),j E[xσ(i),j] =
i∑

j=1

f

(
j − 1

n

)
1

n− j + 1
≥
∫ (i−1)/n

0

f(x)

1− x
dx

=

∫ (i−1)/n

0

(1− x)−3/2 dx =
2√
1− x

∣∣∣∣(i−1)/n

0

= 2 f

(
i− 1

n

)
− 2.

By using Jensen’s inequality, we can now lower bound the value obtained by the
algorithm:

n∑
i=1

E
[
Lσ(i)(x)

2
]
≥

n∑
i=1

E
[
Lσ(i)(x)

]2 ≥ n∑
i=1

(
2 f

(
i− 1

n

)
− 2

)2

≥ 4
n∑

i=1

(
f

(
i− 1

n

)2

− 2 f

(
i− 1

n

))

≥ 4 n

∫ (n−1)/n

0

(
f(x)2 − 2f(x)

)
dx

= 4n log(n)− 16n

(
1−

√
1

n

)
. (6.3.9)

We thus easily see that the competitive ratio tends to 4 from below when tending
n to infinity. For a fixed ε > 0, picking n to be large enough finishes the proof. 2

6.3.5 A lower bound for independent rounding algorithms
In this section, we show that any randomized algorithm making independent
random choices for each job j ∈ N cannot be better than 5-competitive. This
shows that Algorithm 6.3.2 is optimal for this class of randomized algorithms.

Theorem 6.3.11. For any ε > 0, there exists an instance to the online unrelated
load balancing problem such that any randomized algorithm making independent
random choices for every job has a competitive ratio of at least 5− ε.

Proof:
Let us fix such a randomized algorithm A. The instance is exactly the same
as in the proof of Theorem 6.3.10. Let us denote by Xij ∈ {0, 1} the indicator

134 Chapter 6. Online load balancing via vector fitting

random variable of whether j is assigned to i. Note that we now have two sources
of randomness: both the random permutation and the random choices of the
algorithm. The cost of a randomized algorithm can be written as follows:∑

i∈E

E
[
Li(X)2

]
=
∑
i∈E

E [Li(X)]2 +
∑
i∈E

Var[Li(X)]

where the expectation is both over the random permutation and the random
choices of the algorithm. Now note that, for a fixed permutation σ, we can
interpret xσ(i),j := E

A
[Xσ(i),j] as a fractional algorithm, where the expectation is

only over the random choices of A. By (6.3.9), we then have that∑
i∈E

E [Li(X)]2 =
∑
i∈E

E
[
Lσ(i)(X)

]2 ≥ 4n log(n)− 16n

(
1−

√
1

n

)
. (6.3.10)

For the second term, note that∑
i∈E

Var[Li(X)] =
∑
i∈E

∑
j,k∈N

wj wk

(
E[XijXik]− E[Xij]E[Xik]

)
=
∑
i∈E

∑
j∈N

w2
j

(
E[Xij]− E[Xij]

2
)

where the last equality uses E[XijXik] = E[Xij]E[Xik] for j 6= k, due to our
independence assumption. Let us first compute a lower bound for the first term:∑

i∈E

∑
j∈N

w2
j E[Xij] =

∑
j∈N

w2
j =

n∑
j=1

f

(
j − 1

n

)2

≥ n

∫ (n−1)/n

0

f(x)2dx = n log(n)

where we use
∑

i∈E E[Xij] = 1 for the first equality and the approximation (6.3.7)
for the inequality. Note that at the arrival of j ∈ N , due to the random permu-
tation, we have:

E[Xσ(i),j] = E
σ
[xσ(i),j] =

1

n− j + 1
∀i ∈ {j, . . . , n}.

Therefore, we can upper bound the second term as follows:∑
i∈E

∑
j∈N

w2
j E[Xij]

2 =
∑
j∈N

w2
j

∑
i∈E

E[Xσ(i),j]
2 = n

n∑
j=1

n∑
i=j

1

(n− j + 1)3

= n
n∑

j=1

1

(n− j + 1)2
= n

n∑
j=1

1

j2
<
π2

6
n

where the last inequality uses that
∑∞

j=1 1/j
2 = π2/6. We thus have that∑

i∈E

Var[Li(X)] > n log(n)− π2

6
n. (6.3.11)

6.4. Online scheduling under Smith’s Rule 135

We have seen that the optimal solution has cost n(log(n) + 1) in (6.3.8). Hence,
by (6.3.10) and (6.3.11), we see that the competitive ratio tends to 5 as n tends
to infinity. 2

6.4 Online scheduling under Smith’s Rule

6.4.1 The greedy algorithm
We consider and analyze the algorithm Greedy for the hypergraph model.
Whenever a job j ∈ N arrives, Greedy picks i ∈ Sj (i.e. sets xij = 1) which
gives the least increase in the global objective function. The key property of the
greedy algorithm is the following lemma. We denote by C(j)(x) the total cost of
the algorithm after arrival of job j ∈ N .

Lemma 6.4.1. For any adversarial instance of the above online scheduling prob-
lem, and any solution (xij)j∈N,i∈Sj

obtained by Greedy, the following inequalities
are satisfied for all j ∈ N :

C(j)(x)− C(j−1)(x) ≤
∑
e∈i

(
wj pej +

∑
k<j

wj wk min{δej, δek} zek

)
∀i ∈ Sj.

Proof:
Consider the online arrival of j ∈ N . At that moment in time, the total cost
summed over all resources is C(j−1)(x). Let us analyze the increase in cost if j
were to pick any i ∈ Sj. For every resource e ∈ i, the weighted completion time
of j gives a contribution of

wj

(
pej +

∑
k≤j,k≺ej

pek zek

)
.

Moreover, the only jobs for which the completion time is modified on that resource
are the already arrived jobs k ≤ j assigned to that resource which have a higher
Smith ratio, since their completion time is pushed further by pej due to the
entrance of j. Hence, the increase in objective due to those jobs is:∑

k≤j,k≻ej

wk pej zek.

Now, observe that by definition of the Smith ratio δek = pek/wk, the total increase
in objective on every resource e ∈ i (i.e. the sum of the two above quantities) can
be written as:

wj pej +
∑
k<j

wj wk min{δej, δek} zek ∀e ∈ i.

136 Chapter 6. Online load balancing via vector fitting

The total increase in cost then sums this quantity over every resource e ∈ i.
By definition, Greedy will pick i ∈ Sj which gives the smallest increase in the
objective function, leading to the statement of the Lemma. 2

We are now ready to analyze the competitive ratio of Greedy. We will do
so by doing a dual fitting argument on the following semidefinite program, which
we used extensively in the previous chapter, and which we called (SDP-SR).

max
∑
j∈N

yj −
1

2
‖v0‖2 (6.4.1)

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

〈vij, vi′k〉 ≤
∑
e∈i∩i′

wj wk min {δej, δek} ∀(i, j) 6= (i′, k) with j, k ∈ N

Theorem 6.4.2. For any instance of the above online scheduling problem, and
any solution (xij)j∈N,i∈Sj

obtained by Greedy, there exists a feasible (SDP-SR)
solution with objective value at least C(x)/4. By weak duality, this implies that
the competitive ratio of Greedy is at most 4.

Proof:
We assume that the SDP vectors live in the inner product space F(E), which is
without loss of generality by Lemma 5.3.1. Let us fix β = 1/2, we now state the
dual fitting for (SDP-SR):

• v0(e, t) := −β
∑

k∈N wk zek 1{t≤δek}

• vij(e, t) := wj 1{e∈i} 1{t≤δej} ∀j ∈ N, ∀i ∈ Sj

• yj := β
(
C(j)(x)− C(j−1)(x)

)
∀j ∈ N.

Let us now compute the different inner products and norms that we need to argue
feasibility of the solution. For a job j ∈ N and a strategy i ∈ Sj, we have

‖vij‖2 =
∑
e∈i

w2
j δej =

∑
e∈i

wj pej.

In addition, for any (i, j) 6= (i′, k) with j, k ∈ N , we have

〈vij, vi′k〉 =
∑
e∈E

wjwk1{e∈i}1{e∈i′}

∫ ∞

0

1{t≤δej}1{t≤δek}dt =
∑
e∈i∩i′

wjwk min {δej, δek}

(6.4.2)
and observe that this tighly satisfies the second SDP constraint. Finally,

〈v0, vij〉 = −β
∑
e∈i

∑
k∈N

wj wk zek min{δej, δek}.

6.4. Online scheduling under Smith’s Rule 137

Let us now check that this is a feasible solution to (SDP-SR). The second set of
constraints is satisfied due to (6.4.2). The first set of constraints under the above
fitting becomes:

yj ≤
∑
e∈i

wj pej −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ β
(
C(j)(x)− C(j−1)(x)

)
≤ 1

2

∑
e∈i

wj pej + β
∑
e∈i

∑
k∈N

wj wk zek min{δej, δek}.

By the choice β = 1/2, these inequalities are satisfied by Lemma 6.4.1, implying
that the fitted solution is feasible.

Let us now argue about the objective function. Let us denote

η(x) :=
∑
e∈E

∑
j∈N

wj pej zej.

For the norm squared of v0, we get

1

β2
‖v0‖2 =

∑
e∈E

∑
j,k∈N

wj wk zej zek

∫ ∞

0

1{t≤δej}1{t≤δek} dt

=
∑
e∈E

∑
j,k∈N

wjwkzejzek min{δej, δek}

=
∑
e∈E

∑
j∈N

w2
j z

2
ej δej + 2

∑
e∈E

∑
j∈N,k≺ej

wjwkzejzekδek

=
∑
e∈E

∑
j∈N

wj pej z
2
ej + 2

∑
e∈E

∑
j∈N,k≺ej

wj pek zej zek

= 2 C(x)− η(x). (6.4.3)

The last equality uses the definition of the Smith Ratio δej = pej/wj, whereas the
last inequality follows from the fact that z2ej = zej (since zej ∈ {0, 1}) as well as
the definition of the total cost (5.4.2). The sum of the y variables becomes:∑

j∈N

yj = β
∑
j∈N

(
C(j)(x)− C(j−1)(x)

)
= β C(n)(x) = β C(x)

where the second equality uses the fact that the sum is telescoping. The objective
function of this SDP can now be lower bounded using (6.4.3):∑

j∈J

yj −
1

2
‖v0‖2 = βC(x)− β2C(x) + β2 η(x)

2
=
C(x)

4
+
η(x)

8
≥ C(x)

4
.

2

138 Chapter 6. Online load balancing via vector fitting

6.4.2 An alternative randomized algorithm
In this section, we provide an alternative 4-competitive randomized algorithm for
the online problem R||

∑
wjCj, for which the (SDP-SR) relaxation specializes as:

max
∑
j∈N

yj −
1

2
‖v0‖2

yj ≤ wjpij −
1

2
‖vij‖2 − 〈v0, vij〉 ∀j ∈ N, ∀i ∈ Sj

〈vij, vi′k〉 ≤ wj wk min{δij, δik} 1{i=i′} ∀(i, j) 6= (i′, k) with j, k ∈ N.

Since we are now considering a randomized algorithm, we will refer toXij ∈ {0, 1}
as the binary random variable indicating whether j ∈ N is assigned to i ∈ E.
Moreover, we will refer to xij := E[Xij] ∈ [0, 1] as the probabilities defined by the
algorithm. The random completion time of a job j ∈ N is thus

Cj(X) =
∑
i∈E

∑
k⪯ij

pik Xij Xik.

The total cost is the sum of weighted completion times:

C(X) :=
∑
j∈N

wj Cj(X) =
∑
i∈E

∑
j∈N,k⪯ij

wj pik Xij Xik. (6.4.4)

We can split this cost on a machine by machine basis by defining:

Li(X) =
∑

j∈N,k⪯ij

wj pik Xij Xik ∀i ∈ E. (6.4.5)

Clearly, we have that C(X) =
∑

i∈E Li(X). Since the jobs arrive online, we
denote them as N = {1, . . . , n}, where job k arrives before job j if k < j.

Let us now describe the algorithm. Whenever j ∈ N arrives, we consider the
following potential functions for every i ∈ Sj:

fij(t) := wj pij + 2

(
t wj pij +

∑
k<j

wj wk min{δij, δik} xik

)
. (6.4.6)

We now consider a waterfilling type of algorithm, described in Algorithm 6.4.1,
which defines a probability distribution (xij)i∈Sj

ensuring that

xej > 0 =⇒ fej(xej) ≤ fij(xij) ∀i ∈ Sj.

For convenience of notation, we also let xej = 0 if e /∈ Sj. Observe that this
means that for every e ∈ Sj with xej > 0, we get that fej(xej) = λ for some

6.4. Online scheduling under Smith’s Rule 139

constant λ, whereas fej(xej) ≥ λ if xej = 0. In particular, since
∑

e∈Sj
xej = 1,

we also get the following equilibrium inequality:∑
e∈E

xej fej(xej) ≤ fij(xij) ∀i ∈ Sj. (6.4.7)

Once the algorithm has constructed the distribution (xij)i∈Sj
, it simply randomly

samples a machine from this distribution to assign the job to. Note that the
random decisions are independent for any two jobs j 6= k.

Algorithm 6.4.1 Waterfilling and randomized rounding
when j ∈ N arrives:

Compute (xij)i∈Sj
such that

∑
i xij = 1 and (6.4.7) holds

Assign j to i ∈ Sj, i.e. set Xij = 1 with probability xij
return X

By a slight abuse of notation, let us denote the expected cost per resource
i ∈ E as

Li(x) := E[Li(X)] =
∑

j∈N,k⪯ij

wj pik E[Xij Xik] (6.4.8)

and let us also define the following quantity for every i ∈ E:

Fi(x) :=
∑

j∈N,k⪯ij

wj pik xij xik. (6.4.9)

Since the algorithm makes independent choices for any two jobs j 6= k, meaning
that E[Xij Xik] = E[Xij]E[Xik] = xijxik, the only difference between Li(x) and
Fi(x) occurs when j = k, in which case we respectively get a contribution of
E[X2

ij] = E[Xij] = xij and x2ij.
Let us now define L(j)

i (x) and F (j)
i (x) to be the expressions (6.4.8) and (6.4.9)

for the assignment x after an online job j has arrived (i.e. where xik = 0 for every
k > j and every i ∈ M). We now define the increments over time of these two
quantities as:

δ
(j)
i (x) := F

(j)
i (x)− F (j−1)

i (x) and ∆
(j)
i (x) := L

(j)
i (x)− L(j−1)

i (x).

