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Abstract—In this paper, we propose a novel approach to multi-
agent underwater source localization with passive sonar. OQur
framework optimizes the trajectories of two autonomous under-
water vehicles, each towing an antenna, to maximize the probabil-
ity of detection of the source. We implement a shared-parameter
Multi-Agent Reinforcement Learning (MARL) strategy with non-
synchronous actions to address the challenges posed by non-
stationary multi-agent environments. We train a neural network
using proximal policy optimization (PPO) to act in a simplified
simulation environment, and evaluate it in a realistic simulation
engine, demonstrating robustness to communication losses of up
to 60%. Our preliminary results indicate that the RL-based
trajectory optimization trained in a simplified simulation engine
can achieve comparable performance to traditional approaches
in a realistic simulation engine. At the same time, this transfer
may be due to simplifying assumptions made in the experimental
setting presented here. We provide recommendations for future
work to further evaluate this approach.

I. INTRODUCTION

The localization of an underwater sound-emitting source is
a challenging problem with several real-world applications,
including tracking marine wildlife [1]-[3] and search & rescue
operations [4], [5]. Recent advances in maritime robotics have
made the use of autonomous underwater assets for underwater
source localization (SL) a reality. By networking these assets,
it becomes possible to enable cooperative localization strate-
gies, distributed sensing, and real-time information sharing.
This is likely to enhance the accuracy and robustness of SL.

While localization is not a domain-specific problem per
se, the underwater environment introduces challenges that are
usually not found in land, surface, or air operations. Crucially,
underwater communication is severely limited compared to
over-water communication in both bandwidth and reliability.
Information can be wirelessly exchanged underwater only via
sound through the acoustic channel. This is severely unreliable
though, as sound propagation in water is affected by many
factors, including water temperature, pressure, and salinity. At
the same time, due to the nature of the sensors, SL requires the
coordination in space and time of multiple sensing assets to
locate the source successfully. For these reasons, developing
autonomous networks of underwater assets for SLn that can
coordinate through very low bandwidth channels and which
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are robust to missed communications is a problem of ongoing
interest.

Passive sonar technology is widely used for underwater
sensing [6]. It relies on the detection of sound waves emitted
by external sources rather than actively transmitted signals.
This makes it particularly useful for stealth applications, as it
does not introduce additional noise into the environment. Lin-
ear hydrophone arrays, a common implementation of passive
sonar, consist of multiple hydrophones arranged in a line to
measure the direction of arrival (DOA) of incoming acoustic
signals [7]. These arrays enable precise bearing estimation
by exploiting phase differences between signals received at
different elements. However, they often face challenges such
as port/starboard ambiguity, meaning they cannot inherently
distinguish whether the sound is coming from the left or right
relative to the array. Furthermore, direct range measurement
is difficult with passive sonar as this relies solely on received
sound waves without actively sending out signals to determine
the distance to the sound source.

Recently, networks of autonomous underwater vehicles
(AUVs) have been used to improve SL by leveraging principles
from optimal and distributed control theory [8]-[10]. By
employing cooperative control strategies and decentralized
decision-making, multiple AUVs can dynamically position
themselves to resolve port/starboard & range ambiguity and
enhance localization accuracy by triangulating the source’s
position. Additionally, this coordination allows the vehicles
to optimize their trajectories in real-time and maximize the
probability of detection (Pd) of the source, all while main-
taining robust performance under environmental uncertainties
and communication constraints.

Traditional approaches to underwater SL typically rely
on model-based methods grounded in signal processing and
estimation theory. Techniques such as Beamforming and Time
Difference of Arrival use measurements from multiple hy-
drophones to estimate the position of a sound-emitting source.
Optimization-based methods, such as those leveraging the
Fisher Information Matrix (FIM), have also been employed to
design optimal sensor trajectories that maximize localization
accuracy [11]. These approaches are effective but require
precise knowledge of the acoustic environment and sensor
characteristics, which may not always be available in real-
world scenarios. Furthermore, they can struggle to adapt to



dynamic and uncertain conditions, particularly in multi-agent
settings where communication constraints and environmental
variability play a significant role.

