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In this article Martijn Gosgens explains the community detection
method “modularity’ for networks. He describes an interpretation
of modularity in terms of Bayesian statistics and explains a
phase transition in the corresponding prior distribution. Gésgens
finished his PhD supervised by Remco van der Hofstad and Nelly
Litvak. This article was written on the occasion of the VVS-OR Van
Zwet PhD thesis award Gosgens received on 20 March 2025.

Introduction

Many networks contain groups of nodes that are better connected
to each other than to the rest of the network. Examples include
groups of friends on social media or Wikipedia pages on the same
topic. Community detection is the task of partitioning the network
nodes into such communities.

There exist many different algorithms for this task. The most wi-
dely used method for community detection is to maximize a quan-
tity called modularity over the set of partitions. This method is po-
pularbecause itis relatively simple and appears to find reasonable
communities in practice. While there exist several interpretations
of this method, from particle physics to random walks, there is no
theoretical understanding of when this method actually works,
and why it appears to work so well in practice.

More recently, a different community detection method based
on Bayesian statistics has become popular. This method has a
much stronger statistical motivation than the modularity heuristic.
However, it is also much more complicated, making it nearly im-
possible to analyze this method theoretically.

In my thesis, we showed that the modularity heuristic can be
interpreted in terms of Bayesian statistics. The corresponding pri-
or distribution has a simple, but peculiar form. Studying this prior
distribution helps us explain when the modularity method works,
and when it doesn’t. This interpretation forms a bridge between
the modularity method and the Bayesian methods.

Community detection

Community detection has attracted attention from many discipli-
nes. In social sciences, community detection helps identify divi-
sions in social networks. Take the Karate network that is shown in
Figure 1, for example. This network consists of members of a ka-
rate school that was studied by an anthropologist in the 70s [10].
During this study, a dispute broke out between the administrator
and instructor of this club, which led to the club splitting into two
groups. This small network is often used as a benchmark to de-
monstrate new community detection algorithms, where the goal is
to predict this split as accurately as possible.

In computer science and machine learning, community
detection algorithms are used to cluster networked data. For
example, we can consider Wikipedia as a network of articles, where
connections correspond to references between articles. If we apply
a community detection algorithm on this network (like shown in

Figure 1 The social network of Zachary’s Karate Club [10] that is often used to demonstrate
community detection algorithms. After a dispute between the club’s administrator and
instructor (number 0 and 33), the club split up into the green and red groups.
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Figure 2), we get a partition of the network articles that groups
together articles on similar topics. This allows computer scientists
to automate the categorization of such articles. The cool thing is
that these algorithms can categorize articles by only looking at
their connections among each other, without even looking at the
text or titles of the articles. This allows one to categorize Chinese
Wikipedia pages without even understanding a single Chinese
character.

There is also a surprising number of physicists active in the
field of community detection. Both the modularity method and the
Bayesian method that we discuss here were actually introduced by
physicists. Physicists like to view networks as interactive particle
systems, where nodes correspond to particles and connections
correspond to interactions.

For statisticians, community detection is an interesting infe-
rence problem, because the parameter to be estimated is not a
simple scalar, but a partition, leading to all sorts of combinatorial
challenges.

Modularity maximization

Modularity is the most widely used community detection method
in practice. Consider a graph G consisting of n nodes, which we
number from 1to n. We write i ~ j ifthere is a connection between
i and j. We denote the number of connections adjacent to i (its
degree) by d; and denote the total number of edges by m. Let C
denote a partition of {1,...,n} into communities and let

Pairs(C) = {1 <i < j <n:iand j are in the same community in C'},

denote the set of intra-community pairs. Modularity is given by

> (wirn-age). ©

(i,5)€Pairs(C)

Modularity., (C, G) =

That is, we count the number of connections that are inside com-
munities, minus a penalty term for every intra-community pair of
C'. To detect communities with modularity, we maximize it over the
set of partitions C'.

The parameter 7 controls how heavily we penalize for missing
connections. For large values of 7, the partition C' that maximizes
(1) will consist of a large number of small, densely connected com-
munities. There is no clear guideline of how this parameter should
be chosen. The communities in the Wikipedia network were detec-
ted using v =1, which is the default choice. When maximizing
modularity with v =1 in the Karate network from Figure [1], the
resulting partition only misclassifies node 8.