We are now ready to state key inequalities satisfied by our algorithm which will
be needed for the dual fitting.

Lemma 6.4.3. For any solution (xij)j∈N,i∈Sj
constructed by Algorithm 6.4.1, the

following inequalities are satisfied for every j ∈ N :∑
e∈M

(
δ(j)e (x) + ∆(j)

e (x)
)
≤ wj pij + 2

∑
k∈N

wj wk min{δij, δik} xik ∀i ∈ Sj.

140 Chapter 6. Online load balancing via vector fitting

Proof:
Let us first understand how the cost increases when j ∈ N is assigned to i ∈ E
by the algorithm. The weighted completion time of j increases the cost by:

wj

(
pij +

∑
k<j:k≺ij

pikXik

)
.

Moreover, the completion time of the already arrived jobs assigned to that ma-
chine coming after j in the ordering of that machine (i.e. with a higher Smith
ratio) is increased by pij, leading to an increase in the objective of∑

k<j:k≻ij

wk pij Xik.

The total increase in cost (i.e. the sum of the two above quantities) can be written
succinctly as follows:

wjpij +
∑
k<j

wjwk min{δij, δik}Xik.

Using that, we can see that the increments become:

∆(j)
e (x) = xej

(
wj pej +

∑
k<j

wjwk min{δej, δek}xek

)
,

δ(j)e (x) = xej

(
wj pej xej +

∑
k<j

wjwk min{δej, δek}xek

)

= xej

(∑
k≤j

wjwk min{δej, δek}xek

)

where the last equality follows from wjpej = w2
j δej. From the above two equations,

we see that δ(j)e (x)+∆
(j)
e (x) ≤ xejfej(xej), by definition of (6.4.6). The equilibrium

condition (6.4.7) then tells us that∑
e∈E

(
δ(j)e (x) + ∆(j)

e (x)
)
≤
∑
e∈E

xej fej(xej) ≤ fij(xij) ∀i ∈ Sj.

Looking again at the definition (6.4.6) completes the proof of the lemma. 2

We are now ready to analyze the competitive ratio of the algorithm in this
model.

Theorem 6.4.4. For any online instance and any solution (xij)j∈N,i∈Sj
obtained

by Algorithm 6.4.1, there exists a feasible (SDP-SR) solution with objective value
at least E[C(X)]/4. By weak duality, this implies that the competitive ratio of the
algorithm is at most 4.

6.4. Online scheduling under Smith’s Rule 141

Proof:
We assume that the SDP vectors belong to the space F(E), which is without loss
of generality by Lemma 5.3.1. We now state the dual fitting:

• v0(i, t) := −1
2

∑
k∈N wk xik 1{t≤δik}

• vij(i
′, t) := wj 1{t≤δij}1{i=i′} ∀j ∈ N, ∀i ∈ Sj

• yj :=
1
4

∑
e∈M

(
δ
(j)
e (x) + ∆

(j)
e (x)

)
∀j ∈ N.

The desired inner products can be computed to be the following, using essentially
the same computations as in Theorem 5.4.1:

〈v0, vij〉 = −
1

2

∑
k∈N

wj wk min{δij, δik} xik, ‖vij‖2 = wj pij

‖v0‖2 =
1

4

∑
j,k∈N

wj wk min{δij, δik} xij xik, 〈vij, vi′k〉 = wj wk min {δij, δik} 1{i=i′}.

The second set of SDP constraints is tightly satisfied due to the last computation
above. The first set of constraints under this fitting gives:

yj ≤ wjpij −
1

2
‖vij‖2 − 〈v0, vij〉

⇐⇒ 1

4

∑
e∈M

(
δ(j)e (x) + ∆(j)

e (x)
)
≤ 1

2
wj pij +

1

2

∑
k∈N

wj wk min{δij, δik} xik.

These are now satisfied by Lemma 6.4.3. To argue about the objective, observe
that ∑

j∈N

yj =
1

4

∑
e∈M

∑
j∈N

(
δ(j)e (x) + ∆(j)

e (x)
)
=

1

4

∑
e∈M

(
Le(x) + Fe(x)

)
by using the definition of the increments and the fact that the sum is telescoping.
In addition,

‖v0‖2 =
1

4

∑
j,k∈N

wj wk min{δij, δik} xij xik ≤
1

2

∑
e∈M

Fe(x).

Hence, the objective can be lower bounded as:∑
j∈N

yj−
1

2
‖v0‖2 ≥

1

4

∑
e∈M

(
Le(x)+Fe(x)

)
−1

4

∑
e∈M

Fe(x) =
1

4

∑
e∈M

Le(x) =
1

4
E[C(X)].

2

142 Chapter 6. Online load balancing via vector fitting

6.4.3 A matching lower bound

In this section, we prove a matching lower bound even against fractional algo-
rithms for this model. To do so, we will use the hard instance constructed for
the unrelated load balancing problem in Theorem 6.3.10. We now describe the
intuition of how the two models are related in the restricted identical machines
setting, meaning that wij ∈ {wj,∞}. Given an instance and a fractional solution
x ∈ [0, 1]M×N , the square of the L2 norm of the loads is:

C(LB)(x) :=
∑
i∈M

(∑
j∈N

wjxij

)2

.

Consider now the same instance in the second model under uniform Smith ratios,
meaning that the processing times are set to pij = wj for every i ∈ Sj. Given a
fractional solution x, the cost in this model can be computed to be:

C(SR)(x) :=
1

2
C(LB)(x) +

∑
i∈M

∑
j∈N

w2
j

(
xij −

1

2
x2ij

)
. (6.4.10)

The idea of the proof will now be to modify the instance in Theorem 6.3.10 in
order to make the second term above negligible.

Consider the instance I constructed in Theorem 6.3.10. We now consider a
modified instance I(t), which for each job j ∈ N , has t ∈ N copies of the same
job arriving consecutively, all of which have the same feasible machines. These
copies of a job j are denoted as K(j). Moreover, for every k ∈ K(j), we set the
weight to be wk = wj/t. The new set of jobs is denoted by Ñ = ∪j∈NK(j).

Lemma 6.4.5. For a fractional solution y ∈ [0, 1]M×Ñ to I(t) and a fractional
solution x ∈ [0, 1]M×N to I satisfying

∑
k∈K(j) yik = t xij for every j ∈ N and

every i ∈M , we have

C(SR)(y) =
1

2
C(LB)(x) +O

(
1

t

)
.

Proof:

6.4. Online scheduling under Smith’s Rule 143

By (6.4.10), we have that

C(SR)(y) =
1

2

∑
i∈M

∑
j∈N

∑
k∈K(j)

wkyik

2

+
∑
i∈M

∑
j∈N

∑
k∈K(j)

w2
k

(
yik −

1

2
y2ik

)

=
1

2

∑
i∈M

∑
j∈N

wj

t

∑
k∈K(j)

yik

2

+
∑
i∈M

∑
j∈N

w2
j

t2

∑
k∈K(j)

(
yik −

1

2
y2ik

)

=
1

2

∑
i∈M

(∑
j∈N

wjxij

)2

+
1

t

∑
j∈N

w2
j −

1

t2

∑
i∈M

∑
j∈N

w2
j

∑
k∈K(j)

y2ik

=
1

2
C(LB)(x) +O

(
1

t

)
.

2

Theorem 6.4.6. For any ε > 0, there exists an online instance to the online
scheduling problem under Smith’s Rule such that any fractional algorithm has a
competitive ratio of at least 4− ε.

Proof:
Note that we can easily convert a solution x of I into a solution of I(t) by setting
yik = xij for every job k ∈ K(j). By Lemma 6.4.5, this shows that the optimal
solution y∗ of instance I(t) has cost at most

C(SR)(y∗) ≤ 1

2
C(LB)(x∗) +O

(
1

t

)
=

1

2
n (log(n) + 1) + O

(
1

t

)
where x∗ is the optimal solution on instance I whose cost we computed in
(6.3.8). Conversely, we can convert a fractional solution y obtained by an ar-
bitrary online algorithm on I(t) to a solution generated online on I by setting
xij =

∑
k∈K(j) yik/t. By (6.3.9), the cost of that solution on I is at least:

C(LB)(x) ≥ 4n log(n)− 16n

(
1−

√
1

n

)
.

By Lemma 6.4.5, we have that any online fractional algorithm incurs a cost of at
least

C(SR)(y) ≥ 1

2

(
4n log(n)− 16n

(
1−

√
1

n

))
+O

(
1

t

)
.

Hence, by letting n and t tend to infinity, we get the proof of the theorem. 2

Chapter 7

A faster algorithm for explorable heap
selection

In this chapter, we study the explorable heap selection problem. The goal is to
find the nth smallest value in a binary heap, and the complexity of the algorithm
is measured by the total distance traveled in the tree, with each edge having
unit cost. This problem was introduced by Karp, Saks and Widgerson [KSW86],
who gave deterministic and randomized n exp(O(

√
logn)) time algorithms using

O(log(n)2.5) and O(
√
logn) space respectively. We present a new randomized

algorithm with running time O(n log(n)3) against an oblivious adversary using
O(logn) space, substantially improving the previous best randomized running
time at the expense of slightly increased space usage.

7.1 Introduction
Many important problems in theoretical computer science are fundamentally
search problems. The objective of these problems is to find a certain solution
from the search space. In this chapter, we analyze a search problem that we call
explorable heap selection. The problem is related to the famous branch-and-bound
algorithm and was originally proposed by Karp, Saks and Widgerson [KSW86]
to model node selection for branch-and-bound with low space-complexity. Fur-
thermore, as we will explain later, the problem remains practically relevant to
branch-and-bound even in the full space setting.

The explorable heap selection problem1 is an online graph exploration problem
for an agent on a rooted (possibly infinite) binary tree. The nodes of the tree
are labeled by distinct real numbers (the key values) that increase along every
path starting from the root. The tree can thus be thought of as a min-heap.
Starting at the root, the agent’s objective is to select the nth smallest value in
the tree while minimizing the distance traveled, where each edge of the tree has

1 [KSW86] did not give the problem a name, so we have attempted to give a descriptive one
here.

145

146 Chapter 7. A faster algorithm for explorable heap selection

unit travel cost. The key value of a node is only revealed when the agent visits
it, and thus the problem has an online nature. When the agent learns the key
value of a node, it still does not know the rank of this value.

The selection problem for ordinary heaps, which allow for random access (i.e.,
jumping to arbitrary nodes in the tree for “free”), has also been studied. In this
model, it was shown by [Fre93] that selecting the nth minimum can be achieved
deterministically in O(n) time using O(n) workspace. We note that in both
models, Ω(n) is a natural lower bound. This is because verifying that a value L
is the nth minimum requires Θ(n) time – one must at least inspect the n nodes
with value at most L – which can be done via straightforward depth-first search.

A simple selection strategy is to use the best-first rule2, which repeatedly
explores the unexplored node whose parent has the smallest key value. While
this rule is optimal in terms of the number of nodes that it explores, namely
Θ(n), the distance traveled by the agent can be far from optimal. In the worst-
case, an agent using this rule will need to travel a distance of Θ(n2) to find the
nth smallest value. A simple bad example for this rule is to consider a rooted tree
consisting of two paths (which one can extend to a binary tree), where the two
paths are consecutively labeled by all positive even and odd integers respectively.
Moreover, the space complexity becomes Ω(n) in general when using the best-first
rule, because essentially all the explored nodes might need to be kept in memory.
We note that irrespective of computational considerations on the agent, either
in terms of working memory or running time restrictions, minimizing the total
travel distance in explorable heap selection remains a challenging online problem.

Improving on the best-first strategy, Karp, Saks and Wigderson [KSW86] gave
a randomized algorithm with expected cost n·exp(O(

√
log(n))) using O(

√
log(n))

working space. They also showed how to make the algorithm deterministic using
O(log(n)2.5) space. In this work, our main contribution is an improved random-
ized algorithm with expected cost O(n log(n)3) using O(log(n)) space. Given the
Ω(n) lower bound, our travel cost is optimal up to logarithmic factors. Further-
more we show that any algorithm for explorable heap selection that uses only s
units of memory, must take at least n · logs(n) time in expectation. An interest-
ing open problem is the question whether a superlinear lower bound also holds
without any restriction on the memory usage.

To clarify the memory model, it is assumed that any key value and O(logn)
bit integer can be stored using O(1) space. We also assume that maintaining the
current position in the tree does not take up memory. Furthermore, we assume
that key value comparisons and moving across an edge of the tree require O(1)
time. Under these assumptions, the running times of the above algorithms happen
to be proportional to their travel cost. Throughout this chapter, we will thus use
travel cost and running time interchangeably.

2Frederickson’s algorithm [Fre93] is in fact a highly optimized variant of this rule

7.1. Introduction 147

Motivation. The motivation to look at this problem comes from the branch-
and-bound algorithm. This is a well-known algorithm that can be used for solving
many types of problems. In particular, it is often used to solve integer linear
programs (IPs), which are of the form argmin{c⊤x : x ∈ Zn, Ax ≤ b}. In
that setting, branch-and-bound works by first solving the linear programming
(LP) relaxation, which does not have integrality constraints. The value of the
solution to the relaxation forms a lower bound on the objective value of the
original problem. Moreover, if this solution only has integral components, it
is also optimal for the original problem. Otherwise, the algorithm chooses a
component xi for which the solution value x̂i is not integral. It then creates two
new subproblems, by either adding the constraint xi ≤ bx̂ic or xi ≥ dx̂ie. This
operation is called branching. The tree of subproblems, in which the children
of a problem are created by the branching operation, is called the branch-and-
bound tree. Because a subproblem contains more constraints than its parent, its
objective value is greater or equal to the one of its parent. The algorithm can
also be used to solve mixed-integer linear programs (MIPs), where some of the
variables are allowed to be continuous.