Lately, reinforcement learning (RL) has gained significant
attention thanks to its success in solving complex decision-
making and control problems. These include environments
with high-dimensional state spaces and limited prior knowl-
edge. Advances in deep learning, coupled with improved
training algorithms and computational resources, have enabled
RL to achieve state-of-the-art performance in multiple do-
mains, such as robotics and autonomous navigation. In the
context of underwater SL, RL offers a promising framework
for both low-level control [12] and optimizing the trajectories
of AUVs in a data-driven manner [13]-[15]. Unlike tradi-
tional model-based approaches, which often rely on strong
assumptions about the environment and sensor characteristics,
RL can learn adaptive policies directly by interacting with
the environment. This makes it particularly well-suited for
handling uncertainties and dynamic constraints inherent in
multi-agent underwater networks. One of the main challenges
of RL is its reliance on large amounts of high-quality training
data, which are particularly difficult to obtain for underwater
operations. Therefore, developing realistic simulations and
efficient data collection strategies is crucial to ensure that RL-
based approaches generalize well to real-world deployments.

In this work, we investigate the use of Multi-Agent Rein-
forcement Learning (MARL) for the problem of underwater
SL using multiple AUVs equipped with passive sonar. We
leverage simulation-based training to develop adaptive and
data-driven AUV coordination strategies. The use of RL has
been explored and successfully implemented for many closely
related problems, including single-AUV SL with passive sonar
sensing [16], [17], and multi-AUV SL with active sonar
sensing [18]. However, to the best of our knowledge, an RL
implementation for the setting of multi-AUV SL with bearing-
only measurements from passive sonar sensing has not been
attempted before.

Our primary objectives are to (i) formulate the multi-
asset localization problem in a way that is amenable to RL-
based solutions, (ii) design MARL policies that optimize AUV
trajectories to acoustic source location estimation accuracy
while mitigating the limitations of passive sonar, (iii) evaluate
the performance of these policies against traditional model-
based approaches, and (iv) evaluate robustness to a setting
with disrupted communication.

In particular, building upon previous work [9], [10], we
synthesize the state of the surrounding environment to create
a World Model by means of probabilistic Occupancy Grids
(OG). A detailed description of OGs and their use in under-
water localization is provided in Section II-B. An estimated
target position is extracted from the OG. This, together with
the AUV positions is used to compute a set of quantities
describing the state of the system which serves as the input
layer to the neural network. In return, the network outputs
a heading decision to command each AUV. By training RL
agents in a simulated environment, we aim to demonstrate

that MARL can effectively coordinate multiple AUVs to
successfully perform SL, even under conditions of uncertainty
and intermittent communication. The network performance
is then evaluated in a high-fidelity simulation environment.
The results from our simulations provide insights into the
potential benefits and limitations of RL-based approaches for
autonomous underwater sensing and multi-agent coordination.

II. BACKGROUND

This section introduces the key preliminary concepts es-
sential to the approach presented in Section III. Due to space
constraints, we provide a concise overview and refer the reader
to the original works cited throughout for further details.

A. Multi-agent underwater sensing networks

For this work, we focus on a simplified underwater sensing
network made up of two AUVs traveling at a constant speed
of 1 m/s. Each AUV tows a linear array in a passive sonar
configuration and we assume that the location of the linear
array, i.e., the sensor, corresponds to that of the AUV. Passive
sonars quietly listen to sound waves propagating in water
at different frequencies and can distinguish the direction of
arrival of a sound. Crucially, however, these sensors cannot
easily estimate the distance to the sound source. We further
assume that both linear arrays have port/starboard ambiguity
and, therefore, cannot distinguish whether the sound is coming
from the left or the right relative to their longitudinal axes.

Working in a networked configuration, the AUVs are re-
quired to exchange information with the goal of optimizing
their behavior for SL. One of the key challenges of under-
water robotics is addressing the limitations of communication
capabilities described in Section I. In this setting, the AUVs
communicate by means of an acoustic modem. At best, this
enables the transmission of one message with a payload of
60 bytes every second. On top of this inherently small data
throughput, packets are lost at high rates. For this reason, we
will pay particular attention to the robustness of the developed
approach to missed communications among AUVs in this
work. For more details regarding the typical hardware used
in our experimental campaigns, we refer to [19], [20].

