Microprocessors and Microsystems xxx (XxXxx) XXX

Contents lists available at ScienceDirect S—
HARDWARE

DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Spike-based neuromorphic computing: An overview from bio-inspiration to
hardware architectures and learning mechanisms™

Anteneh Gebregiorgis 2®-*, Amirreza Yousefzadeh "®, Sherif Eissa “®,
Muhammad Ali Siddiqi 4@, Charlotte Frenkel @, Friedemann Zenke ¢*®, Sander Bohte 3®
Abdulqader Nael Mahmoud "®, Anup Das®, Said Hamdioui *®, Henk Corporaal @,

Federico Corradi “©@>*

a Delft University of Technology, The Netherlands

b University of Twente, The Netherlands

¢ Eindhoven University of Technology, The Netherlands

d Lahore University of Management Sciences, Pakistan

¢ Friedrich Miescher Institute for Biomedical Research, Switzerland
f Centrum Wiskunde & Informatica, The Netherlands

8 University of Amsterdam, The Netherlands

h NXP Semiconductors, The Netherlands

i Drexel University, USA

ARTICLE INFO ABSTRACT

Keywords: The endeavor to emulate the extraordinary efficiency and adaptability inherent in the human brain via
Neuromorphic computing spike-based neuromorphic computing presents significant potential across a diverse array of applications. The
Spiking neural networks attainment of this objective necessitates the translation of biological principles into artificial systems, a task that

Hardware architectures
Learning mechanisms
Computing-in-memory
Emerging technologies
Artificial intelligence

continues to pose a complex challenge requiring a profound comprehension of the mechanisms by which neural
systems produce robust computational outcomes. This tutorial paper provides a comprehensive overview of the
foundational concepts and emerging design trends in spike-based neuromorphic computing, covering advances
from materials and circuits to hardware architectures and learning mechanisms. It begins with an examination
of key aspects of brain biology and their influence on neuromorphic design, followed by a brief discussion of
biologically plausible neuron and synapse models. The paper then defines the core principles and defining
attributes of neuromorphic computing, highlighting the trade-offs and design choices underlying current
implementations. Building on these foundations, it explores the critical properties of neuromorphic systems,
surveys a variety of learning algorithms, and reviews hardware-level realizations of bioinspired neurons
and synapses. Subsequent sections discuss state-of-the-art spiking neural network architectures, mapping and
compilation strategies, and representative application domains. By providing this end-to-end perspective,
the article aims to guide the development of future neuromorphic systems that more closely emulate brain
efficiency, scalability, and resilience.

1. Introduction (e.g., NVIDIA A100 or H100) consuming 300-700 W under load. Train-
ing such models can consume several gigawatt-hours (GWh) of electric-

The human brain is remarkably efficient at processing information, ity, comparable to the annual energy usage of hundreds of households.
consuming only about 20 W, roughly the power of a dim light bulb, Whereas such models depend on massive centralized computation and

energy resources, biological systems achieve can handle complex and
noisy data, learn rapidly, and adapt to new situations while operating
in a highly parallel and distributed manner. Ongoing research aims

while enabling perception, reasoning, and learning. In contrast, modern
artificial neural networks require orders of magnitude more energy to
perform and train on similar tasks. For instance, large-scale models such
as GPT-3 or GPT-4 require thousands of high-end GPUs, with each GPU to bridge this efficiency gap through advances in information theory,

* This article is part of a Special issue entitled: ‘EuroMicro’ published in Microprocessors and Microsystems.
* Corresponding authors.
E-mail addresses: a.gebregiorgis@tudelft.nl (A. Gebregiorgis), f.corradi@tue.nl (F. Corradi).

https://doi.org/10.1016/j.micpro.2025.105240
Received 28 August 2025; Received in revised form 18 October 2025; Accepted 15 December 2025

Available online 20 December 2025
0141-9331/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article as: Anteneh Gebregiorgis et al., Microprocessors and Microsystems, https://doi.org/10.1016/j.micpro.2025.105240

https://www.elsevier.com/locate/micpro
https://www.elsevier.com/locate/micpro
https://orcid.org/0000-0001-5909-4927
https://orcid.org/0000-0002-2967-5090
https://orcid.org/0000-0001-8210-2323
https://orcid.org/0000-0002-8554-7077
https://orcid.org/0000-0002-1879-0288
https://orcid.org/0000-0003-1883-644X
https://orcid.org/0000-0002-7866-278X
https://orcid.org/0000-0002-7507-5993
https://orcid.org/0000-0002-5673-2636
https://orcid.org/0000-0002-8961-0387
https://orcid.org/0000-0003-4506-5732
https://orcid.org/0000-0002-5868-8077
mailto:a.gebregiorgis@tudelft.nl
mailto:f.corradi@tue.nl
https://doi.org/10.1016/j.micpro.2025.105240
https://doi.org/10.1016/j.micpro.2025.105240
http://creativecommons.org/licenses/by/4.0/

A. Gebregiorgis et al

learning algorithms, emerging materials, and specialized neuromorphic
hardware architectures for brain-inspired computing.

Neuromorphic research moves beyond our current notion of artifi-
cial intelligence (AI) because it aims at providing computing systems
that can scale to the level of intelligence and efficiency of the brain
by following equivalent operating processes. Historically, the term
“neuromorphic” was coined by Carver Mead, an engineering professor
at the California Institute of Technology, who pioneered the field and
helped establish its foundations. Mead’s work in the 1980s focused on
developing analog circuits that could simulate the behavior of neurons
and synapses. He demonstrated that these circuits could perform com-
putations more efficiently than traditional digital circuits [1]. This led
to the first neuromorphic chips, such as the “analog neural network”
chip, developed by Mead and his team in 1989. The main driver
behind this research was the Boltzmann statistics of ionic and electronic
channel transport, which provide isomorphic physical foundations with
electronic hardware devices [2]. Over the years, neuromorphic en-
gineering has significantly broadened to encompass various research
areas, including the creation of novel materials that mimic neuronal
and synaptic behaviors, the design of digital and mixed-signal neu-
romorphic circuits, neuromorphic sensors, and specialized computing
architectures. With these advances, neuromorphic engineering has the
potential to transform computing by enabling efficient and robust
systems modeled on the structure and function of the brain.

Neuromorphic systems replicate key brain features such as massive
parallelism, spike-based communication, and distributed in-memory
computation [3]. They also integrate sensory systems that follow bi-
ological encoding principles, enabling low-power, low-latency, and
event-driven sensing, as in the silicon retina [4], cochlea [5], touch [6],
and vestibular sensors [7]. Prominent neuromorphic computing ar-
chitectures include BrainScaleS [8], SpiNNaker [9], NeuroGrid [10],
TrueNorth [11], Tianji [12], Loihi [13], ODIN [14], PRIME [15],
DYNAPs [16], and pBrain [17]. All these architectures, inspired by
spike-based computation, demonstrate energy-efficient and low-latency
neural processing, illustrating the potential of neuromorphic hardware
for scalable and adaptive computing.

Driven by these outstanding research activities, several surveys and
tutorials related to neuromorphic computing and engineering have
been published: some works have presented a generic overview of neu-
romorphic computing [18,19], while others have focused on extending
the concept of neuromorphic physical computing with memristor-based
and in-memory computing strategies [20,21]. In addition, various sur-
vey papers are focused on hardware architecture concepts [22,23], and
learning algorithm [24], while some others focused on spike coding,
stereo vision, and photonics-based neuromorphic computing [25,26]. A
full stack review was provided in [27]. It included emerging materials
for neuromorphic systems, neuromorphic hardware implementations
with their related algorithms, and learning techniques [27]. However,
the literature needs a comprehensive tutorial paper on neuromorphic
computing, and this tutorial paper aims to close this gap by providing
a coherent and complete review of neuromorphic computing systems,
starting from the basics of biological processes to emerging devices,
circuits, and computing architectures. More specifically, we highlight
the commonalities among the various research lines and focus on the
most common SNNs algorithms and systems. Therefore, this tutorial pa-
per first introduces the fundamentals of brain biology and its inspiring
features in Section 2. Then, different biological plausible neuron and
synaptic models of neuromorphic systems are presented in Section 3
followed by the detailed discussion on the fundamental properties of
neuromorphic systems (Section 4), learning algorithms (Section 5),
hardware implementation of bio-plausible neurons and synapses (Sec-
tion 6) as well as hardware architecture for spiking neural networks
in Section 7. Finally, the mapping and compilation for neuromorphic
systems, deployment and applications of spiking neural networks are
presented in Sections 8 and 9, respectively. The tutorial is concluded
by highlighting the challenges and future directions of brain-inspired
neuromorphic computing in Section 10.

Microprocessors and Microsystems xxx (Xxxx) xXxx
2. Fundamentals of brain’s biology

Brains are found across all animal species. They come in various
sizes, weighing from a few micrograms (e.g., fruit fly) to almost ten
kilograms (e.g., whales), and they contain many neurons: from a few
thousands to many billions of neurons interconnected by thousand to
trillions of synapses. The brain’s primary way of computation and com-
munication is through action potentials, or “spikes”. Spiking activity
patterns are the basis of information processing in biological neural
systems. Much research has been devoted to linking the brain’s spiking
activity with the representation of the physical world as observed
through the senses. For example, the spike patterns of activity relate
to muscle activations [28], working memories [29], spatial naviga-
tion [30], abstract thinking as the perception of the number of items
(i.e., numerosity) [31], decision-making [32], among many others.
Unlike artificial intelligence systems, the brain’s computation is in-
separable from its physical structure. Thus, this section focuses on
the biology that inspires neuromorphic systems, mainly spike gener-
ation and communication, and describes the fundamental principles
of neurons, synapses, and their physical properties. The remainder of
this section is organized as follows: Section 2.1 presents the basics
of biological neurons followed by a detailed discussion on biological
synapses in Section 2.2.

2.1. Biological neuron

The essential elements of any natural neural system are the neuron
soma and its synapses. Neurons are electrically excitable cells whose
behavior is governed by the membrane potential, i.e., the potential
difference across their cell membrane maintained by ionic concentra-
tions inside and outside the cell. This membrane potential provides
the basis for signal generation and propagation, enabling neurons to
integrate incoming inputs and communicate through action potentials.
Neurons are the computational elements and they integrate information
coming from the synapses, which, in turn, connect neurons and enable
communication using neurotransmitter release or direct electrical stim-
ulation. Neurons are basic functional cells of the nervous system. Their
anatomical structure can be simplified as in Fig. 1a. A neuron consists
of three main parts:

« The cell body, ak.a soma: it contains the cell nucleus and
other cell organelles. The boundary of the cell body is called the
membrane;

The dendrites: these are short, branching structures that extend
from the soma and they act as receivers for incoming signals
(action potentials/spikes) from other neurons;

The axon: a structure that emerges from the soma like a sin-
gle cable from a region called the axon hillock and branches
out at the very end into what are called the axon terminals
farthest from the soma [33]. It carries electrical signals (action-
potentials/spikes) to other neurons. Axons have a coating known
as the myelin sheath, which increases the speed at which infor-
mation is transmitted along them. In general, axons comprise of
multiple long myelinated sections separated by short gaps called
nodes of Ranvier [34]. The action potential is propagated by
jumping from one node to the next. In addition, Ranvier’s nodes
are rich in ion channels to mediate sodium and chloride exchange,
thus supporting fast propagation of the action potential. At each
node, the action potential is regenerated, enabling the action
potential to travel along the fiber.

Neurons are electrically excitable cells whose function depends on
the membrane potential, created by ionic concentration differences
across the cell membrane (Fig. 1b). Key ions include Na* and K*, which
set the resting potential, and Ca®*, which mediates synaptic transmis-
sion [35]. Since ions cannot freely cross the membrane, specialized ion

A. Gebregiorgis et al

Microprocessors and Microsystems xxx (Xxxx) xXxx

Sodium gates close
+40mV g
;
ell body (soma) fousice Lt outsicef K{) Potassium
‘‘‘‘‘‘ o ot U gates remain
inside | Na* Na’ open
oligodentrocyte 0
cell membrane\ outsid] KT Potassium
4 gates remain
Depolarization i
o
00,0
e)
de of Ranvi Gate Repolarization mede |Na* Na*
f node of Ranvier
dendrites 55 mv
Stimulus) Rest Potential
myelin sheat: gy —
Hyperpolarization
-90 mV
. axon Potassium leak channel Active sodium and potassium pump
synaptic end bulbs terminal ousas| Nat Na* K5 Na)

(a) Neuron’s anatomy

de | g

(b) Action Potential

inside K

Fig. 1. (a) Neuron’s anatomical structure illustrating various parts such as cell body, axon and axon terminal with synaptic end bulbs (b) Action potential with

illustration on polarization as well as spike generation and transfer.

channels and pumps regulate their flow. At rest, neurons maintain a
potential of about =70 mV through the sodium-potassium pump and
leak channels. When the potential becomes more negative, the neuron
is hyperpolarized; when it becomes more positive, it is depolarized and
ready to fire in response to incoming signals. Potassium K+ and Sodium
Na+ channels open and close depending on the voltage across the
membrane as detailed in Fig. 1b.

An action potential is a rapid rise and fall of the membrane potential
following a characteristic pattern (Fig. 1b). When sufficient current
depolarizes the membrane beyond a threshold (typically -55 mV),
voltage-gated ion channels open, allowing a rapid influx of positive
ions and driving the potential up to about +40 mV [36]. This transient
voltage spike propagates along the axon from the hillock to the ter-
minal, triggering communication with other neurons. If depolarization
remains below threshold, no spike occurs, and the membrane potential
gradually returns to its resting value (~ —70 mV) via sodium-potassium
pump activity.

Neural systems contain many types of cells beyond neurons. Among
them, glial cells (or neuroglia) are non-neuronal cells that provide es-
sential support and regulation within the nervous system. Major classes
include astrocytes, oligodendrocytes, microglia, and Schwann cells.
Astrocytes are the most abundant, offering structural and metabolic
support to neurons, maintaining extracellular ion balance, and par-
ticipating in tissue repair. Oligodendrocytes in the central nervous
system (CNS) and Schwann cells in the peripheral nervous system (PNS)
produce myelin, the insulating sheath that enables rapid electrical
conduction along axons. Microglia act as resident immune cells of the
nervous system, clearing debris and responding to injury or infection.
Although glial cells do not generate action potentials like neurons,
recent evidence suggests they exhibit computational and signaling
roles. For instance, astrocytes communicate bidirectionally with neu-
rons to modulate synaptic transmission [37], and oligodendrocytes can
influence neuronal excitability and plasticity [38]. Although the exact
mechanisms underlying these glial computations remain under investi-
gation, it is clear that glial cells are indispensable to maintain, regulate,
and potentially process information within the nervous system.

2.2. Biological synapses

Synapses are sites at which information is carried, from the presy-
naptic neuron (which sends the action potential) to the postsynaptic
neuron (which receives the action potential). A single axon can have
multiple branches, allowing it to connect to various postsynaptic cells
through synapses as shown by the synaptic end bulbs at the neuron
axon terminal in Fig. la. Similarly, a neuron can receive thousands
of synaptic inputs from many different presynaptic neurons through

synaptic connections on its dendrites (indicated by the dendrites ter-
minals in Fig. 1la). Synaptic transmission can be either electrical or
chemical, as shown in Fig. 2:

» Electrical synapses (shown in Fig. 2a) are specialized direct
physical connections between presynaptic and postsynaptic neu-
rons. The structures that provide these connections are called gap
junctions, which allow various chemicals and ions to flow directly
from one neuron into another for information exchange. When the
membrane potential of one cell changes, ions diffuse from one cell
to the next and depolarize or hyperpolarize the postsynaptic cell
as shown in Fig. 1b.

Chemical synapses (shown in Fig. 2b), on the other hand, are
crucial for biological computations. In chemical synapses, there
is no direct physical connection between neurons like electrical
synapses as they transmit information in the form of chemical
messengers called neurotransmitters. Electrical synapses transmit
signals faster than chemical synapses. They are essential in neural
systems that need fast responses, e.g., defensive reflexes to help
an organism escape from a predator. Unlike electrical synapses,
chemical synapses lack in signal amplification, as the signal at the
postsynaptic neuron is typically the same or smaller in strength
than that of the presynaptic neuron [39]. However, the signal of
chemical synapses can be modified, which makes it an essential
element of memory and learning. Moreover, chemical synapses
can have different effects, such as an excitatory or inhibitory
effect on the postsynaptic neurons.

Synaptic plasticity it the ability of synapses to strengthen or weaken
over time and underpins learning and memory in neural systems [40].
Hebb [41] first proposed that co-activated neurons reinforce their con-
nection, a principle formalized in Hebbian learning. Plasticity occurs on
multiple timescales: long-term potentiation and depression (LTP/LTD)
produce lasting changes in synaptic efficacy, while short-term plasticity
(STP) transiently modulates neurotransmitter release through facilita-
tion or depression [42]. A prominent timing-dependent form, spike-
timing-dependent plasticity (STDP), adjusts synaptic weights based
on the precise timing of pre- and postsynaptic spikes, strengthening
connections when the presynaptic spike precedes the postsynaptic one
and weakening them otherwise [43]. Modern models extend STDP
to include rate, voltage, and neuromodulatory effects, linking local
plasticity to higher-level learning behavior [44].

2.3. Conclusions

The brain’s computational power arises from the coordinated ac-
tivity of neurons, synapses, and supporting cells, all operating through

A. Gebregiorgis et al

-action potential

lons diffusion for
information exchange

gap junction
channel

-coupling potential

(a) Electrical synapse

Ca®* channels

o /'Q\ ‘::' ‘

. " Ca

Sias s

Microprocessors and Microsystems xxx (Xxxx) xXxx

1. Arriving
action

potential at the
axon terminal

Ca?
. = 4. Neurotransmitter diffuses
® across the synaptic cleft

o\

6. Ion channels open which results in EPSP/IPSP

C

(b) Chemical Synapse

Fig. 2. Synaptic connectivity and synapse’s type (a) Electrical synapses for direct physical connection between neurons and (b) Chemical synapses based on

neurotransmitters. Details in Section 3.2.

electrochemical signaling. Understanding how neurons generate spikes,
how synapses modulate and transmit signals, and how plasticity en-
ables learning provides the essential biological foundation for neuro-
morphic engineering and brain-inspired computation.

3. Bio-plausible models of neurons and synapses

A neuron model describes how neurons integrate input spikes and
produce output spikes, while a synaptic model characterizes how
synapses convert presynaptic action potentials into postsynaptic cur-
rents that drive dendritic and somatic integration [45]. Realistic neuron
and synapse modeling involves developing phenomenological (i.e.,
based on observations instead of being derived from first principles
or theory) mathematical models and electronic circuits and finding
substrate materials that can emulate, with their physical properties,
the complex electrical and chemical signaling that occurs in biological
neural networks.

Because the brain exhibits highly nonlinear, heterogeneous, and
adaptive behavior, no single model can capture all aspects of neural
computation. As a result, many neuron and synapse models have
been developed, each offering a different trade-off between biolog-
ical realism, computational efficiency, and suitability for hardware
implementation. For instance, detailed biophysical models reproduce
biological behavior accurately but are computationally heavy, while
simplified models facilitate large-scale simulations and neuromorphic
hardware implementations at the cost of realism.

This section reviews prominent models of biological neurons and
synapses that have been developed during the 20th century. Section 3.1
introduces various neuron models, while Section 3.2 presents models
of biological synapses. Finally, Section 3.3 provides an overview of
brain-inspired SNN architectures.

3.1. Neuron models

Neuron models differ mainly in their level of abstraction. Biophys-
ically detailed models simulate ion-channel dynamics and membrane
conductances, while simplified models capture essential spiking behav-
ior with minimal parameters. The choice of model thus depends on the
target application, whether it aims to reproduce biological mechanisms,
to perform efficient computation, or to enable hardware realization.

3.1.1. Spike response model

The Spike Response Model (SRM) [46] is the most suitable model
to illustrate the essential components of a neuron model and how it
interacts with other neurons. The SRM is a general model that describes
neuronal dynamics using transfer functions instead of electrical circuit

models or differential equations. The SRM model can be expressed as
shown in Eq. (1) [46].

u(t)=;1(t—f)+/Dc k(t =1,) —s)ds (@D)]
0

Eq. (1) describes the membrane potential as a function of time 7. When
the membrane voltage crosses the dynamic threshold, k(t — t) enforces
the firing of the neuron, where t is the firing time of the last spike.
n and k are post-firing and response parameters to the synaptic input
I(t—s).

As shown in Fig. 3 [45], the SRM model consists of five functions
or filters:

* Membrane Filter (x): describes how the neuron membrane re-
sponds to an input spike.

» Nonlinearity (f(u — 0)): defines the spiking condition.

» Stochastic Spiking: introduces randomness in firing behavior.

+ Spike After-Potential (#): models the reset and refractory period
after spiking.

» Moving Threshold (#,): models threshold adaptation affecting
firing frequency.

Overall, the SRM model provides a flexible and computationally
efficient framework to describe and simulate a wide range of neuronal
properties and behaviors. However, since it abstracts away the under-
lying ion-channel mechanisms, it is less biologically detailed compared
to conductance-based models such as Hodgkin-Huxley [47], which ex-
plicitly model ionic currents but at a significantly higher computational
cost.

3.1.2. Linear integrate-and-fire models

Integrate-and-fire models [48] are among the most widely used
neuron models due to their simplicity and efficiency in capturing
essential neuronal behaviors such as bursting, adaptation, and refrac-
toriness. They are particularly suitable for hardware implementations
and SNN applications, offering an excellent trade-off between biological
accuracy and computational efficiency.

The Integrate-and-Fire (I&F) model assumes the neuron behaves as
a perfect integrator without leakage, accumulating incoming current
until the membrane potential reaches a fixed threshold, after which it
emits a spike and resets to its resting potential.

The Leaky Integrate-and-Fire (LIF) model extends this concept by in-
cluding a leakage term, accounting for the natural decay of membrane
potential over time. This addition enables a more realistic representa-
tion of neuronal behavior while maintaining computational simplicity.

The Adaptive Leaky Integrate-and-Fire (ALIF) model introduces spike-
frequency adaptation, mimicking the decreasing firing rate under sus-
tained stimulation by dynamically adjusting its firing threshold. This

A. Gebregiorgis et al

Microprocessors and Microsystems xxx (Xxxx) xXxx

Moving
Threshold

~

A

2

Membrane

Filter Nonlinearity

After-Potential

-

]

S(t)
— TN >

Spike Train

Spike

Stochastic
Spiking

/

Fig. 3. SRM block diagram as adopted from [45]. Input current is filtered with filter k. Output spikes are fed back in two distinct ways; they generate contributions

() on the neuron’s potential and (6,) on the neuron’s threshold potential.

adaptation increases the dynamic range and temporal sensitivity of the
neuron model.

When compared to other neuron models, the Hodgkin-Huxley
model remains the most biologically accurate, explicitly modeling ion-
channel dynamics but at a high computational cost. The Spike Response
Model (SRM) provides a more abstract yet flexible framework, capable
of capturing temporal dynamics without the biophysical detail of
Hodgkin-Huxley. In contrast, the integrate-and-fire family offers the
simplest and most hardware-efficient formulation, ideal for large-scale
neuromorphic systems, albeit at the expense of detailed channel-level
representation. The choice of neuron model therefore depends on the
desired balance between biological realism, computational efficiency,
and hardware implementability.

A wide spectrum of neuron models exists because each aims to
capture neural behavior at a different level of abstraction. The SRM
provides an efficient, general framework for temporal integration, the
Hodgkin-Huxley model offers unmatched biological detail, and the
integrate-and-fire family achieves scalable and efficient computation
ideal for neuromorphic hardware. Those models represent the contin-
uum from biophysical realism to hardware efficiency that underpins
modern spiking neural network design.

3.2. Synapse models

Synapse models describe how presynaptic activity influences post-
synaptic responses. In most cases, they are phenomenological: the
synapse is treated as a black box that transforms incoming spikes into
a postsynaptic current or potential. The complex biochemical sequence
underlying this process—neurotransmitter release, diffusion, and recep-
tor binding—is often abstracted unless those mechanisms are the focus
of study [49,50].

Two main types of synapses are modeled in neuroscience and
neuromorphic computing: chemical and electrical. Chemical synapses
dominate in biology and involve neurotransmitter release across a
synaptic cleft, leading to excitatory or inhibitory postsynaptic poten-
tials. Electrical synapses, by contrast, directly connect neurons through
gap junctions that allow current to flow bidirectionally. In computa-
tional and neuromorphic systems, synapses often combine aspects of
both types: analog or resistive couplings emulate electrical behavior,
while variable weights capture the modulatory effects of chemical
transmission [51,52].

