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Community detection
Community detection has attracted attention from many discipli-
nes. In social sciences, community detection helps identify divi-
sions in social networks. Take the Karate network that is shown in 
Figure 1, for example. This network consists of members of a ka-
rate school that was studied by an anthropologist in the 70s [10]. 
During this study, a dispute broke out between the administrator 
and instructor of this club, which led to the club splitting into two 
groups. This small network is often used as a benchmark to de-
monstrate new community detection algorithms, where the goal is 
to predict this split as accurately as possible.

In computer science and machine learning, community 
detection algorithms are used to cluster networked data. For 
example, we can consider Wikipedia as a network of articles, where 
connections correspond to references between articles. If we apply 
a community detection algorithm on this network (like shown in 

Introduction
Many networks contain groups of nodes that are better connected 
to each other than to the rest of the network. Examples include 
groups of friends on social media or Wikipedia pages on the same 
topic. Community detection is the task of partitioning the network 
nodes into such communities. 

There exist many different algorithms for this task. The most wi-
dely used method for community detection is to maximize a quan-
tity called modularity over the set of partitions. This method is po-
pular because it is relatively simple and appears to find reasonable 
communities in practice. While there exist several interpretations 
of this method, from particle physics to random walks, there is no 
theoretical understanding of when this method actually works, 
and why it appears to work so well in practice.

More recently, a different community detection method based 
on Bayesian statistics has become popular. This method has a 
much stronger statistical motivation than the modularity heuristic. 
However, it is also much more complicated, making it nearly im-
possible to analyze this method theoretically.

In my thesis, we showed that the modularity heuristic can be 
interpreted in terms of Bayesian statistics. The corresponding pri-
or distribution has a simple, but peculiar form. Studying this prior 
distribution helps us explain when the modularity method works, 
and when it doesn’t. This interpretation forms a bridge between 
the modularity method and the Bayesian methods.
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Figure 1 The social network of Zachary’s Karate Club [10] that is often used to demonstrate 

community detection algorithms. After a dispute between the club’s administrator and 

instructor (number 0 and 33), the club split up into the green and red groups.
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Figure 2), we get a partition of the network articles that groups 
together articles on similar topics. This allows computer scientists 
to automate the categorization of such articles. The cool thing is 
that these algorithms can categorize articles by only looking at 
their connections among each other, without even looking at the 
text or titles of the articles. This allows one to categorize Chinese 
Wikipedia pages without even understanding a single Chinese 
character.

There is also a surprising number of physicists active in the 
field of community detection. Both the modularity method and the 
Bayesian method that we discuss here were actually introduced by 
physicists. Physicists like to view networks as interactive particle 
systems, where nodes correspond to particles and connections 
correspond to interactions.

For statisticians, community detection is an interesting infe-
rence problem, because the parameter to be estimated is not a 
simple scalar, but a partition, leading to all sorts of combinatorial 
challenges.

Modularity maximization
Modularity is the most widely used community detection method 
in practice. Consider a graph G  consisting of n nodes, which we 
number from 1 to n. We write i ∼ j if there is a connection between 
i and j. We denote the number of connections adjacent to i (its 
degree) by di and denote the total number of edges by m . Let C  
denote a partition of {1, . . . , n} into communities and let 

Pairs(C) = {1 ≤ i < j ≤ n : i and j are in the same community in C},

denote the set of intra-community pairs. Modularity is given by

    (1)

That is, we count the number of connections that are inside com-
munities, minus a penalty term for every intra-community pair of 
C . To detect communities with modularity, we maximize it over the 
set of partitions C . 

The parameter γ  controls how heavily we penalize for missing 
connections. For large values of γ , the partition C  that maximizes 
(1) will consist of a large number of small, densely connected com-
munities. There is no clear guideline of how this parameter should 
be chosen. The communities in the Wikipedia network were detec-
ted using γ = 1 , which is the default choice. When maximizing 
modularity with γ = 1  in the Karate network from Figure [1], the 
resulting partition only misclassifies node 8. 

There are many different ways to interpret the maximization of 
modularity. Modularity was initially motivated [6] as the number of 
connections inside communities minus the expectation if we were 
to randomly reshuffle the connections. In addition, modularity is 
related to how often a random walker jumps between communities 
[1]. In my thesis, we also proved another interpretation of 
modularity in terms of hyperspherical geometry [3].

