
Learned denoising with simulated 
and experimental low-dose CT data
Maximilian B. Kiss1,4, Ander Biguri2,4, Carola-Bibiane Schönlieb2, K. Joost Batenburg1,3 & 
Felix Lucka1

Like in many other research fields, recent developments in computational imaging have focused 
on developing machine learning (ML) approaches to tackle its main challenges. To improve the 
performance of computational imaging algorithms, machine learning methods are used for image 
processing tasks such as noise reduction. Generally, these ML methods heavily rely on the availability 
of high-quality data on which they are trained. This work explores the application of ML methods, 
specifically convolutional neural networks (CNNs), in the context of noise reduction for computed 
tomography (CT) imaging. We utilize a large 2D computed tomography dataset for machine learning 
to carry out for the first time a comprehensive study on the differences between the observed 
performances of algorithms trained on simulated noisy data and on real-world experimental noisy 
data. The study compares the performance of two common CNN architectures, U-Net and MSD-
Net, that are trained and evaluated on both simulated and experimental noisy data. The results 
show that while sinogram denoising performed better with simulated noisy data if evaluated in the 
sinogram domain, the performance did not carry over to the reconstruction domain where training on 
experimental noisy data shows a higher performance in denoising experimental noisy data. Training 
the algorithms with an optimization in the reconstruction domain mapping directly from sinogram to 
reconstruction significantly improved model performance, emphasizing the importance of matching 
raw measurement data to high-quality CT reconstructions. The study furthermore suggests the need 
for more sophisticated noise simulation approaches to bridge the gap between simulated and real-
world data in CT image denoising applications and gives insights into the challenges and opportunities 
in leveraging simulated data for machine learning in computational imaging.

Computed tomography has proven itself as a powerful non-invasive imaging technique in many fields such as 
materials science, industrial testing, and medicine. It uses X-ray technology to create detailed cross-sectional 
images of the scanned object using computational methods. Since it uses harmful radiation the imposed dose on 
objects and patients raises concerns and safety guidelines have been established to minimize radiation exposure1,2. 
The ALARA principle3, which stands for “As Low As Reasonably Achievable” advises healthcare providers to use 
the lowest possible radiation dose necessary to produce high-quality images. However, the minimization of 
radiation dose through lowering the tube current or exposure time seriously degrades the resulting CT images 
if no corresponding noise compensation is applied before or during image reconstruction4,5. Noisy images can 
also occur when there are, for example, constraints on the available time or the number of projection angles. In 
either setting, it is desirable to reduce the amount of noise through computational methods.

Like in many other research fields, recent developments in computational imaging have focused on 
developing machine learning (ML) approaches to tackle its main challenges. To improve the performance of 
algorithms, ML methods are used for different image processing tasks. These tasks are for example segmentation, 
artifact removal, or noise reduction.

Generally, these ML methods heavily rely on the availability of high-quality data on which they are trained. 
When there is a lack of such data, usually existing data is augmented, or new data is generated artificially through 
simulations. These simulations mimic the problem the ML algorithms shall solve and try to resemble real-world 
data as good as possible.

The fundamental question arising from this approach is to which extent algorithms trained on simulated data 
are applicable to real-world experimental data. This work is investigating the performance of noise reduction 
for two common convolutional neural networks (CNNs). These networks are trained on either simulated or 
experimental noisy data and are applied to both experimental and simulated noisy data.
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Typically, researchers would not have access to raw measurement data because CT manufacturers consider 
them proprietary. This severely limited both, the analysis of noise simulations but also the performance 
comparison of algorithms trained on simulated data6. The data used in this work are 2D slices of X-ray computed 
tomography images published in the carefully designed study “2DeteCT—A large 2D experimental, trainable 
and expandable CT data collection for machine learning”7. This experimental data was acquired by the group 
for Computational Imaging at the Centrum Wiskunde & Informatica and is openly available on zenodo8–19. The 
data collection consists of 5,000 distinct image slices acquired in three different modes. The resulting images are 
either clean, noisy, or artifact-inflicted.

Using the paired data of clean and noisy images, we create a setting for supervised learning that the CNNs 
can be trained on for noise reduction. In this work, the clean data is used as a measurement basis to add 
computationally fast, yet accurate simulated noise. With this data collection and the newly simulated data we 
have three types of sinograms available: an experimental noisy, an experimental clean and a simulated noisy 
sinogram. We can pair those sinograms with the clean reconstructed target images to show the difference 
between training on simulated noisy data and using experimental noisy data for the task of learned denoising.

In this paper, we utilize a large 2D computed tomography dataset for machine learning to carry out for the 
first time a comprehensive study on the differences between the observed performances of algorithms trained 
on simulated noisy data and on experimental noisy data. For this we train two common neural networks such as 
the generic U-Net20 and the more tailored MSD-Net21 on both types of noisy data, experimental and simulated. 
These networks are applied to the data they have been trained on but also to their respective counterparts. 
The evaluation follows via quantitative metrics in the sinogram and reconstructed image domain as well as 
qualitative visual inspection in the reconstructed image domain only.

