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Abstract. In industrial X-ray Computed Tomography (CT), the need for

rapid in-line inspection is critical. Sparse-angle tomography plays a significant

role in this by reducing the required number of projections, thereby accelerat-
ing processing and conserving resources. Most existing methods aim to balance

reconstruction quality and scanning time, typically relying on fixed scan dura-

tions. Adaptive adjustment of the number of angles is essential; for instance,
more angles may be required for objects with complex geometries or noisier

projections. The concept of optimal stopping, which dynamically adjusts this

balance according to varying industrial needs, remains overlooked. Building
on our previous work, we integrate optimal stopping into sequential Optimal

Experimental Design (sOED) and Reinforcement Learning (RL). We propose

a novel method for computing the policy gradient within the Actor–Critic
framework, enabling the development of adaptive policies for informative an-

gle selection and scan termination. Additionally, we evaluate whether policies
trained in simulation transfer to experimental X-ray CT data and provide ini-

tial evidence on laboratory data. Trained on synthetic data, the model shows

consistent behavior on experimental scans. This supports flexible CT oper-
ation and expands the applicability of sparse-view tomography in industrial

settings.

1. Introduction. X-ray Computed Tomography (CT) enables inline industrial in-
spection through three-dimensional reconstruction. However, fast and adaptive CT
scanning is essential to make its widespread industrial application feasible. Previ-
ous studies have shown that not all projections are equally informative for certain
objects [19, 33]. Most research has focused on sequentially selecting informative
angles to enhance efficiency. This sequential Optimal Experimental Design (sOED)
is often described within a Bayesian framework [22, 9, 25], where angles are chosen
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to maximize information gain. Information gain is typically quantified by compar-
ing the prior and posterior distributions of the reconstruction or by assessing the
similarity between the reconstructed image and the ground truth.

Batenburg et al. [4] and Dabravolski et al. [11] used a set of template im-
ages composed of Gaussian blobs to represent samples from the prior distribution.
They introduced an upper bound [3] to approximate the information gain, which
reflects the diameter of the solution set. Burger et al. [8] employed classical “al-
phabetic criteria” for OED, such as “A-” and “D-” optimality, using the trace or
determinant of the covariance matrix of the posterior distribution as summary sta-
tistics [18]. Additionally, they used a Gaussian distribution as a prior, updating
the posterior after selecting each angle. Building on this approach, Helin et al. [16]
introduced a Total Variation (TV) prior to enhance edges in reconstructions. The
non-Gaussian TV prior was approximated as a Gaussian distribution using lagged
diffusivity iteration. Furthermore, Barbano et al. [5] utilized a deep image prior as
the reconstruction method and linearized the network to approximate the posterior
distribution as a Gaussian. To avoid the need for a closed-form solution, Elata et
al. [13] proposed using a diffusion model for CT reconstruction, sampling from the
posterior to approximate the posterior covariance matrix.

Recently, policy-based methods from the reinforcement learning community have
been introduced into sOED [28, 7, 14]. In the medical CT field, Shen et al. [29]
trained a gated recurrent unit as a policy network on simulated medical data to
map projections to probabilities over the angle space. In previous work, we explored
industrial CT applications with very few angles [34]. We trained a policy that maps
the current reconstruction to probabilities over the angle space. Additionally, we
addressed a specific task—defect detection—by incorporating an extra reward for
defect detectability and prior information about defects, enabling the trained policy
to identify informative angles to aid in defect detection [35].

Although extensive work has been devoted to selecting informative projection
angles, the question of how many angles to acquire is often neglected. This choice
can be cast as an optimal stopping problem, a topic well studied in financial math-
ematics. The optimal expected reward is given by the Snell envelope, the smallest
super-martingale that dominates the reward process. The earliest (respectively, lat-
est) optimal stopping time is the first instant at which the immediate reward equals
(respectively, exceeds) the continuation value [24, 6, 12].

Additionally, most studies have focused on simulated data rather than exper-
imental X-ray CT data. This is particularly evident in learning-based methods,
which rely on training with simulated data, leaving their generalizability to experi-
mental X-ray CT data uncertain.

The contributions of this work include the development of an optimal stopping
method to balance the trade-off between experimental costs and experimental goals,
such as reconstruction quality. This approach enables both adaptive selection of
informative angles and optimal scan termination based on experimental costs. By
incorporating a terminal policy into the Actor–Critic framework, we proposed a
novel method for computing the policy gradient, jointly optimizing angle selection
and the terminal policy. Additionally, we investigated the gap between simulation
and real-world applications by evaluating the trained model on experimental X-ray
CT data.

The structure of the paper is as follows: The Background section provides an
overview of the fundamental concepts and notations related to inverse problems and
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sOED using reinforcement learning. The Method section introduces our novel ap-
proach for computing the policy gradient. The Results section presents the findings
from both simulation and experimental X-ray CT data experiments. Finally, the
paper concludes with a discussion of the key findings and their implications.

2. Background.

2.1. Forward and inverse problems and optimal experimental design
(OED).

Measurements y(θ) are obtained from the ground-truth image (underlying pa-
rameters) x̄ using a forward operator A(θ), which is determined by the design
parameters θ = {θ1, . . . , θM}. In the case of X-ray CT, the forward operator A(θ)
corresponds to the Radon transform for angles θ [15]. Since the measurement
process is subject to noise, we also incorporate a noise term ϵ(θ) and model the
projections as follows:

y(θ) = A(θ)x̄+ ϵ(θ). (1)

The inverse problem involves using the projections y(θ) and the forward operator
A(θ) to compute a reconstruction x̂(θ) as an estimate of the ground-truth image
x̄. Figure (1, a) illustrates the forward and inverse processes. However, solving
inverse problems is often challenging due to their ill-posedness [23]. The accuracy
of the reconstructed ground-truth image is influenced by the design parameters θ,
making their optimal selection crucial. OED is employed to select the most infor-
mative angles to acquire the corresponding projections. To quantify the accuracy
of the reconstruction, a utility function is defined within the OED framework. The
optimal design θ∗ is then obtained by maximizing the expected value of this utility
function over the design space, taking into account the projections y(θ) and the
ground truth image x̄ [22, 27]. As shown in Figure (1, b), we plot reconstruction
quality—measured by PSNR—versus the number of projection angles M (up to 50).
Reconstructions x̂(θ) are computed with the Simultaneous Iterative Reconstruction
Technique (SIRT) under a nonnegativity constraint (150 iterations). The orange
curve corresponds to a selection that, at each step, exhaustively evaluates all re-
maining angles and chooses the most informative one; the blue curve uses uniformly
spaced angles. For the triangle phantom (left), the selection consistently outper-
forms the uniform strategy, especially at small M . The uniform strategy occasion-
ally picks informative directions, which explains the oscillations in its performance.
For the Shepp–Logan phantom (right), which is approximately rotationally sym-
metric and lacks a preferred direction, the gap between the two strategies is small.
Across both phantoms we observe diminishing returns: beyond a moderate number
of angles, further increases in M yield only marginal PSNR gains. When acquisi-
tion is costly, such small gains may not justify additional projections, motivating an
optimal stopping rule to balance reconstruction quality against experimental cost.