Real synapses are inherently variable. Even under identical stimula-
tion, neurotransmitter release is probabilistic, leading to fluctuations in
the strength and timing of the postsynaptic response. This stochasticity
can be modeled statistically and plays an important role in neural
coding and learning, helping biological and artificial networks remain
adaptive and noise-tolerant [50].

A defining property of synapses is their ability to change strength
over time—known as synaptic plasticity. Plasticity mechanisms can be
broadly divided into two families. In rate-based models, synaptic change

depends on how frequently pre- and postsynaptic neurons fire together,
capturing average co-activation over time. In spike-timing-dependent
plasticity (STDP), the adjustment depends on the precise temporal
order of spikes: if a presynaptic neuron fires just before a postsy-
naptic one, the connection strengthens (potentiation); if it fires after,
it weakens (depression) [43,53]. Modern extensions include depen-
dencies on calcium concentration, membrane voltage, firing rate, and
neuromodulatory signals [54-56].

Together, these synaptic mechanisms—stochastic transmission and
adaptive plasticity—enable learning and self-organization in spiking
neural networks. Rate-based rules describe large-scale population dy-
namics, while STDP and related mechanisms support event-driven,
temporally precise learning that is particularly suitable for neuro-
morphic hardware. The following section builds on these principles
to describe how neurons and synapses combine into complete SNN
architectures.

3.3. Spiking Neural Network (SNN) architectures

SNN architectures integrate the neuron and synapse models de-
scribed in Sections 3.1-3.2 into structured networks capable of com-
putation and learning. Their diversity arises from how neurons are
connected, how spikes propagate, and how synaptic plasticity rules,
such as those discussed above, modulate connections over time. Sim-
ilar to conventional Artificial Neural Networks (ANNs), SNNs can be
categorized by their connectivity patterns (feed-forward, convolutional,
recurrent). However, unlike ANNSs, they process information through
discrete, temporally precise spike events, giving rise to asynchronous
and event-driven computation. This temporal nature introduces new
opportunities for energy efficiency and dynamic representation while
requiring novel training strategies and hardware support.

Feed-forward SNNs represent the most basic class of architectures,
where information flows unidirectionally from input to output [57].
They may include one or more hidden layers: single-layer configu-
rations act as spiking perceptrons, while deeper versions resemble
spiking multilayer perceptrons. Each neuron integrates temporal spike
inputs and emits an output spike once its membrane potential ex-
ceeds a threshold. Stacking multiple layers allows the network to
form hierarchical temporal-spatial representations, analogous to deep
ANNs, albeit with sparse and event-driven dynamics. Feed-forward
SNNs have been widely employed in tasks such as static image recogni-
tion and signal classification, particularly when trained via conversion
from pre-trained deep neural networks or local learning rules such
as Spike-Timing-Dependent Plasticity (STDP). However, the absence
of internal feedback limits their ability to capture long-term temporal
dependencies.

Convolutional SNNs extend this paradigm by integrating convolu-
tional, pooling, and fully connected layers composed of spiking neu-
rons [58]. By convolving local receptive fields, these architectures
exploit spatial correlations in input data while maintaining sparse

A. Gebregiorgis et al

448

2 1028 30
Conv-layer Conv-layer 6-Conv-layers 10 Conv-layers 14 -Conv-layers 13 - Conv-layers Conv-layer
64x7x7 3x3x192 2-64x64x3x3 1.128x54x3x3 1-256x128x3x3 1-512x256x3x3 512x7x7
with maxpool with maxpool 2 64*64XIX1 1.128x54x1x1 1-256x128xlx1 3-512x256x1x1
layer Jayer 1-64x32x3x3 4-128x128x3x3 6- 2-512x512x3x3

1- 64x32x1x1 4-128x128x1x1 1- 3-512x512x1x1

2-256x256x3x3
1-256x256x1x1
1- 256x1024x1x1

Input Dense hidden

layers

(a) YOLO-V6 deep spiking CNN architecture

—
AR
3 N
aa8 1 N\ 7
78 7
= 20) . = - >< X
1 7 7 7
3 192 G 1024 1024 4096

Conv-layer

Output
preprocessing layers layers

Microprocessors and Microsystems xxx (Xxxx) xXxx

W\ e >
\
A
Hidden-layer

(Recurrent neurons) Output neurons

Input neurons

(b) Recurrent SNN

Fig. 4. Example SNN architectures: (a) YOLO-V6 deep spiking CNN architecture for object detection (b) Recurrent spiking neural network architecture.

temporal communication. Convolutional SNNs reduce the number of
trainable parameters compared to fully connected networks and are
particularly well-suited for event-based vision applications, such as ob-
ject detection and motion analysis with dynamic vision sensors (DVS).
Training strategies include both ANN-to-SNN conversion and direct
spike-based learning, enabling real-time visual inference with ultra-
low power consumption. Their modular design also facilitates hardware
implementation on neuromorphic platforms such as Loihi and DYNAPs
(see Section 7). Fig. 4(a) illustrates a CNN inspired deep SNN architec-
ture where convolutional and pooling layers are employed to extract
sparse spatiotemporal features and reduce the features the network
learns before classification through fully connected spiking layers [59].

Recurrent SNNs incorporate feedback connections among neurons,
allowing the network to maintain internal states and process temporal
sequences [60]. Such architectures naturally capture the dynamics of
biological neural circuits, where recurrent loops and feedback modu-
late ongoing activity. Recurrent SNNs are capable of sequence learn-
ing, working memory, and pattern generation, making them ideal for
speech, motor control, and sensory integration tasks. However, their
recursive structure complicates learning, often requiring biologically
plausible alternatives to backpropagation through time, such as e-prop
or local eligibility-trace-based learning.

Among recurrent architectures, the Long Short-Term Memory
(LSTM) and gated recurrent models represent important conceptual
analogs, introducing gating mechanisms to mitigate gradient-vanishing
issues and selectively retain relevant temporal information. Translating
these principles to spiking domains—through adaptive thresholds,
refractory states, or dynamic synaptic traces—remains an active area
of research. Fig. 4(b) illustrates a recurrent SNN where spiking
feedback pathways enable temporal context accumulation across
layers, facilitating temporal reasoning and prediction.

3.4. Conclusion

Biologically inspired models of neurons and synapses provide the
foundation of spiking neural networks, linking neural mechanisms with
their computational realizations. From detailed conductance-based for-
mulations to simplified integrate-and-fire abstractions, these models
describe how neurons integrate inputs, generate spikes, and adapt
over time. Similarly, synaptic models—ranging from deterministic cur-
rent formulations to stochastic and plasticity-driven dynamics—enable
learning and long-term adaptability. Together, they constitute the core
building blocks of neuromorphic architectures. Spiking network archi-
tectures, in turn, combine spatial processing, temporal dynamics, and
sparse communication to form a flexible computational substrate. The
choice between feed-forward, convolutional, or recurrent structures de-
pends on the target application, learning paradigm, and hardware con-
straints, ultimately determining the balance between biological realism,
computational efficiency, and scalability.

4. Fundamental properties of neuromorphic computing

Taken literally, ‘“neuromorphic” means systems with the same form,
shape, and structure as natural neural systems. Nevertheless, neuromor-
phic computing systems deviate in form and shape. Today, researchers
exploit various devices, circuits, and largely different architectures for
constructing sensing and computing systems that mimic some neural
computational attributes. And yet, the extent to which a technology
can be called neuromorphic is controversial. Nevertheless, we can
agree on the general fundamental features and principles that need to
be researched and understood before we will be able to implement
truly artificial neuromorphic systems with silicon and emerging device
technologies. Currently, Deep Neural Networks (DNNs) are exceeding
the accuracy of biological brains (including the human brain) in several
specific domains like video [61] and audio processing [62] and can
beat human champions in playing games [63]. However, all of these
tasks are performed with digital nanotechnologies without consider-
ing many of the main biological features and their related physical
restrictions present in natural systems. In nature, biological limitations
have steered evolution toward exploiting neural information algorithms
capable of coping with the biological neural elements, that are noisy,
diverse, and stochastic [64], but that are capable of delivering high
energy efficiency. Thus, one of the primary aims of neuromorphic
engineering is to understand the principles of neural computation for
reaching the brain’s energy performance point. This section presents
the essential biological features that inspire the development of neu-
romorphic technologies. As illustrated in Fig. 5, these features are
local/in-memory computing, parallelism, non-linearity, asynchronicity,
sparsity, continuous learning, probabilistic computing, Scalability and
signal representation. These inspiring features are discussed in the
following subsections.

4.1. Analog in-memory computing

In the brain, computation happens thanks to the biophysical proper-
ties of neurons and synapses. Memory and computation are distributed,
and there is little distinction between processing and memory elements.
In fact, in biological neural networks, memory traces are found in the
state of the synapses and the neurons’ membrane potential, in their
firing pattern, and in their dynamics [65].

Inspired by these biological principles, neuromorphic in-memory
computing emulates the physical properties of neural systems in very-
large-scale integration (VLSI) hardware [1] and emerging device tech-
nologies [66], where computation occurs either in the memory itself
or close to it. By leveraging the characteristics of the medium, similar
to those observed in biological systems, these systems enable new
computational paradigms that interact with the real world using the
inherent physical properties of neural networks.

A. Gebregiorgis et al

Microprocessors and Microsystems xxx (Xxxx) xXxx

' N\ N\ 3
Analog in-memory computing Parallelisms Non-linearity
000
000
. v - J N J
(. h (- h (- - h
Asynchronicity Sparsity Continuous learning
. % v
®
X X ‘
- S ®
(. J . J (. — J
[Probabilistic Computing 1 (Scalability) rBinary Spike Representation\
* : B B 0101
%k I “ 0101
° ° ‘ ‘,,,l UL
e o l‘ S ‘ & R
i LA
— o \ 7?;
. J . J . J

Fig. 5. Attributes of biological neural networks inspire neuromorphic systems, as explained in detail in this section.

More generally, in-memory computing (IMC) refers to a broad
range of approaches where computation is performed either directly
within the memory or near it. This reduces the need for excessive data
movement, which is a major bottleneck in traditional architectures.
In the context of deep neural network accelerators, IMC architectures
have been proposed to amortize memory access and perform computa-
tion on the bit-lines within memory arrays. This technique, applicable
in both the analog and digital domains, enhances parallelism and
energy efficiency [67], especially for operations such as large-scale
vector-matrix multiplication, where improvements in speed, latency,
and energy consumption are critical.

4.2. Parallelism

The fabric of the brain is slow. Each neuron fires on average in
the range of 1-5 spikes per second. However, thanks to its structure
that comprises billions of parallel processing units, brain performance
can surpass the performance of many advanced computers. Such neu-
romorphic systems are typically implemented by means of fine-grain
parallelizable systems that can benefit from executing over many small
interconnected processing cores (neurons) [68,69]. For many years,
improving the speed of a single processing core was the only method
to increase the computer’s performance. This however is not possible
anymore due to the fundamental limitations such as the power, memory
and cost wall [70]. Therefore, parallel processing is used as one of the
main methods to improve computing performance.

4.3. Non-linearity

The brain is a highly nonlinear system composed of populations
of neurons interconnected via feedback loops. Recurrent neural net-
works, which allow for cycles in the connections, can exhibit varying
levels of connectivity. Notably, Douglas [71] introduced the concept
of canonical (cortical) microcircuits, an influential theory in neuronal

processing. These microcircuits are organized into fundamental neu-
ronal circuits that operate as nonlinear computational units [72]. This
organization of microcircuits leads to distinct nonlinear operations in
different cortical areas, manifested as specific neural responses [73].
These processes are associated with particular computational roles. For
example, many cortical neurons exhibit sigmoid-like response patterns
based on stimulus parameters, such as image contrast. A well-known
instance is the orientation tuning observed in the primary visual cor-
tex, where neural tuning emerges from the geometric arrangement of
the receptive fields of afferent neurons [74]. Another example is the
winner-take-all and attractor dynamics used as models for working
memory and decision-making in the prefrontal cortex [65], which have
been emulated in analog neuromorphic hardware [75,76].

4.4. Asynchronicity

Brains are asynchronous systems. Each neuron works independently
from other neurons, without the use of an explicit clock. Still, the
signals are propagated as they happen in real-time. Nevertheless, most
SNNs are still trained in a synchronous regime, because it is more effi-
cient in our traditional computers (CPUs and GPUs). As a consequence,
neurons in the network are required to be evaluated synchronously.
This behavior can be a significant bottleneck for scalability. For ex-
ample, barrier message synchronization in Loihi [69] does not allow
for large-scale systems. In contrast, biological neurons do not require
explicit synchronization, which allows for efficient scalability. Nev-
ertheless, it is very challenging to obtain robust computation with
truly asynchronous systems as we still miss understanding, algorithms,
and a formal theory of computation for truly asynchronous computing
systems. Additionally, design automation tools for asynchronous sys-
tems are lacking behind traditional digital tool-chains, rendering the
designs of asynchronous systems harder and mostly driven by academic
researchers [77].

A. Gebregiorgis et al
4.5. Sparsity (in space and time)

A key property of neuromorphic signal processing is the existence of
dimensions where signals exhibit smooth variations. The most straight-
forward example of such a dimension is time. Neurons in the brain
possess short-term memory, allowing them to retain the history of
incoming signals. This feature enables the brain to excel in processing
natural signals, which are typically highly sparse in time. For instance,
although the human brain can efficiently process over 100 frames per
second (fps), research has shown that performance drops to below 10
fps when the frames are not temporally correlated [78].

In addition to temporal sparsity, spatial sparsity plays a crucial
role in neuromorphic systems. Spatial sparsity refers to the activation
of only a small subset of neurons or synapses at any given moment,
which reflects the efficient use of neural resources. In the brain, signals
are processed locally, meaning that specific neurons or circuits are
activated in response to specific features or stimuli, leading to sparsely
distributed patterns of activity across the neural population. This spatial
sparsity allows for efficient signal representation and reduces energy
consumption during processing. For example, neurons in the visual
cortex are sensitive to specific orientations of visual stimuli, resulting in
sparse activation patterns based on the spatial arrangement of receptive
fields.

Furthermore, effective neuromorphic processing relies not only on
input-level temporal sparsity but also on context-level temporal spar-
sity. The brain processes input data by extracting features hierarchically
across different stages. If there is insufficient sparsity at each level of
feature extraction, it can disrupt the efficient processing of signals.
Therefore, both temporal and spatial sparsity are essential for the
brain’s ability to process complex, high-dimensional data efficiently.

4.6. Continuous learning and plasticity

Online learning, fault tolerance, and adaptability are essential prop-
erties of any neural system. Online learning refers to learning and
adapting to new inputs and statistics as the system receives information
in the physical world, i.e., while further information becomes avail-
able, and it refers to a system that updates its knowledge or model
continuously as new data comes in, allowing it to learn and adapt in
real-time.

Fault tolerance means the system can continue functioning despite
faults or damage (e.g., some neurons or synaptic connections are dam-
aged). Finally, adaptability refers to the ability of the system to change
and reconfigure itself in response to changing conditions. Moreover,
and similarly to online learning, continuous learning emphasizes the
ongoing nature of learning without resetting or stopping between tasks.
It often refers to lifelong learning where the system retains knowledge
from past experiences.

Finally, on-chip Learning refers to learning that occurs directly on
the hardware (e.g., a neural chip without the use of external supporting
systems as large memories or general purpose computing systems).
This usually emphasizes efficient real-time updates with a reduction
or elimination of external computation carried in a general purpose
computing system.

4.7. Probabilistic computing

Spiking neural networks (SNNs) communicate and process informa-
tion through action potentials, or spikes. These networks utilize special-
ized neural information processing strategies that include; stochastic re-
current dynamical systems: systems that explore different stable energy
states in a probabilistic manner; stochastic resonance: a phenomenon
where noise improves signal detection; chaotic systems: systems with
unpredictable behavior that can still exhibit underlying patterns. Each
of these strategies contributes to the network’s ability to handle com-
plex, probabilistic tasks. Some scientists argue that the presence of

Microprocessors and Microsystems xxx (Xxxx) xXxx

noise is essential for the correct behavior of the system. For example,
the drop-out technique in deep learning is inspired by this feature
and improves the neural network’s generalization by avoiding overfit-
ting [79]. In summary, the brain is a noisy processing system. Yet, it
can process information accurately and efficiently.

The deterministic behavior of modern digital silicon hardware
comes at some costs. Highly dense process node silicon (~nm of
feature sizes) technologies are noisy. Furthermore, the noise level
increases when using a smaller technology node. Allowing a transistor
to communicate only binary states (0 and 1) limits the performance
of current computers and increases their power consumption. How-
ever, the dominance of deterministic computers is the result of the
algorithmic requirements. Specifically, deterministic computers (which
process binary states—0 and 1—predictably) have become dominant
because many algorithms used in modern computing require precise,
predictable behavior. These algorithms are designed to operate in
environments where every operation has a clear, repeatable outcome.
Therefore, deterministic computing ensures that programs run reliably
and consistently, which aligns well with the structure of current soft-
ware and algorithmic needs, despite hardware inefficiencies like noise
and power consumption. In contrast, a neuromorphic algorithm does
not necessarily require a fully deterministic processing platform to
function well. One of the trends in neuromorphic processing is to make
noisy analog neurons with the silicon transistors in the ultra-low-power
regime (near-threshold) [80] or with entirely new nano-electronic ma-
terials [66]. In both cases, the communication between the processing
elements (neurons) is done digitally, as the shape of the action potential
is stereotypical and it is assumed it does not carry other information
than its presence (i.e., binary, is present or not).

4.8. Scalability

Neural systems are intrinsically scalable because they are composed
of neurons and synapses that can be replicated and connected in large
numbers to form complex networks. This modular organization allows
neural systems to scale up or down depending on the computational
demands of a particular task. The scalability of neural systems has been
recognized in many fields, including artificial intelligence, robotics,
and neuroscience. In particular, the development of artificial neural
networks has enabled researchers to leverage the scalability of neural
systems to perform complex tasks, such as image and speech recog-
nition, with high accuracy and efficiency. For example, in the human
brain, the neural cortex is the brain’s outer layer, and it plays a
critical role in many cognitive functions, such as perception, attention,
memory, and language. The cortex is composed of repeating units
called cortical columns, which contain thousands of neurons that are ar-
ranged in a highly structured manner. Furthermore, these columns are
organized hierarchically, with each level of the hierarchy processing
increasingly complex features of sensory information.

4.9. Binary spike representation

Signal representation in neural systems can take different forms
depending on the level of analysis and the specific neural system
being studied. For example, signal representation refers to the way
neural systems encode and convey information. Neural signals can
be represented in multiple forms using analog representation, digital
communication and chemical interactions. Analog representation refers
to the continuous changes in the intensity of signals, such as varia-
tions in the membrane potential of neurons. Digital communication
then refers to the use of a stereotypical pulse signal, i.e. the action
potentials (spike), which are binary events (either occurring or not). Fi-
nally, many chemical interactions, such as neurotransmitters and other
chemical substances that mediate communication between neurons
at synapses, modulate signal transmission and processing. Each type

A. Gebregiorgis et al

of representation contributes to the complex functionality of neural
systems.

At the cellular level, the basic neural processing unit is the neuron,
which communicates with other neurons through chemical and elec-
trical signals. These signals are generated by the flow of ions across
the neuron’s membrane, which creates a voltage difference or electrical
potential that can be measured as an analog signal. These analog signals
are then converted into digital signals by firing action potentials, which
are discrete electrical pulses that neurons use to transmit information.

At the network level, neural systems process information through
the interactions of large populations of neurons that are interconnected
by synapses. These synapses can modulate the strength of the connec-
tions between neurons through various mechanisms, including changes
in the release of neurotransmitters or the expression of ion channels.
These chemical interactions can also encode information digitally, with
the strength of the connection between two neurons representing the
presence or absence of a particular feature or pattern of information.

Overall, neural systems rely on a combination of analog and digital
representations and chemical interactions to encode and process infor-
mation. This complex interplay of signals and interactions gives neural
systems their remarkable ability to perform complex computations and
learn from experience.

4.10. Conclusions

Neuromorphic systems implement the above properties, in/near-
memory computing, parallelism, non-linearity, asynchronicity, sparsity, con-
tinuous learning, probabilistic computing, scalability, and spike-based rep-
resentation, within concrete SNN architectures (feed-forward, convolu-
tional, recurrent). Feed-forward SNNs leverage temporal sparsity for
efficient event-driven pipelines; convolutional SNNs add locality and
weight sharing for scalable feature extraction; recurrent SNNs introduce
feedback and state for temporal reasoning and online adaptation.

Unlike conventional deterministic processors optimized for dense
synchronous arithmetic, neuromorphic substrates co-design device
physics, circuits, and network organization around sparse, event-driven
computation. This makes them naturally suited for low-power, real-
time, and adaptive workloads operating in noisy, uncertain environ-
ments. Although today’s digital accelerators dominate many benchmark
tasks, neuromorphic computing offers a complementary path to energy
efficient, scalable, and adaptive intelligence by embodying the above
principles in hardware, including silicon CMOS and emerging devices,
and aligning the learning rules with local mechanisms on the chip.

5. Learning algorithms for spiking neural networks

Over two decades ago Wolfgang Maass showed in a seminal work
that SNNs are universal approximators [81]. Intriguingly, he also ar-
gued that spiking neural networks can be computationally more pow-
erful than classical neural networks, since fewer neurons are needed
to perform an equivalent computation. Unlocking this capacity, how-
ever, requires learning algorithms to instantiate suitable parameter
configurations that yield the desired network function. Therefore, this
section discusses bio-inspired, spike-based learning algorithms for spik-
ing neural network systems. First the basics of learning algorithms are
introduced in Section 5.1. Then, a brief summary of the contemporary
deep learning approaches of spiking neural networks is presented in
Section 5.2. Finally, the future directions in learning algorithms for
spiking neural networks are presented in Section 5.4.

Microprocessors and Microsystems xxx (Xxxx) xXxx

5.1. Learning algorithms

Learning algorithms adjust the network parameters with the goal to
achieve a specific behavior or computation in the network. The degree
to which the networks show this behavior is calculated using a loss
function, as in conventional ANNs. Most existing learning algorithms in
machine learning are gradient-based and rely on the gradient of the
loss, either calculated explicitly, like in gradient descent, or implic-
itly, like in evolutionary computation. However, most spiking neuron
models rely on a discontinuous activation function to implement the
spiking threshold (cf. 3.1), which is not smoothly differentiable, and
thus poses a challenge for gradient-based optimization in SNNs. Over
the past decades, much research effort has therefore been dedicated
to evolutionary algorithms and phenomenological plasticity models
constrained by plasticity experiments such as STDP.

Phenomenological synaptic plasticity models, such as STDP and
Hebbian learning, are commonly used to describe the results of plas-
ticity induction experiments. However, these models are often under-
constrained and typically cannot be derived from a sensible loss-
function. Thus, their direct application to networks often results in
run-away activity rather than useful network behavior. This can be
addressed when augmented with additional loss-related terms. For
instance, reward modulation STDP can implement reinforcement learn-
ing [56,82], or adding normalization terms to Hebbian learning can
implement forms of unsupervised learning like Principal Component
Analysis (PCA) [83] or blind source separation [84]. For example, Oja’s
rule is given by:
dw;
Tdr
where x; is the neuronal activity of the input neuron i and y is the
postsynaptic activity assuming a linear neuron model [83]. The first
term in which x and y appear detects coincidences of pre and post-
synaptic activity. It makes the learning rule a Hebbian learning rule.
However, it is easy to see that with only this first term, the learning rule
would be unstable as weights of a highly active neuron y would keep
increasing for a positive input x. The second term involving)? prevents
such run-away activity and ensures that the weight vector i remains
normalized. Assuming a linear neuron model y = ¥ w;x; and zero

i%i
mean input the weight vector aligns with the first principal component

of the data X. While the above learning rule can be extended to a
population of neurons which, given suitable lateral inhibition, can learn
to cover the principal subspace of the data [85], phenomenological
local learning rules optimize the activity of single neurons or popula-
tions of neurons. While this allows them to effectively implement linear
decompositions like PCA, they do not have the capability of optimizing
networks end-to-end due to the lack of credit assignment mechanisms,
and empirically most of the corresponding local learning rules did not
result in interesting computational functions in deep SNNs, although
there are some exceptions [86].

To resolve the issue of non-differentiability in more complex SNNs,
researchers have explored evolutionary strategies to tune parameters.
This approach has proven successful at generating effective small
SNNs [87], regardless of the nature of the loss function. However,
as with all evolutionary approaches, they are hard to scale to larger
problems and deep SNNs.

=’lxjy_y2wj 2

5.2. Deep learning in SNNs

In deep learning, networks are trained end-to-end using the error-
backpropagation algorithm. Combined with unprecedented compute
power and the development of large datasets, this algorithm has fueled
the deep learning revolution over the past decade.

