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Selfish, Local and Online Scheduling via Vector Fitting *

Danish Kashaev f

Abstract. We provide a dual fitting technique on a semidefinite program yielding simple proofs of tight
bounds for the robust price of anarchy of several congestion and scheduling games under the sum of weighted
completion times objective. The same approach also allows to bound the approximation ratio of local search
algorithms and the competitive ratio of online algorithms for the scheduling problem R|| Y w;C;. All of our results
are obtained through a simple unified dual fitting argument on the same semidefinite programming relaxation,
which can essentially be obtained through the first round of the Lasserre/Sum of Squares hierarchy.

As our main application, we show that the known coordination ratio bounds of respectively 4, (3 + v/5)/2 ~
2.618, and 32/15 ~ 2.133 for the scheduling game R||>_ w;C; under the coordination mechanisms Smith’s Rule,
Proportional Sharing and Rand (STOC 2011) can be extended to congestion games and obtained through this
approach. For the natural restriction where the weight of each player is proportional to its processing time on
every resource, we show that the last bound can be improved from 2.133 to 2. This improvement can also be
made for general instances when considering the price of anarchy of the game, rather than the coordination ratio.
As a further application of this technique in a game theoretic setting, we show that it recovers the tight bound
of (3 +1/5)/2 for the price of anarchy of weighted affine congestion games and the Kawaguchi-Kyan bound of
(1 ++/2)/2 for the pure price of anarchy of P|| > w;C;.

Moreover, we show that this approach recovers the known tight approximation ratio of (3 + v/5)/2 for a
natural local search algorithm for R||)" w;C;, as well as the best currently known combinatorial approximation
algorithm for this problem achieving an approximation ratio of (5++/5)/4 +¢ ~ 1.809 + ¢, and provide an almost
matching lower bound.

Finally, we show that this technique also extends to online algorithms by analyzing a randomized algorithm for
R|| > w;C; achieving a competitive ratio of 4 in an online setting where the arrival order of the jobs is adversarial
and the ordering on each machine is optimal.

1 Introduction. A standard way of quantifying inefficiency of selfish behaviour in algorithmic game theory
is the price of anarchy, introduced in [49]. It is defined as the ratio between the cost of a worst-case Nash
equilibrium and the cost of a social optimum. This definition can be used to understand inefficiency of pure or
mixed Nash equilibria, and can also be extended to more general notions, such as correlated or coarse-correlated
equilibria.

Developing tools to bound the price of anarchy is a central question, and several approaches have been
proposed in the literature to tackle this problem. One technique that has been very successful for a variety of
games is the smoothness framework, introduced in [55]. One advantage of this approach is that it automatically
bounds the price of anarchy for all the different notions of equilibria mentioned above, yielding bounds on the
robust price of anarchy of a game [55].

Another possible avenue is to use convex relaxations to help bound the price of anarchy, as done in [50]. The
high-level approach is to formulate a convex relaxation of the underlying optimization problem of a given game,
and to construct a feasible solution to the dual of that relaxation, whose cost can then be compared to the cost
of an equilibrium. Bounding the ratio between the cost of the equilibrium and of the feasible dual solution then
yields an upper bound on the price of anarchy by weak duality.

In this paper, we build on this approach and show that a single convex semidefinite programming relaxation
can be used to obtain tight (robust) price of anarchy bounds for several different congestion and scheduling
games. This relaxation can in fact be obtained using the first round of the Lasserre hierarchy [51], and the proofs
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bounding the price of anarchy through the dual of that relaxation are surprisingly simple and essentially follow
the same template for all the games considered. In addition to bounding the price of anarchy, it turns out that
the same approach also allows to bound the approximation ratio of local search algorithms and the competitive
ratio of online algorithms for machine scheduling.

As a main illustration of this technique, we consider the following model of congestion games. We are given
a set of players IV and a set of resources E. The strategy set for each player j € N is a collection of subsets of
resources and is denoted by S; C 2¥. Each player has a resource-dependent processing time p.; > 0 and a weight
w; > 0. Once each player chooses a strategy, if a given resource e € F is shared by several players, then e uses a
coordination mechanism, defined as a local policy for each resource, in order to process the players using it. One
natural example of such a coordination mechanism is to order the players by increasing Smith ratios, defined as
the ratio between the processing time on a resource and the weight of a given player [60].

This model is a generalization of the unrelated machine scheduling game R||)" w;C;, where each job needs
to selfishly pick a machine to minimize its own weighted completion time, while knowing that each machine uses
a coordination mechanism to process the jobs assigned to it. In our model, the set of resources E is the set of
machines, and the strategy set of each player is a subset of the machines. An important special case of our model,
which generalizes R|| Y w;C}, is the following selfish routing game. We are given a directed graph G = (V, E)
and a set of players V. Each player j wants to pick a path between a source node s; € V and a sink node t; € V.
The strategy set S; for player j € N is the set of all paths between s; and t;. A parallel link network where each
player has the same source and sink node exactly corresponds to the R|| ) w;C; scheduling problem.

The work of [25] considers three different coordination mechanisms for R|| Y w;C;. Their main results are
that Smith’s Rule leads to a tight price of anarchy of 4, and this can be improved to (3 + v/5)/2 ~ 2.618
and 32/15 = 2.133 by respectively considering a preemptive mechanism called Proportional Sharing, as well as
a randomized one named Rand. The latter two results in fact bound the coordination ratio of the coordination
mechanism, meaning that the cost of a worst-case Nash equilibrium is compared to the cost of an optimal solution
under Smith’s Rule, since this is always how an optimal solution processes the jobs once an assignment is given
[60]. The proof technique they use to obtain their results is based on the smoothness framework [55]. In order to
exploit the structure of the problem, they map strategy vectors into a carefully chosen inner product space, where
the social cost is closely related to a squared norm in that space. Generalizing their results to selfish routing
games was mentioned as an open question.

The inner product space structure developed in [25] turns out to have a natural connection to semidefinite
programming, since the latter can be seen as optimizing over inner products of vectors. In this work, we study
this connection and show that it leads to simple dual fitting proofs that allow to tightly bound the price of
anarchy for several different congestion and scheduling games in a unified way. Moreover, it also allows to bound
the approximation ratio of local search algorithms, as well as the competitive ratio of online algorithms for such
problems. We hope that this new approach might turn out to be useful in other contexts as well.

Our contributions. Our main contribution is a unified dual fitting technique on a single semidefinite
program to bound the price of anarchy of games, the approximation ratio of local search algorithms, and the
competitive ratio of online algorithms for problems whose underlying optimization problem can be cast as a
binary quadratic program. We illustrate the applicability of this approach for different scheduling and congestion
problems. The semidefinite program used can be obtained by applying one round of the Lasserre/Sum of Squares
hierarchy to the exact binary quadratic program.

We show that the three coordination ratio bounds of respectively 4, (3 + v/5)/2 ~ 2.618 and 32/15 ~ 2.133
for the policies Smith’s Rule, Proportional Sharing and Rand can be obtained through our approach in the above
congestion game model. This yields alternative and simple proofs of these results in a more general model, which
avoid the use of minimum norm distortion inequalities, as done in [25]. We moreover show that the last bound can
be improved from 2.133 to 2 for the natural special case where the processing times are proportional to the weight
of a given player on every feasible resource. This means that every resource has a real-value A, > 0, interpreted
as the processing power, and the processing time of every player satisfies p.; € {Acw;, 00} for every e € E,j € N.
The importance of this model in a scheduling setting has been mentioned in [44]. This improvement from 2.133
to 2 can also be obtained for general instances if one considers the price of anarchy of the game, rather than
the coordination ratio. This means that the cost of a worst-case Nash equilibrium is now compared against an
optimal solution using the Rand policy, rather than Smith’s Rule.

Moreover, we show that the same approach (on the same relaxation) can be used to bound the approximation
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ratio of local search algorithms for machine scheduling under the sum of weighted completion times objective. We
first consider a natural algorithm whose local optima simply ensure that no job can decrease the global objective
function by switching to a different machine. Observe the analogy with Nash equilibria, which ensure that no job
can improve its own objective (or completion time) by switching machines. We recover the approximation ratios
of (3++/5)/2 =~ 2.618 and (5+ /5)/4 ~ 1.809 for the scheduling problems R|| > w;C; and P|M;| > w;C; given
in [27]. In addition, we also analyze an improved local search algorithm for R||>" w;C; attaining a bound of
(54+/5)/4+¢ ~ 1.8094¢ [18], and show an almost matching lower bound of 1.791. To the best of our knowledge,
this is the currently best known combinatorial approximation algorithm for this problem.

As a further illustration of the technique in a game theoretic setting, we apply it to two classical games and
show that it yields simple proofs of known tight price of anarchy bounds. We first show how to get the tight
bound of (3 + v/5)/2 for the price of anarchy of weighted affine congestion games. While a dual fitting proof
through a convex relaxation of this bound is already provided in [50], this result showcases the versatility of our
SDP relaxation and of the fitting strategy. In addition, a dual fitting proof of the Kawaguchi-Kyan bound of
(14 v/2)/2 for the pure price of anarchy of the scheduling game P|| 3" w;C; is also provided through the same
relaxation. We note that the dual fitting strategy used for this result uses a reduction to worst-case instances of
[56].

Finally, we also study the R|| Y w;C; scheduling problem in the following online setting. A set of jobs arrives
online in an adversarial order. Whenever a job arrives, an online algorithm needs to irrevocably assign it to a
machine, at which point the job enters the schedule on that machine in the correct position with respect to the
Smith ratio. This can equivalently be seen as the arrival order of the jobs as being online, but the ordering on
each machine as being an offline decision. It is known that the greedy algorithm achieves a competitive ratio of
4 [35]. We provide a different 4-competitive randomized algorithm for this model analyzed using our SDP dual
fitting approach, illustrating how the technique can be adapted to online algorithms.'

Further related work. There is a vast literature on exact or approximation algorithms for scheduling
problems under the (weighted) sum of completion times objective. We adopt the standard three-field notation
a|B|y of [33]. The problem with unweighted completion times R|| " C; is polynomial time solvable [39, 13]. For
P||>" C; on parallel machines, the shortest first policy gives an optimal solution which also turns out to be a Nash
equilibrium [26]. On the other hand, the weighted completion times objective is NP-hard even for P||) w;C;
[52]. A PTAS is known for P||Y>" w;C; [59], while R|| > w;C; is APX-hard [38]. Constant factor approximation
algorithms are however possible, with major results being a simple 3/2-approximation by rounding a convex
relaxation [58, 57] and the first algorithm breaking the 3/2-approximation using a semidefinite relaxation [9].
We note that the primal semidefinite program used in our paper is very similar to their relaxation. Building on
this, subsequent improvements have been made [42, 40, 36] with the current best (to the best of our knowledge)
approximation algorithm for this problem obtaining a ratio of 1.36 +¢ [53]. In the special case where Smith ratios
are uniform, an improved bound of (1 + v/2)/2 + € has been obtained [44].