2.2. Sequential optimal experimental design (sOED) and reinforcement
learning. Traditional experimental design is typically performed a-priori, with all
optimal design parameters selected simultaneously. Because it ignores the feedback
obtained after each parameter choice, this approach cannot support a-posteriori
selection, potentially overlooking information that could refine subsequent decisions
[28].

The sOED extends the concept of traditional OED by allowing the design pa-
rameters to be determined sequentially, based on the data acquired from previous
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Figure 1. Triangle phantom example. (a) Forward process: Noisy
parallel-beam projections at 180 equally spaced angles; additive
zero-mean Gaussian noise (5% level) is applied to the noise-free
sinogram. Inverse process: the image is reconstructed from these
noisy projections. (b) PSNR as a function of the number of an-
gles for the triangle phantom. The number of angles increases in
increments of one. The orange curve represents angles selected via
exhaustive search, while the blue curve corresponds to uniformly
spaced angles. Left: triangle phantom; right: Shepp–Logan phan-
tom.

projections [28, 25]. For example, the design parameter θk can be chosen based on
the previous projections y({θ1, . . . , θk−1}). This approach enables the design pro-
cess to adapt dynamically to changes in the underlying parameters (ground-truth
image) by adjusting the design parameters iteratively.

Solving OED problems in image reconstruction is inherently a bi-level optimiza-
tion challenge: the lower level reconstructs the image, while the upper level mini-
mizes the reconstruction error relative to the ground truth. The joint optimization
problem is characterized by nonconvexity, nonlinearity, and high dimensionality,
particularly in imaging applications [26]. The sequential approach further compli-
cates this optimization, as the bi-level optimization problem would need to be solved
in real time. Reinforcement Learning (RL) [30], a machine learning technique de-
signed for fast sequential decision-making, facilitates the resolution of this sOED by
training through interaction with the environment. RL is grounded in the frame-
work of Markov Decision Processes (MDPs), which consist of a state space, action
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Figure 2. Acquisition–reconstruction loop at step k. (1) The
current reconstruction (belief state) x̂k is fed to the policy, which
either terminates or selects the next angle θk. (2) If continuing,
acquire the projection y(θk). (3) Update the reconstruction with
the new data to obtain the updated estimate x̂k+1. (4) Compute
the reward rk from the improvement in utility (PSNR to the ground
truth x̄). Time flows left-to-right with the transition k→k+1; no
feedback “back to k” occurs. Notation: x̄ denotes the ground truth
used solely for computing the training utility.

space, transition model, and reward function. In practice, MDPs are sometimes
extended to Partially Observable MDPs (POMDPs) when the underlying param-
eters are not fully observable, necessitating the reconstruction of the belief state
from measurements. The goal of RL is to learn a parameterized policy that maps
the current state to the next action, maximizing the expectation of the cumulative
rewards [30].

Figure (2) illustrates how the RL framework integrates with the sOED process.
In the context of sOED, at the kth step, the action space consists of the possible
values that the design parameter θk can take. After selecting θk, the reconstructed
underlying parameters x̂k+1, inferred from all previous projections y({θ1, . . . , θk}),
serve as the belief state. The utility function used for accuracy estimation acts as
the reward function R. For example, R can be defined as PSNR, which estimates the
reconstruction quality by comparing the reconstruction with the ground-truth image
[34]. Consequently, the optimization problem of sOED is reformulated as learning
a parameterized policy πa(θk | x̂k;wa), where wa represents the policy parameters.
This policy, with the optimal parameters w∗

a, maximizes the expectation of the
cumulative rewards obtained from the experiments.
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By employing RL, we optimize policy parameters rather than the design pa-

rameters directly. We consider a finite-horizon return
∑M

k=1 rk. The state-value
function V πa(x̂1) is the expected cumulative reward from the initial state x̂1 under
the trajectory distribution πchain, which factorizes into the action policy and the
data-driven transition:

V πa(x̂1) = Eτ∼πchain

[
M∑
k=1

rk | x̂1

]
, (2)

where the trajectory distribution is

πchain(τ ;wa) =

M∏
k=1

πa(θk | x̂k;wa) · πt(x̂k+1 | x̂k, θk), (3)

and πt denotes the acquisition+reconstruction state transition (unknown analyt-
ically; we sample it by taking a projection at θk and running one reconstruction
update).

A trajectory τ of M steps, {x̂1, (θ1, x̂2, r1), . . . , (θM , x̂M+1, rM )}, is thus gener-
ated by iterating: choose θk ∼ πa(· | x̂k), obtain x̂k+1 ∼ πt(· | x̂k, θk), and accrue
rk.

The learning objective is to maximize the expected return. For a fixed initial
state x̂1,

J(wa) = V πa(x̂1). (4)

For policy-gradient estimation we use the action–value and advantage functions.
The action–value links actions to value via

V πa(x̂) =
∑
θ

πa(θ | x̂;wa) Q
πa(x̂, θ), (5)

where the action–value function is formally defined as

Qπa(x̂1, θ) = Eτθ∼πθ
chain

[
M∑
k=1

rk | x̂1, θ1 = θ

]
, (6)

and πθ
chain denotes the trajectory distribution conditioned on taking action θ at the

first time step.
The advantage measures how much better an action is than the on-policy average:

Aπa(x̂, θ) = Qπa(x̂, θ)− V πa(x̂), (7)

which we use as a variance-reducing baseline in the policy gradient.
Building on this framework, we consider two approaches to optimal stopping.

The key difference is whether stopping is modeled explicitly via a terminal policy
πter(d | x̂;wt). Introducing πter augments the trajectory distribution in Equation
(3) with an additional (Bernoulli) decision at each step, which in turn alters the
policy–gradient contributions for the angle policy. In the terminal–policy variant,
we also compute gradients with respect to wt.

3. Method. This section presents two approaches to optimal stopping. The first
approach treats termination as an additional action in the action space. The second
approach defines a separate termination policy, which is optimized jointly with the
angle selection policy.
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3.1. Naive optimal stopping. Optimal stopping for sOED can be implemented
by introducing an additional terminal action within the action space. In our
previous formulation [34], the action space consisted of the 180 discrete angles
0◦, . . . , 179◦. In the present work, we augment this space with an explicit termina-
tion action, yielding 181 discrete actions in total. The policy πa(θ | x̂;wa) produces
logits z(x̂) ∈ R181, inducing a categorical distribution h = softmax(z) over these
actions. The selected action is the index θ ∈ {1, . . . , 181}, where θ = 1, . . . , 180
correspond to the angles 0◦, . . . , 179◦, and θ = 181 denotes termination. The re-
ward function for ‘termination’ and ‘continuation’ is defined by R(x̂, x̄, θ), which
accounts for the decision to either continue or terminate, as follows:

R(x̂, x̄, θ) =

{
−b, if θ = θmax,

PSNR(x̂, x̄), if otherwise,

where PSNR(x̂, x̄) is a function that serves as the immediate reward, evaluating
the quality of the experiment at the stopping point x̂, and −b is a negative scaling
factor representing the experimental cost incurred at each step. With PSNR (dB)
as the utility, the per-step cost b is also in dB and serves as a minimum marginal-
gain threshold (e.g., b = 0.5 means we continue only if PSNR increases by at least
0.5 dB); in applications b can be calibrated from time or dose per view. This mech-
anism works because the agent aims to maximize the cumulative reward: as long as
selecting an additional angle leads to a PSNR gain that exceeds the experimental
cost for continuing, the agent will proceed. It will choose to stop only when further
actions are expected to result in no meaningful improvement in PSNR relative to
the experimental cost. When termination is disabled (or b = 0), this approach
reduces to the angle-only setting of [34].