There is also a simpler variant of modularity:
       
	 (2)

Figure 2 A network of Wikipedia articles related to networks [4]. The communities are obtained by maximizing modularity and roughly correspond to subject areas.
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P (C | G) and the prior distribution P (C) that are commonly used 
are quite complicated [7]. The expressions involve many factorials 
and binomial coefficients. I will not give these expressions here, 
since introducing the notation would require several pages, and 
the expressions wouldn’t fit the margins anyway.

Despite the complicated setup, this Bayesian method can be 
implemented surprisingly efficiently, and it works well in practice 
[8]. For us mathematicians, however, the situation is somewhat 
disappointing: the expressions are too messy to prove elegant 
theorems about it. Ideally, we would want to prove performance 
guarantees for this method whenever G  is sampled from a known 
distribution with communities. Unfortunately, this is completely 
hopeless.

Bayesian interpretation of modularity
From (3), we see that the only relevant difference between Baye-
sian methods and likelihood maximization is the multiplication 
with the prior P (C). If P (C) is constant (i.e., not depending on 
C ), then this Bayesian method is entirely equivalent to likelihood 
maximization. This already helps explain the disappointing beha-
vior of modularity with parameter γMLE : if P (C) is constant, then 
this means that the prior distribution is uniform over all partitions. 
Hence, modularity with parameter γMLE  is equivalent to Bayesian 
inference with uniform prior. While in many cases, a uniform prior 
is reasonable, the uniform distribution over partitions is somewhat 
peculiar: a uniform community partition has community sizes that 
are highly concentrated around log n. If we want to detect commu-
nities of different sizes than log n (which is a rather atypical com-
munity size), we need to pick γ  slightly above or below γMLE .

But by how much should we change the parameter γ? And what 
is the statistical interpretation of the resulting method? Again, we 
turn to Bayesian statistics. It turns out that we can view (2) in terms 
of Bayesian statistics for any value γ . This in itself is not surpri-
sing: indeed, for any function f(G,C), we can come up with a li-
kelihood function P (C | G) and a prior distribution P (C) so that 

which arises when we reshuffle the connections differently. This 
form is related to the Potts model in physics [9] that is used to 
study ferromagnetism.

These different interpretations make it less surprising that mo-
dularity maximization works well in practice. Nevertheless, these 
motivations feel a little ad-hoc: we still have no statistical justifica-
tion of using modularity to estimate communities.

The closest thing to a statistical justification of modularity came 
from a relation with likelihood maximization [5]. Likelihood maxi-
mization is a standard method in statistical inference, where we 
estimate a model parameter by maximizing the probability of the 
observed data. In the case of community detection, the observed 
data is the graph G  and the parameter that we want to estimate is 
the community partition C .

The simplest model for graphs with community structure is 
the Planted Partition Model (PPM). In this model, we are given 
a partition of the nodes into communities and two parameters 
pin, pout ∈ [0, 1] . For any two nodes, the probability that they are 
connected is pin if they are part of the same community, and pout  if 
they are part of different communities. Typically pin > pout , so that 
communities are more densely connected than the remainder of 
the graph. An example of a PPM graph can be seen in Figure 3.

It turns out [5] that for a particular value γ = γMLE(pin, pout)  
maximizing (2) is equivalent to maximizing the likelihood of a PPM 
with connection probabilities pin, pout . So for this particular value 
γ , modularity maximization is a statistically justified method. Of 
course, the parameters pin, pout  also need to be estimated, but we 
ignore this for simplicity.

Given this equivalence between (2) and PPM likelihood, we 
would expect that if our graph is sampled from a PPM with connec-
tion probabilities pin, pout , then the parameter γ = γMLE(pin, pout)  
leads to the best estimator. Frustratingly so, it appears that the me-
thod works better if we choose this parameter to be slightly larger 
or slightly lower than γMLE .  This is of course very unsatisfying: we 
just found a statistically justified way to pick our parameter, but 
now it turns out that it still requires some ad-hoc tweaking.