Scheduling problems have also been vastly studied from a game theoretic perspective. For P|| Y  w;C}, the
pure price of anarchy of Smith’s Rule coincides with the approximation ratio of a simple greedy algorithm and
was shown to be (1 ++/2)/2 ~ 1.207 in a classic result of [46]. A much simpler proof of this result is shown in
[56]. Interestingly, the mixed price of anarchy of this game is higher, with a tight bound of 3/2 even for P|| > C;
[54]. For the unweighted version, Smith’s Rule in fact reduces to the shortest processing time first policy, under
which [37] shows an upper and lower bound of respectively 2 for the robust price of anarchy and e/(e — 1) =~ 1.58
for the pure price of anarchy of Q|| > C;. For related machines, it is still an interesting open question whether
the upper bounds of respectively 2 and 4 for Q|| > C; and Q|| > w,;C; can be improved.

Coordination mechanisms were introduced in the work of [22] for P||Ciua, and a selfish routing/congestion
game. Four different scheduling games under four different policies were analyzed in [43] under the makespan
objective.  Upper and lower bounds for different coordination mechanisms for R||Cinq: can be found in
[7, 15, 31, 24, 2]. Further work on coordination mechanisms for the makespan objective has been done in
[10, 16, 48].

The literature for the sum of completion times objective is somewhat sparser. The work of [25] considers
R||>" w;C; and shows that the policies Smith’s Rule, Proportional Sharing and Rand respectively give bounds
of 4,2.618 and 2.133 on the robust price of anarchy. The first two bounds are tight, with matching lower bounds

n the ArXiv version of the paper, we also show how to analyze the greedy algorithm in the more general congestion model.
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given in [28] and [17]. The latter two coordination mechanisms can in fact be interpreted as a cost-sharing
protocol [18]. Using similar techniques, [1] extend some of the previous results to multi-job scheduling games.
Coordination mechanisms for a more general model with release dates and assignment costs have been studied in
[10].

The study of the price of anarchy for weighted congestion games was initiated in [49] for parallel links under
the maximum load (or makespan) objective. Tight bounds for parallel links have been shown in [29]. For general
networks under the MinSum objective with affine latency functions, the works of [5, 21] establish that the price of
anarchy is 5/2 for the unweighted version and (3++/5)/2 in the weighted case. Other models have been studied in
[3, 17, 12, 61, 30]. To the best of our knowledge, the literature on coordination mechanisms for congestion/selfish
routing games is relatively sparse [22, 23, 11].

The problem of online scheduling of jobs on machines has also been well studied. One natural model consists
of jobs having a release date and arriving online at that point in time, where the objective is to minimize an
objective function depending on the weighted flow time of jobs. In this model, strong lower bounds are known,
even for preemptive algorithms [47, 32, 20]. Given these lower bounds, such scheduling problems have been
considered in the speed augmentation model, where each machine is allowed to run at a e-fraction faster speed
than the offline optimum [19, 41, 45, 8]. Dual fitting approaches on LPs and convex programs for such scheduling
problems have been developed in [4, 34]. Another related line of work concerns online load balancing problems
for different L, norms [6, 17, 14].

2 Preliminaries.

Game format. All the games/problems considered in this paper are of the following form. A set of players
N is given. Each player j € N has a strategy set S;, and we denote by z;; € {0,1} the binary value indicating
whether the player chooses strategy i € S;. If z;; € [0,1], then this corresponds to the probability of player
j independently choosing strategy i. The (expected) cost incurred by the player is denoted by C;(z) and is a
quadratic (possibly non-convex) function of z. Given weights w; > 0 for every player j € N, the total social cost
is the weighted sum of costs incurred by every player, and we denote it by C(x) =Y ;w;iCy (z).

Scheduling. One example falling in this class are scheduling games. Given is a set of jobs J = N, which are
the players, and a set of machines M. The strategy set of every player is a subset of the machines S; C M. We
adopt the standard three-field notation «|8|y of [33], with o denoting the machine environment, 5 denoting the
constraints, and vy denoting the objective function. The most general such problem we consider is R|| Y w;C},
where each job j € N has unrelated processing times p;; € Ry U{oo} for each i € M. If p;; = oo, we will without
loss of generality assume that i ¢ S;. Once an assignment x is fixed, the optimal way to process the jobs for each
machine is to order them by increasing Smith ratios, which we denote as d;; := p;;/w;. We denote k <; j if k
precedes j in the ordering of machine ¢, meaning that d;; < d;;. We assume ties are broken in a consistent way.
The completion time of every job is then

Cj(x) = Z Zij (pij + Z pikxik)-
€M k<ij
Observe that this is indeed a quadratic function in x. If every job has the same processing time p;; = p; on every
machine, this model is denoted by P|| >~ w;C;. If p;; € {p;, 00}, then the model is denoted as P|M,| > w;C;.

Congestion model. We consider the following model of congestion games, which generalize the scheduling
games described above. We are given a set of players IV and a set of resources . The strategy set for each player
j € N is denoted by S; C 2% and is a collection of subsets of resources. Each player has a resource-dependent
processing time p.; > 0 and a weight w; > 0. Without loss of generality, we assume that for every feasible
strategy ¢ € S; of a player j € N, we have that p.; < oo for every e € ¢ (otherwise simply remove ¢ from S; since
it is not a valid strategy). The Smith ratio is defined as d.; = pe;/w; for every e € E,j € N. We denote k <. j
if §er < dej, meaning that £ has a smaller Smith ratio than j on the resource e € E, where ties are broken in a
consistent manner. For a given assignment (z;;) ;e N,ies;, we denote

Zej = E Lij-
i€S;:e€i

We invite the reader to think about pure assignments. In that case, z;; € {0,1} is binary and indicates whether
or not player j chooses strategy i € S;, whereas z.; € {0,1} takes value one if j uses the resource e € E, i.e.
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chooses a strategy i € S; containing resource e € E. In the case of mixed assignments, z;; € [0, 1] represents the
probability of player j independently choosing strategy ¢, whereas z.; € [0, 1] represents the probability of player
J using resource e. Once an assignment z is fixed, Smith’s Rule is again the optimal way for every resource to
process the jobs, and the cost incurred by a player j € N is given by:

Cj(x) = Z Tij Z (pej + Z Peks zek).

i€S;  eci k<cj

Nash equilibria. An assignment z is a Nash equilibrium if no player can get a lower cost by changing his/her
strategy. The price of anarchy is defined as the ratio between the cost of a worst-case Nash equilibrium and the
cost of an optimal solution. Unless explicitly stated otherwise, we consider mixed Nash equilibria, meaning that
the following set of constraints is satisfied:

(21) Cj(m) < Cj(l',j,i) Vy e N,Vi € Sj

where x_; refers to the assignment of all players other than j. In Appendix E, we show how to extend our results
to a more general equilibrium concept, namely a coarse-correlated equilibrium.

Coordination mechanisms. In the scheduling setting, a coordination mechanism is a set of local policies,
one for each machine, deciding on how the jobs assigned to it should be processed. Smith’s Rule is one example
of such a policy, which is in fact optimal in terms of the social cost. However, picking a different policy may help
improve the price of anarchy. One policy considered in this paper is a preemptive mechanism called Proportional
Sharing, where the jobs are scheduled in parallel, with each uncompleted job receiving a fraction of the processor
time proportional to its weight. Another mechanism is Rand, which orders the jobs randomly by ensuring that
the probability of job j being scheduled before k is d;x/(d;; + d;1) for every pair of jobs j, k. The reader is referred
to [25] for details. In our congestion model, each resource uses one of these coordination mechanisms to process
the players using that resource. Note that this modifies the cost Cj(x) incurred by every player, and thus also
the social cost C(z).

Coordination ratio and price of anarchy. We make a distinction between the coordination ratio of a
coordination mechanism and the price of anarchy of the game for our congestion model. The coordination ratio
measures the ratio between a worst-case Nash equilibrium and an optimal solution if every resource uses Smith’s
Rule to process the players. In contrast, the price of anarchy of the game compares to a weaker optimal solution
where each resource uses the chosen mechanism to process the players.

Online model. We also study the R||> w,;C; scheduling problem in the following online setting. A set of
jobs N arrives online in an adversarial order. Each time a job j € N arrives, it reveals a weight w; > 0, and a
subset S; C M of machines it can be assigned to with unrelated processing times p;; > 0 for every i € S;, at which
point an online algorithm needs to irrevocably assign that job to a machine. Once every job has arrived, every
machine can reorder the jobs optimally, i.e. by increasing Smith ratios ¢;; := p;;/w;. Equivalently, whenever a
job j is assigned to a machine 4, it enters the schedule at the correct position with respect to the Smith ratio. The
quality of an online algorithm is measured by the competitive ratio, defined as the worst-case, over all instances,
of the ratio between the cost of the online algorithm and that of the optimal offline solution.

Outline of the paper. The semidefinite programming relaxation and a high-level view of the approach
is presented in Section 3. The analysis of the coordination ratio and the price of anarchy of Smith’s Rule,
Proportional Sharing and Rand for our congestion model are presented in Section 4. The analysis of the price
of anarchy of weighted affine congestion games is shown in Section 5. The analysis of local optima for machine
scheduling is done in Section 6. The online algorithm for R||>" w;C; is presented in Section 7. The pure price of
anarchy of P|| > w;Cj is presented in Appendix A.

3 The semidefinite programming relaxation.

3.1 The primal-dual pair. We assume in this section some basics on semidefinite programs (SDPs),
which can be found in Appendix C. Let N be a set of players, with each player j € IV having a strategy set S;.
An exact quadratic program to compute the social optimum is given by
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min C(z)

Z Tij = 1 VieN
i€ES;

xije{(),l} VjEN,ViESj.

Since we assume C(z) to be quadratic in z, the social cost can be written as

(3~1) C’(x) = C{O,O} +2 Z C{o,z‘j} Tij + Z C{ij, ik} i Ti'k
JENIES; J,kEN
i€S;,i’ €Sk

for some symmetric matrix C' of dimension 1+ jEN |S;|, which has one row/column corresponding to each z;;,
in addition to one extra row/column that we index by 0. The above equation (3.1) can be written in a compact
way as C(z) = (C, X) := Tr(CT X), where X is the rank one matrix X = (1,z)(1,z)T, where the notation (1,x)
refers to a vector in dimension 1+ > jeN |S;| obtained by appending a coordinate with value 1 to .