The structure of the paper is as follows: After a brief overview of related work in noise modelling and mitigation 
in the field of computed tomography, we focus on the pre-processing of computed tomography data, previous 
noise simulation approaches and how they influenced our choices for simulating noisy training data. In the 
following subsections we describe the preparation of our training data, the method development, the employed 
comparison metrics, and how we set up the computational experiments. In the results and discussion section, 
we present the empirical selection of the noise level for our simulated noisy data and analyse the performance of 
the differently trained networks applied to the two types of noisy data. We focus on three aspects in our analysis: 
The choice for the evaluation domain, the influence of the image content, and the choice of the training setting.

Methods
Related work
There is a vast amount of literature investigating the theoretical derivation of accurate noise models for computed 
tomography images. Generally, they agree that the image noise is directly related to the imaging process and its 
design criteria such as exposure time, pixels size, slice width, and reconstruction algorithm22. Faulkner et al.22 
therefore distinguish between algorithmic and non-algorithmic contributions to noise, and between spatial as well 
as statistical errors in a CT scan. They note that the statistical noise in the reconstructed images is independent of 
the number of projections and that the uncertainty is only dependent on the total number of detected photons. 
Hsieh23 distinguishes between two principal sources of noise in CT measurement data: quantum noise and 
electronic noise. Yu et al.24 showed that the latter usually can be neglected except when the number of detected 
photons is low and approaches the electronic noise floor. Furthermore, they emphasize that the major difficulty 
in simulating very-low dose CT measurement data is photon starvation artifacts. These become apparent in 
reconstructed image slices as ripples or rings in the central region or streaking artifacts between high-density 
regions. Yu et al.24 furthermore concluded that their proposed method is not able to simulate images with very-
low dose because the photon starvation artifacts are quite complicated. Additionally, they reiterated the call of 
numerous researchers to get access to raw CT data to allow for testing algorithms for iterative reconstruction and 
noise reduction25. Manufacturers of clinical CT scanners usually introduce nonlinear filters23 on the measured 
data to counter beam-hardening and photon starvation artifacts. Therefore, real-world experimental raw data 
prior to this nonlinear filtering would enable more accurate noise simulations but are usually unavailable.

In practice, it is very challenging to bound the concept of noise in CT image reconstruction from artifacts 
originating from sources such as sample movement, geometric misalignment, or under-sampling. In this work, 
we choose to confine our investigations purely to the noise in the sinograms induced by the photon detection in 
the detector. We note, however, that in reality it is hard to completely disentangle these artifacts and their origins.

Noise simulation
Zainulina et al.26 concluded in their work that adding noise to the images artificially could bias the predictions of 
a convolutional neural network (CNN) depending on the accuracy of the noise simulation. This noise simulation 
requires an in-depth understanding of the actual CT system and might not be feasible at times. The noise in 
low-dose CT measurement data is influenced by many factors such as the quantum noise, the logarithmic 
transformation of the measurements, or pre-reconstruction corrections for system calibration which makes 
modeling the noise in the reconstructed images particularly challenging27.

Pre-processing
A common practice to pre-process the projection data, consisting of raw photon counts per detector pixel, is 
the so-called dark- and flat-field correction. The dark-fields (D in Eq. (1)) represent the off-set counts of the 
detector system and the flat-fields (F in Eq. (1)) are the values measured when irradiating the detector without 
an object present between the X-ray source and the detector. These two additional measurements are usually 
acquired before and/or after the acquisition of the 360◦projections and used to remove the dark currents of the 
detector and to normalize its pixel-dependent sensitivities. With this, the sinograms (S) can then be converted 
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into a beam intensity loss image (ILI) following the Beer-Lambert law after applying the negative logarithm to 
it according to the formula:

	
y = − log (ILI) = − log

(
S − D

F − D

)
� (1)

Such calibrated projection data no longer follows a compound Poisson distribution but is close to a Gaussian 
distribution with signal-dependent variance5. Furthermore, it has been shown that particularly the logarithm 
operation significantly amplifies the noise when the signal is low4. If we want to denoise the low-dose CT 
measurements before reconstruction, this is best done in the stage of the beam intensity loss image (ILI), so 
before taking the negative logarithm. If we would denoise the X-ray absorption sinogram (y) instead of the beam 
intensity loss image (ILI), the application of the negative logarithm would have amplified the noise and changed 
its distribution.

Based on these findings and considerations we pre-process the raw sinograms of the experimental noisy 
measurements to beam intensity loss images (ILI) as shown in Eq. (1) and apply the denoising before taking the 
negative logarithm. For the preparation of the simulated noisy sinograms we pre-process the sinograms of the 
high-dose CT measurements of “mode 2” with dark- and flat-field corrections before applying simulated noise 
to them. With this we prevent our data to experience distributional shifts that might influence the performance 
of the denoising networks.

Noise simulation approaches
To date, there have been proposed several different approaches to simulate the noise in CT measurement 
data3,6,28–35. Under the condition that the raw data of a high-dose and low-noise scan is available many studies 
simulated low-dose and high-noise projection data by applying synthetic Poisson noise or a combination of 
synthetic Poisson and Gaussian noise to a high-dose scan36,37. The common models for noise simulation use 
a relatively simple model of CT acquisition considering a monochromatic X-ray source. This source generates 
photons that are attenuated by a scanned object and the detector is counting surviving photons which are 
governed by Poisson statistics. More complicated methods range from a detailed characterization of signal 
statistics of X-ray CT6,31,32 over noise equivalent quanta34,35 to accounting for energy-integrating detectors33,35. 
The interested reader may be pointed to the study of Zabic et al. giving a broad overview on the state-of-the-art38.