B. State estimation via Occupancy Grids

The estimate of the system’s state relies on a perception
approach based on Occupancy Grids [21], [22]. An OG is a
discretized representation of the environment into a collection
of cells. Each cell can either be occupied (e.g., when the cell is
associated to the position in space of a sound emitting source)
or empty, see Fig. 1 (a)-(b). An estimate of the occupancy
state of each cell can be built from the sensors’ readings. Let
C € R be the number of cells in the OG and m € R® be
the collection of all binary cell states. Further, let z € RP*4
denote the collection of all measurements, where p, ¢ € R are
the dimension of the sensor’s readings and the cardinality of
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Fig. 1. This figure shows the OG mapping framework for multi-agent source location described in Section II-B. In this setting, the underwater sensing network
is composed of two AUVs, each carrying a linear array in a passive sonar configuration. Panel (a) shows the environment of interest and its discretization into
cells. Panel (b) shows the OG associated with the environment: white (black) cells depict an area of the environment that is free from (occupied by) a sound
source. Panel (c) shows the local map 7! and remote map 712 stored onboard AUV 1. The positions and orientation of AUV 1 (AUV 2) are depicted
with a red (black) arrow. Darker cells correspond to areas of the environment with a higher occupancy probability. The white dot shows the position of the
sound source. Given the sensors’ bearing-only nature, the source’s position cannot be estimated precisely from a single sensor reading (notice how higher
probabilities span a ray from the sensor through the correct source location but are rather uniformly distributed in space). Panel (d) shows the result of fusing

maps ! and m!:2

the readings, respectively.! Then, the OG can be estimated via
the posterior 72 = prob (m | z).

Since the number of possible map combinations is 2¢,
it is usually prohibitive to compute the full posterior .
Consequently, OG mapping methods typically compute the
marginal posteriors for the probability of occupancy of each
cell, independently, as m; = prob (m; | z), where m; is an
element of m, with ¢ € {1,2,...,C}. Further approximations
are usually required to allow the computation of all m; in
real-time, as discussed in [22]. Ultimately, as a result of all
simplification steps involved in the process, it is possible to
obtain an estimation of the state m as m = [/ My ... mc| '
which is suitable for real-time processing, see Fig. 1 (c).

When a new sensor measurement is available, the estimate
m should be updated accordingly. In [8], we proposed a
perception layer based on the Independence of Posterior
update rule [23]. Independence of Posterior works better than
traditional Bayesian-based update rules in scenarios charac-
terized by a low prior probability, i.e., the default probability
associated with an unexplored cell. Notice that this approach
does not require the occupancy state of each cell to be time-
invariant, as is often assumed in similar approaches. A scheme
of the OG-based cooperative framework is shown in Fig.
1. A mathematical model of each sensor is developed (for
example, by characterizing the probability of detection at
different bearing/ranges and the false alarm rate) and is used to
create an estimation of the state in m. Each AUV i leverages
its onboard sensor to generate a local map ‘. Since AUVs

)

'In passive sonar applications, each sensor reading (also called a contact)
is made up of the bearing angle and the position of the sensor in the plane
and therefore p = 3.

in 'rh},J and the consequent improvement of the localization performance.

are allowed to share raw data, each AUV ¢ also stores an
estimate of the state using exogenous information from AUV
j by creating a map m®J, ie., the remote map of j on i.
Clearly, m*J ideally tends to 7n; as communication frequency
increases. Finally, each AUV ¢ fuses its local map and the
available remote maps into a unified view of the state, which
we refer to as fused map m'. and that can be used to estimate
the source location, see Fig. 1 (d).

The quality of SL can be quantified using the Laplacian of
the fused map £(1m%,), obtained by computing the divergence
of the gradient of the scalar field m¢. Cells with high
occupancy probability that are surrounded by cells with low
occupancy probability are associated with negative and small
values of L£(1m%). These are, in practice, the cells that we
consider the most likely for source location [9].

C. Optimal geometry in bearing-only localization

As discussed in Section II-B, the information originating
from multiple bearing-only sensors can be fused together
to improve SL. One might ask, then, if there exists an
optimal sensors-source geometry (i.e., an optimal position
of the sensors with respect to the source’s location) that
improves SL overall. An intuitive answer to this question can
be inferred through Fig. 1 (c), where the angle described by
the sensors and the source is roughly |¢| = /2. This sensors-
source geometry minimizes the number of cells with high
occupancy probability that are overlapping between the two
sensor readings (see Fig. 1 (d) for the resulting fused map).
Conversely, if |¢| = {0, 7}, the two sensors become colinear
with the target, and their readings are not able to resolve the
ambiguity of the source’s position, as most cells with high
probability remain overlapping.
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Fig. 2. The standard reinforcement learning loop. At time ¢, An agent makes
an action a; based on an observation w;. This causes a state transition in the
environment from s; to s¢y1, with a corresponding reward ;. Based on the
new state s¢41, the agent receives a new observation w¢1 and uses r; to
evaluate at¢. Adapted from [26].