We now consider a semidefinite convex relaxation of the above quadratic program, which can essentially
be obtained through the Lasserre/Sum of Squares hierarchy [51]. The variable of the program is a positive
semidefinite matrix X of dimension 1+ >, [S;|, which has one row/column corresponding to each z;;, in
addition to one extra row/column that we index by 0.

min(C, X)
D Xy =1 VjeN
iESj
Xy =1
X0,y = X{4j, 45} VjeN,ieS;
Xz, iky =0 V(i,7), (i, k) with j,k € N.
X >0

To see that this is in fact a relaxation to the previous quadratic program, note that for any binary feasible
assignment x, the rank-one matrix X = (1,z)(1,z)7 is a feasible solution to the SDP with the same objective

value. The key observation that makes this work is the fact that xfj = w;; for z;; € {0,1}, leading to

Xiij, a5y = x?j = wij = X{o,4j}- The dual to this relaxation, written in vector form, is the following. The
computation of the dual is shown in Appendix D.1. We call this relaxation (SDP-C).

1
(3:2) max » ?/J‘—§||UO||2
JEN
1 . .
Yi < Cij, 53 — 5llvisl* + (vo, vig) VjeN,i€S,;
(Vij,virk) < 2C5 iy V(i,7) # (i, k) with j,k € N,

The variables of this program are real-valued y; € R for every j € IV, as well as vectors vy € R? and Vi € R? for
every j € N,i € §; in some dimension d € N. This will be the relaxation used for every dual fitting argument
in this paper. Depending on the problem we are considering, the matrix C', which only depends on the total
social cost, is then picked accordingly. The computation of this matrix for every problem considered is shown in
Appendix D.2.

3.2 High-level view of the approach and intuition of the dual. We describe here a high-level view
of the dual fitting approach and of its main ideas. We also provide some intuition in how the dual program (3.2)
is used. For clarity, we illustrate the concepts on a simple concrete toy example: a weighted load balancing game,
which is a special case of an affine weighted congestion game later analyzed in full detail in Section 5.
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Example: load balancing. We are given a set of players N and a set of resources E. The strategy set of
every player j € IV is a subset of resources S; C E with unrelated weights w;; > 0 associated for every i € S;.
Consider a pure assignment x, the load of a resource ¢ € E is defined as the total weight of players assigned to it and
is formally defined as £;(z) = .y wijzi;. The cost of a player j is then defined as Cj(z) = >, g li(2) wij @4,
meaning that it is the weight multiplied by the load of the resource picked. The social cost can be written as
follows

(3.3) C(r) = E Cj(x) = E g Wij Wik Tij Tik = 5 Wij Wik Tij Tirk Li=iry.
JEN i€E j,kEN J,keN
iESj,i/GSk

Note that the social cost can also be written in a simple way as C(z) = Y,. 5 fi(z)®. The above equation is
however written in the form (3.1).

Specializing the dual SDP. After understanding what the social cost looks like as a quadratic function
in the form (3.1), we are able to write down the dual program (3.2) for a considered game. In our example,
the above equation tells us that the matrix C' has diagonal entries Cy;; ;1 = w2, and non-diagonal entries

ij
Crij, irky = wij wig Lgi—yy, meaning that we can write down the dual as:

1
(3.4) max Z yj — 5””0”2
jEN
1
(3.5) yj < wpy — 5llvis1* + (vo, vis) VjeN,Vies;
3.6 Vij, Vi'k Sszwzkﬂ =i/ VZ,j 7é i/,k Wlth],kEN
J J {i=d"}

Given any Nash equilibrium z, the goal is to use this dual program to construct a feasible solution with objective
value at least p C'(z) for some p € [0,1]. By weak duality, this would directly imply an upper bound of 1/p for
the price of anarchy.

Correspondence between the SDP constraints and the Nash conditions. The key insight is that
the first set of constraints (3.5) of the SDP has the same structure as that of the Nash equilibria inequalities (2.1).
Our goal is to pick a fitting which will ensure that this set of constraints corresponds to (or is implied by) these
equilibrium conditions. Fix a Nash equilibrium = and let us write down what the Nash conditions imply for our
toy example:

CJ($> < Wij (ZZ(QT) + wij) = w?j + Wi fl(,f) Vj e N,Vi € Sj.
A natural way to achieve the desired correspondence is to have the following:

1
(3.7) yi ~ Ci(x)  wi — Svgl? ~wi o (vo,vig) ~ wij £(x)

i 9 J
where the ~ notation indicates that both quantities are within a fixed constant (which should be the same for
all three cases above) of each other. For local search algorithms, the Nash inequalities get replaced by local
optima conditions. For online algorithms, the inequalities become an equilibrium condition satisfied by the online
algorithm at every time step.

Picking the vector fitting. Observe that the second correspondence above implies that |Jvg;||* ~ w?;. The
second set of SDP constraints (3.6) tells us that for ¢ # ¢’, one should have (v;;,v;,) < 0. We will in fact ensure
tightness of this constraint by fitting such two vectors to be orthogonal. A very natural candidate for the fitting
of v;; in our example thus becomes the following choice:

vi; €RY  defined as  vjj(e) = v w;j Lyi—ey
for some constant « € [0, /2] to be determined. The upper bound on « follows again from the second set of SDP

constraints (3.6), since we now get (vij, Vi) = a? Wig Wirg L=y under our fitting.
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How should vg now be picked? There are two desirable properties to be satisfied: we want (vg, v;;) ~ w;; £;(z)
as mentioned above, in addition to relating ||vg||? to the social cost C(x), since it appears in the objective function
of the SDP. A very natural candidate becomes the following;:

vg € RE  defined as  wy(e) = B Le()

where 8 > 0 is to be determined. Note that we now indeed get (vg,v;j) = aBw;; ¢;(z) and |lvo|?> = 82 C (), since
(3.3) can be rewritten as C(z) = Y, 5 li(z)>.

Optimizing the constants. How should a and § be picked? We have seen that o € [0,v/2] and 8 > 0.
Observe that under our fitting, constraints (3.5) now become y; < (1 —a?/2) w; + /8 wy; £;(x). Correspondence
(3.7) then tells us to set 1 — a?/2 = a8 and y; = aBC;(z). The objective value (3.4) of the SDP then becomes
(af —B?/2) C(x). Since we want to pick o and 3 to maximize the dual objective in order to get the best possible
bound on the price of anarchy, we would want to solve the following optimization problem:

max{af — 3%/2:1—-0a?/2 = aB,a €0, \/5],6 > 0}.

Solving this optimization problem would give a price of anarchy bound of (3++/5)/2, which is tight in this setting
by a lower bound construction of [17]. At the high-level, this is the approach used to derive the results in this
paper. We invite the reader to keep this intuition even for more complex games.

3.3 Different inner product spaces. In order to construct a feasible solution to this SDP, one needs to

construct vectors vg and {v;;}jen,ics; living in a Euclidean space R¢ for some d > 0, in addition to real values
{y;}jen such that both sets of constraints of the SDP are satisfied. Note that the inner product is the standard

Euclidean one where, for given f,g € R?, it is defined as (f, g) := Zle figi- For some games, it will be more
convenient to work in a different inner product space, as done in [25]. Let us fix a finite set F, where each e € E

induces a finite set of positive real values 0 = 6(()6) < 5%6) <-.. < 5,({3). We define the following inner product
space:

F(E):={ f:Ex[0,00) = Ry : fet) :Zaejﬂ{(;(E)l <t< o) el eR
j:1 J—L—="="2

In words, each element satisfies the fact that f(e,-) is a step-function with breakpoints at 5%6) << 5,(f) for
every e € E. A valid inner product for two f,g € F(E) is then given by:

(3.5 o) =% [ fet) aten) e

ecE

Another inner product space we will consider is the following. Let us fix E to be a finite set and K € N. For any
positive-definite matrix M € RE*X we can consider the space G(E, M) := RF*IK] where the inner product for
two f,g € G(E, M) is given by:

(3.9) (f9) = fle,)" Mgle,).

ecE

We now argue that we can work in these spaces without loss of generality, the proof can be found in Appendix B.

LEMMA 3.1. Any feasible dual fitting to (SDP-C) obtained in the inner product spaces F(E) and G(E, M)
can be converted into a feasible dual fitting with the same objective value in a standard Euclidean space R¢ for
some d > 0 endowed with the standard inner product.

4 Congestion games with coordination mechanisms.

4.1 Smith’s Rule. The first coordination mechanism we consider is Smith’s Rule. If x is a mixed
assignment, each player first independently picks a strategy according to his/her distribution specified by z
to get an assignment. Once an assignment is set, each resource orders the players using it by increasing Smith
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ratios and processes them in that order. The cost incurred by a player j on a resource e that he/she is using is
then pe; + >, <.j Pek Zek- The total cost incurred by a player is the sum of the costs incurred on all the resources
used. More formally, the completion time of player 7 € N under Smith’s Rule is defined to be:

(4.1) Cilz) =Y wij )y (pej + ) ek %k)-

€S eci k<ecj

The outer sum only has one term for a binary assignment. For a mixed assignment x, the expression above is the
expected cost, by the law of total probability and independence. The social cost is the sum of weighted completion
times:

(4.2) Cla):=> wjCi(x) =Y wipejzej+» ., D WjPek Zek Zejs

jEN e€E jEN e€E jEN k<]

where the second equality follows by using the definition of C)j(x) and changing the order of summation. Moreover,
if x is a Nash equilibrium, the following inequalities are satisfied:

(4.3) Ci(@) <D (pes+ Y perzen) Vi€ N, Vi€,
eci k<ej

The dual semidefinite relaxation (3.2) then becomes the following, we call it (SDP-SR). The computation of the
cost matrix C' in this setting is shown in Appendix D.2.

1
(4.4) max Y y; — 3 llvoll®
JEN
1 . .

(4.5) y; < D wj pes = 5 ll0igl1* + (vo, vig) vjiENVieS,

eci
(4.6) (vij,vk) < D wj we min {de;, Ger} V(i,7) # (i, k) with j, k € N.

ecini’

We note that, in order to bound the coordination ratio of a coordination mechanism, one needs to construct a
feasible dual solution to this relaxation, since it gives a valid lower bound on the optimal solution. Indeed, once
an assignment is fixed, the optimal ordering on every resource is to schedule the players according to Smith’s Rule
[60].

