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Quantum computers can accurately compute ground state energies using phase estimation, but this requires a
guiding state that has significant overlap with the true ground state. For large molecules and extended materials, it
becomes difficult to find guiding states with good ground state overlap for growing molecule sizes. Additionally,
the required number of qubits and quantum gates may become prohibitively large. One approach for dealing with
these challenges is to use a quantum embedding method, which allows a reduction to one or multiple smaller
quantum cores embedded in a larger quantum region. In such situations, it is unclear how the embedding method
affects the hardness of constructing good guiding states. In this work, we therefore investigate the preparation
of guiding states in the context of quantum embedding methods. We extend previous work on quantum impurity
problems, a framework in which we can rigorously analyze the embedding of a subset of orbitals. While there
exist results for optimal active orbital space selection in terms of energy minimization, we rigorously demonstrate
how the same principles can be used to define selected orbital spaces for state preparation in terms of the overlap
with the ground state. Moreover, we perform numerical studies of molecular systems relevant to biochemistry,
one field in which quantum embedding methods are required due to the large size of biomacromolecules such
as proteins and nucleic acids. We investigate two different embedding strategies which can exhibit qualitatively
different orbital entanglement. In all cases, we demonstrate that the easy-to-obtain mean-field state will have a

sufficiently high overlap with the target state to perform quantum phase estimation.

DOI: 10.1103/PRXLife.3.013003

I. INTRODUCTION

Some of the most promising applications for quantum
computers arguably lie in their utility for molecular and
materials science. These fields face important computational
challenges, in both academic and industrial settings. Promi-
nent examples can be found in catalysis, battery and drug
design [1-4], and biochemistry [5,6]. True quantum advantage
will likely only emerge in the fault-tolerant regime, where
quantum phase estimation (QPE) algorithms will allow for
energy calculations of a quantum system (i.e., a molecule or
material) with controlled and guaranteed accuracy.

One of the central problems of quantum chemistry is the
computation of ground-state electronic energies. We con-
sider a system with a fixed number n of electrons and
a discretization of the electronic structure problem in the
Born-Oppenheimer approximation into N spin-orbitals, giv-
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ing a Hamiltonian of the form

N N
1
H = § :hpqa;aq + 5 E g,,qma;ajasaq,
rg=1 pqrs=1

where a, for p=1,...,N are the fermionic annihilation
operators for the N spin-orbitals, and g, = (pg|rs) are the
two-body integrals; see, for example, Ref. [7] for details. A
system with N spin-orbitals and n electrons has a Hilbert
space of dimension (1: ) which is exponential in N if n scales
linearly with N. High accuracy classical methods struggle
with the size of this Hilbert space. The key advantage of
quantum computing is that the quantum computer can natively
represent states in the Hilbert space using only N qubits.
When considering the scaling with system size, one should
keep in mind that at fixed electron number 7, but an increasing
number of orbitals N (the continuum limit), the Hilbert space
dimension increases only as poly(N) (polynomially in N),
albeit with an in practice prohibitive exponent 7.

There are two major challenges in quantum computing for
chemistry and many-body physics:

(1) The first challenge is the orthogonality catastrophe.
Quantum phase estimation requires an initial guiding state
which has sufficient overlap with the ground state. However,
for systems with large N and scaling electron number, small
local errors in the guiding state lead to an exponential decay
in the overlap with the global ground state. As a result, good
guiding states become hard to find; see Appendix A.

Published by the American Physical Society
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(i1) The second challenge is to perform Hamiltonian simu-
lation for a time O(s~!) to achieve quantum phase estimation
precision &, and to reduce the dependence of the computa-
tional coston N.

The first challenge is a fundamental and theoretical ob-
struction to computing ground state energies efficiently on
a quantum computer. However, for many molecules, con-
ventional computational methods are observed to find good
guiding states in practice (though this may be different for
strongly correlated materials with a lattice structure), so for
practical applications to quantum chemistry there is evidence
that this is not the main problem [8,9], and our work supports
this claim.

For the second challenge, phase estimation based on Trot-
terization of the time evolution unitary operator scales as
O(N%) for the full electronic Hamiltonian because of the
two-electron interaction terms in its second-quantized form.
However, truncation strategies can be employed to reduce the
number of relevant parameters and significantly reduce the
scaling of the phase estimation. In the case of Trotterization,
the scaling can be reduced to O(N 3) for a given molecule and
increasing basis set size and to O(N?logN) for increasing
molecule size [11]. Alternatively, qubitization allows for the
factorization of the Hamiltonian, which can reduce the scaling
down to O(N) [2] . However, this comes at the cost of a
large number of ancillary qubits, and the overall scaling of
the phase estimation also depends on a normalization factor
A which scales with N. Hence, the scaling can lead to quan-
tum circuits with a prohibitively large gate count in practice,
even for different truncation and factorization strategies, and
it represents a serious bottleneck for useful quantum compu-
tations. Specifically, from state-of-the-art resource estimates
it appears that, with fault-tolerant devices, computations for
100-200 spin orbitals already require very extensive quantum
resources [2,3,10,12], on the order of 10'° Toffoli gates [13]
(with the caveat that it is difficult to predict the hardware
specifications of future fault-tolerant quantum computers).

Given a choice of orbital basis, the electronic ground state
can be written as

W)=Y Glo), Y IGP=1, (1)

where the sum runs over Slater determinants |®;). For exam-
ple, one can choose Hartree-Fock (HF) orbitals. In that case,
the expansion in Eq. (1) consists of the HF state |®() and
corrections to it, which represent electron correlations. One
can also choose a different orbital basis, and this may lead to
a significant increase in the largest weight on a single deter-
minant. If the HF basis state qualitatively misrepresents the
ground state, and there are more determinants with weights
of the same order of magnitude, this is known as static cor-
relation. The remaining determinants with small weights then
account for the so-called dynamical correlation. While useful
notions, there is no sharp distinction between dynamical and
static correlation.

The question of finding and preparing good guiding states
is closely related to the computational complexity of the elec-
tronic structure problem. The problem of finding ground state
energies of local Hamiltonians in full generality is QMA-
hard [14,15], so this task is believed to be intractable even

for quantum computers. In particular, this implies that it is
hard to prepare guiding states with nontrivial ground state
overlap—however, numerical evidence suggests that finding
good guiding states is feasible for many realistic not-too-large
chemical systems [8,16]. This is the case if the correlation
is of a dynamical nature, and also in systems with a static
correlation; a small number of determinants [9], choosing
a different orbital basis (see, for instance, Ref. [17]), or
symmetry-respecting configuration state functions [18] may
suffice to reach good ground state overlap and hence yield
efficient quantum phase estimation algorithms. For quantum
phase estimation, a constant (or even inverse polynomially
small) ground state overlap suffices for efficient ground state
energy computation. For the total cost, it does not make a
significant difference whether one has a constant ground state
overlap, or even ground state overlap close to 1. However,
if the guiding state has ground state overlap close to 1, this
allows the possibility to parallelize the phase estimation into
multiple circuits of shorter depth [19,20], as we briefly review
in Appendix A, and which may be particularly useful for early
fault-tolerant quantum computers.

In many large molecules where static quantum correlations
are important, so that a mean-field treatment does not suffice
to represent the target state even qualitatively well, these
correlations can be assigned to a relatively small number of
orbitals. If these orbitals are localized in three-dimensional
space, static correlation will be of a short-ranged nature. In
such situations, both challenges (ground state overlap and
Hamiltonian simulation scaling with N) can be addressed
by using an appropriate embedding method, which singles
out a spatial region (or lengthscale) that is treated fully
quantum mechanically, and an environment (or longer range
correlations) which can be treated with an approximate elec-
tronic structure model such as (mean-field) HF or some other
electronic structure model of low computational complexity
such as (variants of) Kohn-Sham density functional theory
(DFT). By focusing on a smaller embedded quantum sub-
system (denoted as a quantum core in the following), the
system to which one applies phase estimation is sufficiently
small so that the exponential scaling of the orthogonality
catastrophe has not yet kicked in, and one can still find
high-overlap guiding states using classical methods. Addition-
ally, the smaller number of orbitals leads to a reduced gate
count in the phase estimation quantum circuit. For very large
molecules (such as proteins, protein complexes, or interacting
biomolecules in biochemistry), embedding strategies can be
of a multilevel nature, where the description of the interatomic
interactions ranges from classical force fields to different
quantum-mechanical approximations. We provide a brief in-
troduction to relevant aspects of quantum embedding theory
in Sec. II.

In this work, we focus on quantum-in-quantum embedding
schemes, where a large system is described by an approximate
quantum-mechanical model (such as HF or Kohn-Sham DFT),
while one or more subsystems embedded into this large sys-
tem define the quantum cores. The energy contribution of the
quantum cores to the full potential energy surface of the large
system can be rigorously obtained by a (future) fault-tolerant
quantum computer using a representation of the full wave
function in the restricted orbital space of the quantum cores.
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It is for this reason that we consider state preparation in the
context of quantum embedding approaches.

While wave-function-based approaches in traditional com-
puting (such as coupled cluster theory or multiconfigurational
approaches with multireference perturbation theory) can de-
liver accurate quantum core energies, an important drawback
is that precise and controllable error bounds are not known for
any of these methods [21]. By contrast, quantum computation
based on phase estimation can deliver total electronic energies
to a given precision (that is, typically chemical accuracy be-
tween 1 and 0.1 mHartree, which is sufficient to ensure that
relative energies are sufficiently accurate for the evaluation of
valence-shell properties such as relative energies of molecular
structures or rate constants)—provided that an initial guiding
state can be efficiently prepared which will have a large over-
lap with the target state that is to be determined. We note that
the growth of the absolute electronic energy with molecular
size is due to the low-lying core shell orbitals, which do not
contribute to such valence shell properties (apart from the fact
that an embedding that restricts the orbital space would not
allow for arbitrary growth of the electronic energy). We em-
phasize that rigorous error estimates will be a key advantage
over traditional approaches [1,2,22], apart from the fact that a
quantum computer with a sufficiently large number of qubits
for the representation of an electronic state will tame the curse
of dimensionality posed to traditional approaches.

The use of embedding methods for quantum computing in
quantum chemistry raises important questions:

(i) What is the interplay between an embedding method
and the guiding state? For example, if the choice of the em-
bedding method affects the type of correlation on the resulting
orbital space in a quantum core, then this may have conse-
quences for the character of the guiding state up to the point
where it might be difficult to determine.

(i1) What is the computational complexity of problems with
localized quantum correlations?