At the core, the algorithm consists of two important components: the branch-
ing rule and the node selection rule. The branching rule determines how to split
up a problem into subproblems, by choosing a variable to branch on. Substan-
tial research has been done on branching rules, see, e.g., [LS99, AKM05, LZ17,
BDSV18].

The node selection rule decides which subproblem to solve next. Not much
theoretical research has been done on the choice of the node selection rule. Tra-
ditionally, the best-first strategy is thought to be optimal from a theoretical
perspective because this rule minimizes the number of nodes that need to be
visited. However, a disadvantage of this rule is that searches using it might use
space proportional to the number of explored nodes, because all of them need to
be kept in memory. In contrast to this, a simple strategy like depth-first search
only needs to store the current solution. Unfortunately, performing a depth-
first search can lead to an arbitrarily bad running time. This was the original
motivation for introducing the explorable heap selection problem [KSW86]. By
guessing the number N of branch-and-bound nodes whose LP values are at most
that of the optimal IP solution (which can be done via successive doubling), a
search strategy for this problem can be directly interpreted as a node selection
rule. The algorithm that they introduced can therefore be used to implement
branch-and-bound efficiently in only O

(√
log(N)

)
space.

Nowadays, computers have a lot of memory available. This usually makes
it feasible to store all explored nodes of the branch-and-bound tree in memory.
However, many MIP-solvers still make use of a hybrid method that consists of
both depth-first and best-first searches. This is not only done because depth-first
search uses less memory, but also because it is often faster. Experimental studies

148 Chapter 7. A faster algorithm for explorable heap selection

have confirmed that the depth-first strategy is in many cases faster than best-
first one [CP99]. This seems contradictory, because the running time of best-first
search is often thought to be theoretically optimal.

In part, this contradiction can be explained by the fact that actual IP-solvers
often employ complementary techniques and heuristics on top of branch-and-
bound, which might benefit from depth-first searches. Additionally, a best-first
search can hop between different parts of the tree, while a depth first search
subsequently explores nodes that are very close to each other. In the latter case,
the LP-solver can start from a very similar state, which is known as warm starting.
This is faster for a variety of technical reasons [Ach09]. For example, this can be
the case when the LP-solver makes use of the LU-factorization of the optimal basis
matrix [MJSS16]. Through the use of dynamic algorithms, computing this can be
done faster if a factorization for a similar LP-basis is known [SS93]. Because of
its large size, MIP-solvers will often not store the LU-factorization for all nodes
in the tree. This makes it beneficial to move between similar nodes in the branch-
and-bound tree. Furthermore, moving from one part of the tree to another means
that the solver needs to undo and redo many bound changes, which also takes
up time. Hence, the amount of distance traveled between nodes in the tree is a
metric that influences the running time. This can also be observed when running
the academic MIP-solver SCIP [Gle22].

The explorable heap selection problem captures these benefits of locality by
measuring the running time in terms of the amount of travel through the tree.
Therefore, we argue that this problem is still relevant for the choice of a node
selection rule, even if all nodes can be stored in memory.

Related work. The explorable heap selection problem was first introduced in
[KSW86]. Their result was later applied to prove an upper bound on the parallel
running time of branch-and-bound [PPSV15].

When random access to the heap is provided at constant cost, selecting the
n’th value in the heap can be done by a deterministic algorithm in O(n) time by
using an additional O(n) memory for auxilliary data structures [Fre93].

The explorable heap selection problem can be thought of as a search game
[AG03] and bears some similarity to the cow path problem. In the cow path
problem, an agent explores an unweighted unlabeled graph in search of a target
node. The location of the target node is unknown, but when the agent visits a
node they are told whether or not that node is the target. The performance of an
algorithm is judged by the ratio of the number of visited nodes to the distance of
the target from the agent’s starting point. In both the cow path problem and the
explorable heap selection problem, the cost of backtracking and retracing paths
is an important consideration. The cow path problem on infinite b-ary trees was
studied in [DCD95] under the assumption that when present at a node the agent
can obtain an estimate on that node’s distance to the target.

7.2. The explorable heap selection problem 149

Other explorable graph problems exist without a target, where typically the
graph itself is unknown at the outset. There is an extensive literature on ex-
ploration both in graphs and in the plane [Ber98, Tho06]. In some of the used
models the objective is to minimize the distance traveled [BCGL23, BDHS23,
MMS12, KP94]. Other models are about minimizing the amount of used memory
[DFKP04]. What distinguises the explorable heap selection problem from these
problems is the information that the graph is a heap and that the ordinal of the
target is known. This can allow an algorithm to rule out certain locations for the
target. Because of this additional information, the techniques used here do not
seem to be applicable to these other problems.

Outline of the chapter. In Section 7.2 we formally introduce the explorable
heap selection problem and any notation we will use. In Section 7.3 we introduce
a new algorithm for solving this problem and provide a running time analysis.

7.2 The explorable heap selection problem
We introduce in this section the formal model for the explorable heap selection
problem. The input to the algorithm is an infinite binary tree T = (V,E), where
each node v ∈ V has an associated real value, denoted by val(v) ∈ R. We assume
that all the values are distinct. Moreover, for each node in the tree, the values of
its children are larger than its own value. Hence, for every v1, v2 ∈ V such that
v1 is an ancestor of v2, we have that val(v2) > val(v1). The binary tree T is thus
a heap.

The algorithmic problem we are interested in is finding the nth smallest value
in this tree. This may be seen as an online graph exploration problem where an
agent can move in the tree and learns the value of a node each time they explore
it. At each time step, the agent resides at a vertex v ∈ V and may decide to
move to either the left child, the right child or the parent of v (if it exists, i.e. if v
is not the root of the tree). Each traversal of an edge costs one unit of time, and
the complexity of an algorithm for this problem is thus measured by the total
traveled distance in the binary tree. The algorithm is also allowed to store values
in memory.

We now introduce a few notations used throughout this chapter.

• For a node v ∈ V , also per abuse of notation written v ∈ T , we denote by
T (v) the subtree of T rooted at v.

• For a tree T and a value L ∈ R, we define the subtree TL := {v ∈ T |
val(v) ≤ L}.

• We denote the nth smallest value in T by SELECTT (n). This is the quantity
that we are interested in finding algorithmically.

150 Chapter 7. A faster algorithm for explorable heap selection

• We say that a value V ∈ R is good for a tree T if V ≤ SELECTT (n) and bad
otherwise. Similarly, we call a node v ∈ T good if val(v) ≤ SELECTT (n)
and bad otherwise.

• We will use [k] to refer to the set {1, . . . , k}.

• When we write log(n), we assume the base of the logarithm to be 2.

For a given value V ∈ R, it is easy to check whether it is good in O(n) time:
start a depth first search at the root of the tree, turning back each time a value
strictly greater than V is encountered. In the meantime, count the number of
values below V found so far and stop the search if more than n values are found.
If the number of values below V found at the end of the procedure is at most n,
then V is a good value. This procedure is described in more detail later in the
DFS subroutine.

We will often instruct the agent to move to an already discovered good vertex
v ∈ V . The way this is done algorithmically is by saving val(v) in memory and
starting a depth first search at the root, turning back every time a value strictly
bigger than val(v) is encountered until finally finding val(v). This takes at most
O(n) time, since we assume v to be a good node. If we instruct the agent to go
back to the root from a certain vertex v ∈ V , this is simply done by traveling
back in the tree, choosing to go to the parent of the current node at each step.

In later sections, we will often say that a subroutine takes a subtree T (v) as
input. This implicitly means that we in fact pass it val(v) as input, make the
agent travel to v ∈ T using the previously described procedure, call the subroutine
from that position in the tree, and travel back to the original position at the end
of the execution. Because the subroutine knows the value val(v) of the root of
T (v), it can ensure it never leaves the subtree T (v), thus making it possible to
recurse on a subtree as if it were a rooted tree by itself. We write the subtree
T (v) as part of the input for simplicity of presentation.

We will sometimes want to pick a value uniformly at random from a set
of values {V1, . . . ,Vk} of unknown size that arrives in a streaming fashion, for
instance when we traverse a part of the tree T by doing a depth first search.
That is, we see the value Vi at the ith time step, but do not longer have access to
it in memory once we move on to Vi+1. This can be done by generating random
values {X1, . . . , Xk} where, at the ith time step, Xi = Vi with probability 1/i,
and Xi = Xi−1 otherwise. It is easy to check that Xk is a uniformly distributed
sample from {V1, . . . ,Vk}.

7.3 A new algorithm
The authors of [KSW86] presented a deterministic algorithm that solves the ex-
plorable heap selection problem in n · exp(O(

√
log(n))) time and O(n

√
log(n))

7.3. A new algorithm 151

space. By replacing the binary search that is used in the algorithm by a random-
ized variant, they are able to decrease the space requirements. This way, they
obtain a randomized algorithm with expected running time n · exp(O(

√
log(n)))

and space complexity O(
√

log(n)). Alternatively, the binary search can be im-
plemented using a deterministic routine by [MP80] to achieve the same running
time with O(log(n)2.5) space.

We present a randomized algorithm with a running time O(n log(n)3) and
space complexity O(log(n)). Unlike the algorithms mentioned before, our algo-
rithm fundamentally relies on randomness to bound its running time. This bound
only holds when the algorithm is run on a tree with labels that are fixed before
the execution of the algorithm. That is, the tree must be generated by an adver-
sary that is oblivious to the choices made by the algorithm. This is a stronger
assumption than is needed for the algorithm that is given in [KSW86], which also
works against adaptive adversaries. An adaptive adversary is able to defer the
decision of the node label to the time that the node is explored. Note that this
distinction does not really matter for the application of the algorithm as a node
selection rule in branch-and-bound, since there the node labels are fixed because
they are derived from the integer program and branching rule.

Theorem 7.3.1. There exists a randomized algorithm that solves the explorable
heap selection problem, with expected running time O(n log(n)3) and O(log(n))
space.

As mentioned above, checking whether a value v is good can be done in O(n)
time by doing a depth-first search with cutoff value val(v) that returns when more
than n good nodes are found. For a set of k values, we can determine which of
them are good in O(log(k)n) time by performing a binary search.

The explorable heap selection problem can be seen as the problem of finding all
n good nodes. Both our method and that of [KSW86] function by first identifying
a subtree consisting of only good nodes. The children of the leaves of this subtree
are called “roots” and the subtree is extended by finding a number of new good
nodes under these roots in multiple rounds. Importantly, the term ‘good node’
is always used with respect to the current call to Extend. So, a node might be
good in one recursive call, but not good in another.

In [KSW86] this is done by running O(c
√

2 log(n)) different rounds, for some
constant c > 1. In each round, the algorithm finds n/c

√
2 log(n) new good nodes.

These nodes are found by recursively exploring each active root and using binary
search on the observed values to discover which of these values are good. Which
active roots are recursively explored further depends on which values are good.
The recursion in the algorithm is at most O(

√
log(n)) levels deep, which is where

the space complexity bound comes from.
In our algorithm, we take a different approach. We will call our algorithm

consecutively with n = 1, 2, 4, 8, Hence, for a call to the algorithm, we can

152 Chapter 7. A faster algorithm for explorable heap selection

assume that we have already found at least n/2 good nodes. These nodes form
a subtree of the original tree T . In each round, our algorithm chooses a random
root under this subtree and finds every good node under it. It does so by doing
recursive subcalls to the main algorithm on this root with values n = 1, 2, 4, 8,
As soon as the recursively obtained node is a bad node, the algorithm stops
searching the subtree of this root, since it is guaranteed that all the good nodes
there have been found. The largest good value that is found can then be used to
find additional good nodes under the other roots without recursive calls, through
a simple depth-first search. Assuming that the node values were fixed in advance,
we expect this largest good value to be greater than half of the other roots’ largest
good values. Similarly, we expect its smallest bad value to be smaller than half of
the other roots’ smallest bad values. By this principle, a sizeable fraction of the
roots can, in expectation, be ruled out from getting a recursive call. Each round
a new random root is selected until all good nodes have been found.

This algorithm allows us to effectively perform binary search on the list of
roots, ordered by the largest good value contained in each of their subtrees in
O(logn) rounds, and the same list ordered by the smallest bad values (Lemma
7.3.5). Bounding the expected number of good nodes found using recursive sub-
calls requires a subtle induction on two parameters (Lemma 7.3.4): both n and
the number of good nodes that have been identified so far.

7.3.1 Subroutines
We first describe three subroutines that will be used in our main algorithm.

The procedure DFS. The procedure DFS is a variant of depth first search.
The input to the procedure is T , a cutoff value L ∈ R and an integer n ∈ N. The
procedure returns the number of vertices in T whose value is at most L.

It achieves that by exploring the tree T in a depth first search manner, starting
at the root and turning back as soon as a node w ∈ T such that val(w) > L is
encountered. Moreover, if the number of nodes whose value is at most L exceeds
n during the search, the algorithm stops and returns n+ 1.

The algorithm output is the following integer.

DFS(T,L, n) := min
{∣∣TL∣∣, n+ 1

}
.

Observe that the DFS procedure allows us to check whether a node w ∈ T is a
good node, i.e. whether val(w) ≤ SELECTT (n). Indeed, w is good if and only if
DFS(T, val(w), n) ≤ n.

This algorithm visits only nodes in TL or its direct descendants and its running
time is O(n). The space complexity is O(1), since the only values needed to be
stored in memory are L, val(v), where v is the root of the tree T , and a counter
for the number of good values found so far.

7.3. A new algorithm 153

1713115

3 3.5 5.5 4.5

2 4

1

Figure 7.1: An illustration of R(T,L0) with L0 = 4. The number above each
vertex is its value, the blue nodes are R(T,L0), whereas the subtree above is TL0 .