To motivate our noise simulation approach we highlight what approaches have been used in practice by 
previous publications in the field. In particular, there are three noise challenges that have been conducted in the 
past ten years that have attracted attention to deep learning based denoising. Firstly, the Mayo clinic low-dose 
CT challenges of 201639 and of 202140 which encompass 30 and 300 patient scans respectively of roughly 70 slices 
each with noisy reconstruction and projection data simulated from clean reconstructed volumes. Secondly, the 
LoDoPaB-CT dataset41 which uses 800 patient scans selected from the LIDC/IDRI database and contains over 
40,000 scan slices. Thirdly, the IEEE ICASSP Grand Challenge 842 which also utilizes the LIDC/IDRI database 
and contains 1010 3D cone-beam CT (CBCT) images. All three noise challenges rely on vendor reconstructed 
images that subsequently are backprojected to create corresponding projection data / sinograms which then 
are supplemented with simulated noise. Whereas the first two publications simulate their noisy data only by 
applying Poisson noise to the projection data, the third generates CBCT projection data with a custom noise 
simulator that accounts for photon counts, flat-fields, electronic sources, and detector cross-talk as sources of 
noise. Similar approaches have been undertaken by Bruno de Man et al. from GE research43,44 and Jingyan Xu 
and Benjamin M. W. Tsui45 and shall be the basis for this work’s noise simulator as well.

Chosen noise simulation approach
In this work, we use a simplified version of the noise model used in XCIST44:

	
Ii = fCONV

∑
k

Ek · P(DQEik · (Aik + Sik)) + N (σelectronic) � (2)

	 I = Γσcross−talk [I1, I2, ..., II ]T � (3)

where i is the pixel index of the detector I, Ek  is the energy level with energy index k, Aik  are the incident 
photons in the pixel, Sik  the scattered photons in the detector. DQEik  is the detector quantum efficiency and 
fCONV  the energy to electron conversion rate. The noise process is described by P , a Poisson random generator, 
and N (σelectronic) is a zero mean Gaussian random generator with standard deviation σelectronic. Finally, 
Γσcross−talk  is a RD×D  matrix that models detector cross-talk, defined as a fraction of the signal σcross−talk  
that is shared between adjacent pixels.

This describes a full model of the detector behaviour given incident photons. In XCIST, the incident photons 
can be simulated by a Monte Carlo particle simulation based on known source energy spectra and the material 
decomposition of a sample. If the precise behavior of the energy-integrating detector is well understood for 
each energy level, the parameters fCONV , DQEik , and Ek  can be incorporated. These parameters relate to 
the conversion of incident photons to measurements. However, for machine learning applications, the physics 
simulation would demand an unreasonably high computational time (several years for a sufficiently large 
dataset), necessitating simplifications of the model. In particular, the approximations done in this work assume 
that the measurement photons were produced by a monochromatic source (k = 1) and that there are no scattered 
photons measured (Sk = 0). Additionally, both the detector quantum efficiency of the pixels DQEk  and the 
photon-to-electron conversion rate fCONV  are assumed to be equal to one. As a detector specific calibration 

Scientific Reports |          (2026) 16:835 3| https://doi.org/10.1038/s41598-025-30457-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of these values is unknown and not easily obtainable without specialized lab equipment. This means that all 
photons reaching the detector are assumed to be measured and no loss of signal is present. These assumptions 
of course limit how close the simulation is to reality and the following paragraph discusses their effects. The 
assumption of a monochromatic source is very common in the field of CT reconstruction and is the basis of 
the most commonly used version of the Radon transform. The effect of this assumption on the noise simulation 
is that there is no energy-dependent noise being added, but not that there is no noise. The assumption that 
no scattered photons are measured refers to omitting spatially dependent scatter which can be assumed to be 
low in comparison to the measured signal. However, the modeled Poisson noise itself still considers intensity-
dependent scatter, as all noise in CT comes from photons that “attenuated”, i.e. did not follow a straight path. 
Assumptions on the detector quantum efficiency of the pixels and the photon-to-electron conversion rate as 
well as the aforementioned two are simplifications that are made to limit the computational complexity of the 
noise simulation model. Adding noise that accounts for those effects is nowadays mainly available via Monte 
Carlo physics simulators like the mentioned XCIST software that we base our model on. This software has 
been used by GE Healthcare to validate their models for clinical implementation and can be assumed to be 
reasonably accurate. However, their computational footprint makes them infeasible to use for ML-sized datasets 
and requires us to limit the parameters of our noise simulation.

Thus, the chosen noise simulation approach to model the final measurement in the detector ID  is:

	 Ii = P(Ai) + N (σelectronic) � (4)

	 I = Γσcross−talk [I1, I2, ..., II ]T . � (5)

Training data
For the development of a ML-based denoising algorithm the most important element is adequate high-quality 
training data. In a supervised training framework that means that there are pairs of input and target data. 
The algorithm is trained on these data pairs and learns a mapping from the input images to the target images. 
Zainulina et al.26 concluded that such supervised deep learning methods show the best performance, but the 
requirement of paired images may not always be easy to accomplish. For the case of image denoising, this means 
noisy CT sinograms/reconstructions as an input and noise-free or “clean” CT sinograms/reconstructions as a 
target data.

