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Abstract—In cloud computing environments, the last-level
cache (LLC) shared by multiple tenants is frequently exploited
through timing side-channel attacks, enabling unauthorized data
leakage. To address this issue, various defense mechanisms
have been proposed. However, existing works exhibit deficiencies
in terms of performance overhead, coverage of attacks, and
detection accuracy. In response to these challenges, we propose
CacheGuardian, a hardware-based LLC protection design which
aims to provide stronger, broader, and more accurate protection
against timing side-channel attacks with low performance over-
head. It includes: (1) A behavior-based, generic attack detector
capable of identifying multiple timing side-channel attacks in real
time; (2) A cache-set-level access control mechanism that strictly
restricts cache usage exclusively for the identified attackers
instead of influencing all security domains.

We implement our design in a gemS5 simulator to evaluate both
its security and performance. Our proof-of-concept attacks and
SPEC 2017 benchmarks show that our design is effective against
a wide range of timing side-channel attacks, reducing attack
success rates by up to 256x, including camouflaged variants.
Moreover, it improves the performance of benign workloads by
an average of 2.26% with only 2.4% storage overhead.

I. INTRODUCTION

In cloud deployments, the shared last-level cache, designed
to improve hardware utilization and reduce memory access la-
tency, exposes a critical attack surface. Adversaries can exploit
LLC sharing to mount timing side-channel attacks, inferring
sensitive data (e.g., cryptographic keys or user information) by
observing subtle variations in cache access patterns [1]-[9].
Despite extensive research on defenses against timing side-
channel attacks, existing solutions face severe limitations in
practice.

Limitation 1: Difficult Balance between Security and Per-
Jformance: Numerous hardware designs have been proposed
to protect the shared LLC against timing side-channel attacks.
These countermeasures can be broadly categorized into two
classes:

« Physical resource isolation: Techniques such as cache
state flushing [10], cache partitioning [11]-[13], and other
structural restrictions enforce strong isolation between
security domains.

o Obfuscation and noise injection: These methods inject
randomness or noise to obscure access patterns, including
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TABLE I
COVERAGE OF EXISTING HARDWARE DEFENSES AGAINST LAST-LEVEL
CACHE TIMING SIDE-CHANNEL ATTACKS

Existing Work | Reuse-based  Conflict-based Coherence-based

HYBCACHE [13] [ ] @ O
CEASER_S [19] @) [ ) O
Randomization [20] O [ ] O
PREFENDER” [14] () © @)
SwiftDir [25] (@) @] [
TimeCache [26] o O (
TreasureCache” [21] (] © O
CacheGuardian | () () (]

* PREFENDER [14] does not mitigate covert-channel attacks targeting
individual cache lines. TreasureCache [21] is ineffective against
conflict-based attacks on non-inclusive LLC [4].

prefetcher-driven noise injection [14]-[16], randomized
cache indexing [17]-[20], and the use of extra cache
module [21], [22].

However, both approaches have serious drawbacks:
obfuscation-based defenses can only raise the bar for
attackers but cannot fully eliminate leakage [23], [24],
while physical resource isolation—despite its strong security
guarantees—imposes significant performance penalties, with
DAWG [12] demonstrating worst-case performance overheads
reaching 12—-15% and InvisiSpec [22] reaching approximately
21%

Limitation 2: Limited Coverage Across Attack Variants:
Existing hardware defenses only address specific classes of
LLC side-channel attacks. As shown in Table I, there is no
broadly applicable protection strategy against all attacks.

Limitation 3: Inadequate Detection Depth of Camouflaged
and Low-Frequency Attacks: Many existing side-channel de-
tection schemes rely on CPU hardware performance counters
(HPCs) as their primary indicator [27]. However, attacks that
trigger infrequently [28] or are camouflaged within complex
benign workloads [29] cause minimal perturbation to overall
system performance. As a result, these attacks do not produce
significant statistical deviations in HPC measurements, and
thus evade detection by current HPC-based defenses.

To address these limitations, we propose CacheGuardian, a



last-level cache protection design with two key innovations: (1)
A behavior-driven detection mechanism capable of identifying
diverse timing side-channel attacks (including camouflaged
and low-frequency variants) in real time, and (2) A cache-set-
level access control that enforces fine-grained restrictions only
on malicious actors while preserving legitimate cache access
patterns.