The procedure Roots. The procedure Roots takes as input a tree T as
well as an initial fixed lower bound L0 ∈ R on the value of SELECTT (n). We
assume that the main algorithm has already found all the nodes w ∈ T satisfying
val(w) ≤ L0. This means that the remaining values the main algorithm needs
to find in T are all lying in the subtrees of the following nodes, that we call the
L0-roots of T :

R(T,L0) :=
{
r ∈ T \ TL0

∣∣ r is a child of a node in TL0

}
In other words, these are all the vertices in T one level deeper in the tree than
TL0 , see Figure 7.1 for an illustration. In addition to that, the procedure takes
two other parameters L,U ∈ R as input, which correspond to (another) lower
and upper bound on the value of SELECTT (n). These bounds L and U will be
variables being updated during the execution of the main algorithm, where L
will be increasing and U will be decreasing. More precisely, L will be the largest
value that the main algorithm has certified being at most SELECTT (n), whereas
U will be the smallest value that the algorithm has certified being at least that.
A key observation is that these lower and upper bounds can allow us to remove
certain roots in R(T,L0) from consideration, in the sense that all the good values
in that root’s subtree will be certified to have already been found. The only roots
that the main algorithm needs to consider, when L and U are given, are thus the
following.

Roots(T,L0,L,U) :=
{
r ∈ R(T,L0) | ∃w ∈ T (r) with val(w) ∈ (L,U)

}
(7.3.1)

This subroutine can be implemented as follows. Run a depth-first search
starting at the root of T . Once a node r ∈ T with val(r) > L0 is encountered, the
subroutine marks that vertex r as belonging to R(T,L0). The depth-first search
continues deeper in the tree until finding a node w ∈ T (r) with val(w) > L. At
this point, if val(w) < U , then the search directly returns to r without exploring
any additional nodes in T (r) and adds r to the output. If however val(w) ≥ U ,

154 Chapter 7. A faster algorithm for explorable heap selection

9.5 7.5 8.5 9 12 15 10 16 19 18

1713115 6.5 8 6 7

5.5 4.5

Figure 7.2: An illustration of the Roots procedure with L0 = 4,L = 7 and U =
10. Only two active roots remain, and are both colored in blue. The other roots
are considered killed since all the good values have been found in their subtrees.

then the search continues exploring T (r)
L (and its direct descendants) by trying to

find a node w with val(w) ∈ (L,U). In case the algorithm explores all of T (r)
L with

its direct descendants, and it turns out that no such node exists (i.e. every direct
descendant w of T (r)

L satisfies val(w) ≥ U), then r is not added to the output.
This procedure takes time O(|TL|), i.e. proportional to the number of nodes

in T with value at most L. Since the procedure is called only on values L which
are known to be good, the time is bounded by O(|TL|) = O(n).

In the main algorithm, we will only need this procedure in order to select a
root from Roots(T,L0,L,U) uniformly at random, without having to store the
whole list in memory. This can then be achieved in O(1) space, since one then
only needs to store val(v),L0,L and U in memory, where v is the root of the tree
T .

The procedure GoodValues. The procedure GoodValues takes as input a
tree T , a subtree T (r) for a node r ∈ T , a value L′ ∈ R≥0 and an integer n ∈ N.
The procedure then analyzes the set

S :=
{
val(w)

∣∣ w ∈ T (r), val(w) ≤ L′}
and outputs both the largest good value and the smallest bad value in that set,
that we respectively call L and U . If no bad values exist in S, the algorithm sets
U = ∞. Notice that this output determines, for each value in S, whether it is
good or not. Indeed, any V ∈ S is good if and only if V ≤ L, and is bad if and
only if V ≥ U .

The implementation is as follows. Start by initializing the variables L =
−∞ and U = L′. These variables correspond to lower and upper bounds on
SELECTT (n). Loop through the values in

S ′ :=
{
val(w) | w ∈ T (r), L < val(w) < U

}

7.3. A new algorithm 155

using a depth first search starting at r and sample one value V uniformly randomly
from that set. Check whether V is a good value by calling DFS(T,V , n). If it is
good, update L = V . If it is bad, update U = V . Continue this procedure until
S ′ is empty, i.e. |S ′| = 0. If, at the end of the procedure, L = L′ = U , then set
U =∞. The output is thus:

GoodValues(T, T (r),L′, n) := {L,U}

where

L := max
{
V ∈ S | V ≤ SELECTT (n)

}
,

U := min
{
V ∈ S | V > SELECTT (n)

}
.

Sampling a value from S ′ takes O(|S|) time. Checking whether a sampled valued
is good takes O(n) time. In expectation, the number of updates before the set
S ′ is empty is O(log(|S|)), leading to an expected total running time of O((|S|+
n) log(|S|)). As we will later see in the proof of Lemma 7.3.6, we will only end up
making calls GoodValues(T, T (r),L′, n) with parameters T (r) and L′ satisfying
DFS(T (r),L′) = O(n). Since |S| = DFS(T (r),L′), this leads to an expected
running time of O(n log(n)).

The procedure can be implemented in O(1) space, since the only values needed
to be kept in memory are val(v) (where v is the root of the tree T), val(r), L, U
and L′, as well as the fact that every call to DFS also requires O(1) space.

7.3.2 The main algorithm
We now present our main algorithm. This algorithm is named Select and
outputs the nth smallest value in the tree T . A procedure used in Select is the
Extend algorithm, described below, which assumes that at least n/2 good nodes
have already been found in the tree, and also outputs the nth smallest one.

Let us describe a few invariants from the Extend procedure.

• L and U are respectively lower and upper bounds on SELECTT (n) during
the whole execution of the procedure. More precisely, L ≤ SELECTT (n)
and U > SELECTT (n) at any point, and hence L is good and U is bad. The
integer k counts the number of values ≤ L in the full tree T .

• No root can be randomly selected twice. This is ruled out by the updated
values of L and U , and the proof can be found in Theorem 7.3.2.

• After an iteration of the inner while loop, L′ is set to the cth smallest
value in T (r). The variable c′ then corresponds to the next value we would
like to find in T (r) if we were to continue the search. Note that c′ ≤ 2c,
enforcing that the recursive call to Extend satisfies its precondition, and

156 Chapter 7. A faster algorithm for explorable heap selection

Algorithm 7.3.1 The Select procedure
1: Input : n ∈ N
2: Output : SELECT(n), the nth smallest value in the heap T .
3: procedure Select(n)
4: k ← 1
5: L ← val(v) ▷ v is the root of the tree T
6: while k < n do
7: if k < n/2 then
8: k′ ← 2k
9: else

10: k′ ← n
11: L ← Extend(T, k′, k,L)
12: k ← k′

13: return L

Algorithm 7.3.2 The Extend procedure
1: Input: T : tree which is to be explored.
2: n ∈ N: total number of good values to be found, satisfying n ≥ 2.
3: k ∈ N: number of good values already found, satisfying k ≥ n/2.
4: L0 ∈ R: value satisfying DFS(T,L0, n) = k.
5: Output: the nth smallest value in T .
6: procedure Extend(T , n, k, L0)
7: L ← L0

8: U ← ∞
9: while k < n do

10: r ← random element from Roots(T , L0, L, U)
11: L′ ← max(L, val(r))
12: k′ ← DFS(T , L′, n) ▷ count the number of values ≤ L′ in T
13: c← DFS(T (r), L′, n) ▷ counting the number of values ≤ L′ in T (r)

14: c′ ← min(n− k′ + c, 2c) ▷ increase the number of values to be found
15: while k′ < n do
16: L′ ← Extend(T (r), c′, c, L′)
17: k′ ← DFS(T , L′, n)
18: c← c′

19: c′ ← min(n− k′ + c, 2c)

20: L̃, Ũ ← GoodValues(T, T (r),L′, n) ▷ find the good values in T (r)

21: L ← max(L, L̃)
22: U ← min(U , Ũ)
23: k ← DFS(T , L, n) ▷ compute the number of good values found in T
24: return L

7.3. A new algorithm 157

that c′ ≤ n− (k′ − c) implies that (k′ − c) + c′ ≤ n, which implies that the
recursive subcall will not spend time searching for a value that is known in
advance to be bad.

• From the definition of k′ and c one can see that k′ ≥ k+ c. Combined with
the previous invariant, we see that c′ ≤ n− k.

• k′ always counts the number of values ≤ L′ in the full tree T . It is important
to observe that this is a global parameter, and does not only count values
below the current root. Moreover, k′ ≥ n implies that we can stop searching
below the current root, since it is guaranteed that all good values in T (r)

have been found, i.e., L′ is larger than all the good values in T (r).

7.3.3 Proof of correctness
Theorem 7.3.2. At the end of the execution of Algorithm 7.3.1, L is set to the
nth smallest value in T . Moreover, the algorithm is guaranteed to terminate.

Proof:
We show L = SELECTT (n) holds at the end of Algorithm 7.3.2, i.e. the Extend
procedure. Correctness of Algorithm 7.3.1, i.e. the Select procedure, then
clearly follows from that. First, notice that L is always set to the first output
of the procedure GoodValues, which is always the value of a good node in T ,
implying

L ≤ SELECTT (n)

at any point during the execution of the algorithm. Since the outer while loop
ends when at least n good nodes in T have value at most L, we get

L ≥ SELECTT (n),

which implies that when the algorithm terminates it does so with the correct
value.

It remains to prove that the algorithm terminates. We observe that every
recursive call L′ ← Extend(T (r), c′, c,L′) strictly increases the value of L′, en-
suring that at least one extra value in T is under the increased value. This implies
that k′ strictly increases every iteration of the inner while loop, thus ensuring that
this loop terminates.

To see that the outer loop terminates, observe that after each iteration the
set Roots(T,L0,L,U) shrinks by at least one element. As soon as this set is
empty, there will be no more roots with unexplored good values in their subtrees,
so k = n and the algorithm terminates. 2

158 Chapter 7. A faster algorithm for explorable heap selection

7.3.4 Space complexity analysis
We prove in this section the space complexity of our main algorithm.

Theorem 7.3.3. The procedure Select(n) runs in O(log(n)) space.

Proof:
Observe that it is enough to prove that the statement holds for Extend(T, n, k,L)
with k ≥ n/2, since the memory can be freed up (only keeping the returned value
in memory) after every call to Extend in the Select(n) algorithm.

Moreover, observe that the subroutines DFS, Roots and GoodValues
all require O(1) memory, as argued in their respective analyses. Any call to
Extend(T, n, k,L) only makes recursive calls to Extend(T (r), n̂, k̂, L̂) with 1 ≤
n̂ ≤ n − k ≤ 1

2
n. So the depth of the recursion is at most log(n), and the space

complexity of the algorithm is O(log(n)). 2

7.3.5 Running time analysis
In order to prove aO(n log(n)3) running time bound for the Select(n) procedure,
we will show that the running time of the Extend procedure with parameters n
and k is O((n− k) log(n)3) +O(n log(n)2).

The main challenge in analyzing the running time of Extend is in dealing
with the cost of the recursive subcalls on line 16. For this we rely on an important
idea, formalized in Lemma 7.3.4, stating that if the parent call with parameters
n and k makes z ∈ N recursive calls with parameters (n1, k1), . . . , (nz, kz), then∑z

i=1(ni − ki) ≤ n− k in expectation over the random choices of the algorithm.
A second insight is that the outermost while loop on line 9 is executed at most

O(log(n)) times in expectation, which is shown in Lemma 7.3.5. The first lemma
allows to show that the running time of the Extend procedure on the recursive
part is O((n− k) log(n)3), through an induction proof. The second lemma helps
to show that the running time of the Extend procedure on the non-recursive
part is O(n log(n)2). The running time analysis of Extend is formally done
in Lemma 7.3.6. Finally, the running time of O(n log(n)3) for the Select(n)
procedure then follows in Theorem 7.3.7.

Let us now prove these claims. We first show that the expectation of
∑z

i=1(ni−
ki) is bounded by n− k.

Lemma 7.3.4. Let z be the number of recursive calls with k ≥ 1 that are done
in the main loop of Extend(T , n, k, L0). For every i ∈ [z], let ni and ki be the
values that are given as second and third parameters to the ith such subcall. It
holds that:

E

[
z∑

i=1

(ni − ki)

]
≤ n− k.

7.3. A new algorithm 159

Proof:
For simplicity of notation, let us denote the set of roots at the beginning of
the execution of the algorithm by R := Roots(T,L0,L,U), where L = L0 and
U = ∞ at initialization. An important observation is that, once a root r ∈ R is
randomly selected on line 10, all the recursive calls under it (i.e. with its subtree
T (r) as first parameter) on line 16 are consecutive. The last such recursive call
ensures that all the good values in T (r) are found and sets L and U to respectively
be the largest good value and smallest bad value in T (r). From then on, this root
leaves the updated set Roots(T,L0,L,U) by (7.3.1) and will thus never be again
considered in the random choice on line 10. For every r ∈ R, let us define the
set:

C(r) =
{
i ∈ [z] s.t. the ith recursive call is under root r

}
and let us denote by Sr ∈ N the total number of good values in its subtree T (r).
Our goal is to show that:

E
[∑
i∈C(r)

(ni − ki)
]
≤ Sr ∀r ∈ R. (7.3.2)

Clearly, this would imply the lemma, since the total number of good values to
be found is

∑
r∈R Sr = n − k. For convenience, we define this number to be

p := n − k. We now order the good values to be found and denote them as
follows: V1 < V2 < · · · < Vp. Each value Vk is to be found in the subtree of a
certain root that we denote by r(Vk) ∈ R.

