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Abstract—Novelty search has shown benefits in different fields
such as evolutionary computing, classical AI planning, and deep
reinforcement learning. Searching for novelty instead of, or in
addition to, directly maximizing the search objective, aims at
avoiding dead ends and local minima, and overall improving
exploration. We propose and test the integration of novelty into
Monte Carlo Tree Search (MCTS), a popular framework for
online RL planning, by linearly combining value estimates with
novelty scores during the selection phase of MCTS. We adapt four
different novelty measures from the literature (evaluation nov-
elty, state-pseudocounts, feature-pseudocounts, and frequency-
thresholding), integrate them into MCTS, and test them in six
board games (Connect4, Othello, Breakthrough, Knightthrough,
AtariGo and Gomoku). Experiments show improvements for
MCTS in a wide range of settings, covering both guidance by
handcoded heuristics and neural networks. The results demon-
strate potential for these optimistic novelty estimates to achieve
online generalisation of uncertainty during search.

Index Terms—novelty, novelty search, Monte Carlo Tree
Search, game tree search

I. INTRODUCTION

Sequential decision-making problems arise in a variety
of domains, and significant progress in this area has been
achieved by studying search in games. Monte Carlo Tree
Search (MCTS) in particular handles large search spaces well
due to selective sampling of promising actions. It has been
shown to converge to the optimal policy in the limit, if
exploration and exploitation are traded off properly [1]], and
it provides approximations at any time. MCTS and its many
variants have been successfully applied to countless domains
in recent years, for example to General Game Playing [2],
to General Video Game Playing [3]], and to two-player board
games in recent breakthroughs that combined search with deep
neural networks [4], [5].

The use of novelty in search and optimization has been a
significant line of research in several different subfields of
Al in the last decade, such as in evolutionary computing,
in classical Al planning, and in deep reinforcement learning.
Searching for novel states or novel behaviors as an intrinsic
motivation of an Al agent has shown surprising success
compared to exclusively trying to optimize the extrinsically
given objective function, especially in domains where the
gradient of improvement with regard to that objective function
is sparse or misleading [6].

In this paper, we propose the integration of novelty search
techniques into MCTS, and test them in online RL planning.

When the authors did the work presented in this paper, the authors were
with the Intelligent and Autonomous Systems group, CWI, Amsterdam,
the Netherlands. H. Baier (h.j.s.baier@tue.nl) is now with the Information
Systems group, TU Eindhoven, Eindhoven, the Netherlands. M. Kaisers
(mkaisers @google.com) is now with Google DeepMind.

Specifically, we bias search by linearly combining one of four
novelty scores with the value estimates maintained by MCTS
before adding the UCB exploration bonus. Unlike in many
previous applications of novelty to search, we assume that a
somewhat effective heuristic state evaluation function (either
handcoded or trained) is already available to guide MCTS;
and unlike typical applications of novelty to deep RL, MCTS
is able to use count-based uncertainty estimates in its tree.
Nevertheless, our results indicate that novelty, as an auxiliary
objective that generalizes uncertainty across the state space,
can lead to better gameplay through further improvements in
MCTS exploration.

This paper extends on a previous workshop paper [[7]. To
this previous work, we are adding two more test domains
(AtariGo and Gomoku); one additional novelty measure in-
spired by more recent literature on the topic (see [[II-A4)); an
analysis of the time overhead of our approach (see [[V-D)); and
we are showing the effectiveness of our approach not only
for MCTS guided by handcoded heuristics, but additionally
for MCTS guided by learned heuristics, i.e. neural networks
in the style of AlphaZero [5]. In particular this last extension
demonstrates a much wider applicability of novelty in MCTS,
including state-of-the-art MCTS implementations.

The paper is structured as follows: Section [II| relates this
work to the literature. Section briefly sketches the four
different novelty measures used, and how we integrated them
into MCTS. Section presents experimental results in six
board game domains, and Sectionmdiscusses conclusions and
future work. Code is lavailable onlinel

II. RELATED WORK

In evolutionary computation, it has been found that fitness
functions, meant to measure progress towards the actual ob-
jective of the search, can often be deceptive, and thus lead
into dead ends. A sometimes surprisingly effective approach to
circumventing this problem is to ignore the objective entirely,
and to search only for (behavioral) novelty instead [6]], [8]]. In
this work, we do not aim to completely ignore our objective,
i.e. heuristic estimates guiding successful play, but integrate
an additional novelty score in order to improve exploration.

In classical Al planning, a simple blind-search procedure
called Iterated Width (IW) was developed [9]. IW is an
iterative breadth-first search that prunes states of insufficient
novelty, relaxing the requirement for novelty in every iteration.
It was found to be effective in many benchmark planning
problems due to their simple enough goal structure, and lead to
state-of-the-art performance when integrated with other known
planning techniques [9]. As IW does not require knowledge
of transitions and goals, it has also been successfully applied
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to simulation-based planning, both in Atari games [10] and in
General Game Playing (GGP) [11]]. Its pruning criterion, i.e.
its novelty measure, was extended to take the reward-so-far
into account [12], which improved results in Atari games; and
it was modified to utilize heuristic value estimates of states
instead when those are available [13]. One of the novelty
measures we examine in this work is similar to the ones
previously proposed for classical planning [12f], [|I3]], where
it has been called hpy. However, we use it to modify value
estimates in the MCTS tree, instead of using it for improving
the node ordering in a traditional best first search queue.