THEOREM 4.1. For any Nash equilibrium x of the above congestion game, where each resource uses the Smith’s
Rule policy, there exists a feasible (SDP-SR) solution with value at least 1/4 C(x). This implies that the price of
anarchy and the coordination ratio is at most 4.

Remark 4.2. This bound is tight, with a matching lower bound given in [28] even for scheduling on restricted
identical machines with unit processing times.

Proof. We assume that the SDP vectors live in the inner product space F(F). By Lemma 3.1, this is without
loss of generality. Let us fix 8 = 1/2, we now state the dual fitting for (SDP-SR):

e voe,t) =B pcn Wk Zek Lit<s,,}
o vii(e,t) = w; Licesy Li<s.;y Vje N,Vies§;
® Y :zﬁwj CJ(,’E) Vj € N.

Let us now compute the different inner products and norms that we need. For a job j € N and a strategy ¢ € S;,
we have

||Uij||2 = Zw? 6ej - ij Pej-

ect eci
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For vy, we give an upper bound with respect to C(x):

1 o0
2 .
7 [lvol|* = g g Wj Wk Zej Zek Ty<s 1 Lii<s,,y dt = E g W Wk Zej Zek MIN{0ej, Ock }
e€E j,keN 0 e€E j,keN
2 2
= E E WY 25 Oej + 2 E g W Wk ZejZekOck
e€E jEN e€E jEN k=cj
2
= E E Wj Pej Zej + 2 E E W) Pek Zej Zek
e€E jEN €€E jEN k=cj
(4.7) <20(2).

The last equality uses the definition of the Smith Ratio d.; = pe;/wj, whereas the last inequality follows from
the fact that z2; < zc; (since z; € [0,1]) as well as the definition of the social cost (4.2). In addition, for any
(i,7) # (i', k) with j, k € N, we have

(4.8) (vij, virk) = Z wj wi Lyeeiy Lieeiy / Li<sy Lii<s.,y dt = Z wj wy, min {dej, dek }

ecE 0 e€ini’

and observe that this tighly satisfies the second set of SDP constraints (4.6). Finally,

(vo, vij) = ﬂz Z W; Wk Zeky Min{de;, dep }-

eci keN

Let us now check that this is a feasible solution to (SDP-SR). The second set of constraints is satisfied due to
(4.8). The first set of constraints (4.5) under the above fitting becomes:

1
Y; <Y wjpej — 5\\%'“2 + (vo, vi)
ect

1 .
<~ Bwj CJ($) < 5 ij Dej +ﬁz Z Wi Wk Zek mm{éej,éek}

ect ect keN

= Cj(z) < Z (pej + Z W Ze, MIN{Je;, 5ek})

e€i keEN

= Ci(a) <) (pej + ) Pek Zek + Y Wk Zek 5ej)~

e€i k<cj k= cj

We have simplified both sides by 8 w; = 1/2w; in the third line, which holds by definition of 5 :=1/2. We have
also used the definition of the Smith ratio dcp = per/wy in the last line. This set of constraints is now clearly
satisfied by the Nash conditions (4.3). The objective function of this SDP can now be lower bounded using (4.7):

> - %HUoH2 > 8 w; Cj(x) = B*Clz) = (B— %) C(x) = i Clx). 0

jEN JEN

4.2 The Proportional Sharing policy. In this section, we consider a preemptive policy for every resource
named Proportional Sharing. Once an assignment is fixed, each resource splits its processing capacity among the
uncompleted jobs proportionally to their weights. Given an assignment x, the completion time of player j € N is

defined to be:
C](J?) = Z Tij Z (pej + Z Dek Zek + Z Wk Zek 66]')-
i€S; eCi k<cj koj
For this policy, it is in fact more intuitive to understand the definition by looking at the weighted completion

time:
w;Cj(x) = Z Tij Z (wjpej + Z wjwg Min{de;, Ok Zek:)-

i€S;  eei kEN\{s}
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The social cost is the sum of weighted completion times:

(4.9) C(z) == Z w; Cj(x) = Z Z Wj Pej Zej + 2 Z Z Wj Pek Zek Zej-

JEN ecE jEN e€E jeEN,k<.j

Observe that there is now a factor 2 in front of the second term if one compares it to the Smith Rule policy.
Moreover, if x is a Nash equilibrium, the following inequalities are satisfied:

(4.10) Ci(z) < Z (pej + Z PekZek + Z Wk Zek 6ej) Vj e N, ViesS;.

eci k<ej k>=cj

We first need a small lemma about two parameters that will play a key role in the dual fitting. The first property
will ensure feasibility of the solution, whereas the second one will be the constant in front of the objective function.

LEMMA 4.3. Let o, 3 > 0 be defined as o® :=2/+/5 and 3 := 1/a — a/2. The following two properties hold:
e 1-a?/2=ap

° a,@—,@2/2=2/(3+\/5)

Proof. The first property is immediate by definition of 8. For the second property, we get

a 2

32 2 1/1 a\?> 3 52 1 3 5 5 2
af-=log 3 =

THEOREM 4.4. For any Nash equilibrium = of the above congestion game, where each resource uses the
Proportional Sharing policy, there exists a feasible (SDP-SR) solution with value at least 2/(34+/5)C(x), implying
that the coordination ratio is at most (3 + /5)/2.

Remark 4.5. This bound is tight, with a matching lower bound given in [17] even for the price of anarchy of
the game.

Proof. The proof is very similar to the one of Theorem 4.1, but with the modified constants o := 2/v/5 and
B :=1/a — a/2 stated in Lemma 4.3. We now state the dual fitting.

o vo(e,t) == B pen Wk Zek Lit<s.,)
o vij(e,t) == a w;j Ticeiy Lii<s,) ViEN,Vi€S;
o y; = afw;Cj(x) Vj € N.

Using the same computations as in Theorem 4.1, we compute the different inner products and norms that we
need.

o [lvo]* = B (EEEE EjeN Wj Pej Zgj +2> ek ZjeN,k<€j Wj Pek Zej Zek> < p*C(x)
o [lvijll* = o 3.e; w) pe
* (v0,0ij) = B ) oe; Dopen Wi Wk Zek min{dej, Oer}
o (v, V) = a2 Zeeiﬂi’ w; wi, min {de;, dek }
The main difference with Smith’s Rule which allows us to get an improved bound is the fact that the upper bound

on the squared norm of vy is a factor 2 stronger in this case (see (4.7)), due to the new definition of the social
cost C(x) given in (4.9). To see that this solution is feasible, note that the second set of SDP constraints (4.6) is
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satisfied due to the last computation above and the fact that a® < 1. The first set of constraints (4.5) under the
above fitting reads:

1
Yj < D wjPej §||Uz'j||2 + (vo, vij)

ect
a? .
<~ Otﬂ W CJ(I) < <1 — 2) ij Dej + Oéﬂz Z Wi Wk Rek mm{éej, 5ek}
ect ecit ke N
= Cj(z) < Z (pej + Z W Zek mln{ée],éek})
ect keEN
— C < Z (pe] + Z Pek Zek + Z Wi, Zek 56])
ect k<ej kZzej

The third equivalence follows from the first property of Lemma 4.3. We see that this is satisfied due to the Nash
conditions (4.10). The objective value of the solution can now be lower bounded as follows:

Zyj—;UQHQZOLﬁijCj(z)—iC()—(Oéﬂ—ﬂ> Cw) = —— C(x)

jEN jEN

where the last equality follows by the second property of Lemma 4.3. ]

4.3 The Rand policy. In this section, we consider a randomized policy named Rand. If z is a mixed
assignment, each player first independently picks a strategy according to his/her distribution specified by z. We
denote by N(e) C N the (possibly random) subset of players using resource e € E. Each resource then orders
the players using it randomly in a way ensuring that for any pair j,k € N(e), the probability that j comes
after k in the ordering is exactly equal to d¢j/(Jej + Oex). Such a distribution can be achieved by sampling one
player j € N(e) at random with probability d;/ ZkeN(e) Oek, putting that player at the end of the ordering, and
repeating this process. The expected completion time of every player is thus given by:

Z Tij Z (pej + Z Pek Zek') .

= eci 5&] + 66]{3
The social cost is the sum of weighted completion times:

56 6ek
(4.11) C(x) := Z w; Cj(x Z Z W Pej Zej + Z Z J—i—é WjWE ZejZek-
JEN ecE jeN e€E jEN,k#j ej ek
Moreover, if x is a Nash equilibrium, the following inequalities are satisfied:
(4.12) <Z(pej+zé o zk> VieN,ies,.
eci

We now state a small lemma about some constants that will be important for the fitting. The first property will
ensure that our dual fitting is feasible, whereas the second property will be the constant in front of the objective
value of our SDP solution, thus determining the coordination ratio.

LEMMA 4.6. Let o, 8 > 0 be defined as « :== 1 and B := 3/4. The following two properties hold:

e 1-a?/4=af

e a3 —p3?/2=15/32

Proof. The proof is immediate. a

THEOREM 4.7. For any instance of the above congestion game under the Rand policy, and for any Nash
equilibrium x, there exists a feasible (SDP-SR) solution with value at least 15/32 C(x). This implies that the
coordination ratio is at most 32/15 ~ 2.133.
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Proof. For simplicity of presentation, let us assume without loss of generality that the processing times are
scaled such that the Smith ratios d.; = pej/w; with p.; < oo are all integral. Moreover, let us take K € N large
enough such that d.; < K for all pairs (e, j) € E x N such that p.; < co. Consider the matrix M € REXK given
by

TS
r+s

M, = Vr,s € {1,...,K}.