We summarize the key contributions of this work as follows:

e« We introduce CacheGuardian, a fine-grained dynamic
hardware protection mechanism for the shared LLC that
integrates a behavior-based generic attack detector and
selective cache-set-level access control to break the attack
chain of timing side-channel exploits.

e« We prove that CacheGuardian provides comprehensive
protection against a wide range of LLC timing
side-channel attacks, including reuse-based,
conflict-based, coherence-state-based channels, and
low-frequency camouflaged Spectre variants. It achieves
up to 256x reduction in attack success rates.

e Through gem5 and SPEC CPU2017 experiments, we
show that CacheGuardian incurs negligible overhead,
even improving benign workload performance by 2.26 %
on average in multi-core attack coexistence scenarios,
while requiring less than 2.4% additional LLC SRAM:s.

II. BACKGROUND
A. Timing Side-Channel Attacks

Timing side-channel attacks [23] targeting last-level caches
in multi-core systems can be broadly categorized into two
groups: conventional cache attacks and transient execution
attacks. Conventional cache attacks include both side-channel
and covert-channel attacks. In covert channels, two colluding
processes or virtual machines exploit shared LLC resources
to communicate secretly, bypassing system isolation mecha-
nisms. Side-channel attacks can be further divided into three
types:

o Reuse-based attacks: The attacker shares memory
with the victim and flushes target cache blocks us-
ing clflush or eviction sets. After the victim poten-
tially reloads the data, the attacker accesses it again.
A low-latency access (cache hit) indicates that the vic-
tim accessed the data. Examples include Flush+Reload,
Evict+Reload, and Flush+Flush.

o Conflict-based attacks: No shared memory is required.
The attacker fills specific cache sets using an eviction set,
waits for the victim’s access to evict cache lines, and then
measures the latency of re-accessing the data. A higher
latency suggests eviction and allows the attacker to infer
the victim’s behavior. Examples include Prime+Probe
and Evict+Time.

o Coherence-state-based attacks: These attacks exploit
timing differences caused by cache coherence protocols
such as MESI [30]. An attacker can infer or transmit
information based on the latency differences when ac-
cessing data in different coherence states (e.g., Exclusive

vs. Shared). This method is effective in multi-core envi-
ronments and often used for covert communication.

In transient execution attacks [31], [32], adversaries ex-
ploit speculative execution in modern processors. Although
transient instructions are eventually squashed, they may access
sensitive data and leave microarchitectural traces. To extract
this leaked data, the attacker must encode it through cache-
based channels before the speculative window closes, using
the aforementioned conventional techniques.

B. CPU Microarchitecture

Cache Hierarchy and Memory Operations: Modern pro-
cessors employ multi-level cache hierarchies to reduce mem-
ory access latency. These cache levels typically consist of an
L1 cache with low latency, an L2 cache with larger capacity,
and a shared LLC. The cache system improves performance
by taking advantage of spatial and temporal locality. Cache
coherence across multiple cores is typically maintained by
hardware protocols. However, in certain scenarios software
may explicitly manage cache contents. The clflush instruction
allows a program to evict a specific cache line, ensuring that
subsequent accesses reflect the latest value in memory.

MSHRs: The cache controller maintains a set of Miss
Status Handling Registers (MSHRSs) to support non-blocking
memory access. Each MSHR entry records the status of
a pending cache miss. It stores information including the
target memory address, the type of access request, and where
the returned data should be placed. When multiple requests
target the same cache line, the MSHR allows them to be
merged. Different cache levels manage independent MSHRs,
but cascading misses may indirectly compete for resources.

Control Register 3 and Context Switching: Modern op-
erating systems frequently perform context switches between
processes to enable multitasking. The Control Register 3
(CR3) holds the physical base address of the current process
page table and defines its virtual address space. The operating
system updates the value of CR3 during a context switch to
activate the next process address space, effectively marking
the transition between processes.

III. THREAT MODEL

In this work, we assume the attacker and victim execute on
different processor cores while sharing the last-level cache.
The attacker may exploit reuse-based [1], conflict-based [2]-
[4], and coherence-state-based [30] cache side-channel tech-
niques, as well as transient execution attacks [32] that transmit
information via the LLC, to steal the victim’s private data.

We do not consider side channels built on other microar-
chitectural structures such as TLBs [33] or Line Fill Buffers
[34].

IV. CACHEGUARDIAN

Existing defenses, as discussed in Section I, suffer from
several key limitations, including the tradeoff between perfor-
mance and security, limited coverage across attack types, and



TABLE II
GLOSSARY OF KEY TERMS AND PARAMETERS

Term / Symbol Definition
CacheGuardian Dynamic, fine-grained hardware protection frame-
work

Behavior-based attack detector module
Per-core buffer storing attack-phase metadata

Guardian Detector
Guardian Buffer

CPUID Core identifier metadata in each cache line

ADDR_IDX Cache-set index extracted from physical address

validPrepare Entry flag indicating completion of the Prepare
phase

validvictim Entry flag indicating completion of the VictimAc-
cess phase

accumulator Counter of completed attack rounds per entry

attackType Metadata field recording the type of attack (e.g.,
INVALID or CONFLICT)