Since the publication of the 2DeteCT dataset in 20237, these paired images for supervised learned CT denoising 
are available. The 2DeteCT dataset comes with pairs of real measurements of the same object, one with near-zero 
noise, and one with high levels of noise. For this work, we deal with three types of sinograms: experimental clean 
sinograms that have been measured, experimental noisy sinograms that have been measured, and simulated 
noisy sinograms (based on the experimental clean data) that were simulated to contain the same level of noise 
as the experimental noisy sinograms. The corresponding acquisition parameters of this experimental data can 
be seen in Table 1).

In the remainder of this paper, we will use the term “experimental noisy data” in reference to raw low-dose 
CT measurement data acquired by a real-world experimental CT system. The term “simulated noisy data” will 
be used for artificially generated data for which artificial noise was applied to “clean” raw measurement data.

For experimental noisy data, the creation of corresponding image pairs requires a careful acquisition design 
to avoid that the algorithms would also learn a transformation or change of image content. The exact same CT 
slice needs to be scanned twice which makes it necessary to change the acquisition settings without infringing 
with the scanned object. The five main influencing acquisition parameters for the noise level within the CT 
images have been identified as source current (I), source voltage (V), exposure time (t), number of projections 
(nproj), and number of averaged images (navim)46. Overall, the quantum noise in the reconstructed CT images 

Acquisition parameter Mode 1 Mode 2

Tube voltage 90.0 kV 90.0 kV
Tube power 3.0 W 90.0 W
Filters used Thoraeus Thoraeus

Exposure time 50.0 ms
Binned detector pixel size 149.6 µm

Number of binned detector pixels 956

Source to object distance (SOD) 431.020 mm
Source to detector distance (SDD) 529.000 mm
Number of projections 3601

Angular increment 0.1deg

Table 1.  Summary of the acquisition parameters of the 2DeteCT dataset, adapted from7. Mode 1 corresponds 
to the experimental low-dose, high-noise data; Mode 2 corresponds to the experimental high-dose, low-noise 
data. The Thoraeus filter is a compound filter made of Sn 0.1 mm, Cu 0.2 mm, Al 0.5 mm. The SOD and SDD 
values are based on the motor readings of the FleX-ray scanner which get translated into physical quantities 
and are subject to alignment errors.
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is then inversely proportional to the square root of the number of detected photons. The aforementioned factors 
have their individual proportional influence on this number, which is given by: V 1.3√

I×t×nproj ×navim

Analysing this formula, we can determine the relationship between the acquisition parameters and the 
corresponding noise level in the reconstructed CT slices. Since the used tube voltage V not only influences 
the noise level but also changes the energy of the used X-ray photons, a change of this factor was omitted. 
The number of averaged images navim could not be decreased further than one and since the scanner was 
already operated close to the shortest possible exposure time t, changing that parameter was also not feasible. To 
avoid artifacts due to insufficient sampling of the object we did not decrease the number of projections nproj . 
Therefore, the tube current I was the only feasible option to change and both the noisy and the clean CT scans 
were acquired with the exact same parameters except for the tube current. For the clean data this was 1000µA 
whereas the noisy data had a 30 times smaller tube current of 33.3µA.

For simulated noisy data creating corresponding image pairs is more straightforward. Given the “clean” data 
acquisition, a modification of the noise model in Eq. 4 can be used to simulate artificial noise into the clean 
image. Given the noise-free incident photons Ai and that the outcome of the Poisson process can be described 
as an addition P(Ai) = Ai + Pi, where Pi is just the noisy photons, we can rewrite Eq. 4 for the acquisition 
of clean data as:

	 Iclean
i = Ai + P clean + N (σelectronic),� (6)

where the assumption of P clean = 0 can be made. This is not strictly true, but for a sufficiently large incident 
photon count Ai it is approximately true. For the noisy acquisition thus the following holds:

	 Inoisy
i = Ai + P noisy

i + N (σelectronic). � (7)

	 Inoisy
i = Iclean

i + P noisy
i � (8)

	 Inoisy
D = Iclean

D + Γσcross−talk [P noisy
1 , P noisy

2 , ..., P noisy
I ]T . � (9)

To appropriately simulate the low-dose measurements Inoisy
D , the noise distribution part of the total signal 

P noisy
i  has to be produced, i.e. the Poisson component of the noise. Technically, Ai would be a different 

number of photons for the clean and noisy images, as the noise mostly arises from the low photon count in our 
experiments and simulations. However, direct measurement of photon counts is not available and thus direct 
extraction of this noise from measured data is not possible. Therefore, the noise is parameterized by multiplying 
the flat-field corrected sinogram ILI ∈ [0, 1] (see paragraph “Pre-processing”) by a parameters corresponding 
to the number of photons in vacuum, I0, and generating Poisson statistics from its result as

	 P noisy
i = I0 · ILIclean

i − P(I0 · ILIclean
i ). � (10)

In this model, I0 is the parameter to control the level of noise added to the clean data, a lower value representing 
noisier data. Based on the value in the XCIST software44, a σcross−talk  of 5% of the signal is added.

Method development
The noise simulation and the algorithms for learned denoising in this work have been developed in LION 
(Learned Iterative Optimization Networks)47, an open-source toolbox for learned tomographic reconstruction 
implemented in Python. With a designated data loader for the 2DeteCT dataset and with CT experiments set 
up in a reproducible way it serves as an environment for a standardized comparison of the methods described 
below.