A key insight shown in [25] is that this matrix is positive-definite. By Lemma 3.1, we can thus assume that the
SDP vectors live in the space G(E, M). Let a, 8 be defined as in Lemma 4.6, we now state the dual fitting:

o vole,r) =B Y pen Wk Zek Lis,,=r}
o Uij(e,r) = Qwy ﬂ{eei} ]1{5(3_7':7‘} Vi e N,i € Sj
® Yy, = aﬁwj CJ(Z‘) Vj € N.
Let us now compute the different inner products and norms that we need. For every j € N,i € S;:
1 2 _ M 2 _ bej o 1
o7 idll® = 3 Mo, sywy = 3 5Hwi = 5 3 wipes:
ect ect eci

For the squared norm of vy, we give an upper bound with respect to C(x):

ﬂQ l|vol|? = Z Z M, s vo(e,r) vo(e, s) Z Z Wy Wi Zej Zek Ms,; 5.0}

ecE r,s=1 ecE j,keN
55 58k
(4.13) => > » J+ 5 i W Zej Zek < C(x)
eck j,keEN

where the last inequality holds by (4.11) and z2; < z;. For any pair (i,5) # (¢, k) with j, k > 1:

1 6@ ) k
_Yej Ock
Y U”,’Uz/k E ZM{%J’ ek}wj wg = E Wj Wi 5

1)
ecini’ ecini/ ej + ek

(4.14)

Finally, we have:

1 Ocjdck
3 e M = j e
o (o) = D 2w zek Mgy = D0 D Ty w e

ect keN eci keN

_w]22553+5 Pek Zek

ect keN

where the last equality follows by plugging in the definition of der = pe /Wi

Let us now check that this solution is indeed feasible for (SDP-SR). The second set of constraints (4.6) is
satisfied due to (4.14), the fact that o = 1, as well as observing that rs/(r + s) < min{r, s} for all r;s > 0. The
first set of constraints (4.5) under the above fitting gives:

1
Yi <D wjpej — 5”%\\2 + (vo, vij)

ect
— afw; Cj(x) < (1—>ijpej+aﬁwjzz(5 +5 Dek Zek
eci e€i keN ¢ ek
— < (pe + Dek Zek)-
(RS et

ect
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We have simplified both sides by afw; = (1 — a?/4)w; in the last equivalence, which holds by the first property
of Lemma 4.6. These inequalities are now clearly satisfied by the Nash conditions (4.12), implying that our fitted
solution is in fact feasible. The objective value of our solution can be lower bounded as:

2 2
Z yj — %HvoH2 > af Z w;Cj(z) — b Clx) = (aﬁ - 2> C(z) = o C(z)

JEN JEN 2 32
where the last equality follows from the second property of Lemma 4.6. O

We now show that this bound can be improved if we consider the natural special case where the processing
time of each player is proportional to its weight for every resource. This means that every resource has a real-value
Ae > 0, and the processing time of every player satisfies p.; € {Acw;, 00} for every e € E,j € N. Observe that
this means that the Smith ratios are uniform for the jobs assigned to a resource: d.; = pej/w; = A.. The only
difference with respect to the previous proof will be a change of constants «, 3.

LEMMA 4.8. Let o, 8 > 0 be defined as a :=2/v/3 and 3 := 1/+/3. The following two properties hold:
o 1-a?/4=ap

e aff—pB?/2=1/2
Proof. The proof is immediate. ]

THEOREM 4.9. If the Smith ratios are uniform for every resource, for any instance of the above game and
any Nash equilibrium x, there exists a feasible (SDP-SR) solution with value at least 1/2 C(x). This implies that
the coordination ratio of the game is at most 2.

Proof. Let o, 8 be as in Lemma 4.8. The only part of the proof of Theorem 4.7 which breaks down under
these new constants is the fact that the second set of constraints (4.6) of the SDP might be violated, since we
now have a? = 4/3 > 1. Indeed (4.14) states that:

5ej 66k

2 E
Vii, Vilk) = Q¢ Wi Wi .
< 179 > J 6ej 651@

ecing’

The proof of Theorem 4.7 used the easy observation that rs/(r + s) < min{r, s} for every r,s > 0 to argue
feasibility of the solution. Observe that this bound is very close to tight when s > r (or vice versa). In the case
of uniform Smith ratios, we can get an improved bound since de¢; = der = Ae:

A .
(vij, virk) = o? Z w; W ?e < Z W W Ae = Z w; wy, Min{de;, Oek }

ecini/ ecinN/ ecinN’

where the inequality follows since a?/2 = 4/6 < 1. By the second property of Lemma 4.8, the objective value can
now be lower bounded as
1 2 2 1
S gholl = a8 3 wislo) - ot = (a8 - ) o) = ot
jEN jEN 0
We now show that this bound of 2 can also be attained for arbitrary instances if we consider the price of
anarchy of the game, rather than the coordination ratio, meaning that we now compare against the optimal
solution under the Rand policy. More precisely, we compare against the best possible assignment x, whose
expected cost is measured if every resource uses the Rand policy to process the players. Note that this cost is
always higher than the cost if every resource were to use Smith’s Rule. In that case, a relaxation giving a valid
lower bound on the social optimum is the following, we call it (SDP-RAND). The computation of the cost matrix
C' to plug-in in (3.2) in this setting is once again left to Appendix D.2.
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1
max »_ y; — §||UO||2

jEN
;<D W pej — \Ung + (vo, vij) Vj € N,VieS;
ect
66] 5€]€ .o .7 . .
(Vi virg) <2 Z w; w V(i,7) # (¢, k) with j, k € N.

56] + 5ek

ecinNi’
THEOREM 4.10. For any instance of the above game under the Rand policy, and for any Nash equilibrium x,

there exists a feasible (SDP-RAND) solution with value at least 1/2 C(x). This implies that the price of anarchy
of the game is at most 2.

Proof. The proof is identical to the one of Theorem 4.7, but with the modified constants «, 8 stated in Lemma
4.8. This new choice of constants is not valid for (SDP-SR), due to the fact that o > 1. Indeed, equation (4.14)
means that the second set of constraints (4.6) of (SDP-SR) might now be violated. However, the second set of
constraints of (SDP-RAND) is always satisfied, since o < 2. The objective function guarantee follows from the
second property of Lemma 4.8. ]

5 Weighted affine congestion games. In this section, we consider the classic weighted affine congestion

game. The price of anarchy of this game was settled in [5, 21] with a tight bound of (3 4+ v/5)/2 and this bound
can also be obtained through a dual fitting argument on a convex program [50]|. We show here how to recover this
bound in a simple way through our approach. For simplicity of presentation, we assume in this section that the
Nash equilibria considered are pure, extensions to more general equilibrium notions can be found in Appendix E.
The setting is the following. There is a set N of players and a set E of resources. The strategy set for each
player j € N is denoted by S; C 2F and is a collection of subsets of resources. Let us also assume that we have
unrelated weights we; > 0 for every j € N,e € E. Given a strategy profile z, the load of a resource is given by:

)= wy )
JEN i€S;: e€t
The cost incurred by a player j for a pure assignment x is then given by
Cj(x) ::ZxZJZweJ ae Le(T) + be)
1€S; eci
where ac, b € R>( for every e € E. The social cost then becomes:
(5.1) Clx) =Y Cja) = acle(w)’ + b Le()
JEN eck

where the last equality holds by changing the order of summation and using the definition of £ (x).
The Nash equilibrium conditions imply the following constraints for every j € N,i € S;:

(5.2) Cj(z) < Zwej (ae (le(x) + we;) + b ) Zwej e Wej + be) + Zwej ae Lo
eci ect ect

Indeed, if a player j € N decides to switch to a strategy i € S;, then the load on every resource e € i can go up
by at most we;. The semidefinite relaxation (3.2) in this special case becomes the following, we call it (SDP-CG).

1
max Y y; — 5 [[vol?

JEN
1 ‘ .
Yi < Zwei(ae Wej + be) — §||’Uij||2 + (vo, viz) VjeN,Vies;
ect
(vij, virg) < 2 Z Qe Wej Wek V(i,j) # (i', k) with j,k € N.

ecinNg/
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THEOREM 5.1. For any instance of the above game, and any Nash equilibrium x, there exists a feasible (SDP-
CG) solution with objective value at least 2/(3 + /5)C(x).

Proof. The vectors of the SDP will live in the space RF. Let o, 8 > 0 be defined as in Lemma 4.3. We now
state the dual fitting:

o vg(e) = f \/ac le()
e vij(e) = a\/ac wej Licesy Vi e N,i€S;
o y; =af Cj(x) Vj e N.
Let us now compute the different inner products and norms that we need.
o [lvoll? =5 Yocp aele(x)? < B2 C(x)
o [loill> =a® 3 c;ae wZ
o (Vo,vij) = af Y c; e Wej Le(T)
o (v, vir) = o > ecini Qe Wej Wek

Let us now check feasibility of the solution. The second set of constraints is satisfied by the fourth computation
above and the fact that a? = 2/1/5 < 2. The first set of constraints is satisfied due to the Nash conditions (5.2).
Indeed, under the above fitting, for every j € N,i € S;, the first set of SDP constraints reads:

aBCi(z) < (1-0/2) Y acw? + > wejbe + B Y e we; Le().

eci eci eci

If there was a factor of (1 — @?/2) < 1 multiplying the term > ., we; be, then this would be equivalent to (5.2)
because of the first condition of Lemma 4.3. Not having this term only increases the right hand side and thus
ensures that this set of constraints is satisfied, implying that the SDP solution is feasible. The objective function
can now be lower bounded as:

1 32 2 2
3w ol 2 08 3 C3(0) = 7 Olo) = (8- 5 ) 0 = 522 c@

where the last equality follows by the second property of Lemma 4.3. ]

6 Analyzing local search algorithms for scheduling. We now show that this approach can also be
useful to bound the approximation ratio of local search algorithms. We focus on the R|| )" w;C; scheduling
problem, for which the jobs are denoted as J = N, and for which we rewrite the (SDP-SR) relaxation (4.4):

1 2
max }_y; = 5 lvol
JjEJ
1 . ,
yj < wipig = 5 llvigll? + (vo, vig) vje Jvies;
<Uij7’l)7yk> S ’LUj Wi mm{éw,ézk} ﬂ{i:i’} V(’L,]) 75 (i/, k) Wlth j, k S J
Given an assignment z € {0, 1}/ the completion time of every job j € J is:
Cj(x) = Z Tij (pij + Z Pikxik)-
ieM k<ij

Let us also define the following quantity for every j € J:

(6.1) Dj(x) = Z Z Wk Pij Tij Tik

i€EM k>;j
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and let us denote the weighted sum of processing times as:

(6.2) n(x) =Y > wjpi wi

ieM jeJ

The total cost can then be written in the following ways:

(6.3) Clz) = ijC’j(m) =n(z) + Z Z Z Wj Pik Tij Tik

jed €M jEJT k<.j
(6.4) C(z) =n(z) + Z Dj(z) =n(z) + Z Z Z Wk Pij Tij Tik-
jed €M jEJ k]

6.1 A simple and natural local search algorithm. A natural and simple local search algorithm for
this problem is to move a job from one machine to another if that improves the objective function. If such an
improvement is not possible, then a local optimum z € {0,1}*7 has been reached. Such a local optimum is
called a JumpOpt in [27], and it is shown that the local optimality implies the following constraints. We provide
a proof for the sake of completeness.