As described in our previous work [34] and shown in Figure (3, a), after selecting
k − 1 angles θ = {θ1, ..., θk−1}, the observations y(θ) are obtained from the data
acquisition. At step k, the reconstructed image x̂k serves as the belief state and
is fed to a shared encoder E(·); the initial state is x̂1 = 0. The encoder produces
features hk = E(x̂k) that are consumed by Actor–Critic heads; no decoder is used,
as images are reconstructed by the iterative solver. One branch is designed to esti-

mate the state-value function V πa(x̂), and we use V̂ (x̂;wv) for this approximation,
where wv denotes the neural network parameters. The other branch outputs the
distribution over the action space, which consists of all possible angles and the ter-
minal probability θmax as the final action. The inclusion of a mixture of actions for
angles and termination represents the primary difference from the standard method
described in our previous work [34]. Consequently, the Temporal Difference (TD)
error [30] for the terminal action is modified to account for the reward at the termi-
nation state PSNR(x̂k+1, x̄), as shown in line 10 of Algorithm (1). Algorithm (1)
outlines the modified algorithm based on the previous work [34].

3.2. Optimal stopping using terminal policy.

3.2.1. Objective function. Different from the naive way of implementing optimal
stopping, we consider an independent parameterized terminal policy [2], which maps
the state x̂ to a stochastic stopping decision d ∼ πter(d | x̂;wt). The continuation
corresponds to d = 0, while termination corresponds to d = 1. Apart from the stop-
ping decision, the reward function remains the same as in naive optimal stopping.

In the context of optimal stopping for sOED, the framework integrates both
the terminal policy for scan termination and the action policy for angle selection,
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(b) Optimal stopping using terminal policy

Reconstruction 

Encoder

If  select  

Data
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Data 
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(a) Naive optimal stopping
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Figure 3. This figure illustrates the workflows: (a) Naive stop-
ping: after selecting angles {θ1, . . . , θk−1} and acquiring projections
y(θ), the reconstruction x̂k becomes the belief state. A shared

encoder then outputs (i) the state-value estimate V̂ (x̂k;wv) and
(ii) a distribution over all angles plus a terminal action θmax. (b)
Terminal-policy stopping: the encoder additionally outputs a prob-
ability distribution over termination versus continuation. Another
distinction is that the top branch estimates the continuation value

function using V̂C(x̂k;wv). In both workflows, a termination sig-
nal halts the process. A convolutional encoder produces features
consumed by Actor–Critic heads; no decoder is used, as images are
reconstructed by the iterative solver.

instead of combining them within the same action space as in the naive approach.
First, we reformulate the probability chain from Equation (3) to incorporate the
termination decision. The updated probability chain reflects the decision-making
process of the terminal policy, which evaluates at each step whether the trajectory
should terminate or continue.

Similar to Equation (3), the probability chain πchain,C(τC ;wa,wt) with the in-
clusion of the termination distribution is expressed as:

πchain,C(τC ;wa,wt) =

T∏
k=1

πsec(dk, x̂k+1, θk | x̂k;wa,wt), (8)
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Algorithm 1

1: Initialize the action policy parameters wa, and the value function parameters
wv randomly. Define the maximal experimental stepsM . Set step sizes αwa > 0
and αwv > 0.

2: for each episode do:
3: Get a phantom sample x̄ then a zero matrix serves as the initial state x̂1

and k = 0.
4: while:
5: Select the angle based on the softmax policy, which maps the inputs

to a probability distribution that sums to 1: θk ∼ πa(θ | x̂k;wa)
6: Get new measurements yk from the data acquisition
7: Reconstruct new image x̂k+1

8: Get reward for continuation −b
9: Estimate the state-values V̂ (x̂k;wv) and V̂ (x̂k+1;wv)

10: Compute TD error:
if θk = θmax:

Get reward for termination PSNR(x̂k+1, x̄)

δk = −b+ PSNR(x̂k+1, x̄)− V̂ (x̂k;wv)
else:

δk = −b+ V̂ (x̂k+1;wv)− V̂ (x̂k;wv)
11: Update the action policy function parameters wa:

wa ← wa + αwa∇wa log πa(θk | x̂k;wa)δk
12: Update value function parameters wv:

wv ← wv + αwv∇wv V̂ (x̂k;wv)δk
13: Increase the step number k += 1
14: if θk = θmax or k = M :

break
15: end for

where the function πsec is defined as:

πsec(d, x̂
′
, θ | x̂;wa,wt)

= πter(d | x̂;wt) +
(
1− πter(d | x̂;wt)

)
πa(θ | x̂;wa)πt(x̂

′
| x̂, θ).

(9)

The stopping step T is determined by the terminal policy, which is less or equal
to the maximal step M and dM ≡ 1. Convention. The terminal policy is Bernoulli
over d ∈ {0, 1}, with d = 1 denoting termination and d = 0 continuation. Whenever
d appears inside πter(d | x̂;wt) without an explicit sum over d, it refers to the event
d = 1. Consequently, 1− πter(d | x̂;wt) denotes the probability of continuation.

A trajectory up to the stopping point is generated from the new πchain,C as:

{x̂1, (d1, θ1, x̂2,−b), (d2, θ2, x̂3,−b), . . . , (dT , θT , x̂T+1, pT )} .
This trajectory represents the sequence of states (x̂), termination indicators (d),

experimental cost (−b), and quality evaluations PSNR(x̂T , x̄) (pT ) at termination.
The process is designed to terminate at step T as soon as dT = 1, ensuring that
the trajectory is finite and explicitly concludes. For all prior steps (i < T ), di = 0,
indicating that the process continues during those steps.

The objective function, representing the value function at the fixed initial state
x̂1, aims to learn both the action and terminal policies that maximize the expected
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cumulative rewards:

J(wa,wt) = V πa,πter(x̂1)

= πter(d1 | x̂1;wt) PSNR(x̂1, x̄)

+
(
1− πter(d1 | x̂1;wt)

)
V πa,πter

C (x̂1).