There are many different ways to interpret the maximization of
modularity. Modularity was initially motivated [6] as the number of
connections inside communities minus the expectation if we were
to randomly reshuffle the connections. In addition, modularity is
related to how often a random walker jumps between communities
[1]. In my thesis, we also proved another interpretation of
modularity in terms of hyperspherical geometry [3].

There is also a simpler variant of modularity:

MyC.Gy = Y (11{1~J}—7(7:)), ©
(i,7)€Pairs(C) 2
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Figure 2 A network of Wikipedia articles related to networks [4]. The communities are obtained by maximizing modularity and roughly correspond to subject areas.
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which arises when we reshuffle the connections differently. This
form is related to the Potts model in physics [9] that is used to
study ferromagnetism.

These different interpretations make it less surprising that mo-
dularity maximization works well in practice. Nevertheless, these
motivations feel a little ad-hoc: we still have no statistical justifica-
tion of using modularity to estimate communities.

The closest thing to a statistical justification of modularity came
from a relation with likelihood maximization [s]. Likelihood maxi-
mization is a standard method in statistical inference, where we
estimate a model parameter by maximizing the probability of the
observed data. In the case of community detection, the observed
data is the graph G and the parameter that we want to estimate is
the community partition C'.

The simplest model for graphs with community structure is
the Planted Partition Model (PPM). In this model, we are given
a partition of the nodes into communities and two parameters
DPins Pout € [0,1] . For any two nodes, the probability that they are
connected is P if they are part of the same community, and pout if
they are part of different communities. Typically pin > Pout, SO that
communities are more densely connected than the remainder of
the graph. An example of a PPM graph can be seen in Figure 3.

It turns out [5] that for a particular value v = ywmre(Pin, Pout)
maximizing (2) is equivalent to maximizing the likelihood of a PPM
with connection probabilities Pin, Pout . So for this particular value
v, modularity maximization is a statistically justified method. Of
course, the parameters Pin, Pout also need to be estimated, but we
ignore this for simplicity.

Given this equivalence between (2) and PPM likelihood, we
would expect that if our graph is sampled from a PPM with connec-
tion probabilities pin, pout , then the parameter v = YL (Pin, Pout)
leads to the best estimator. Frustratingly so, it appears that the me-
thod works better if we choose this parameter to be slightly larger
or slightly lower than "iiLe . This is of course very unsatisfying: we
just found a statistically justified way to pick our parameter, but
now it turns out that it still requires some ad-hoc tweaking.

Bayesian statistics

Since the only statistical justification of modularity leads to disap-
pointing results, network scientists have developed new commu-
nity detection methods based on statistics. In particular, Bayesian
methods are popular because they offer a lot of flexibility in mode-
ling.

In Bayesian statistics, we assume a particular prior distribution
over the parameter that we want to estimate. Then, after observing
the data, we use Bayes’ rule to derive the posterior distribution of
the parameter: the distribution of the parameter conditioned on
the observed data. That is,

PG| C)-P(C)

P16 = =

x P(G|C)-P(C). (3)
Here, P(C | G) is the posterior probability that we want to maxi-
mize over C forthe observed graph G, P(C | G) is the likelihood,
P(C) is the prior probability of the community partition C' and the
normalizing quantity P(G) is irrelevant for the optimization since
it does not depend on C.

While (3) lookssimple, the expressionsforthelikelihood function

Figure 3 A graph sampled from the Planted Partition Model (PPM) with p;, = 1/2 and

Pout = 1/40.

P(C'| G) and the prior distribution P(C) that are commonly used
are quite complicated [7]. The expressions involve many factorials
and binomial coefficients. | will not give these expressions here,
since introducing the notation would require several pages, and
the expressions wouldn’t fit the margins anyway.

Despite the complicated setup, this Bayesian method can be
implemented surprisingly efficiently, and it works well in practice
[8]. For us mathematicians, however, the situation is somewhat
disappointing: the expressions are too messy to prove elegant
theorems about it. Ideally, we would want to prove performance
guarantees for this method whenever G is sampled from a known
distribution with communities. Unfortunately, this is completely
hopeless.