LEMMA 6.1. For any local optimum JumpOpt solution = of the scheduling problem R||>_ w;C}, the following
constraints are satisfied:

chj(l‘) + D](JJ) < wj pij + Z W W min{&j,dik} Tik Vje J,Vie M.
ke\{sj}

Proof. Fix a job j assigned to machine i* € M in the local optimum z and let us assume that this job switches
to machine ¢ € M. The difference of weighted completion times for job j is

W (pij + Z pm%k) - wj (pi*j + Z pi*kxi*k)

k=<ij k=g

Moreover, the only other jobs for which the completion time is modified are the jobs assigned to ¢* and ¢ coming
after j in the ordering of the respective machine. Due to the switch of j, these jobs assigned to ¢* have their
completion time decreased, whereas the ones assigned to ¢ have their completion time increased. The total
difference in cost for these jobs is then

E W Pij Tik — E Wg Pixj Tixf-
k>qij k=3

Since z is a local optimum for the global objective function, the total difference in cost (i.e. the sum of the two
expressions above) should be non-negative. After rearranging the terms, this is equivalent to

wj (pi*j + Z Pi*kmi*k) + Z Wk Pixj Tivkp < Wj (pij + Z pikmik> + Z Wk Pij Lik-

k== kg k= ki
Observe that this is exactly the statement of the lemma, finishing the proof. ]

We now show that we can recover the tight approximation ratio of (3 +1/5)/2 given in [27] using our dual fitting
approach. Observe the analogy with the proof strategy for the price of anarchy in the previous section. The main
difference is that the Nash conditions are replaced by the local optimality conditions of Lemma 6.1, and the y
variables are fitted differently.

THEOREM 6.2. For any JumptOpt local optimum x of the scheduling problem R|| " w;C;, there exists a
feasible (SDP-SR) solution with value at least 2/(3 + v/5) C(z).

Proof. We assume that the SDP vectors belong to the space F (M), which is without loss generality by Lemma
3.1. Let us fix o, 8 as in Lemma 4.3, i.e. o? :=2/v/5 and 8 :=1/a — a/2. We now state the dual fitting:

° vo(Lt) = sze.l Wk Tik ]l{tgéik}
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o v;(i',t) = aw; Ly<s,y Liiminy Vj e JVieS;

o yy =B (w; Cy(2) + Dy() vje

The desired inner products and norms can be computed to be the following, using essentially the same
computations as in the proof of Theorem 4.1:

1 1 ,
3 [vo]|* = 2C(x) — n(x) @(Uowzj) =Y wj wy, min{dj, Gix} win
kedJ
1 .
2 o 1> = w; pij -2 (vig, vi) = wj wp min {8ij, Sin} L=y,

The second set of SDP constraints is satisfied due to the last computation above and the fact that a? < 1. The
first set of constraints under this fitting gives:

1
Yj < wipij — gll?fijll2 + (vo, vij)

2
— af (wj Cji(z) + Dj(x)) < <1 — O;) w; pij +af Z w; Wi Tip min{ds;, dix -

keJ

These are satisfied by Lemma 4.3, which states that 1 — a?/2 = af3, as well as the local optimality conditions of
Lemma 6.1. The objective function can now be lower bounded as:

L2 B? 2
§;y = gloll? = s (206@) — () = 5 (20@) = () = 5= (20() = n(a)
2
6.5 >———C(z
(6.5) “ 55 CW
where the first equality follows from (6.3) and (6.4), the second equality follows from the second property of
Lemma 4.3 and the inequality follows from n(z) < C(x). |

We now show as in [27] that one can get an improved bound for the restricted identical machines setting, denoted
by P|M;|>  w;C;. The improvement comes from the fact that for a JumpOpt solution z and an optimal solution
z*, we have n(x) = n(z*) = 3, ; w;p; in this setting. This means that, instead of bounding n(z) < C(x) in the
last step of (6.5), we can now use the stronger upper bound 7n(z) < C(z*).

THEOREM 6.3. For any JumptOpt local optimum x of the scheduling problem P|M;|> w;C;, there exists a
feasible (SDP-SR) solution with value at least 2/(3 ++/5) (2C(x) — C(z*)). By weak duality, this implies that the
approzimation ratio of x is at most (5 +/5)/4 ~ 1.809.

Proof. By upper bounding n(z) < C(z*) in the last step of (6.5), we get the first statement of the theorem.
By weak duality, and since the dual solution constructed is feasible, we get that

Clx) _5+5
Clz*) — 4 0

9
3+4V5

(20@) - C(x*)) <Oz =

6.2 An improved local search algorithm. In this subsection, we show how our approach allows
to analyze an improved local search algorithm for R||>  w;C; by [18] achieving an approximation ratio of
(5+5)/4 + ¢ ~ 1.809 + ¢ for every € > 0. To the best of our knowledge, this is the best currently known
combinatorial approximation algorithm for this problem. We ignore here the issue of the running time and simply
analyze the quality of a local optimum, referring the reader to [18] for further details. Let us fix the constant
v:=09+ \/5)/19 ~ 0.591. For each job j € J and an assignment x, we keep a potential function

fj (.’E) = Z Tij | Wy Pij + Yy ijwk min{&j, 51]@} Tik VJ e J.
ieM k#j
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If a job j € J can pick a different machine than the one it is currently on and decrease its potential function
fj(z), then this constitutes an improving move for the local search algorithm. If several improving moves exist,
the algorithm picks the one giving the largest decrease in f;(z). For a local optimum z, we get the following
constraints:

(6.6) fi(z) <wjpij + ’Yzijk min{d;;, Sk} i Vj € J, Vi€ M.
ki

As usual with this approach, we first need a small lemma about important constants.

LEMMA 6.4. Let a, 8,7 > 0 be defined as o®> = (v/5+1)/5, 2 = (V5 —1)/5 and v = (9 + v/5)/19. The
following properties hold:

e aff/y=1-a?%/2
o af(2y—1)/y=5%/2
o 208 — 2 =4/(5+V5)

Proof. The proof consists of simple computations and is omitted. These equations can also be checked on a
computer. 0

THEOREM 6.5. For any local optimum x of the above local search algorithm for R|| > w;C;, there exists a
feasible (SDP-SR) solution with value at least 4/(5 + \/5) C(z).

Proof. We assume that the SDP vectors belong to the space F (M), which is without loss of generality by
Lemma 3.1. Let us fix «, 8,7 as in Lemma 6.4. We now state the dual fitting:

o vo(iyt) == B e Wk Tik Lit<s,y
o v;(i',t) == a wj Lyes, y L piziry VjeJvVieS;
o y; = fi(x) vj e J.

The desired inner products and norms can be computed to be the following, using essentially the same
computations as in the proof of Theorem 4.1:

1 1 .
=5 ol =2C(x) =n(z)  —(vo,vij) = D w; wy, min{6;, 5} v
B af keJ
1 1 .
el |vij||* = w; pij pol (Vig, virk) = wj wg, min {5, Gin } Lyi—iry.

The second set of SDP constraints is satisfied due to the last computation above and the fact that o? < 1. The
first set of constraints under this fitting gives:

1
Yj < wipij — gHvszz + (vo, viz)

o
2

a? o :
filz) < (1 - 2) w; pij + 7ﬁ7 ij wr, min{d;;, ik } Tik.

keJ

—

These are satisfied by Lemma 6.4, as well as the local optimality conditions (6.6). To argue about the objective,
it can be checked (through a simple computation that we omit) that:

> filw) =2y Cx) — (2 — 1) n(x).

jeJ
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The objective function then becomes:

1 2
3= gl - 22100 - @2r-00@) - 5 (20 ~ (o))
_ 2
= (208 - #)cto) - (LB - D) o)
4
where the two last equalities follow from Lemma 6.4. ]

We now provide an almost matching lower bound instance, inspired by constructions in [17, 27]. We believe
that the upper bound of (5 + v/5)/4 ~ 1.809 is tight.

THEOREM 6.6. There exists an instance of R|| >~ w;C; with a local optimum to the above local search algorithm
with approximation ratio at least 1.791.

Proof. Let A = 1.33849 be the positive solution to the equation A\?> = 1 + v X. We consider an instance with
jobs J = [n] and machines M = [n+ 1]. The weights of the jobs are defined as w; = XA and w; = 1/M ™! for every
j > 2. The feasible machines are S; = {j,j + 1} for every j € J with processing times py 1,p21 = A for the first
job and pj; =N~ p;q ;= N1 for every j > 2.

The feasible solution where each job j gets assigned to machine j has cost ZjeJ wj pj; = A2+ (n—1),
showing that the optimum solution z* satisfies C(2*) <n — 1+ A2

We now claim that the solution  where each job j gets assigned to machine j + 1 is a local optimum. To see
this, observe that the first job clearly cannot decrease his potential function fi(z) since p1,1 = p2.1 and no other
job is assigned to machine 1 or 2. For j > 2, we have f;(z) = w; pj+1,; = A% If job j were to be reassigned to
machine j, then

fi(—j,7) = wj pjj + 7 wj—rw;min{d; j1, 05,5} = 1+ A,
which shows that z is a local optimum, by definition of A. The cost of this solution is then >, wjpj41,; = nAZ.
The approximation ratio of this solution now satisfies

C(x) ni2 n—soo. \2
A 2 1.79154.
Cz*) " n—1+ X2
Picking n large enough thus finishes the proof. ]

7 An online randomized algorithm. In this section, we show that our technique extends to online
algorithms by analyzing a 4-competitive randomized algorithm for the problem R|| Y w;C;.? As a reminder, jobs
arrive online and the ordering on each machine is optimal, i.e. when a job j is assigned to a machine i, it enters
the schedule in the right position with respect to the Smith ratio é;; = p;;j/w;. The (SDP-SR) relaxation (4.4)
for R|| > w;C; becomes the following:

1 2
max 3 y; = 5 el
JEN
1 . .
yi < wipig = 5 llvigll? + (vo, vig) VjEN,VieS;
(Vij, virk) < wj wp min{dg;, dip} Li—iny V(i, ) # (i', k) with j,k € N.