Blacklist Core-ID list of detected attackers

Sensitive Flag
ATTACK_WINDOW
Ncore

Ncacheset

Bit-vector marking sensitive cache sets
Temporal detection window size (e.g., 1 ms)
Number of processor cores in the system
Number of cache sets in the LLC

low detection accuracy. Consequently, our work aims to meet
the following objectives:

« Hardware-enforced physical resource isolation rather
than reliance on cache randomization or noise injection
alone.

o Minimized performance overhead introduced by strict
cache isolation.

o Comprehensive protection against a broad spectrum of
LLC-based timing side-channel attacks.

« Robust defense against low-frequency or camouflaged
attacks embedded within complex applications.

To meet these goals, we propose CacheGuardian, a dynamic,
fine-grained hardware-based protection mechanism that con-
sists of two key components:

1) Guardian Detector: a behavior-based and generic at-
tack detection module. Unlike prior works that rely
on hardware performance counters (HPCs) to identify
potential threats, our detector is explicitly designed to
capture behavioral signatures of various timing side-
channel attacks. It can detect ongoing attacks in real
time. It also accurately labels both the processor core
initiating the attack and the targeted LLC cache set.

2) Fine-Grained Cache Access Control: The LLC con-
troller leverages detection results from the Guardian
Detector to enforce cache set-level access restrictions
selectively. Access from identified attackers is con-
strained, while benign processes maintain unrestricted
and efficient access to the cache.

A. Overall Structure

To support the implementation of CacheGuardian, we ex-
tend the baseline LLC module with additional hardware logic
and interface modifications. Figure 1 illustrates the overall
architecture of CacheGuardian.

We first optimize the LLC controller to enable extended
interactions with processor cores. Specifically, we modify the
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Fig. 1. Overall structure of CacheGuardian.

CPU-side interface to collect additional private core informa-
tion, allow condition-specific signaling to the Guardian De-
tector, and adapt the cache access handling logic accordingly.
In addition, we introduce several new hardware structures:

o CPUID Metadata: Each cache set in the LLC is aug-
mented with a metadata field, CPUID, which records the
last accessing core of the corresponding cache block.

o Guardian Detector: The core component responsible for
identifying attack behaviors. It includes a dedicated stor-
age structure, the Guardian Buffer, which is partitioned
into Ny associative ways—one per CPU core. Each
way contains multiple fully-associative Guardian Entries,
indexed by cache set addresses and managed using a
random replacement policy.

e Guardian Entry: Each entry corresponds to a spe-
cific cache set and maintains the following meta-
data: validPrepare,validVictim, attackType,
addrIdx, and an accumulator, that tracks the fre-
quency of suspicious access patterns.

o Sensitive Flags and Blacklist: A bit vector of size
Neacheset marks cache sets flagged as sensitive by the
Guardian Detector. Additionally, a Blacklist is used to
track the CPUIDs of processor cores identified as attack-
ers.

¢ Guardian Detector Request Queue: A buffering queue
between the Guardian Detector and LLC controller that
temporarily holds unprocessed requests.

B. Behavior-Driven Generic Attacks Detector

In Section II, we analyze the execution patterns of various
timing-based cache side-channel and covert-channel attacks,
including reuse-based, conflict-based, and coherence-state-
based channels. Despite differences in their implementation,
we observe that these attacks follow a common three-phase
execution pattern, which we abstract into the following 3
stages:

o AttackerPrepare: The attacker prepares the cache by
evicting the target cache set using precomputed eviction
sets (as in conflict-based attacks), or by issuing flush-like
instructions (as in reuse/coherence-based attacks), which
invalidate specific cache lines and trigger writebacks to
memory. In both cases, the LLC receives eviction-related



signals originating from the attacker’s core (denoted as
core_A).

o VictimAccess: The victim (running on a different core,
core_V) accesses the same cache set, leading to a cache
miss. This access generates a new entry in the LLC’s Miss
Status Handling Registers.

o AttackerObserve: The attacker re-accesses the evicted
addresses or re-flushes the targeted address, measuring
access latency to infer the victim’s access behavior. This
step again involves memory accesses to the previously
targeted cache set.

A successful attack attempt is completed when all three
phases occur in sequence for the same cache set. Based on this
insight, we extend the LLC controller logic and introduce the
Guardian Detector, a dedicated hardware module that moni-
tors and records the sequence of these phases. The detector
maintains a per-core attack history and tracks the number of
complete attack attempts (attack rounds) observed for each
cache set. Once the attack count exceeds a configurable
threshold, the Guardian Detector flags the attacker’s core in a
Blacklist and marks the corresponding cache set as sensitive
in a SensitiveFlag bitmap. The LLC controller then uses these
flags to enforce fine-grained access control to mitigate the
attack.