The second question concerns the general computational
complexity of problems with localized quantum correlations.
In Sec. III, we study this question theoretically in the context
of quantum impurity models, specifically by extending the
work of [23] on the nature of quantum impurity problems to
shed light on these questions. A quantum impurity model is a
system with a scaling number of N orbitals, of which only a
constant number M participate in two-body interactions. Such
models may be considered a useful description for systems
where electron correlation is localized to a small subset of
orbitals. Based on [23], we show that there exist good quan-
tum embeddings for such systems. Based on this, we propose
an approach to the guiding state problem where one uses an
embedding method to find a guiding state that is an arbitrary
state on the quantum core, and a Slater determinant on the
environment. We show that if one chooses a good embed-
ding or if the one-body Hamiltonian is gapped, this guiding
state has at least an inverse polynomial overlap with the true
ground state of the embedding Hamiltonian, giving a poly-
nomial quantum algorithm for the ground state energy. This
is in contrast to the best-known rigorous classical algorithms,
which in these cases have a quasipolynomial scaling in the
precision [23].

These results motivate a general strategy for preparing
guiding states for problems with localized quantum corre-
lations on large-scale fault-tolerant quantum computers. We
propose that one searches for guiding states through quantum-
in-quantum embeddings.

Here, one identifies an active orbital space A and an en-
vironment C, and takes as a guiding state a state of the
form |®,) A |W¢), where |®4) is the solution to the (small)
active space problem, |W¢) is a Slater determinant on the
environment, and A denotes the antisymmetrized product. A
mean-field calculation is used to obtain the wave function on
the environment, with which the embedded Hamiltonian can
be constructed. An approximation of the ground state energy
and wave function can then be calculated using one of the
classical approaches. Tensor network-based methods, such as
the density matrix renormalization group (DMRG), stand out
in particular as they provide an adequate description even
in the case of strongly correlated embedded systems. These
approaches, however, introduce errors in the energy due to
approximations (e.g., limited bond dimension in the case of
DMRG), but may provide a good approximation to the wave
function. Quantum phase estimation then allows for accurate
computation of the ground state energy using the classically
calculated approximate wave function as a guiding state.

We demonstrate numerically in Sec. IV that for two
conceptually different embedding methods, one can find
low-complexity guiding states, even though the two differ-
ent methods produce rather different orbital bases. For this
demonstration, we focus on small biomolecules (tryptophan
and its oligopeptide structures), which occur as monomers
and oligomers in biomacromolecules (proteins), and on a
transition-metal drug that can form a host-guest complex with
a protein. Such complexes are key to molecular recognition
processes. While we focus on biomolecules, our approach is
similarly relevant in other application areas involving larger
molecules or materials.

II. QUANTUM EMBEDDING METHODS

To make computations feasible for large systems, for which
physical or chemical properties are governed by a relatively
small spatial region within the larger system, an established
approach (see, for instance, Refs. [24,25]) is to treat different
subsystems or lengthscales at different levels of accuracy.
For example, in the case of molecular recognition, it may be
sufficient to focus on the interaction seam of host and guest
molecules and, hence, to take into account electron correlation
accurately only in the binding region. Embedding theory deals
with approaches to embed approximations of different levels
of accuracy into one another; see Refs. [26-31] for reviews
of quantum embedding theory. In general, one decomposes
the system into a quantum core, where one uses a high-level
electronic structure model, which takes into account the more
complex nature of the wave function, and a (quantum or clas-
sical) environment. If feasible, the environment can be treated
using a low-level model such as HF or DFT. It is possible to
have multiple quantum cores and multiple embedding layers,
treating parts of the system at the level of classical force
fields, semiempirical methods, or DFT at different levels of
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accuracy. To take the effect of the environment into account,
an embedding scheme requires the construction of an effective
Hamiltonian on the quantum cores, given the solution of the
low-level solver. Given the result of minimizing this Hamil-
tonian on the quantum cores, the embedding scheme should
provide a prescription for a global energy estimate.

We will discuss two different embedding schemes, which
we compare in detail with molecular examples in Sec. IV.
The first approach is based on density matrices. This is natural
for quantum computing, since quantum computation naturally
interfaces with quantum states. For example, in the bootstrap
embedding method (a particular density matrix-based embed-
ding scheme), one can enforce the consistency conditions
between overlapping fragments on the quantum computer
[32]. As an alternative, we also consider projection-based em-
bedding methods. These have the advantage of being naturally
compatible with DFT, which may be useful for multiscale
approaches.

A. Embedding based on density matrices

A natural approach toward embedding emerges from the
framework of open-system quantum theory and is based on
density matrices; an example is density matrix embedding
theory (DMET) [33-36], see [37] for a precise mathematical
description. Here we consider a system with N orbitals, where
we identify subsets Ay, . .., A, of these orbitals, which may be
called “fragments” or “impurities.” We let M; be the number of
orbitals in A;. Depending on the method, these fragments may
or may not overlap. Whereas the formal basis of DMET is the
Schmidt decomposition, its key practical idea is to combine a
high-level solver on the fragments with a mean-field solution
on the global level and enforce consistency conditions. We
start with a global state given by a single Slater determinant
|W), which can be obtained as the Hartree-Fock solution by
the low-level solver. For each of the subsystems A; we can
perform a Schmidt decomposition, which for each i gives a
decomposition of the full N-dimensional single-particle space
into A; (the fragment orbitals), a “bath” B; for A; of size at
most M; (the bath orbitals) and its complement C;, such that
the state

W) = [Wa5,) A W)

is decomposed into Slater determinants |W,,p,) and |W¢,) on
A;B; and C;, respectively. Now, one may look for wave func-
tions of the form |W;) = |®y4,5,) A [Y(,), where |Py,p,) is now
an arbitrary fermionic state on A;B;, determined by a high-
precision solver (such as a quantum computer). The high-level
solver minimizes the energy over states of this form. Since
we have a fixed Slater determinant |W¢,) on C;, this gives an
effective Hamiltonian on A;B;,

Hyp, = U ® (Ve DHUI @ |Yc,)).
This Hamiltonian is such that

H\iin(‘l"i|H|‘~I’i> = glin><q)A;B; |[Hy,, | ®Pa,B,),

|W; [Pa;5;

where the minimization on the left-hand side is over states of
the form

|Wi) = |Pa) A [We,).

There are different schemes for estimating a global energy
based on density matrix embedding. The standard approach
is to try to achieve self-consistency between the global Slater
determinant and the fragment wave functions. Here, one takes
nonoverlapping fragments and searches for a solution where
the Slater determinant |W) has the same 1-RDMs on the
fragments A; as the fragment solutions |®y4,p,). This can be
obtained by iteratively solving for the fragments and updat-
ing them to a global mean-field solution with constrained
1-RDMs. A different approach is the bootstrap embedding,
where one takes overlapping fragments and iteratively tries to
enforce consistency between the fragments on their overlap
instead of with a global state; see [38—40] for details. How-
ever, we note that in both cases, there is no guarantee of the
existence of a global wave function compatible with these
schemes, and the results are not variational. This means that
the obtained value is not necessarily a strict upper bound on
the true ground state energy.

B. Embedding based on projection

An alternative approach is given by projection-based em-
beddings [41,42]. Here, we use a method based on the
Huzinaga equation [41,43]. We describe the case with a single
quantum core. We start the theory discussion with HF as
the low-level solver, highlighting the similarities to DMET.
Later will we describe how DFT retrieves the missing electron
correlation in Hartree-Fock, making the approach formally
exact. The exactness of the approach means that when using
the exact (unknown) exchange correlation functional for the
DFT computation, and the exact wave-function solution on
the embedded fragment, the result of following the embedding
procedure equals the exact ground state energy. This embed-
ding method starts from a HF (or from a Kohn-Sham density
functional theory calculation), yielding a collection of molec-
ular orbitals indexed by a set J and a single Slater determinant
|®) with the orbitals in N' C J occupied. Given these orbitals
¢;, they are partitioned into two sets A and C of active and
environment orbitals. We write A4 and N for the subsets of
occupied orbitals in |®). The division into A and C is often
based on the localization of the orbitals on specific atoms in
the molecule [41,42]. Alternatively, a unitary transformation
in A/ may be transformed to enforce a localization on specific
atoms [44], or an automated orbital analysis can be performed
to identify orbitals contributing strongly to energy differences
[45]. The idea of the projection-based embedding is now again
to try to solve the minimization problem

ngpi)n(‘I’IHIKI’), W) = [Pa) A [We),

where |®4) is an arbitrary state on A, and |W¢) is the Slater
determinant on the environment where the orbitals in N¢
are occupied. Similarly to the embedding based on density
matrices, the Slater determinant on the environment is kept
fixed, which yields the effective Hamiltonian for the fragment,

Hy = ® (VcDHU @ |Yc))

— . ] L
=E+ Z hipg" a0 + 5 Z(PQIVS)a;a;asaq,
Pq

,qEA s
P4 r,s€A
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where

E=2% hy,+ Y [2(rlag) — (palgp)]

peNc p.geNc

is the mean-field energy of the environment, and

h;ginC) = hpy + Z [2(pglcc) — (pclgo)]
ceNe

is the effective one-electron operator that includes the interac-
tion between the fragment and the environment. In this case,
both the environment energy and the fragment-environment
interactions are captured on a mean-field level only, neglecting
the correlation, while the overall energy is represented as
E = E + EA"C, where EA"C is the energy of A", Note
that the Hamiltonian H, on the quantum core has as two-body
terms precisely the two-body terms acting on A, and only the
one-body term is modified.

The key idea of the projection-based embedding is to re-
cover the missing correlation using DFT. For this purpose,
densities y from the initial DFT calculation are used to define
the interaction terms between the fragment and the environ-
ment as

C]_

vembl Y™, Y1 = gly®* + v€1 - gly”1,

where g is defined by

A SR
@y Dpg =D Vil [(pqlu) - Ex(pllqj)} + (Vxe[¥ D pg-
ij
Here, x is the fraction of the exact exchange in the exchange-
correlation functional, and vy, is the exchange-correlation
potential matrix. This interaction term is used to redefine the
effective one-electron operator as

RO = 0+ (Ve y, 7D g
— (F* = )PC = PE(F* — 1) pgs

where PC is the matrix of the projection operator onto the
subspace C, i is a positive constant energy shift, and F is the
Fock matrix for the embedded fragment. The last two terms
are used to ensure that there is no mixing of the fragment and
the environment orbitals. The overall energy of the system can
be written as

E = (UalHalWa) = (Waldxcly” + 7T = Dxely 1Wa)

+ EXT N + €1 - EQT Iy - EXTY ]

+ EPTy A,
where EPFT[y €] is the Kohn-Sham DFT energy of C, ERXFT[y]
is the exchange-correlation functional evaluated for the den-
sity y, and Dy[y] is the operator belonging to vy.. Note
that EXFT[y] is typically nonlinear in y, which means that it
cannot be calculated as the expectation value of Ux.[y]. There-

fore, we formally subtracted the term (Wy [ De[yd + €1 —
Dyc[y€1|Wa) and added the differences in EPFT[y].

C. Embedding methods and quantum computing

Using appropriate embedding methods will be crucial for
the application of quantum computers to chemical systems,

Impurity:

M modes
=~

Full system:
N modes

s

e o0 0 ©
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FIG. 1. (a) A lattice model for the electrons in a metal, with an
impurity at one site. (b) Illustration of Theorem III 1: the ground
state can be accurately approximated by a state which is a Slater
determinant on the environment and some unconstrained state on the
fragment and bath modes.

especially for biochemistry, nanochemistry, and materials sci-
ence. Identifying the right quantum-mechanical subsystem of
a molecule and using the quantum chemistry calculation on
this fragment to derive conclusions about the full system is un-
avoidable for practical applications of quantum computation.
The quantum computer then serves as the high-level solver in
the embedding scheme.