We first show that the claim (7.3.2) holds for any root r ∈ R such that
r 6= r(Vp). Let us thus fix such a root r 6= r(Vp). The key observation is that,
since the random choice on line 10 is uniform, and since r(Vp) will always be
among the active roots, the subtree of the root r(Vp) will be explored before the
subtree of root r with probability at least a half. In that case, no recursive calls
will be made under root r. This holds since the updated values L and U after the
iteration of r(Vp) ensure that r leaves Roots(T,L0,L,U) by (7.3.1) and is thus
not considered in the random choice in later iterations. If the root r is however
considered before r(Vp), which happens with probability at most a half, then∑

i∈C(r)(ni − ki) ≤ 2Sr, since the sum is telescoping and the parameters ki and
ni at most double at each step on line 19 until all good values in T (r) are found.
Hence, we get that

E
[∑
i∈C(r)

(ni − ki)
]
≤ 1

2
0 +

1

2
2Sr ≤ Sr. (7.3.3)

It remains to show that claim (7.3.2) holds for the root r(Vp) under which
the largest good value lies. In that case, let us denote by Vj the largest good

160 Chapter 7. A faster algorithm for explorable heap selection

value lying in a subtree of a different root r(Vj) 6= r(Vp). We also denote by
{r(Vj) ≺ r(Vp)} the probabilistic event that r(Vj) is considered before r(Vp) in
the random choices of the algorithm. By our choice of Vj and Vp, this event
happens with probability exactly a half. Moreover, if this event happens, all the
good values outside of T (r(Vp)) will have been found after exploring T (r(Vj)). This
means that, when the algorithm considers r(Vp), it knows that there remain at
most p − j values to be found. That is, we will have C(r(Vp)) = {t, . . . , z} for
some t, such that kt ≥ Sr(Vp) − (p− j) and nz ≤ Sr(Vp), leading to

E
[∑
i∈C(r(Vp))

(ni − ki)
∣∣ r(Vj) ≺ r(Vp)

]
≤ Sr(Vp) −

(
Sr(Vp) − (p− j)

)
= p− j,

(7.3.4)

where we have again used the fact that the sum is telescoping.
We now consider the event {r(Vp) ≺ r(Vj)} and distinguish two cases. Sup-

pose that the penultimate call i ∈ C(r(Vp)) finds a good value which is bigger
than Vj. By a similar argument as above, the algorithm does not double in the
last step, but truncates due to line 19, meaning that

∑
i∈C(r(Vp))

(ni− ki) = Sr(Vp)

holds in this case. Combining this with (7.3.4) and using the fact that the last
p− j values are under root r(Vp), we get

E
[∑
i∈C(r(Vp))

(ni − ki)
]
≤ 1

2
(p− j) + 1

2
Sr(Vp) ≤ Sr(Vp).

Suppose now that the penultimate call i ∈ C(r(Vp)) finds a good value which is
smaller than Vj. This means that the number of good values found in T (r(Vp)) is
at most Sr(Vp)− (p− j) at that point. The last call i ∈ C(r(Vp)) then doubles the
parameters, meaning that

∑
i∈C(r(Vp))

(ni− ki) ≤ 2 (Sr(Vp)− (p− j)) holds, due to
the fact that the sum is telescoping. Combining this with (7.3.4) leads to

E
[∑
i∈C(r(Vp))

(ni − ki)
]
≤ 1

2
(p− j) + Sr(Vp) − (p− j) ≤ Sr(Vp).

2

We now bound the expected number of iterations of the outermost while-loop.

Lemma 7.3.5. The expected number of times that the outermost while-loop (at
line 9) is executed by the procedure Extend is at most O(log(n)).

Proof:
Let r1, . . . , rm denote the roots returned by Roots(T,L0,L0,∞). For j ∈ [m],
let ℓj and uj respectively denote the largest good value and the smallest non-good
value under root rj. Let Aℓ(L) := {rj : ℓj > L} and Au(U) := {rj : uj < U}.
Observe that Roots(T,L0,L,U) = Aℓ(L) ∪ Au(U) for any L ≤ U .

7.3. A new algorithm 161

Let Li and Ui denote the values of L and U at the start of the ith itera-
tion. After an iteration i in which root rj was selected, the algorithm updates L
and U such that Li+1 = max(L, ℓj) and Ui+1 = min(U , uj). Observe that Li is
nondecreasing and that Ui is nonincreasing.

We will now show that if a root from Aℓ(Li) is selected in iteration i, then
the expected size of Aℓ(Li+1) is at most half that of Aℓ(Li). This will imply that
in expectation only log(n) iterations are needed to make |Aℓ(L)| = 1.

Let Fi be the filtration containing all information up until iteration i. Let Xi

be a random variable denoting the value of |Aℓ(Li)|. Let (sk)k≥1 be the subse-
quence consisting of iteration indices i in which a root from Aℓ(Li) is selected.
Because roots are selected uniformly at random, we have E[Xsk+1

| Fsk] ≤ 1
2
Xsk .

Let Yi = max(log(Xi), 0). Note that when Ysk ≥ 1, we have E[Ysk+1
| Fsk] =

E[log(Xsk+1
) | Fsk] ≤ log(E[Xsk+1

| Fsk]) ≤ Ysk − 1. Let τ be the smallest k such
that Ysk = 0. Note that τ is the number of iterations i in which a root from
Aℓ(Li) is selected, and hence τ ≤ n. The sequence (Ysk + k)k=1,...,τ is therefore a
supermartingale and τ is a stopping time. By the martingale stopping theorem
[MU05, Theorem 12.2], we have E[τ] = E[Ysτ + τ] ≤ E[Ys1 + 1] = log(m) + 1.

Now we have shown that in expectation at most log(m) + 1 iterations i are
needed in which roots from Aℓ(Li) are considered. The same argument can be
repeated for Au(U). Since in every iteration a root from Aℓ(L) or Au(U) is
selected, the expected total number of iterations is at most 2 log(m) + 2. This
directly implies the lemma as m ≤ |TL|+ 1 ≤ n+ 1. 2

We are now able to prove the running time bound for the Extend procedure.

Lemma 7.3.6. Let R(T, n, k) denote the running time of a call Extend(T , n,
k, L0). Then there exists C > 0 such that

E[R(T, n, k)] ≤ 5C(n− k) log(n)3 + Cn log(n)2.

Proof:
We will prove this with induction on r := dlog(n)e. For r = 1, we have n ≤ 2. In
this case R is constant, proving our induction base.

Now consider a call Extend(T , n, k, L0) and assume the induction claim is
true when dlog(n)e ≤ r − 1. Let p be the number of iterations of the outer-most
while-loop that are executed.

We will first consider the running time induced by the base call itself, excluding
any recursive subcalls. Note that all of this running time is incurred by the calls
to the procedures DFS, Roots and GoodValues, plus the cost of moving to
the corresponding node before each of these calls. In the base call, the procedure
will only move between nodes that are among the ones with the n smallest values,
or the nodes directly below them. For this reason, we can upper bound the cost
of each movement action by a running time of O(n).

• On line 12, 13, 23 each call DFS incurs a running time of at most O(n).

162 Chapter 7. A faster algorithm for explorable heap selection

Each of these lines will be executed p times, incurring a total running time
of O(pn).

• On line 17 each call DFS(T , L′, n) incurs a running time of at most O(n).
The code will be executed O(p log(n)) times since c′ doubles after every
iteration of the inner loop and never grows larger than n, thus incurring a
total running time of O(pn log(n)).

• The arguments T (r) and L′ of the call to GoodValues on line 20 satisfy
DFS(T (r),L′) = c ≤ c′ ≤ n. Hence, the running time of this procedure is
O(n log(n)) time. The line is executed at most p times, so the total running
time incurred is O(pn log(n)).

Adding up all the running times listed before, we see that the total running time
incurred by the non-recursive part is O(pn log(n)). By Lemma 7.3.5, E[p] ≤
log(n). Hence, we can choose C such that the expected running time of the
non-recursive part is bounded by

Cn log(n)2.

Now we move on to the recursive part of the algorithm. All calls to Ex-
tend(T , n, k, L0) with k = 0 will have n = 1, so each of these calls takes only
O(1) time. Hence we can safely ignore these calls.

Let z be the number of of recursive calls to Extend(T , n, k, L0) that are
done from the base call with k ≥ 1. Let Ti, ki, ni for i ∈ [z] be the arguments of
these function calls. Note that n/2 ≥ n− k ≥ ni ≥ 2 for all i. By the induction
hypothesis, the expectation of the recursive part of the running time is:

E

[
z∑

i=1

R(Ti, ni, ki)

]
≤ E

[
z∑

i=1

5C(ni − ki) log(ni)
3 + Cni log(ni)

2

]

≤ 5C log(n/2)3E
[

z∑
i=1

(ni − ki)

]
+ C log(n/2)2E

[
z∑

i=1

ni

]

≤ 5C(log(n)− 1) log(n)2E
[

z∑
i=1

(ni − ki)

]
+ C log(n)2E

[
z∑

i=1

ni

]
≤ 5C(log(n)− 1) log(n)2(n− k) + 5C log(n)2(n− k)
≤ 5C(n− k) log(n)3.

Here we used Lemma 7.3.4 as well as the fact that
∑z

i=1 ni ≤ 4(n − k). To see
why the latter inequality is true, consider an arbitrary root r that has Sr values
under it that are good (with respect to the base call). We then get

z∑
i=1

1{Ti=T (r)}ni ≤
⌈log(Sr+1)⌉∑

i=2

2i ≤ 2⌈log(Sr+1)⌉+1 ≤ 4Sr.

7.3. A new algorithm 163

In total there are n−k good values under the roots, and hence
∑z

i=1 ni ≤ 4(n−k).
Adding the expected running time of the recursive and the non-recursive part,
we see that

E[R(T, n, k)] ≤ 5C(n− k) log(n)3 + Cn log(n)2.
2

This now implies the desired running time for the procedure Select.

Theorem 7.3.7. The procedure Select(n) runs in expected O(n log(n)3) time.

Proof:
The key idea is that Select calls Extend(T, k′, k,L) at most dlog(n)e times
with parameters (k′, k) = (2i, 2i−1) for i ∈ {1, . . . , dlog(n)e}. By Lemma 7.3.6,
the running time of Select can thus be upper bounded by

⌈log(n)⌉∑
i=1

E[R(T, 2i, 2i−1)] ≤ 5C log(n)3
⌈log(n)⌉∑

i=1

(2i − 2i−1) +

⌈log(n)⌉∑
i=1

Cn log(n)2

= O(n log(n)3).

2

Conclusion

In this thesis, we studied three classes of combinatorial optimization problems –
covering, matching and scheduling – in different offline, online and game-theoretic
models. In addition, we also considered an online graph exploration problem on
a heap.

We first looked at the classical vertex cover problem and analyzed a beyond the
worst-case approximation algorithm based on the standard linear programming
relaxation. The approximation ratio obtained is a bound interpolating between
the worst-case bound of 2 and the optimal bound of 1 achievable for bipartite
graphs. A key parameter turned out to be the odd girth, which is defined as
the length of the shortest odd cycle and which we used as a measure of how
far the input graph was from being bipartite. As a byproduct, the techniques
developed showed how to get tight bounds on the integrality gap of the standard
LP relaxation for three-colorable graphs. An interesting question would be to
apply similar techniques to other combinatorial optimization problems in different
beyond worst-case models. We believe such models offer a different viewpoint and
can give new insights, even for well studied classical problems.

We then looked at a generalization of the online bipartite matching problem to
hypergraphs. We focused on the three dimensional version under vertex arrivals
and presented a primal-dual fractional algorithm which is (e−1)/(e+1) ≈ 0.462-
competitive. As our main contribution, we then showed that this algorithm is
optimal by constructing an adversarial instance adaptive to the actions of an ar-
bitrary fractional algorithm establishing a matching upper bound. This instance
combines ideas from two hard instances for online matching on bipartite graphs
under the edge arrival and vertex arrival models. An outstanding open question
is still to improve the bound of 1/3 for the integral setting, which is achieved
by the greedy algorithm. We believe this setting is considerably harder than for
bipartite graphs, and advanced dependent/correlated rounding techniques will
be required to make progress on this problem. One could also look at different
arrival models, or k-uniform hypergraphs with k > 3. When treating k as a large
parameter, tight bounds on the competitive ratio are however known up to small
constant factors, since the fractional version admits upper and lower bounds of
Θ(1/ log k), whereas the integral version does so with bounds of Θ(1/k).

We then developed a dual fitting framework based on a single semidefinite pro-

165

166 Chapter 7. A faster algorithm for explorable heap selection

gram allowing to tightly analyze the price of anarchy of games, the approximation
ratio of local search algorithms and the competitive ratio of online algorithms for
scheduling problems under the sum of weighted completion times objective. The
dual fitting approach roughly consisted of making a certain set of SDP constraints
correspond to respectively Nash equilibrium inequalities, local optima inequali-
ties, or inequalities satisfied by an online algorithm at every time step. This
framework allowed us to derive simple and unified proofs of numerous results in
all three of these settings.

Interesting open questions which arise from this work are for instance the
following. What is the best coordination ratio achievable by a coordination
mechanism for the scheduling problem R||

∑
wjCj? The current best bound

is 32/15 ≈ 2.133 achieved by the Rand policy. How good can combinato-
rial algorithms do on this problem? The current best approximation ratio is
(5 +

√
5)/4 + ε ≈ 1.809 + ε, which is still quite far from the bound of 1.36 + ε

achievable by rounding a convex program. It would be interesting to apply this
technique to other assignment problems whose optimal solution can be modeled
as binary quadratic program. Can this perhaps be extended to problems with a
higher degree polynomial objective by considering later rounds of the SDP hier-
archy? We believe these are all possible directions for future research.

To conclude, we have in this thesis explored techniques to prove tight bounds
on the approximability of different combinatorial optimization problems, often
using linear programming or semidefinite programming duality. We believe that
there are still many interesting open questions to study in this rich research area,
which may lead to the development of new interesting algorithmic techniques.
We hope that some of the results in this thesis might have a small contribution
in that direction.

Bibliography

[AAE05] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of rout-
ing unsplittable flow. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 57–66, 2005.

[AAG+95] Baruch Awerbuch, Yossi Azar, Edward F Grove, Ming-Yang Kao,
P Krishnan, and Jeffrey Scott Vitter. Load balancing in the Lp
norm. In Proceedings of IEEE 36th Annual Foundations of Computer
Science, pages 383–391. IEEE, 1995.

[ABD+23] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet,
Amin Saberi, and Chris Sholley. Edge-weighted online windowed
matching. Math. Oper. Res., 48(2):999–1016, 2023.

[ABL02] Sanjeev Arora, Béla Bollobás, and László Lovász. Proving integral-
ity gaps without knowing the linear program. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Pro-
ceedings., pages 313–322. IEEE, 2002.

[ACE+20] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak,
and Bertrand Simon. Online metric algorithms with untrusted pre-
dictions. In International Conference on Machine Learning, pages
345–355. PMLR, 2020.

[Ach09] Tobias Achterberg. Constraint Integer Programming. PhD thesis,
TU Berlin, 2009.

[ACH14] Fidaa Abed, José R Correa, and Chien-Chung Huang. Optimal coor-
dination mechanisms for multi-job scheduling games. In Algorithms-
ESA 2014: 22th Annual European Symposium, Wroclaw, Poland,
September 8-10, 2014. Proceedings 21, pages 13–24. Springer, 2014.