To effectively track and mitigate malicious behavior in
timing-based side-channel attacks, we augment the LLC Con-
troller with enhanced control logic and metadata while de-
signing a set of communication primitives to enable request
transmission to the Guardian Detector. Specifically, each
cache line in the LLC is extended with a CPUID field, which
records the core ID of the most recent accessor. When a
memory access request from a processor core is processed,
the LLC stores the requester’s core ID in the corresponding
cache line’s CPUID. In parallel, the LLC controller issues
an ATTACKER_OBSERVE request to the Guardian Detector
Request Queue (GDRQ), containing the source CPUID and
the ADDR_IDX, which identifies the index of the target cache
set.

During the tag-matching process across the cache set, if
all cache blocks within a set are found to originate from the
same core (i.e., their CPUID fields match), the LLC controller
infers that a single core has fully manipulated the cache set.
In this case, it emits an ATTACKER_PREPARE request to the
GDRQ, including the associated CPUID, ADDR_IDX, and the
ATTACK_TYPE, which is set to CONFLICT. Additionally,
when the LLC controller receives an ’invalidate’ request,
triggered by flush-like instructions or back-invalidation mech-
anism, it interprets this as another form of attacker preparation.
An ATTACKER_PREPARE request is again sent to the GDRQ,
but the attack type is marked as INVALID.

Finally, when an access from a different core results in
an LLC miss, the Miss Status Handling Register (MSHR)
processes the request and signals a VICTIM_ACCESS event
to the GDRQ, containing the CPUID and ADDR_IDX. This
event marks the second phase of a potential attack attempt.

The Guardian Buffer is the primary storage component

IDLE
Entry.validPrepare==False

Entry.validVictim==False

ATTACKER_PREPARE ATTACKER_OBSERVE

SWITCH_CLEAN

gyl

VICTIM_ACCESS

PREPARED
Entry.validPrepare==True
Entry.validVictim==False

ACCESSED
Entry.validPrepare==True
Entry.validVictim==True

ATTACKER_PREPARE::INVALID

Fig. 2. Finite-state machine (FSM) for Guardian Entry state transitions.

of the Guardian Detector, responsible for tracking behav-
iors indicative of cache-based attacks. The complete buffer
is partitioned into Ny isolated segments, each dedicated
to storing information for a specific processor core, and
each segment operates independently from the others. Every
Guardian Entry within the buffer maintains two metadata
fields, validPrepare and validvictim, which together
represent the current state of the entry (IDLE, PREPARED,
ACCESSED). These states indicate the phase of a poten-
tial attack targeting the corresponding cache set. Figure 2
illustrates the finite-state machine (FSM) that governs the
transitions between these states. Upon receiving requests from
the Guardian Detector Request Queue, the detector executes
the corresponding actions:

o ATTACKER_PREPARE: The detector selects the buffer
segment corresponding to the CPUID and indexes into
the appropriate entry using ADDR_IDX. If the entry
is missing, it is allocated using a random replacement
policy. The entry’s addrIdx and attackType fields
are updated based on the request, and the state is set to
PREPARED. Additionally, if the entry is already in the
ACCESSED state and the new request’s type is INVALID,
the accumulator counter is incremented by one.

o VICTIM_ACCESS: The detector scans all buffer seg-
ments except the one indexed by the CPUID of the
request. For any entry currently in the PREPARED
state with a matching index, its state is transitioned
to ACCESSED. If no match is found, the request is
discarded.

o« ATTACKER_OBSERVE: The detector searches the seg-
ment corresponding to the CPUID for an entry in the
ACCESSED state with the given ADDR_IDX. Upon a suc-
cessful match, the entry’s accumulator is incremented
and the state is reset to IDLE. Otherwise, the request is
ignored.

The Guardian Detector monitors the accumulator field
in each entry and compares it against a predefined threshold.
Once this threshold is reached, an attack is considered to be
detected. However, choosing an appropriate threshold is non-
trivial: a low threshold may mistakenly classify benign behav-
iors as attacks, increasing the false positive rate; whereas a



high threshold may miss camouflaged, low-frequency attacks,
resulting in a high false negative rate.

Prior studies on timing side-channel attacks [1]-[3]
have shown that attackers typically probe the cache every
2500-5000 clock cycles or every 60-180 us to maximize
accuracy, often repeating the sampling procedure for 15,600
to 500,000 times within a short execution interval. Even in
more camouflaged and low-frequency triggered scenario [28],
where the attacker attempts to extract only one bit per iteration,
aligning the sampled traces still requires frequent sampling
within a window. Empirical results suggest that at least 40-
50 consecutive observations within a sampling window are
needed to achieve a success rate of 90% or higher.