Previous work using density matrix-based embedding
schemes includes Refs. [32,46-49], approaches using
projection-based embeddings include Refs. [50-52], and
approaches based on Green’s functions are presented in
Refs. [53,54] (which we do not discuss in this work). These
previous works have mostly focused on reducing the prob-
lem size, and running heuristic variational algorithms on
(near-term) quantum computers. How the embedding method
influences the problem of finding good guiding states, and
thereby the prospects for phase estimation, has not been ex-
plored systematically in previous work to the best of our
knowledge; one work in this direction is [5], which computes
guiding state overlaps for a range of active space sizes for
phase estimation for a protein system.

III. ORBITAL SELECTION FOR STATE PREPARATION
IN QUANTUM IMPURITY PROBLEMS

In this section, we aim at deriving rigorous results for
the state preparation problem in an embedding situation (see
Fig. 1). To accomplish this, we exploit the framework of
quantum impurity problems. A quantum impurity model is
a fermionic Hamiltonian that has arbitrary one-body interac-
tions, and two-body interactions on a constant-sized subset of
orbitals. Quantum impurity models are relevant as models in
material science where there is an impurity in the material. A
famous example is the Anderson impurity model [55], which
describes a magnetic impurity in a metal. This model gives
an explanation for the Kondo effect and has been instrumen-
tal in the development of numerical renormalization group
techniques [56]. In addition to the important application to im-
purities in metals, one can also consider them as a toy model
for large molecules where mean-field approximations are ac-
curate outside of a small interaction region. For example, the
“impurity” may consist of the orbitals that are localized in
the binding region. Note that in the quantum impurity model,
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we assume that away from the impurity we have a one-body
Hamiltonian (which is a different assumption from having an
accurate mean-field approximation).

More formally, a quantum impurity model is defined by a
fermionic Hamiltonian of the form Hree + Himp, Where He is
a one-body Hamiltonian on N fermionic modes, whereas Hipp
is an interacting fermionic Hamiltonian acting on a subset of
M modes,

N

Hfree = E hpqa;aQ1
pg=1

M
— Tt
Hipp = E hpq,.sapaqaras.
pqrs=1

Typically, we consider constant M and a scaling total system
size N. We assume that Hy.. has single-particle energies in a
constant range (which we can always achieve by rescaling).
We write @ for the ground state energy gap of Hfee. If the
Hamiltonian is number-conserving, we can study the lowest-
energy state in the subspace where we fixed the number of
particles to n.

Quantum impurity models are a simple but nontrivial class
of models that capture the orthogonality catastrophe and the
quality of embedding methods. The Anderson derivation of
the orthogonality catastrophe [57], see Appendix A, sug-
gests that the scaling of the orthogonality catastrophe may
be polynomial rather than exponential for quantum impurity
problems. For quantum phase estimation, an inverse polyno-
mial overlap suffices to get a polynomial algorithm, so this
suggests that quantum impurity problems may be in BQP.

Second, from the perspective of embedding methods, since
the impurity is small compared to the system size, one may
hope that one can identify a bath of a relatively small number
of orbitals that are influenced by the impurity, and one can
solve the full system by restricting to this bath.

Quantum impurity problems have been studied rigorously
by Bravyi and Gosset in [23]. Their main technical result
is a bound on the decay of the eigenvalues of the 1-RDM.
This gives rise to approximations of the ground state by a
relatively small number of Gaussian states. As an application,
Ref. [23] gives a quasipolynomial classical algorithm for the
ground state energy, and it shows that the quantum impurity
problem is in QCMA, which is the class of problems that can
be efficiently verified by a quantum computer given a classical
witness, and which is between NP and QMA.

Our results build on this work in two ways. First, we
argue that under certain conditions one can find an efficiently
preparable state that has inverse polynomial overlap with the
ground state, giving an efficient quantum algorithm for the
ground state energy.

Second, the results in [23] are formulated in terms of
Gaussian states rather than Slater determinants. To relate their
results to usual approaches to embedding methods in quantum
chemistry, we derive the analogous statements using Slater
determinants, working at a fixed particle number. A detailed
description of the setup, as well as formal statements and
proofs, are provided in Appendix C.

A. Decay properties of the one-body reduced density
matrix and good embeddings

One-electron basis states (orbitals) are key to understand-
ing different embedding techniques [58]. Given an electronic
Hamiltonian on a set of orbitals and a fixed number of elec-
trons, orbitals are often partitioned into sets that are called
frozen (doubly occupied), active, and virtual (unoccupied).
The idea is that, in an expansion of the wave function as in
Eq. (1), only the frozen and a few additional orbitals (that is,
the active ones) give rise to determinants with large weights
«;. This means that the problem reduces to an effective prob-
lem defined only on the active space. The frozen and virtual
spaces may contribute to the dynamical correlation, but this
can be accounted for by a computationally less intensive
method (for example, by perturbation theory). The selection
of the active orbitals can be based on various measures such
as natural orbital occupation numbers [59—62] or information-
entropy-based [63—66]. Our formal analysis will focus on the
former in the following, whereas for practical reasons, our
numerical results will exploit the latter, which can be based
on localized orbitals that can have advantages over natural
orbitals. In any case, as we review in the Appendix A, orbital
rotations are always possible, which would allow one to ex-
ploit natural orbitals for state preparation, which can then be
rotated into a local basis.

Given a ground state |WV), the one-body reduced density
matrix (1-RDM), or covariance matrix, is the matrix y defined
by ypy = (¥ |a;aq|lll). Its eigenvectors define a set of orbitals
known as the natural orbitals. We order the eigenvalues of
yasl>o 20y 2> 2oy 2> 0. The eigenvalue o; equals
the expected particle number for natural orbital j. This means
that the natural orbitals for which o; equals O or 1 are always
unoccupied or occupied, respectively, in the ground state. If
the eigenvalue o is close to 0 or 1, we may approximate the
ground state by a state where the corresponding natural orbital
is unoccupied or occupied, respectively. In other words, if we
can bound the number of orbitals for which o; is not close to 0
or 1 by K, then we can approximate the ground state |\) by a
state | W) = |®) A |®), where |®) is a Slater determinant and
|®) is an arbitrary state on K modes. This means that these K
modes define a good active space for the problem at hand, and
we can reduce the problem of (approximately) computing the
ground state energy to this subspace.

The main result of [23] is a bound on the eigenvalues of
the 1-RDM of quantum impurity problems, which is used
to approximate the ground state in terms of Gaussian states.
For chemistry problems, we typically have a fixed number
of electrons, and it is more convenient to work with Slater
determinants. We adapt the argument of [23] to show the
following result, which we prove in Appendix C.

Theorem III 1. Let w > 0 be the ground state energy gap of
Hiee, and let ¢ > 0. Then for

K = O(log(w™")(log(e™") + loglog(w™")))

there exists a Slater determinant |®) on N — K modes and an
arbitrary state |®) on K modes such that the state

|¥) = |®) A [©)

013003-6



HIGH GROUND STATE OVERLAP VIA QUANTUM ...

PRX LIFE 3, 013003 (2025)

has overlap [(U|W)| > 1 —¢ with a ground state |¥) of
Hfree + Himp'

Note that while this result shows that there exists a good
active space, it only provides a good way to determine which
orbitals make up this active space given the ground state 1-
RDM (which one does not necessarily have access to without
a priori knowledge of the ground state). In practice, finding
good active spaces is based on using an efficient classical
method to approximate the 1-RDM and using this estimate
to select an appropriate accurate space as discussed in Sec. II.

B. Computational complexity of the quantum impurity problem

The general electronic structure problem is QMA-
complete [15,67], meaning that it is likely a hard problem
even for quantum computers. On the other hand, Hamiltonians
with only one-body interactions, like Hy.., can be efficiently
simulated classically [68]. An important broad question in
quantum computing is to determine the existence of (physi-
cally relevant) families of Hamiltonians for which the ground
state problem is in BQP, while computing the ground state
energy is hard classically. Proving such a separation is difficult
(as this would imply a separation between P and BQP), but
one can at least try to prove BQP containment for specific
families of Hamiltonian ground state energy problems for
which we do not know rigorous polynomial-time classical
algorithms; see, for example, [69,70].

We investigate the quantum computational complexity of
quantum impurity problems. Here, the goal is to approximate
the ground state energy of an impurity problem on N modes,
with a constant-sized impurity, to precision €. As we saw in
the previous section, for quantum impurity problems there
exist relatively small active spaces, significantly reducing the
size of the problem. It was shown in [23] that this can be lever-
aged to give a classical algorithm that scales polynomially
in N and quasipolynomially in the precision &, with overall
scaling O(N3)exp(0( 10g(8’1)3)). It is also shown that the
ground state energy problem for quantum impurity models is
contained in QCMA, the class of problems for which a quan-
tum computer can efficiently verify solutions given a classical
witness. QCMA-hard problems are unlikely to be solvable
efficiently on a quantum computer. This leaves the interesting
open problem of whether one can prove whether quantum
computers can efficiently approximate the ground state energy
of quantum impurity problems to polynomial precision. We
argue that under two different restrictions, quantum impurity
problems become easy for quantum computers (while not
obviously so for classical algorithms).

The main observation is that when we apply Theorem
IIT 1, it suffices to find an active space such that the ground
state overlap is constant (but not close to 1). If this active
space contains only a constant number of orbitals K, then
we may consider the state p corresponding to choosing a
random active space of size K and preparing the maximally
mixed state for this active space. For constant K, this leads to
a ground state overlap that is at least poly(N)~!, and hence
p can be used as a guiding state to yield a polynomial time
algorithm. Indeed, Theorem III 1 gives a constant-sized active
space for constant precision if the gap w is constant. As a
further comment, these assumptions change the scaling of the

classical algorithm of [23] to O(N?) exp(O(log(s~")?)) in the
case of constant gap. This provides evidence that quantum
impurity models may provide an example class of systems
with polynomial time quantum algorithm, but no polynomial
time classical algorithm. However, the precise status of this
remains unclear, in particular since there is already a classi-
cal algorithm with quasipolynomial scaling, and an improved
analysis or better classical algorithm could lead to polynomial
scaling. Moreover, the potential advantage disappears if the
full quantum impurity Hamiltonian is gapped, as [23] provides
a polynomial classical algorithm for that situation based on
matrix product states (MPSs).

A second simplification arises in the case in which we
have a sufficiently accurate approximation of the 1-RDM of
a ground state. In this case, we can construct an active space
on log(w™") orbitals which suffices for a constant overlap
with the ground state. Since this active space has polynomial
dimension, the maximally mixed state on this subspace gives
a sufficiently good guiding state for phase estimation. We
summarize these findings with the following result, formally
stated and proven as Theorem C 3 in Appendix C.