A. Gebregiorgis et al

5.2.1. Backpropagation

Backpropagation of error is an algorithm that allows efficient com-
putation of the gradient in multi-layer networks. Toward that end,
backpropagation solves the spatial credit assignment problem,
whereby it assigns to every neuron in a multi-layer network a neuron-
specific contribution to the error at the output of the network. Im-
portantly, it does so efficiently by prescribing a recursively strategy
to compute neuron-specific errors from which loss gradients for all
parameters in the network can be easily calculated. While backpropa-
gation is perfectly suited for feedforward networks in which the output
errors are back-propagated layer-by-layer along the connections of
the network, training Recurrent Neural Networks (RNNs), in which
the neuronal activity depends not only on lower layers, but also on
activity in previous time steps, e.g., through cycles in the computational
graph, require a slightly altered strategy. The self-recursion of the
neuronal activity creates a temporal credit assignment problem which
is solved by Back-Propagation Through Time (BPTT). BPTT effectively
unrolls the network in time and treats each timestep akin to a layer
in standard back-propagation, only now weights across these “layers”
are tied across time steps. Both standard backpropagation and BPTT
are effectively algorithms for applying the chain rule of differentia-
tion to multi-layer networks. For this strategy to work, all functions
encountered in the network have to be differentiable.

Training large and complex SNNs also requires end-to-end opti-
mization, but the limited differentiability of SNNs due to their spiking
mechanisms, precludes doing so in a straightforward manner using
backpropagation. To overcome this limitation in SNNs different strate-
gies have been devised over the years that either convert conventionally
trained ANNs to SNNs, perform gradient descent on the firing times of
the SNNs, or surrogate gradients. In the following we describe each
strategy in more detail.

5.2.2. ANN-to-SNN conversion

To overcome limitations related to differentiability of SNNs, many
approaches have focused on converting ANNs trained with error-
backpropagation into SNNs, e.g., [88]. Typically, these studies used
rate-based approximations and do not capitalize on spiking neuron
specific capabilities like timing and sparse spiking, which renders them
computationally less efficient [89].

5.2.3. Gradient descent on spike timings

In early work, like SpikeProp [90], error-backpropagation was ap-
plied directly to the network of spiking neurons. Here, the spike-
discontinuity was overcome by linearizing the gradient at the time of
spiking, allowing the individual spike-times in such spiking networks
to be trained to desired input-output patterns, illustrated in Fig. 6a.
The linearization around spike-times, however, made this approach
hard to extend to multiple spikes and sensitive to vanishing spiking —
the effect where a neuron that is silenced due to decreased weights
will never become activated again. More recent algorithms address
the problem of single spike-times and allow computing exact gradients
on spike times in large networks [91] using the adjoint method for
the Leaky Integrate-and-Fire (LIF) neurons. The effectiveness of the
latter approach has been demonstrated on a number of tasks, including
MNIST and Yin-Yang. Still, the adjoint method cannot be computed
analytically for more complex spiking neuron models, and its inherent
dependence on spike timing and the resulting inability to deal with
gaining or losing spikes in the hidden layers remains an unresolved
challenge [92]. Similarly, Lee et al. [93] apply the implicit function
theorem to SNNs and demonstrate that well-defined gradients with
respect to firing times can be calculated for SNNs. Implemented in
the forward propagation (FP) algorithm, such firing time approaches
are able to learn tasks like Yin-Yang and can show fast convergence.
While timing based-approaches hold promise for efficient event-based
gradient computation, their applicability to large-scale networks is still
an unresolved problem and their inherent dependence on spike timing
and the resulting inability to deal with gaining or losing spikes in the
hidden layers remains challenging [92].

10

Microprocessors and Microsystems xxx (Xxxx) xXxx

5.2.4. Surrogate gradients

An alternative approach uses the neuron’s membrane potential
rather than the spike time to calculate the gradient. This Surrogate
Gradient (SG) approach replaces the derivative of the discontinuous
spike-function with a smooth function of the membrane potential [94].
Using SGs, allows flexibly optimizing any loss function, and no explicit
coding assumptions in the hidden layers are mode. This generality
allows networks to use spike-timing, rate-coding, or both depending
on the task demands [95].

Formally, for a LIF spiking neuron we can model the neuronal
dynamics such that the membrane potential u, updates as u, = f (u,_, x;,
s,.1 || W.,r), where W represents the synaptic weights and = the
internal time constants. The membrane potential updates depend on
the previous potential, u,_;, the outgoing spike-state s,_; = {0,1} and
inputs x,. A spike, s, = 1, is triggered when the membrane potential u,
crosses a threshold 6 from below:

1
s; = fou,0) = {

ifu, >0

otherwise

3
0,
Finally, upon emitting a spike, the membrane potential is reset to
the resting potential u,: u, = (1 — s,)u, + u,s,, where usually we use
u, = 0. Following this definition, applying BPTT to SNNs amounts to
the following: given a prediction j, at timestep ¢ for a training sample
(x,y), parameters are optimized by gradient descent to minimize the
loss function #, = L(y,, §,). This gradient expression is then the sum of
the products of the partial gradients:

Ju,,
aMmfl

the corresponding computational graph, for a single spiking neuron,
is illustrated in Fig. 6b. In this formulation, the partial derivative
of spiking % has to go through the discontinuous spiking function.
The surrogate gradient approximates this partial derivative term by a
well-behaved function 7’ S, 0).

With surrogate gradients, SNNs can be modeled as RNNs using
popular deep learning frameworks like PyTorch, Tensorflow and JAX,
where the surrogate gradient is implemented in the backward pass of
the automatic differentiation functionality. With this technique, learn-
ing algorithms for recurrent networks and optimizers developed for
conventional ANNs can be directly applied, resulting in greatly increas-
ing performance and accuracy [96] that approaches or exceeds conven-
tional ANNs while relying on sparse communication and low latency.
While surrogate gradients have mostly been applied to supervised
learning tasks, the approach also extends to self-supervised learning
settings [86]. Finally, surrogate gradients work even on analog neu-
romorphic hardware with in-the-loop learning thereby self-correcting
for device mismatch [97].

9t, _ 0l, 03, 05, ¢

(1

oW 99, ds, ou, =

asm—l
ow

C)

5.2.5. Complex spiking neuron models

While standard neurons in SNNs have mostly been based on LIF
neurons, more complicated spiking neuron models are increasingly be-
ing explored. Bellec et al. [98] demonstrated how the inclusion of long
adaptation time constants in adaptive LIF neurons improves accuracy
in many tasks by expanding the effective memory-window of individual
neurons. In related work, Perez et al. [42] found that in general
heterogeneity in terms of spiking neuron models in the same network
substantially improved task performance. Further, training the internal
parameters of spiking neuron models, like the decay time constants
of the membrane potential or the adaptation variable, further im-
proves accuracy, likely in part by inducing neural heterogeneity [96].
By endowing connections with Short-Term Plasticity (STP) and train-
ing networks of multi-compartment spiking neurons to minimize a
feedback-inhibition objective, Keijser et al. [99] recovered biologically
observed connectivity properties, thus offering a functional interpreta-
tion. Yin et al. [100] also demonstrate how multi-compartment spiking

A. Gebregiorgis et al

Microprocessors and Microsystems xxx (Xxxx) xXxx

b
ytlf il ylt Yt+1 target
lt —1 lt l t+1 loss
Al | I
Yt—1 Yt Yty prediction
| I [
St—2 Sr—1 St St+1 spike

LN N

Ut—2—Ut—1— Ut — Ut}1

R

Ti—1 Ty Ti41

potential

inputs

Fig. 6. (a) Linearizing gradient around spike-time: the red potential inside the spiking neuron exceeds the threshold ¢ from below at time #* triggering an output
spike. Changing the input weights changes the membrane potential u, which in turn changes the spike time; to estimate the change in spike-time we estimate
the local slope 61 /6u. (b) Computational graph linking inputs to outputs for a neuron unrolled in time (black arrows). BPTT traverses the graph in reverse (red
arrows) to determine the contributions of each parameter to the losses as measured at every timestep. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

neurons can effectively be used to robustly train large SNNs. Similarly,
Harkin et al. [101] used surrogate gradients to train neuron models
with complex dendritic morphology. In general however, increasingly
more complicated spiking neuron models can interfere with the ability
to train the resulting networks. More robust learning rules like Forward-
Propagation-Through-Time [100] have been demonstrated to alleviate
this problem.

5.3. Online learning

BPTT requires storing the activation history of the entire network
for the duration of the entire input sequence before a weight update
can be computed. The memory requirements quickly become pro-
hibitive for both large networks and long sequences, especially when
a close match with neuromorphic hardware with fine-grained time
resolution is needed. For on-chip learning BPTT’s memory requirements
are usually prohibitive. This limitation has generated substantial in-
terest in online learning rules with a smaller memory footprint. An
alternative online learning algorithm which allows to update weights
without having to store the activation history is Real-Time Recurrent
Learning (RTRL) [102]. However, RTRL has a high computational
complexity which again moderates its practical use in the on-chip
setting. As a consequence, a number of approximate online learning ap-
proaches have been proposed, including SuperSpike [103], eProp [98],
DECOLLE [104], Forward-Propagation-Through-Time (FPTT) [100],
OSTL [105], and Online-Training-Through-Time (OTTT) [106]. One
key feature underlying these approaches is the use of eligibility traces
to solve the temporal credit assignment problem. Although success-
ful these methods approximate the gradient as they are approxima-
tions of RTRL [107]. Moreover, the notion of eligibility traces do not
solve the spatial credit assignment problem. To address this short-
coming, DECOLLE and OSTL extend online learning to deep neu-
ral networks by combining spatial back-propagation with temporal
forward-propagation through eligibility traces. FPTT relies on another
effective approximation allowing it to be applied to deep networks
using spatial error-backpropagation, and was shown to be robust for
both long-sequence learning and learning in large and deep SNNs on
large event-based vision problems like object-localization and classi-
fication [100]. Finally, OTTT can conveniently be calculated as three
factor Hebbian learning rule, but so far has only been demonstrated for
static tasks, like image recognition.

11

5.4. Conclusions

While there has been much progress in the last years on learn-
ing algorithms for SNNs, several important questions remain open.
One essential gap is a lack of on-chip learning algorithms that allow
neuromorphic systems to learn in the field. Here continual or life-
long learning strategies are needed with performance and stability
guarantees. While these are active research areas in the broader deep
learning community [108,109], and increasing efforts have also been
put into SNNs [110], continual learning remains largely an unresolved
problem. Scaling up the size of trainable SNNs is another open question,
as current approaches are limited to tens of millions of spiking neurons,
whereas popular Al models like large language models (LLMs) are
comprised (implicitly) of billions of neurons. Scaling up SNNs to LLMs
holds the potential for more energy efficient Al solutions suitable for
non-cloud applications when combined with suitable hardware accel-
erators. A challenge here is also that LLMs are inherently sequential
rather than time-continuous like SNNs. Yet, there is active work on
smaller SNN-based LLM models [111]. Finally, other active research
directions inspired by neurobiology [42,99,100] suggest that more
complex synapses, dendrites, and spiking neuron models could increase
the computational power of SNNs, where a suitable trade-off will need
to be found between the implied memory cost versus other performance
metrics.

6. Hardware implementation of spiking neuron and synapse mod-
els

Traditionally, neuromorphic engineering focused on emulating the
physics of biological neurons and synapses using analog as well as
digital circuits using CMOS devices. However, as the field has grown,
researchers have begun exploring a more comprehensive range of
physical substrates for neuromorphic computing, including memristors,
phase-change materials, and organic transistors. These new materi-
als offer unique advantages, such as non-volatility, high scalability,
and low power consumption, which would make them well-suited for
neuromorphic systems.

This section presents some of the prominent implementations of
neural and synaptic models using several technologies, highlighting
challenges and differences among these implementations. Thus, analog
implementations of neural models are presented in Section 6.1 followed
by a discussion on the digital CMOS implementation of neurons in
Section 6.2. Finally, Section 6.3 discusses the neuron implementations
that leverage emerging Non-Volatile Memory (NVM) devices to model
synapses and neurons.

A. Gebregiorgis et al

Microprocessors and Microsystems xxx (Xxxx) xXxx

g Mes
ML3 MG4I |
Cp
1

Gl REQ
M, l Vfb°_| M 46 Mo

M= Mys

IIn

Fig. 7. The LLN circuit comprises a membrane LPF (yellow, M;,_;;), a spike-event generation and positive-feedback element (red, M,,_,¢), a reset-refractory
pulse generator (blue, My, r;), and a spike-frequency adaptation LPF (green, M, _s4). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
Source: Reproduced from [80].

6.1. Analog CMOS implementation

Analog CMOS implementations simulate biological neuron models
using Metal-Oxide-Silicon Field Effect Transistors (MOSFETs) arranged
to model different features of biological neurons and their behav-
ior is parameterized by their design dimensions. Such models can
exploit biophysical equivalence between the transport of ions in bi-
ological channels and the transport of charge carriers in transistor
channels [80]. Analog spiking neurons can emulate complex features
of neural computation with high fidelity and low power. Analog neu-
rons are also completely dedicated implementations with no time-
multiplexing, offering real-time fully parallel simulation that is scalable
and does not suffer from operation load issues/limitations. However,
proper calibration of neurons is challenging as they suffer from design
variations between them. Hence, analog implementations are suitable
for qualitative analysis and large-scale simulations [112] but not for
accurate quantitative analysis.

Analog neuron implementations can differ in complexity depending
on the complexity of the underlying mathematical model. An analog
implementation can be usually split into separate blocks, each imple-
menting a feature or a stage of the neuron model. The first block
is typically a temporal integration (synapse) block which converts
an incoming action potential into an appropriate post-synaptic input
for the neuron’s soma. The other blocks implement the neuron’s fea-
tures such as spike/event generation, refractory period mechanism and
spike-frequency adaptation.

CMOS neuron implementations have many possible design choices.
For example, MOSFETs can operate in sub-threshold region (weak-
inversion) where current flows in the transistors by diffusion, or they
can operate in above threshold region (strong-inversion) where current
flows in the transistors by drift. Input and output signals can also be
represented as voltage or current. The analog circuits may operate
continuously in a non-clocked fashion or they can implement discrete
time signal processing using a switched-capacitor (S-C) design.

6.1.1. The log-domain LPF neuron

The log-domain low-pass filter neuron (LLN) [113] implements
many behaviors of the generalized Integrate and Fire (IF) model such as
spike bursting and spike-frequency adaptation. The LLN neuron is con-
structed from a few transistors, operating with low power (50-100 nW),
and with easily configurable time constants and conductance by con-
trolling gate voltages. It consists of four stages described by four
sub-circuits. Fig. 7 shows a schematic of the LLN neuron. The first stage

12

l Iyng

l »

Leg+ I Iyes

I,
+1In Ly + I

I,
Les + I,

Fig. 8. Translinear circuit implementing a gated conductance of the form x3yg
used to implement H-H conductance equations.

(yellow, M;,_;3) is responsible for temporal integration (i.e, synaptic
response) using a sub-threshold log-domain low-pass filter circuit. The
second stage (red, M 4,_4¢) is responsible for generating an output spike
signal. The last two stages are responsible for generating reset and
refractory signals (blue, My, r;) and for LPF spike frequency adaptation
(green, Mg _g4)-

6.1.2. A sub-threshold Hodgkin—-Huxley based neuron

In [114], the authors implemented an analog model of the H&H
neuron (Section 3) using sub-threshold CMOS circuits. Input spikes are
temporally integrated using a log-domain low-pass filter called “Tau-
cell” which was first proposed in [115]. The post-synaptic current is
passed to a subthreshold circuit as shown in Fig. 8 that implements
the nonlinear functions typically used with the gating variables of
the H-H model m, h and n. In this work, the authors implemented
a mixed-signal VLSI chip integrating a biophysical network of four
H-H neurons and twelve conductance-based synapses. All gating vari-
ables were programmable using digital signals and Digital-to-Analog
Converters (DAC).

6.2. Digital implementation

Digital implementations of neurons simulate the neural behavior
in discrete time using discrete approximate solutions of the ordinary

A. Gebregiorgis et al

Step 1

Synapse Process

Synapse Memory

Axon Memory
(Routing table)

Event generation

Step 3

=
)
c
=
o
=]
<
(1)
=
o
=
<

Microprocessors and Microsystems xxx (Xxxx) xXxx

Fig. 9. Left: General overview of an event-driven digital neuro-synaptic core optimized to process spiking neural networks. Right: Scaling up and building a
heterogeneous neuromorphic processor by connecting various neuro-synaptic cores with a network-on-chip.

differential equations describing the neural model. Digital implemen-
tations usually share compute resources with time-multiplexing.

Digital neurons do not suffer from the design variation challenges
of analog neurons, at the expense of more area and power than their
analog counterparts. However, they can still benefit from low-precision
computation and from the sparsity of spiking neural networks. In
addition, time-multiplexing allows the reusing of computational blocks
of neurons and synapses, making full digital neuromorphic processors
more area-efficient than analog processors. The area efficiency of time-
multiplexing is more significant when a complex neuron model is
implemented and amortized over many neurons.

Digital neurons can come with different degrees of flexibility de-
pending on their compute units. Some architectures implement only
a specific set of neurons with optimized and efficient datapath and
compute units [14,116], other architectures implement a more flexible
datapath that can implement a family of linear integrate and fire
neurons [69], by leveraging fully programmable cores that can be
programmed to implement any kind of neuron model [68,117]. In
addition, using digital technology provides the flexibility to easily port
the design to newer and more advanced technology nodes and therefore
benefits more from technology scaling.

Fig. 9 shows three primary steps of processing events in a digital
neuromorphic processor. When an event enters the core through a
virtual axon, it will broadcast to many neurons, resulting in several
post-synaptic neural updates and possible spike firings. The synaptic
process in Fig. 9 is the step to apply optional delay on the synaptic
events (for example as in [11]), read the relevant synaptic weights,
calculate the affected neuron addresses (for example to support con-
volutional connectivities [69,118]) and updating the synaptic weights
(if on-device learning is supported, for example in [69]). The synap-
tic process may receive feedback from other steps to perform on-
device learning. This process can also support interesting features like
sparse weight compression [118] or event-decompression [117], which
helps to improve synaptic memory usage and event communication
efficiency.

The next step is to update the states of the relevant neurons. This
process is the core of each neuromorphic processor and defines the
type of neurons, data types, timing and mappings. Since each input
spike usually requires updating a large population of neurons, the
neuron process also has a significant role in the processor’s efficiency.
Some processors support several neuron types [118] or programmable
neurons’ equations [119]. The neuron process requires memory for
neuron states and other neural parameters (like threshold, refractory
times, etc.). Neuron computation can be fully parallel and process the
incoming event for all involved neurons in one step [17], fully time-
multiplexed (one step for each neuron update) [11,69,118] or partially
parallelized [117]. Furthermore, calculating the decay of neuron state
can be efficiently approximated [120].

13

For low-power digital neuromorphic computing, non-linear I&F
models pose huge challenges. While linear I&F digital implementa-
tions require a response only at input spike time, non-linear I&F
models (i.e multi-compartment neurons) require book-keeping (i.e,
memory) and computation over multiple discrete timesteps after the
input spike time, making them inefficient for low-power event-driven
computation [121], although phenomenological approximations are
possible [122].

As a result of the neural updates, some neurons may fire spikes
which will be passed to the following processing step. In the final
step, the event generation process makes the spike packets using the
address of the firing neurons and the information in the axon memory.
Axon memory includes information related to the destinations of the
spikes packet. The spikes in the multi-core systems will travel through
the Network-on-Chip to the other neuro-synaptic cores (virtual axons).
For smaller scale processors where the layers of neural networks are
hardwired to each other [17], axon memory is not required. The
event-generator may compress the events, have a feedback path to the
synapse process (for recurrent layers and on-device learning), apply
a delay to output events to implement skip connection or implement
some of the linear layers like average pooling.

6.3. Emerging NVM devices

Emerging Non-Volatile Memory (NVM) devices are attractive can-
didates for synaptic modeling: they can mimic both memory since
they are storage elements, and learning since they can exhibit plastic-
ity [123]. Furthermore, they have also been explored for neuronal mod-
eling [124-126], and can potentially enable highly dense, distributed,
scalable and energy and area efficient neuromorphic systems [66]. In
this section, we list some of the most promising NVM candidates that
have been employed for modeling synapses and neurons.

6.3.1. Phase-change memory

Phase-Change Memories (PCM) are a class of emerging non-volatile
memory devices. They consist of a Chalcogenide structure sandwiched
between two electrodes and connected with a resistive electrode (heat-
ing element), as shown in Fig. 10. These devices have programmable
resistive properties where the resistance is a function of their atomic
structure. In a binary PCM cell, the amorphous state has a High-
Resistance State (HRS) and the cell is in the RESET operation, while the
crystalline state has a Low-Resistance State (LRS) and the cell is in the
SET operation. However, these states can be a continuum to represent
multiple states, which is the case in multi-level devices. PCMs require
heat to transition between amorphous and crystalline states as well as
for readout. The PCM crystallizes by applying medium voltage electric
pulses. To switch the device back to amorphous state, it requires a

A. Gebregiorgis et al

metal RESET pulse

heating element

. SET pulse
chalcogenide

Temperature

metal

(a) (b)

Fig. 10. (a) A phase-change memory and (b) the temperature needed for SET,
RESET and READ operations.

strong short voltage pulse. This causes an abrupt melting and quenching
of the device followed by rapid cooling [127].

Since the resistivity of crystalline of PCM is programmable, it can
be exploited to use the PCM as a synapse element connecting pre- and
post-synaptic neurons. Similarly, the amorphous (RESET) state can be
used to model the neuron’s resting state while the gradual transition
from the amorphous to the crystalline state (SET) models the temporal
integration of incident spikes. The crystalline state models the neuron’s
firing state. This creates a strong voltage pulse, which resets it to the
amorphous state [128]. In [124], the authors present an I&F neuron
with homeostatic regulation using a PCM device. They also demonstrate
learning via STDP. In [129], a multi-memristive synaptic architecture
is proposed, in which a synapse is implemented using multiple PCM
devices. In this approach, a synaptic weight is represented by the
combined conductance of the PCM devices.

6.3.2. Resistive RAM

Since the birth of variable-resistance Anodic Oxide materials, the
application of Resistive Random Access Memory (RRAM) has been
extensively studied [130]. Like PCMs, the operation of RRAM is gov-
erned by two conductivity states: LRS and HRS. It has a sandwiched
metal-insulator-metal (MIM) structure where the insulator can switch
between being an oxide (insulator) and an electrolyte (conductor). Like
PCM the states of RRAM can be a continuum to represent multiple
states, which is the case in multistate/multi-level devices. An RRAM
cell is shown in Fig. 11, where an insulating film (HfO,) is sand-
wiched between two conducting electrodes in a MIM structure. The
resistive switching process of RRAM devices typically involves either
the construction/disruption of conductive filaments, or the modulation
of the carrier transport barrier at the electrode/switching layer inter-
face induced by ion migration. These two switching mechanisms are
called filamentary and interfacial switching, respectively. In filamentary
switching devices [131,132], a one-time application of a strong electric
field upon device operation is required for the initial formation of the
conducting filament, which is also known as the electroforming process.
A compliance current is necessary to confine the current flows through
the local path in LRS. For this reason, there is a substantial interest in
the usage of interfacial switching devices for avoiding the electroform-
ing step altogether [133]. Their further advantage is their self-rectifying
behavior, which is key in developing selector-free memristive crossbar
arrays (MCAs).

The current characteristics (I-V) curve of an RRAM device shows
a jump in current at the dielectric breakdown. This jump in cur-
rent is used to model the output action potential (spike). The vari-
able resistance states of RRAM can mimic synapse behavior. Roy
et al. [134] successfully showcased the use of RRAM for modeling
synapses. They demonstrated potentiation, depression and STDP using
optimized Al-HfO, RRAM devices. Similarly, the transition from oxide
HRS state to electrolyte LRS state is used to model the temporal
integration of spikes. Hence, RRAMs can be used to create I&F neuron

14

Microprocessors and Microsystems xxx (Xxxx) xXxx

models. In [125], authors introduced an all memristor-based stochas-
tic SNN architecture that implemented stochastic I&F neurons using
RRAM. They demonstrated 6.4x less energy consumption compared to
its CMOS-based counterpart with only 1% loss in accuracy. They use
RRAM to implement stochastic I&F neurons.