This intuitive conclusion was discussed and formally shown
in [24], where the authors derive that the Fisher Information
Matrix (FIM) for N bearing-only sensor measurements as

N sin 2¢; (p)
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where p is the source location, ¢; is the measurement error
standard deviation for sensor i, d; is the distance from sensor
i to the source, and ¢; is the bearing angle between sensor
i and the source, with s = {dy, ..., dn, 1, ..., dn}. Since
the variance of an unbiased estimate p of p can be related to
the FIM though the Cramér-Row bound as

Elp-p)(p—p)']>I " (p,s), )

one can indeed conclude that |¢| = 7/2 is the optimal two-
sensors angle for SL [24, Proposition 1].2 This fundamental
result is also at the core of the method presented in this paper,
as discussed in Section III.

M

D. Reinforcement Learning

Reinforcement learning is a machine learning paradigm
where agents learn to make sequential decisions by interacting
with an environment. The goal is for an agent to find an
optimal sequence of actions a based on observations w of
the current state s of the environment. Unlike supervised
learning, which requires labeled data, RL agents learn through
trial and error, receiving feedback in the form of rewards r
on their actions (larger positive rewards are associated with
actions that take the system closer to the desired state). We
distinguish between the abstract agent (the learning algorithm)
and agent instances, which are individual trained instances
of the agent with a unique set of parameters. The actions
should be chosen so to maximize the expected value of the
(discounted) accumulated reward [25]. The RL approach is
particularly well-suited for complex control problems where
optimal solutions are difficult to derive analytically. A high-
level schema of the standard RL loop is presented in Fig. 2.
One iteration of this observation—action—reward loop is called
a step or timestep.

2In particular, the estimation error is inversely proportional to det(Z(p, s)).

The RL framework is typically formalized as a Markov
Decision Process, defined by states, actions, transition prob-
abilities, and rewards. In our underwater SL context, states
represent the positions and internal model of the surroundings,
captured in the internal fused map of the AUVs. Actions
correspond to heading changes, and rewards reflect how effec-
tively the vehicles position themselves to maximize detection
probability and information gain. An RL task is often episodic,
where each episode represents complete task sequences from
initialization to termination. Starting from an initial state, a
sequence of states, actions, and rewards that occur when an
agent interacts with the environment is called a rollout or
trajectory.

The core objective in RL is to optimize the agent’s decision-
making policy. A policy 7 maps states to actions, and the goal
is to find a policy that maximizes the expected cumulative
reward. Value functions estimate the expected return from
a given state, either following a specific policy (state-value
function V'(s)) or taking a specific action and then following
the policy (action-value function Q(s, a)).

Modern RL approaches often employ neural networks to
approximate these functions, allowing them to handle high-
dimensional state spaces. Policy gradient methods directly
optimize the policy parameters 6 by estimating the gradient
of the expected return with respect to these parameters, while
“actor-critic” methods combine policy optimization with value
function approximation to reduce variance in the gradient
estimates. An in-depth discussion of these techniques and more
can be found in [25].

E. Simulation engines for data generation and validation

Training a neural network via RL is a data-intensive process,
and training an agent by interacting with the true environment
is usually prohibitively expensive or dangerous in robotic
applications. For this reason, simulated environments are often
used [26, Chapter 11.2]. A simulated environment should
accurately model the dynamics of the problem, while being
efficient at fast data generation. Collecting sufficient high-
quality data is especially challenging in the underwater domain
due to the limitations of underwater communication and the
inherently high costs of operating sea vehicles.

For this work, we use two distinct simulation engines. The
first, which we refer to as ¥, is used for training. It is
developed in Python as an OpenAl Gymnasium object [27],
and it is designed to be as quick as possible at the cost of
approximations over several aspects of the problem dynamics.
The second simulation engine, o, is used to validate the
approach we develop in Section III. This simulation engine
approximates the problem’s dynamics more closely, including
a more accurate model for the vehicle dynamics, the sensor’s
performance, and the communication channel. Consequently,
Y5’s additional functionalities make it too resource-intensive
to be used efficiently for training purposes.

A key distinction between simulation engines X1 and X,
is the source position estimation process. 1 assumes perfect



knowledge, while X5 incorporates realistic bearing measure-
ment generation via the OG pipeline described in Section
II-B. This creates an estimation of the source position which
may contain inaccuracies, especially during early episode
stages. We hypothesize that training with perfect information
enhances learning efficiency without impeding policy transfer
between environments. As agents establish reasonable tar-
get estimates through OG mapping during deployment, their
learned behavior optimizes sensor-source geometry, progres-
sively improving position estimation accuracy.