Bayesian interpretation of modularity

From (3), we see that the only relevant difference between Baye-
sian methods and likelihood maximization is the multiplication
with the prior P(C). If P(C) is constant (i.e., not depending on
(), then this Bayesian method is entirely equivalent to likelihood
maximization. This already helps explain the disappointing beha-
vior of modularity with parameter vy : if P(C) is constant, then
this means that the prior distribution is uniform over all partitions.
Hence, modularity with parameter ywmwre is equivalent to Bayesian
inference with uniform prior. While in many cases, a uniform prior
is reasonable, the uniform distribution over partitions is somewhat
peculiar: a uniform community partition has community sizes that
are highly concentrated around logn. If we want to detect commu-
nities of different sizes than logn (which is a rather atypical com-
munity size), we need to pick 7y slightly above or below Yk .

But by how much should we change the parameter v? And what
is the statistical interpretation of the resulting method? Again, we
turn to Bayesian statistics. It turns out that we can view (2) in terms
of Bayesian statistics for any value 7. This in itself is not surpri-
sing: indeed, for any function f(G,C), we can come up with a li-
kelihood function P(C | G) and a prior distribution P(C) so that
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Figure 4 Left: samples of P*(C) on n = 50 nodes, sampled with p = 0.51 and p = 0.53 respectively. Right: the complete graph, where every two nodes are connected.

maximizing f(G, C) over C is equivalent to maximizing a posterior
of the form (3). However, in this case, the corresponding likelihood
and prior functions are simple and interpretable. The likelihood
function is the PPM likelihood that we discussed earlier, while the
prior distribution is of the form

Pairs(O)]

PO=Zw “

where w > 0 is a parameter and
Zn(w) = ; !Pairs(©)] s

is the normalization constant.

It turns out that if we constrain the expected number of in-
tra-community pairs |Pairs(C)|, then (4) is a maximal entropy dis-
tribution [2]. This means that (4) is the most random distribution
among all partition distributions with a given expected number of
intra-community pairs. In a way, this means that assuming the pri-
or P*(C) is a relatively modest assumption.

The prior (4) also has a nice probabilistic interpretation: let
us view a community partition as a graph where two nodes are
connected if they are in the same community. Next, we consider
a random graph distribution where every node pair is connected
with probability p(w) = 1 “ 5 independently and condition on
the event that this graph corresponds to a community partition. It
turns out that this conditional distribution is identical to our prior
distribution (4).

A graph corresponds to a partition whenever each of its connec-
ted components are cliques. This is an extremely unlikely event to
condition on. For reference, if p=- and n = 50, then the proba-
bility that this event occurs is 1.57 - 107125,

To study the asymptotics of this prior distribution (4), we need
a surprising amount of complex analysis. The asymptotics of (4) is
largely determined by the normalizing quantity (5). The sum over
all partitions and the difficult exponents in (5) make it challenging
to determine the asymptotics of Z,,(w). But, using some tools from

the field of analytic combinatorics, it turns out that the generating
function of Z,(w)/n! has a surprisingly simple form:

Z(1 . ()28
n(!w) - 2" = exp (; w(2);> .

oo

n=0

This allows us to use Cauchy’s integration formula to represent the
normalizing quantity by a contour integral over the complex plane:

n! ad s\ 2% dz
Zn(w) = i ¢6Xp (Z 10(2)Sl> ey
. g !

This integral can then be approximated using the saddle point
method, which gives us the asymptotics of the normalizing
quantity.

The asymptotics reveal that this prior distribution has some
peculiar behavior: for w < 1, the community sizes are of the or-
der v/logn and highly concentrated. For w = 1, (4) is the uniform
distribution, leading to communities of size logn. For any w > 1
our partition will consist of a single community of size n with pro-
bability tending to 1. This tells us that the typical community size
grows slowly to logn for w < 1, before suddenly jumping to n for
w > 1. This dramatic phase transition is demonstrated in Figure
4. The asymptotics also show that the community sizes are highly
concentrated, i.e., they are all close to their typical size.

Putting everything together, for every v > 0 there are Pin; Pout, W
so that the maximizing modularity from (2) is equivalent to a Baye-
sian method with PPM likelihood and a prior given by (4). This sug-
gests that the method works well whenever the communities that
we try to detect resemble a typical partition sampled from (4). This
explains why modularity maximization works relatively well when
the communities are small and equally-sized. The phase transition
in the model leads to unstable performance when the communi-

ties are larger than log n. o
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