To exploit this observation and enhance detection accuracy,
we introduce an ATTACK_WINDOW, a temporal detection
window of 1 ms (equivalent to 2 million cycles on a 2 GHz
processor). If the accumulator reaches the threshold within
this window, the corresponding attack is confirmed. In that
case, the Detector updates the Blacklist with the attacker’s
CPUID and sets the associated cache set index in the Sen-
sitiveFlag vector. Otherwise, the accumulator is reset to
zero. We defer detailed analysis of threshold selection to
Section V-Bl1.

In modern operating systems, malicious processes are typ-
ically assigned fixed-length time slices ranging from 1 to 10
milliseconds. Once a malicious process exhausts its allotted
time slice, the OS triggers a preemptive context switch,
replacing the current process with a new one. This switch
leads to the “pollution” of the LLC cache by the new process,
disrupting the attacker’s ability to exploit residual cache states.
To leverage this behavior, we monitor the processor’s CR3
register, which holds the base address of the active page
table. A change in CR3 indicates a context switch on the
corresponding core. To capture this event, we extend the CPU-
side interface of the LLC controller: upon detecting a CR3
switch on a core, the LLC controller issues a SWITCH_CLEAN
signal to the Guardian Detector Request Queue, including
the corresponding CPUID. Upon receiving this signal, the
Guardian Detector invalidates all entries in the buffer way
associated with the specified CPUID. If the core has previously
been blacklisted (i.e., listed in the Blacklist), it is removed.
Furthermore, if the Blacklist becomes empty after this opera-
tion, all bits in the SensitiveFlag vector are cleared, indicating
a reset of previously identified sensitive cache sets.

It is important to note that the LLC controller sends requests
to the Guardian Detector in parallel with its normal cache
access path. The detection logic is off the critical path of LLC
request processing and does not introduce latency overhead to
normal memory operations.

C. Fine-Grained Control for Malicious Requests Only

In the design of Guardian Detector, we introduce two stor-
age structures—Blacklist and SensitiveFlag. The Blacklist is
used to track the processor cores currently executing detected
malicious processes, with one entry per core (up to Ncore
entries). The SensitiveFlag is a bit array of size Ncachesets

TABLE III
GEMS5 CONFIGURATION
Parameter Configuarations
Processor DerivO3CPU, 4 cores
Frequency 2GHz
32KB,4-way
L1 I/DCache 64B cache line
LLC extended with 2MB, 16-way
CacheGuardian 64B cache line
20 MSHRs, 12/entry
TABLE IV

SPEC2017 MIXED WORKLOADS

Workload ID | Benchmark Pair

Wi mcf_s + gcc_s

w2 imagick_s + xalancbmk_s
W3 fotonik3d_s + nab_s

W4 roms_s + omnetpp_s

W5 gcc_s + cactuBSSN_s

w6 mcf_s + imagick_s

W7 xalancbmk_s + nab_s

W8 fotonik3d_s + roms_s
W9 omnetpp_s + cactuBSSN_s

W10 gcc_s + xalancbmk_s

W11 mcf_s + roms_s

wi2 imagick_s + nab_s

W13 gcc_s + fotonik3d_s
W14 cactuBSSN_s + imagick_s

indicating potentially targeted cache sets. Notably, we maintain
only a single instance of the SensitiveFlag shared across
all entries in the Blacklist. This design ensures consistent
protection not only for single-threaded attacks but also when
a single attacker launches malicious processes across multiple
cores by leveraging VM-level identifiers such as VMID.

When processing memory requests from the processor
cores, the LLC controller typically parses the physical address
to extract the cache set index (ADDR_IDX) and tag, and com-
pares the tag against all cache lines in the corresponding set. To
enforce access control, the controller also consults the Blacklist
and SensitiveFlag structures. If the requesting core’s CPUID
is listed in the Blacklist and SensitiveFlag[ADDR_IDX]
is set, the controller identifies this request as a potential
attack and redirects it to the lower memory hierarchy without
allocating or updating the corresponding cache set.

This mechanism preserves the functional semantics of cache
maintenance instructions (e.g., clflush), while preventing
the attacker from evicting or probing the targeted cache
lines. As a result, any timing observations made during the
AttackerObserve phase will constantly receive memory-
level latency, effectively breaking the timing side channel.

Overall, this fine-grained access restriction ensures strict
cache isolation for untrusted processes without interfering with
benign applications, thereby eliminating cache-level sharing
that side-channel attacks rely on.