Theorem II12. The quantum impurity problem for H =
Hiree + Himp is in BQP if either Hye. has a constant gap, or
if the ground state 1-RDM is given.

Of course, one generally needs the ground state in order
to compute the 1-RDM, so if one requires it beforehand,
then this does not directly lead to a useful algorithm. The
above result should, however, be seen as evidence for the
usefulness of iterative approaches, where one starts with some
estimate of the 1-RDM using computationally inexpensive
classical means, and then uses a quantum computer to perform
a calculation that leads to a more accurate approximation
of the 1-RDM. See [54] for a practical proposal for such a
scheme.

The algorithms in Theorem III2 and their analysis do not
directly lead to practically useful approaches, as their poly-
nomial scaling can be of high degree. However, these results
should be seen as a proof of principle that in quantum impurity
problems the “orthogonality catastrophe” is of a relatively
mild nature and may not be an insurmountable problem, re-
ducing a potentially exponential scaling to a polynomial one.
In practice, one can likely find better guiding states than the
maximally mixed states in the above theoretical algorithms.
Of course, classical algorithms for impurity problems will
also perform much better than currently proven by rigorous
guarantees [71-73].

Given a large system of N orbitals, where we know that the
problem has a strong electron correlation in some subsystem,
one can use a quantum embedding method (such as described
in Sec. II) to find a reasonable active space A of K modes, and
an environment system C. One then uses a classical method
to find a good guiding state |W4) on this small active space,
and a Slater determinant |\W¢) on C, and uses |W4) A W) as
a guiding state on the full system. Theorem III 1 shows that
for a quantum impurity model there exist good guiding states
of this form, but it does not guarantee that one finds the right
subsystem A or state |W,) in this way.

Finally, we note that the concept of impurity models has
also been used to compute properties of strongly correlated
materials, as in the Hubbard model. In these cases, a local
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patch of the system is treated as an impurity, and the interac-
tion with the remainder is treated at a mean-field level [74].
It has been proposed to use this framework, with a quantum
computer as the impurity solver, for strongly correlated sys-
tems [54]. It was demonstrated in [8] that this leads to a highly
multiconfigurational problem on the quantum core, but that
still, with only 10 determinants, an overlap of around 0.05 can
be achieved.

IV. NUMERICAL EXAMPLES

We now proceed to a numerical investigation of two dif-
ferent embedding schemes following the concepts discussed
above, namely of a scheme used in the bootstrap embedding
(as an example of a density-matrix embedding) and of the
Huzinaga (projection) embedding, to assess the influence of
quantum embedding on the preparation of states with large
ground state overlap. We investigate the relations between
the overlap of the mean-field HF basis state, as well as more
complex states, with the target state for different spatial sizes
of a quantum core and for growing orbital spaces. As we
will see, these different embedding strategies produce rather
different orbital bases. We study two systems that are exem-
plary for biomolecules: tryptophan in Sec. IV A (one of the
essential amino acids) and a compound containing ruthenium
in Sec. IV B with prospects as an anticancer drug. Some of
the computational methods are described in more detail in
Appendix D.

In general, we observe that in all cases we encounter, the
(easy-to-prepare) mean-field state has large overlap with the
ground state of the embedded Hamiltonian, with overlaps
larger than 0.9 in almost all cases. By using more complex
states, the overlap can be brought closer to 1. This does
not greatly influence the total cost of quantum phase estima-
tion, but it does allow parallelization with reduced maximal
depth (and in many cases this depth reduction will be larger
than the additional circuit depth from the more complicated
guiding state).

A. Tryptophan

Some of the 20 essential amino acids, the fundamental
building blocks of biomacromolecules, contain unsaturated
side chains that are therefore suitable candidates for probing
the role of static correlation in biomacromolecules. Out of
these aromatic amino acids, we chose tryptophan as an ex-
ample. In addition to this monomeric protein building block,
we also study a sequence of tryptophan molecules resembling
an oligopeptide structure (Fig. 2) that can be considered a
limiting case for proteins (noting that the primary sequence of
amino acids will not necessarily show repetitions composed
of only one amino acid). This situation is used to model a
biomolecule of increasing size, so we can see how the overlap
of the HF state or sum-of-Slater states decreases with increas-
ing system size (peptide length).

An easy approximation is to consider the tryptophan
residues in this series as noninteracting (so the ground state is
a product state) so that we can easily estimate the exponential
decline of the overlap of the HF determinant and the sum-
of-Slater state with peptide length. Switching on the weak

FIG. 2. Molecular structure of tryptophan and its derivatives:
(a) monomer with the fragment used to compare different embedding
approaches indicated in green, (b) dimer, and (c) trimer. Carbon
atoms are indicated in black, hydrogen atoms in white, oxygen atoms
in red, and nitrogen atoms in blue.

interaction only slightly changes the overlap, as we demon-
strate for the di- and tripeptides of tryptophan.

Although our results are specific to the examples chosen,
we expect their electronic structures to be representative for a
more general picture of electronic states. This is due to the reg-
ular structure of the amino-acid building blocks of proteins.
The results obtained for tryptophan and its oligopeptides will
be easily transferable to the homologous and also aromatic
amino acid phenyl alanine and may be straightforwardly gen-
eralized to the other essential amino acids.

We first applied a density-matrix based embedding. Specif-
ically, we used the bootstrap embedding algorithm for
molecular systems [40] on a selected five-atom fragment that
is part of the aromatic side chain, depicted in Fig. 2. This
fragment was selected as it represents an intuitively challeng-
ing embedded system, as it is connected to the environment
with both single and delocalized conjugate double bonds.
For the bootstrap embedding, a set of orthogonal localized
orbitals was constructed using the intrinsic atomic orbitals
scheme [75]. This basis was then used to perform the Schmidt
decomposition of the HF state and select the set of frag-
ment and entangled bath orbitals. Fragment orbitals selected
in this way were localized on atoms, making them a poor
choice for the wave-function representation. Therefore, the
selected fragment and bath orbitals were transformed to the
eigenvectors of the Fock operator in the fragment-bath space,
resulting in canonical orbitals depicted in Fig. 3(a). Due to the
nature of Schmidt decomposition, these orbitals resemble the
canonical HF orbitals of the entire system and, consequently,
exhibit relatively small single-orbital entropies (defined as
von Neumann entropies of the one-orbital reduced density
matrix [63]). Hence, the multiconfigurational character of the
fragment-bath system obtained with bootstrap embedding is
comparable to the one of the entire system, even though frag-
mentation “cuts” through single and double bonds [Fig. 3(b)].
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FIG. 3. (a) Left: fragment and bath orbitals obtained from the
Schmidt decomposition of the HF state. Right: canonical orbitals
obtained from the HF calculation in the fragment-bath space.
(b) Threshold diagram corresponding to the maximal discarded
single-orbital entropies relative to the largest value (max S, =
0.191 15) for different active space sizes, as introduced in Ref. [66].

From the drop in the values of the single-orbital entropies, one
can conclude that there are 12 orbitals that contribute the most
to the multiconfigurational character and the static correlation
[66,76] and include the reconstructed delocalized aromatic
system of the side chain (Fig. 3). Note that in the complete
bootstrap embedding, one would apply this construction to
multiple fragments, and then perform a matching procedure
between the different fragments, a step we ignore for the
purpose of this discussion.

Next, we performed DMRG calculations for different ac-
tive space sizes in the fragment-bath space, with orbitals being
selected based on the largest values of the single-orbital en-
tropies, as described in Ref. [66]. We use a bond dimension
of D = 1024 to yield a reference MPS that can be taken as a
reliable approximation to the exact (full configuration inter-
action, or FCI) ground state. To assess the suitability of MPS
wave functions with smaller bond dimensions for initial state
preparation, we calculate both energy differences and overlaps
of them with the reference MPS; the results are shown in
Figs. 4(a) and 4(b).

From Fig. 4 one can see that the overlap of the truncated
states with the reference MPS state approaches a value of
1 relatively quickly. This is expected, as the truncation of
the bond dimension is performed in the optimal way us-
ing the singular value decomposition, selecting the state of
the lower bond dimension that has maximal overlap with
the nontruncated one. For similar reasons, the energies of
the small-bond-dimension states quickly approach the cor-
responding reference energy. Furthermore, even states with
bond dimension D = 2 already demonstrate excellent overlap
with the reference MPS state (*0.97), making such an MPS a
good candidate for state preparation.
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FIG. 4. (a) Overlap of truncated MPS wave functions with the
reference MPS of bond dimension D = 1024 (taken as an approxi-
mate FCI result) for different active space sizes K. (b) Corresponding
energy differences of the small-bond-dimension and the reference
MPS. (c) Overlap of sum-of-Slater states with different numbers
of Slater determinants with the reference MPS wave function.
(d) Corresponding energy differences of the sum-of-Slater states and
reference MPS state. (e) Overlap of sum-of-Slater states obtained
from reference MPS wave functions in smaller active orbital spaces
with the reference MPS wave function of the largest active space
considered (K = 20). (f) Reference MPS energies for different active
space sizes.

We also consider a different Ansatz, namely sum-of-Slater
states (see Appendix A and [9] for a discussion of such states
on quantum computers). We obtain these by selecting the
most important determinants from the FCI-type expansion
represented by the reference MPS wave function, keeping the
Nsjater = L terms with the largest amplitudes:

1 L

VI GP Z

where |®;) are Slater determinants in a fixed basis of orbitals,
and we have ordered so |Cy| = |G| = - - -. These states are
both useful as a guiding state Ansatz (for small L), and to
understand the correlation structure of the ground state. From
Fig. 4(c), it can clearly be seen that the overlap obtained for
these sum-of-Slater expansions with the reference MPS wave
function are again relatively large. However, convergence of
these overlaps with the number of included determinants is
much slower than the convergence of small-bond-dimension
MPS wave functions with increasing bond dimension.

|Wsos) = Gi|®;), @)
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Moreover, convergence is slowed down even further for in-
creasing active space sizes K, which may be taken as an
indication of the orthogonality catastrophe in the large active
space limit. It is thus necessary to weigh both the gate count
for the preparation of MPS and sum-of-Slater states and the
quality of the overlap that they provide for the specific system
of interest.

With respect to the correlation structure of the ground state,
it is noteworthy that the change of overlap exhibits two differ-
ent regimes, with a large jump at a small number of Slater
determinants, followed by a slow convergence to unity. The
initial jump corresponds to the inclusion of the Slater deter-
minants describing excitations into the virtual orbitals with the
largest values of the single-orbital entropies, which carry the
largest coefficients in the FCI expansion and account for static
correlation. Although overlaps with the reference MPS wave
function are comparatively large, energies corresponding to
the sum-of-Slater states converge slowly to the reference MPS
energy [Fig. 4(d)]. Such behavior is expected, as truncation of
a Slater-determinant expansion results in a neglect of a signifi-
cant portion of the dynamical correlation energy. By contrast,
an MPS, even if truncated to very low bond dimension, can
represent a large number of Slater determinants, resulting
in much better convergence behavior, which makes them a
good candidate for guiding states with high ground state
overlap [9].