In (deep) reinforcement learning, novelty has been studied
as a form of intrinsic motivation for the RL agent [14], meant
to aid in representation learning as well as in improving
exploration. Unlike IW-like algorithms, which tend to use a
binary classification of states into novel or non-novel, these
RL approaches aim for a finer-grained measure of the agent’s
uncertainty about its environment, in order to guide the agent
towards less familiar regions of the state space and thus
encourage learning. In analogy to the tabular case, where
we can simply count how often each state has been visited
and intrinsically reward the agent for visiting states with
lower visit counts, RL novelty techniques are often based
on pseudocounts — a generalization of state counts which
allows to generalize uncertainty across large state spaces.
Pseudocounts can be defined based on a density model that
assigns probabilities to observing a given state [15]. Such
pseudocounts have been proposed based on state hashing
[16], on neural density models [17], [18]], or on successor
representations [19]. Two of the novelty measures we study
in this work are based on the state-visitation density model
[15]], as well as on a similar model constructed on a feature
representation of the state instead of on the raw state [20].
However, we use it for sample-based planning instead of
learning.

The closest work to ours we are aware of is an adaptation of
IW-like novelty pruning to Monte Carlo Tree Search, as part
of eight enhancements for the application of General Video
Game Playing (GVGP) [21]]. In contrast to our work in which
we bias search, novelty was here used for hard pruning of the
tree, which invalidates the convergence guarantees of MCTS.
We agree with the authors that “Novelty-Based Pruning (NBP)
as proposed in this paper [has] binary effects, in that (...) NBP
classifies nodes as either novel or not novel. Perhaps [this
method] can be improved by making [it] less binary” [21],
which we aim for by proposing a more finely tunable approach
that biases the search instead of pruning it. We also differ from
Soemers et al. [21]] in that we test our approach on adversarial
multi-agent environments instead of single-agent ones.

Since the publication of the workshop version of this paper
[7], another novelty method has been proposed for Monte
Carlo Graph Search (MCGS), a variant of MCTS [22]. This
method was specifically intended for sparse reward environ-
ments in which no heuristic evaluation function exists, provid-
ing some search guidance without relying on ‘“handcrafting
of the reward signal for the specific environment” [22]. In
contrast to this approach, we demonstrate that novelty can
improve exploration not only if it is the only form of search

guidance, but even if heuristic evaluation functions are already
available, either handcrafted (see Subsection or indeed
learned from scratch with state-of-the-art reinforcement learn-
ing methods (see Subsection [[V-B). This shows the usefulness
of novelty-guided search in a wider range of settings. However,
we have included an additional novelty measure inspired by
their approach in this paper, see

III. NOVELTY AND MCTS

In this section, we describe the four novelty measures we
use in this exploratory study, and how we integrate them into
the MCTS framework. All novelty measures assume a state
space S with internal structure, with factored states s that
consist of a vector of distinct atomic components or variables
and their assigned values. In board games for example, “square
d4” could be such a variable. A variable plus assigned value,
e.g. “white piece on d4”, is also called a fact We call novelty
measures directly based on these atomic state facts “raw-state
novelty”, and novelty measures based on higher-level features
such as those defined by a handcoded heuristic evaluation
function “feature-based novelty”, although atomic variables
could theoretically serve as evaluation features as well.

A. Defining Novelty

The techniques briefly outlined in this subsection aim at
measuring the novelty of a newly discovered state, and are
partially modified techniques from the literature.

1) Evaluation novelty (Ng"): This technique is adapted
from reward-based novelty [12], [[13]]. Given a heuristic state
evaluation function V' : S — R defined on the set of states
S, and S; as the set of states observed until time step ¢, the
novelty score of a feature (either atomic fact or higher-level
feature) f at time step ¢ is defined as

max V(s) if f € s for some s € S;
Nt(f) — { s€ESt, f€s (1)
—00 otherwise,

i.e. as the highest evaluation of any state with that particular
feature seen so far. Given a state s, its evaluation novelty
Ng(s) is then defined as

a if V(s) > Ni(f) for some f € s

Ng(s) =
5 (s) 0 otherwise,

2
where « is a tunable parameter. This means that this novelty
measure is binary — it distinguishes only between novel and
non-novel — and that a state is considered novel iff for at
least one of the features it consists of, the evaluation of the
state is higher than that of any state observed before with that
particular featureﬂ

Evaluation novelty (Ng) could in principle be defined on
higher-level evaluation features extracted from states as well

I Discrete facts are often represented as one-hot encoding when presented
as input to neural networks, and thus their availability is axiomatic across the
deep learning literature.

2Note that a higher value Ni(f) of a feature f does not mean that f is
considered more novel. The values N¢(f) are simply called “novelty scores”
because they allow us to compute the novelty Ng(s) of a given state, where
higher values indeed mean more novel.
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as on raw state facts. Here, we only include experiments based
on raw state facts (Ng%).

2) Raw-state pseudocount novelty (N"): This technique
is adapted from the ¢-Exploration-Bonus algorithm [20]. It
does not make use of a heuristic evaluation function, but of
a probability distribution over states. We assume a feature
mapping ¢ : S — T from the state space into an M-
dimensional feature space 7', which could in our case either
be the space of raw state facts, or a space of higher-level
evaluation features. We define a density model p;(¢) at time
t — a probability distribution over this feature space — as the
product of independent factor distributions p¢(¢;) over the M
individual features:

M
pi(9) = T Pi(e0)- 3)
i=1
For the factor models, we use the empirical estimator
; Ci(i
pi(6i) = tff ! (4)

where Ci(¢;) is the number of times feature ¢; has been
observed until time step ¢. This allows us to define the ¢-
pseudocount for a given state s at time ¢ as

. 1—

O2(s) = pe(6(5))( Pt+1(¢(5)))’ (5)

pe+1(9(8)) — pe(@(s))

where p, is the density model before ¢(s) has been observed,
and p;41 is the model after the observation [15]. The pseudo-
count novelty N¢(s) is then defined as

Ne(s) = ———| ©6)

G (s)
where « is again a tunable parameter [20].

Different feature mappings ¢ are imaginable; for the raw-
state pseudocount novelty tested in this work, we use the
atomic facts our states consist of. An atomic fact in chess
could for example be “black knight on e5” or “white pawn on
a3”.