(10)

Here, the continuation state-value function is defined as follows [12, 24]:

V πa,πter

C (x̂1) = −b+ E
τ

(2)
C ∼π

(2)
chain,C

[V πa,πter(x̂2)] , (11)

where τ
(2)
C represents the trajectory starting from x̂2, following the probability

chain described in Equation (8).
Similarly, the continuation action-value function is defined only when the trajec-

tory continues, as one of its inputs is the action: Qπa,πter

C (x̂, θ).
The optimal terminal policy π∗

ter(dk | x̂k;wt) at step k is defined as [6, 24, 12]:

π∗
ter(dk | x̂k;wt) =

{
I
(
PSNR(x̂k, x̄) ≥ V πa,πter

C (x̂k)
)
, if k < M,

1, if k = M,
(12)

where I(·) denotes the indicator function and M is the maximum number of steps
in the experiment.

Figure (3, b) illustrates the workflow of optimal stopping using the terminal pol-
icy. Compared to the naive optimal stopping, this approach includes an additional
branch for the terminal policy, which uses the sample from Sigmoid function to
determine continuation or termination. Another distinction is that the top branch

estimates the continuation value function V πa,πter

C (x̂k) using V̂C(x̂k;wv).

3.2.2. Policy gradient. To jointly solve the optimal stopping and action selection
problems for sOED, we propose a novel policy gradient method. The policy gradi-
ents are calculated using Equation (10).

For the gradient with respect to the action policy wa, the detailed unrolling
recursive derivation is provided in Appendix (B). By sampling from N trajectories,
the gradient is expressed as:

∇waJ(wa,wt) = ∇waV
πa,πter(x̂1)

∝
N∑

n=1

(
T∑

k=1

∇wa
log πa(θk | x̂k;wa)Q

πa,πter

C (x̂k, θ)

)
,

(13)

To improve the stability and efficiency of action policy gradient computation, a
baseline is introduced by replacing the continuation action-state value function in
Equation (13) with an advantage function [30]. The continuation advantage function
is defined by incorporating the output of the terminal policy; further details are
provided in the Appendix (A). The continuation advantage function is approximated
as:

Aπa,πter

C (x̂, θ) ≈ −b+
(
1− πter(d

′
| x̂

′
;wt)

)
V πa,πter

C (x̂
′
)

+ πter(d
′
| x̂

′
;wt)PSNR(x̂

′
, x̄)− V πa,πter

C (x̂).
(14)

We perform stochastic gradient ascent to update the parameters of the angle
policy, wa, using a step size of αwa .

wa ← wa + αwa∇wa
log πa(θ | x̂;wa)A

πa,πter

C (x̂, θ) (15)
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For the gradient with respect to the terminal policy wt, the detailed unrolling
recursive derivation is provided in the Appendix (C). By sampling from N trajec-
tories, the gradient is expressed as:

∇wtJ(wa,wt) = ∇wtV
πa,πter(x̂)

∝
N∑

n=1

(
T∑

k=1

∇wtπter(dk | x̂k;wt)
(
PSNR(x̂k, x̄)− V πa,πter

C (x̂k)
))

,

(16)
We also perform stochastic gradient ascent to update the parameters of the

terminal policy, wt, using a step size of αwt .

wt ← wt + αwt∇wt
πter(d | x̂;wt)

(
PSNR(x̂, x̄)− V πa,πter

C (x̂))
)

(17)

The complete algorithm is presented in Algorithm (2).

Algorithm 2

1: Initialize the action policy parameters wa, the terminal policy parameters wt,
and the value function parameters wv randomly. Define the maximal experi-
mental steps M . Set step sizes αwa > 0, αwt > 0, αwv > 0.

2: for each episode do:
3: Get a phantom sample x̄ then a zero matrix serves as the initial state x̂1

and k = 0.
4: while dk = 0 and k < M :
5: Select the angle based on the softmax policy, which maps the inputs

to a probability distribution that sums to 1: θk ∼ πa(θ | x̂k;wa)
6: Get new measurements yk from the data acquisition

7: Reconstruct new image x̂k+1

8: Get reward for continuation −b, and rewards for termination

PSNR(x̂k, x̄) and PSNR(x̂k+1, x̄)

9: Determine the terminal action based on the Sigmoid policy, which
maps the inputs to terminal probability: dk ∼ πter(d | x̂k;wt)

10: Estimate the state-values V̂C(x̂k;wv) and V̂C(x̂k+1;wv)

11: Compute TD error: δk = −b+
(
1−πter(dk+1 | x̂k+1;wt)

)
V̂C(x̂k+1;wv)

+ πter(dk+1 | x̂k+1;wt)PSNR(x̂k+1, x̄)− V̂C(x̂k;wv)
12: Update policy function parameters wa:

wa ← wa + αwa∇wa
log πa(θk | x̂k;wa)δk

13: Update policy function parameters wt:

wt ← wt + αwt∇wt
πter(dk | x̂k;wt)

(
PSNR(x̂k, x̄)− V̂C(x̂k;wv)

)
14: Update value function parameters wv:

wv ← wv + αwv∇wv
V̂C(x̂k;wv)δk

15: Increase the step number k += 1
16: end for
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Termination is modeled either as (Algorithm 1) an additional action in a single
181-way categorical policy, or (Algorithm 2) a dedicated binary termination head
alongside a 180-way angle head, both sharing the same encoder. In both cases, pol-
icy parameters are optimized jointly without alternating/block-coordinate updates.
Unlike exhaustive search, which evaluates many remaining candidates at each step,
the learned policy selects one angle per-step. Once trained offline, the model can be
used directly online; per-step latency is effectively dominated by the reconstruction
update.

4. Results. The proposed optimal stopping method for sOED was validated
through a series of X-ray CT experiments. The model was first trained using syn-
thetic data and then evaluated on experimental X-ray CT data to test its perfor-
mance and generalizability.

4.1. Dataset.

4.1.1. Synthetic dataset. We created a synthetic dataset that includes features with
strongly nonuniform orientations, corresponding to highly informative imaging an-
gles. The dataset includes three shapes—parallelograms, triangles, and pentagons
—each varying in scale, rotation, and position. These variations result in differing
requirements for the number of angles needed to achieve accurate reconstructions.
Figure (4) provides example images from this dataset, while the parameters used
for its generation are outlined in the Appendix (E).

4.1.2. Experimental dataset. All data were collected at the FleX-ray laboratory of
Centrum Wiskunde en Informatica (CWI) in Amsterdam, the Netherlands [36].
A scanning approach was used to acquire projections with dimensions of 956 ×
10 pixels. The source-to-object and detector-to-object distances were both set to
225 mm. An exposure time of 80 ms per-projection was applied, and the source
spectrum was shaped using filters consisting of 0.1 mm zinc, 0.2 mm copper, and
0.5 mm aluminum. A total of 3601 projections were acquired. Figure (5) illustrates
the scanning setup.