Since we are now considering a randomized algorithm, we will refer to X;; € {0,1} as the binary random variable
indicating whether j € N is assigned to ¢ € M. Moreover, we will refer to x;; := E[X;;] € [0,1] as the probabilities
defined by the algorithm. The random completion time of a job j € N is thus

Ci(X) = Z Z Dik Xij Xik-

i€EM k=]

2In the ArXiv version of this paper, we show how to analyze the greedy algorithm in the congestion model achieving the same
bound.
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The total cost is the sum of weighted completion times:
(71) C(X) = Z U,)j C](X) = Z Z ’LUj Dik XL] X,‘k.
jEN i€M jEN,k=;j
We can split this cost on a machine by machine basis by defining:
(72) LZ(X) = Z Wj Pik X,‘j Xik Vi e M.
JEN,k=ij

Clearly, we have that C(X) = >_,.,,; Li(X). Since the jobs arrive online, we denote them as N = {1,...,n},
where job k arrives before job j if k < j.

7.1 The algorithm. Let us now describe the algorithm. Whenever j € N arrives, we consider the following
potential functions for every i € S;:

(73) f,j(t) = U)j pij + 2 t wj pij =+ Z wj Wi min{éij, 51,k} Tik
k<j

We now consider a waterfilling type of algorithm, described in Algorithm 7.1, which defines a probability
distribution (z;;)ies; ensuring that

Tej > 0 = fej (xej) < fij ((E”) Vi e Sj.

For convenience of notation, we also let z.; = 0 if e ¢ S;. Observe that this means that for every e € S; with
ze; > 0, we get that fej(ze;) = A for some constant A\, whereas fe;(z.;) > A if z.; = 0. In particular, since
Dec s, Tej = 1, we also get the following equilibrium inequality:

(7'4) Z Tej fej (!L‘ej) < fij (:L‘U) Vi € Sj.
ecM

Once the algorithm has constructed the distribution (z;;)cs,, it simply randomly samples a machine from this
distribution to assign the job to. Note that the random decisions are independent for any two jobs j # k.

Algorithm 7.1 Waterfilling and randomized rounding

when j € N arrives:
Compute (xij)iESj such that Zi Tij = 1 and ZeEM Tej fej (xej) < qu (‘T'L'j) Vi € Sj
Assign j to i € Sy, i.e. set X;; = 1 with probability x;;

return X

7.2 Analysis of the algorithm. By a slight abuse of notation, let us denote the expected cost per machine
1€ M as

JENk=ij

and let us also define the following quantity for every ¢ € M:

JEN,k=ij

Since the algorithm makes independent choices for any two jobs j # k, meaning that E[X;; X;z] = E[X;]E[X ] =
xijT;k, the only difference between L;(x) and Fj(z) occurs when j = k, in which case we respectively get a
contribution of E[X?] = E[Xj;] = 2;; and z7;.
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Let us now define ng )(m) and Fi(j)(a:) to be the expressions (7.5) and (7.6) for the assignment z after an
online job j has arrived (i.e. where z;;, = 0 for every k > j and every ¢ € M). We now define the increments over
time of these two quantities as:

89 () = FP(z) = FYV " D(2) and AP(z):= LY (z) - LV " (2).

We are now ready to state key inequalities satisfied by our algorithm which will be needed for the dual fitting.
These inequalities are analogous to the Nash equilibrium inequalities or local optima inequalities needed in the
previous sections.

LEMMA 7.1. For any solution (xij)jen,ics;, constructed by Algorithm 7.1, the following inequalities are
satisfied for every j € N:

Z <5£j)(l‘) + Ag)(x)) <wjpij+2 Z w; w, min{d;;, 6k} Tik Vi € S;.
eeM keEN

Proof. Let us first understand how the cost increases when j € N is assigned to ¢ € M by the algorithm. The
weighted completion time of j increases the cost by:

wj(pij+ Z pikXik>-
k<jk<ij

Moreover, the completion time of the already arrived jobs assigned to that machine coming after j in the ordering
of that machine (i.e. with a higher Smith ratio) is increased by p;;, leading to an increase in the objective of

Z wy, Pij Xik-
k<jikij
The total increase in cost (i.e. the sum of the two above quantities) can be written succinctly as follows:
W;Pij + Z W W min{dij, 5zk}sz
k<j

Using that, we can see that the increments become:

Agj)(ac) =2ej | wjpej + Z wjwy min{dej, dep } ek |
k<j

(Sé])(l‘) = ej | W Pej Tej + E wijwy min{dej, der }Tek | = Tej E wjwy min{dej, der } ek
k<j k<j

where the last equality follows from w;p.; = w? d¢;. From the above two equations, we see that §Y ) (2) +AY ) (z) <
Tej fej(xej), by definition of (7.3). The equilibrium condition (7.4) then tells us that

Z (5£j)(m) + Agj)($)> < Z Tej fej(xej) < f”(x”) Vi € Sj.

eeM €M
Looking again at the definition (7.3) completes the proof of the lemma. |

We are now ready to analyze the competitive ratio of the algorithm in this model.

THEOREM 7.2. For any online instance and any solution (xi;)jen,ics; obtained by Algorithm 7.1, there exists
a feasible (SDP-SR) solution with objective value at least E[C(X)]/4. By weak duality, this implies that the
competitive ratio of the algorithm is at most 4.

Proof. We assume that the SDP vectors belong to the space F(M), which is without loss of generality by
Lemma 3.1. We now state the dual fitting:
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hd Uo(i,t) = % E}ceN Wk Tik Il{tgéik}
o v;;(i',t) = wj Ly, 3 Liimiry Vj e N,VieS;
o 4= 1 Yoewr (V@) + AV (@) Wj € N.

The desired inner products can be computed to be the following, using essentially the same computations as in
Theorem 4.1:

1 .
(vo, vij) = 5 > wjwp min{iy, Gtz vyl = w; pi
keN
1 . .
||U()||2 = 1 Z wj Wi mm{éij, 5ik} Jiij Tik <Uij, Ui/k> = wj W 1ImMin {51']', 6ik} ]l{i:i’}-
J,keEN

The second set of SDP constraints is tightly satisfied due to the last computation above. The first set of constraints
under this fitting gives:

1
yj < w;pij — §||‘Uij||2 + (vo, vij)

1 ) . 1 1 .
= 7 E ((5&1)(33) + Agj)(x)) < 3 Wi Pij + 3 E w; wi, min{dj;, Ok } Tik-
ecM keN

These are now satisfied by Lemma 7.1. To argue about the objective, observe that

Su=1 5 Y (0@ +A0@) = 1 3 (L) + Fu@)

JEN eeM jeEN eeM

by using the definition of the increments and the fact that the sum is telescoping. In addition,

1 . 1
H’UQH2 = E Z wj Wi mln{éij,dik} xij Tik S 5 Z Fe(a:).
J,keEN ecM

Hence, the objective can be lower bounded as:

Z yj — %H’UOHZ > i Z (Le(x) + Fe(x)> — i Z F.(z)= i Z Le(z) = iE[C(X)]

JEN e€eM eeM e€eM 0

8 Concluding remarks. In this paper, we built on the work of [50] which showed a way to use convex
programming duality to prove price of anarchy bounds for different games. We showed that a unique convex
program turns out to be surprisingly powerful and allows to get tight upper bounds for a large class of congestion
and scheduling games. Moreover, it can also be used to bound the approximation ratio of local search algorithms
and the competitive ratio of online algorithms for such problems. The dual program has a simple structure with the
first set of constraints being similar to equilibrium inequalities, guiding the dual fitting approach. This program
also has a natural connection to the inner product space structure developed in [25]. It would be interesting if
this approach can be extended to new games where price of anarchy bounds are not yet settled. Moreover, all the
problems we considered had a quadratic (possibly non-convex) objective function, which made the first round of
the Lasserre/Sum of Squares SDP hierarchy powerful enough to write a tractable convex relaxation. It would be
interesting if a similar technique can work for problems with a higher degree polynomial objective by considering
later rounds of the hierarchy. To the best of our knowledge, such dual fitting arguments on semidefinite programs
have not been explored much: we hope and believe that there may be additional applications to such an approach.

Acknowledgements. The author would like to thank Zhuan Khye Koh for useful discussions. The author
would also like to thank Guido Schéfer for useful discussions, as well as nice feedback on an earlier version of this
document. The author also thanks an anonymous reviewer who pointed out that the online greedy algorithm has
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A Recovering the Kawaguchi-Kyan bound for P||>  w;C;. In this section, we show that we can
recover the optimal bound of (1++/2)/2 for the pure price of anarchy of the scheduling game on parallel machines
P|| > w;C;, where each machine uses increasing Smith ratios to schedule the jobs. To do so, we make use of a
sequence of reductions to worst-case instances provided in [56]. The first assumption that we can make is that
w; = p; for every job j. The (SDP-SR) dual semidefinite program shown in (4.4) and used in Section 6 for
R|| > w;C; in this special case becomes the following. We denote the set of jobs by J and the set of machines by
M.

1
max Y, S ool
jeJ
1 . .
y; <pj— §\|Uz‘j||2 + (vo, vij) VjieJJVie M
(Vij, virk) < pj pr Lgimiry V(i,7) # (', k) with j,k € J.

Moreover, the reduction in [56] states that we may assume the instance only has two different processing
times &, p > 0, where € is an arbitrarily small constant. Jobs with processing time € are called small jobs, and the
total workload of these jobs is |M], i.e. the total number of small jobs is |M|/e. Jobs with processing times p are
called large jobs and the total number of large jobs is k < |M], i.e. strictly less than the number of machines. In
addition, in a pure Nash equilibrium x:

e All small jobs are started and completed in the interval [0, 1].

e All large jobs are started at 1.
In this reduced instance, it is also possible to get an exact expression for the optimum solution. In particular,
define o :=m/(m — k) and 3 := (m + pk)/m, an optimal solution z* then has cost:

. kp? + mT*kaQ if p>a

It can then be shown that in both cases C(z)/C(z*) < (14 +/2)/2 through a simple calculus analysis. The reader
is referred to [56] for details.

We show here that we can construct a feasible dual solution to the SDP matching the objective value of

C(x*), showing that the SDP does not have an integrality gap on such a reduced instance and thus implying that
the price of anarchy is at most (14 1/2)/2 by a dual fitting proof.
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THEOREM A.l. For any instance of the above game on the reduced instance, there exists a feasible (SDP-SR)
solution with objective value C(x*), implying that the price of anarchy is at most (1 +/2)/2.

Proof. The vectors in our dual fitting will live in the space RM. Let us denote the total number of machines
by m = |M]|, and let us set a := m/(m — k). We denote by 1 the all ones vector and by e; the i'" standard basis
vector.