3) Feature-based pseudocount novelty (N, 8’“’ ): The feature-
based pseudocount novelty variant is computed analogously to
the raw-state variant. The difference is that instead of using
atomic facts, we compute the density model with the features
used by our heuristic evaluation functions, as originally in-
tended for this novelty measure [20]. An evaluation function
in chess for example could use more abstract features such
as “Black still has both knights”, or “White controls the f-file
with a rook”, which are potentially more meaningful in terms
of future rewards.

4) Raw-state threshold-based novelty (NJ): This tech-
nique is adapted from the novelty measure used by Tot et
al. [22]]. Given S; as the set of states observed until time step
t, and S;[f] as the subset of S; with the feature (either atomic
fact or higher-level feature) f (Si[f] = {s € Si|f € s}), the
novelty score of f at time step ¢ is defined as

e [Self]l
Nt(f){a o, ™

0 otherwise,

where « and +y are tunable parameters — +y is the frequency
threshold below which a feature counts as novel, and « is the
bonus given to novel features. Given a state s, its threshold-
based novelty Nr(s) is then defined as the sum of all its
features’ novelty scores,

Nr(s) =Y Ni(f) 8)

fes

The novelty measure originally proposed by Tot et al.
[22] included an additional mechanism called “novelty in-
heritance”, where nodes (states) reached from a novel node
inherit 50% of the parent’s novelty score. We do not need
this mechanism, as our method for integrating novelty into
MCTS, described in the following subsection, already results
in the desired result of “encouraging further exploration from
the area where a novelty was found” [22].

Just like Ng, Nt could in principle be defined on higher-
level evaluation features extracted from states as well as on
raw state facts. Here, we only include experiments for the
version based on atomic facts (IN7Y).

B. Using Novelty within MCTS

When integrating novelty measures into MCTS, our goal
is to improve exploration under short time controls, without
losing convergence guarantees in the limit. We achieve this
by combining regular value estimates with novelty scores in
the selection phase of MCTS, adapting a technique originally
proposed for Rapid Action Value Estimates (RAVE) [23]].

Each MCTS simulation produces an evaluation V(s), re-
turned by the heuristic evaluation function, and additionally a
novelty score N (s), produced by the chosen novelty measure,
of the state s that was just added to the tree. Just like the
value estimate in vanilla MCTS, the additional novelty score
is then also backpropagated to all states that were visited in
the current simulation; and in each tree node representing one
of these states, an average N, is maintained of all novelty
scores seen in the subtree below the traversed state-action pair,
analogously to how value estimates V, in MCTS tree nodes are
formed by averaging over all evaluations seen in the subtrees
below. For each visited tree node from which an action a was
chosen, with n, the number of times that action has been
chosen so far, the backpropagation updates are:

Ng =ng + 1,

Vo="V.+ Vis) = Va V“,
Na

_ . N(s) — N,

Na — Na + (S) a
Ng

During the selection phase, the selection policy of MCTS can
now be changed from the classic UCB1 policy that is based
on value alone:

- |

Vot by =, ©)

Ngq

where n is the number of times the given node has been
traversed choosing any action, and k is a factor trading off
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exploration and exploitation, to a new policy that linearly
combines value and novelty averages:

BN, + (1— BV + kg | 27

Ngq

(10)

where b is a weighting coefficient as given by

B
3na + 6’

with § as a tunable parameter regulating how quickly b decays
over time, i.e. how quickly novelty is phased out as the node
becomes increasingly certain of its value estimates over time.
After the search has been completed, MCTS chooses the root
action with the highest value estimate (ignoring novelty) for
execution; choosing the root action with the highest sample
count is another popular option, but did not lead to signifi-
cantly different results in exploratory experiments.

Note that in the limit, the MCTS search will visit every
possible state an infinite number of times, and all novelty
averages will approach zero. In short search times however,
the parameter 3 helps us to control how quickly MCTS should
forget about novelty and focus on value.

Y

IV. EXPERIMENTAL RESULTS

We tested novelty-enhanced MCTS against vanilla MCTS
in six different board game domains: Connect 4 (on the regular
6x7 board), Othello (on 8x8), Breakthrough (on 8x8), Knight-
through (on 8x8), Gomoku (on 9x9), and AtariGo (on 7x7).
These are fully observable, deterministic, alternating-turn,
two-player games, although our approach does not require
these constraints. Like the Top Chess Engine Championship
(TCEC) with opening booksﬂ we randomized the first turn
of all players in order to achieve more variety in the matches,
and fairness was guaranteed by playing two matches from each
randomized first turn, with either player moving first.

Vanilla MCTS has one parameter: the exploration factor
k of UCBI1. All novelty-based approaches have at least two
additional parameters: a parameter « that controls the magni-
tude of the novelty term, and a parameter § that controls how
quickly the novelty term’s influence on the search decreases.
Nr additionally uses a parameter « that controls the novelty
frequency threshold. The parameters of all agents were first
tuned (requiring about 25,000 matches per agent, see Ap-
pendix [A] for details on the tuning method), followed by a
test of the best found parameter settings with at least 2000
additional matches. The results of these tests are presented
here. In all tables, boldface indicates statistical significance at
the 95% confidence level of an improvement over the vanilla
MCTS baseline. Our experiments consisted of two sets: The
first set was based on MCTS guided by traditional handcoded
heuristics, and the second set on MCTS guided by neural
networks.

3See also https://wiki.chessdom.org/Openings_FAQ!

A. MCTS Guided by Handcoded Heuristics

In the first set of experiments, all MCTS players used
traditional linear heuristic evaluation functions for state evalu-
ation; these evaluation functions also provided us with feature
representations for N&@ (see Section [[II-A3). The selection
function was UCT. All experiments allowed for either 1000
or 5000 MCTS simulations per move, in order to test whether
novelty can improve the sample efficiency of the search. The
test domain of AtariGo was left out of this set of experiments,
as we did not have an effective handcoded evaluation function
for it; we included AtariGo in the experiments with trained
evaluation functions described in the next subsection.