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury
Makarychev. o(

√
log(n)) approximation algorithms for min uncut,

min 2cnf deletion, and directed cut problems. In Symposium on the
Theory of Computing, 2005.

167

168 BIBLIOGRAPHY

[ADG+11] Sebastian Aland, Dominic Dumrauf, Martin Gairing, Burkhard
Monien, and Florian Schoppmann. Exact price of anarchy for poly-
nomial congestion games. SIAM Journal on Computing, 40(5):1211–
1233, 2011.

[AE05] Yossi Azar and Amir Epstein. Convex programming for scheduling
unrelated parallel machines. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 331–337,
2005.

[AG03] Steve Alpern and Shmuel Gal. The Theory of Search Games
and Rendezvous. Number 55 in International Series in Opera-
tions Research & Management Science. Kluwer Academic Publish-
ers, Boston, 2003.

[AGK12] S Anand, Naveen Garg, and Amit Kumar. Resource augmentation
for weighted flow-time explained by dual fitting. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 1228–1241. SIAM, 2012.

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel
Kolev. Secretary and online matching problems with machine
learned advice. Advances in Neural Information Processing Systems,
33:7933–7944, 2020.

[AGKM11] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak
Mehta. Online vertex-weighted bipartite matching and single-bid
budgeted allocations. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264.
SIAM, 2011.

[AH12] Fidaa Abed and Chien-Chung Huang. Preemptive coordination
mechanisms for unrelated machines. In European Symposium on
Algorithms, pages 12–23. Springer, 2012.

[AJM08] Yossi Azar, Kamal Jain, and Vahab Mirrokni. (almost) optimal coor-
dination mechanisms for unrelated machine scheduling. In Proceed-
ings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 323–332, 2008.

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branch-
ing rules revisited. Operations Research Letters, 33(1):42–54, Jan-
uary 2005.

BIBLIOGRAPHY 169

[AWZ17] Stephan Artmann, Robert Weismantel, and Rico Zenklusen. A
strongly polynomial algorithm for bimodular integer linear program-
ming. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1206–1219, 2017.

[BCGL23] Siddhartha Banerjee, Vincent Cohen-Addad, Anupam Gupta, and
Zhouzi Li. Graph searching with predictions. In 14th Innovations
in Theoretical Computer Science Conference (ITCS 2023), Saar-
brücken/Wadern, 2023. Schloss-Dagstuhl.

[BCJS74] James Bruno, Edward G Coffman Jr, and Ravi Sethi. Scheduling
independent tasks to reduce mean finishing time. Communications
of the ACM, 17(7):382–387, 1974.

[BDHK23] Sander Borst, Daniel Dadush, Sophie Huiberts, and Danish
Kashaev. A nearly optimal randomized algorithm for explorable
heap selection. In International Conference on Integer Program-
ming and Combinatorial Optimization, pages 29–43. Springer, 2023.

[BDHK24] Sander Borst, Daniel Dadush, Sophie Huiberts, and Danish
Kashaev. A nearly optimal randomized algorithm for explorable
heap selection. Mathematical Programming, pages 1–22, 2024.

[BDHS23] Júlia Baligács, Yann Disser, Irene Heinrich, and Pascal Schweitzer.
Exploration of graphs with excluded minors. In 31st Annual Euro-
pean Symposium on Algorithms (ESA 2023), Saarbrücken/Wadern,
2023. Schloss Dagstuhl.

[BDSV18] Maria-Florina Balcan, Travis Dick, T. Sandholm, and Ellen Vitercik.
Learning to branch. ICML, 2018.

[Ber98] Piotr Berman. On-line searching and navigation, pages 232–241.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[BFMRV14] Adrian Bock, Yuri Faenza, Carsten Moldenhauer, and Andres Jac-
into Ruiz-Vargas. Solving the stable set problem in terms of the
odd cycle packing number. In 34th International Conference on
Foundation of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2014.

[BFPS19] Abbas Bazzi, Samuel Fiorini, Sebastian Pokutta, and Ola Svensson.
No small linear program approximates vertex cover within a factor
2- ε. Mathematics of Operations Research, 44(1):147–172, 2019.

170 BIBLIOGRAPHY

[BFR98] R Balasubramanian, Michael R Fellows, and Venkatesh Raman. An
improved fixed-parameter algorithm for vertex cover. Information
Processing Letters, 65(3):163–168, 1998.

[BG93] Jonathan F Buss and Judy Goldsmith. Nondeterminism within p.
SIAM Journal on Computing, 22(3):560–572, 1993.

[BGR14] Kshipra Bhawalkar, Martin Gairing, and Tim Roughgarden.
Weighted congestion games: the price of anarchy, universal worst-
case examples, and tightness. ACM Transactions on Economics and
Computation (TEAC), 2(4):1–23, 2014.

[BIKM14] Sayan Bhattacharya, Sungjin Im, Janardhan Kulkarni, and Kamesh
Munagala. Coordination mechanisms from (almost) all scheduling
policies. In Proceedings of the 5th conference on Innovations in
theoretical computer science, pages 121–134, 2014.

[BJN07] Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual
algorithms for maximizing ad-auctions revenue. In European Sym-
posium on Algorithms, pages 253–264. Springer, 2007.

[BK25] Sander Borst and Danish Kashaev. Improved online load balancing
in the two-norm. arXiv preprint arXiv:2511.03345, 2025.

[BKK25] Sander Borst, Danish Kashaev, and Zhuan Khye Koh. Online match-
ing on 3-uniform hypergraphs. In International Conference on Inte-
ger Programming and Combinatorial Optimization, pages 100–113.
Springer, 2025.

[BKM14] Sayan Bhattacharya, Janardhan Kulkarni, and Vahab Mirrokni. Co-
ordination mechanisms for selfish routing over time on a tree. In
Automata, Languages, and Programming: 41st International Collo-
quium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Pro-
ceedings, Part I 41, pages 186–197. Springer, 2014.

[BM08] Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching
made simple. Acm Sigact News, 39(1):80–87, 2008.

[BMS20] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-
dual method for learning augmented algorithms. Advances in Neural
Information Processing Systems, 33:20083–20094, 2020.

[BN09] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms
for covering and packing. Mathematics of Operations Research,
34(2):270–286, 2009.

BIBLIOGRAPHY 171

[BP03] Nikhil Bansal and Kirk Pruhs. Server scheduling in the lp norm: a
rising tide lifts all boat. In Proceedings of the thirty-fifth annual acm
symposium on theory of computing, pages 242–250, 2003.

[BSS16] Nikhil Bansal, Aravind Srinivasan, and Ola Svensson. Lift-and-
round to improve weighted completion time on unrelated machines.
In Proceedings of the forty-eighth annual acm symposium on theory
of computing, pages 156–167, 2016.

[BST19] Niv Buchbinder, Danny Segev, and Yevgeny Tkach. Online algo-
rithms for maximum cardinality matching with edge arrivals. Algo-
rithmica, 81(5):1781–1799, 2019.

[BYE81] Reuven Bar-Yehuda and Shimon Even. A linear-time approxima-
tion algorithm for the weighted vertex cover problem. Journal of
Algorithms, 2(2):198–203, 1981.

[BYE83] Reuven Bar-Yehuda and Shimon Even. A local-ratio theorm for
approximating the weighted vertex cover problem. Technical report,
Computer Science Department, Technion, 1983.

[Car08] Ioannis Caragiannis. Better bounds for online load balancing on
unrelated machines. In Proceedings of the nineteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 972–981. Citeseer,
2008.

[Car13] Ioannis Caragiannis. Efficient coordination mechanisms for unre-
lated machine scheduling. Algorithmica, 66(3):512–540, 2013.

[CCG+11] Richard Cole, José R Correa, Vasilis Gkatzelis, Vahab Mirrokni, and
Neil Olver. Inner product spaces for minsum coordination mecha-
nisms. In Proceedings of the forty-third annual ACM symposium on
theory of computing, pages 539–548, 2011.

[CDNK11] Johanne Cohen, Christoph Dürr, and Thang Nguyen Kim. Non-
clairvoyant scheduling games. Theory of Computing Systems, 49:3–
23, 2011.

[CF19] Ioannis Caragiannis and Angelo Fanelli. An almost ideal coordina-
tion mechanism for unrelated machine scheduling. Theory of Com-
puting Systems, 63:114–127, 2019.

[CFH+20] Michele Conforti, Samuel Fiorini, Tony Huynh, Gwenaël Joret, and
Stefan Weltge. The stable set problem in graphs with bounded
genus and bounded odd cycle packing number. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2896–2915. SIAM, 2020.

172 BIBLIOGRAPHY

[CFK+06] Ioannis Caragiannis, Michele Flammini, Christos Kaklamanis, Pana-
giotis Kanellopoulos, and Luca Moscardelli. Tight bounds for selfish
and greedy load balancing. In Automata, Languages and Program-
ming: 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part I 33, pages 311–322. Springer,
2006.

[CGKM09] Jivitej S Chadha, Naveen Garg, Amit Kumar, and VN Muralidhara.
A competitive algorithm for minimizing weighted flow time on un-
relatedmachines with speed augmentation. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages
679–684, 2009.

[CGV17] Ioannis Caragiannis, Vasilis Gkatzelis, and Cosimo Vinci. Coordi-
nation mechanisms, cost-sharing, and approximation algorithms for
scheduling. In Web and Internet Economics: 13th International
Conference, WINE 2017, Bangalore, India, December 17–20, 2017,
Proceedings 13, pages 74–87. Springer, 2017.

[CK05] George Christodoulou and Elias Koutsoupias. On the price of anar-
chy and stability of correlated equilibria of linear congestion games.
In European Symposium on Algorithms, pages 59–70. Springer, 2005.

[CKJ01] Jianer Chen, Iyad A Kanj, and Weijia Jia. Vertex cover: fur-
ther observations and further improvements. Journal of Algorithms,
41(2):280–301, 2001.

[CKN04] George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Co-
ordination mechanisms. In International Colloquium on Automata,
Languages, and Programming, pages 345–357. Springer, 2004.

[CKZ01] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for
minimizing weighted flow time. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 84–93, 2001.

[CL12] Yuk Hei Chan and Lap Chi Lau. On linear and semidefinite pro-
gramming relaxations for hypergraph matching. Mathematical pro-
gramming, 135(1-2):123–148, 2012.

[CLJ00] Jianer Chen, Lihua Liu, and Weijia Jia. Improvement on vertex
cover for low-degree graphs. Networks: An International Journal,
35(4):253–259, 2000.

[CM67] Maxwell Conway and W Maxwell. Miller, theory of scheduling.
Reading: Addison Wesley, 1967.

BIBLIOGRAPHY 173

[CM22] José R Correa and Felipe T Muñoz. Performance guarantees of
local search for minsum scheduling problems. Mathematical Pro-
gramming, 191(2):847–869, 2022.

[CMP14] Giorgos Christodoulou, Kurt Mehlhorn, and Evangelia Pyrga. Im-
proving the price of anarchy for selfish routing via coordination
mechanisms. Algorithmica, 69(3):619–640, 2014.

[CP99] Jens Clausen and Michael Perregaard. On the best search strategy in
parallel branch-and-bound: Best-first search versus lazy depth-first
search. Annals of Operations Research, 90:1–17, 1999.

[CQ12] José R Correa and Maurice Queyranne. Efficiency of equilibria in re-
stricted uniform machine scheduling with total weighted completion
time as social cost. Naval Research Logistics (NRL), 59(5):384–395,
2012.

[CV07] Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case
equilibria. ACM Transactions On Algorithms (TALG), 3(1):1–17,
2007.

[Cyg13] Marek Cygan. Improved approximation for 3-dimensional matching
via bounded pathwidth local search. In 54th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 509–518.
IEEE Computer Society, 2013.

[DCD95] Pallab Dasgupta, P. P. Chakrabarti, and S. C. DeSarkar. A near op-
timal algorithm for the extended cow-path problem in the presence
of relative errors. In Foundations of Software Technology and Theo-
retical Computer Science, pages 22–36. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1995.

[DF92] Rodney G Downey and Michael R Fellows. Fixed-parameter
tractability and completeness. In Complexity Theory: Current Re-
search, pages 191–225, 1992.

[DF12] Rodney G Downey and Michael Ralph Fellows. Parameterized com-
plexity. Springer Science & Business Media, 2012.

[DFKP04] Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej
Pelc. Tree exploration with little memory. Journal of Algorithms,
51(1):38–63, April 2004.

[DJ12] Nikhil R Devanur and Kamal Jain. Online matching with concave
returns. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, pages 137–144, 2012.

174 BIBLIOGRAPHY

[DJK13] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Random-
ized primal-dual analysis of ranking for online bipartite matching.
In Proceedings of the twenty-fourth annual ACM-SIAM symposium
on Discrete algorithms, pages 101–107. SIAM, 2013.

[Doe19] Benjamin Doerr. Probabilistic tools for the analysis of randomized
optimization heuristics. In Benjamin Doerr and Frank Neumann,
editors, Theory of evolutionary computation: Recent developments
in discrete optimization, pages 1–87. 2019.

[DS05] Irit Dinur and Samuel Safra. On the hardness of approximating
minimum vertex cover. Annals of mathematics, pages 439–485, 2005.

[EFFS21] Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An
economics-based analysis of ranking for online bipartite matching.
In Symposium on Simplicity in Algorithms (SOSA), pages 107–110.
SIAM, 2021.

[EOJ12] Mourad El Ouali and Gerold Jäger. The b-matching problem in
hypergraphs: Hardness and approximability. In International Con-
ference on Combinatorial Optimization and Applications, pages 200–
211. Springer, 2012.

[FHTZ22] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadi-
moghaddam. Edge-weighted online bipartite matching. Journal of
the ACM, 69(6):1–35, 2022.

[FJWY22] Samuel Fiorini, Gwenael Joret, Stefan Weltge, and Yelena Yuditsky.
Integer programs with bounded subdeterminants and two nonzeros
per row. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 13–24. IEEE, 2022.

[FOV08] Babak Farzad, Neil Olver, and Adrian Vetta. A priority-based model
of routing. Chicago Journal of Theoretical Computer Science, 1,
2008.