For the learned denoising algorithms we selected two common convolutional neural networks (CNNs) for 
image processing tasks that have been used for both natural images but also for computed tomography images in 
particular: The generic U-Net20 and the mixed-scale dense neural network (MSD-Net)21. The U-Net, originally 
developed for the segmentation of biomedical images, has been adopted in many fields as a baseline for image 
reconstruction based on neural networks. The MSD-Net has proven to be particularly effective for computed 
tomography48,49. Its three main advantages are as follows: First, it has an advanced neural network architecture 
that uses dilated convolutions instead of traditional scaling operations to learn features at different scales. Second, 
it uses significantly fewer feature maps and trainable parameters which makes training it less computationally 
demanding and reduces the risk of over-fitting. Third, it has been applied to denoising large tomographic images 
and it has been proven that it can be easily applied to similar problems with minimal changes21.

Comparison metrics
To evaluate the performance of the CNNs trained on either experimental or simulated noisy data, we consider 
two main comparison cases. In the first case, we test the performance of the algorithms in the setting that they 
have been trained on, i.e. settings in which they are supposed to work well. This means that if an algorithm is 
trained for denoising simulated noisy data this situation is used to score their overall performance. The same 
holds true for algorithms trained on experimental noisy data. For this we compare the output of our learned 
denoisers to the “clean” target data using the comparison metrics described below. In the second case, we want 
to compare the performance of the algorithms in settings for which they have not been trained for. This serves 
the purpose of checking their generalization to other tasks. It answers the question whether the algorithm 
generalizes to another noise model and its severity. In other words, whether the learned algorithms can also 
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denoise input data without being trained on the specific noise of that data. This is particularly interesting for 
the case in which the learned denoisers are trained on simulated data and applied to experimental noisy data.

Using these comparison cases, we require comparison metrics with which we can evaluate the performance 
of the algorithms. Namely, how close the denoised images obtained from these algorithms are to the ground 
truth images. These metrics have to be able to measure two qualities: How well does the algorithm recover the 
structure of the imaged object from the noisy data? How well does it restore a good signal with respect to the 
overall noise in the reconstructed image?

Two commonly used metrics for these tasks are the structural similarity (SSIM)50 and the peak signal-to-
noise ratio (PSNR)51. The SSIM is a metric that indicates in a range from 0.0 to 1.0 how similar the compared 
image is to a ground truth, where 1.0 means they are identical. The PSNR is a metric that calculates the ratio 
between the highest attainable value of a signal and the strength of corrupting noise that impacts the fidelity 
of the image. Higher values in both metrics indicate a better algorithm performance. It is worth noting that 
these two commonly used quantitative metrics, may not be suitable for tomographic reconstruction or scalar 
fields52,53. In reconstruction tasks such as CT imaging in medicine, PSNR and SSIM do not necessarily reflect a 
task-dependent better image54,55. Therefore, it is suggested that evaluations consider such downstream tasks of 
the imaging rather than solely relying on traditional metrics. Additionally, the unbounded nature of CT images 
poses challenges for metrics like PSNR and SSIM, as the range of pixel values can vary. Different approaches to 
evaluating reconstruction performance, such as clipping or preserving the result range, can significantly impact 
reported performance. However, these metrics are still commonly used for a quantitative assessment of images. 
Since we are interested in measuring performance differences rather than rating the performance itself, they are 
also used in this work.

In our performance analysis we follow previous work by Zeng et al.56 who argued that image artifacts due 
to beam hardening and photon-starvation are particularly difficult to evaluate meaningfully with quantitative 
metrics in the sinogram domain. They require a visual inspection in the reconstructed image domain. Therefore, 
we also include a qualitative, visualization-based evaluation between the results of denoised low-dose CT scans 
in the reconstructed image domain.

Computational experiments
For this work, we first applied the denoising in the projection domain, i.e. denoising beam intensity loss images 
(ILI), for three reasons: i) quality of denoising reconstructed images depends on the used reconstruction 
method; ii) artifacts caused by the noise in the projection domain are harder to remove after reconstruction; 
iii) noise in the projection domain is spatially uncorrelated. After evaluating the results of this approach we 
additionally trained denoising algorithms with an optimization in the reconstruction domain mapping directly 
from sinogram to reconstruction. For this, we included an FBP reconstruction in the pipeline of the models 
described below and visualized in Fig. 1.

We prepared the training data for our learned denoisers by simulating noisy data from the “clean” 
experimental measurement data as described in Section “Training data” and using the unchanged clean data as 
ground truth target data. Consequently, there are two respective image pairs for supervised learning available: 
First, the simulated noisy data as an input and the experimental clean data as a target. Second, the experimental 
noisy data as an input and the experimental clean data as a target.

These image pairs were split into ∼ 80% training data (3930 slices), ∼ 10% validation (550 slices) and ∼ 10% 
testing data (470 slices). Each algorithm was trained for 100 epochs using the Adam optimization algorithm57. 
The final model parameters were selected based on minimal validation loss. The computations were carried out 

Fig. 1.  Training and testing scenarios for learned denoising networks (U-/MSD-Net illustrations adopted 
from21).
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on a GPU-server with 4x RTX 2080Ti (11GB), 384GB RAM, and 2x 16-core Xeon CPUs as well as a GPU-server 
with 2x RTX A6000 (48GB), 1TB RAM, and 2x 16-core Xeon CPUs.