The dataset comprises two laser-cut objects—triangular and pentagonal
—fabricated from 6 mm-thick transparent acrylate. Each shape is represented by
12 samples of varying sizes. The right-angle edges of the triangular samples range
from 2.8 cm to 4.0 cm, while the edges of the pentagonal samples range from 2.5
cm to 3.0 cm. Each scanning session involved different placements of the objects,
resulting in variations in rotation and translation. To create a dataset with two
noise levels, two emission currents were used: 600 µA and 100 µA. The lower emis-
sion current (100 µA) produced data with higher noise levels. Finally, 12 groups of
projections were acquired for each shape and each noise level, resulting in a total
of 48 groups of projections.

For the purpose of this study, the number of projections was reduced to 361 by
subsampling every 10th projection. To approximate the cone-beam geometry as a
fan-beam geometry, only the middle row of the detector was used. The column size
of the projections was then reduced to 239 by selecting every fourth pixel on the
detector. Furthermore, the fan-beam data was rebinned into a parallel-beam data
with 180 projections to simplify angle selection. This transformation made it more
precise to identify the informative angles, as they are tangential to the edges in
parallel-beam geometry.
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Figure 4. The figure shows nine samples from the synthetic
dataset, including parallelograms, triangles, and pentagons. Each
shape type is represented by three samples.

4.2. Implementation. For training on the synthetic data, the Astra Toolbox
[31, 32] was used to generate the simulated projections. Reconstruction x̂(θ) is
computed with SIRT under a nonnegativity constraint (150 iterations), a stable
choice for sparse-view CT. The reconstructor is held fixed throughout to isolate the
effect of the design policy—angle selection and stopping—which is the focus of this
study.

For the algorithm implementation, the architectures of the encoder and the
Actor–Critic neural networks are detailed in the Appendix (F). During training,
weights of 1.0 and 0.5 were assigned to the actor loss and critic loss in Algorithm
(1) and Algorithm (2,) respectively. To encourage exploration during training, an
entropy loss with a weight of 0.01 was included. Compared to Algorithm (1), Algo-
rithm (2) included an additional loss term for the terminal policy with a weight of
1.0. These parameter settings were empirically chosen to strike an optimal balance
between policy optimization, accurate value estimation, and robust exploration dur-
ing training. The network weights were optimized using the Adam optimizer [20]
with a learning rate of 10−4 and a weight decay of 10−5. To prevent selecting the
same angle multiple times, previously chosen angles are masked according to the
procedure described in [17].
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Figure 5. Experimental scanning setup at the FleX-ray labora-
tory. The X-ray source (left) and flat-panel detector (right) remain
fixed, while the object is positioned on a paper cup atop the ro-
tation stage centered between them. During acquisition, the stage
rotates to capture projections from multiple angles.

4.3. Training on synthetic data with Gaussian noise. In this experiment, we
investigated whether the two algorithms could adaptively determine the optimal
number of angles for CT imaging by adjusting the experimental costs before termi-
nation. The projections incorporated 5% Gaussian noise. For Algorithms (1) and
(2), the experimental costs ranged from -0.4 to -0.9 in intervals of 0.1. At higher ex-
perimental costs, priority is placed on guaranteeing image quality, whereas at lower
costs the emphasis shifts toward reducing the number of projections. A separate
model was trained for each experimental cost setting using the synthetic dataset
shown in Figure (4). To prevent excessive nontermination during training, the max-
imum number of angles, M , in Algorithm (1) and Algorithm (2), was limited to
20.

During training, each episode involved sampling a data point from the dataset
shown in Figure (4). The policy was trained at each angle selection step until
termination, thereby completing the episode. A total of 80,000 episodes (i.e., 80,000
sampled data) were considered. Figure (6), and Figure (7)) report training dynamics
on the training distribution (5% Gaussian noise) and are used to analyze learning
behavior. Quantitative evaluation on held-out data appears in Section 5.4 (unseen
rotations and noise levels) and Section 5.5 (experimental X-ray CT).

However, the naive stopping mechanism in Algorithm (1) (stop-as-action) did
not function reliably. Across per-step cost settings b ∈ [0.4, 0.9] (displayed in the
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plots as −b), the policy typically exhausted the maximum number of angles. As
shown in Figure (6), the setting b = 0.5 (label “−0.5”) produced shape-dependent
stopping with different angle counts, whereas b = 0.6 (label “−0.6”) failed to yield
a valid stopping policy.

These outcomes indicate that, in this formulation, the policy-gradient signal to
the “stop” class is too weak/sparse, leading to instability, lack of robust convergence,
and a tendency to ignore the terminal action.
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Figure 6. Comparison of the number of angles selected by the
naive policy and by experimental cost settings of −0.5 and −0.6.
The curves represent the mean number of angles during training,
averaged over every 1000 episodes, and the shaded regions indicate
the variance. Results are grouped by shape: parallelogram, trian-
gle, and pentagon.

In contrast, the terminal policy remained robust under different reward settings.
Figure (7) shows that, during training, the number of angles increased, and more
complex shapes required more angles. Lower costs (experimental cost is -0.5) gen-
erally led to a higher number of angles.
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Figure 7. Comparison of the number of angles selected by the ter-
minal policy and by experimental cost settings of −0.5 and −0.6.
The curves represent the mean number of angles during training,
averaged over every 1000 episodes, and the shaded regions indicate
the variance. Results are grouped by shape: parallelogram, trian-
gle, and pentagon.

4.4. Validation on unseen rotations and noise levels. To assess the gener-
alizability of Algorithm (2) for optimal stopping, we applied the policy trained in
the previous experiment (which involved 5% Gaussian noise) to synthetic data fea-
turing unseen rotations—rotations not included in the training set shown in Figure
(4)—as well as two additional noise levels: 3% and 7% Gaussian noise. The total
number of unseen phantoms was 1,800, with 600 for each shape.

A standard baseline approach, the Golden Ratio (GR) Policy [21, 10], is consid-
ered for comparison with the RL policy. In the GR policy, an angular increment
based on an irrational number is used, which leads to a nonrepeating sequence
of angles that fill the angular space most evenly over time. We note that simple
online stopping heuristics—e.g., stopping when the relative data residual or the rel-
ative reconstruction change falls below a threshold for L consecutive steps—require
dataset-specific tuning and can either stop too early or over-acquire. Instead, we
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Figure 8. Simulation results are categorized into parallelogram,
triangle, and pentagon shapes to illustrate how the number of
angles influences PSNR under various rewards and various noise
levels. Data points are color-coded by experimental costs—blue
(−0.4,−0.5,−0.6) and orange (−0.7,−0.8,−0.9). Increased trans-
parency indicates data points that are further from the mean. Tri-
angular markers represent the mean PSNR values obtained from
the golden ratio policy at each corresponding angle.

adopt a learned terminal policy that internalizes the quality–cost trade-off via the
per-step cost b.