The results of our experiments are shown in four tables,
depending on the novelty measure used by the enhanced
players. The results for pseudocount novelty N&¥ based on
the raw state itself are shown in Table [l The results for
the pseudocount novelty measure Ng’al, based on the same
features that are used by the heuristic evaluation function
in each domain, are shown in Table [l The results for the
evaluation-based novelty measure NZ% are given in Table
Finally, the results for the threshold-based novelty measure
NI are shown in Table

Game simulations/move

1000 5000
Connect4 509%  53.7%
Othello 50.2%  56.2%
Breakthrough 50.3%  60.9%
Knightthrough 631% 79.9%
Gomoku 52.1% 49.1%
Average 533%  60.0%

TABLE I: Winrate of MCTS with raw-state pseudocount
novelty (IVA&Y) vs. baseline MCTS, using UCT and handcoded
heuristics.

Game simulations/move

1000 5000
Connect4 50.8%  55.7%
Othello 52.7%  58.0%
Breakthrough 509%  59.3%
Knightthrough 523% 72.4%
Gomoku 50.4% 48.8%
Average 514%  58.9%

TABLE II: Winrate of MCTS with feature-based pseudocount
novelty (V& al) vs. baseline MCTS, using UCT and handcoded
heuristics.

We can summarize the results with three observations.
First, novelty-enhanced exploration seems to be promising in
principle: It led to statistically significant improvements over
vanilla UCBI1 selection in 22 out of 40 conditions. Second,
it seems to be more promising when higher search budgets
are available: Only 6 of 20 conditions at 1000 simulations
per move are improved, but 16 of 20 conditions at 5000
simulations per move. And interestingly, differences between
domains and search budgets were relatively robust to the
choice of novelty measure. Whether novelty helps a lot (as in
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Game simulations/move

1000 5000
Connect4 532% 54.1%
Othello 50.8%  56.4%
Breakthrough 59.7%  60.2%
Knightthrough 62.0% 78.0%
Gomoku 52.3% 48.1%
Average 55.6% 59.4%

TABLE III: Winrate of MCTS with raw-state evaluation nov-
elty (INg%) vs. baseline MCTS, using UCT and handcoded
heuristics.

Game simulations/move

1000 5000
Connect4 534%  54.9%
Othello 48.8% 57.4%
Breakthrough 509%  60.7%
Knightthrough 489%  78.6%
Gomoku 51.9% 47.9%
Average 50.8% 59.9%

TABLE IV: Winrate of MCTS with raw-state threshold-based
novelty (IN7%) vs. baseline MCTS, using UCT and handcoded
heuristics.

Knightthrough) or not at all (as in Gomoku) seems to depend
more on the domain and/or the evaluation function used —
possibly on how frequently it is misleading — than on the
precise technique chosen for computing novelty.

As expected, the optimal values for « and  determined by
our experiments tended to be higher for conditions where nov-
elty has a stronger positive effect, and zero or close to zero for
conditions where novelty does not help, minimizing its effect.
For example, N&¥ in Knightthrough at 5000 simulations per
move worked best with o« = 2, while for Othello o = 0.01
was returned by our optimization, and for Gomoku o = 0.
The algorithms were not very sensitive to their parameters, and
sometimes using a higher « or using a higher 3 even seemed
interchangeable to a degree, as they both increase the influence
of novelty. Note however that comparisons of the absolute
values of these parameters in different domains are difficult, as
they depend on the variance of the heuristic evaluation function
used: When all heuristic values fall between 0.499 and 0.501,
a very small weight to a novelty score can already make a
large difference when choosing moves.

B. MCTS Guided by Neural Networks

In the second set of experiments, all MCTS players used
neural networks both for state evaluation as well as for search
guidance via a learned policy. These networks had one shared
network body, leading to a value head and a policy head. They
were trained with the state-of-the-art AlphaZero approach,
and guided MCTS with the same PUCT selection function
that AlphaZero uses [5]. Due to computational limitations,
the networks consisted of two residual blocks in the body,
with 32 and 16 filters respectively; the value head consisted
of a single output neuron that approximated the state value,

after one fully connected layer of 32 neurons; and the policy
head consisted of a number of output neurons sufficient to
encode a probability distribution over every legal move in the
game at hand, after one fully connected layer whose number
of neurons was the smallest power of two that exceeded the
number of output neurons. All experiments allowed for either
500 or 2500 MCTS simulations per move. All six test domains
were included; but because no handcoded evaluation features
were assumed to exist in this set of experiments, pseudocount
novelty was only tested based on the raw state (/N{&") and not
on higher-level evaluation features (N&*f]

The results of our experiments are again shown sorted by
the respective novelty measure used to enhance MCTS. The
results for raw-state pseudocount novelty NZ&% are shown in
Table [V} for raw-state evaluation novelty NV, in Table
and for raw-state threshold-based novelty N3%, in Table

We can make three interesting observations here again. First,
novelty-enhanced exploration also works well for state-of-
the-art MCTS implementations guided by learned evaluation
functions and prior policies — at least with the modestly
sized neural network models we were able to test. It led to
statistically significant improvements over baseline MCTS in
27 out of 36 conditions. Second, in contrast to MCTS guided
by handcoded evaluation functions, the novelty improvement
does not seem to increase with longer searches here. We
have yet to find a satisfying explanation for this, although
we suspect that handcoded search guidance, based on linear
combinations of simple features, makes more systematic er-
rors than learned search guidance — which could mean that
MCTS guided by such handcoded heuristics could profit less
from additional search time unless exploration is somehow
enhanced, for example by seeking novelty. However, it is also
possible that the stronger effect of novelty-enhanced search
simply kicks in at higher budgets than we were able to test
with the computationally more demanding network-guided
players; this remains to be studied in future work. And third,
our novelty-enhanced players guided by learned heuristics
show different performance profiles over test domains than
the novelty-enhanced players guided by handcoded heuristics
tested in the last subsection. For example, the former are much
more effective than the latter in Gomoku, while they are much
less effective in Knightthroug One intuitive hypothesis for
these differences is that the effect of novelty could primarily
depend on the strength of a player, i.e. players with higher
playing strength might not profit as much from enhancements
to their exploration as weaker players. After all, heuristics
producing perfect value estimates would of course make all
exploration (and all search) unnecessary. This hypothesis is

“In future work, it could be possible to extract higher-level features from
neural network evaluations as well, for example from the penultimate layer
of the value head. Because these features would not be binary, additional
modifications of the novelty measures would be necessary.