V. EVALUATION

A. Methodology

We implement CacheGuardian by modifying the last-level
cache structure and its controller logic in a cycle-accurate



simulator gem5 [35]. Our system configuration is listed in
Table III, which consists of four out-of-order x86 processor
cores, each operating at 2 GHz. Every core is equipped with
a private 32 KB L1 instruction cache and a 32KB L1 data
cache. The cores share a unified 2MB L2 cache extended
with CacheGuardian, which serves as the LLC. The LLC
includes 20 MSHRs, and each MSHR can accommodate up
to 12 outstanding requests.

Security Analysis. To evaluate the effectiveness of Cache-
Guardian, we developed several proof-of-concept (PoC) tim-
ing side-channel attacks targeting the LLC. These include
reuse-based side channels such as the classic Flush+Reload
attack, and conflict-based covert channels exemplified by
the Prime+Probe technique. In addition, we reproduced a
camouflaged Spectre attack based on gcc_s, following the
methodology presented in [29].

Performance Evaluation. For performance assessment, we
use the SPEC CPU2017 benchmark suite [36] with the
reference input set. Since our defense mechanism primarily
targets shared LLCs in multicore systems, we follow the
classification methodology in [37] and select nine memory-
intensive benchmarks. These benchmarks are organized into
14 pairwise combinations to construct mixed workloads (Ta-
ble IV), each running concurrently on separate cores. Each
benchmark first executes one billion instructions to warmup
the LLC, followed by another one billion instructions for the
performance measurement and analysis.

B. Security Analysis

As described in Section IV, timing side-channel attacks
typically consist of multiple stages to form a complete attack
chain, where each stage is a necessary step for the success
of the attack. By identifying the common prerequisites across
different attacks and effectively disrupting them, we can break
the entire attack chain and mitigate a broad class of timing
side-channel attacks.

We observe that, in the third stage of most such attacks,
the adversary reaccesses a target memory address and infers
sensitive information by measuring the access latency. In
CacheGuardian, the extended LLC controller restricts the at-
tacker’s access to the specific cache set identified as sensitive.
As a result, the attacker can only observe a fixed memory
access latency, regardless of the cache state. This effectively
removes the timing variation that the attacker relies on to infer
secrets.

In this section, we analyze the effectiveness of Cache-
Guardian in defending against various Timing side-channel
attacks, including reuse-based, conflict-based, and transient
execution attacks, as well as attacks exploiting Coherence
Protocol state. Our analysis demonstrates that CacheGuardian
effectively disrupts the attack chains by limiting attackers’
access to critical cache resources and blocking covert data
transmission through side channels, without introducing new
security vulnerabilities.
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Fig. 3. Normalized False positive rate under different thresholds.

1) Threshold Selection: As introduced in Section IV,
CacheGuardian adopts a threshold-based detection scheme:
when the accumulator in a Guardian Entry reaches a pre-
defined threshold, an attack is considered to be detected. To
empirically determine a suitable threshold, we fix the OS time
slice length to 10ms and run the mixed workloads listed
in Table IV under two conditions: (1) with the Guardian
Detector enabled but without applying the ATTACK_WINDOW
restriction, and (2) without activating the fine-grained access
limitation mechanism of CacheGuardian. We evaluate the
false positive rate (FPR) of benign workloads under different
thresholds. The normalized results are shown in Figure 3.

Since reuse-based attacks and Coherence state attacks (e.g.,
via c1flush) are generally more precise and aggressive than
conflict-based attacks, we conservatively set the threshold for
CONFLICT attacks to 4, and that for INVALID attacks to
2. These values are significantly lower than the frequency of
attack attempts observed in prior work [1], [2], [28], which
typically conduct dozens of accesses per attack window. Thus,
our chosen thresholds are sufficient to detect attacks effectively
and quickly.

It is worth noting that once the hardware-enforced
ATTACK_WINDOW is activated, it becomes more difficult
for benign programs to accidentally exceed the detection
threshold. In rare corner cases, if multiple memory-intensive
benign processes generate a high volume of cache activity
and exceed the threshold, the associated CPUID entries will be
automatically removed from the Blacklist once their time slice
expires. Therefore, such false positives have a limited impact
on overall system performance (Section V-C1). We use the
thresholds above in all subsequent experiments and analyses.

2) Evaluation on Reuse-Based and Conflict-Based Attacks:
Due to limitations in experimental platforms and the avail-
ability of open-source implementations of existing attacks,
we developed our own PoC code targeting LLC-based timing
side-channel attacks to evaluate the effectiveness of Cache-
Guardian.