6.3.3. Magnetoresistive RAM

Magnetoresistive RAM (MRAM) devices are memristors that offer
almost unlimited endurance and a fast switching mechanism com-
pared to RRAM and PCM devices, which suffer from degradation prob-
lems [135]. Their unlimited endurance is enabled by their switching
mechanism, which depends on the spin dynamics and magnetic prop-
erties of electrons. These properties do not involve any movement of
subatomic particles, which can cause wear-out. Such memristive prop-
erties that are a function of the device’s magnetic state are classified
under magnetoresistance. As magnetic properties are independent of
the power supply, the magnetoresistance state can act as an NVM.
Magnetic Tunnel Junction (MTJ) was the first device to use electron
spin properties for storage [136]. It consists of two ferromagnetic nano-
magnets with a dielectric layer in the middle. While one nanomagnet
has a fixed magnetic polarization, the other is free. The direction of
an applied current can switch the magnetic polarization of the free
nanomagnet from parallel to anti-parallel. This creates the ON/SET
and OFF/RESET states of the device, which are used to model an
I&F’s neuron’s firing and resting states. Fig. 12 illustrates the switching
activity of MTJ under the application of an electric current. Other
MRAM devices follow similar principles as MTJ. One of the challenges
of employing MRAMs commercially is their low ON/OFF resistance
ratio which requires sensitive resistance sensors compared to PCM and
RRAM [137]. Similar to PCM and RRAM, MRAM devices can be used to
implement synapses and synaptic neurons by controlling the magnetic
orientation of the ferromagnetic layers.

Sharad et al. [138] implemented a spin-based integrate-and-fire
neuron model using MTJ devices. They also implemented synapses
using domain-wall magnets, which also fall under MRAMs. In this work,
again, the device’s switching activity is used to model the integrate and
fire behaviors.

6.3.4. Graphene-based NVM devices

Graphene is one of the promising post-silicon candidates due to its
various properties such as flexibility, thinness and ballistic transport.
Most importantly, graphene is a bio-compatible material, which makes
it favorable for different neuromorphic bio-interfaces when compared
to other emerging technologies [139-141]. A basic graphene-based
NVM cell is shown in Fig. 13. It consists of a single layer Graphene
Nanoribbon (GNR) located above an insulating material and a doped
substrate (back gate). When a bias voltage is applied between the
source and the drain terminals (V; —V;) the GNR works as a conduction
channel. This conductance can be modulated by changing the graphene
sheet geometry, the contacts topology, or by means of external voltages
via the top/back gates (i.e., V, and Vigs respectively) [126].

In [139], graphene-based artificial synapses were implemented that
exhibited tunable STDP and long-term plasticity. In [141], graphene-
based multi-level (i.e., >16) memristive synapses are proposed that
allow precise (i.e., arbitrarily programmable) weight updates. In [126],
an all-graphene-based nonlinear leaky integrate-and-fire neuron was
proposed that is made up of 6 GNR units. This neuron showed vari-
ability resilience and output-firing regularity for a varying input firing
rate from 20 to 200 spikes per second.

6.3.5. Ferroelectric RAM

Ferroelectric Random Access Memory (FeRAM) has attracted in-
creasing interest in the field of ferroelectricity and nonvolatile memo-
ries [142]. The key features of FeERAM are (1) nonvolatile data storage
capability, (2) lowest power consumption among various semicon-
ductor memories, and (3) faster operation speed, i.e., as fast as that

A. Gebregiorgis et al

vit)

Microprocessors and Microsystems xxx (Xxxx) xXxx

Voltage
Top Eleciode ~—’\/\/\/\/—‘—’\/\/\/\/—~
== [RONwID ROFFwID
Onoygen Tunneling
— Vacancies Gap
Fig. 11. Basic diagram of an RRAM device with a simplified equivalent circuit.
BL
AP BL
WL |
WL .
PL ‘

Fig. 12. The spin-MTJ state changes from parallel (P) to anti-parallel (AP) if
a positive current density I > I,. is applied. If a negative direction current
density I > I, is applied, its state will return to anti-parallel.

Fig. 13. A basic graphene-based NVM cell.
Source: Reproduced from [126].

of DRAMs (dynamic RAMs) [143]. Depending on their data storage
and readout mechanism, FeRAMs are classified into two categories:
capacitor-type and FET-type FeRAMs [144]. Capacitor-type FeRAMs
use ferroelectric material to store the data with a different polarization
state. The polarization state of ferroelectric materials can be tuned
under external voltage. A typical cell structure in the capacitor-type
FeRAM is a 1T1C-type cell shown in Fig. 14(a), while a typical cell
structure in the FET-type FeRAM is a 1T-type cell shown in Fig. 14(b).
The 1T1C FeRAM cell, which uses 1 transistor and 1 capacitor with
three control signals: Bit line (BL), word line (WL) and Plate Line (PL),
is the most common structure, it is similar to a DRAM cell. To write
data (e.g., ‘1’) into a 1T1C cell, the BL voltage is raised to V,; so that
the negative voltage bias is applied to the FeERAM before PL voltage
rises. When the PL voltage rises to V,, the polarization state is switched
back to negative remnant polarization (—Pr), that represents data ‘1’.
To write ‘0’, the BL is grounded when the PL voltage is raised to V,,
and the polarization state is switched to positive remnant polarization
(+Pr), which represents data ‘0’ [145]. The state of the FeRAM cell is

15

(a) 1T'1C cell (b) 1T cell

Fig. 14. Bit-cell structure of FeRAM devices (a) 1T1C-type FeRAM (b) 1T-type
FeRAM.

read by first pre-charging the BL to zero voltage and applying a V,,
pulse to PL while the BL remains floating.

The non-volatility, low-power and CMOS compatibility features of
FeRAM can be exploited to utilize FeRAM as the basic cell element of
CIM architectures [143]. FeRAM devices can be utilized as the bitcells
of a generic crossbar array for CIM operation, where they can be used
to perform the weighted sum operation in a similar fashion like RRAM,
or PCM-based CIM crossbar arrays. Example works include [123,142],
which have implemented synapses for CIM using FeRAMs.

6.4. Conclusion

Hardware realizations of spiking neurons and synapses span analog
CMOS, digital, and emerging NVM substrates, each trading fidelity,
programmability, density, and energy. Analog offers real-time, ultra-
low-power dynamics but variability; digital provides flexibility and
scalability at higher overhead; NVM enables non-volatile, in-memory
computation for dense, energy-efficient neuromorphic systems.

7. Hardware architectures for spiking neural networks

To highlight the key tradeoffs at the microarchitecture, chip design,
and system levels, we will go through the main design choices for
neuromorphic hardware by first covering qualitatively the main trends
and options, and then placing them in the current neuromorphic chip
landscape. Importantly, most of the design choices analyzed hereafter
are directly related to the fundamental aspects of neuromorphic com-
puting covered in Section 4. Yet, hardware efficiency considerations
can degrade the granularity at which these fundamental aspects can
actually be realized in silicon hardware. The purpose of this section is
to highlight these challenges, as well as the diversity of approaches that
are being pursued.

7.1. Application-specific or general-purpose?
Whether to build application-specific or general-purpose hardware

is among the most pressing questions in the neuromorphic field, where
concrete application demonstrations are still at an early stage (see

A. Gebregiorgis et al

Section 9.2). Two general trends can be found in the design of neu-
romorphic systems. On the one hand, the historical approach, since
the late 1980s, aimed to replicate biology in silicon in a bottom-up
fashion that is driven by neuroscience insights, leading to general-
purpose systems [1]. However, while such neuromorphic systems shine
as experimentation platforms and test-beds for new algorithmic devel-
opments, their emphasis on flexibility and the lack of insight on how to
best exploit biological primitives restricts their efficiency in real-world
use cases.

On the other hand, a more recent trend focuses on the target
use case and on demonstrating that application-specific neuromorphic
systems can outperform conventional approaches. This top-down ap-
proach requires carefully selecting which specific insights from biology
are deemed as the most critical ones toward achieving an efficiency
advantage [146].

Chip highlights:

» The most famous large-scale neuromorphic platforms are all
general-purpose systems: The Neurogrid [10] aims at efficiently
exploring the deployment of 1M-neuron cortical microcircuit
architectures; BrainScaleS 1 and 2 [112,147] aim at accelerating
neuroscience simulations up to billion-neuron supercomputer-
scale setups, including bio-physically realistic neuron models
and plasticity mechanisms; SpiNNaker 1 and 2 [148,149] are
based on multi-core digital architectures and focus on maximiz-
ing flexibility with an almost arbitrary support of neuron and
synapse models at the expense of efficiency, while also allowing
for billion-neuron supercomputer-scale setups; TrueNorth [150]
is the largest single-chip system with 1M neurons and 256M
synapses and efficiently supports large-scale functional abstrac-
tions of neuroscience with a restricted behavior repertoire; Tian-
jic [151] focuses on exploring hybrid ANN-SNN setups; Loihi [69]
aims at a good balance between flexibility and efficiency through
a carefully selected neuron behavior repertoire, a programmable
plasticity co-processor, and a reconfigurable synaptic fan-in.
These large-scale general-purpose systems are complemented by
smaller-scale <10k-neuron chips that serve as test-beds for the
deployment of edge-computing applications, e.g. ROLLS [76],
DYNAPs [16], ODIN [14], MorphIC [116], and pBrain [17], the
latter offering reconfigurability at synthesis time.
Application-specific neuromorphic systems typically have fixed
network architecture and neuron/synapse models, thereby trad-
ing off flexibility for a higher efficiency in their target use case: a
few designs focus on image denoising and sparse coding [152,
153], SPOON [154] focuses on adaptive edge detection with
event-based cameras, the design from Wang et al. [155] focuses
on ultra-low-power always-on keyword spotting, and ReckOn
[156] focuses on end-to-end user adaptation over second-long
timescales with any event-based sensor.

7.2. Analog or digital?

As explained in Section 4.9, the brain intrinsically is a mixed-signal
system. Replicating biology is typically done either by following an em-
ulation approach (i.e. leveraging the physics of the silicon substrate and
of emerging devices to reproduce the brain dynamics) or a simulation
approach (i.e. the substrate dynamics are ignored and behavior is repli-
cated at the functional or model level). Sub-threshold analog design is
the best suited approach for a biological-time emulation of biological
processes. Indeed, the charge carrier flow in the MOS transistor channel
in the sub-threshold regime is governed by a diffusion mechanism, as
are the brain’s ion channels [158]. On the other hand, for analog above-
threshold designs, the current flow is governed by a drift mechanism
instead of diffusion. These designs thus cannot pursue an emulation
approach at the level of the device physics, but can still emulate

16

Microprocessors and Microsystems xxx (Xxxx) xXxx

many neuron and synapse models [159]. Furthermore, as currents are
increased by 3-4 orders of magnitude in above-threshold designs, time
constants accelerated by 3—4 orders of magnitude compared to biolog-
ical time can be realized [160]. In terms of memory storage, the area
cost of capacitor-based storage is typically considered too high [76],
unless a biological-time fully-parallel implementation is aimed for (see
Sections 7.3 and 7.4 below). The default option for analog, mixed-
signal, and digital designs is thus to resort to standard digital static
random-access memories (SRAMs), while the best tradeoffs might be
uncovered by exploiting emerging memristive devices (see Section 6.3).
Fig. 15 shows a multi-neuron crossbar analog architecture in which
neurons and synapses are organized in a neurosynaptic core. Many
neurosynaptic cores can be stacked through a digital communication
channel.

Despite allowing for an intrinsically efficient emulation approach,
analog designs do not fully leverage technology scaling and suffer
from device mismatch, noise, and susceptibility to power, voltage and
temperature variations. As of today, it is still unclear whether such
variations are a bug, as in conventional integrated circuit design, or
a feature, as in the brain [146]. Digital designs alleviate these issues
at the expense of forgoing the emulation approach for simulation-
based one. This design choice tends to degrade the overall efficiency by
increasing data movement. However, this decrease is usually compen-
sated for by technology scaling. Indeed, digital SRAM memories exhibit
an excellent tradeoff between density, speed, and energy efficiency in
advanced nodes [161].

Chip highlights:

+ The historic approach to designing neuromorphic chips focused
on exploiting the MOS transistor physics to emulate the brain
biophysics. This approach is still pursued today, and the most
representative designs include ROLLS [76], DYNAPs [16], Neu-
rogrid [10], and Braindrop [162]. These designs typically exhibit
record efficiency in biological time with down to 10-100 fJ/SOP
at the neuron/synapse levels and follow an understanding by build-
ing approach that aims to reverse-engineer the brain by designing
silicon devices based on its operating principles, although it is still
unclear how to best exploit their inherent variability. In terms of
synaptic storage, ROLLS followed a fully-parallel capacitor-based
implementation at the expense of synapses taking up more than
two thirds of the chip area, an issue that was solved in DYNAPs
by merging synapses within a ternary content-addressable mem-
ory (TCAM)-based routing infrastructure. Neurogrid stores all
synaptic weights off-chip, while Braindrop adopts an SRAM-based
storage.

The above-threshold analog design approach is unique to the
BrainScaleS 1 and 2 designs [112,147], both of which follow
a model-based emulation approach running with acceleration
factors of 3-4 orders of magnitude compared to biological time.
Synapse storage relies on digital SRAM. To ease programming
and control, the BrainScaleS systems support advanced variabil-
ity compensation techniques [159], although in-the-loop training
with surrogate gradients has the potential to reduce the need for
such techniques [163].

Digital designs mainly follow three different types of strategy.
First, globally asynchronous and locally synchronous (GALS) de-
signs, such as TrueNorth [150] and SpiNNaker [148], employ
synchronous clocked cores for controllability, robustness, and
programmability, and an asynchronous routing fabric to optimize
for fast low-distortion spike-packet-based communication. Sec-
ond, fully asynchronous designs, such as Loihi [69], yBrain [17],
and the chip from Wang et al. [155] allow for fast and fully event-
driven processing at the expense of requiring advanced design
techniques to ensure a robust clock-free implementation. Finally,
fully synchronous designs, mainly consisting of small-scale de-
signs such as [14,116,164], are best supported by commercial

A. Gebregiorgis et al

Microprocessors and Microsystems xxx (Xxxx) xXxx

Wy W i}

I

SYN SYN SYN w=s=s= SYN EOMAX—N——'
: i P '
v e DOCL L LOT LT OSSR naus Adaptatlon :Lq_ = .’
/I ENCODING i oSN B
: *ll "__’_‘_’— J—
C T es AL hgdress Event| -1
C LT == sandl B s
123232 e BORCSE
* am —‘/ L} L] n L] |]
; ; ; Fias="
: o ENCODING
NEUROSYNAPTIC CORE | " NEUROSYNAPTIC CORE

Fig. 15. General overview of a neuromorphic mixed-signal architecture. The processor comprises synapses and a neuron block organized in a neuro-synaptic
core. The neurosynaptic core receives input spikes and emits output spikes; the internal computation is carried out in the analog domain. The blue circle shows
the integration of current by an analog neuron with different bias settings. On the other hand, communication is carried in the digital domain and by means of
the Address Event Representation (AER) protocol. This template is common in mixed-signal neuromorphic processors as [76,157] and implies fully parallel and
physical implementations of neurons and synapses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

electronic design automation (EDA) tools, can easily provide full
hardware-software equivalence, and techniques such as clock
gating can partly mitigate the clock tree penalty for event-driven
spike-based processing.

7.3. Biological-time or accelerated?

Whether the design should be optimized for biological- or
accelerated-time operation mainly depends on the target use case.
Application-specific designs targeting a low-power always-on real-time
deployment should rely on biological-time execution, just as biological
systems are matched to the time constants of their environment. Sim-
ilarly, designs aiming at a close emulation of biological systems will
also aim for biological-time processing. In contrast, accelerated-time
processing is typically chosen for fast offline processing of previously
collected data [165], for accelerating hardware-variability-aware train-
ing before deployment [166], or for accelerating processes taking
place over hour-, day-, or year-long timescales, from homeostatic to
evolutionary processes [160].

In terms of chip design, the choice between biological- or
accelerated-time operation mainly translates to throughput require-
ments. There are typically two processing flows in neuromorphic
systems: (i) time-stepped operation at a fixed temporal resolution
(i.e., time step), or (ii) online continuous-time execution. In the case of
time-stepped operation, the design target will be a bound on execution
time, as achieving the target acceleration factor requires a guarantee
that all computations for worst-case network activity will be carried

17

out within the time step. For online continuous-time execution, as spike
events awaiting processing are buffered, the design target will be a
specification on the maximum amount of spike-timing distortion. As
biological-time operation only implies slow processing speeds when it
comes to modern silicon hardware (i.e. each neuron spikes at most at
a few hundreds of Hertz), these throughput requirements only require
careful optimization when considering accelerated-time operation.
Chip highlights:

+ Sub-threshold analog designs such as ROLLS, DYNAPs, Neurogrid
and Braindrop typically run in biological time [10,16,76,162],
thereby targeting applications such as real-time biosignal [167,
168] and speech processing [169]. In contrast, above-threshold
analog systems such as BrainScaleS [112,147] exhibit time con-
stants down to the microsecond, which makes them unfit for
real-time sensory processing, where time constants are typically
on the order of the millisecond. They are thus typically used
for neuroscience simulation acceleration [170] or for accelerated
processing of existing benchmarks [166]. In both the sub- and
above-threshold cases, analog systems typically follow an online
continuous-time execution scheme without global time-stepped
synchronization. High-speed asynchronous routing links are thus
employed to minimize distortion [16], see Section 4.4.

For digital systems, the time constant is usually configurable from
biological- to accelerated-time, either by adjusting the timestep
duration for globally synchronized systems such as TrueNorth

A. Gebregiorgis et al

i B SuTEmmes 3 o e s = mete
< > o o . . o o . .
H
= - e L XY L L3 oo . et
.« . . o o .
® . e ee e 2 3 @ . oo o
e X) .] i - - @ .
> @ e Synipsese @ 3 é ® o Synpsese @
ce@® o LRI 2B c 0@ o o0
L] (& L3
. L X 2 o0 -
o« . . . ‘s
N oo AL
10 @ o cee LR
> e e @ ®+o
VVVVVVVVVYYY
Neurons

OutputAxons OutputAxons

A - No time multiplexing B — Axon time multiplexing

Controller | ~ Sharcd Physical Neuron(s)

Input
Axons

C — Neuron & Axon time multiplexing

Microprocessors and Microsystems xxx (Xxxx) xXxx

Neuro-Synaptic core NoC

\

Output
Axons

D - Interconnecting the cores

Fig. 16. Overview of main levels of time multiplexing. (A) Fully-parallel implementation of neurons, synapses, and axons. (B) Time-multiplexed axons, fully-
parallel neurons and synapses. (C) Time-multiplexed neurons, synapses, and axons. (D) Multi-core overview with time-multiplexed axons.

and Loihi [69,150], or by adjusting the time constants of neu-
ron/synapse models and of the input event stream for online
real-time systems [14,156]. This flexibility makes digital systems
easy to deploy for a broad range of both online and offline use
cases [156,165,171].

7.4. Parallel or time-multiplexed?

Time multiplexing relies on sharing neuron/synapse/dendrite/axon
circuitry and accessing their state data in a centralized memory
(Fig. 16). Importantly, this technique can be applied both in the digital
and the analog domains, e.g. digital logic and SRAM-based storage for
the former, and analog circuitry and switched-capacitor or SRAM-based
storage for the latter.

Fig. 16(a) outlines a fully-parallel implementation where all neu-
rons, synapses, dendrites, and axons are implemented as independent
instances, similarly to the brain. The absence of resource sharing allows
for the highest throughput and lowest dynamic power by minimizing
data movement. However, this architecture typically has a higher static
power penalty and is difficult to scale due to (i) the footprint of all
elements, especially for versatile neuron and synapse models, and (ii)
wiring constraints between individual elements.

In Fig. 16(b), only the axons are time-multiplexed. This architecture
is the most common one in mixed-signal designs aiming for fully-
parallel neuron/synapse resources while saving on wiring costs with a
digital address-event representation (AER) bus or a dedicated network-
on-chip (NoC), where each spike is encoded in a data packet including
the address of the source/destination neuron(s) and, optionally, a
timestamp [172]. The spike encoding circuit overhead is usually con-
sidered negligible, while a high-speed shared digital bus can safely
accommodate for tens of thousands of neurons spiking at biological
time constants or at low acceleration factors. Nearly all neuromorphic
architectures apply axon time multiplexing, which is a necessary con-
dition to scale and easily interface multiple cores, as shown in Fig.
16(d).

A further step consists, in addition to the axons, of time-multiplexing
the physical neurons, as shown in Fig. 16(c). In this case, one physical
neuron can emulate hundreds of neurons whose states are stored in
a centralized memory. This also usually implies some level of time
multiplexing in the synapses, e.g. synaptic data is stored in a centralized
memory but the afferent synaptic weights of a given neuron can be
retrieved in parallel. Time multiplexing neurons and synapses allows
drastically cutting their area footprint and is thus a key enabler for
large-scale designs that is applied in most digital systems and a few
mixed-signal ones, as outlined below in the chip highlights. This comes
at the expense of an increase in control complexity and dynamic power
due to a neuron/synapse state data movement penalty. Throughput
requirements should also be considered, as the higher the number of
neurons/synapses emulated by a single physical instance, the more

18

difficult it will be to carry out accelerated- or even biological-time
processing.

As outlined above, time multiplexing design choices cannot be
considered independently from locality and memory architecture op-
timization. Centralized memories exhibit the best density, but increase
the data movement cost, and thus impact the overall energy efficiency
of the design [173]. A careful hierarchical memory architecture design
is thus required.

Chip highlights:

+ Fully-parallel neuromorphic designs are uncommon, as all chips
embed at least some level of axon multiplexing through an AER
interface. Some notable designs exploiting a fully-parallel im-
plementation of neurons and synapses include ROLLS [76] and
uBrain [17], yet following very different rationales. The for-
mer is mixed-signal and targets a continuous-time emulation
of all neuron and synapse dynamics, the latter is implemented
with asynchronous digital logic and targets a fully event-driven
clock-free design allowing for both high-throughput and low-
dynamic-power operation. It is worth noting that xBrain comes
close to the fully-parallel implementation outlined in Fig. 16(a) as
its AER bus is implemented only for inter chip-level interfacing,
and axons are not time-multiplexed internally.

With the exception of uBrain, nearly all digital designs time
multiplex neuron and synapse resources [14,69,116,148,150,154,
156,164]. However, a few mixed-signal designs also go for this
approach, such as [157,174]. Interestingly, [157] time multi-
plexes synapses while keeping fully-parallel neuron resources,
thereby drastically cutting the synaptic array area footprint while
maintaining throughput and continuous-time neuronal dynamics.

7.5. Centralized or distributed?

The crossbar core with all-to-all neuron connectivity supports arbi-
trary neural network topologies. However, maintaining a high resource
utilization becomes challenging as the number of neurons per core
increases. Scaling up neuromorphic chips thus requires breaking them
down into many cores, thereby losing all-to-all connectivity at the
system level. Finding the right balance between the core architecture,
the number of neurons per core, and the number of cores per chip
strikes a tradeoff between hardware utilization, synaptic fan-in, fan-
out, and flexibility for an efficient support of deep neural network
topologies.

Chip highlights:

+ Single-core crossbar designs such as ODIN and ROLLS [14,76]
are typically limited in the diversity and complexity of tasks
that they can support, and rather serve as a proof-of-concept
for the tradeoffs that can be obtained in multi-core systems (see
hereafter). In contrast, a few single-core designs adopt a fixed

A. Gebregiorgis et al

multi-layer network topology [154-156,175], thereby leading to
excellent hardware utilization at the expense of flexibility.

The tradeoffs resulting from scaling-up large crossbar cores can be
illustrated with MorphIC [116], which embeds four 512-neuron
crossbars. Such multi-core crossbar architectures allow for large
bio-plausible fan-in and fan-out values of 1k and 2k, respectively.
However, only fully-connected or recurrent layers allow leverag-
ing these large fan-in and fan-out values with high hardware uti-
lization. Convolutional layers, for example, require inefficiently
replicating small kernels over the large synaptic resources of
output feature map neurons, leading to poor hardware utilization.
Allowing for a flexible and efficient deployment of different net-
work topologies thus requires going beyond the crossbar archi-
tecture at the core level. For example, Loihi [69] allows recon-
figuring the synaptic fan-in by storing connectivity and synaptic
weight information in an SRAM memory, while DYNAPs [16]
adopts a flexible hierarchical tag-based connectivity scheme, at
the expense of a low synaptic fan-in of 64.

7.6. Sparse or dense?

A hallmark of the brain is to exploit sparsity, both in space and time
(see Section 4.5). In the space dimension, the brain relies on an ap-
proximate small-world connectivity scheme where neurons are densely
connected locally and only have sparse long-range connections [176].
In the temporal dimension, the brain relies on a mix of spike codes
optimizing between robustness and encoding efficiency [177]. Sparser
spike codes, such as time-to-first-spike (TTFS) encoding, exhibit a
higher number of information bits per spike but entail more complex
operations and are more sensitive to spike loss.

In contrast to the spatial and temporal sparsity of the brain, most
of the current neuromorphic systems actually rely on a crossbar core
architecture with all-to-all neuron connectivity and on a spike-rate
code, which allows for a straightforward ANN to SNN mapping at the
expense of failing to exploit sparsity, in both space and time. While
multi-core architectures with crossbar cores approach a small-world
connectivity scheme, exploiting temporal sparsity appears to be a much
bigger challenge that requires co-optimizing the sensor, the neuron
model, the spike routing fabric, and the SNN processing algorithm.