5The precise 50% winrate in some Knightthrough conditions stems from
the fact that using no novelty at all worked best here, which led to sets
of identical matches being played in self-play. All players played greedily
with no stochasticity in their decision-making other than randomizing the
order of equally valued child nodes during search. This leads to significant
variation for our handcoded evaluation functions, but not for our learned
network evaluators, which virtually never value moves equally.
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supported for example by the fact that our learned heuristics
are much stronger than our handcoded heuristics in Knight-
through, where they profit much less from novelty; but our
learned heuristics are somewhat weaker than our handcoded
heuristics in Othello, where the networks are not quite deep
enough to take interactions of pieces across the whole board
into account — and where they profit much more from added
novelty guidance. However, it is not clear if there is always an
inverse correlation of heuristic strength and the usefulness of
novelty guidance. We therefore attempt to answer this question
in the following subsection.

Game simulations/move

500 2500
Connect4 53.8% 54.3%
Othello 65.0% 75.4%
Breakthrough 59.1%  50.7%
Knightthrough 52.8% 50.0%
AtariGo 571% 53.8%
Gomoku 559% 56.8%
Average 573%  56.8%

TABLE V: Winrate of MCTS with raw-state pseudocount
novelty (V&) vs. baseline MCTS, using PUCT and neural
networks.

Game simulations/move

500 2500
Connect4 571%  56.4%
Othello 76.2%  60.2%
Breakthrough 553% 52.9%
Knightthrough 50.0%  50.0%
AtariGo 51.7% 51.9%
Gomoku 55.7%  54.8%
Average 57.6% 54.4%

TABLE VI: Winrate of MCTS using raw-state evaluation
novelty (NZEY) vs. baseline MCTS, using PUCT and neural
networks.

Game simulations/move

500 2500
Connect4 551%  58.1%
Othello 71.9%  66.3%
Breakthrough 56.6% 54.2%
Knightthrough 50.0%  50.0%
AtariGo 55.5% 52.5%
Gomoku 574%  58.0%
Average 57.8% 56.5%

TABLE VII: Winrate of MCTS using raw-state threshold-
based novelty (V™) vs. baseline MCTS, using PUCT and
neural networks.

C. Evaluation Strength vs. Usefulness of Novelty Guidance

The question we seek to answer is: Do players with stronger
evaluation functions always profit less from adding a novelty
bonus to exploration than weaker players? If there turns out

to be a consistent inverse correlation between playing strength
and the usefulness of novelty guidance, our approach could be
considered less promising for the largest and most powerful
current models.

Due to computational limitations, we were only able to
explore this problem in two domains: Othello and Gomoku.
We trained an Othello-playing and a Gomoku-playing network
from scratch with AlphaZero [5], extracting the currently
strongest network at different stages of training: at six stages
in Othello, and at 22 stages in Gomoku for a finer-grained
approach. Then we tested in a first experiment whether the
networks of later training stages were indeed stronger players
than the ones from earlier stages, by letting each of them
guide MCTS in 2000 matches against a mix of MCTS players
guided by all networks in this set (i.e. the first data point
in Othello is from matches played by MCTS using network 1
against MCTS using networks 1 to 6, with an equal number of
matches against each). All players used 500 MCTS simulations
per move. The results are shown in Figure [I] for Othello and
Figure [2] for Gomoku, confirming that the win rate of MCTS
increased strongly during training. In Gomoku for example,
MCTS with network no. 1 won only 2.5% of matches, while
MCTS with network no. 22 could defeat the set of all players
in 87.0% of matches. As expected, training stage correlates
strongly with playing strength, as training had not yet reached
the full potential of the network architecture in either game.

90% | 1
80% |- 1
70% |- 1
60% |- 1
50% |- 1
40% |- 8
30% |- 1
20% [ 8
10% | 8

1 2 3 4 5 6
network (training stage)

winrate

Fig. 1: Winrate of MCTS players using networks of different
strength vs. a mix of all such players, in Othello. Error bars
show 95% confidence intervals.

In a second experiment, we then tuned novelty-enhanced
MCTS (with the novelty measure NZY) using each of the
extracted networks. The playing strength of these novelty-
enhanced players against baseline MCTS using the same
networks is shown in Figure [3] for Othello and Figure {4
for Gomoklﬂ As we can see, the novelty guidance has a
significant effect for all networks in Othello and for all but 3
networks in Gomoku, from the weakest to the strongest ones.
However, there is no clear relationship between the playing
strength of MCTS guided by a network and the effect of
adding novelty guidance to this MCTS player. The correlation
between the two, i.e. the correlation coefficient between the

5The exploration factor of baseline MCTS had first been tuned for all
networks as well, to ensure the strongest possible vanilla MCTS baseline.
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90% |-
80%
70% |-
60% |-
50% |
40% |-
30% |
20%
10% |-

winrate

1 10 20
network (training stage)

Fig. 2: Winrate of MCTS players using networks of different
strength vs. a mix of all such players, in Gomoku. Error bars
show 95% confidence intervals.

winrates shown in Figures 2] and [] for Gomoku, where we
computed more data points to increase statistical power, is only
r(20) = .35,p = .105, thus not significant at the o« = 0.05
level.