For reuse-based attacks, we deploy the attacker and victim
on separate cores. The victim continuously accesses a 256-
byte memory region, while the attacker applies a Flush+Reload
technique to infer which specific byte has been accessed,
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Fig. 4. Attacker-measured access latency in reuse-based and conflict-based
attacks

attacking one byte at a time. Figure 4a shows the latency
distribution collected by the attacker for a single byte under
two settings: with and without CacheGuardian enabled. The
results indicate that, with CacheGuardian, the attacker can no
longer distinguish the victim’s access patterns based on latency
differences. In our test environment, the attack success rate
without any protection approaches 100%, while it drops to
0.391% with CacheGuardian enabled—an approximate 256
reduction.

To evaluate the defense against conflict-based covert-
channel attacks, we implement an LLC-based covert com-
munication channel using Prime+Probe. The Trojan and Spy
processes are placed on different processor cores and com-
municate through selected cache sets in the LLC, transmitting
a total of 1024 bits. Figure 4b shows the latency observed
by the Spy during the probe phase under both protected and
unprotected configurations. With CacheGuardian enabled, the
latency values for transmitting both bit O and bit 1 converge to
the same range (3000-3400 cycles), preventing the Spy from
inferring the transmitted bit value. In our experiments, using a
Gaussian Mixture Model (GMM) classifier, the attack achieves
a success rate of 99.41% without protection, which drops to
50.83% under protection—close to random guessing.

3) Detection of Camouflaged Transient Execution Attacks:
In this experiment, we evaluated the effectiveness of Cache-
Guardian to detect low-frequency camouflage attacks. We
reproduce the Spectre speculative execution attack described
in [29], where the payload is concealed using the standard
library function gcc_s and the leaked data is exfiltrated via
the LLC using a reuse-based side channel. The Spectre trigger
point is injected into the bitmap_find_bit () function
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Fig. 5. Detection trace of camouflaged attacks

and is activated with a probability of 1 in 10,000.

Figure 5 presents the detection results recorded by the
Guardian Detector during the execution of the attack. Around
the 1.1 x 10° and 4.2 x 10'2 clock cycles, the detector success-
fully captures the attacker’s covert communication behaviors
targeting specific cache sets. These events are reflected in the
accumulators within the corresponding Guardian Entries.

The results demonstrate that even when the attack frequency
is extremely low—insufficient to cause any observable system-
wide performance anomaly—the attacker must still undergo
the three phases described in Section IV, enabling Cache-
Guardian to detect and restrict the attack activities effectively.

4) Security Analysis of Coherence Protocol State Attacks:
Yao et al. [30] proposed a covert timing channel attack that
exploits the coherence protocol states defined by the MESI
protocol. In this attack, the Trojan process spawns two threads
to collaboratively manipulate the coherence state of a shared
cache line to either Exclusive (E) or Shared (S). The Spy
process accesses the same cache line and infers the transmitted
bit 1’ or ’0’) based on the access latency, which differs
depending on the coherence state of lines.

Because coherence protocols ensure consistency of the same
memory address across multiple cores, the Trojan and Spy
processes must share the same data, making this attack similar
in structure to reuse-based channels. The Spy first flushes the
target cache line using instructions like clflush, causing
it to be evicted from all cache levels, including the LLC
and private caches. This invalidation is observed by the LLC
controller, which issues a maintenance request and triggers
the Guardian Detector to allocate an entry. Next, the Trojan
loads the target data into the cache, establishing either the
E or S state. The associated memory request is matched by
the Guardian Detector with the existing entry. Finally, when
the Spy reloads the data to observe the latency, the Detector
records this access and increments the accumulator. Once
the number of detected rounds exceeds the threshold, the
Detector enforces memory-level access timing, preventing
the Spy from distinguishing timing differences and thereby
disrupting the covert channel.

5) Analysis of Additional Side-Channel: CacheGuardian in-
troduces three storage structures: the Guardian Buffer, Black-



TABLE V
NORMALIZED IPC OF SPEC2017 AND NORMALIZED MSHRS MISSES

Workload Normalized IPC | Normalized MSHRs Misses
perlbench_s 6.92% 39.77%
gec_s 0.96% 42.63%
bwaves_s -1.85% 70.29%
mcf_s 8.39% 69.85%
cactuBSSN_s 8.09% 49.69%
Ibm_s 3.44% 50.32%
omnetpp_s 0.29% 31.97%
wrf_s 1.41% 53.45%
xalancbmk_s 0.35% 37.32%
x264_s -1.87% 47.47%
cam4_s 21.73% 48.69%
pop2_s -0.41% 29.65%
deepsjeng_s -0.02% 47.34%
imagick_s 0.02% 27.12%
leela_s 0.84% 12.81%
nab_s 0.12% 27.52%
exchange?2_s -2.60% -10.37%
fotonik3d_s -0.10% 0.94%
roms_s -0.10% 46.15%
XZ_S -0.48% 75.70%
Average 2.26% 39.92%

list, and SensitiveFlag. Both the Guardian Buffer and the
Blacklist are partitioned into N_core isolated segments, with
each core owning a separate and non-overlapping portion. This
design prevents any inter-core interference or information leak-
age across cores. The SensitiveFlag is used solely by the LLC
controller to enforce memory access restrictions on processes
identified as potential attackers. It does not affect normal
processes. Therefore, an attacker can at most infer the memory
access behavior of other attackers, potentially introducing a
low-bandwidth covert channel, but cannot observe or infer any
memory activity of benign applications.