Chip highlights:

+ Regarding spatial sparsity, both MorphIC [116] and DYNAPs [16]
are based on a small-world-like hierarchical connectivity scheme,
where intra-core connectivity is dense and inter-core/chip con-
nectivity is sparse. The neuromorphic chips in [152,178] propose
an alternative architecture based on locally-competitive algo-
rithms (LCAs), where competition is introduced for sparse fea-
ture extraction. In both cases, the core architecture still strongly
restricts the connectivity schemes that are supported (see also
Section 7.5), and further research is required to efficiently support
connectivity schemes that are both sparse and flexible.
Regarding temporal sparsity, going beyond rate-code-based ANN-
to-SNN demonstrations, which nearly all current neuromorphic
chips support, requires an extended range of neuron/synapse
behaviors and time constants, as well as spike-time-aware training
algorithms. A few works in this area include SPOON [154], which
is based on TTFS encodings without requiring pre-processing of
neuromorphic retina event streams, and ReckOn [156], which
supports spike-code-agnostic learning with the e-prop training
algorithm [98] and enforces code sparsity with activity regular-
ization. Several sparse coding experiments with Loihi are also
reported in [171].

19

Microprocessors and Microsystems xxx (Xxxx) xXxx
7.7. Static or plastic?

The performance of inference-only neuromorphic devices with static
synaptic weights meets design specifications only if the input data is in
accordance with the distribution that was used during the off-chip off-
line training phase. This implies that synaptic plasticity is a key enabler
for a robust long-term performance in uncontrolled environments, in
which out-of-distribution data is frequently encountered and/or the
data distribution shifts over time [179]. Interestingly, the brain excels
at adapting to its environment in an online and continuous fashion
based on a wide range of mechanisms [180], as outlined in Section 4.6.
However, implementing plasticity in hardware, let alone the brain’s full
diversity of plasticity mechanisms, is a tough challenge as it usually
entails not only complex circuitry to compute weight updates, but
also dedicated memory architectures to handle specific memory access
patterns. Carefully selecting the target plasticity algorithm, matching
it with the target use case in a hardware-algorithm co-design fashion,
and ensuring locality in both space and time, are thus necessary steps
toward endowing neuromorphic devices with the ability to adapt to
their environment [146].

Chip highlights:

+ Given the challenging nature of implementing synaptic plastic-
ity in hardware, a large variety of neuromorphic devices rely
on static weights, and are thus only able to perform inference,
such as Neurogrid [10], DYNAPs [16], TrueNorth [150], and
uBrain [17]. Any change in the environment or task specifications
will require a retraining and reprogramming these devices.
Among the neuromorphic chips that implement synaptic plasticity
mechanisms, the majority is based on bio-inspired STDP rules
(Section 4.6). Key examples include the chip from Seo et al. [164],
the chip from Chen et al. [153], BrainScaleS-1 [147], ROLLS [76],
ODIN [14], and the chip from Mayr et al. [174]. Importantly, the
three last chips are based on a learning rule that relies on the state
of the post-synaptic neuron at the time of the pre-synaptic spike,
which allows for a formulation that is local in time, as opposed
to the conventional STDP rule that relies on a spike time differ-
ence. Finally, Loihi [69,119], SpiNNaker [68], and BrainScaleS-
2 [112] support programmable forms of spike-timing-based learn-
ing rules, yet this flexibility comes at the expense of incurring a
dedicated plasticity co-processor.

It is notably difficult to reach decent accuracy levels with STDP
rules directly grounded on neuroscience observations [146]: as
these rules are typically unsupervised and based on local neuron
activities, they need to be modified in order to minimize the
network-level error. To address this issue, some recently pro-
posed neuromorphic hardware designs implement variants of the
error backpropagation algorithm that have been modified to in-
crease biological plausibility. The chip from Park et al. [175] and
SPOON [154] allow for efficient on-chip learning of non-temporal
data (i.e. static data): they are based on feedback-alignment algo-
rithms [181,182] that simplify the required memory architecture
by removing the need to access both the weight matrices and their
transposes. In order to learn temporal data instead, ReckOn [156]
implements a forward-in-time approximation of the backpropa-
gation through time (BPTT) algorithm [98] and enables on-chip
training with temporal dependencies ranging from milliseconds
to seconds.

It is worth mentioning that, while all plasticity-enabled designs
mentioned above can learn in an on-chip and online fashion,
data efficiency and learning robustness remain open challenges.
Early work in this direction includes the designs of [183,184],
which are based on a bio-plausible implementation of continual
learning and allow learning tasks sequentially while alleviating
catastrophic forgetting, which is a dramatic loss of performance
on previously learned tasks as new ones are learned with a
different data distribution.

A. Gebregiorgis et al

» Emerging nanoscale devices such as resistive RAM (RRAM) are in-
creasingly considered for implementing synaptic dynamics due to
their non-volatile, analog storage capabilities. At the same time,
there is growing interest in hardware models that extend beyond
point neurons to capture dendritic processing and local non-
linearities, which are critical for biological computation [185].

7.8. Conclusion

Neuromorphic hardware spans a spectrum of design choices: general
purpose vs. application specific, analog vs. digital, biological time vs.
accelerated, parallel vs. time-multiplexed, centralized vs. distributed,
sparse vs. dense, and static vs. plastic, each with distinct trade-offs
in efficiency, flexibility, and scalability. The “best” architecture is
inherently dependent on the use case and is based on careful hardware-
algorithm co-design, with memory and communication costs often
dominating system efficiency.

8. Mapping and compilers for neuromorphic systems

This section will present neuromorphic applications, compilation
and mapping tools to targeted neuromorphic hardware. Executing a
program on hardware involves three key steps: compilation, mapping,
and run-time management. Although apparent for mainstream com-
puters, these steps are challenging and not very well defined when
executing an SNN-based machine learning application on a neuromor-
phic hardware device. Analogous to a mammalian brain, synapses of
an SNN can be categorized into local and global synapses, based on the
distance information (a spike) is conveyed. Local synapses are short
distance links, where pre- and post-synaptic neurons are located in the
same vicinity. Global synapses are those where pre-and post-synaptic
neurons are further apart.

To reduce power consumption of the hardware implementation of
SNNs, the following two principles are widely adopted in neuromorphic
engineering.

» The number of point-to-point local synapses is limited to a reason-
able dimension. One example is a N x N crossbar, which consists
of N pre-synaptic neurons connected to N post-synaptic neurons
using N? synapses.

« Instead of point-to-point global synapses (which are of long dis-
tance) as found in a mammalian brain, the hardware implemen-
tation usually consists of a time-multiplexed interconnect shared
between global synapses.

Typically, the value of N is limited between 128 and 256; realistic
SNN applications use amounts of neurons and synapses that are well
beyond the capacity of a single crossbar. Therefore, an SNN model of
an application must be partitioned into clusters, where each cluster
is implemented on a crossbar: the partitioning step must thus take
into account the resource constraint of a crossbar. Still, spikes com-
municated between the clusters (i.e., between the crossbars when these
clusters are implemented on them) may create congestion on the global
interconnect, which communicates spikes between crossbars. Spike
congestion increases latency and energy and may also impact appli-
cation performance. In the following, a general workflow is presented
to map SNN applications to crossbar-based many-core neuromorphic
hardware.

8.1. Partitioning large SNN models to clusters

Partitioning a large SNN into clusters is essentially a graph parti-
tioning problem. Many efficient solutions have been proposed over the
years to partition directed graphs.

Fig. 17a shows an example of an SNN application with 8 neurons
and 13 synaptic connections. The number on each edge represents the

20

Microprocessors and Microsystems xxx (Xxxx) xXxx

total number of spikes communicated on the corresponding synapse for
a given input. Later in this section, an overview is provided on how to
extract spike information from a given machine learning model. Fig.
17b represents the partitioned SNN application with 4 clusters. The
number on each edge represents the total number of spikes between
the clusters. These are the spikes that are communicated between
neurosynaptic cores when the clustered SNN application is mapped to
the hardware. Since inter-core communication happens via a shared
interconnect such as a Segmented Bus [186] or a Network-on-Chip
(NoC) [187], the inter-core communication can constitute a significant
fraction of the total energy consumption if there are too many spikes
to communicate. Inter-cluster spikes also lead to an increased poten-
tial for network congestion, which may cause performance issues due
to a change in the inter-spike interval (ISI), an encoding technique
commonly used in SNN applications.

The performance of a machine-learning model can be expressed in
terms of accuracy, Mean Square Error (MSE), Peak Signal-to-Noise Ra-
tio (PSNR), and Structural Similarity Index Measure (SSIM) depending
on the specific problem that is being addressed by the model. For SNNs,
these performance metrics are defined in terms of ISL If {t,t,,... tx}
denote a neuron’s firing times in the time interval [0,T], the average
ISI of these spike trains is:

K
=) (t—-t,_)/(K=1). 5)
i=2

To illustrate how a change in ISI, called ISI distortion, impacts model
performance, we consider the example of a small SNN (Fig. 18a),
where three input neurons are connected to an output neuron. Fig. 18b
illustrates the impact of ISI distortion on the output spike. In the top
sub-figure, a spike is generated at the output neuron at 22 ps due to
spikes from the input neurons. In the bottom sub-figure, the second
spike from input 3 is delayed, i.e., it has an ISI distortion. Due to this
distortion, there is no output spike generated. Missing spikes can impact
model performance.

Fig. 19 shows an example of the impact of ISI distortion on appli-
cation performance, where the SNN in Fig. 18a is used for an image
smoothing application. Fig. 19a shows the input image, which is fed to
the SNN. Fig. 19b shows the output with ISI distortion due to variation
in latency in the hardware. PSNR of this output with respect to the
input is 19, which indicates a degradation in the image quality.

From this example, it is quite clear that spike latency plays an im-
portant role in determining the application performance. Fortunately,
the latency can be controlled efficiently during SNN partitioning,
i.e., by reducing the number of inter-cluster spikes. The problem draws
parallel to finding a set of partitions of a weighted graph with the
objective of minimizing a cost function. For the case of SNNs, weights
are the number of spikes, while the cost function is the number of inter-
cluster spikes. To this end, a fundamental graph partitioning algorithm
is the Kernighan-Lin algorithm [188]. This is a heuristic partitioning
solution which starts with some initial partition that satisfies the size
constraints. It then repeatedly swaps nodes between the partitions to
reduce the cost function. This is illustrated for an example SNN in Fig.
20, where after a certain number of steps, the number of inter-cluster
spikes is reduced from 22 (initial allocation on the left) to 8 (in the
right).

The Kernighan-Lin algorithm is used extensively for SNN parti-
tioning [189,190]. To perform this SNN partitioning it is necessary to
extract the spike information, which will be used as weights for edges
(i.e., synapses) of the graph representation of an SNN. This process
of spike extraction is also called workload generation. The general
workflow to generate an SNN workload is to simulate the SNN using
an application-level simulator such CARLSim [191] or Brian [192]
with representative training examples. The workload consists of the
following information.

A. Gebregiorgis et al. Microprocessors and Microsystems xxx (Xxxx) xXxx

R G g ¢
N .
0w o o -

7.0

(a) An SNN with 8 neurons and 13 synaptic connections. (b) The SNN partitioned into 4 clusters.

Fig. 17. Illustration of partitioning an SNN with 8 neurons and 13 synapses (left) to 4 clusters (right).

< Input1 - ! 4
g Input2 L 4
g Input3 | @ A 4
Output - RN e e RN HU]
. 0 5 10 15 20 f 25 30 I 35 40
ll’lput 1 Time (us:) ‘
|
I
T T T — T — T
! [
input 2 () LLLLLLLL | 1 et L i | |
Outpllt g Input2 L] ! b
> \ L Isipistorion |
Z Input3 ¥ 4
ll’lput 3 Outeut .))))) Xnonu‘tpu(spikei
0 5 10 15 20 25 30 35 40
Time (us)

(a) An SNN with 3 neurons connected to an output neuron via their (b) No output generation due to increase in spike latency.
synaptic connections.

Fig. 18. A small SNN with three input and one output neurons (left). Impact of ISI distortion on the output spike.

(a) Original image sent to the image smooth- (b) Output image generated from the image
ing application. smoothing application. The SNN model has
ISI distortion.

Fig. 19. Impact of ISI distortion on image smoothing application.

« Spike Data: the exact spike times of all neurons in the SNN model. * Model Parameters: the synaptic strength of all synapses in the
We let spk(i) represents a list of spike times of the ith neuron in SNN model. We let p(i, j) represents the synaptic strength of the
the model. connection between the ith and jth neurons in the SNN model.

21

A. Gebregiorgis et al

cluster A

cluster B

..... _A..»;\'“S\e(C

inter-cluster spikes = 28

inter-cluster spikes = 22

Microprocessors and Microsystems xxx (Xxxx) xXxx

F e
oA
e

inter-cluster spikes = 8

Fig. 20. An illustration of the steps of Kernighan-Lin clustering algorithm to partition an SNN into clusters.

3 B o0 B o®

S} S} s] B B s]
3
/ Al A s
1 1 | 1
(ST ST S| (ST [ST S|
C C

e 2°

S} s} s] s} s} s]

Partitioned SNN

Placement Option 1

Placement Option 2

Fig. 21. Illustrating the impact of different placements of clusters of a clustered SNN on a neuromorphic hardware.

Spike data and model parameter weights can then be used to
create a directed graph from the SNN. Such a directed graph can be
represented as Ggyy = (N, .S), where N is the set of nodes representing
neurons, and S is the set of edges representing synapses of the SNN
model. Each edge s;; € S connects neurons »; and n;. s;; is associated
with a synaptic strength p;; and spike trains spk(i). The weight of this
synapse (for the purpose of partitioning) is |spk(i)|.

8.2. Determining the placement of clusters to cores of many-core neuromor-
phic hardware

Networks-on-chip (NoC) is the de-facto onchip communication in-
frastructure for many-core neuromorphic hardware platforms compris-
ing of the physical layer, the data link layer and the network layer
of the Open Systems Interconnection (OSI) protocol stack. Inside a
NoC, neurosynaptic cores are connected to channels via switches, which
are organized as mesh (a Manhattan-like structure). The addressing
scheme used is based on Planar Cartesian coordinates, where each core
specified using a pair of real numbers (called coordinates). Mapping
an SNN to a NoC-based hardware consists of identifying the specific
coordinate where each clusters of the SNN is to be placed.

Cluster placement on hardware plays an important role in energy
and latency. To illustrate this Fig. 21 (left) shows a clustered SNN with
three clusters (A, B, C). The figure also shows the number of spikes
between these clusters. Imagine that the three clusters are mapped to
the hardware using placement option 1 (middle) and placement option
2 (right).

For placement option 1, A is mapped to coordinate (1,1), B to (0,0),
and C to (2,2). In this placement scheme, the three spikes between
B and A travel via two hops, i.e., (0,0) - (0,1) and (0,1) — (1,1).
Similarly, the two spikes between A and C via two hops, i.e., (1,1) —
(2,1) and (2,1) — (2,2). Finally, the three spikes between B and C travel
via four hops, i.e., (0,0) — (1,0), (1,0) - (2,0), (2,0) — (2,1), and (2,1)
- (2,2).

22

Consider E, and L, be the energy and latency of each switch, while
E; and L, be that for each NoC link, respectively. The average spike
latency is

3x(3-Ly+2- L)+
/*for spikes between AandB

- 1 .2><(3~LS+2~L,)+
3+2+43 |/xforspikesbetweenAandC

3x(5-Ly+4-L))
/*for spikes betweenBandC
_30-Ly+22-L,

8

(6)

The total energy is

3x(3-E;+2-E)+
/% for spikes between AandB
2% (3-E;+2-E)+
/% for spikes betweenAandC

3% (5-E +4-E))

)

/# for spikes betweenBandC

=30-E, +22-E

The same computations can be performed for placement option 2
(right). The average latency and total energy are

o loLannn

0 E=19-E +11-E

(8)

From this simple example we see that both average latency and total
energy is lower for placement option 2 compared to placement option
1, illustrating that placement plays an important role in mapping SNNs
to a neuromorphic hardware. Typically, heuristic solutions are used to
obtain the placement of clusters to cores [190].

A. Gebregiorgis et al

%!

W1V + Wy,

Fig. 22. Implementing a cluster on a crossbar.

8.3. Implementing each cluster on a crossbar

A cluster is implemented by placing its neurons and synapses on to
the resources of a crossbar. Fig. 22 illustrates this implementation using
a simple example of a 2 x 1 SNN on a 2 x 2 crossbar. Synaptic weights
w, and w, are programmed into the NVM cells P1 and P2, respectively.
The output spike voltages, v, from N1 and v, from N2, inject current
into the crossbar, which is obtained by multiplying a pre-synaptic
neuron’s output spike voltage with the NVM cell’s conductance at the
cross-point of the pre- and post-synaptic neurons (following Ohm’s
law). Current summations along columns are performed in parallel
using Kirchhoff’s current law, and implement the sums Y, w;v;, needed
for forward propagation of neuron excitation.

8.4. Mapping on limited precision hardware

Majority of SNN models presume that neuromorphic hardware can
support the required precision and their mapping strategy mainly fo-
cuses on achieving communication cost reduction and performance
improvements by employing various partitioning and spatiotempo-
ral mapping [23]. However, neuromorphic hardware accelerator can
have limited precision for various reasons. On one hand, the spar-
sity and inherent fault tolerance properties of SNNs are exploited
to improve the area and energy-efficiency of the hardware by sup-
porting limited precision such as approximation [193]. On the other
hand, precision is limited due to various reliability and non-ideality
issues resulting in imprecise/limited precision hardware. Therefore,
a precision-aware mapping scheme can exploit the algorithm/model
inherent error tolerance to map an SNN model into a limited precision
neuromorphic hardware. Although limited precision hardware mapping
is not explored adequately, there are a few mapping schemes such
as quantization-aware mapping [194], and an un-balanced bit slicing
and mapping [195] targeting limited precision hardware. Quantization-
aware mapping quantize the SNN weights to match the precision of
the targeted hardware. Whereas the un-balanced bit slicing targets
non-ideal memristive-based CIM crossbar by employing a non-ideality
aware un-balanced weight slicing technique and maps the slices into
varying accuracy/precision memristive devices.

8.5. Recent advancement on SNN mapping

Mapping techniques for SNNs are largely adapted from those for
traditional artificial neural networks (ANNs), with the additional con-
sideration of the neuron’s state, such as membrane potential, alongside
input, output, and weights. Usually, SNN mapping focuses on parti-
tioning neurons across distributed multi-core systems without shared
memory, aiming to optimize resource utilization and minimize inter-
core communication—an NP-hard problem [196]. Common heuristics
include hill climbing [197], particle swarm optimization [198], and
graph partitioning [199], with some methods considering hardware
reliability and endurance [200]. Synchronous Dataflow Graphs (SDFG)
are also used to estimate throughput but current methods struggle to

23

Microprocessors and Microsystems xxx (Xxxx) xXxx

handle SNNs exceeding on-chip memory or to effectively utilize shared
on-chip memory.

For example, NeuProMa [201] splits, partitions, and maps SNNs to
fit on-chip resources through time-multiplexing, optimizing intercore
spike communication, but is limited by its splitting strategies and lack
of shared memory consideration. Similarly, SMART [202] targets map-
ping DSNNs on resource-constrained neuromorphic systems with CPUs,
addressing throughput estimation, operation and memory mapping,
and parallel scheduling, though it lacks interlayer and intracore opti-
mization. Advanced tools like Algorithm-to-Hardware Mapping (AHM)
frameworks optimize layer mapping using analytical cost models, with
Stream [203] extending Zigzag [204] to multilayer, multiaccelerator
systems using a graph-based approach and genetic algorithms, en-
abling efficient exploration of Pareto-optimal mappings for substantial
performance gains.

Recently, [205] introduced the first approach to map DSNNs onto
digital neuromorphic architectures with inter-layer mapping optimiza-
tion in space (depth-first) and time, improving hardware utilization and
minimizing off-chip traffic. Applied to event-based vision benchmarks
such as Gen4 [206] and CIFAR10-DVS [207], this method reduced
external memory traffic by 12x, energy by 5x, and hidden states by
20x without accuracy loss, demonstrating significant efficiency gains
for spatiotemporal feature learning under stringent on-chip memory
constraints.

Deployment of SNNs in hardware introduces unique challenges, pri-
marily due to the increased on-chip memory requirements for stateful
neurons and synapses, which maintain persistent states. The limitations
of on-chip memory, coupled with the high energy costs associated with
off-chip memory access, have led to hybrid deployment strategies. In
these approaches, persistent stateful elements are selectively used only
where they significantly enhance system performance. For instance, in
many vision processing tasks, the initial feature extraction layers of
the neural network can be implemented using memory-less neurons
and synapses, particularly in convolutional layers. This strategy signifi-
cantly reduces on-chip memory usage while maintaining computational
efficiency [208].

Another key practical challenge in deploying large-scale SNNs on
multi-core neuromorphic processors is achieving efficient synchroniza-
tion. Most existing spiking neuron models rely on time-step synchro-
nization, as this facilitates training on GPUs. However, enforcing syn-
chronization across neuromorphic cores introduces additional signaling
overhead and can lead to stalling in dataflows. This adds complexity
to the mapping process and requires careful architectural and algo-
rithmic co-design to balance performance and energy efficiency [209].
Moreover, the limited precision of neuromorphic hardware poses an
additional constraint, as conventional mapping strategies often assume
sufficient numerical precision. Recent approaches such as QTMS [210]
propose a quantization-aware mapping scheme that optimizes multiple
timescale dynamics in SNNs to mitigate precision limitations while
maintaining functional accuracy.

8.6. Conclusions

Despite advances in SNN mapping, key challenges persist. Existing
heuristics, such as graph partitioning and evolutionary algorithms,
provide approximate solutions but struggle with scalability, and current
methods fail to fully leverage shared on-chip memory, leading to ineffi-
ciencies. Furthermore, the lack of standardized benchmarking method-
ologies makes it difficult to compare mapping techniques across differ-
ent hardware platforms. Efforts such as NeuroBench [211] provide a
unified framework for evaluating neuromorphic algorithms and hard-
ware, but further refinement is needed for dynamic and continuous-
learning applications. Future work should focus on hybrid mapping
techniques that integrate deep reinforcement learning and optimization
methods, alongside evolving benchmarks for closed-loop neuromorphic
tasks and energy-aware metrics to ensure a fair and comprehensive
performance evaluation.

A. Gebregiorgis et al
9. Spiking Neural Networks deployment & applications

This section presents the recent developments on the adoption,
deployment, and application of Spiking Neural Networks in different
sectors. Section 9.1 presents the section that discusses the encoding
of the input signal for SNN applications, which is an essential step
to represent the input signal in usable format of SNN. Then, the
application of neuromorphic systems in various domains is presented
in Section 9.2.

9.1. Input signal encoding in SNN

The first step for implementing an SNN is to encode signals into a
stream of spikes using either a rate-based model [45], some form of
temporal coding [212], or population coding [213]. Unlike biological
neural networks, artificial SNNs are highly simplified as the action
potential generation, and the synaptic dynamics are usually simplified
with binary events without including their complex temporal dynamics.
Spike trains in a network of spiking neurons are propagated through
weighted synaptic connections. A synapse can have a positive (ex-
citatory) or negative (inhibitory) effect on the postsynaptic neuron.
This means that it can increase or decrease the neuron’s membrane
potential. The strength of the synapse (weight) can be changed due to
learning. The learning rule of an SNN is among the most challenging
component for developing efficient and effective SNNs; this aspect is
discussed in Section 5.

In general, the network topology describes how different neurons
interact. Various factors determine the network model, such as the level
of biological inspiration, their target application, and the limitations of
the neuromorphic hardware.

Spiking neural networks (SNNs) can be used for a wide range of
applications, including image recognition, speech recognition, robotics,
and more. The specific topology of the SNN can depend on the specific
application and the requirements of the system.

Feedforward SNNs are commonly used in image and speech recogni-
tion tasks, where the input signal is processed layer by layer to produce
an output. Recurrent SNNs are often used in tasks that require memory
or sequential processing, such as speech recognition [96] or language
processing.

Bio-inspired SNN topologies aim to replicate the organization and
structure of the brain. These topologies are often used for cognitive
tasks, such as decision making [75], learning, and memory. Convo-
lutional SNNs are commonly used in image and speech recognition
tasks, where the input signal is processed in a way that mimics the
organization of the visual or auditory cortex.

Gated-networks, such as long short-term memory (LSTM) networks,
are used for tasks that require the network to maintain memory of
previous inputs. This can be useful for tasks such as speech recognition
or language processing.