80% |- 1

70% |- 1

winrate

60% |- 1

50% |- 1

1 2 3 4 5 6
network (training stage)

Fig. 3: Winrate of novelty-guided MCTS (with the novelty
measure NZ%) using networks of different strength vs. base-
line MCTS using the same networks, in Othello. Error bars
show 95% confidence intervals.

70% |- 1

60%

winrate

50%

1 10 20
network (training stage)

Fig. 4: Winrate of novelty-guided MCTS (with the novelty
measure NZ%) using networks of different strength vs. base-
line MCTS using the same networks, in Gomoku. Error bars
show 95% confidence intervals.

In conclusion, these exploratory experiments show that
the usefulness of novelty guidance cannot always be easily
predicted from the strength of a search heuristic. While this
needs to be explored in different test domains and with

different novelty measures in the future, it could be that the
effect of novelty depends in a more subtle way on how often
the available heuristics are misleading, how strongly they are
misleading, and how systematically they are misleading (e.g.
in situations that are more or less relevant for playing strength).
There is relatively little theoretical understanding of novelty
search in other fields where it is very successful, such as evo-
lutionary computation [24]], [25]; exploring this more deeply
is interesting future work. Our preliminary results at least
indicate that novelty-enhanced MCTS can be effective even
when relatively strong search guidance is already available.

D. Time vs. Usefulness of Novelty Guidance

The experiments described above all compare baseline
MCTS to novelty-guided MCTS at equal numbers of MCTS
simulations per move. This metric focuses on sample effi-
ciency, but ignores the potential time cost of the novelty
enhancements. We therefore conducted additional experiments
to measure this time overhead.

In a first set of experiments, we measured the overhead
directly. We ran 1000 MCTS searches from the initial state
of each game and compared the average time needed by
baseline MCTS to the average time needed by novelty-guided
MCTS with the novelty measure N&Y. The other measures
showed similar results leading to the same conclusions. Table[3]
shows the results for the variants using handcoded evaluation
functions to guide the search, which are very fast and effi-
cient, but on average weaker than the learned heuristics. The
baselines have a speed of ca. 45k to 75k MCTS simulations
per second on our hardware, depending on the domain. Here,
novelty-guided exploration leads to a significant slowdown of
MCTS. Table [6] shows the results for the variants guided by
neural networks, which constitute the state-of-the-art approach,
but even with our relatively small networks (as described in
Subsection have a speed of only 1000-1500 simulations
per second. Here, we can observe that the additional overhead
for novelty guidance is almost negligible.

In a second set of experiments, we compared baseline
MCTS to novelty-guided MCTS in actual gameplay at equal
time of 1 second per move, with all algorithms re-tuned for this
setting. Our hypothesis was that novelty guidance would still
be effective at equal time for MCTS using neural networks,
due to the small relative overhead, but ineffective for MCTS
using handcoded heuristics, which gets slowed down much
more. We here present the results for NZW, as the other
novelty measures showed similar behavior (see Appendix [B).
The results for handcoded heuristics and for learned heuristics
are shown in Tables and respectively. Interestingly,
we can observe that novelty-guided exploration can enhance
MCTS play in both settings, with 3 out of 5 domains showing a
significant improvement using handcoded heuristics, and 5 out
of 6 domains showing a significant improvement using learned
neural network heuristics. In the case of the slower network
heuristics, this seems to be due to the small relative overhead
of novelty computations. In the case of the faster handcoded
heuristics however, the reason seems to be that they are still
fast enough even with the added novelty guidance — or in other
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= MCTS baseline
— Novelty-guided MCTS

Connect-4 1
Othello 1
Breakthrough e
Knightthrough =
Gomoku N

0 Sb 1 60 1 5‘ 0 260 250

milliseconds per search

Fig. 5: Speed of novelty-enhanced MCTS (using N§&%) vs.
baseline MCTS, using handcoded search guidance. In mil-
liseconds for an average 5000 simulation move search from
the initial state. Error bars show =+ 1 standard deviation.

= MCTS baseline
= Novelty-guided MCTS

Connect-4

Othello

Breakthrough

Knightthrough

Gomoku

il

| | |
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milliseconds per search
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Fig. 6: Speed of novelty-enhanced MCTS (using N§&%) vs.
baseline MCTS, using learned (neural network) search guid-
ance. In milliseconds for an average 500 simulation move
search from the initial state. Error bars show + 1 standard
deviation.

words, they are so fast that there are diminishing returns from
doing extra MCTS simulations, and it can be worth exchanging
them for novelty-enhanced exploration. These results indicate
that using novelty as an auxiliary objective of search can be
effective for a wide range of both fast and slow simulators.

Game win rate against baseline
Connect4 54.6% (52.3%-56.7%)
Othello 51.8% (49.6%-54.0%)
Breakthrough 56.4% (54.2%-58.6%)
Knightthrough 68.7% (66.6%-70.7%)
Gomoku 51.9% (49.7%-54.1%)
Average 56.7%

TABLE VIII: Winrate of MCTS using raw-state threshold-
based novelty (Ng%) vs. baseline MCTS, using UCT and
handcoded heuristics, at 1 second per move. Intervals indicate
95% confidence.

Game win rate against baseline
Connect4 57.1% (54.9%-59.3%)
Othello 61.0% (58.8%-63.1%)
Breakthrough 56.3% (54.0%-58.4%)
Knightthrough 50.3% (48.1%-52.5%)
AtariGo 52.9% (50.7%-55.1%)
Gomoku 58.7% (56.5%-60.8%)
Average 56.1%

TABLE IX: Winrate of MCTS using raw-state threshold-
based novelty (N7Y) vs. baseline MCTS, using PUCT and
neural networks, at 1 second per move. Intervals indicate 95%
confidence.