Figure (8) shows the validation results for experimental costs ranging from −0.4
to−0.9 (in increments of 0.1) under Gaussian noise level of 5%. Results for Gaussian
noise levels of 3% and 7% are presented in Appendix (D). Each data point represents
the relationship between the number of angles and the corresponding PSNR values.
For clarity, results are grouped by shape (parallelogram, triangle, and pentagon).
The GR policy used the same synthetic data with unseen rotations and the same
number of angles chosen by the terminal policy. For each number of angles used by
the GR policy, the mean PSNR value was calculated.

Overall, the RL approach with the terminal policy achieved higher PSNR values
compared to the GR policy. At lower numbers of angles, the GR policy consistently
produced lower mean PSNR values across all shapes, with the difference between
the two methods diminishing as the number of angles increased. As shape complex-
ity increased from parallelogram to pentagon, the performance gap between the
two policies narrowed. For instance, at lower numbers of angles for the parallelo-
gram, the RL approach yielded data points above the mean value of the GR policy,
while for the more complex pentagon shape, the RL policy’s advantage was less pro-
nounced. Figure (8) uses distinct colors to represent different ranges of experimental
costs, with generally lower experimental costs leading to fewer angles. As experi-
mental cost increases, the number of angles decreases across all shapes. In Figure
(8), the orange points (indicating higher costs) are concentrated at lower numbers of
angles, while the blue points (indicating lower costs) are found at higher numbers of
angles; however, the distinction is more evident for complex shapes, which require
more angles.

Table (1) summarizes the number of angles selected for the three shapes during
validation under different noise levels, with the experimental cost fixed at −0.5.
In general, lower noise levels lead to fewer angles being chosen. As shown in the
table, each shape requires the fewest angles at 3% Gaussian noise, whereas 7%
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Table 1. Comparison of the number of angles and PSNR values
for triangle and pentagon shapes under different noise levels.

Shape Noise Number of angles RL (PSNR) GR (PSNR)

Parallelogram 3% 6.02 ± 2.26 25.96 ± 1.29 22.65 ± 2.17
Parallelogram 5% 6.96 ± 2.81 25.55 ± 1.10 22.92 ± 2.06
Parallelogram 7% 9.41 ± 3.98 24.99 ± 0.95 23.21 ± 1.91

Triangle 3% 8.54 ± 1.97 23.42 ± 1.10 21.58 ± 1.71
Triangle 5% 9.43 ± 2.21 22.85 ± 1.09 21.44 ± 1.54
Triangle 7% 11.39 ± 3.09 22.05 ± 1.12 21.17 ± 1.41

Pentagon 3% 10.43 ± 1.98 22.66 ± 0.67 22.21 ± 0.51
Pentagon 5% 10.99 ± 2.01 21.47 ± 0.56 20.99 ± 0.51
Pentagon 7% 12.56 ± 2.25 20.01 ± 0.58 19.56 ± 0.52

Gaussian noise leads to the largest number of angles. Furthermore, the number of
angles increases with the complexity of the geometry: the parallelogram requires
the fewest angles, while the pentagon requires the most. The RL policy outperforms
the GR policy under every tested condition.

4.5. Test on experimental X-ray CT data with two noise levels. We ex-
plored the gap between simulation and the real world by applying the model trained
on the synthetic dataset to the experimental X-ray CT data described in Section
5.1.2. Building on the potential demonstrated in the simulation, we further in-
vestigated whether the trained model could adapt to changes in the real scanning
environment, particularly variations in noise levels. Two noise levels were consid-
ered, based on different emission current settings (600 µA and 100 µA). The model
was trained using 5% Gaussian noise on the projections, while the noise in the ex-
perimental X-ray CT typically consists of a mixture of Poisson and Gaussian noise
[1]. It is important to demonstrate whether training under simplified conditions
(Gaussian noise model) can produce reasonable results when applied to the more
complex conditions of the real world (experimental noise).

Figure (9) shows results obtained from experimental X-ray CT data using three
trained models under varying emission currents and reward settings. To evaluate
reconstruction quality, we used the reconstruction obtained with all 180 angles as
the ground truth. The GR policy used the same number of angles chosen by the
terminal policy. For each number of angles used by the GR policy, the mean PSNR
value was calculated. Several consistent trends emerged across the 12 data groups,
aligning with the conclusions from the validation. First, pentagon data points
generally involved a larger number of selected angles than triangles. Second, noisier
data from the lower emission current (100 µA) triggered more angles than data
collected at the higher emission current (600 µA). Third, although the number of
samples was limited, it was still evident that lower experimental costs (e.g., −0.4,
−0.5 and −0.6) led to more angles, while higher costs (e.g., −0.7, −0.8 and −0.9)
required fewer angles. Finally, the RL policy clearly outperformed the GR policy
when fewer angles were selected, though the difference between them diminished as
the number of angles increased.
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Figure 9. Results on experimental X-ray CT data for the triangle
and pentagon shapes are shown, illustrating how the number of
angles affects PSNR under various experimental costs and noise
levels. Data points are color-coded by their experimental costs:
blue (−0.4,−0.5,−0.6) and orange (−0.7,−0.8,−0.9). Triangular
markers represent the mean PSNR values obtained from the GR
policy at each corresponding number of angles.

Table (2) compares the performance of the RL policy and GR policy under an
emission current of 600 µA and 100 µA under a reward setting of -0.5. The RL
policy consistently outperformed the GR policy for triangles, while it was only
comparable to the baselines for pentagons. This outcome, likely influenced by the
gap between synthetic and experimental X-ray CT data, is consistent with the
training results, where the RL policy did not demonstrate a particularly distinct
advantage for pentagon shapes.

Additionally, Figure (10) illustrates sample reconstructions for the two policies,
with the number of angles determined by the RL policy. Each colored spoke in-
dicates the beam direction of a parallel-beam view at angle θ (degrees), measured
counter-clockwise from the x-axis; note that θ and θ + 180◦ are equivalent. The
results show that the angles selected by the RL policy tend to cluster around the
edges. Furthermore, as the noise level increases (from an emission current of 600 µA
to 100 µA), the number of selected angles increases, and their distribution becomes
broader.
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Table 2. Comparison of the number of selected angles and PSNR
values for triangle and pentagon shapes under two different noise
levels: The low noise level corresponds to an emission current of
600 µA, and the high noise level to 100 µA.

Shape Noise Number of angles RL (PSNR) GR (PSNR)

Triangle Low 7.92 ± 3.04 27.38 ± 2.09 25.58 ± 2.10
Triangle High 11.08 ± 2.87 25.95 ± 0.72 24.47 ± 1.32

Pentagon Low 9.17 ± 1.86 26.63 ± 1.13 26.84 ± 0.87
Pentagon High 10.33 ± 2.05 24.50 ± 0.63 24.40 ± 0.30

Consequently, the RL policy trained on synthetic data with a simple Gaussian
noise model demonstrated reasonable performance on experimental X-ray CT data,
effectively handling both optimal stopping and the selection of informative angles.