We now investigate the quality of the sum-of-Slater states
obtained for smaller active spaces as initial states for the
larger active space (K = 20). As can be seen in Fig. 4(e), the
sum-of-Slater Ansatz prepared in an active space with K = 15
orbitals provides overlaps that are virtually indistinguishable
from the reference. In the case of K =5 and 10, the overlap
is somewhat lower when compared to the sum-of-Slater state
prepared in the K = 15 case, but it still represents an improve-
ment over the Hartree-Fock state. This is due to the fact that
not all highly entangled orbitals are included in these cases [as
can be seen from Fig. 3(b)], resulting in a lack of several deter-
minants with non-negligible coefficients. However, it can be
seen that as long as the most entangled orbitals are included,
these active spaces provide sum-of-Slater states that are of the
same quality in terms of overlap as the ones obtained from the
calculation on the larger active space.

Finally, from Fig. 4(f), it is evident that many orbitals must
be considered to reach chemical accuracy in absolute energies,
as they carry a significant portion of the correlation energy.
The fact that the initial state can be prepared in smaller ac-
tive spaces therefore significantly reduces the computational
overhead for the classical part of the initial state preparation.

We also investigated a projection-based Huzinaga embed-
ding [41,77], using the same five-atom fragment, in order
to assess how different embedding strategies affect the state
preparation problem. There are several key differences with
respect to bootstrap embedding.

First, the orbitals used for the Huzinaga embedding are
obtained from a DFT calculation on the entire molecule, while
the basis for the density-matrix approach in the bootstrap em-
bedding is a HF calculation. This results in a different Hilbert
space for the fragment problem. Second, in the Huzinaga
embedding, interaction of the fragment orbitals with the oc-
cupied environment is described with a DFT potential, which
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FIG. 5. (a) Localized occupied fragment orbitals and localized
virtual orbitals obtained in Huzinaga embedding. (b) Threshold
diagram corresponding to the maximal discarded single-orbital en-
tropies relative to the largest value (max S; = 0.218 66) for different
active space sizes, as introduced in Ref. [66]. This may be contrasted
with Fig. 3.

approximates the correlation contributions from the occupied
environment orbitals that are neglected in the case of bootstrap
embedding. This interaction modifies the one-electron part of
the fragment Hamiltonian. Third, a split orbital localization
scheme is applied within the Huzinaga embedding, based on
intrinsic bond orbitals [75,78], while canonical orbitals are
used in the bootstrap embedding, which results in a qualita-
tively different multiconfigurational character of the fragment
wave function in these cases. Unlike bootstrap embedding,
the entire virtual space is considered in Huzinaga embedding,
and the canonical orbitals are not recomputed after the em-
bedding. Due to the local nature of the orbitals, the values
of the single-orbital entropies are significantly different from
the bootstrap embedding case (Figs. 5 and 3). In Huzinaga
embedding, orbital entropies are larger when compared to the
bootstrap case, which can be attributed to the usage of local-
ized orbitals [79]. This results in a larger number of highly
entangled orbitals, while the contribution of the virtuals that
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FIG. 6. (a) Overlap of sum-of-Slater states (With Ngjue Slater
determinants corresponding to the largest coefficients) with the ref-
erence MPS state of bond dimension D = 1024 for different active
space sizes K. (b) Overlap of sum-of-Slater states for different active
space sizes K with the reference MPS state (D = 1024) for the largest
active space considered K = 20. (c) Energies of sum-of-Slater states,
with lines corresponding to the energies of the full MPS wave func-
tion. (d) Energy of the MPS ground state energy approximation, as a
function of active space size K.

are spatially separated from the embedded fragment decreases
significantly.

Due to the small entanglement of some virtual orbitals,
convergence of the sum-of-Slater states both in terms of over-
lap and energy is faster than in the bootstrap embedding case
[Figs. 6(a) and 6(b)]. Hence, localized orbitals might present
a more suitable basis for initial state preparation. In classical
quantum chemical methods one aims for a pronounced single-
configurational character of the wave function and accounts
for dynamic correlation a posteriori. In contrast, for quantum
computers, it may be more desirable to have a multiconfigura-
tional wave function with little residual dynamic correlation
[Fig. 6(d)], since given a guiding state with only constant
overlap, phase estimation gives accurate energies on the frag-
ment orbitals. Similar to our bootstrap embedding results,
initial states with large overlap can be prepared in a smaller
active space, reducing the cost of a classical calculation for the
state preparation step also in the case of Huzinaga embedding
[Fig. 6(c)].

Finally, we turn to the sequence of tryptophan molecules
mimicking an oligopeptide structure. We chose the ac-
tive spaces to be residing entirely on the side chain (see
Appendix D for details). First, we consider the limit of non-
interacting side chains corresponding to separated tryptophan
molecules in the sequence. In this case, the overlaps of the HF
state with the reference MPS states decay exponentially with
the number of tryptophan molecules [Fig. 7(a)]. In the case of
sum-of-Slater states, the decay is approximately exponential
as well. The exact exponential dependence occurs when the
Slater determinants included correspond to the wave function
that is a product of sum-of-Slater states on each monomer.
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FIG. 7. (a) Overlap of sum-of-Slater states containing Ngjer
Slater determinants with the reference MPS state of bond dimen-
sion D = 1024 for different numbers of noninteracting tryptophan
residues (circles) and interacting residues in ditryptophan and tritryp-
tophan (triangles; note: the data for the interacting dimer and trimer
overlap with the data for the noninteracting cases). (b) Same as (a) for
a single monomer embedded into the ditryptophan and tritryptophan
(triangles). Values for the isolated monomer are given as a dashed
line.

Since the monomer ground state has relatively high overlap
with the HF state, we see that the overlap of the HF state is still
substantial (at around 0.7) for a sequence of five tryptophane
molecules.

We also compute the overlap with the ground state of the
interacting tryptophan dimer and trimer. It can be seen that
weak interactions (between the side chains) only marginally
perturb the overlap behavior observed for the separately
treated side chains, so the exponential decay from the non-
interacting case is a good approximation. We performed
embedding calculations for a single side chain in ditrypto-
phan (at the C-terminus side chain) and tritryptophan (side
chain at the amino acid in the middle) and investigated the
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FIG. 8. Molecular structure of the ruthenium complex with the
fragment used for the Huzinaga embedding indicated in transparent
green. Carbon atoms are indicated in black, hydrogen atoms in white,
nitrogen atoms in blue, chlorine atoms in green, and the ruthenium
atom in brown.

resulting overlaps of the sum-of-Slater states. As can be seen
in Fig. 7(b), the behavior of the overlap in both cases of the
embedded monomers is essentially the same as in the case
of a single tryptophan side chain. From these observations,
we may conclude for proteins that embedding of relevant
amino acid side chains represents a good strategy for mitiga-
tion of the orthogonality catastrophe caused by large system
size.

B. Ruthenium anticancer drug

As a second example, we consider a system containing
elements beyond the second period of the Periodic Table. This
compound (see Fig. 8 for a ball-and-stick representation of its
structure) is an anticancer drug [80,81], which can bind as an
inhibitor to a glucose-regulating protein [82]. Such a binding
is a typical example of small-molecule drug recognition by
biomacromolecules and therefore an example for a molecular
recognition application. Here, we focus on the isolated Ru-
based drug molecule and consider its central region, the Ru
ion containing moiety, as a quantum core (as highlighted in
green in Fig. 8). We leave an investigation of how the ground
state overlap problem changes when including the target pro-
tein in the embedding to future work.

For this complex, we applied the Huzinaga embedding of
the ruthenium ion and its first (nearest-neighbor) coordina-
tion sphere (Fig. 8). We consider two different charges of
this complex: the anion, ¢ = —1, corresponds to a doublet
state, and the neutral complex, ¢ = 0, we considered as a
triplet ground state. For the doublet, the overlap of the HF
state and the sum-of-Slater states is very large, indicating
a single-configurational character of the wave function. By
contrast, the triplet state exhibits smaller overlap of the HF
determinant with the reference MPS state of bond dimension
D = 1024, which is quickly cured by including a second
Slater determinant to yield a large overlap; see Fig. 9. This
behavior is a consequence of the triplet nature of the wave
function, which cannot be described by a single spin-restricted
determinant. However, it can be described with a configura-
tion state function, which is a symmetry-adjusted basis state.
In the case of the triplet, the configuration state function is
a linear combination of two restricted Slater determinants
(and therefor multiconfigurational). If the system of interest
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FIG. 9. Overlap of sum-of-Slater states (with Ngp,e; Slater deter-
minants corresponding to the largest coefficients) with a reference
MPS state of bond dimension D = 1024 for the doublet (net charge
g = —1) and triplet (net charge ¢ = 0) electronic states of the em-
bedded fragment in the ruthenium complex.

is comprised of several high-spin regions (e.g., in the case of
metal clusters), the overlap of the HF determinant will further
decrease, depending on the number and spins of these regions
[16]. It has already been argued that spin coupling to produce
configuration state functions effectively solves this problem
[18]. However, we note that such situations are not at all
common in biomolecular recognition situations.

V. CONCLUSIONS

In this work, we have demonstrated that embedding meth-
ods effectively avoid the orthogonality catastrophe in practice
for problems with local spatial structures, specifically in
biochemistry. We show that for two conceptually different
quantum embedding methods, low complexity states serve as
good guiding states for quantum phase estimation. We demon-
strate that this is the case for the fundamental building blocks
of biomolecules, but also for other compounds such as small
metal-containing drug molecules. As expected, the ground-
state overlap of the mean-field HF basis state with the target
state decreases with increasing active space size, but based
on our estimates, phase estimation will likely face bottlenecks
due to the polynomial scaling of simulation methods with the
number of orbitals N before small or vanishing ground state
overlaps become problematic.

If we consider embedded fragments with a fixed number
of electrons and an increasing number of orbitals, in principle
FCI on a classical computer scales polynomially as O(N").
This means that the speed-up provided by quantum phase
estimation is polynomial [as the Hamiltonian simulation sub-
routine has polynomial complexity in N, with O(N*) scaling
without any truncation and factorization strategies]. However,
for a modest number of electrons, on the order of ~20 for
exact solvers and on the order of up to ~100 for approximate
solvers such as DMRG, FCI becomes unfeasible as a classical
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method. Therefore, even though the quantum advantage of
phase estimation algorithms in this case is in principle only
polynomial, it is nevertheless significant. Additionally, with
increasing quantum resources we can also increase the num-
ber of electrons in the fragment in order to reduce the edge
effects of the embedding. This will restore the exponential
scaling size of the Hilbert space.