V. CONCLUSIONS AND FURTHER WORK

In this work, we employed four different state novelty
measures with the goal of improving the exploration behavior
of MCTS. Results in several board games were promising.

Our method of linearly combining novelty scores with
MCTS value estimates exposes a nuance that may be more
subtle than using novelty as an added reward bonus in the
literature on intrinsic motivation, or as the sole objective in
evolutionary search: novelty is here used as a separable heuris-
tic value estimate. This online estimate of novelty-as-a-value
encodes an optimistic prior: it ascribes higher value to states
that are more novel and thus uncertain, and generalises novelty
across features. It is combined with the regular action value
estimates of the MCTS tree using a weight factor. This weight
factor decays to zero as online observations replace the prior
that biases the exploration of search. With novelty providing
a form of optimistic online generalisation of uncertainty, it
appears complementary to the exploration/uncertainty term of
UCBI1 when sufficiently many samples are available.

Future work includes scaling up to more, and more varied,
test domains. Multiple types of novelty could be combined
during search in order to exploit different ways of generalizing
uncertainty online, for example as in Multiple Estimator MCTS
[26]. Novelty could also be compared to, and combined
with, a variety of MCTS enhancements that generalize value
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online, such as for example RAVE and its variants [23],
MAST/PAST/FAST [27]], or OMA [28].

Future work could also further extend the use of novelty-
based approaches specifically in MCTS guided by neural
networks, by integrating them in the learning stages of Al-
phaZero or MuZero frameworks [5], [29]. Thereby, novelty
could potentially help improve both learning and planning
performance.
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APPENDIX A
ON PARAMETER TUNING

As discussed in Section vanilla. MCTS has one pa-
rameter: the exploration factor k of UCB1. All novelty-based
approaches have at least two additional parameters: a param-
eter o that controls the magnitude of the novelty term, and
a parameter [ that controls how quickly the influence of the
novelty term on the search decreases. N7% additionally uses
a parameter ~ that controls the novelty frequency threshold.
This appendix describes in more detail how these parameters
were tuned.

Discretization of parameter spaces.

All parameters were tuned with discrete optimization meth-
ods based on multi-armed bandits. The parameters were there-
fore discretized. As the optimal order of magnitude of the
parameters was not known in advance, an approximately log-
arithmic discretization of parameter spaces was used, spread
over all orders of magnitude that appeared to be promising
across all experimental settings and domains. The discretiza-
tion was coarse enough to make tuning in reasonable time
possible within our computational means, while fine enough
to not lead to significant changes in experimental results. We
tested this by occasionally tuning with finer discretization in
the orders of magnitude found optimal by our original tuning
approach.

For the experiments reported in the main article and
Appendix [B] baseline MCTS players were tuned with
k € {0.01,0.02,0.03,0.06,0.1,0.2,0.3,0.6, 1, 2,3}. The ex-
ploration factors for novelty-enhanced players were restricted
to five values on this scale centered on the optimal base-
line value; for example, if the baseline MCTS value was
k = 0.1, novelty players for the same domain and time
setting were tuned with k € {0.03,0.06,0.1,0.2,0.3}. Larger
deviations were generally not found to be helpful. The ranges
for the novelty-specific parameters were o, € {0,2 X
107°,3 x 1075,6 x 107°,107%,2 x 1074,...,3,6,10}, and
v €{0,107°,2 x 1075,3 x 107>, ...,0.03,0.06,0.1}.

Bandit-based tuning of vanilla MCTS baselines.

Since the vanilla MCTS baselines have only one parameter,
the exploration factor k, they were tuned with a simple
approach based on multi-armed bandits. For each test domain,
guiding heuristic (handcoded or learned), and time setting, a
UCBI1-Tuned bandit algorithm [30] was run for 10k matches,
with the possible parameter values described above corre-
sponding to the arms. The most-sampled value of k£ was then
chosen as the MCTS baseline for the given domain, guiding
heuristic, and time setting.

The opponents for these matches were cycling through a
set of MCTS baselines with different exploration factors in
{0.06,0.1,0.2,0.3,0.6}, guided by the same heuristics as the
tuned player, but covering a range of behaviors from more
explorative to more exploitative. The single parameter k& does
not give much flexibility to overfit, and we found the best
values for k to generally outperform all other values in the
given domain and time setting.

N-Tuple Bandit tuning of novelty-enhanced players.

Since the novelty-enhanced players have between two and
three parameters with 18 to 25 possible values each, a single

multi-armed bandit was not able to tune them within reason-
able time - it would have needed up to 25 x 25 x 18 = 11,250
arms. We therefore opted for a tuning approach based on the
N-Tuple Bandit Evolutionary Algorithm (NTBEA) [31]. We
used an N-Tuple fitness landscape model with a separate multi-
armed bandit for each dimension of the search space (each
parameter), as well as for each set of two dimensions (pairs
of parameters). Please refer to [31]] for further details.

The main difference between our approach and the classic
NTBEA as described in [31] is that we did not choose the
next player to sample with the help of an EA; instead, we
chose it by requesting promising parameter values from the
same bandits used by the fitness landscape model, in random
order until all parameters of the next player had a value. In
this way, both promising individual parameter settings as well
as promising settings for pairs of parameters have a chance
to be explored, regardless of the previously sampled player
and without any notion of “neighborhood”. When using an
additional global bandit for all parameters, this approach can
be made to converge to the global optimum in the limit,
by slowly phasing out all bandits that speed up search by
only considering a lower-dimensional projection of the search
space. Given the success of this NTBEA variant, it may itself
merit rigorous examination in future work.

For each test domain, guiding heuristic (handcoded or
learned), and time setting, we ran this algorithm 8 times for
3k matches per run (restarts to avoid local minima). The best
players found by each run were then compared based on an
additional 1k matches each, determining the final player to be
returned.