Overall, the choice of topology depends on the specific application
and the requirements of the system. Each topology has its advan-
tages and disadvantages, and researchers are continually exploring new
topologies and techniques to improve the performance of SNNs for a
wide range of applications.

9.2. Neuromorphic applications

SNNs have also been shown to be energy-efficient and can be
implemented in hardware using neuromorphic chips, making them
attractive for applications in embedded systems and the Internet of
Things (IoT). The neuromorphic community is currently engaged in
defining benchmarks and application metrics to evaluate various neu-
romorphic solutions [24]. This evaluation considers both algorithmic
complexity and hardware efficiency, helping to determine which tasks
and applications make the neuromorphic engineering approach attrac-
tive. In addition several neuromorphic applications have demonstrated
the benefits of the neuromorphic approach; these include:

24

Microprocessors and Microsystems xxx (Xxxx) xXxx

» Event-based machine vision: neuromorphic event-based vision is
probably the most developed application of neuromorphic tech-
nologies [214]. Today, event-based cameras find use in several
applications in robotics, autonomous vehicles, and augmented
reality. In robotics, event-based vision can be used for tasks such
as object tracking and motion planning, where fast and accurate
sensing is critical. In autonomous vehicles, event-based vision
can help with obstacle avoidance and real-time decision-making.
In augmented reality, event-based vision can provide a more
natural and immersive user experience by allowing for real-time
tracking and updating of the visual scene. One key advantage of
event-based vision is its ability to operate in low-light conditions,
which can be challenging for traditional cameras. This is because
the spiking nature of the sensors allows them to operate more
efficiently in low light, making them well-suited for applications
such as surveillance and security.

Speech recognition: SNNs have been used to recognize spoken
words and phrases by analyzing the temporal patterns of neural
activity associated with speech signals.

Object recognition: SNNs have been applied to image recognition
tasks, where they can learn to recognize objects based on their
visual features and temporal patterns.

Robotics: SNNs have been used to control robots and enable
them to perform complex tasks, such as object manipulation and
navigation.

Computing: SNNs have been used to implement neuromorphic
computing systems, which aim to emulate the energy-efficient
and parallel processing capabilities of biological neural networks.
Control applications: neuromorphic computing can be utilized to
develop the control applications such as video games [215] and
autonomous robot navigation [216].

Prosthetics and brain-machine interfaces: neuromorphic-based
systems have been proposed to smoothly interface with neu-
ral systems directly through the use of spikes, thus, they have
the potential to realize low-latency and low-power neurpros-
thesics [167].

Overall, brain-inspired sensing and computing systems provide a
promising method for modeling and comprehending biological neural
systems while creating novel forms of artificial intelligence that can
solve demanding tasks more efficiently and potentially with lower
power consumption, using a more natural approach.

10. Challenges and future directions

A key obstacle in advancing neuromorphic computing systems lies
in our incomplete understanding of the brain. Neuromorphic architec-
tures draw inspiration from how the brain’s structure and dynamics
give rise to efficient, adaptive computation, so neuroscience discover-
ies directly shape the potential of neuromorphic technology. Gaining
deeper insights into how the brain processes information, particu-
larly its dynamical signal representations, will be crucial to refining
neuromorphic systems.

Neuromorphic learning systems, which strive to learn and adapt as
biological networks do, face several hurdles. The design of efficient
learning algorithms is especially challenging: these algorithms must
seamlessly handle large-scale, highly parallel, and time-varying neural
activity while remaining energy efficient and scalable. Hardware limita-
tions compound this issue; specialized neuromorphic chips and FPGAs
often provide only limited memory and computational resources, re-
stricting network size and complexity. Moreover, the inherent noise and
variability in neuromorphic hardware complicate robust and reliable
learning, while recurrent loops over time in spiking neural networks
make interpreting learned representations notably difficult.

Developing analog mixed-signal circuits adds further complexity at
the hardware core level. Noise and variability can undermine accu-
racy, requiring strategies such as self-healing and adaptive calibration.

A. Gebregiorgis et al.

At the same time, managing power consumption without sacrificing
performance is critical, especially when working with novel nanoscale
devices that can increase circuit complexity. In addition, ensuring in-
teroperability with other hardware and software platforms necessitates
well-defined standards and interfaces.

Memory constraints and scalability pose major architectural-level
challenges. The memory subsystem often dominates power consump-
tion and chip area, making Non-Volatile Memory (NVM) technologies
attractive for their compact form factor and zero static power usage.
However, high write power, low endurance, and read inefficiencies in
current NVM solutions limit their practical deployment in large-scale
neuromorphic systems.

Despite promising energy-efficiency achievements, for example,
up to 195 Tera Operations per Joule [217] compared to roughly
10 Tera Synaptic Operations per Joule for the human brain [218] state-
of-the-art neuromorphic processors remain far behind their biological
counterparts. Intel’s Pohoiki Springs system (100 million neurons and
99 billion synapses) can draw approximately 500 W [219], whereas
the human brain, with tens of billions of neurons and trillions of
synapses, operates only 10 to 20 W. Emerging technologies such as 3D
integrated circuits can help close this gap by mitigating I/O overhead
and improving system scalability [220].

Bridging the hardware—software divide is another critical step for-
ward. While neuromorphic hardware emulates brain-like properties,
powerful and flexible software frameworks are essential to harness
those capabilities effectively. Finally, developing comprehensive appli-
cations and benchmarks will guide progress in neuromorphic sensing
and computing [211]. Although initial successes in pattern recognition
and robotics have been promising, ongoing research is needed to iden-
tify and test novel and sophisticated use cases. By continuing to push
the boundaries in neuroscience, hardware innovations, software tools,
and application development, the field of neuromorphic computing can
move closer to the robust adaptability and efficiency seen in biological
neural systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was partially funded by the Dutch Organization for
Scientific Research (NWO) through the Self-Healing Neuromorphic Sys-
tems (SNS) project (KICH1.ST04.22.021) and the NWA ORC project
(NWO-NWA grant NWA.1292.19.298), and by the Swiss National Sci-
ence Foundation, Switzerland (Grant Number PCEFP3_202981).

Data availability

No data was used for the research described in the article.

References

[1] C. Mead, M. Ismail, Analog VLSI Implementation of Neural Systems, Springer
Science & Business Media, 1989, p. 80.

[2] G. Cauwenberghs, Reverse engineering the cognitive brain, Proc. Natl. Acad.
Sci. 110 (39) (2013) 15512-15513.

[3] G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic
systems, Proc. IEEE 103 (8) (2015) 1379-1397.

[4] T. Delbriick, B. Linares-Barranco, E. Culurciello, C. Posch, Activity-driven, event-
based vision sensors, in: Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, IEEE, 2010, pp. 2426-2429.

[5] S.-C. Liu, A. Van Schaik, B.A. Minch, T. Delbruck, Event-based 64-channel
binaural silicon cochlea with q enhancement mechanisms, in: 2010 IEEE
International Symposium on Circuits and Systems, ISCAS, IEEE, 2010, pp.
2027-2030.

25

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Microprocessors and Microsystems xxx (Xxxx) xXxx

C. Bartolozzi, Neuromorphic circuits impart a sense of touch, Science 360
(6392) (2018) 966-967.

F. Corradi, D. Zambrano, M. Raglianti, G. Passetti, C. Laschi, G. Indiveri,
Towards a neuromorphic vestibular system, IEEE Trans. Biomed. Circuits Syst.
8 (5) (2014) 669-680.

J. Schemmel, A. Griibl, S. Hartmann, A. Kononov, C. Mayr, K. Meier, S. Millner,
J. Partzsch, S. Schiefer, S. Scholze, et al., Live demonstration: A scaled-down
version of the brainscales wafer-scale neuromorphic system, in: ISCAS, 2012.

S. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project, in: Proc.
of the IEEE, 2014.

B. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, K. Boahen, Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations, in:
Proceedings of the IEEE, 2014.

M.V. Debole, B. Taba, A. Amir, et al., TrueNorth: Accelerating from zero to 64
million neurons in 10 years, Computer (2019).

L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen, M.
Zhao, S. Song, et al., Development of a neuromorphic computing system, in:
IEDM, 2015.

M. Davies, N. Srinivasa, T.H. Lin, et al.,, Loihi: A neuromorphic manycore
processor with on-chip learning, IEEE Micro (2018).

C. Frenkel, M. Lefebvre, J.-D. Legat, D. Bol, A 0.086-mm? 12.7-pj/sop 64k-
synapse 256-neuron online-learning digital spiking neuromorphic processor in
28-nm CMOS, TBCAS (2018).

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, Y. Xie, PRIME: A
novel processing-in-memory architecture for neural network computation in
ReRAM-based main memory, in: ISCA, 2016.

S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (DYNAPs), TBCAS (2017).

J. Stuijt, M. Sifalakis, A. Yousefzadeh, F. Corradi, xBrain: An event-driven and
fully synthesizable architecture for spiking neural networks, Front. Neurosci.
(2021).

C.D. James, J.B. Aimone, N.E. Miner, C.M. Vineyard, F.H. Rothganger, K.D.
Carlson, S.A. Mulder, T.J. Draelos, A. Faust, M.J. Marinella, et al., A histor-
ical survey of algorithms and hardware architectures for neural-inspired and
neuromorphic computing applications, Biol. Inspir. Cogn. Archit. 19 (2017)
49-64.

Y. Chen, H.H. Li, C. Wu, C. Song, S. Li, C. Min, H.-P. Cheng, W. Wen, X.
Liu, Neuromorphic computing’s yesterday, today, and tomorrow-an evolutional
view, Integration 61 (2018) 49-61.

F. Staudigl, F. Merchant, R. Leupers, A survey of neuromorphic computing-in-
memory: Architectures, simulators, and security, IEEE Des. Test 39 (2) (2022)
90-99.

M. Musisi-Nkambwe, S. Afshari, H. Barnaby, M. Kozicki, 1.S. Esqueda, The
viability of analog-based accelerators for neuromorphic computing: a survey,
Neuromorphic Comput. Eng. 1 (1) (2021) 012001.

H.F. Langroudi, T. Pandit, M. Indovina, D. Kudithipudi, Digital neuromorphic
chips for deep learning inference: a comprehensive study, in: Applications of
Machine Learning, Vol. 11139, SPIE, 2019, pp. 84-95.

M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello,
E. Beigne, Spiking neural networks hardware implementations and challenges:
A survey, ACM J. Emerg. Technol. Comput. Syst. (JETC) 15 (2) (2019) 1-35.
Z. Yu, AM. Abdulghani, A. Zahid, H. Heidari, M.A. Imran, Q.H. Abbasi,
An overview of neuromorphic computing for artificial intelligence enabled
hardware-based hopfield neural network, IEEE Access 8 (2020) 67 085-67 099.
D. Auge, J. Hille, E. Mueller, A. Knoll, A survey of encoding techniques for
signal processing in spiking neural networks, Neural Process. Lett. 53 (6) (2021)
4693-4710.

K. Demertzis, G.D. Papadopoulos, L. Iliadis, L. Magafas, A comprehensive
survey on nanophotonic neural networks: Architectures, training methods,
optimization, and activations functions, Sensors 22 (3) (2022) 720.

C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S.
Plank, A survey of neuromorphic computing and neural networks in hardware,
2017, arXiv preprint arXiv:1705.06963.

J.A. Gallego, M.G. Perich, L.E. Miller, S.A. Solla, Neural manifolds for the
control of movement, Neuron 94 (5) (2017) 978-984.

N. Axmacher, F. Mormann, G. Ferndndez, M.X. Cohen, C.E. Elger, J. Fell,
Sustained neural activity patterns during working memory in the human medial
temporal lobe, J. Neurosci. 27 (29) (2007) 7807-7816.

J.F. Miller, M. Neufang, A. Solway, A. Brandt, M. Trippel, I. Mader, S. Hefft, M.
Merkow, S.M. Polyn, J. Jacobs, et al., Neural activity in human hippocampal
formation reveals the spatial context of retrieved memories, Science 342 (6162)
(2013) 1111-1114.

P. Viswanathan, A. Nieder, Neuronal correlates of a visual sense of number in
primate parietal and prefrontal cortices, Proc. Natl. Acad. Sci. 110 (27) (2013)
11187-11192.

X.-J. Wang, Probabilistic decision making by slow reverberation in cortical
circuits, Neuron 36 (5) (2002) 955-968.

http://refhub.elsevier.com/S0141-9331(25)00107-3/sb1
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb1
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb1
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb2
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb2
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb2
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb3
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb3
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb3
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb4
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb4
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb4
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb4
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb4
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb6
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb6
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb6
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb7
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb7
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb7
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb7
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb7
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb8
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb8
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb8
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb8
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb8
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb9
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb9
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb9
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb10
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb11
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb11
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb11
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb12
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb12
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb12
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb12
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb12
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb13
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb13
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb13
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb14
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb14
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb14
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb14
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb14
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb15
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb15
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb15
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb15
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb15
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb16
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb16
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb16
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb16
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb16
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb17
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb17
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb17
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb17
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb17
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb18
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb19
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb19
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb19
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb19
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb19
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb20
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb20
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb20
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb20
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb20
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb21
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb21
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb21
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb21
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb21
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb22
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb22
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb22
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb22
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb22
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb23
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb23
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb23
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb23
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb23
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb24
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb24
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb24
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb24
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb24
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb25
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb25
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb25
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb25
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb25
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb26
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb26
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb26
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb26
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb26
http://arxiv.org/abs/1705.06963
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb28
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb28
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb28
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb29
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb29
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb29
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb29
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb29
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb30
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb31
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb31
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb31
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb31
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb31
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb32
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb32
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb32

A. Gebregiorgis et al.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

M. Bear, B. Connors, M.A. Paradiso, Neuroscience: Exploring the Brain,
Enhanced Edition: Exploring the Brain, Jones & Bartlett Learning, 2020.

M. Van Spronsen, C.C. Hoogenraad, Synapse pathology in psychiatric and
neurologic disease, Curr. Neurol. Neurosci. Rep. 10 (3) (2010) 207-214.

T. Yamashita, A. Pala, L. Pedrido, Y. Kremer, E. Welker, C.C. Petersen,
Membrane potential dynamics of neocortical projection neurons driving
target-specific signals, Neuron 80 (6) (2013) 1477-1490.

B.P. Bean, The action potential in mammalian central neurons, Nature Rev.
Neurosci. 8 (6) (2007) 451-465.

S. Paixdo, R. Klein, Neuron-astrocyte communication and synaptic plasticity,
Curr. Opin. Neurobiol. 20 (4) (2010) 466-473.

W. Xin, Y.A. Mironova, H. Shen, R.A. Marino, A. Waisman, W.H. Lamers,
D.E. Bergles, A. Bonci, Oligodendrocytes support neuronal glutamatergic trans-
mission via expression of glutamine synthetase, Cell Rep. 27 (8) (2019)
2262-2271.

A.E. Pereda, Electrical synapses and their functional interactions with chemical
synapses, Nature Rev. Neurosci. 15 (4) (2014) 250-263.

L. Khacef, P. Klein, M. Cartiglia, A. Rubino, G. Indiveri, E. Chicca, Spike-based
local synaptic plasticity: A survey of computational models and neuromorphic
circuits, 2022, arXiv preprint arXiv:2209.15536.

D. Hebb, The Organization of Behavior, wiley, New York, 1949.

N. Perez-Nieves, V.C. Leung, P.L. Dragotti, D.F. Goodman, Neural heterogeneity
promotes robust learning, Nat. Commun. 12 (1) (2021) 5791.

G.-q. Bi, M.-m. Poo, Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type, J.
Neurosci. 18 (24) (1998) 10464-10472.

M.S. Halvagal, F. Zenke, The combination of hebbian and predictive plasticity
learns invariant object representations in deep sensory networks, 2022, bioRxiv,
pp. 2022-03.

W. Gerstner, W.M. Kistler, R. Naud, L. Paninski, Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition, Cambridge University
Press, 2014.

W. Gerstner, Spike-response model, Scholarpedia 3 (12) (2008) 1343, revision
#91800.

A. Hodgkin, A. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve, J. Physiol. 117 (1952)
500-544.

AN. Burkitt, A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input, Biol. Cybernet. 95 (2006).

A. Roth, M.C. van Rossum, et al., Modeling synapses, Comput. Model. Methods
Neurosci. 6 (2009) 139-160.

J.S. Rothman, Modeling Synapses, Springer New York, New York, NY, 2013,
pp. 1-15.

S. La Barbera, D.R. Ly, G. Navarro, N. Castellani, O. Cueto, G. Bourgeois, B.
De Salvo, E. Nowak, D. Querlioz, E. Vianello, Narrow heater bottom electrode-
based phase change memory as a bidirectional artificial synapse, Adv. Electron.
Mater. 4 (9) (2018) 1800223.

C.D. Schuman, S.R. Kulkarni, M. Parsa, J.P. Mitchell, B. Kay, et al., Opportu-
nities for neuromorphic computing algorithms and applications, Nat. Comput.
Sci. 2 (1) (2022) 10-19.

H. Markram, J. Liibke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy
by coincidence of postsynaptic aps and epsps, Science 275 (5297) (1997)
213-215.

C. Clopath, L. Biising, E. Vasilaki, W. Gerstner, Connectivity reflects coding: a
model of voltage-based stdp with homeostasis, Nature Neurosci. 13 (3) (2010)
344-352.

F. Zenke, W. Gerstner, Hebbian plasticity requires compensatory processes
on multiple timescales, Phil. Trans. R. Soc. B 372 (1715) (2017) 20160259,
[Online]. Available: http://rstb.royalsocietypublishing.org/content/372/1715/
20160259.

N. Frémaux, W. Gerstner, Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules, Front. Neural Circuits 9 (2016).

D. Zhao, Y. Zeng, T. Zhang, M. Shi, F. Zhao, Glsnn: A multi-layer spiking neural
network based on global feedback alignment and local stdp plasticity, Front.
Comput. Neurosci. 14 (2020) 576841.

A. Samadzadeh, F.S.T. Far, A. Javadi, A. Nickabadi, M.H. Chehreghani, Convo-
lutional spiking neural networks for spatio-temporal feature extraction, 2020,
arXiv preprint arXiv:2003.12346.

B. Yin, F. Corradi, S.M. Bohté, Accurate online training of dynamical spiking
neural networks through forward propagation through time, Nat. Mach. Intell.
5 (5) (2023) 518-527.

V. Demin, D. Nekhaev, Recurrent spiking neural network learning based on
a competitive maximization of neuronal activity, Front. Neuroinformatics 12
(2018) 79.

A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84-90.

U. Kamath, J. Liu, J. Whitaker, Deep Learning for NLP and Speech Recognition,
Springer, 2019, p. 84.

26

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Microprocessors and Microsystems xxx (XXxxx) XXX

D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, 1. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of go with deep neural networks and tree search, Nature 529 (7587)
(2016) 484-489.

T. Branco, K. Staras, The probability of neurotransmitter release: variability
and feedback control at single synapses, Nature Rev. Neurosci. 10 (5) (2009)
373-383.

E.T. Rolls, Memory, Attention, and Decision-Making, OUP, 2008, (Chapter 2).
M.L. Varshika, F. Corradi, A. Das, Nonvolatile memories in spiking neural
network architectures: Current and emerging trends, Electronics 11 (10) (2022)
1610.

N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang,
P. Deaville, In-memory computing: Advances and prospects, IEEE Solid-State
Circuits Mag. 11 (3) (2019) 43-55.

S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The spinnaker project, Proc.
IEEE 102 (5) (2014) 652-665.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain, et al., Loihi: A neuromorphic manycore processor
with on-chip learning, IEEE Micro 38 (1) (2018) 82-99.

H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark
silicon and the end of multicore scaling, in: 2011 38th Annual International
Symposium on Computer Architecture, ISCA, IEEE, 2011, pp. 365-376.

R.J. Douglas, K.A. Martin, D. Whitteridge, A canonical microcircuit for
neocortex, Neural Comput. 1 (4) (1989) 480-488.

U. Rutishauser, R.J. Douglas, J.-J. Slotine, Collective stability of networks of
winner-take-all circuits, Neural Comput. 23 (3) (2011) 735-773.

M. Kouh, T. Poggio, A canonical neural circuit for cortical nonlinear operations,
Neural Comput. 20 (6) (2008) 1427-1451.

D.H. Hubel, T.N. Wiesel, Integrative action in the cat’s lateral geniculate body,
J. Physiol. 155 (2) (1961) 385.

F. Corradi, H. You, M. Giulioni, G. Indiveri, Decision making and perceptual
bistability in spike-based neuromorphic vlsi systems, in: 2015 IEEE International
Symposium on Circuits and Systems, ISCAS, IEEE, 2015, pp. 2708-2711.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska,
G. Indiveri, A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses, Front. Neurosci. 9 (2015) 141.
N. Imam, K. Wecker, J. Tse, R. Karmazin, R. Manohar, Neural spiking dynamics
in asynchronous digital circuits, in: The 2013 International Joint Conference on
Neural Networks, IJCNN, IEEE, 2013, pp. 1-8.

S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system,
Nature 381 (6582) (1996) 520-522.

S. Wager, S. Wang, P.S. Liang, Dropout training as adaptive regularization, Adv.
Neural Inf. Process. Syst. 26 (2013).

G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A.v. Schaik, R. Etienne-
Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hifliger, S. Renaud, et al.,
Neuromorphic silicon neuron circuits, Front. Neurosci. 5 (2011) 73.

W. Maass, Networks of spiking neurons: the third generation of neural network
models, Neural Netw. 10 (9) (1997) 1659-1671.

R. Legenstein, D. Pecevski, W. Maass, A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback,
PLoS Comput. Biol. 4 (10) (2008) €1000180.

E. Oja, Simplified neuron model as a principal component analyzer, J. Math.
Biol. 15 (3) (1982) 267-273, [Online]. Available: http://www.springerlink.
com/content/u9u6120r003825ul/abstract/.

AJ. Bell, L.C. Parra, Maximising information yields spike timing dependent
plasticity, in: NIPS, 2004, pp. 121-128.

C. Pehlevan, T. Hu, D.B. Chklovskii, A Hebbian/Anti-Hebbian neural network
for linear subspace learning: A derivation from multidimensional scaling of
streaming data, Neural Comput. 27 (7) (2015) 1461-1495, [Online]. Available:
http://www.mitpressjournals.org/doi/10.1162/NECO_a_00745.

S. Halvagal, F. Zenke, The combination of Hebbian and predictive plas-
ticity learns invariant object representations in deep sensory networks,
2022, [Online]. Available: https://www.biorxiv.org/content/10.1101/2022.03.
17.484712.

C.D. Schuman, J.S. Plank, A. Disney, et al., An evolutionary optimization
framework for neural networks and neuromorphic architectures, in: Joint
Conference on ..., 2016.

D. Zambrano, R. Nusselder, H.S. Scholte, S.M. Bohté, Sparse computation in
adaptive spiking neural networks, Front. Neurosci. 12 (2018) 987.

S. Davidson, S.B. Furber, Comparison of artificial and spiking neural net-
works on digital hardware, Front. Neurosci. 15 (2021) publisher: Frontiers.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2021.
651141/full.

S.M. Bohte, J.N. Kok, H. La Poutre, Error-backpropagation in temporally
encoded networks of spiking neurons, Neurocomputing 48 (1-4) (2002) 17-37.
T.C. Wunderlich, C. Pehle, Event-based backpropagation can compute exact
gradients for spiking neural networks, Sci. Rep. 11 (1) (2021) 12829.