After the training of the two neural network architectures on the two supervised learning settings, each of 
the four resulting trained networks was applied to their own test sets but also to the test sets of the data type they 
have not been trained on. A visual overview of this is given in Fig. 1.

Results and discussion
Empirical selection of noise level
For our comprehensive study on the differences between the observed performances of algorithms trained on 
simulated noisy data and on experimental noisy data it was particularly important to have noise levels in our 
simulated noisy data that are representative of the noise levels present in our experimental noisy data. Therefore, 
we tried out various values of I0 for our noise simulation approach and compared both the resulting simulated 
noisy data and the experimental noisy data to the “clean” sinogram data with respect to PSNR and SSIM. 
Furthermore, the quantitative comparison was also carried out in the reconstruction domain, i.e. comparing the 
FBP-reconstructed images of the experimental and simulated noisy data to the “clean” reference reconstructions 
of the 2DeteCT dataset. Observing similar numerical values w.r.t. PSNR and SSIM for both experimental and 
simulated noisy data we can argue that our noise model generates simulated noisy data with a similar noise level. 
The results of this comparison can be found in Table 2. For all noise levels of the simulated noisy data the SSIM 
and PSNR values in the sinogram domain are significantly larger than the respective values for the experimental 
noisy data. A visual comparison of the different noise levels in the sinogram domain proved uninformative as 
displayed in Fig. 2.

Corresponding quantitative and qualitative analyses in the reconstruction domain showed similar image 
metrics for both the simulated and experimental noisy data. For a noise level of I0 = 200 the PSNR value is 
closest to the same metric for the experimental noisy data, whereas the SSIM value shows its best agreement for 
a noise level of I0 = 300. Since the task at hand is learned denoising, we chose to rely on the agreement with 
respect to the PSNR value and chose a noise level of I0 = 200 for our computational experiments. A qualitative 
inspection of the images in Fig. 3 agrees with this parameter choice.

A detailed inspection of Fig. 3 furthermore showed a strong influence of the attenuation of the objects in 
each scan on the similarity between reconstructions based on simulated and experimental data. Simulated 
noisy image slices with no or only small objects with high attenuation (stones) appear to be visually close to 
the experimental noisy images. However, if those objects are bigger or grouped closely, the experimental noisy 
images show streaking artifacts caused by beam hardening, not visible in the reconstructions of the simulated 

Fig. 2.  Visual comparison of the sinograms of experimental and simulated noisy data with different levels of 
I0 (200, 250, 300, 350) from the 2DeteCT dataset for the slices with indices 72, 134, 182, 220, 257.

 

Type of noisy data Noise level

Evaluation in sinogram domain
Evaluation in reconstruction 
domain

(FBP of noisy data)

SSIM (wrt GT) PSNR (wrt GT) SSIM (wrt GT) PSNR (wrt GT)

Experimental noise – 0.2658 ± 0.0963 19.8130 ± 4.6583 0.1899 ± 0.0987 21.8024 ± 3.5996

Simulated noise I0 = 200 0.2965 ± 0.0409 25.7190 ± 0.8567 0.1364 ± 0.0307 21.4468 ±  1.8307

Simulated noise I0 = 250 0.3448 ± 0.0435 26.6607 ± 0.8634 0.1627 ± 0.0356 22.3976 ± 1.8311

Simulated noise I0 = 300 0.3854 ± 0.0451 27.4191 ± 0.8678 0.1865 ±  0.0397 23.1659 ± 1.8317

Simulated noise I0 = 350 0.4201 ± 0.0459 28.0517 ± 0.8725 0.2083 ± 0.0432 23.8089 ± 1.8325

Table 2.  Empirical selection of the appropriate noise level I0 to generate the simulated noisy training data 
based on the SSIM and PSNR values of the data with respect to the ground truth (wrt GT) data of “mode 2”. 
Significant values are in bold.
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noisy data. As previously mentioned, the noise model used in this work assumes mono-energetic photons and 
consequently cannot capture this behaviour. For the high-dose measurement data, which is the basis for the 
simulated noisy data, a high enough number of photons is detected and the reconstructed images do not present 
streaking artifacts due to beam hardening and some level of photon starvation.

Sinogram denoising
The quantitative analysis of the performance of the different CNNs trained on either experimental or simulated 
noisy data was carried out in both the sinogram and the reconstruction domain (FBP of model output) and is 
presented in Table 3. The evaluation in the sinogram domain shows that for both CNN architectures, U-Net 
and MSD-Net, the training on simulated noisy data performs better in both application cases, experimental and 
simulated noisy data. Applying the U-Net trained on experimental noisy data to simulated noisy data performs 
similarly well whereas the MSD-Net trained on experimental noisy data is not able to generalize well. Applying 
the U-Net trained on simulated noisy data to experimental noisy data yields a lower performance of the learned 
denoiser on the test set images. The overall PSNR is 3dB lower and also the SSIM metric is 0.0522 lower than its 
application to simulated noisy test set data. For the MSD-Net this gap is even more significant. The MSD-Net 
trained on simulated noisy data applied to experimental noisy data yields a 21.7057 dB lower PSNR and a 0.1323 
lower SSIM on the test set images compared to its application to simulated noisy test set data. This might be due 
to the much lower number of parameters of the MSD-Net which is not able to capture the experimental noise 
equally well as the simulated artificial noise.