5. Discussion. These results demonstrate that our algorithm effectively balances
experimental costs and reconstruction quality by incorporating optimal stopping
and adaptively selecting informative angles through deep reinforcement learning.
Moreover, the model trained on a synthetic dataset with a simple Gaussian noise
model showed satisfactory performance on experimental X-ray CT data, which typ-
ically includes more complex noise, such as a mixture of Gaussian and Poisson
noise. The algorithm also demonstrated its ability to adapt the number of angles
(optimal stopping) to varying noise levels in real-world scenarios while maintaining
a consistent level of experimental quality.

Despite these encouraging findings, several areas for improvement remain. First,
the gap between simulation and real-world performance could be minimized by in-
corporating more realistic simulators that account for precise noise models. Second,
the training process could be improved by adopting a multi-stage approach, where
the model is initially trained on simulated data and subsequently fine-tuned using
experimental X-ray CT data. Third, extending the dataset to three-dimensional
scenarios would enable the exploration of larger action and state spaces, further
enhancing the model’s capability. Additionally, task-specific zooming techniques
could be integrated for applications such as defect detection. Fourth, incorporating
learning-based reconstruction algorithms could facilitate the extraction of infor-
mative features directly from the reconstruction process, providing a more robust
basis for selecting informative angles. Fifth, while we report PSNR as the primary,
model-aligned metric in this work, complementary structural and task-oriented mea-
sures (e.g., SSIM, edge preservation, and detectability) are also informative; related
results with SSIM and detectability are reported in [35], and a comprehensive multi-
metric evaluation is a natural direction for future work. Finally, the learned pol-
icy is trained on the shape families used in this work and generalizes within that
distribution (unseen rotations/scales); we do not claim out-of-distribution gener-
alization to arbitrary non-convex or non-homogeneous objects. In industrial CT,
CAD/blueprint priors make class-specific training natural; extending to broader
multi-material classes is left for future work.

6. Conclusion. In this paper, we proposed an approach to simultaneously opti-
mize adaptive informative angle selection and optimal stopping by introducing a
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Figure 10. Selected projection directions for a representative
scan. Each colored ray denotes the projection normal (central ray)
of a parallel-beam view at angle θ (degrees), measured counter-
clockwise from the x-axis and defined modulo 180◦. Color encodes
acquisition order (step 1→M ; see colorbar).

terminal policy and jointly computing the policy gradient for both the angle selec-
tion and terminal policies. Additionally, we investigated the gap between simulation
and real-world scenarios. Our findings demonstrate the feasibility of achieving op-
timal stopping for sOED based on experimental costs. Furthermore, the trained
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model from simulation showed promising potential for application to experimental
X-ray CT data, highlighting its value for industrial CT applications. This approach
paves the way for fully adaptive scanning processes, optimizing both the selection
of informative angles and the number of angles required.

7. Data and code availability. Experimental datasets are available on Zenodo:
https://zenodo.org/records/14893740 The code for this work is available on
GitHub: https://github.com/tianyuan1wang/Optimal_Stopping_RL_CT

Appendix A. Continuation advantage function. The following equations show
the relationships between the continuation state-value function and the continua-
tion action-value function (cf. Eq. (2) and Eq. (5)). Here, πa(θ | x̂;wa) is the angle
policy, πter(d | x̂;wt) is the terminal policy with decision d ∈ {stop, continue},
and πt(x̂

′ | x̂, θ) denotes the (unknown) state transition induced by acquiring an-
gle θ and applying one reconstruction update. Convention. Whenever d (resp. d′)
appears inside πter(d | ·) (resp. πter(d

′ | ·)) without an explicit sum over the de-
cision variable, it denotes the termination event; consequently 1 − πter(·) denotes
continuation.

V πa,πter(x̂) = πter(d | x̂;wt)PSNR(x̂, x̄)

+
(
1− πter(d | x̂;wt)

)
V πa,πter

C (x̂),
(18)

V πa,πter

C (x̂) =
∑
θ

πa(θ | x̂;wa)Q
πa,πter

C (x̂, θ), (19)

Qπa,πter

C (x̂, θ) = −b+
∑
x̂′

πt(x̂
′ | x̂, θ)V πa,πter(x̂′). (20)

Continuation advantage. It evaluates whether the selected action is better than
the on-policy average at the current state:

Aπa,πter

C (x̂, θ) = Qπa,πter

C (x̂, θ)−
∑
θ

πa(θ | x̂;wa)Q
πa,πter

C (x̂, θ) (by Eq. (19))

= −b+
∑
x̂′

πt(x̂
′ | x̂, θ)V πa,πter(x̂′)− V πa,πter

C (x̂) (by Eq. (20))

= −b+
∑
x̂′

πt(x̂
′ | x̂, θ)

((
1− πter(d

′ | x̂′;wt)
)
V πa,πter

C (x̂′)

+ πter(d
′ | x̂′;wt) PSNR(x̂′, x̄)

)
− V πa,πter

C (x̂). (by Eq. (18))

(21)
In practice, since πt(x̂

′ | x̂, θ) is unknown, we sample x̂′ ∼ πt(· | x̂, θ) (one Monte
Carlo sample) and use

Aπa,πter

C (x̂, θ) ≈ −b+
(
1− πter(d

′ | x̂′;wt)
)
V πa,πter

C (x̂′)

+πter(d
′ | x̂′;wt) PSNR(x̂′, x̄)− V πa,πter

C (x̂).

https://zenodo.org/records/14893740
https://github.com/tianyuan1wang/Optimal_Stopping_RL_CT
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Appendix B. Policy gradient on wa. Notation. πa(θ | x̂;wa) is the angle
policy; πter(d | x̂;wt) is the terminal policy with d ∈ {stop, continue}; πt(x̂

′ | x̂, θ)
denotes the (unknown) state transition induced by acquiring θ and applying one
reconstruction update.

∇waJ(wa,wt)

= ∇wa
V πa,πter(x̂1)

= ∇wa

(
πter(d1 | x̂1;wt) PSNR(x̂1, x̄)

+
(
1− πter(d1 | x̂1;wt)

)
V πa,πter

C (x̂1)
)

(by Eq. (18))

=
(
1− πter(d1 | x̂1;wt)

)
∇waV

πa,πter

C (x̂1)(PSNR and πter do not depend on wa)

=
(
1− πter(d1 | x̂1;wt)

)(∑
θ

∇waπa(θ | x̂1;wa)Q
πa,πter

C (x̂1, θ)

+
∑
θ

πa(θ | x̂1;wa)∇wa
Qπa,πter

C (x̂1, θ)
)

(by Eq. (19))

=
(
1− πter(d1 | x̂1;wt)

)(∑
θ

∇waπa(θ | x̂1;wa)Q
πa,πter

C (x̂1, θ)

+
∑
θ

πa(θ | x̂1;wa)
∑
x̂

πt(x̂ | x̂1, θ)∇wa
V πa,πter(x̂)

)
(by Eq. (20)).