For general applicability, we have also studied embedding
and guiding state preparation for impurity models. Here we
argued for the existence of accurate small active orbital spaces
and for mild scaling of ground state overlap. This is clearly
a positive prospect for quantum algorithms for ground state
energy estimation, especially for biochemical applications.
Additionally, the quantum description of a small reactive re-
gion in a macromolecular structure will always be sufficient
for the investigation of relevant chemical processes as these
can be considered to occur locally in a molecular structure
(bond-breaking /forming involves a limited number of atoms).
Therefore, focusing on the embedded region only is expected
to be sufficient for such cases. If the quantum description
of a larger region is required, this will also be possible. For
instance, bootstrap embedding can be utilized to reconstruct
the total energy from calculations on many smaller, overlap-
ping embedded fragments [83] or stitch local energies for
(small) embedded fragments together with a regression model
or a machine learning potential. We emphasize that these
procedures have already been established within traditional
computing, and the insight is that they alleviate the orthog-
onality catastrophe and allow for efficient state preparation
required for quantum phase estimation to obtain energies with
controlled accuracy eventually.

To provide a more general framework for formal analy-
sis, here we considered also embedding and guiding state
preparation for impurity models. In this context, we could
argue in favor of the existence of accurate small active or-
bital spaces and for mild scaling of ground state overlap.
We further demonstrated that orbital selection based on the
quantum information theory and single-orbital entropies pro-
vides such a small active space in which state preparation
can be performed. An interesting open question is whether
the quantum impurity problem without any further restrictions
is in BQP. The mathematical analysis of embedding methods
and of quantum impurity problems is based on the natural oc-
cupation numbers of the 1-RDM. Future work could explore
whether the structure of 1-RDMs, which satisfy additional
linear constraints [84,85], can be used to improve quantum
embedding schemes [86—88] and help to find good guiding
states for phase estimation.

Various interesting challenges remain to assess the util-
ity of fault-tolerant quantum computers for ground state
energy estimation of electronic structure in chemistry. As
we have emphasized, one of the main advantages of quan-
tum computing based on phase estimation over conventional
methods is its accuracy guarantees. However, embedding
methods introduce an (uncontrolled) error, even if small in
practice. A better understanding of this error and the ef-
fect of the approximate treatment of the environment on the
quantum core will be important for applications of quan-
tum computers to macromolecules, and it requires further
work.
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APPENDIX A: GUIDING STATES
IN QUANTUM CHEMISTRY

This Appendix contains a review of the guiding state prob-
lem for quantum chemistry. We start by briefly reviewing the
dependence of quantum phase estimation on the ground state
overlap of the guiding state. Next we give an overview of dif-
ferent Ansdtzes for guiding states. We discuss different types
of correlation in quantum chemistry, and why one expects that
the ground state overlap vanishes exponentially for increasing
system size (the orthogonality catastrophe).

1. Quantum circuits and guiding state preparation

To estimate the ground state energy, one would like to
apply quantum phase estimation with the time-evolution op-
erator U (t) = exp(itH). Then, using a guiding state |y) with
ground state overlap |(¥|¥)| = n, one finds an approxima-
tion to the ground state energy with probability n%. Therefore,
the ground state overlap is related to the number of repeti-
tions needed to find the ground state energy through phase
estimation. An approximation of accuracy ¢ requires a circuit
with time evolution for time O(¢~!), leading to a total cost
of O(¢~'n~?). The scaling with ¢! is known as Heisen-
berg scaling and is optimal [89], but different approaches
to phase estimation have different scalings with the ground
state overlap. Given access to a quantum circuit preparing
[4), one can find the ground state energy using O(n~") uses
of this state preparation unitary, and time evolution for time
0(8’17]’1). This scaling is optimal [90] but does, however,
lead to deeper circuits. On the other hand, there are also
approaches that only require a single ancilla qubit and time
evolution for time O(e~!) [91]; these require O(n™*) circuit
repetitions. Finally, in the regime where n — 1, it is possi-
ble to reduce the maximal circuit depth, at the cost of an
increased number of repetitions. If § =1 — ;72, the maximal
required time evolution can be reduced to 0(8e™"), with a
total evolution time of O(8e¢~2) [19,20]. This means that if
one can find guiding states with ground state overlap sur-
passing n > 0.9 using cheap conventional methods, this may
be used to significantly reduce the required circuit depth for
accurate energy estimates using quantum phase estimation,
which may be helpful for realizing such simulations on de-
vices with a limited number of qubits and maximal circuit
depth.

There are three standard classes of guiding states for chem-
istry problems, which we will now briefly review, together
with the cost of preparing them on a quantum computer.
We refer to [9] for an extensive overview. For convenience,
we assume we are using a Jordan-Wigner mapping for the
fermion-to-qubit mapping of the electronic structure problem.
We quote the best known gate counts for two measures: the
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number of two-qubit gates required (and ignoring the number
of single-qubit gates), or alternatively the number of Tof-
foli gates (and ignoring the number of Clifford gates). The
first measure is relevant for current and near-term devices
where two-qubit gates are typically much slower and more
noisy than single-qubit gates. The second measure applies to
a fault-tolerant model where the main cost comes from the
nontransversal (non-Clifford) operations.

(i) Single Slater determinant: This is the most basic case.
Hartree-Fock yields a single Slater determinant, and under
a fermion-to-qubit mapping this state is represented by a
product state (which requires no two-qubit gates or 7" gates
to prepare). If we use the standard Jordan-Wigner mapping
with canonical orbitals (compatible with the HF state), then
for N spin-orbitals and »n electrons this is simply the state
[1)"0)N =" Tt is also possible to choose a single Slater deter-
minant in a different orbital basis than the one used for the
fermion-to-qubit mapping, which can significantly improve
the ground state overlap [8,17]. A single-particle basis change
can be implemented as a quantum circuit using so-called
Givens rotations. Using the Jordan-Wigner representation,
this requires n(N — n) two-qubit gates [92].

(ii) Sum-of-Slater determinants: A direct extension is to
take a state that is a superposition of a (small) number L of
Slater determinants, as in Eq. (2). Such states can, for ex-
ample, be found through configuration interaction with single
and double excitations (CISD) methods or selective configura-
tion interaction (SCI) methods [9]. Alternatively, they can be
extracted as the dominant coefficients of a matrix product state
(see below). Again, if we assume that the fermion-to-qubit
mapping uses the same orbital basis, such states are mapped
to a superposition of L standard basis states. These can be
prepared using at most O(NL) two-qubit gates, see [93] for
explicit gate counts, or O(L log(L)) Toffoli gates and [log(L)]
ancilla qubits [9]. Additionally, if the number of excitations
from the HF state is bounded by k, O(Lk) two-qubit gates
suffice [94].

(iii)) Matrix product states: A final power class of states
are matrix product states (MPSs). These can be found using
the DMRG algorithm, and they are characterized by their
bond dimension D. Accurate quantum chemistry calculations
typically require a large bond dimension, but alternatively
one can either try to minimize over low bond dimension
MPSs, or truncate a high bond dimension MPS to a low
bond dimension state, which has less accurate energy but still
significant ground state energy overlap. In many cases, this
leads to high-quality guiding states [9], but at a relatively high
classical processing cost. MPSs can be prepared in sequential
fashion, using O(N D?) gates (either two-qubit or Toffoli) [95]
and depth scaling with N. Heuristic methods for short depth
circuits preparing states with high overlap with a given MPS
can be found in [96,97]. Other depth reduction techniques are
based on the correlation length of the MPSs [98], or by using
midcircuit measurements and adaptive circuits [99].

Other methods for finding and preparing guiding states,
not discussed in this work, include adiabatic state prepara-
tion [100,101], thermal state preparation algorithms [102],
and variational approaches based on unitary coupled cluster
methods [103].

2. The orthogonality catastrophe

In most cases in many-body physics, requiring approxima-
tions at the level of the wave function that have large overlap
with the true ground state is a very strong requirement. As
we will explain below in more detail, small (local) errors in
the approximation lead to essentially orthogonal states on the
many-body level, a phenomenon known as the orthogonality
catastrophe. Nevertheless, for quantum algorithms it is in fact
important to prepare guiding states that have a significant
overlap with the true many-body ground state in order to
guarantee that the quantum phase estimation algorithm will
give a good estimate of the ground state energy.

We collect four basic arguments for the orthogonality
catastrophe, based on accumulation of error and Anderson’s
impurity argument in the thermodynamic limit, the electron-
electron cusp in the continuum limit, and finally an argument
from the computational complexity of the ground state prob-
lem.

The most basic intuition for the orthogonality catastrophe
is that if we have an extended system consisting of N subsys-
tems without any correlation between the systems, the global
ground state overlap decays exponentially if there is a local
approximation error. If the true state is |¢)®", and we have
on-site estimates |{) of |¢), then the global squared overlap
decays exponentially as |(¢|y)|*" (and the same is true for
uncorrelated fermionic systems) [104]. While this gives a
reasonable intuition, it is also a very artificial scenario.

In [57] Anderson showed that a similar phenomenon oc-
curs for a realistic physical system of an electron gas with
an impurity. The impurity is a local-sized perturbation, which
is constant-sized compared to the number of electrons. The
ground state of the perturbed system has an overlap with
the ground state of the unperturbed system, which, in this
case, decays polynomially with the system size. Note that
this differs from the uncorrelated example, where the decay
arises from the fact that every local fragment incurs an error.
This phenomenon is known as the Anderson orthogonality
catastrophe. This can be derived in perturbation theory for
a one-body perturbation [57]. This means that for impurity
models, the orthogonality “catastrophe” may only be of a
polynomial nature and therefore need not be an obstruction
to an efficient quantum algorithm as one may hope that the
ground state has a polynomially decaying overlap with the
mean-field state. We partially make this idea rigorous in
Sec. IIT and Appendix C, based on the work of [23].

Another fundamental reason for the orthogonality catastro-
phe lies in the continuum limit rather than the thermodynamic
limit. Here we keep the number of electrons n fixed, but
we increase the spatial resolution of the second-quantized
Hamiltonian by raising the number of orbitals N. This leads to
convergence to the true wave function in L*(R*") ® C2. Note
that the Hilbert space of a fixed number of electrons n but in-
creasing N scales polynomially (but with an exponent scaling
with n). It is well known that resolving the electron-electron
cusp of the wave function of any system with Coulomb
interactions requires a diverging number of Slater determi-
nants (see, for example, the discussion in Chap. 7 of [7]).
This is well understood analytically [105-107], and is true
for arbitrary eigenfunctions of the electronic Hamiltonian. In
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particular, it is known that the 1-RDM in the continuum limit
has eigenvalues (i.e., natural occupation numbers) decaying
as Ag ~ k=3 as k goes to infinity [105], lower bounding the
required number of (natural) orbitals needed to approximate
the exact wave function.