III. MULTI-AGENT REINFORCEMENT LEARNING FOR
SOURCE LOCALIZATION

A. The Multi-Agent Reinforcement Learning framework

In RL, an agent is an entity that interacts with the envi-
ronment to learn a behavior that maximizes a given reward
function. To do this, an agent implicitly learns its environment
dynamics — how the environment changes as a result of the
actions that the agent takes. In a situation where multiple
agents cooperate to complete a task, one agent’s actions affect
the overall state of the environment and, therefore, the behavior
of the other agents. To perform well, all agents need to account
for the behavior of their collaborators: the joint behavior. In
this scenario, we consider that the agents are concurrently
learning to adapt their behavior independently from each other.
Then, the joint behavior, and thus the environment dynamics,
are nonstationary from the point of view of one agent [28].

A possible solution to coordinate the behavior of multiple
agents in MARL is a centralized training, distributed execution
(CDTE) scheme, often implemented with shared parameters.
When each agent learns to perform a cooperative task indepen-
dently, they effectively chase a moving target since the other
agent’s policy is also shifting. However, with a shared policy
network, any update from one agent is immediately reflected
in both agents’ behavior. This does not necessarily eliminate
the nonstationarity of the environment dynamics but has been
shown empirically to be a simple and effective method in
MARL [29].

In the setting presented here, the two AUVs share a full set
of policy network parameters 6, which effectively creates one
agent instance that controls both AUVs. The agent instance
learns how to cooperate with a collaborator of which it knows
the position and heading direction. Both AUVs interchange
contacts to form a fused probabilistic OG map estimate of the
environment. In turns, either agent takes an action a; based
on an observation w; and collect a reward r;, accordingly.
Tuples (wy,as, ;) are added to the collective trajectory to
update 6 when the episode terminates. Fig. 3 shows how the
RL loop is adapted to a multi-agent scenario with fully shared
parameters. Once training is finished, the agents are deployed
with identical policy networks.

One drawback of all agents sharing the same parameter
network is the inability to create heterogeneous agents that
could perform separate tasks or behaviors. This limits the
potential benefits of having a system with multiple nodes.

B. Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) algorithm is used
to train the agents [30]. PPO is an actor-critic policy gradient
algorithm, where a differentiable parametrized policy 7y is
optimized via gradient ascent over an estimate of the policy
gradient to approximate the optimal policy 7*.

This policy gradient estimator is obtained by differentiating
an objective function with respect to #. A standard objective
function at a certain timestep ¢ is

LPG(Q) = Et[IOg Wﬁ(at|st)/it]v 3

where, A, is an estimator of the advantage function. At any
time ¢, the advantage function describes how much better or
worse the return of a certain trajectory is than the expected
value of that return, given the value functions at time ¢. There-
fore, L% () evaluates a stochastic policy s by weighing the
achieved performance during a trajectory by how likely the
performed actions were under the current policy.

Performing these rollouts can be expensive, especially when
using heavyweight simulations. Therefore, doing multiple gra-
dient ascent updates using the same trajectory is appealing.
However, in practice, this often leads to destructively large
policy updates [30]. Small changes in the policy parameters
could cause unwanted large changes in the resulting policy.
In Deep RL it is a common problem to suddenly see the
performance drop off a figurative ‘cliff’ during training and
not recover.

PPO is the latest iteration in a series of approaches to
address this issue [31]. In particular, it introduces a clipped
component to the objective function as

LCLIP(G) = Et [min(rt (Q)At, Clip(rt(é’), 1 —E€, 1+6)At}7 (4)

where 74(0) is defined as 74(0) = %

with mgoq being
the policy computed at the previous step. For the rationale
behind these design choices, we refer to [31].

We make use of the PPO implementation by Stable Base-
lines 3 (SB3) [32]. We use the standard ‘MlpPolicy’ actor-
critic policy network. Both actor and critic are represented
by a multi-layer perceptron (MLP) with two hidden, fully
connected layers, each with 64 units. The full default set
of algorithm parameters from SB3 was used, and this was
sufficient to show promising learning capacity on this task.

C. Observation space

The observation space, which serves as input to the policy
neural network, comprises seven quantities representing Eu-
clidean distances (expressed in meters) and angles (expressed
in radians) between the sensors and the source:

o actor: L2 distance to the source (d,)

e actor: bearing to the source (¢,)

e collaborator: L2 distance to the source (d..)