T. Nowotny, J.P. Turner, J.C. Knight, Loss shaping enhances exact gradient
learning with EventProp in spiking neural networks, 2022, arXiv:2212.01232
[cs]. [Online]. Available: http://arxiv.org/abs/2212.01232.

http://refhub.elsevier.com/S0141-9331(25)00107-3/sb33
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb33
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb33
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb34
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb34
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb34
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb35
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb35
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb35
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb35
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb35
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb36
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb36
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb36
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb37
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb37
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb37
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb38
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb39
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb39
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb39
http://arxiv.org/abs/2209.15536
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb41
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb42
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb42
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb42
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb43
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb43
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb43
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb43
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb43
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb44
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb44
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb44
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb44
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb44
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb45
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb45
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb45
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb45
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb45
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb46
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb46
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb46
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb47
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb47
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb47
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb47
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb47
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb48
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb48
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb48
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb49
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb49
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb49
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb50
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb50
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb50
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb51
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb52
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb52
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb52
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb52
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb52
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb53
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb53
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb53
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb53
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb53
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb54
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb54
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb54
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb54
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb54
http://rstb.royalsocietypublishing.org/content/372/1715/20160259
http://rstb.royalsocietypublishing.org/content/372/1715/20160259
http://rstb.royalsocietypublishing.org/content/372/1715/20160259
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb56
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb56
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb56
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb57
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb57
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb57
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb57
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb57
http://arxiv.org/abs/2003.12346
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb59
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb59
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb59
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb59
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb59
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb60
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb60
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb60
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb60
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb60
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb61
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb61
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb61
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb62
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb62
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb62
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb63
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb64
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb64
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb64
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb64
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb64
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb65
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb66
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb66
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb66
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb66
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb66
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb67
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb67
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb67
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb67
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb67
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb68
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb68
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb68
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb69
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb69
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb69
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb69
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb69
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb70
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb70
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb70
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb70
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb70
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb71
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb71
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb71
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb72
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb72
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb72
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb73
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb73
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb73
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb74
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb74
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb74
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb75
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb75
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb75
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb75
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb75
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb76
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb76
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb76
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb76
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb76
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb77
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb77
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb77
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb77
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb77
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb78
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb78
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb78
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb79
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb79
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb79
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb80
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb80
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb80
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb80
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb80
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb81
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb81
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb81
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb82
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb82
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb82
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb82
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb82
http://www.springerlink.com/content/u9u6120r003825u1/abstract/
http://www.springerlink.com/content/u9u6120r003825u1/abstract/
http://www.springerlink.com/content/u9u6120r003825u1/abstract/
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb84
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb84
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb84
http://www.mitpressjournals.org/doi/10.1162/NECO_a_00745
https://www.biorxiv.org/content/10.1101/2022.03.17.484712
https://www.biorxiv.org/content/10.1101/2022.03.17.484712
https://www.biorxiv.org/content/10.1101/2022.03.17.484712
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb87
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb87
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb87
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb87
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb87
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb88
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb88
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb88
https://www.frontiersin.org/articles/10.3389/fnins.2021.651141/full
https://www.frontiersin.org/articles/10.3389/fnins.2021.651141/full
https://www.frontiersin.org/articles/10.3389/fnins.2021.651141/full
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb90
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb90
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb90
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb91
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb91
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb91
http://arxiv.org/abs/2212.01232
http://arxiv.org/abs/2212.01232

A. Gebregiorgis et al.

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

J. Lee, S. Haghighatshoar, A. Karbasi, Exact gradient computation for spiking
neural networks, in: OPT 2022: Optimization for Machine Learning, NeurIPS
2022 Workshop, arXiv preprint arXiv:2210.15415.

S.M. Bohte, Error-backpropagation in networks of fractionally predictive spiking
neurons, Artif. Neural Netw. Mach. Learn. (2011).

J. Kim, K. Kim, J.-J. Kim, Unifying activation- and timing-based learning rules
for spiking neural networks, 2020, 19534-19 544.

B. Yin, F. Corradi, S.M. Bohté, Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks, Nat. Mach. Intell. 3 (10)
(2021) 905-913.

F. Zenke, T.P. Vogels, The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks, Neural Comput. 33
(4) (2021) 899-925.

G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, W. Maass,
A solution to the learning dilemma for recurrent networks of spiking neurons,
Nat. Commun. 11 (1) (2020) 1-15.

J. Keijser, H. Sprekeler, Optimizing interneuron circuits for compartment-
specific feedback inhibition, PLoS Comput. Biol. 18 (4) (2022) €1009933.

B. Yin, F. Corradi, S.M. Bohte, Accurate online training of dynamical spiking
neural networks through forward propagation through time, Nat. Mach. Intell.
(2023).

E.F. Harkin, P.R. Shen, A. Goel, B.A. Richards, R. Naud, Parallel and recurrent
cascade models as a unifying force for understanding subcellular computa-
tion, Neuroscience 489 (2022) 200-215, [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0306452221003808.

R.J. Williams, D. Zipser, A learning algorithm for continually running fully
recurrent neural networks, Neural Comput. 1 (2) (1989) 270-280.

F. Zenke, S. Ganguli, SuperSpike: Supervised learning in multilayer spiking
neural networks, Neural Comput. 30 (6) (2018) 1514-1541, [Online]. Available:
http://dx.doi.org/10.1162/neco_a_01086.

J. Kaiser, H. Mostafa, E. Neftci, Synaptic plasticity dynamics for deep continuous
local learning (DECOLLE), Front. Neurosci. 14 (2020) [Online]. Available: https:
//www.frontiersin.org/articles/10.3389/fnins.2020.00424/full?report=reader.
T. Bohnstingl, S. WozZniak, A. Pantazi, E. Eleftheriou, Online spatio-temporal
learning in deep neural networks, IEEE Trans. Neural Netw. Learn. Syst. (2022)
1-15, conference Name: IEEE Transactions on Neural Networks and Learning
Systems.

M. Xiao, Q. Meng, Z. Zhang, D. He, Z. Lin, Online training through time for
spiking neural networks, 2022.

F. Zenke, E.O. Neftci, Brain-inspired learning on neuromorphic substrates, Proc.
IEEE 109 (5) (2021) 935-950, conference Name: Proceedings of the IEEE.

F. Zenke, B. Poole, S. Ganguli, Continual learning through synaptic intelligence,
Proc. Mach. Learn. Res. 70 (2017) 3987-3995.

G.I. Parisi, R. Kemker, J.L. Part, C. Kanan, S. Wermter, Continual life-
long learning with neural networks: A review, Neural Netw. 113 (2019)
54-71, [Online]. Available: https://www.sciencedirect.com/science/article/pii/
$S0893608019300231.

N. Imam, T.A. Cleland, Rapid online learning and robust recall in a
neuromorphic olfactory circuit, Nat. Mach. Intell. 2 (3) (2020) 181-191.

R.-J. Zhu, Q. Zhao, J.K. Eshraghian, SpikeGPT: Generative pre-trained language
model with spiking neural networks, 2023.

C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Stradmann,
J. Weis, A. Leibfried, E. Miiller, J. Schemmel, The brainscales-2 accelerated
neuromorphic system with hybrid plasticity, Front. Neurosci. 16 (2022).

J. Arthur, K. Boahen, Recurrently connected silicon neurons with active
dendrites for one-shot learning, in: 2004 IEEE International Joint Conference
on Neural Networks (IEEE Cat. No. 04CH37541), Vol. 3, 2004, pp. 1699-1704,
vol. 3.

T. Yu, G. Cauwenberghs, Analog VLSI biophysical neurons and synapses with
programmable membrane channel kinetics, IEEE Trans. Biomed. Circuits Syst.
4 (3) (2010) 139-148, [Online]. Available: http://dx.doi.org/10.1109/TBCAS.
2010.2048566.

R.T. Edwards, G. Cauwenberghs, Synthesis of Log-Domain Filters from First-
Order Building Blocks, Springer US, Boston, MA, 2000, pp. 71-80, [Online].
Available: http://dx.doi.org/10.1007/978-1-4757-6414-7 5.

C. Frenkel, J.-D. Legat, D. Bol, Morphic: A 65-nm 738k-synapse/mm’ quad-
core binary-weight digital neuromorphic processor with stochastic spike-driven
online learning, IEEE Trans. Biomed. Circuits Syst. 13 (5) (2019) 999-1010.
A. Yousefzadeh, G.-J. Van Schaik, M. Tahghighi, P. Detterer, S. Traferro, M.
Hijdra, J. Stuijt, F. Corradi, M. Sifalakis, M. Konijnenburg, Seneca: Scalable
energy-efficient neuromorphic computer architecture, in: 2022 IEEE 4th Inter-
national Conference on Artificial Intelligence Circuits and Systems, AICAS, IEEE,
2022, pp. 371-374.

O. Moreira, A. Yousefzadeh, F. Chersi, G. Cinserin, R.-J. Zwartenkot, A. Kapoor,
P. Qiao, P. Kievits, M. Khoei, L. Rouillard, et al., Neuronflow: a neuromorphic
processor architecture for live ai applications, in: 2020 Design, Automation &
Test in Europe Conference & Exhibition, DATE, IEEE, 2020, pp. 840-845.

M. Davies, Taking neuromorphic computing to the next level with loihi 2, in:
Intel Technology Brief, 2021.

27

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Microprocessors and Microsystems xxx (XXxxx) XXX

G. Di Patrizio Stanchieri, A. De Marcellis, M. Faccio, E. Palange, I. Isiksalan,
T. Tufan, U. Guler, Decay time processing technique by digital architecture
for noninvasive optical monitoring of biosignals in healthcare applications, in:
2025 IEEE Sensors Applications Symposium, SAS, 2025, pp. 1-6.

M. Ward, O. Rhodes, Beyond lif neurons on neuromorphic hardware, Front.
Neurosci. 16 (2022) [Online]. Available: https://www.frontiersin.org/articles/
10.3389/fnins.2022.881598.

C. Frenkel, J.-D. Legat, D. Bol, A compact phenomenological digital neuron
implementing the 20 izhikevich behaviors, in: 2017 IEEE Biomedical Circuits
and Systems Conference, BioCAS, 2017, pp. 1-4.

S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro,
K. Garcia, S. Xavier, et al., Learning through ferroelectric domain dynamics in
solid-state synapses, Nat. Commun. 8 (1) (2017) 1-7.

1. Mufioz-Martin, S. Bianchi, S. Hashemkhani, G. Pedretti, O. Melnic, D.
Telmini, A brain-inspired homeostatic neuron based on phase-change memories
for efficient neuromorphic computing, Front. Neurosci. 15 (2021) [Online].
Available: https://www.frontiersin.org/articles/10.3389/fnins.2021.709053.

P. Wijesinghe, A. Ankit, A. Sengupta, K. Roy, An all-memristor deep spiking
neural computing system: A step toward realizing the low-power stochastic
brain, IEEE Trans. Emerg. Top. Comput. Intell. 2 (5) (2018) 345-358.

H. Wang, N.C. Laurenciu, Y. Jiang, S.D. Cotofana, Ultra-compact, entirely
graphene-based nonlinear leaky integrate-and-fire spiking neuron, in: 2020 IEEE
International Symposium on Circuits and Systems, ISCAS, IEEE, 2020, pp. 1-5.
H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M.
Asheghi, K.E. Goodson, Phase change memory, Proc. IEEE 98 (12) (2010)
2201-2227.

A. Sebastian, M. Le Gallo, G.W. Burr, S. Kim, M. BrightSky, E. Eleftheriou,
Tutorial: Brain-inspired computing using phase-change memory devices, J. Appl.
Phys. 124 (11) (2018) 111101.

I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B.
Rajendran, Y. Leblebici, A. Sebastian, E. Eleftheriou, Neuromorphic computing
with multi-memristive synapses, Nat. Commun. 9 (1) (2018) 2514.

H. Akinaga, H. Shima, Resistive random access memory (reram) based on metal
oxides, Proc. IEEE 98 (12) (2010) 2237-2251.

X. Xu, et al., Superior retention of low-resistance state in conductive bridge
random access memory with single filament formation, IEEE Electron Device
Lett. 36 (2015) 129-131.

A. Siemon, T. Breuer, N. Aslam, S. Ferch, W. Kim, J. van den Hurk, V.
Rana, S. Hoffmann-Eifert, R. Waser, S. Menzel, E. Linn, Realization of boolean
logic functionality using redox-based memristive devices, Adv. Funct. Mater. 25
(2015) 6414-6423.

N. Du, et al., Field-driven hopping transport of oxygen vacancies in memristive
oxide switches with interface-mediated resistive switching, Phys. Rev. Appl. 10
(5) (2018) 054025.

S. Roy, G. Niu, Q. Wang, Y. Wang, Y. Zhang, H. Wu, S. Zhai, P. Shi, S. Song, Z.
Song, et al., Toward a reliable synaptic simulation using al-doped hfo2 rram,
ACS Appl. Mater. Interfaces 12 (9) (2020) 10648-10656.

J.-G. Zhu, Magnetoresistive random access memory: The path to competitive-
ness and scalability, Proc. IEEE 96 (11) (2008) 1786-1798.

W. Zhao, E. Belhaire, C. Chappert, F. Jacquet, P. Mazoyer, New non-
volatile logic based on spin-mtj, Phys. Status Solidi (A) 205 (6) (2008)
1373-1377, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/pssa.200778135.

R. Patel, E. Ipek, E.G. Friedman, 2T-1r stt-mram memory cells for enhanced
on/off current ratio, Microelectron. J. 45 (2) (2014) 133-143.

M. Sharad, C. Augustine, G. Panagopoulos, K. Roy, Spin-based neuron model
with domain-wall magnets as synapse, IEEE Trans. Nanotechnol. 11 (4) (2012)
843-853.

H. Wang, N.C. Laurenciu, Y. Jiang, S. Cotofana, Graphene-based artificial
synapses with tunable plasticity, ACM J. Emerg. Technol. Comput. Syst. (JETC)
17 (4) (2021) 1-21.

X. Wang, W. Xie, J.-B. Xu, Graphene based non-volatile memory devices, Adv.
Mater. 26 (31) (2014) 5496-5503.

T.F. Schranghamer, A. Oberoi, S. Das, Graphene memristive synapses for high
precision neuromorphic computing, Nat. Commun. 11 (1) (2020) 1-11.

E. Covi, H. Mulaosmanovic, B. Max, S. Slesazeck, T. Mikolajick, Ferroelectric-
based synapses and neurons for neuromorphic computing, Neuromorphic
Comput. Eng. (2022).

J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M.
Materano, T. Ali, K. Kuehnel, K. Seidel, et al., Soc compatible 1tlc feram
memory array based on ferroelectric hf0. 5zr0. 502, in: 2020 IEEE Symposium
on VLSI Technology, IEEE, 2020, pp. 1-2.

Y. Arimoto, H. Ishiwara, Current status of ferroelectric random-access memory,
Mrs Bull. 29 (11) (2004) 823-828.

Y. Luo, Y.-C. Luo, S. Yu, A ferroelectric-based volatile/non-volatile dual-mode
buffer memory for deep neural network accelerators, IEEE Trans. Comput.
(2021).

C. Frenkel, D. Bol, G. Indiveri, Bottom-up and top-down approaches for the
design of neuromorphic processing systems: tradeoffs and synergies between
natural and artificial intelligence, Proc. IEEE 111 (6) (2023) 623-652.

http://arxiv.org/abs/2210.15415
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb94
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb94
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb94
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb95
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb95
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb95
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb96
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb96
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb96
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb96
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb96
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb97
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb97
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb97
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb97
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb97
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb98
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb98
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb98
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb98
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb98
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb99
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb99
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb99
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb100
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb100
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb100
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb100
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb100
https://www.sciencedirect.com/science/article/pii/S0306452221003808
https://www.sciencedirect.com/science/article/pii/S0306452221003808
https://www.sciencedirect.com/science/article/pii/S0306452221003808
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb102
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb102
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb102
http://dx.doi.org/10.1162/neco_a_01086
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full?report=reader
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full?report=reader
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full?report=reader
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb105
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb106
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb106
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb106
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb107
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb107
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb107
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb108
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb108
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb108
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb110
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb110
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb110
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb111
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb111
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb111
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb112
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb112
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb112
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb112
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb112
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb113
http://dx.doi.org/10.1109/TBCAS.2010.2048566
http://dx.doi.org/10.1109/TBCAS.2010.2048566
http://dx.doi.org/10.1109/TBCAS.2010.2048566
http://dx.doi.org/10.1007/978-1-4757-6414-7_5
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb116
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb116
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb116
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb116
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb116
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb117
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb118
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb119
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb119
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb119
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb120
https://www.frontiersin.org/articles/10.3389/fnins.2022.881598
https://www.frontiersin.org/articles/10.3389/fnins.2022.881598
https://www.frontiersin.org/articles/10.3389/fnins.2022.881598
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb122
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb122
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb122
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb122
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb122
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb123
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb123
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb123
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb123
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb123
https://www.frontiersin.org/articles/10.3389/fnins.2021.709053
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb125
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb125
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb125
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb125
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb125
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb126
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb126
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb126
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb126
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb126
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb127
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb127
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb127
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb127
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb127
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb128
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb128
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb128
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb128
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb128
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb129
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb129
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb129
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb129
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb129
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb130
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb130
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb130
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb131
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb131
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb131
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb131
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb131
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb132
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb133
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb133
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb133
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb133
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb133
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb134
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb134
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb134
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb134
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb134
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb135
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb135
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb135
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.200778135
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.200778135
https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.200778135
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb137
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb137
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb137
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb138
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb138
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb138
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb138
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb138
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb139
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb139
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb139
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb139
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb139
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb140
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb140
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb140
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb141
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb141
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb141
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb142
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb142
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb142
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb142
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb142
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb143
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb144
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb144
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb144
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb145
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb145
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb145
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb145
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb145
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb146
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb146
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb146
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb146
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb146

A. Gebregiorgis et al.

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, S. Millner, A wafer-
scale neuromorphic hardware system for large-scale neural modeling, in: 2010
IEEE International Symposium on Circuits and Systems, ISCAS, IEEE, 2010, pp.
1947-1950.

E. Painkras, L.A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D.R.
Lester, A.D. Brown, S.B. Furber, Spinnaker: A 1-w 18-core system-on-chip for
massively-parallel neural network simulation, IEEE J. Solid-State Circuits 48 (8)
(2013) 1943-1953.

C. Mayr, S. Hoeppner, S. Furber, Spinnaker 2: A 10 million core processor
system for brain simulation and machine learning, 2019, arXiv preprint arXiv:
1911.02385.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N.
Imam, Y. Nakamura, P. Datta, G.-J. Nam, et al., Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 34 (10) (2015) 1537-1557.
L. Deng, G. Wang, G. Li, S. Li, L. Liang, M. Zhu, Y. Wu, Z. Yang, Z. Zou, J. Pei,
et al., Tianjic: A unified and scalable chip bridging spike-based and continuous
neural computation, IEEE J. Solid-State Circuits 55 (8) (2020) 2228-2246.

P. Knag, J.K. Kim, T. Chen, Z. Zhang, A sparse coding neural network asic
with on-chip learning for feature extraction and encoding, IEEE J. Solid-State
Circuits 50 (4) (2015) 1070-1079.

G.K. Chen, R. Kumar, H.E. Sumbul, P.C. Knag, R.K. Krishnamurthy, A 4096-
neuron 1 m-synapse 3.8-pj/sop spiking neural network with on-chip stdp
learning and sparse weights in 10-nm finfet cmos, IEEE J. Solid-State Circuits
54 (4) (2018) 992-1002.

C. Frenkel, J.-D. Legat, D. Bol, A 28-nm convolutional neuromorphic processor
enabling online learning with spike-based retinas, in: 2020 IEEE International
Symposium on Circuits and Systems, ISCAS, IEEE, 2020, pp. 1-5.

D. Wang, P.K. Chundi, S.J. Kim, M. Yang, J.P. Cerqueira, J. Kang, S. Jung,
S. Kim, M. Seok, Always-on, sub-300-nw, event-driven spiking neural network
based on spike-driven clock-generation and clock-and power-gating for an
ultra-low-power intelligent device, in: 2020 IEEE Asian Solid-State Circuits
Conference, A-SSCC, IEEE, 2020, pp. 1-4.

C. Frenkel, G. Indiveri, Reckon: A 28 nm sub-mm2 task-agnostic spiking
recurrent neural network processor enabling on-chip learning over second-long
timescales, in: 2022 IEEE International Solid-State Circuits Conference, ISSCC,
vol. 65, IEEE, 2022, pp. 1-3.

S. Moradi, G. Indiveri, An event-based neural network architecture with an
asynchronous programmable synaptic memory, IEEE Trans. Biomed. Circuits
Syst. 8 (1) (2013) 98-107.

E. Chicca, F. Stefanini, C. Bartolozzi, G. Indiveri, Neuromorphic electronic
circuits for building autonomous cognitive systems, Proc. IEEE 102 (9) (2014)
1367-1388.

S.A. Aamir, Y. Stradmann, P. Miiller, C. Pehle, A. Hartel, A. Griibl, J. Schemmel,
K. Meier, An accelerated lif neuronal network array for a large-scale mixed-
signal neuromorphic architecture, IEEE Trans. Circuits Syst. I. Regul. Pap. 65
(12) (2018) 4299-4312.

J. Schemmel, S. Billaudelle, P. Dauer, J. Weis, Analog neuromorphic comput-
ing, in: Analog Circuits for Machine Learning, Current/Voltage/Temperature
Sensors, and High-Speed Communication, Springer, 2022, pp. 83-102.

X. Peng, S. Huang, H. Jiang, A. Lu, S. Yu, Dnn+ neurosim v2. 0: An end-to-
end benchmarking framework for compute-in-memory accelerators for on-chip
training, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40 (11) (2020)
2306-2319.

A. Neckar, S. Fok, B.V. Benjamin, T.C. Stewart, N.N. Oza, A.R. Voelker, C.
Eliasmith, R. Manohar, K. Boahen, Braindrop: A mixed-signal neuromorphic
architecture with a dynamical systems-based programming model, Proc. IEEE
107 (1) (2018) 144-164.

B. Cramer, S. Billaudelle, S. Kanya, A. Leibfried, A. Griibl, V. Karasenko,
C. Pehle, K. Schreiber, Y. Stradmann, J. Weis, J. Schemmel, F. Zenke,
Surrogate gradients for analog neuromorphic computing, Proc. Natl. Acad.
Sci. 119 (4) (2022) [Online]. Available: https://www.pnas.org/content/119/4/
€2109194119.

J.-s. Seo, B. Brezzo, Y. Liu, B.D. Parker, S.K. Esser, R.K. Montoye, B. Rajendran,
J.A. Tierno, L. Chang, D.S. Modha, et al., A 45 nm cmos neuromorphic chip
with a scalable architecture for learning in networks of spiking neurons, in:
2011 IEEE Custom Integrated Circuits Conference, CICC, IEEE, 2011, pp. 1-4.
B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, A. Wild, Nxtf: An api
and compiler for deep spiking neural networks on intel loihi, ACM J. Emerg.
Technol. Comput. Syst. (JETC) 18 (3) (2022) 1-22.

J. Goltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer,
D. Dold, A.F. Kungl, W. Senn, J. Schemmel, et al., Fast and energy-efficient
neuromorphic deep learning with first-spike times, Nat. Mach. Intell. 3 (9)
(2021) 823-835.

F. Corradi, G. Indiveri, A neuromorphic event-based neural recording system for
smart brain-machine-interfaces, IEEE Trans. Biomed. Circuits Syst. 9 (5) (2015)
699-709.

F.C. Bauer, D.R. Muir, G. Indiveri, Real-time ultra-low power ecg anomaly
detection using an event-driven neuromorphic processor, IEEE Trans. Biomed.
Circuits Syst. 13 (6) (2019) 1575-1582.

28

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]
[193]

Microprocessors and Microsystems xxx (Xxxx) xXxx

J. Biichel, D. Zendrikov, S. Solinas, G. Indiveri, D.R. Muir, Supervised training of
spiking neural networks for robust deployment on mixed-signal neuromorphic
processors, Sci. Rep. 11 (1) (2021) 1-12.

S. Billaudelle, Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach, D. Dold,
J. Goltz, A.F. Kungl, T.C. Wunderlich, A. Hartel, et al., Versatile emulation of
spiking neural networks on an accelerated neuromorphic substrate, in: 2020
IEEE International Symposium on Circuits and Systems, ISCAS, IEEE, 2020, pp.
1-5.

M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G.A.F. Guerra, P. Joshi, P.
Plank, S.R. Risbud, Advancing neuromorphic computing with loihi: A survey of
results and outlook, Proc. IEEE 109 (5) (2021) 911-934.

J. Park, T. Yu, S. Joshi, C. Maier, G. Cauwenberghs, Hierarchical address event
routing for reconfigurable large-scale neuromorphic systems, IEEE Trans. Neural
Netw. Learn. Syst. 28 (10) (2016) 2408-2422.

M. Horowitz, 1.1 computing’s energy problem (and what we can do about it),
in: 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers, ISSCC, IEEE, 2014, pp. 10-14.

C. Mayr, J. Partzsch, M. Noack, S. Hinzsche, S. Scholze, S. Héppner, G. Ellguth,
R. Schiiffny, A biological-realtime neuromorphic system in 28 nm cmos using
low-leakage switched capacitor circuits, IEEE Trans. Biomed. Circuits Syst. 10
(1) (2015) 243-254.

J. Park, J. Lee, D. Jeon, A 65-nm neuromorphic image classification processor
with energy-efficient training through direct spike-only feedback, IEEE J.
Solid-State Circuits 55 (1) (2019) 108-119.

D.S. Bassett, E. Bullmore, Small-world brain networks, Neurosci. 12 (6) (2006)
512-523.

S. Thorpe, A. Delorme, R. Van Rullen, Spike-based strategies for rapid
processing, Neural Netw. 14 (6-7) (2001) 715-725.

F.N. Buhler, P. Brown, J. Li, T. Chen, Z. Zhang, M.P. Flynn, A 3.43 tops/w 48.9
pj/pixel 50.1 nj/classification 512 analog neuron sparse coding neural network
with on-chip learning and classification in 40 nm cmos, in: 2017 Symposium
on VLSI Circuits, IEEE, 2017, pp. C30-C31.