The opponents for these matches were the best vanilla
MCTS baselines found as described in the previous sec-
tion. Since the optimal amount of exploration is opponent-
dependent, we chose to tune Novelty MCTS parameters as
a best response to the given baseline - here Vanilla MCTS.
We also tried tuning against independent, third opponents;
but due to intransitive relations between strategies, having
stronger performance against a third opponent than a baseline
tuned against the same opponent does not necessarily mean
beating that baseline as well. We also tried tuning against
the same set of vanilla MCTS opponents our baselines were
tuned against; but that sometimes led to players that exploit the
weaker opponents in the set, instead of learning to outperform
the strongest baselines. Since we were interested in whether
novelty-enhanced players can outperform the strongest base-
lines, we chose these as tuning opponents, leaving further
exploration of more broadly generalizing parameter settings
for different distributions over opponents to future work.

APPENDIX B
ADDITIONAL RESULTS AT EQUAL TIME PER MOVE

In Subsection [I[V-D] we show results at equal time per move
for novelty measure N2“ in Tables and [[X] and mention
that the other novelty measures showed very similar behavior.
In order to demonstrate this in detail, this appendix presents
analogous results for all novelty measures. These results
include new results for N3% that are slightly different from
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those in Subsection [[V-D] because all results in this appendix
had to be re-computed on newer hardware. We did this at
250ms instead of 1s per move to achieve comparable results
to the main paper, as the new hardware was considerably faster
than the original hardware used for the experiments in the main
article.

Tables[X]to show the results of MCTS guided by hand-
coded heuristics. Table [X] replicates the results of Table
on faster hardware and with shorter time limits. Note that
the results for N3 and N#&Y are even more promising than
those shown for Ni% here and in the main article, with 4
of 5 (Table [XIII)) and 5 of 5 domains (Table [XI) showing a
significant improvement, respectively.

Game win rate against baseline
Connect4 52.9% (50.7%-55.1%)
Othello 50.4% (48.2%-52.6%)
Breakthrough 60.3% (58.1%-62.4%)
Knightthrough 75.3% (73.3%-71.2%)
Gomoku 52.1% (49.9%-54.3%)
Average 58.2%

TABLE X: Winrate of MCTS using raw-state threshold-
based novelty (N7F%) vs. baseline MCTS, using UCT and
handcoded heuristics, at 250ms per move. Intervals indicate
95% confidence.

Game win rate against baseline
Connect4 55.4% (53.2%-57.6%)
Othello 53.4% (51.2%-55.6%)
Breakthrough 57.3% (55.1%-59.5%)
Knightthrough 76.6% (74.7%-718.5%)
Gomoku 58.9% (56.7%-61.0%)
Average 60.3%

TABLE XI: Winrate of MCTS using raw-state pseudocount
novelty (IV&Y) vs. baseline MCTS, using UCT and handcoded
heuristics, at 250ms per move. Intervals indicate 95% confi-
dence.

Game win rate against baseline
Connect4 53.3% (51.1%-55.6%)
Othello 49.5% (47.3%-51.7%)
Breakthrough 62.4% (60.2%-64.5%)
Knightthrough 70.6% (68.5%-72.5%)
Gomoku 52.1% (49.9%-54.3%)
Average 57.6%

TABLE XII: Winrate of MCTS using feature-based pseudo-
count novelty (Ng’a]) vs. baseline MCTS, using UCT and
handcoded heuristics, at 250ms per move. Intervals indicate
95% confidence.

Tables to show the results for MCTS guided
by neural networks. Table [XIV] is replicating the results of
Table [[X] on faster hardware and with shorter time limits.

Game win rate against baseline
Connect4 54.4% (52.2%-56.6%)
Othello 52.8% (50.5%-55.0%)
Breakthrough 59.5% (57.3%-61.6%)
Knightthrough 74.9% (72.9%-76.7%)
Gomoku 52.5% (50.3%-54.7%)
Average 58.8%

TABLE XIII: Winrate of MCTS using raw-state evaluation
novelty (IVE") vs. baseline MCTS, using UCT and handcoded
heuristics, at 250ms per move. Intervals indicate 95% confi-
dence.

Game win rate against baseline
Connect4 55.9% (53.7%-58.1%)
Othello 59.9% (57.7%-62.1%)
Breakthrough 54.4% (52.1%-56.5%)
Knightthrough 50.8% (48.6%-53.1%)
AtariGo 54.8% (52.6%-57.0%)
Gomoku 57.3% (55.1%-59.5%)
Average 55.5%

TABLE XIV: Winrate of MCTS using raw-state threshold-
based novelty (N7™) vs. baseline MCTS, using PUCT and
neural networks, at 250ms per move. Intervals indicate 95%
confidence.

Game win rate against baseline
Connect4 53.9% (51.7%-56.1%)
Othello 62.3% (60.1%-64.4%)
Breakthrough 53.8% (51.6%-56.1%)
Knightthrough 49.9% (47.6%-52.1%)
AtariGo 53.1% (50.9%-55.3%)
Gomoku 56.2% (54.0%-58.4%)
Average 54.9%

TABLE XV: Winrate of MCTS using raw-state pseudocount
novelty (NEY) vs. baseline MCTS, using PUCT and neural
networks, at 250ms per move. Intervals indicate 95% confi-
dence.

Game win rate against baseline
Connect4 51.3% (49.1%-53.6%)
Othello 58.2% (56.0%-60.4%)
Breakthrough 54.8% (52.6%-57.0%)
Knightthrough 48.4% (46.1%-50.6%)
AtariGo 54.3% (52.0%-56.4%)
Gomoku 56.0% (53.7%-58.1%)
Average 53.8%

TABLE XVI: Winrate of MCTS using raw-state evaluation
novelty (NEY) vs. baseline MCTS, using PUCT and neural
networks, at 250ms per move. Intervals indicate 95% confi-
dence.
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