« collaborator: bearing to the source (¢.)

o L2 distance between the AUVs (d(a, ¢))

o inter-sensor angle measured at the source position (¢q,c)
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at a certain time ¢, and selects an action at1

according to the current policy mg. The environment takes a step forward in time based on a%. Agent 2, then,

receives observation wf 1 and the reward r% corresponding to atl. The tuple (wtl, a%, rg) is added to the trajectory which is then used to perform policy
updates on the shared network. Finally, Agent 2 selects af 1 based on wf 1 and initiates the next environment step.

o last action of the collaborator (v/.)

At a given timestep, which AUV is selected as the ‘actor’
and which is selected as the ‘collaborator’ depends on which
AUV made the last action. The latter collects the subsequent
observation and is thus responsible for updating their shared
parameters.

The observation elements are normalized in [—1, 1] before
being fed to the policy network as input.

D. Action space

The action space is one-dimensional: a continuous heading
T T

change in [—7, T]. The output of the neural network is a scalar
in [—1, 1], which is then mapped to the action space range.

E. Reward function

The reward function is based on theoretical sensor man-
agement principles. It is a combination of the sensor’s (Pd)
function, which is unique to each sensor type and can be
changed based on the particular sensor used, and det(Z(p, s)),
the determinant of the FIM, which is maximized when any
configuration of a set of sensors s and a single acoustic source
p is optimal in an information-theoretic sense, see Section II-C.

The distance factor in the FIM is fixed to a predetermined
value so that changes in the value of the determinant of
this matrix will only be due to changes in the angular
configuration. This modification is necessary to prevent AUVs
from attempting to crash into the source, which would occur
due to the singularity of det(Z(p,s)) when the range is 0.
A theoretical optimal trajectory would end up at the precise
source position, but, in reality, one would want to keep some
distance from the source.

The FIM component is normalized for use in the reward
function. Throughout each episode, we keep track of the
highest value of det(Z(p,s)) observed up to the current time
step t. At each time step, we divide the current det(Z(py,st))
by its maximum value to obtain the normalized metric

det Z(py, s¢)

det T = '
e (pta St) rtr}%i( (det I(pt7 St))

(&)

Sensors are rarely perfect, and for each sensor, a probability
density function Pd(p, s) can be defined, which describes the
probability that a source p will be detected, given its position
relative to the sensor s. This function can be used to evaluate
the optimality of a sensor-target configuration, and in our case,
it will be used in the reward function. In the multi-agent
setting, the Pd of multiple sensors are averaged:

N

XN Pd(p,sa)
N

Finally, an additional penalty when the source is outside of

the detection range for the given sensor gives us the reward

(6)

t1P, 5 = Pd+ det Z(p,s) — 1, otherwise.

(7
IV. EXPERIMENTS DESIGN

In this section, we describe the process of training a neural
network for multi-agent SL with the approach proposed in
Section III. An agent instance is trained for 3,000,000 steps
in simulation engine X;, while its performance is validated



through the simulation engine X5, see Section II-E for a
discussion on the differences between the two simulations.

Two AUVs are free to move in an operating box of
6,000 x 6,000 meters. Their starting locations are randomly
initialized within a smaller box of 4,000 x 4,000 meters,
centered within the operating box. A stationary acoustic noise
source is positioned at x = 50, y = 50. In one timestep, each
AUV travels for 40 meters, after which one AUV makes a new
heading decision. Which AUV makes the decision alternates
between timesteps. This entails that each AUV adjusts its
heading every 80 meters (since speed is fixed at 1m/s).
Episodes are terminated with an additional penalty of —50
when at least one of the AUVs either leaves the operating
box or gets within 100 meters of the source. Episodes are
truncated without an additional penalty after 200 timesteps
when no other termination criteria are met.

The resulting policy is evaluated in the simulation engine
3. In this simulation engine, the AUV that makes the obser-
vation consults its internal fused OG map m g to estimate the
source position. The source is estimated to be at the center of
the cell with the minimum value of L(7p), see Section II-B

A. Comparison with Baseline

Our optimized policy is evaluated against an analytical
baseline solution proposed in [10]. This solution was designed
for cooperative SL via passive sonar for two cooperating AUV's
with limited communication. Similarly to our approach, the
AUVs take their actions in alternating fashion and communi-
cate their latest decision.

A priori, a set of eight pairs of starting points is chosen
randomly on a circle with a radius of 1,500 meters from the
source. Both solutions will be evaluated with this identical set
of starting points, for accurate comparison. For each initial
condition, a 90 steps rollout is performed with the MARL
policy and for a corresponding amount of time (1 hour)
with the baseline algorithm. The average performance of both
methods is compared in terms of absolute error of source
position estimation.