(22)
After unrolling the recursion,

∇waJ(wa,wt)

= ∇waV
πa,πter (x̂1)

=
T∑

k=1

∑
θ,x̂

π
(k)
1 (θ, x̂, dk+1 | x̂k;wa,wt)

∑
θ′

∇waπa(θ
′ | x̂k;wa)Q

πa,πter
C (x̂, θ′)

=

T∑
k=1

∑
θ,x̂

π
(k)
1 (θ, x̂, dk+1 | x̂k;wa,wt)

∑
θ′

πa(θ
′ | x̂k;wa)

∇waπa(θ′ | x̂k;wa)

πa(θ′ | x̂k;wa)
Qπa,πter

C (x̂, θ′)

=
T∑

k=1

∑
θ,x̂

π
(k)
1 (θ, x̂, dk+1 | x̂k;wa,wt)

∑
θ′

πa(θ
′ | x̂k;wa)∇wa log πa(θ

′ | x̂k;wa)Q
πa,πter
C (x̂, θ′),

(23)

where

π
(k)
1 (θ, x̂, dk+1 | x̂k;wa,wt)

=


∑
θ

πa(θ | x̂k;wa)
∑
x̂

πt(x̂ | x̂k, θ)
(
1− πter(dk+1 | x̂;wt)

)
, if k ̸= 0,(

1− πter(dk+1 | x̂k+1;wt)
)
, if k = 0.

Appendix C. Policy gradient on wt. Notation. πa(θ | x̂;wa) is the angle
policy; πter(d | x̂;wt) is the terminal policy with d ∈ {stop, continue}; πt(x̂

′ | x̂, θ)
denotes the (unknown) state transition induced by acquiring θ and applying one
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reconstruction update.

∇wt
J(wa,wt)

= ∇wt
V πa,πter(x̂1)

= ∇wt

(
πter(d1 | x̂1;wt) PSNR(x̂1, x̄)

+
(
1− πter(d1 | x̂1;wt)

)
V πa,πter

C (x̂1)
)

(by Eq. (18))

= ∇wtπter(d1 | x̂1;wt) PSNR(x̂1, x̄)−∇wtπter(d1 | x̂1;wt)V
πa,πter

C (x̂1)

+
(
1− πter(d1 | x̂1;wt)

)
∇wt

V πa,πter

C (x̂1)

= ∇wt
πter(d1 | x̂1;wt)

(
PSNR(x̂1, x̄)− V πa,πter

C (x̂1)
)

+
(
1− πter(d1 | x̂1;wt)

)∑
θ

πa(θ | x̂1;wa)∇wt
Qπa,πter

C (x̂1, θ) (by Eq. (19))

= ∇wt
πter(d1 | x̂1;wt)

(
PSNR(x̂1, x̄)− V πa,πter

C (x̂1)
)

+
(
1− πter(d1 | x̂1;wt)

)∑
θ

πa(θ | x̂1;wa)
∑
x̂

πt(x̂ | x̂1, θ)∇wt
V πa,πter(x̂)

(by Eq. (20)).

(24)
After unrolling the recursion,

∇wt
J(wa,wt)

= ∇wt
V πa,πter(x̂)

=
T∑

k=1

∑
θ,x̂

π
(k)
2 (θ, x̂, dk | x̂k;wa,wt)∇wt

πter(d | x̂;wt)
(
PSNR(x̂, x̄)

− V πa,πter

C (x̂)
)
,

(25)

where

π
(k)
2 (θ, x̂, dk | x̂k;wa,wt)

=


(
1− πter(dk | x̂k;wt)

) ∑
θ

πa(θ | x̂k;wa)
∑
x̂

πt(x̂ | x̂k, θ), if k ̸= 0,

1, if k = 0.

Appendix D. Additional results. We report supplementary experiments to il-
lustrate robustness across seeds and noise levels (3%, 5%, 7%). Architectures and
hyperparameters match Section 5.2.



60 T. WANG, F. LUCKA, D. M. PELT, K. J. BATENBURG AND T. VAN LEEUWEN

Table 3. Parameters used in the datasets. The scale is repre-
sented by the radius of the circumscribed circles, and the position
is described by the center coordinates (x, y) of these circles.

Shapes Scales Shifts

Parallelogram Radius: 42 ∼ 51 Center (x, y): (110,130) ∼ (110,130)

Triangles Radius: 56 ∼ 89 Center (x, y): (110,130) ∼ (110,130)

Pentagons Radius: 56 ∼ 89 Center (x, y): (110,130) ∼ (110,130)
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Figure 11. Simulation results are categorized into parallelogram,
triangle, and pentagon shapes to illustrate how the number of
angles influences PSNR under various rewards and various noise
levels. Data points are color-coded by experimental costs—blue
(−0.4,−0.5,−0.6) and orange (−0.7,−0.8,−0.9). Increased trans-
parency indicates data points that are further from the mean. Tri-
angular markers represent the mean PSNR values obtained from
the golden ratio policy at each corresponding angle.

The trends mirror those in Figure (8). Figure (11) encodes ranges of experimental
cost b by color: lower costs (blue) encourage acquiring more views, whereas higher
costs (orange) penalize additional views and thus lead to fewer selected angles.
Across all shapes, the number of acquired angles tends to decrease as b increases,
with the separation between cost regimes more pronounced for geometrically com-
plex phantoms that require more views at a given cost level. Moreover, higher noise
levels generally drive the policy to select more angles.
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Appendix E. Parameters used in datasets.

Appendix F. Architecture of the Actor–Critic network. The Actor–Critic
model consists of a shared convolutional feature extractor followed by three separate
heads for policy, value estimation, and terminal state prediction. The complete
architecture is detailed in Table (4).

Table 4. Detailed architecture of the Actor–Critic neural net-
work. A shared convolutional encoder extracts features, which are
processed by separate heads for policy (actor), value estimation
(critic), and terminal prediction.

Layer Type Parameters In Ch. Out Ch. Output Size

1 Conv2d kernel=3, stride=2, padding=1 1 12 120× 120

2 GroupNorm num groups=4 12 12 same

3 LeakyReLU negative slope=0.2 12 12 same

4 MaxPool2d kernel=2 12 12 60× 60

5 Conv2d kernel=3, padding=1 12 24 same

6 GroupNorm num groups=4 24 24 same

7 LeakyReLU negative slope=0.2 24 24 same

8 MaxPool2d kernel=2 24 24 30× 30

9 Conv2d kernel=3, padding=1 24 48 same

10 GroupNorm num groups=4 48 48 same

11 LeakyReLU negative slope=0.2 48 48 same

12 MaxPool2d kernel=4 48 48 7× 7

13 Flatten - - - 1× 2352

Actor Head

14 Linear in=1× 2352, out=1× 180 - - 1× 180

15 Softmax dim=-1 - - 1× 180

Critic Head

16 Linear in=1× 2352, out=1× 2352 - - 1× 2352

17 ReLU - - - same

18 Linear in=1× 2352, out=1× 1 - - 1× 1

Terminal Head

19 Linear in=1× 2352, out=1× 1 - - 1× 1

20 Sigmoid - - - 1× 1
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