Fig. 3.  Visual comparison of the FBP-reconstructed images of the experimental and simulated noisy data with 
different levels of I0 (200, 250, 300, 350) from the 2DeteCT dataset for the slices with indices 72, 134, 182, 220, 
257.
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However, CT reconstruction is an inverse problem that can exacerbate noise from the sinogram during the 
reconstruction process. Furthermore, applying the required sinogram pre-processing steps changes the nature of 
the noise model in a complex way. Therefore, evaluating the performance of the denoisers in the reconstruction 
domain is scientifically more relevant since even small errors in the sinogram domain might be larger in the 
reconstruction domain. For this reason, Table 3 also compares the performance of the sinogram denoisers in the 
reconstruction domain (FBP of model output).

In there we can observe that the high performance in denoising the sinograms does not carry over to 
the reconstruction domain. Both the structural similarity and the PSNR in this domain drop substantially. 
Additionally, the evaluation in the reconstruction domain shows that learned denoising of experimental noisy 
data performs best if the CNNs are trained on experimental noisy data, as it is expected. Furthermore, the U-Net 
architecture seems to pick up the image content in terms of structural similarity (SSIM) better than the MSD-
Net when trained on experimental noisy data. The PSNR performance is better for the MSD-Net in all training 
settings except for the case of training on simulated noisy data and testing on experimental noisy data.

After the uninformative visual inspection of the simulated noise in the sinogram domain, and considering 
that the ultimate goal is to obtain better reconstructed images, the qualitative analysis of the model performances 
was only carried out in the reconstruction domain which can be found in Fig. 4. The qualitative visual inspection 
, also in comparison to the reference images displayed in Fig. 5, shows that the models for sinogram denoising 
(found within the first four rows of the figure) do not produce high-quality reconstructions, particularly 
regarding fine image features/details. The images exhibit lower noise than the FBP reconstructions of the noisy 
data directly, but there is a noticeable loss of image sharpness.

Optimization in the reconstruction domain: mapping directly from sinogram to 
reconstruction
Having observed that a good model performance in the sinogram domain does not necessarily carry over to 
the reconstruction domain we wondered whether training the denoising algorithms with an optimization in the 

Method Training data Metric

Testing data

Experimental noisy data Simulated noisy data

Evaluation in sinogram domain

 U-Net 2 Experimental noisy data
SSIM 0.8126 ± 0.0194 0.8167 ± 0.0199

PSNR 18.4966 ± 0.6278 19.3181 ± 0.5575

 U-Net 1 Simulated noisy data
SSIM 0.8273 ± 0.0240 0.8795 ± 0.0206

PSNR 33.4602 ± 0.9533 36.6016 ± 0.5616

 MSD-Net 2 Experimental noisy data
SSIM 0.8613 ±  0.0211 0.8239 ± 0.0216

PSNR 36.2182 ±  0.7214 20.4747 ± 0.6793

 MSD-Net 1 Simulated noisy data
SSIM 0.7512 ± 0.0226 0.8835 ±  0.0198

PSNR 16.3208 ± 1.3965 38.0265 ±  0.7412

Evaluation in reconstruction domain (FBP of model output)

 U-Net 2 Experimental Noisy Data
SSIM 0.6134 ±  0.0732 0.6273 ± 0.0717

PSNR 26.7127 ± 1.9780 27.5290 ± 1.9405

 U-Net 1 Simulated Noisy Data
SSIM 0.5504 ± 0.0677 0.6351 ± 0.0713

PSNR 28.3307 ± 2.0810 32.5568 ± 2.0169

 MSD-Net 2 Experimental Noisy Data
SSIM 0.5984 ± 0.0741 0.6152 ± 0.0723

PSNR 30.9185 ±  1.9707 28.3031 ± 1.9314

 MSD-Net 1 Simulated Noisy Data
SSIM 0.3854 ± 0.0469 0.6372 ±  0.0469

PSNR 11.6366 ± 2.3636 32.6552 ±  2.0173

Evaluation in reconstruction domain (model output)

 FBP+U-Net 2 Experimental Noisy Data
SSIM 0.8161 ±  0.0592 0.7466 ± 0.0681

PSNR 29.8398 ± 2.1834 28.0435 ± 2.0848

 FBP+U-Net 1 Simulated Noisy Data
SSIM 0.5957 ± 0.0844 0.6693 ± 0.0820

PSNR 26.8841 ± 3.4800 28.8134 ± 3.9418

 FBP+MSD-Net 2 Experimental Noisy Data
SSIM 0.7829 ± 0.0749 0.7892 ± 0.0731

PSNR 32.0684 ±  1.9309 32.0704 ± 1.9580

 FBP+MSD-Net 1 Simulated Noisy Data
SSIM 0.7615 ± 0.0702 0.8204 ±  0.0567

PSNR 30.6211 ± 2.0626 33.1053 ±  2.0120

Table 3.  Quantitative performance analysis with PSNR and SSIM of the differently trained models in 
the reconstruction domain for the two different testing data with respect to the ground truth data from 
the iterative reference reconstructions of “mode 2” from the 2DeteCT dataset. Since the test set consists 
of hundreds of images, this Table shows the average and standard deviation of the previously defined 
performance metric over all test set images.. Significant values are in bold.
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reconstruction domain mapping directly from noisy sinograms to “clean” reconstructions, would prove more 
effective as well. The model performance w.r.t. clean target reconstructions can be found in the bottom third of 
Table 3 and in the bottom half of Fig. 4. The relative performance of the networks for the respective combinations 
of training and testing settings is the same as before, but the results are substantially better. We observe an 
increase of 0.2027 in the SSIM for the best performing model in the constellation experimental noisy training 
data and experimental noisy testing data and an increase of 0.1832 in the SSIM for the best performing model 
in the constellation simulated noisy training data and simulated noisy testing data. Also the performance with 