B. Uncertain Communication

Throughout the training, a perfect arrival of all commu-
nication is assumed. This second experiment explores the
resilience of the policy to missed communications. To give
the agents an fair chance of dealing with decreased com-
munication, we add a simple heuristic to create a sensible
observation. The agents keep track of the last known position
and heading of their collaborator. Whenever an agent notices
that a message has not arrived, it predicts the position of the
collaborator one timestep into the future. This prediction is
based on the last known position and heading, in a Model
Predictive Control fashion [33]. The observation of that agent
is then built based on this prediction and the last known action
of the collaborator. Once a new message arrives, the predicted
position is overridden with the new information.

For this experiment, we evaluate the reward in place of
the absolute error of source position estimation, which would
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Fig. 4. A rollouts of 90 timesteps of the trained MARL solution, evaluated
in the lightweight training simulation engine

normally be the more relevant metric for actual performance.
We make this choice because constrained communication natu-
rally leads to fewer contacts arriving to update the OG maps,
and thus, the source position estimation is more erroneous.
The agents’ ability to overcome the challenge of constrained
communication requires accurate evaluation. Using a measure
that is directly influenced by communication success rate
would compromise this assessment.

V. RESULTS DISCUSSION

After 3,000,000 steps, the training converges with the
total reward per episode consistently ranging between [250,
280]. When evaluating the model, in both simulations *;
and Yo, the paths show that the algorithm managed to learn
a sensible policy. The AUVs find the source, approach it,
and circle around it. The AUVs show ability to cooperate.
They consistently circle in the same direction, and keeping
a constant radius to the target. Furthermore, they manage a
sensible phase difference in the circling behavior between each
other, near the theoretical optimal |¢, .| of /2, as discussed in
II-C. If needed, one or both AUVs show that they can perform
a maneuver to ensure this phase difference. Fig. V shows an
example of this behaviour in X1, and Fig. 5a shows the same
results for 5. This is a promising sign for potential sim-to-
real transferability of the solution presented here.

A. Comparison with Baseline

Results show performance that is comparable with the base-
line in terms of average error per episode. The mean absolute
estimation error, averaged per run, was approximately 87.402
meters for the MARL solution, and approximately 81.898
meters for the analytical solution. However, even though the
average performance of the MARL solution is slightly better,
it does appear to be less reliable. The standard deviation
around this mean was approximately 53.617 compared to
approximately 38.240 of the analytical solution.
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for each message sent by an AUV to reach the the other AUV. As one can observe, the overall performance decreases, but the source location is nonetheless
identified and successfully circled. Finally, panel (c) shows the same experiment as panels (a), carried out with a 20% probability for each message sent by
an AUV to reach the the other AUV. This is an extreme condition, where the AUVs ultimately fail to successfully cooperate to circle the source location.

B. Uncertain Communication

When the reliability of successful communication is re-
duced, the paths of the AUVs become unstable, but the strategy
of cooperating to approach and circle the source remains.
Examples of the paths can be seen in Fig. 5, which displays
examples of paths of two AUVs starting SL behavior about
1,5000m southeast of the source’s location. As the percentage
of successful communication decreases, the paths become less
stable. However down to a communication arrival success rate
of 40%, the AUVs remain able to locate the source and circle
it. It is only with a rate of 20% of messages arriving, that the
agents fail to showcase the key aspects of a good solution.
The AUVs do not show coordinated behavior, nor manage to
reliably circle the source.

Furthermore, performance in terms of reward remains ac-
ceptable. Fig. 6 shows the result in terms of mean reward over
an episode of 90 steps. A slight decrease in performance can
be observed as the percentage of dropped messages increases,
with a drop in reward in the experimental setting where only
20% of messages arrive successfully. In line with this, the
results of the one-way ANOVA test showed that some of the
differences between groups were significant (F' = 11.4896,
p < 0.001). A Tuskey’s HSD post-hoc test revealed that there
were significant differences (p < 0.05) between the pairs:
20%-70% and 20%-100%.

To make the result of the linear regression more intuitive,
these can be expressed as a function of the probability of
packet loss, which we cluster over the four test groups
[0%, 30%, 60%, 80%]. A linear regression through the
mean rewards, corresponding to these communication loss
probabilities per evaluation rollout was performed. It found a
slight negative correlation between the level of communication
success rate and mean episode reward. The fitted line has a
slope of —0.003 and an intercept of approximately 1.061, with

an R? value of 0.288.