[Fre93] G.N. Frederickson. An optimal algorithm for selection in a min-heap.
Information and Computation, 104(2):197–214, June 1993.

[FS10] Lisa Fleischer and Zoya Svitkina. Preference-constrained oriented
matching. In 2010 Proceedings of the Seventh Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pages 66–73. SIAM,
2010.

[GGKS19] Naveen Garg, Anupam Gupta, Amit Kumar, and Sahil Singla.
Non-clairvoyant precedence constrained scheduling. arXiv preprint
arXiv:1905.02133, 2019.

BIBLIOGRAPHY 175

[GK07] Naveen Garg and Amit Kumar. Minimizing average flow-time: Up-
per and lower bounds. In 48th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’07), pages 603–613. IEEE, 2007.

[GKŁ97] Ervin Györi, Alexandr V Kostochka, and Tomasz Łuczak. Graphs
without short odd cycles are nearly bipartite. Discrete Mathematics,
163(1-3):279–284, 1997.

[GKM+19] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola
Svensson, and David Wajc. Online matching with general arrivals.
In 60th IEEE Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 26–37. IEEE, 2019.

[GKP12] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. On-
line primal-dual for non-linear optimization with applications to
speed scaling. In International Workshop on Approximation and
Online Algorithms, pages 173–186. Springer, 2012.

[Gle22] Ambros M Gleixner. personal communication, November 2022.

[GLLK79] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra,
and AHG Rinnooy Kan. Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. In Annals of discrete
mathematics, volume 5, pages 287–326. Elsevier, 1979.

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in ran-
dom input models with applications to adwords. In SODA, volume 8,
pages 982–991, 2008.

[GMUX20] Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie.
Greed works—online algorithms for unrelated machine stochastic
scheduling. Mathematics of operations research, 45(2):497–516,
2020.

[GX16] Wayne Goddard and Honghai Xu. Fractional, circular, and defec-
tive coloring of series-parallel graphs. Journal of Graph Theory,
81(2):146–153, 2016.

[Hal02] Eran Halperin. Improved approximation algorithms for the vertex
cover problem in graphs and hypergraphs. SIAM Journal on Com-
puting, 31(5):1608–1623, 2002.

[Har24] David G Harris. Dependent rounding with strong negative-
correlation, and scheduling on unrelated machines to minimize com-
pletion time. In Proceedings of the 2024 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2275–2304. SIAM,
2024.

176 BIBLIOGRAPHY

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of
the ACM (JACM), 48(4):798–859, 2001.

[HKT+20] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao
Zhang, and Xue Zhu. Fully online matching. J. ACM, 67(3):17:1–
17:25, 2020.

[Hoc82] Dorit S Hochbaum. Approximation algorithms for the set covering
and vertex cover problems. SIAM Journal on computing, 11(3):555–
556, 1982.

[Hoc83] Dorit S Hochbaum. Efficient bounds for the stable set, vertex cover
and set packing problems. Discrete Applied Mathematics, 6(3):243–
254, 1983.

[Hor73] WA Horn. Minimizing average flow time with parallel machines.
Operations research, 21(3):846–847, 1973.

[HSS06] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity
of approximating k-set packing. Computational complexity, 15:20–
39, 2006.

[HSW98] Han Hoogeveen, Petra Schuurman, and Gerhard J Woeginger. Non-
approximability results for scheduling problems with minsum crite-
ria. In International conference on integer programming and com-
binatorial optimization, pages 353–366. Springer, 1998.

[HTWZ19] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang.
Online vertex-weighted bipartite matching: Beating 1-1/e with ran-
dom arrivals. ACM Transactions on Algorithms (TALG), 15(3):1–15,
2019.

[HTWZ20] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang.
Fully online matching II: beating ranking and water-filling. In
61st IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 1380–1391. IEEE, 2020.

[HU11] Ruben Hoeksma and Marc Uetz. The price of anarchy for minsum
related machine scheduling. In International workshop on approxi-
mation and online algorithms, pages 261–273. Springer, 2011.

[HZZ20] Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. Adwords in a
panorama. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 1416–1426. IEEE, 2020.

BIBLIOGRAPHY 177

[IKM17] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Com-
petitive algorithms from competitive equilibria: Non-clairvoyant
scheduling under polyhedral constraints. Journal of the ACM
(JACM), 65(1):1–33, 2017.

[IKMP14] Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk
Pruhs. Selfishmigrate: A scalable algorithm for non-clairvoyantly
scheduling heterogeneous processors. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pages 531–540.
IEEE, 2014.

[IL23] Sungjin Im and Shi Li. Improved approximations for unrelated
machine scheduling. In Proceedings of the 2023 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2917–
2946. SIAM, 2023.

[ILMS09] Nicole Immorlica, Li Erran Li, Vahab S Mirrokni, and Andreas S
Schulz. Coordination mechanisms for selfish scheduling. Theoretical
computer science, 410(17):1589–1598, 2009.

[IM11] Sungjin Im and Benjamin Moseley. An online scalable algorithm for
minimizing lk-norms of weighted flow time on unrelated machines. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 95–108. SIAM, 2011.

[IS20] Sungjin Im and Maryam Shadloo. Weighted completion time mini-
mization for unrelated machines via iterative fair contention resolu-
tion*. In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 2790–2809. SIAM, 2020.

[Jäg23] Sven Jäger. An improved greedy algorithm for stochastic online
scheduling on unrelated machines. Discrete Optimization, 47:100753,
2023.

[JLM25] Sven Jäger, Alexander Lindermayr, and Nicole Megow. The power
of proportional fairness for non-clairvoyant scheduling under poly-
hedral constraints. In Proceedings of the 2025 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 3901–
3930. SIAM, 2025.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In
Complexity of computer computations, pages 85–103. Springer, 1972.

[Kar05] George Karakostas. A better approximation ratio for the vertex
cover problem. In International Colloquium on Automata, Lan-
guages, and Programming, pages 1043–1050. Springer, 2005.

178 BIBLIOGRAPHY

[Kas25] Danish Kashaev. Selfish, local and online scheduling via vector fit-
ting. arXiv preprint arXiv:2505.10082, 2025.

[KK86] Tsuyoshi Kawaguchi and Seiki Kyan. Worst case bound of an lrf
schedule for the mean weighted flow-time problem. SIAM Journal
on Computing, 15(4):1119–1129, 1986.

[KM14] Janardhan Kulkarni and Vahab Mirrokni. Robust price of anarchy
bounds via lp and fenchel duality. In Proceedings of the twenty-
sixth annual ACM-SIAM symposium on Discrete algorithms, pages
1030–1049. SIAM, 2014.

[KMPS09] VS Anil Kumar, Madhav V Marathe, Srinivasan Parthasarathy, and
Aravind Srinivasan. A unified approach to scheduling on unrelated
parallel machines. Journal of the ACM (JACM), 56(5):1–31, 2009.

[KMT11] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online
bipartite matching with unknown distributions. In Proceedings of
the forty-third annual ACM symposium on Theory of computing,
pages 587–596, 2011.

[Kol13] Konstantinos Kollias. Nonpreemptive coordination mechanisms for
identical machines. Theory of Computing Systems, 53:424–440, 2013.

[KP94] Bala Kalyanasundaram and Kirk R. Pruhs. Constructing compet-
itive tours from local information. Theoretical Computer Science,
130(1):125–138, August 1994.

[KP99] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilib-
ria. In Annual symposium on theoretical aspects of computer science,
pages 404–413. Springer, 1999.

[KP00a] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as
clairvoyance. Journal of the ACM (JACM), 47(4):617–643, 2000.

[KP00b] Bala Kalyanasundaram and Kirk R Pruhs. An optimal determinis-
tic algorithm for online b-matching. Theoretical Computer Science,
233(1-2):319–325, 2000.

[KP09] Nitish Korula and Martin Pál. Algorithms for secretary problems
on graphs and hypergraphs. In Automata, Languages and Program-
ming, 36th Internatilonal Colloquium (ICALP), Proceedings, Part
II, volume 5556 of Lecture Notes in Computer Science, pages 508–
520. Springer, 2009.

BIBLIOGRAPHY 179

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to ap-
proximate to within 2- ε. Journal of Computer and System Sciences,
74(3):335–349, 2008.

[KRTV13] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold
Vöcking. An optimal online algorithm for weighted bipartite match-
ing and extensions to combinatorial auctions. In European sympo-
sium on algorithms, pages 589–600. Springer, 2013.

[KS23] Danish Kashaev and Guido Schäfer. Round and bipartize for
vertex cover approximation. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2023), volume 275. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023.

[KST17] Christos Kalaitzis, Ola Svensson, and Jakub Tarnawski. Unrelated
machine scheduling of jobs with uniform smith ratios. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2654–2669. SIAM, 2017.

[KSW86] Richard M Karp, Michael E Saks, and Avi Wigderson. On a
search problem related to branch-and-bound procedures. In 27th
Annual Symposium on Foundations of Computer Science, pages 19–
28, Washington, DC, 1986. IEEE Computer Society.

[KTW96] Hans Kellerer, Thomas Tautenhahn, and Gerhard J Woeginger. Ap-
proximability and nonapproximability results for minimizing total
flow time on a single machine. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of Computing, pages 418–426,
1996.

[Kuh55] Harold WKuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[KVV90] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An
optimal algorithm for on-line bipartite matching. In Proceedings of
the twenty-second annual ACM symposium on Theory of computing,
pages 352–358, 1990.

[KW14] Stefan Kratsch and Magnus Wahlström. Compression via matroids:
a randomized polynomial kernel for odd cycle transversal. ACM
Transactions on Algorithms (TALG), 10(4):1–15, 2014.

[Las01] Jean B Lasserre. Global optimization with polynomials and the
problem of moments. SIAM Journal on optimization, 11(3):796–
817, 2001.

180 BIBLIOGRAPHY

[Li24] Shi Li. Approximating unrelated machine weighted completion
time using iterative rounding and computer assisted proofs. arXiv
preprint arXiv:2404.04773, 2024.

[LKB77] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Com-
plexity of machine scheduling problems. In Annals of discrete math-
ematics, volume 1, pages 343–362. Elsevier, 1977.

[LLMV20] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei
Vassilvitskii. Online scheduling via learned weights. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1859–1877. SIAM, 2020.

[LM22] Alexander Lindermayr and Nicole Megow. Permutation predictions
for non-clairvoyant scheduling. In Proceedings of the 34th ACM
Symposium on Parallelism in Algorithms and Architectures, pages
357–368, 2022.

[LRS11] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative meth-
ods in combinatorial optimization, volume 46. Cambridge University
Press, 2011.

[LS99] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of
search strategies for mixed integer programming. INFORMS Journal
on Computing, (2):173–187, May 1999.

[LV21] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching
with machine learned advice. Journal of the ACM (JACM), 68(4):1–
25, 2021.

[LZ17] Andrea Lodi and Giulia Zarpellon. On learning and branching: A
survey. TOP, 25(2):207–236, July 2017.

[Meh13] Aranyak Mehta. Online matching and ad allocation. Found. Trends
Theor. Comput. Sci., 8(4):265–368, 2013.

[MJSS16] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Ed-
ward C. Sewell. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete Optimiza-
tion, 19:79–102, February 2016.

[MMS12] Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. Online graph
exploration: New results on old and new algorithms. Theoretical
Computer Science, 463:62–72, December 2012.

[MP80] J.I. Munro and M.S. Paterson. Selection and sorting with limited
storage. Theoretical Computer Science, 12(3):315–323, 1980.

BIBLIOGRAPHY 181

[MRST20] Yuhang Ma, Paat Rusmevichientong, Mika Sumida, and Huseyin
Topaloglu. An approximation algorithm for network revenue man-
agement under nonstationary arrivals. Oper. Res., 68(3):834–855,
2020.

[MS85] Burkhard Monien and Ewald Speckenmeyer. Ramsey numbers and
an approximation algorithm for the vertex cover problem. Acta In-
formatica, 22(1):115–123, 1985.

[MSV24] Javier Marinkovic, José A. Soto, and Victor Verdugo. Online com-
binatorial assignment in independence systems. In Integer Program-
ming and Combinatorial Optimization - 25th International Confer-
ence (IPCO), volume 14679 of Lecture Notes in Computer Science,
pages 294–308. Springer, 2024.

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani.
Adwords and generalized online matching. Journal of the ACM
(JACM), 54(5):22–es, 2007.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
An Introduction to Randomized Algorithms and Probabilistic Anal-
ysis. Cambridge University Press, New York, 2005.

[MY11] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with
random arrivals: an approach based on strongly factor-revealing lps.
In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 597–606, 2011.

[Nas24] John F Nash. Non-cooperative games. In The Foundations of Price
Theory Vol 4, pages 329–340. Routledge, 2024.

[NR99] Rolf Niedermeier and Peter Rossmanith. Upper bounds for vertex
cover further improved. In Annual Symposium on Theoretical As-
pects of Computer Science, pages 561–570. Springer, 1999.

[NR03] Rolf Niedermeier and Peter Rossmanith. On efficient fixed-
parameter algorithms for weighted vertex cover. Journal of Algo-
rithms, 47(2):63–77, 2003.

[NT75] George L Nemhauser and Leslie Earl Trotter. Vertex packings:
structural properties and algorithms. Mathematical Programming,
8(1):232–248, 1975.

[PPSV15] Andrea Pietracaprina, Geppino Pucci, Francesco Silvestri, and Fabio
Vandin. Space-efficient parallel algorithms for combinatorial search
problems. Journal of Parallel and Distributed Computing, 76:58–65,
2015.

182 BIBLIOGRAPHY

[PSK18] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving on-
line algorithms via ml predictions. Advances in Neural Information
Processing Systems, 31, 2018.

[PSST22] Marco Pavone, Amin Saberi, Maximilian Schiffer, and Matt Wu
Tsao. Technical note - online hypergraph matching with delays.
Oper. Res., 70(4):2194–2212, 2022.

[PY88] Christos Papadimitriou and Mihalis Yannakakis. Optimization, ap-
proximation, and complexity classes. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 229–234,
1988.