C. Performance Evaluation

1) Performance Evaluation with SPEC CPU2017 Bench-
marks: We first evaluate the system performance under full
CacheGuardian protection using the mixed workloads from
Table IV. The experimental results showed that in 14 mixed
workload test sets, only the ‘fotonik3d + roms’ combinations
exhibited performance changes. Specifically, ‘fotonik3d’ saw
a 0.19% decrease in performance, while ‘roms’ experienced a
0.4% performance increase. The remaining 13 workload com-
binations showed no performance variation. This shows that in
attacker-free multi-core systems with memory-intensive work-
loads, CacheGuardian imposes minimal performance over-
head, as it seldom activates protection—even if it occasionally
misclassifies and restricts benign programs’ access to the LLC.

Additionally, we conduct another set of experiments in
which reuse-based attack programs were deployed alongside
SPEC CPU2017 benchmarks on different cores, assessing
CacheGuardian’s performance impact on the benchmarks. Ta-
ble V shows the performance changes of each benchmark after
enabling CacheGuardian protection. We observed that some
benchmarks experienced over a 5% performance improvement
(such as perlbench, mcf, cactuBSSN, and cam4). This
is due to CacheGuardian restricting any malicious process

access to specific cache sets, which allowed the benchmarks to
utilize more LLC cache resources, improving memory access
efficiency.

However, performance losses are observed in some bench-
marks. We attribute this to the fact that enabling protection
led to malicious processes causing more LLC misses and
generating additional miss requests to the MSHRs, competing
with normal benchmark processes for MSHRs resources. Ta-
ble V presents the increase in LLC MSHRs miss counts caused
by this resource competition before and after CacheGuardian
protection. On average, LLC MSHRs misses increased by
39.92% after enabling CacheGuardian, reducing the MSHRs
available to the benchmarks and impacting performance.

In summary, CacheGuardian results in an overall perfor-
mance improvement of 2.26% in multi-core scenarios where
attack programs and SPEC CPU2017 benchmarks coexist.

2) Storage Overhead Analysis: Finally, we investigate the
storage overhead of CacheGuardian using the configuration
from the Evaluation section. The primary storage units and
their corresponding overheads are as follows:

e The Guardian Buffer is divided into four sections,
each containing 2048 entries. The metadata of each
entry includes 1 bit for validPrepare, 1 bit for
validVictim, 1 bit for attackType, 3 bits for
accumulator, and 11 bits for addrIdx (since
addrIdx isindexed over 2048 entries). The total storage
for the Guardian Buffer is 4 x 2048 x (3+ 3+ 11) =
139, 264 bits.

o The Blacklist stores 1 CPUID per entry, using 8 bits per
entry. With 4 entries, the total overhead for the Blacklist is
32 bits. The Blacklist can be implemented using registers.

o The SensitiveFlag occupies 2048 bits.

o Each cache line in the LLC includes an additional CPUID
metadata. With 2MB of LLC, there are 2!° cache lines,
each 64 bytes in size. The storage overhead for the
CPUID metadata in the LLC is 8 x 215 = 262, 144 bits.

The total additional SRAM usage for CacheGuardian is
139,264 + 2,048 + 262,144 = 403,456 bits, or 49.25 KB,
which accounts for 2.4% of the 2MB LLC Data Block SRAM.
When considering the SRAM used by the LLC’s own metadata
and other management structures, the overhead introduced
by CacheGuardian is even smaller. Overall, CacheGuardian
is reasonable when implemented in a modern multi-core
computing system.

VI. CONCLUSION

In this work, we propose a security-oriented design named
CacheGuardian. Focusing on the LLC timing side-channel
vulnerabilities, we present a real-time detection mechanism
against multiple attacks, including the low-frequency triggered
camouflage attack. CacheGuardian also achieves a trade-off
between performance and security. In the future, the rise of
artificial intelligence will introduce a wider range of multi-
tenant scenarios in the cloud, leading to various side-channel
attacks. CacheGuardian can also be applied to protect these
applications.
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