The theoretical maximum value for the average reward over
an episode is 1.8. This value would be achieved if, at each
step, the maximum reward is achieved. This is, however, just
a theoretical maximum. It would only be achieved if the
agents started in a perfect geometric configuration, and if every
following action succeeded in preserving the FIM theoretically
perfect configuration.

In this experiment, the starting locations were set in such
a way that quickly obtaining a high reward was difficult. In
each experiment run, the agents started close to each other.
Consequently, they first had to increase the distance between
each other before circling the target, in order to increase the
Fisher matrix component of the reward function. This is a
possible explanation for why, even in the scenario with a
communication success of 100%, the mean reward per episode
was at most 75% of the theoretical maximum.

VI. CONCLUSIONS
A. Summary of findings

The results demonstrate that the MARL approach can
successfully coordinate multiple underwater assets to perform
a SL task with performance comparable with an analytical
solution. Agents learn adequate behavior for an underwater
SL task with passive sonar measurements, purely on a reward
signal based on the optimal sensor configuration. Their paths
are similar in shape to theoretical optimal sensor paths for
localization of a stationary target with bearing-only measure-
ments [11]. A difference with the theoretical optimal paths
is that the AUVs don’t reach the exact source location, but
find a trajectory in which they are able to circle the source
indefinitely. This behavior is achieved by setting the range
factor to a constant in the FIM component of the reward, and
the added penalty that is given when the AUVs come too
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close to the source, as discussed in section III-E. In a real life
setting, this is important since maintaining a safe distance from
the source preserves optimal sensing capabilities and avoids
collisions with the acoustic source. Moreover, by adding a
Model Predictive Control heuristic, the learned policies show
robustness to communication losses of up to 60%. This is
a critical consideration for practical underwater deployments
where acoustic communication is inherently unreliable.

B. Limitations of the proposed approach

Our simulation approach presented some challenges. The
lightweight simulation engine (31) used for training, while ef-
ficient, required significant simplifications that potentially limit
real-world applicability. Conversely, the heavyweight simu-
lation (X2) offered more realism but severely restricted our
ability to perform extensive experiments due to computational
demands. This constraint is evident in the baseline comparison,
where only eight evaluation runs could be completed due to
time and efficiency limitations of the heavyweight simulation.

A fundamental limitation of our approach is that it only
allows for homogeneous agents. By using full parameter
sharing, both AUVs execute identical behaviors modulated
only by their respective inputs. This restricts the potential
benefits of having a multi-agent system where agents could
specialize in complementary roles or behaviors. The system
cannot develop heterogeneous strategies that might be better
at optimizing information gain across the network.

Despite these limitations, our approach demonstrates
promising initial results for applying RL to underwater SL
tasks and establishes a foundation for future improvements in
multi-agent underwater acoustic networks.

C. Extensions and future work

Building on this proof-of-concept, several promising direc-
tions emerge for future research.

In particular, we plan to extend this framework to more
complex and challenging scenarios, where we envision RL
approaches to outperform traditional methods. In fact, adding

multiple dynamic acoustic sources as well as coordinating
larger AUV fleets would push the boundaries of what is
computationally tractable for real-time analytical approaches.
Conversely, RL concentrates the computational burden to the
training phase, and is otherwise efficient during inference.
These scenarios represent the real-world complexity of un-
derwater surveillance and would showcase the adaptability of
RL in handling dynamic environments.

Beyond these environmental complexities, an important
theoretical and practical investigation should involve com-
paring centralized against decentralized training approaches
for this task. While in this work we focused on parameter
sharing for simplicity, future work could explore decentralized
training. This could validate or challenge existing claims in
the MARL literature about effectiveness of coordination in
communication-constrained environments. Additionally, given
the constraints of underwater communication, developing
MARL systems specifically trained to handle severely de-
graded communication (success rates of 10 — 20%) would
be valuable for real-world deployments. Our results suggest
resilience down to 40% success rates, but specialized training
could potentially push this boundary further. Furthermore,
creating heterogeneous agents represents another promising
direction. This could be achieved by adding agent indicator
nodes to the input layer as suggested by [29], allowing agents
to develop specialized behaviors while still benefiting from
shared learning experiences.

Finally, exploring more sophisticated neural network ar-
chitectures that directly process OG maps could improve
performance. Using a convolutional neural network (CNN)
feature extractor might help agents distinguish between dif-
ferent environmental characteristics and adapt their behaviors
accordingly, potentially enabling them to switch seamlessly
between detection and localization tasks.
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