[Rou15] Tim Roughgarden. Intrinsic robustness of the price of anarchy. Jour-
nal of the ACM (JACM), 62(5):1–42, 2015.

[Rou21] Tim Roughgarden. Beyond the worst-case analysis of algorithms.
Cambridge University Press, 2021.

[RS13] Mona Rahn and Guido Schäfer. Bounding the inefficiency of altruism
through social contribution games. In International Conference on
Web and Internet Economics, pages 391–404. Springer, 2013.

[RSV04] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle
transversals. Operations Research Letters, 32(4):299–301, 2004.

[RT87] Prabhakar Raghavan and Clark D Tompson. Randomized rounding:
a technique for provably good algorithms and algorithmic proofs.
Combinatorica, 7(4):365–374, 1987.

[Sch98] Alexander Schrijver. Theory of linear and integer programming.
John Wiley & Sons, 1998.

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and
efficiency, volume 24. Springer, 2003.

[Sch11] Uwe Schwiegelshohn. An alternative proof of the kawaguchi–kyan
bound for the largest-ratio-first rule. Operations Research Letters,
39(4):255–259, 2011.

[SF99] Ulrike Stege and Michael Ralph Fellows. An improved fixed
parameter tractable algorithm for vertex cover. Technical re-
port/Departement Informatik, ETH Zürich, 318, 1999.

[Sin19] Mohit Singh. Integrality gap of the vertex cover linear programming
relaxation. Operations Research Letters, 47(4):288–290, 2019.

BIBLIOGRAPHY 183

[Sku01] Martin Skutella. Convex quadratic and semidefinite programming
relaxations in scheduling. Journal of the ACM (JACM), 48(2):206–
242, 2001.

[Smi56] Wayne Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1-2):59–66, 1956.

[SS93] Leena M. Suhl and Uwe H. Suhl. A fast LU update for linear pro-
gramming. Annals of Operations Research, 43(1):33–47, January
1993.

[SS95] Anand Srivastav and Peter Stangier. Weighted fractional and in-
tegral k-matching in hypergraphs. Discrete applied mathematics,
57(2-3):255–269, 1995.

[SS99] Jay Sethuraman and Mark S Squillante. Optimal scheduling of mul-
ticlass parallel machines. In Proceedings of the tenth annual ACM-
SIAM symposium on Discrete algorithms, pages 963–964, 1999.

[ST93] David B Shmoys and Éva Tardos. An approximation algorithm for
the generalized assignment problem. Mathematical programming,
62(1):461–474, 1993.

[STZ04] Subhash Suri, Csaba D Tóth, and Yunhong Zhou. Selfish load bal-
ancing and atomic congestion games. In Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and architec-
tures, pages 188–195, 2004.

[SU11] Edward R Scheinerman and Daniel H Ullman. Fractional graph
theory: a rational approach to the theory of graphs. Courier Corpo-
ration, 2011.

[SW00] Martin Skutella and Gerhard J Woeginger. A ptas for minimizing
the total weighted completion time on identical parallel machines.
Mathematics of Operations Research, 25(1):63–75, 2000.

[Tho06] Thomas Kamphans. Models and Algorithms for Online Exploration
and Search. PhD thesis, Rheinische Friedrich-Wilhelms-Universität
Bonn, 2006.

[TU24] Thorben Tröbst and Rajan Udwani. Almost tight bounds for online
hypergraph matching. Oper. Res. Lett., 55:107143, 2024.

[WW15] Yajun Wang and Sam Chiu-wai Wong. Two-sided online bipartite
matching and vertex cover: Beating the greedy algorithm. In Au-
tomata, Languages, and Programming - 42nd International Collo-

184 BIBLIOGRAPHY

quium (ICALP), Proceedings, Part I, volume 9134 of Lecture Notes
in Computer Science, pages 1070–1081. Springer, 2015.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a uni-
fied measure of complexity. In 18th Annual Symposium on Founda-
tions of Computer Science (sfcs 1977), pages 222–227. IEEE Com-
puter Society, 1977.

Samenvatting

De vragen die in dit proefschrift worden bestudeerd kunnen globaal als volgt wor-
den geformuleerd: gegeven een NP-moeilijk combinatorisch optimalisatieprob-
leem en een suboptimale oplossing voor dit probleem – bijvoorbeeld verkregen
via een efficiënt benaderingsalgoritme – wat is de kwaliteit van deze suboptimale
oplossing? De kwaliteit wordt gemeten door de slechtst mogelijke verhouding, te
berekenen tussen de kosten van de suboptimale oplossing en die van de optimale.

We bestuderen deze vraag in drie verschillende, maar verwante contexten. De
beschouwde suboptimale oplossing kan afkomstig zijn van een standaard benader-
ingsalgoritme dat vooraf beschikt over alle parameters van het probleem. In dit
geval beschouwen we de approximation ratio als maatstaf. In een online context
worden de parameters na verloop van tijd onthult, en moet een online algoritme
telkens bij elke onthulling een onomkeerbare beslissing nemen. In deze context
is de relevante maatstaf de competitive ratio. Ten slotte kan de oplossing een
stabiele uitkomst zijn die voortkomt uit de strategische interacties van spelers
(bijvoorbeeld een Nash evenwicht), waarvoor de relevante maatstaf de price of
anarchy is.

In dit proefschrift beschouwen we drie belangrijke klassen van combinatorische
optimalisatieproblemen – covering, matching en scheduling – in de reeds geintro-
duceerde offline, online en speltheoretische modellen. Een overkoepelend thema
in al onze resultaten is het gebruik van convex programmeringsrelaxaties, zoals
lineaire programmering (LP) en semidefiniete programmering (SDP). We maken
vaak gebruik van de kracht van dualiteit in convexe programmering om zorgvuldig
gekozen duale oplossingen te construeren die we gebruiken in onze analyses en
helpen bij het ontwerpen van onze algoritmen.

In Hoofdstuk 3 kijken we naar het klassieke vertex cover probleem en anal-
yseren een benaderingsalgoritme in een “beyond the worst-case” model. Een
belangrijke parameter is de oneven girth, die gedefinieerd is als de lengte van de
kortste oneven cyclus in de graaf en die we gebruiken om te bepalen hoeveel de
graaf van een bipartiete graaf verschilt. Met de ontwikkelde technieken bewijzen
we een best mogelijke waarde van de integrality gap van de standaard lineaire
programmeringsrelaxatie voor driekleurige grafen. Een interessante vraag is of
soortgelijke technieken kunnen worden toegepast op andere combinatorische opti-
malisatieproblemen in verschillende beyond worst-case modellen. We geloven dat

185

186 Samenvatting

zulke modellen een ander perspectief bieden en nieuwe inzichten kunnen geven,
zelfs voor klassieke, goed bestudeerde problemen.

In Hoofdstuk 4 bestuderen we een generalisatie van het online bipartite match-
ing probleem en beschouwen we hypergrafen. We concentreren ons op het driedi-
mensionale probleem waarbij knopen na verloop van tijd bekend worden gemaakt,
en bewijzen dat de best mogelijke competitieve ratio (e − 1)/(e + 1) is voor het
fractionele probleem. Een interessante open vraag is nog steeds of de grens van
1/3 voor het integrale probleem, die eenvoudig wordt bereikt door een naïef algo-
ritme, verbeterd kan worden. We geloven dat dit probleem aanzienlijk moeilijker
is dan voor bipartiete grafen, en dat geavanceerde correlated/dependent rounding
technieken nodig zullen zijn voor verdere vooruitgang.

In Hoofdstukken 5 en 6 ontwikkelen we een dual fitting framework gebaseerd
op een enkel semidefinite programma waarmee we nauwkeurig kunnen analyseren
de price of anarchy voor spellen, de approximation ratio van lokale zoekalgo-
ritmes en de competitive ratio van online algoritmes voor verschillende machine
scheduling problemen. Met deze techniek kunnen we op eenvoudige en uniforme
wijze bewijzen geven voor veel belangrijke resultaten. Deze omvatten onder an-
dere de analyse van de price of anarchy voor het unrelated machine scheduling
probleem R||

∑
wjCj, de best bekende deterministische en gerandomiseerde coör-

dinatiemechanismen voor dit probleem, evenals het best bekende combinatorische
offline benaderingsalgoritme. In de speltheoretische context herleiden we ook de
price of anarchy van gewogen affiene congestiespellen en de pure price of anarchy
van scheduling op parallelle machines. In de online setting herleiden we de best
bekende deterministische en gerandomiseerde algoritmen voor het online load
balancing probleem op unrelated machines en presenteren we een best mogelijk
fractioneel algoritme. Het kan interessant zijn om deze techniek toe te passen
op andere allocatie problemen waarvan de optimale oplossing gemodelleerd kan
worden als een binair kwadratisch programma.

In Hoofdstuk 7 bestuderen we het explorable heap selection probleem. Het
doel is om de nde kleinste waarde te vinden in een binaire heap, en de complexiteit
van het algoritme wordt gemeten aan de hand van de totale afstand die in de boom
wordt afgelegd. Wij presenteren een nieuw gerandomiseerd algoritme dat de best
bekende looptijd verbetert, zij het ten koste van een iets groter geheugengebruik.

Curriculum Vitae

Danish Kashaev was born on the 3rd of April 1997 in Helsinki, Finland. He is
of tatar origin and grew up in Geneva, Switzerland since 2002. He obtained his
bachelor’s degree in mathematics at the University of Geneva in 2018, while hav-
ing spent the third academic year at the University of California, Santa Barbara
as an exchange student. He then started a master’s degree in mathematics at
ETH Zurich, which he completed in 2021. A few months after the completion
of his master’s degree, he joined the Networks and Optimization group at CWI
Amsterdam as a doctoral student. His two favourite hobbies since childhood are
playing tennis and the piano.

187

Approximation via Duality
in Offline, Online and
Strategic Settings

Danish Kashaev

A combinatorial optimization problem involves finding a solution which minimizes
or maximizes an objective function among a very large set of potential feasible
solutions. Many interesting optimization problems are known to be NP-hard, meaning
that it is unlikely that an efficient (or polynomial-time) algorithm exists to find an
optimal solution for such problems. Naturally, it becomes interesting to study efficient
algorithms which find suboptimal solutions, whose quality can nevertheless still be
proven to be close to the optimal one.

How close can the cost of a given suboptimal solution get to the best possible one?
This thesis studies this question in different settings, where such a solution is either
the output of a classical approximation algorithm, the output of an online algorithm
operating in a more restrictive computational model, or a Nash equilibrium arising in
a game-theoretic context. It explores both upper and lower bounds on this question
for three important classes of combinatorial optimization problems and introduces
new techniques for proving tight results using tools such as linear programming and
semidefinite programming duality.

Danish Kashaev (1997) received a Bachelor’s degree in Mathematics from the University
of Geneva in 2018 and a Master’s degree in Mathematics from ETH Zurich in 2021. The
research for this PhD thesis was conducted at the Centrum Wiskunde & Informatica
(CWI) in Amsterdam between 2021 and 2025.

ISBN: 978-94-6536-004-1

A
pproxim

ation
via

D
uality

in
O
ff
line,O

nline
and

Strategic
Sett

ings
D
anish

K
ashaev

	Acknowledgments
	Abstract
	Introduction
	Preliminaries
	Combinatorial optimization problems
	Algorithms and efficiency
	Complexity classes P and NP
	NP-Hard problems
	Integer programming formulations

	Approximation algorithms
	Linear programming
	Duality
	Extreme points
	Relax and round paradigm
	Integrality of polyhedra

	Semidefinite programming
	Relaxing quadratic integer programs

	Online algorithms
	Example: greedy algorithm
	Fractional and randomized algorithms

	Algorithmic game theory and price of anarchy
	Strategic games and Nash equilibria
	Price of anarchy
	Example: load balancing

	Round and bipartize for vertex cover approximation
	Introduction
	Outline
	Preliminaries
	Weight space
	Analysis of the algorithm
	Stable set to bipartite
	Arbitrary set to bipartite

	Algorithmic applications
	Integrality gap and fractional chromatic number

	Online matching on 3-uniform hypergraphs
	Introduction
	Online hypergraph matching
	Our contributions
	Related work
	Chapter organization

	Preliminaries
	Optimal fractional algorithm for 3-uniform hypergraphs
	Tight upper bound for 3-uniform hypergraphs
	Overview of the construction
	Assumptions on the algorithm
	Constructing the matching M(t)
	Bound for the last phase T
	Connecting the matching M(t) to the online nodes
	Bound for the first T-1 phases
	Putting everything together

	Integral algorithm for bounded degree hypergraphs
	Justification of assumptions in Section 4.4.2
	Assumption 1: Symmetry
	Assumption 2: There is an optimal ε-threshold respecting algorithm

	Integral upper bound for k-uniform hypergraphs
	Rounding algorithm for online hypergraph b-matching

	Price of anarchy for scheduling games via vector fitting
	Introduction
	Preliminaries
	The semidefinite programming relaxation
	The primal-dual pair
	High-level view of the approach and intuition of the dual
	Different inner product spaces

	Congestion games with coordination mechanisms
	Smith's Rule
	The Proportional Sharing policy
	The Rand policy

	Analyzing local search algorithms for scheduling
	A simple and natural local search algorithm
	An improved local search algorithm

	Weighted affine congestion games
	Recovering the Kawaguchi-Kyan bound for P || wj Cj
	Robust price of anarchy
	Computation of the dual SDPs
	Taking the dual
	Specializing it to the different games considered

	Online load balancing via vector fitting
	Introduction
	Our contributions
	Further related work
	Outline of the chapter

	Preliminaries
	Problems studied
	Hypergraph generalizations

	Online load balancing on unrelated machines
	The greedy algorithm
	An improved randomized algorithm
	An optimal fractional algorithm
	A lower bound for fractional algorithms
	A lower bound for independent rounding algorithms

	Online scheduling under Smith's Rule
	The greedy algorithm
	An alternative randomized algorithm
	A matching lower bound

	A faster algorithm for explorable heap selection
	Introduction
	The explorable heap selection problem
	A new algorithm
	Subroutines
	The main algorithm
	Proof of correctness
	Space complexity analysis
	Running time analysis

	Conclusion
	Samenvatting
	Curriculum Vitae