Bayesian statistics
Since the only statistical justification of modularity leads to disap-
pointing results, network scientists have developed new commu-
nity detection methods based on statistics. In particular, Bayesian 
methods are popular because they offer a lot of flexibility in mode-
ling.
In Bayesian statistics, we assume a particular prior distribution 
over the parameter that we want to estimate. Then, after observing 
the data, we use Bayes’ rule to derive the posterior distribution of 
the parameter: the distribution of the parameter conditioned on 
the observed data. That is,

	       (3)

Here, P (C | G) is the posterior probability that we want to maxi-
mize over C  for the observed graph G, P (C | G) is the likelihood, 
P (C) is the prior probability of the community partition C  and the 
normalizing quantity P (G) is irrelevant for the optimization since 
it does not depend on C .

While (3) looks simple, the expressions for the likelihood function 

P (C | G) =
P (G | C) · P (C)

P (G)
∝ P (G | C) · P (C).

Figure 3 A graph sampled from the Planted Partition Model (PPM) with p
in

 = 1/2 and 

p
out

 = 1/40.



Gösgens	 Community detection: between heuristics and statistics	 NAW 5/26  nr. 3  september 2025	 181

the field of analytic combinatorics, it turns out that the generating 
function of Zn(w)/n!  has a surprisingly simple form:

This allows us to use Cauchy’s integration formula to represent the 
normalizing quantity by a contour integral over the complex plane:

This integral can then be approximated using the saddle point 
method, which gives us the asymptotics of the normalizing 
quantity.

The asymptotics reveal that this prior distribution has some 
peculiar behavior: for w < 1, the community sizes are of the or-
der 

√

log n and highly concentrated. For w = 1 , (4) is the uniform 
distribution, leading to communities of size log n. For any w > 1 
our partition will consist of a single community of size n with pro-
bability tending to 1. This tells us that the typical community size 
grows slowly to log n for w ≤ 1, before suddenly jumping to n for 
w 1> . This dramatic phase transition is demonstrated in Figure 
4. The asymptotics also show that the community sizes are highly 
concentrated, i.e., they are all close to their typical size.

Putting everything together, for every γ > 0 there are pin, pout, w  
so that the maximizing modularity from (2) is equivalent to a Baye-
sian method with PPM likelihood and a prior given by (4). This sug-
gests that the method works well whenever the communities that 
we try to detect resemble a typical partition sampled from (4). This 
explains why modularity maximization works relatively well when 
the communities are small and equally-sized. The phase transition 
in the model leads to unstable performance when the communi-
ties are larger than log n.	 ←
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maximizing f(G,C) over C  is equivalent to maximizing a posterior 
of the form (3). However, in this case, the corresponding likelihood 
and prior functions are simple and interpretable. The likelihood 
function is the PPM likelihood that we discussed earlier, while the 
prior distribution is of the form

     (4)

where w > 0  is a parameter and

     (5)

is the normalization constant.
It turns out that if we constrain the expected number of in-

tra-community pairs |Pairs(C)|, then (4) is a maximal entropy dis-
tribution [2]. This means that (4) is the most random distribution 
among all partition distributions with a given expected number of 
intra-community pairs. In a way, this means that assuming the pri-
or P ∗

(C) is a relatively modest assumption.
The prior (4) also has a nice probabilistic interpretation: let 

us view a community partition as a graph where two nodes are 
connected if they are in the same community. Next, we consider 
a random graph distribution where every node pair is connected 
with probability p(w) =

w

1 + w

 independently and condition on 
the event that this graph corresponds to a community partition. It 
turns out that this conditional distribution is identical to our prior 
distribution (4).

A graph corresponds to a partition whenever each of its connec-
ted components are cliques. This is an extremely unlikely event to 
condition on. For reference, if p =

1

4
 and n = 50 , then the proba-

bility that this event occurs is 1.57 · 10−125.
To study the asymptotics of this prior distribution (4), we need 

a surprising amount of complex analysis. The asymptotics of (4) is 
largely determined by the normalizing quantity (5). The sum over 
all partitions and the difficult exponents in (5) make it challenging 
to determine the asymptotics of Zn(w). But, using some tools from 

P
∗

(C) =
w

|Pairs(C)|

Zn(w)
,

Zn(w) =

∑

C

w
|Pairs(C)|

Figure 4 Left: samples of P*(C) on n = 50 nodes, sampled with p = 0.51 and p = 0.53 respectively. Right: the complete graph, where every two nodes are connected.
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