C. Bartolozzi, G. Indiveri, E. Donati, Embodied neuromorphic intelligence, Nat.
Commun. 13 (1) (2022) 1024.

D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov, D. Blackiston, J.
Bongard, A.P. Brna, S. Chakravarthi Raja, N. Cheney, J. Clune, et al., Biological
underpinnings for lifelong learning machines, Nat. Mach. Intell. 4 (3) (2022)
196-210.

A. Npkland, Direct feedback alignment provides learning in deep neural
networks, Adv. Neural Inf. Process. Syst. 29 (2016).

C. Frenkel, M. Lefebvre, D. Bol, Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks, Front.
Neurosci. 15 (2021) 629892.

F.T. Zohora, V. Karia, A.R. Daram, A.M. Zyarah, D. Kudithipudi, Metaplasticnet:
Architecture with probabilistic metaplastic synapses for continual learning, in:
2021 IEEE International Symposium on Circuits and Systems, ISCAS, IEEE,
2021, pp. 1-5.

V. Karia, F.T. Zohora, N. Soures, D. Kudithipudi, Scolar: A spiking digital accel-
erator with dual fixed point for continual learning, in: 2022 IEEE International
Symposium on Circuits and Systems, ISCAS, IEEE, 2022, pp. 1372-1376.

S. D’agostino, F. Moro, T. Torchet, Y. Demirag, L. Grenouillet, N. Castellani, G.
Indiveri, E. Vianello, M. Payvand, Denram: neuromorphic dendritic architecture
with rram for efficient temporal processing with delays, Nat. Commun. 15 (1)
(2024) 3446.

A. Balaji, P.K. Huynh, F. Catthoor, N.D. Dutt, J.L. Krichmar, A. Das, Neusb:
A scalable interconnect architecture for spiking neuromorphic hardware, IEEE
Trans. Emerg. Top. Comput. (2023).

X. Liu, W. Wen, X. Qian, H. Li, Y. Chen, Neu-noc: A high-efficient intercon-
nection network for accelerated neuromorphic systems, in: 2018 23rd Asia
and South Pacific Design Automation Conference, ASP-DAC, IEEE, 2018, pp.
141-146.

B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst. Tech. J. 49 (2) (1970) 291-307.

A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, S. Schaafsma, Mapping of
local and global synapses on spiking neuromorphic hardware, in: 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE, IEEE, 2018, pp.
1217-1222.

A. Balaji, A. Das, Y. Wu, K. Huynh, F.G. Dell’Anna, G. Indiveri, J.L. Krichmar,
N.D. Dutt, S. Schaafsma, F. Catthoor, Mapping spiking neural networks to
neuromorphic hardware, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28
(1) (2019) 76-86.

L. Niedermeier, K. Chen, J. Xing, A. Das, J. Kopsick, E. Scott, N. Sutton, K.
Weber, N. Dutt, J.L. Krichmar, Carlsim 6: An open source library for large-scale,
biologically detailed spiking neural network simulation, in: 2022 International
Joint Conference on Neural Networks, IJCNN, IEEE, 2022, pp. 1-10.

D.F. Goodman, R. Brette, The brian simulator, Front. Neurosci. (2009) 26.

A. Gebregirogis, M. Tahoori, Approximate learning and fault-tolerant mapping
for energy-efficient neuromorphic systems, ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 26 (3) (2020) 1-23.

http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb147
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb148
http://arxiv.org/abs/1911.02385
http://arxiv.org/abs/1911.02385
http://arxiv.org/abs/1911.02385
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb150
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb151
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb151
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb151
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb151
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb151
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb152
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb152
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb152
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb152
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb152
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb153
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb154
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb154
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb154
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb154
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb154
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb155
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb156
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb157
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb157
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb157
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb157
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb157
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb158
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb158
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb158
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb158
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb158
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb159
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb160
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb160
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb160
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb160
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb160
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb161
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb162
https://www.pnas.org/content/119/4/e2109194119
https://www.pnas.org/content/119/4/e2109194119
https://www.pnas.org/content/119/4/e2109194119
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb164
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb165
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb165
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb165
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb165
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb165
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb166
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb167
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb167
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb167
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb167
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb167
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb168
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb168
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb168
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb168
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb168
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb169
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb169
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb169
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb169
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb169
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb170
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb171
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb171
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb171
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb171
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb171
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb172
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb172
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb172
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb172
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb172
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb173
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb173
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb173
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb173
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb173
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb174
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb175
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb175
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb175
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb175
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb175
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb176
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb176
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb176
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb177
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb177
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb177
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb178
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb179
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb179
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb179
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb180
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb181
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb181
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb181
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb182
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb182
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb182
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb182
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb182
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb183
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb184
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb184
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb184
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb184
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb184
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb185
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb186
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb186
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb186
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb186
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb186
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb187
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb188
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb188
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb188
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb189
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb190
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb191
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb192
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb193
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb193
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb193
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb193
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb193

A. Gebregiorgis et al.

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

M.P.E. Apolinario, A.K. Kosta, U. Saxena, K. Roy, Hardware/software co-design
with adc-less in-memory computing hardware for spiking neural networks, IEEE
Trans. Emerg. Top. Comput. 12 (1) (2023) 35-47.

S. Diware, A. Singh, A. Gebregiorgis, R.V. Joshi, S. Hamdioui, R. Bishnoi,
Accurate and energy-efficient bit-slicing for rram-based neural networks, IEEE
Trans. Emerg. Top. Comput. Intell. 7 (1) (2022) 164-177.

P.K. Huynh, M.L. Varshika, A. Paul, M. Isik, A. Balaji, A. Das, Implementing
spiking neural networks on neuromorphic architectures: A review, 2022.

T. Titirsha, A. Das, Thermal-aware compilation of spiking neural networks
to neuromorphic hardware, in: International Workshop on Languages and
Compilers for Parallel Computing, Springer, 2020, pp. 134-150.

A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, S. Schaafsma, Mapping
of local and global synapses on spiking neuromorphic hardware, in: 2018
Design, Automation & Test in Europe Conference & Exhibition, DATE, 2018,
pp. 1217-1222.

S. Eissa, S. Stuijk, H. Corporaal, Dnasim: Evaluation framework for digital
neuromorphic architectures, in: 2022 25th Euromicro Conference on Digital
System Design, DSD, 2022, pp. 438-445.

T. Titirsha, S. Song, A. Das, J. Krichmar, N. Dutt, N. Kandasamy, F. Catthoor,
Endurance-aware mapping of spiking neural networks to neuromorphic
hardware, IEEE Trans. Parallel Distrib. Syst. 33 (2) (2021) 288-301.

C. Xiao, J. Chen, L. Wang, Neuproma: A toolchain for mapping large-scale
spiking convolutional neural networks onto neuromorphic processor, in: S. Liu,
X. Wei (Eds.), Network and Parallel Computing, Springer Nature Switzerland,
Cham, 2022, pp. 129-142.

A. Das, Real-time scheduling of machine learning operations on heterogeneous
neuromorphic soc, 2022.

A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, M. Verhelst, Stream:
A modeling framework for fine-grained layer fusion on multi-core dnn accel-
erators, in: 2023 IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS, 2023, pp. 355-357.

L. Mei, P. Houshmand, V. Jain, S. Giraldo, M. Verhelst, Zigzag: Enlarging joint
architecture-mapping design space exploration for dnn accelerators, IEEE Trans.
Comput. 70 (8) (2021) 1160-1174.

S. Eissa, S. Stuijk, F. de Putter, A. Nardi-Dei, F. Corradi, H. Corporaal, Stems:
Spatial-temporal mapping for spiking neural networks, IEEE Trans. Comput. 74
(9) (2025) 2991-3002.

E. Perot, P. de Tournemire, D. Nitti, J. Masci, A. Sironi, Learning to detect
objects with a 1 megapixel event camera, in: Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NIPS’20, Curran
Associates Inc., Red Hook, NY, USA, 2020.

H. Li, H. Liu, X. Ji, G. Li, L. Shi, Cifar10-dvs: An event-stream dataset for
object classification, Front. Neurosci. 11 (2017) [Online]. Available: https:
//www.frontiersin.org/articles/10.3389/fnins.2017.00309.

Y. Xu, K. Shidqi, G.-J. van Schaik, R. Bilgic, A. Dobrita, S. Wang, R. Meijer,
P. Nembhani, C. Arjmand, P. Martinello, et al., Optimizing event-based neural
networks on digital neuromorphic architecture: a comprehensive design space
exploration, Front. Neurosci. 18 (2024) 1335422.

R. Koopman, A. Yousefzadeh, M. Shahsavari, G. Tang, M. Sifalakis, Overcoming
the limitations of layer synchronization in spiking neural networks, 2024, arXiv
preprint arXiv:2408.05098.

S. Eissa, F. Corradi, F. de Putter, S. Stuijk, H. Corporaal, Qmts: Fixed-point
quantization for multiple-timescale spiking neural networks, in: International
Conference on Artificial Neural Networks, Springer, 2023, pp. 407-419.

J. Yik, K. Van den Berghe, D. den Blanken, Y. Bouhadjar, M. Fabre, P.
Hueber, W. Ke, M.A. Khoei, D. Kleyko, N. Pacik-Nelson, et al., The neurobench
framework for benchmarking neuromorphic computing algorithms and systems,
Nat. Commun. 16 (1) (2025) 1545.

S. Park, S. Kim, B. Na, S. Yoon, T2fsnn: Deep spiking neural networks with time-
to-first-spike coding, in: 2020 57th ACM/IEEE Design Automation Conference,
DAC, IEEE, 2020, pp. 1-6.

S.M. Bohte, H. La Poutré, J.N. Kok, Unsupervised clustering with spiking
neurons by sparse temporal coding and multilayer rbf networks, IEEE Trans.
Neural Netw. 13 (2) (2002) 426-435.

G. Gallego, T. Delbriick, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S.
Leutenegger, A.J. Davison, J. Conradt, K. Daniilidis, et al., Event-based vision:
A survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (1) (2020) 154-180.

C. Tang, Z. Wang, X. Sima, L. Zhang, Research on artificial intelligence
algorithm and its application in games, in: 2020 2nd International Conference
on Artificial Intelligence and Advanced Manufacture, AIAM, 2020, pp. 386-389.
J.D. Schaffer, Evolving spiking neural networks for robot sensory-motor decision
tasks of varying difficulty, in: Proceedings of the Neuro-Inspired Computational
Elements Workshop, NICE ’20, Association for Computing Machinery, New
York, NY, USA, 2020, [Online]. Available: http://dx.doi.org/10.1145/3381755.
3381757.

C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang, F.-C. Chang, P.
Chen, T.-W. Liu, C.-J. Jhang, C.-I. Su, et al., 16.1 a 22 nm 4 mb 8b-precision
reram computing-in-memory macro with 11.91 to 195.7 tops/w for tiny ai edge
devices, in: 2021 IEEE International Solid-State Circuits Conference, ISSCC, vol.
64, IEEE, 2021, pp. 245-247.

29

[218]

[219]

[220]

Microprocessors and Microsystems xxx (Xxxx) xXxx

T. Delbruck, S.-C. Liu, Data-driven neuromorphic dram-based cnn and rnn
accelerators, in: 2019 53rd Asilomar Conference on Signals, Systems, and
Computers, IEEE, 2019, pp. 500-506.

Y.S. Yang, Y. Kim, Recent trend of neuromorphic computing hardware: In-
tel’s neuromorphic system perspective, in: 2020 International SoC Design
Conference, ISOCC, IEEE, 2020, pp. 218-219.

S. Sinha, X. Xu, M. Bhargava, S. Das, B. Cline, G. Yeric, Stack up your chips:
Betting on 3d integration to augment moore’s law scaling, 2020, arXiv preprint
arXiv:2005.10866.

Dr. Anteneh Gebregiorgis received the Ph.D. degree in
computer science from Karlsruhe Institute of Technology
(KIT), Germany, in 2019. He is currently an assistant
professor in the Department of Quantum and Computer
Engineering, Delft University of Technology, The Nether-
lands. From 2017 to 2018 he was a visiting scholar with
the Nanoelectronics Research Laboratory, Purdue University,
working on energy-efficient neuromorphic architectures. His
research focuses on reliable and energy-efficient system de-
sign for neuromorphic applications using emerging devices
and unconventional computing paradigms.

Dr. Amirreza Yousefzadeh is an Assistant Professor at the
University of Twente, specializing in embedded AI and neu-
romorphic systems. His research focuses on the co-design of
algorithms and hardware for efficient, reliable, and adaptive
machine intelligence, with applications in next-generation
computing and smart embedded devices.

Sherif Eissa received the B.Sc. and M.Sc. degrees cum
laude in electrical and electronics engineering from the
German University in Cairo, in 2016, and the University
of Stuttgart, in 2019. He is currently a neuromorphic
concept engineer at Innatera Nanosystems, as well as a
Ph.D. researcher in neuromorphic computing at Eindhoven
University of Technology (TU/e). His research interests
include edge Al, computer architecture, Al algorithms, and
HW-SW co-design.

Dr. Muhammad Ali Siddiqi is an Assistant Professor of
Electrical Engineering at the Lahore University of Man-
agement Sciences (LUMS), Pakistan. He holds a Ph.D.
from Erasmus University Medical Center, Rotterdam, on
the security and privacy of Implantable Medical Devices.
He has worked as a postdoctoral researcher at TU Delft
on in-memory computing for lightweight cryptography and
neural implants, and as a Design Engineer at Silicon Labs
Norway. He is a TPC member of the Reconfigurable Ar-
chitectures Workshop (RAW). His research interests include
low-power hardware design, brain-machine interfaces, and
the cybersecurity of implantable and wearable devices.

Dr. Charlotte Frenkel received the M.Sc. degree (summa
cum laude) in electromechanical engineering and the Ph.D.
degree in engineering science from the Universite catholique
de Louvain (UCLouvain), Louvainla-Neuve, Belgium, in
2015 and 2020, respectively. In 2020, she joined the Insti-
tute of Neuroinformatics, UZH and ETH Zurich, Switzerland,
as a Postdoctoral Researcher. She is an Assistant Professor
with Delft University of Technology, Delft, The Netherlands,
since 2022, and holds a Visiting Faculty Researcher position
with Google since 2024. Her research aims at bridging the
bottom-up (bio-inspired) and top-down (engineering-driven)
design approaches toward neuromorphic intelligence, with
a focus on hardware algorithm co-design for (Neuro)Al,
digital hardware accelerators, and brain inspired on-device
learning. She received a best paper award at the IEEE
International Symposium on Circuits and Systems (ISCAS)
2020 conference in the Neural Networks track, and her

http://refhub.elsevier.com/S0141-9331(25)00107-3/sb194
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb194
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb194
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb194
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb194
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb195
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb195
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb195
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb195
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb195
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb196
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb196
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb196
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb197
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb197
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb197
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb197
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb197
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb198
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb199
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb199
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb199
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb199
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb199
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb200
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb200
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb200
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb200
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb200
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb201
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb202
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb202
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb202
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb203
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb204
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb204
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb204
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb204
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb204
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb205
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb205
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb205
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb205
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb205
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb206
https://www.frontiersin.org/articles/10.3389/fnins.2017.00309
https://www.frontiersin.org/articles/10.3389/fnins.2017.00309
https://www.frontiersin.org/articles/10.3389/fnins.2017.00309
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb208
http://arxiv.org/abs/2408.05098
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb210
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb210
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb210
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb210
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb210
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb211
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb212
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb212
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb212
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb212
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb212
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb213
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb213
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb213
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb213
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb213
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb214
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb214
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb214
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb214
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb214
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb215
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb215
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb215
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb215
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb215
http://dx.doi.org/10.1145/3381755.3381757
http://dx.doi.org/10.1145/3381755.3381757
http://dx.doi.org/10.1145/3381755.3381757
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb217
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb218
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb218
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb218
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb218
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb218
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb219
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb219
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb219
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb219
http://refhub.elsevier.com/S0141-9331(25)00107-3/sb219
http://arxiv.org/abs/2005.10866

A. Gebregiorgis et al

Ph.D. thesis was awarded the FNRSFWO/Nokia Bell Sci-
entific Award 2021 and the FNRS-FWO/IBM Innovation
Award 2021. In 2023, she was awarded prestigious Veni
and AiNed Fellowship Grants from the Dutch Research
Council (NWO). She presented several invited talks, includ-
ing keynotes at the tinyML EMEA technical forum 2021
and at the Neuro-Inspired Computational Elements (NICE)
neuromorphic conference 2021. She serves or has served
as Program Co-Chair of NICE 2023-2024 and of the tinyML
Research Symposium 2024, as a Co-Lead of the NeuroBench
initiative for benchmarks in neuromorphic computing since
2022, as a TPC Member of IEEE ESSERC for 2022-2024, and
as an Associate Editor for IEEE Transation on Biomedical
Circuits and Systems since 2022.

Dr. Friedemann Zenke is a research group leader at the
Friedrich Miescher Institute for Biomedical Research and
an assistant professor at the University of Basel, Switzer-
land. He received his Ph.D. in computational neuroscience
from EPFL in 2014. His research focuses on theoretical
neuroscience and neuromorphic algorithms, particularly bi-
ologically inspired learning, efficient neural networks, and
unsupervised learning.

Prof. Dr. Sander M. Bohté heads the CWI Machine Learn-
ing group, and is also a part-time full professor of Cognitive
Computational Neuroscience at the University of Amster-
dam, The Netherlands. He received his Ph.D. in 2003 at
CWI on the topic of “Spiking Neural Networks”. He was
then awarded an NWO TALENT grant, which he spent with
Michael Mozer at the University of Colorado in Boulder. In
2004, he rejoined CWI as junior permanent staff to work
on distributed spiking neural network models and multi-
agent systems. In 2016, he co-founded the CWI Machine
Learning group, where his research bridges the field of
neuroscience with applications thereof as advanced neural
networks. His work has been pioneering in the development
of advanced and efficient spiking neural networks, including
seminar work on supervised learning with spike-time coded
networks. Recent work has also developed biologically plau-
sible deep learning and deep reinforcement learning models
for cognition, and spiking neural network versions thereof.

Dr. Abdulqader Mahmoud is a Test Engineer at NXP Semi-
conductors in The Netherlands, where he leads pre-silicon
simulation and testing activities for automotive mixed-signal
circuits. He previously worked as an Analog Circuit De-
signer, developing high-voltage circuits for nextgeneration
automotive applications. Dr. Mahmoud earned his B.Sc. and
M.Sc. degrees in Electrical and Computer Engineering from
Khalifa University, UAE, and completed his Ph.D. in Com-
puter Engineering at Delft University of Technology, The
Netherlands, where his research focused on spin-wave-based
circuit design. He has authored more than 25 peer-reviewed
publications and holds a patent on a two-dimensional charge
pump. His research interests include neuromorphic com-
puting, emerging device technologies, and energy-efficient
circuit design.

Dr. Anup Das is an Associate Professor at Drexel University.
He received a Ph.D. in Embedded Systems from the National
University of Singapore in 2014. He held positions at
the University of Southampton and IMEC, leading projects
on neuromorphic computing. He received the NSF/DARPA
RTML award (2019), NSF CAREER (2020), and DOE CA-
REER (2021). His research focuses on operating systems for
neuromorphic hardware, and the dependability and security
of neuromorphic computing. He is a Senior Member of IEEE.

30

Microprocessors and Microsystems xxx (Xxxx) xXxx

Prof. Said Hamdioui received the M.S.E.E. and Ph.D.
(Hons.) degrees from Delft University of Technology, The
Netherlands. He is Chair Professor of dependable and emerg-
ing computer technologies and Head of the CE-Lab, TU
Delft. Previously, he worked at Intel (Santa Clara), Philips
Semiconductors (France), and Philips/NXP (Nijmegen). He
has authored over 250 papers and holds patents in memory
testing. His research covers CMOS reliability, hardware
security, 3D-ICs, memristors, and in-memory computing. He
has received multiple international awards and best paper
prizes.

Prof. Henk Corporaal is Professor in Embedded System
Architectures at the Eindhoven University of Technology
(TU/e) in The Netherlands. He has gained a M.Sc. in
Theoretical Physics from the University of Groningen, and a
Ph.D. in Electrical Engineering, in the area of Computer Ar-
chitecture, from Delft University of Technology. His research
is on low power multi-processor, heterogeneous processing
architectures, their programmability, and the predictable
design of soft- and hard real-time systems. This includes
research and design of embedded system architectures,
including CGRAs, SIMD, VLIW and GPUs, on accelerators,
the exploitation of all kinds of parallelism, fault-tolerance,
approximate computing, architectures for machine and deep
learning, optimizations and mapping of deep learning net-
works, and the (semi-) automated mapping of applications
to these architectures. Corporaal has co-authored over 500
journal and conference papers. Furthermore he invented a
new class of VLIW architectures, the Transport Triggered
Architectures, which is used in several commercial products,
and by many research groups. He initiated the Dutch NWO
perspectief program on Efficient Deep Learning (efficient-
deeplearning.nl); in this program many research institutes
and over 30 companies participated. He also is the PI of the
EU project CONVOLVE (convolve.eu) on seamless design of
smart edge processors, with 19 partners. For further details
see corporaal.org.

Dr. Federico Corradi received the Ph.D. degree in Neu-
roinformatics from the University of Zurich and the ETH
Neuroscience Centre Zurich, Switzerland, in 2015. From
2012 to 2017, he was with iniLabs, Zurich, where he
contributed to the design of several neuromorphic integrated
processors and event-driven sensors. From 2017 to 2019,
he was with IMEC, Eindhoven, The Netherlands, where he
worked on neuromorphic architectures and sensor interfaces
bridging academic and industrial research. He, is currently
an Assistant Professor with the Department of Electrical
Engineering at Eindhoven University of Technology (TU/e),
The Netherlands, where he leads the Neuromorphic Edge
Computing Systems Laboratory. His research interests in-
clude neuromorphic computing, asynchronous circuits, and
mixed-signal design for spiking neural networks, with ap-
plications in robotics and biomedical sensing. He serves
as an Associate Editor for Elsevier Microprocessors & Mi-
crosystems and as a member of the technical program
committees of international conferences such as ICONS,
IJCNN, NEWCAS, and ISCAS. He has delivered invited talks
at international venues, including the Korea Semiconductor
Academy (2025), the BrainInspiration Conference (2024),
and the International Conference on Field-Programmable
Logic and Applications (FIRE 2025), among others. Dr.
Corradi received the ISCAS Honorary Mention of the NSA
Track in 2014 and was recognized as a Rising Star in
Neuromorphic Computing & Engineering by IOP Science
in 2025. He actively promotes open-source neuromorphic
design methodologies and interdisciplinary education at the
intersection of hardware and brain-inspired computing.

	Spike-based neuromorphic computing: An overview from bio-inspiration to hardware architectures and learning mechanisms
	Introduction
	Fundamentals of brain's biology
	Biological Neuron
	Biological Synapses
	Conclusions

	Bio-plausible models of neurons and synapses
	Neuron Models
	Spike Response Model
	Linear Integrate-and-Fire Models

	Synapse Models
	Spiking Neural Network (SNN) Architectures
	Conclusion

	Fundamental properties of neuromorphic computing
	Analog In-memory computing
	Parallelism
	Non-linearity
	Asynchronicity
	Sparsity (in space and time)
	Continuous learning and plasticity
	Probabilistic computing
	Scalability
	Binary Spike representation
	Conclusions

	Learning algorithms for spiking neural networks
	Learning algorithms
	Deep learning in SNN
	Backpropagation
	ANN-to-SNN conversion
	Gradient descent on spike timings
	Surrogate Gradients
	Complex Spiking Neuron Models

	Online Learning
	Conclusions

	Hardware Implementation of Spiking Neuron and Synapse Models
	Analog CMOS Implementation
	The log-domain LPF neuron
	A sub-threshold Hodgkin–Huxley based neuron

	Digital Implementation
	Emerging NVM devices
	Phase-Change Memory
	Resistive RAM
	Magnetoresistive RAM
	Graphene-based NVM devices
	Ferroelectric RAM

	Conclusion

	Hardware Architectures for Spiking Neural Networks
	Application-specific or general-purpose?
	Analog or digital?
	Biological-time or accelerated?
	Parallel or time-multiplexed?
	Centralized or distributed?
	Sparse or dense?
	Static or plastic?
	Conclusion

	Mapping and compilers for neuromorphic systems
	Partitioning large SNN models to clusters
	Determining the placement of clusters to cores of many-core neuromorphic hardware
	Implementing each cluster on a crossbar
	Mapping on limited precision hardware
	Recent advancement on SNN mapping
	Conclusions

	Spiking Neural Networks Deployment & Applications
	Input signal encoding in SNN
	Neuromorphic applications

	Challenges and future directions
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