A final argument for a version of the orthogonality
catastrophe comes from complexity theory. The problem
of computing ground state energies is known to be QMA-
complete, which means that it is strongly believed to be hard
for quantum computers. This remains true in the case of elec-
tronic Hamiltonians [15,67]. As a result, there should be no
efficient (quantum) algorithm for finding states with at most
polynomially decaying overlap with the true ground state: if
such an algorithm existed, it could be used to prepare an initial
state for the quantum phase estimation algorithm and thus
efficiently estimate the ground state energy. On the other hand,
it is known that the ground state estimation problem remains
BQP-hard even if one is provided a guiding state with very
high ground state overlap [108]. This means that in general,
having classical methods which achieve reasonable overlap
does not imply the ability to improve this precision arbitrarily
in an efficient manner (although this could still be the case in
practice for problems in chemistry, as suggested by [16]).

Finally, for the general class of Hamiltonians that have an
(unknown) efficiently describable guiding state whose expec-
tation values can be computed efficiently using a classical
computer (such as MPS), the ground state energy problem is
QCMA complete [109]. This provides evidence that in general
guiding states that can efficiently be described classically may
still be hard to find.

3. Guiding states in chemistry

Electronic structure theory is the main quantum-
mechanical problem in chemical and materials science.
We distinguish three regimes:

(i) The weak correlation limit: In the weak correlation
limit the mean-field Hartree-Fock state is already an excel-
lent qualitative approximation. As discussed, these are easy
to prepare on a quantum computer, and this suffices as the
choice of guiding state. Most chemical processes belong to
this class. However, for these systems, coupled cluster mod-
els based on a Hartree-Fock reference state deliver reliable
results because they can efficiently account for the lacking
dynamic correlation (yet with unknown system-focused error
for a specific application [21]). Small molecules [8] belong
to this class, as well as electronic host-guest binding energy
calculations such as those required in drug design problems.
Quantum computers potentially exhibit an advantage in this
regime for larger numbers of orbitals N. Then, quantum phase
estimation can, in principle, obtain an energy of guaranteed
accuracy that can be taken as a reference for standard coupled
cluster models.

(i1) The intermediate correlation limit: Here, static electron
correlation can become important and multiconfigurational
approaches are more suitable. In this regime, traditional com-
putation begins to face severe problems. Only coupled cluster
models that can deal with a multiconfigurational reference or
that are of high excitation degree (including at least quadru-
ple excitations) are applicable. However, the former are not

unambiguously defined, whereas the latter are too costly for
all but the smallest molecules. At the same time, generic
multiconfigurational models such as the complete active space
self-consistent field (CASSCF) wave function and the MPS
wave function optimized by DMRG are natural choices, but
suffer from a lack of similarly accurate dynamical correlation
methods to account for the fact that CASSCF and DMRG
approaches are restricted to a few dozen orbitals only. Nev-
ertheless, only a small number of determinants (say, on the
order of a dozen) will represent the state qualitatively well.
Their superposition can be initialized efficiently as a guiding
state on a quantum computer (provided that knowledge about
these determinants can be obtained at comparatively little cost
before a quantum computation).

(iii) The strong correlation limit: A large number of Slater
determinants will be required in order to achieve a suffi-
ciently high overlap with the target state. There are only a
few examples known in ground state chemistry of this kind.
A prominent class of examples are iron-sulfur clusters, where
the overlap of the optimal Slater determinant with the ground
state becomes very small [16], while DMRG optimized MPSs
may still have large overlap. Such cases can be more rou-
tinely found in materials science, where materials are built
from many units with half-filled single-particle states, or in
electronically excited states.

Generally, to assess the quantum advantage of quantum
phase estimation, a better understanding of which systems
have polynomially scaling conventional methods in practice
on the one hand, and an understanding of which systems allow
for good guiding states on the other, is required [9,16].

APPENDIX B: FERMIONIC FORMALISM

We start by defining notation and recalling the formalism
of fermionic quantum systems. We consider a single-particle
space H of dimension N, which we may identify with CV.
We refer to elements of the single-particle space H as modes,
or equivalently in chemistry terminology as orbitals. The full
Hilbert space is the Fock space

N
@ HAn ~ (@2)®N,

n=0

which can be mapped to N qubits. Numbering an orthonormal
basis of modes j=1,2,...,N, we associate creation and
annihilation operators a; and a;, respectively, which satisfy
the fermionic anticommutation relations

{ajacy =0={al.af}, {aj,al}=25;.

We define the vacuum state |€2) to be the unique mutual kernel
of all the operators a;, from which the creation operators a;
generate the full Hilbert space as a Fock space. Given any
normalized vector x = (xp, ..., xy) € CV, we let

N N
a'(x) = ija;, a(x) = Zﬂa(i
=1 =1

be the operators that create and annihilate the mode x.
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The operators
N
akx) =a' ®akx), A=Y dla;
j=1

are the number operator for mode x and the total number
operator. If |W) is an eigenvector of 7i(x) with eigenvalue O or
1, we say that mode x is, respectively, unoccupied or occupied
in the state |W). Given a state |W), its covariance matrix or
one-body reduced density matrix (1-RDM) is an operator on
‘H defined by

(x, yy) = (¥la' ()a()| ).

After a choice of basis, this gives an N x N matrix with entries
Ve = (V|aia|W).
A Slater determinant is a state of the form

a'(x,) - (x))|Q),

where xi, ..., x, are a collection of orthonormal modes in
‘H. Up to a phase, the Slater determinant only depends on
the subspace A" spanned by the x, ..., x,, and it is the state
where the modes in X’ are occupied and the modes in X' are
unoccupied.

We can also define the 2N Majorana operators

t , t
C2j-1 :aj+aj, C2j=—l(aj_aj)'

A Gaussian unitary is a unitary U acting on the Fock space
such that as an orthogonal transformation O € O(2N),

UcyU' =" 0pycq
q

for an orthogonal transformation O € O(2N). A Gaussian
state is a state of the form U|Q), where U is a Gaussian
unitary operator. In particular, any Slater determinant is a
Gaussian state.

A noninteracting (or free, or one-body) Hamiltonian is a
Hamiltonian of the form

— E i
Hiree = hjkajak1
J.k

where / is a Hermitian operator on . By choosing a basis for
‘H in which £ is diagonal, we can always transform this to the
form

N

~T ~

Hiree = E €ja;daj
Jj=1

with €; < €3 < ---. The ground state space of a noninteract-
ing Hamiltonian is spanned by a set of Slater determinants. If
€j <0 for j <n,and €¢; > 0 for j > n+ k, then the ground
state space is spanned by the set of Slater determinants for
which modes 1,...,n are occupied and n+k,..., N are
unoccupied. In particular, if €; # O for all j, then the ground
state is unique.

In this work, we are concerned with quantum impurity
Hamiltonians, where a free Hamiltonian is perturbed by a
non-negligible but spatially localized impurity term H;np. The
term Hip,, is localized in the sense that, written in terms of the
fermionic operators a;, a;, it only contains the modes j < M
for some constant M.

Definition Bl. A quantum impurity Hamiltonian is a
Hamiltonian of the form

H = Hfyee + Himpa

where Hye. 1S a noninteracting Hamiltonian on N modes,
and Hiyp is an interacting Hamiltonian on a subset of M
of the modes. The quantum impurity problem is the prob-
lem of computing the ground state energy of H = Hye +
Hinp to accuracy ¢, where Hpe. has bounded single-particle
energies €;.

In this computational problem, note that Hiy, and M are
taken to be constant parameters: we seek an efficient solution
in terms of the total system size N and the precision ¢.

There are a few ways in which this problem can be simpli-
fied. First, note that we can assume without loss of generality
that the single-particle energies are non-negative. This follows
by defining a new set of fermionic operators b; by

bjzaj. forj=1,...,n,

ijle forj:n—l—l,...,N,

where n is maximal such that €, < 0, as above. More gener-
ally, this corresponds to the transformation

n N
b(x) = ija; + Z Xja;.
j=1

j=n+1

Under this transformation, the free Hamiltonian takes the form
(after a constant energy shift)

N
Hiree = ) l€j1b}b;,
j=1

and the state vacuum state with respect to the b;, |®), is a
ground state. Note that |®) is a Slater determinant with respect
to é;, via

10) =[]ali).
j=1

For convenience, we can normalize the energy scale to assume
without loss of generality that €; € [0, 1] for all j.

We denote by w the energy gap of Hy.e, Which is equal to
the smallest nonzero |¢;|,

® = min |¢;].
Ji€;#0

In fact, for the purposes of estimating the ground state energy
of H to accuracy ¢, it turns out that we may assume w >
e/m = Q(e). This fact follows by truncating the low-energy
modes of Hy, and it is proved as Lemma 5 of [23].

In our analysis of the quantum impurity problem, we will
make particular use of the covariance matrix with respect to
the ground state |\W) of H, whose entries are given by

vk = (W[bib|W).
APPENDIX C: COVARIANCE MATRIX ANALYSIS FOR
QUANTUM IMPURITY MODELS

In this Appendix, H = Hfyee + Himp is a quantum impurity
Hamiltonian on N modes, with an impurity on M modes, and
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we use the notation of Sec. III. We assume that Hye has the
form

N
He = ata.
free — Gjaja‘]v
J=1

where €; € [—1, 1] for all j. As in Appendix B, we may write

N
Hiree = Z |61|bjb]

j=1

for some new fermionic operators b;. In this Appendix, we
denote by y and y’ the 1-RDMs of the ground state | W) with
respect to the b; and a; modes, respectively, that is,

Vi = (Vi) v = (Wlala ).

In [23] it is shown that for the ground state |¥) of H, the
covariance matrix y has exponentially decaying eigenvalues.
To be precise, Theorem 2 of [23] shows that there exists a
constant ¢ such that there is a ground state |W) such that the
eigenvalues o] > 0, > - -+ of y are bounded as

J

14M log(2a)—1))' €h
This bound can be used to show that | W) can be approximated
by a state that is a superposition over a limited number of
Gaussian states. We revisit the argument of [23] and show
that (with respect to the original choice of fermionic operators
aj) we can also obtain a ground state approximation using
Slater determinants. Note that the class of Gaussian quantum
states is strictly larger than the class of Slater determinants; for
certain models, ground state approximations using Gaussian
states can be much better than those by Slater determinants
[110].

The key computational step is summarized in the follow-
ing lemma. Informally, this guarantees that by assuming that
modes with eigenvalues close to 1 in the 1-RDM are filled, and
assuming that those with eigenvalues close to O are unfilled,
one can obtain a reasonable approximation to the true state.

Lemma C1. Let y be the 1-RDM of a state |¥), and let
X1, X2, ..., xy be an orthonormal basis for CV. Given disjoint
subsets I, I~ C [n], define the projectors

In = l_[ a(xj)+a(xj) nt = 1_[ a(xj)a(xj)T.

jel~- jel+

0j < cexp <

Then there exists a state |¥) in the image of both TT~ and IT*
such that

(WP) >1-3,
where
8 <Y VT + ) Vi
Jel~- jel+

where i are the elements of y with respect to the basis {x;}.
Proof. We can directly compute

(WIMTHIT W) = 1 — (W|] — TTF T | W)
= 1 — |l =T
>1— | =17 |W)| — I - T W)

The first norm may be bounded by

I =T < Y I = aepTatep W) |

jel~

o =

jel—
and the second may be bounded by

17— T @) | < Y I = alxpate) W) |
JjeI+

=Y Vi

jelt
We now let

_ 11| W)

V)= ———, C2
) ITTF I W) | ©

which satisfies the theorem by the above calculation. ]
We now restate Theorem III 1, with some additional de-
tails.
Theorem C 1. Let w > 0 be the ground state energy gap of
Hjee, and let ¢ > 0. Then for

K = O(log(w™")(log(¢™") + loglog(w™")))

there exists a Slater determinant |®) on N — K modes and an
arbitrary state |®) on K modes such that the state

|¥) = |®) A |©)

has ground state overlap |(¥|W)| > 1 — &. Moreover, we may
choose the Slater determinant |®) to be defined on a set of
modes that commute with Hipp.