Fig. 4.  Qualitative performance analysis of the differently trained models in the reconstruction domain for the 
two different testing data (slices indices 205, 366, 408).
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respect to the PSNR for each corresponding constellation of training and testing data is better if the models are 
optimized in the reconstruction domain.

A qualitative analysis of the images in Fig. 4 , also in comparison to the reference images displayed in Fig. 5, 
show that the performance drop of training on simulated noisy data but testing on experimental noisy data is 
more substantial than what the performance metrics would suggest, as these metrics capture global performance 
rather than local. In all of the slices inspected, this particular train/test case produces the worst images of the 
quadruplet, for both models. Increased “graininess” permeates the entire image, and the low-intensity objects 
appear more porous than expected.

Discussion and conclusions
In this work, we aimed to answer the question to which extent algorithms trained on simulated noisy data are 
applicable to real-world experimental noisy data. This was achieved through the implementation of a realistic 
yet computationally efficient simulation method and utilizing less-commonly available raw experimental 
measurement data.

After tuning the noise simulation to the experimentally measured noise level, our empirical selection of I0 
to set the noise level proved to be an adequate choice both in the qualitative and quantitative assessment (PSNR 
and SSIM) in the reconstruction domain. Differences in the simulation were mainly observed in the presence 
of large or closely grouped high-attenuation samples in the respective image slices, i.e. when beam hardening is 
present. This is expected, as the chosen noise model for simulation assumes monochromatic sources and thus 
cannot simulate highly non-linear effects such as beam hardening.

While sinogram denoising achieved better results with simulated noisy data when evaluated in the sinogram 
domain, the performance did not carry over to the reconstruction domain where training on experimental 
noisy data showed a higher performance in denoising experimental noisy data. As previously mentioned, this 
is caused by the inherent ill-posedness of CT reconstruction, that amplifies any remaining noise in the process. 
Therefore, training the denoising algorithms with an optimization in the reconstruction domain mapping 
directly from sinogram to reconstruction showed significant improvements in model performance. This is 
especially noticeable in terms of structural similarity and qualitative visual inspections of the reconstructions. It 
seems that the artifacts introduced by the FBP reconstruction are not too severe to mitigate via the subsequent 
post-processing network.

Our findings highlight the importance of carefully designing a noise simulation approach and choosing 
appropriate noise levels that match experimental data well. If possible the training should be conducted with 
an optimization in the reconstruction domain, i.e. mapping from raw measurement data to desired target 
reconstructions. In machine learning for computational imaging, simulated data can be quite different from 
experimental data, which can impact the transfer of learned systems to the real-world. In particular, the 
distributions of the training and testing data should be as close as possible and therefore training on experimental 
noisy data, if available, is preferable when the models are subsequently applied to experimental data. In our 
experiments, models trained on simulated data exhibit a measurable quantitative performance drop from 
simulated noisy testing data to experimental noisy testing data. This is even more noticeable by qualitative visual 
inspection, because these models produce the noisiest images from all the cases.

Ultimately, this research shows that appropriately simulating real noise is important in learned CT research. 
While computationally fast noise models, like the one presented in this work, will produce data that are close 
enough to experimental data to make the models transferable to real-world applications, a drop in performance 
is expected. Hence, it is advisable to utilize real-world experimental data for training learned denoisers whenever 
feasible. Furthermore, one should be cautious with, presenting performance outcomes solely based on simple 
performance metrics when training only on simulated noisy data. As discussed before, our simulation model 
already captures much of the complexity of the experimental noise in the measurements. However, this work 
shows that the non-linearity of the imaging process is not captured well enough and that future work should 
investigate computationally efficient ways of including effects such as beam hardening or photon starvation. 
Possibly, generative models trained on experimental noisy and “clean” data could solve this challenge or 
alternatively simplified Monte Carlo particle simulations could be investigated. This study can serve as a starting 
point for crafting and testing even more sophisticated noise simulation approaches that might be able to close 
the sim-to-real gap58,59 for CT image denoising.

Fig. 5.  Reference reconstructions for the qualitative performance analysis of the differently trained models in 
the reconstruction domain for the two different testing data (slices indices 205, 366, 408).
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Code availability
Python scripts for setting up the neural network training as well as the evaluation of the noise reduction per-
formance in the way described above are published on GitHub: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​C​a​m​b​​r​i​d​g​e​​C​​I​A​/​L​I​​O​N​s​c​r​i​​p​​t​
s​/​p​​a​​p​e​r​_​s​c​r​i​​p​t​s​/​n​​o​i​s​e​_​p​a​p​e​r. They make use of the ASTRA toolbox60–62, which is openly available on ​(​​​w​w​w​.​a​s​t​
r​a​-​t​o​o​l​b​o​x​.​c​o​m​​​​​) and tomosipo63.
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