We now state the dual fitting for the case where p > «a:

e yg=al
e If j is a large job, then set v;; = ae; and y; = p? +a?/2
e If j is a small job, then set v;; = ce; and y; = e

Let us check that this solution is indeed feasible. Clearly, if ¢ # ¢/, then (v;;,v;75) = 0 by orthogonality of e; and
ei. For two jobs j # k, we have that (vij, vik) < ||vij| ||vik]| < pjpr where we use Cauchy-Schwarz for the first
inequality and the fact that o < p if some job is large for the second inequality. This shows that the second set
of SDP constraints is satisfied.

Moreover, the first set of constraints is satisfied as well, as the SDP inequalities yield y; < p? + a2 /2 for large
jobs and y; < £2/2 + ea for small jobs, which is satified by our choice of y;. The objective value of this dual
solution is then:

1 a’ m 1 m—k
jze;]yj - 5“1)0”2 =k <p2 + 2) + ;504 — imOﬂ = k’p2 + TOZZ

where the first equality follows since the number of small jobs is m/e and the last equality follows by observing
that ma = (m — k)a? by definition of a.
For the case where p < «, we define 8 := (m + pk)/m. We now state the dual fitting:

e v=01
e If j is a large job, then set v;; = pe; and y; = p*/2+ Bp
e If j is a small job, then set v;; = ce¢; and y; = €

Similarly to before, the second set of constraints is satisfied by orthogonality of the standard basis vectors and
the fact that ||v;;]| = p; for all jobs (either small or large). The first set of constraints yields y; < p?/2 + Bp for
large jobs and y; < /2 + £f3 for small jobs, which is clearly satisfied by our choice of y;. The objective value of
this dual solution is then:

m mpZ  kp? mpZ 1
S = gl = b (G 4 80) + L= 28 < M 0y = 5 = Z?
jeJ
where the last equality follows by observing that mj3? = (m + pk) by the definition of 3. 0

B Missing proofs.
B.1 Proof of Lemma 3.1.

Proof. For both spaces, we argue that a collection of elements in it can be mapped to a collection of vectors in
a standard Euclidean space while preserving all the pairwise inner products (and thus also preserving the norms).
This then clearly implies the claim.

We first show the statement for F(E). Let us denote the difference between two breakpoints as A;e) =
5](»6) - 5§i)1. For each element f € F(E), define f € RE*M as f'(e,j) := f( 6(6)1 + A(e)/2) A;e). By
computing the integral of a step function, we clearly have that for f,g € F(FE),

=3 > AP (e 0 + A /2) g(e. 000 + A1 /2) = (1.9,

ecel j=1
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Note that the last inner product is the standard Euclidean one, thus showing the claim for F(E).
We now show the claim for G(E, M). Let us write a rank one decomposition of the positive definite matrix

M = ZjK:l ujujT, which can for instance be done through the spectral decomposition. For each f € G(E, M), we
define a modified f’ € REXIK] as f'(e, j) := f(e,-)Tu;. Clearly, we then have that, for f,g € G(E, M):

K K
(frg) = fle)Tusuigle,) =" f'(e.d)g'(e.d) = (9.

e€E j=1 eCE j=1 O
C Preliminaries on SDPs. A symmetric matrix X € R"*™ is positive semidefinite, denoted as X > 0, if
the following equivalent conditions hold:
1. 27Xz > 0 for all z € R®
2. All the eigenvalues of X are non-negative
3. There exist vectors vy, ..., v, € R? for some d > 0 such that X;; = (v;,v;) for all i,j € [n].

For A, B € R"*" the trace inner product is defined as:

ij=1

Given symmetric matrices Ay,..., A, € R"*™ and b € R™, a semidefinite program (SDP) in standard form is
the following optimization problem:

p* zsip{<C,X> (Ag, X) =b, (k€ [m]),X =0}.

Each SDP of that form admits a dual SDP program:

d* =inf{bTy:Y = A, —CY = 0.
lryl{ y > A = C, _}

k=1

Weak duality holds, meaning that p* < d*. By Property 3 described above, in order to come-up with a feasible
dual solution, it is enough to construct y € R™, as well as vectors vy, ..., v, € R? in some dimension d > 0 such
that Y = (310, yeAr — C),; = (vi,v;) for every i,j € [n].

D Computation of the dual SDPs.

D.1 Taking the dual. Recall that our primal semidefinite programming relaxation is the following.

min(C, X)
D Xy =1 VjeN
X10,i5y = X{4j, 5} VieN,ieS;
Xij, ey =0 Y(i,7), (i, k) with j, k > 0.
X>0

It can be easily checked that the following form of semidefinite programs is a primal-dual pair. The dual variables
(Ai): and () respectively correspond to the equality and inequality constraints, whereas the matrix variable ¥
corresponds to the semidefinite constraint.
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min(C, X) max Z biX;
(A, Xy =0b; Vi i
(Bj,X)>0 Vj Y =C=Y NAi—> u;B;
X=0 : J
Y >0, wu>0.

Observe that our above primal SDP is in fact of that form. Let us denote by (y;)jen, z and (04;)jen,ics; the dual
variables respectively corresponding to the three sets of equality constraints. Let us denote by jig;;1) > 0 the
dual variables corresponding to the inequality (or non-negativity) constraints. The dual objective then becomes
2jen Yj Tz

All the games considered will satisfy the fact that the objective matrix is all zeros in the first row and column:
Cro,0y = 0 and Cyg 453 = 0 for every j € N and i € §;. The dual matrix equality then becomes:

Y{O,O} = —Z
y{o)ij}:% VjieN,ies,
Yiig iy = Clig isy — Yi = ij — B{.) VjeN,icS;
Yiij iy = Claj, irky — Mg, itk (i, 7) # (', k) with j,k > 0.

Note that we can now eliminate the dual variables z and o by the first two equalities. Moreover, we can
eliminate the p > 0 variables by replacing the last two equalities by inequalities. Let us now do the change
of variable Y = 2Y and let the vectors of the Cholesky decomposition of Y’ be vy and (vi;);jen,ics,, meaning
that Y, , = (vq,vp) holds for all the entries of Y'. The dual SDP in vector form can then be rewritten as:

1
max Z Y=g [|vo]|

JEN
1 , .
Y < C{ij, i} — §H’UMH2 — <’l)0,Uij> V] & N,Z S Sj
(vij,vi/k> S 2 C{ij, ik} V(Lj) 7é (i/, k) with j, k> 0.
Clearly, we can also do a change of variable v, := —vg to get the relaxation (3.2).

D.2 Specializing it to the different games considered. Let us now describe how the objective matrix
C looks like for the different games that we need. Recall from Section 3.1 that we need to pick a symmetric
matrix C such that C(x) = (C, X) = Tr(CT X) where X = (1,z)(1,z)7 is a binary rank one matrix and C(z) is
the social cost. By definition of the trace inner product, this is equivalent to:

C(x) = Cio0y +2 Z Cro,ijy Tij + Z Clij, ik} Tij Tirk-
JEN,IES; J.kEN
iESj,i/ESk
Recall also that mfj = x;; since x;; € {0,1}. Hence, if the social cost does not have constant terms, we will always
be able to pick €' such that Cyg oy = 0 and Cyg;;; = 0 for every j € N,i € §;, which we do for all the games
below.
For the congestion game under the Smith Rule policy, the social cost in (4.2) can be written as:

1 .
C(x) = Z w; Cj(x) = Z W Pej Tij + 3 Z w; w min{dej, Oek } Tij Tirk-

jeN JEN JEN,k#j
1€S; i€8;,i' €Sk
et ecini’

Therefore, the objective matrix C' is the following:

1 .
Clijoigy = D wiPej » Clijoky = 5 > wjwy, min{de;, der ).

eci ecini’
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If one considers the scheduling problem R|| > w;C; under Smith’s Rule, which is a special case of the previous
setting, then

1 .
Clig iy = wipig 5 Cpijoiwy = 5 wj wp min{dy, Gi} Limiry-
For the congestion game under the Rand policy, the social cost in (4.11) gives

Sege
Cragy =2 wipes » Cjony = 3 wjwe 5=

eci ecini/

For the weighted affine congestion game, we have seen that

Clz):=> Cj(x) = acle(r)® +be Le()

JEN eckl

where le(x) =3 ey Wej Dojes;: ec; Tij- The objective matrix in that case is

Cv{ij7 ij} = Z'Ujej (ae Wej + be) R C{ij, ik} = Z Qe Wej Wek -

ect ecin’

E Robust price of anarchy. In this section, we describe how our proofs can be adapted to give bounds
on the coarse-correlated price of anarchy, meaning that we can now generalize our results by considering coarse-
correlated equilibria, instead of mized (or pure) Nash equilibria.

Let N be a game with a strategy set S; and payoff function C; for every player j € N. A distribution o over
Sy x --- X &, is a coarse correlated equilibrium if

(El) EXNU[CJ'(X)] < EXNU[Cj(X_j,i)] VJ S N,’L' S Sj.

Note that this generalizes a mixed Nash equilibrium. In that case, o is a product distribution, i.e. every player
J picks a random strategy independently from its own distribution, which we denoted by (z;;)ics, previously in
the paper. We note that our formulas for Cj(x) - see for instance (4.1) - for non-binary z (i.e. interpreting x
as a collection of probability distributions rather than an integer assignment) implicitly use this independence
assumption, meaning that the current proofs do not directly go through for coarse-correlated equilibria. Let us
first rewrite (SDP-C) (3.2) in a more convenient matrix form for this argument.

1
max Z goj—§ Yi0,0

JEN
1 . .
i < Clijoisy — 5 Yz + Yoy VjeN,icS,;
Yiigany < 2C35, ik V(i,j) # (i', k) with j,k € N
Y =0

One way to generalize our results is to consider random dual (SDP-C) solutions, i.e. doing a dual fitting on
a realization X ~ o, which induces binary random variables {X;};en ics; and {Z;}jen,ccr. For any price of
anarchy dual fitting argument in this paper, first replace every occurence of respectively z;; and z.; by X;; and
Ze;, in which case vy and every y; become random variables (note that every v;; is always deterministic). To get
a feasible dual solution, we now set Y, := Ex[(vq,vs)] for every indices a,b as well as ¢; := Ex~,[y; |-

The second set of constraints of (SDP-C) is always satisfied deterministically in our fittings, while the first set
of constraints is satisfied by considering expectations, due to inequality (E.1). Moreover, Y is positive semidefinite
since it is a convex combination of positive semidefinite matrices.

We thus get a feasible solution with objective value V satisfying V' > p Ex ., [C(X)] for some desired bound
p € [0,1]. Since the dual solution is feasible, we have V < C(z*), where z* is the social optimum. Combining
these two equations gives:

Ex,[C(X)] <

C(z")

hence yielding a bound on the coarse-correlated price of anarchy.
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