Proof. The full single-particle space is CV. Let 7, and J_
be the subspaces of non-negative and negative energy modes
(of dimensions N — n and n, respectively) and let M be the
subspace of modes on which Hiy,, acts (of dimension M), and
let £ be the orthogonal complement of M. By definition, Hiyp
commutes with a(x) for any x € £. We then define

l:*. - t?ik n l:, l:__ = ¢7; N l:.
By dimension counting,

dm(L,)>N-M—n, dm(L_)>n—M.
We define fermionic operators b; by b; = ajﬁ for j < n and
bj = a; for j > n, so the free Hamiltonian is given by

N
Hiree = ) _ |€j1b5b;

J=1

after subtracting a constant term. Since Hi. is assumed to be
normalized, the single-particle energies |¢;| now lie in [0,1].
We let y be the 1-RDM for the ground state |¥) with respect
to the fermionic operators b;, with eigenvalues oy > o, >
....Let A* be the projection onto £ and let )Lf > )»zi =
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be the eigenvalues of A*y A*. By the Cauchy interlacing
theorem and Eq. (C1), we have

J
0< A <o <cexp| ———F— ).
SANONC p( 14M10g(2a)1))
Let y’ be the 1-RDM with respect to the original fermionic
operators a;, so that

y]{k = 8]‘]( — Vkj for j, k < n,
Vix = vk forj.k>n.

In particular, this means that A"y’ A" has eigenvalues A and
A~ y’A~ has eigenvalues 1 — As '

Let {v;’} C L" and {v;} © L7 be eigenbases of ATy AT
and A~y A~, respectively, corresponding to eigenvalues of
descending size. The union of these bases can be extended
to an orthonormal basis B for CV. Let I~ index all but the first
K/2 — M elements of {x;}, and let * index all but the first
K/2 — M elements of {x;r}. Note that either of these sets may
be empty, but I~ UIT| > N — K.

Applying Theorem C 1 with ™ and I~ as above, we obtain

a state |¥) as in Eq. (C2) which has ground state overlap
bounded by

WIB) > 1- 3 (A + i),

i=K/2-M
By construction, the state | W) is of the form
|¥) = [®) A |O),

where |®) is the state with modes v;L not filled and modes vy
filled for j > K/2 — M, and where |®) is a state on at most K
modes. By choosing K as in the theorem statement, the ground
state overlap can be lower bounded by 1 — 8, and hence |¥)
fulfills all the desired requirements. |

In the case where Hj.. has a constant spectral gap w, the
exponential decay of the 1-RDM spectrum places a constant
upper bound on the number of excitations for a good ap-
proximation to the ground state |\W). This leads to a space
of polynomial dimension which may be readily searched via
quantum phase estimation. If the matrix y itself is known—
but with no assumptions on the spectral gap w—a similar
argument can be applied. Although one cannot place a con-
stant bound on the total number of excitations as before,
knowing the eigenvectors of y allows one to predict which
modes are likely to be excited. Following the same approach
as Corollary 2 in [23], this again leads to a search space of
polynomial dimension. Based on the above discussion, we
now restate and prove Theorem III 2.

Theorem C2. Consider a quantum impurity problem with
M = O(1). Suppose that either o = O(1), or we are given the
covariance matrix y for a ground state satisfying Eq. (C1).
Then the quantum impurity problem can be solved by a quan-
tum computer using poly(N, ') gates.

It is not necessary that y is given precisely; for the proof
below it is sufficient merely to have knowledge of an upper
bound > y such that the spectrum of ¥ decays exponen-
tially as in Eq. (C1).

Proof. We may choose fermionic operators such that

Hfree = Z Gjb];-bj

J

with 0 < €; < 1. We represent the Hamiltonian on N qubits
using the Jordan-Wigner transformation. If w = O(1), by
Theorem III 1, for constant ¢ = 1/2, for constant K there exists
a ground state |\W) that has overlap

g 1
(W) > 1

for a state |W) that is a superposition of Slater determinants

with at most K excitations. We now consider the subspace V

of the full Hilbert space, which is spanned by all states with at
most K excitations. The dimension of this space is

K
dim(V) = Z (JZ)

k=0

(C3)

ForN/2 > K,

K
k=l

Z (N ) < K<N) < KNX = poly(N)
k ~ K ~ .

0

For small /2 < K, Eq. (C3) is bounded by 2V < 22X, which
is constant. If we let t denote the maximally mixed state on
V, then

(W)

dim(V) ’

which has at least inverse polynomial magnitude. The mixed
state T can be efficiently prepared on a quantum computer.
In the qubit representation, it corresponds to the uniform
mixture of standard basis states |xi,...,xy), X1,...,Xy €
{0, 1} with Hamming weight x; + --- 4+ xy < K. One can
prepare this state by uniformly sampling from bit strings
X1, ..., %, with Hamming weight at most K, and then pre-
pare |xi, ..., x,). Applying quantum phase estimation, using
(approximate) time evolution along H and initial state T now
gives an efficient algorithm for computing the ground state
energy to precision & using poly(N, e~!) gates.

The case in which we are given y (but no assumption on )
proceeds similarly; it suffices to find an efficiently preparable
state with at least inverse polynomial overlap.

First we note that, as discussed in Appendix B, we
may without loss of generality restrict ourselves to the
case in which w = Q(¢g). Let x1,xp,--- € C" be the or-
thonormal eigenvectors of the 1-RDM y corresponding
to eigenvalues oy > o, > - - -, respectively. Now take Q =
[14M log(2w~')], and define sets

L ={1,2,...,0},
L={0+1,...,20},
L={20+1,...,30},

(W]r|w) =

For each s € N, define the partial number operator

Ny =Y bx)'blx)),

J€ls
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which counts how many of the modes corresponding to the
subset I; of eigenvectors of y are excited. Note that the N
mutually commute. We can upper-bound the expected value
of these observables by

(WIN,| W) = "oy
JEl
< coM logQRw™1e™,
where ¢y is some universal constant, using Eq. (C1). For
each s, let ny be a random variable corresponding to the
measurement distribution of the observable N; induced by the
state |¥), and let Ry = coM log(Zw’l)e"Y/z. Then Markov’s
inequality implies
Pln, > R < e/,
and applying a union bound we see that, for any § € N,
Pn, <R, foralls > S]1>1— Ze’s/z.
=8
Now choose Sy € N such that

Z efs/Z <

S?SU

N =

and

R, 1
5 < 3 forall s > Sp.

Note that such an Sy can be chosen as a universal constant,
independent of M, w, and N. Then

Pln, < R, foralls > So] > 3.
Equivalently, letting P denote the projection onto the subspace
spanned by Fock basis states |®) [with respect to the modes

b(x;)] satisfying N,|®) < R, for all s > Sy,
(W|P|W) > 1.

In particular, this implies that the maximally mixed state on
P, 7/, has squared ground state overlap

I ——
2Tr[P]
By an identical combinatorial argument to the one presented
in Corollary 2 of [23], Tr[P] can be bounded by ¢ log@ ) —
poly(¢~"), completing the proof. |
In fact, even in the absence of a spectral gap or knowl-
edge of the 1-RDM as in Theorem C 3, one may still obtain
a quasipolynomial quantum speedup for the impurity prob-
lem. In particular, whereas the classical algorithm of [23]

requires time poly(N)exp(O(log(¢~')?)), a naive quantum
adaptation of this approach can reduce the time complexity

to poly(NV) exp(O(log(¢~")?)). This speedup arises from the
step analogous to Theorem C 1, in which the search space for
candidate ground states is reduced to a limited set of active
excitations. In the classical case, it is necessary to choose
8 = O(¢) to ensure that |¥) approximates the ground state

energy sufficiently well, however in the quantum case § can
be taken as constant for the phase estimation step. In the
algorithm of [23], this leads to reduction of the search space
dimension by a factor of log(e). Although this is not sufficient
to show BQP containment of the quantum impurity problem,
it provides intuition that a polynomial time algorithm for the
fully general case may be attainable through more detailed
analysis.

APPENDIX D: NUMERICAL METHODS

Geometries of all systems were optimized with RI-DFT
[111,112] and a Perdew, Burke, and Ernzerhof exchange-
correlation functional (PBE) [113], D3 dispersion correction
[114], and Becke-Johnson damping [115] using a def2-SVP
basis set [116]. Structures were optimized with TURBO-
MOLE [117,118].

For the (oligo)tryptophan systems, HF molecular orbitals
were obtained for the bootstrap embedding and for the se-
quence of tryptophan side chains. As we were interested in
the valence shell for the exploration of multiconfigurational
character, the molecular orbitals were first obtained using the
def2-SVP basis set and then used to construct intrinsic bond
orbitals [75,78] (IBOs) separately for occupied and virtual
space. For the Huzinaga embedding [41,77] in the tryptophan
and ruthenium system, Kohn-Sham orbitals calculated with
PBE were used instead. IBOs were again constructed sepa-
rately for the occupied and virtual space. These calculations
were run with Serenity [119,120]. For the bootstrap embed-
ding, Hartree-Fock molecular orbitals were obtained using the
def2-SVP basis set. Following the Hartree-Fock calculation,
intrinsic atomic orbitals [75] were constructed and used to
represent the 1-RDM. From there, the procedure described
in Ref. [121] was followed to obtain the fragment and the
entangled bath orbitals. These calculations were run with the
PySCF program [122-124].

Orbitals selected for the active space calculations in the
case of the tryptophan sequence comprised the entire 7 sys-
tem of the tryptophan side chain, as well as the ¢ and o*
orbitals of the C—H bond in the five-membered ring that forms
a weak CH-m hydrogen bond. For the embedding examples,
single-orbital entropies, mutual information, and orbital or-
dering were obtained with autoCAS [66,125] and the active
spaces were constructed by choosing K orbitals corresponding
to the largest values.

Next, DMRG calculations with bond dimension D =
1024 were performed to obtain an approximation of the
target ground state of the system as an MPS. Slater de-
terminants with the leading contributions were constructed
from the MPS using sampling-reconstruction of the com-
plete active space (SR-CAS) [126] and used to construct
the sum-of-Slater states. MPS wave functions of lower
bond dimensions were obtained by truncating the bond di-
mension using the singular value decomposition. DMRG
calculations were run with the QCMaquis software package
[127].
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