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Abstract
Outside of transfer learning settings, reinforcement
learning agents start their learning process from a
clean slate. As a result, such agents have to go
through a slow process to learn even the most obvi-
ous skills required to solve a problem. In this paper,
we present INNATECODER, a system that leverages
human knowledge encoded in foundation models to
provide programmatic policies that encode “innate
skills” in the form of temporally extended actions,
or options. In contrast to existing approaches to
learning options, INNATECODER learns them from
the general human knowledge encoded in founda-
tion models in a zero-shot setting, and not from the
knowledge the agent gains by interacting with the
environment. Then, INNATECODER searches for a
programmatic policy by combining the programs en-
coding these options into larger and more complex
programs. We hypothesized that INNATECODER’s
way of learning and using options could improve
the sampling efficiency of current methods for learn-
ing programmatic policies. Empirical results in Mi-
croRTS and Karel the Robot support our hypothesis,
since they show that INNATECODER is more sample
efficient than versions of the system that do not use
options or learn them from experience.

1 Introduction
Deep reinforcement learning (DRL) agents typically begin
their training process with randomly initialized neural net-
works. As a result, they must learn from scratch even the
most basic skills required to solve a problem. Due to the
high sample complexity of DRL algorithms, such tabula rasa
learning can be inefficient and time-consuming, which has
inspired several research directions aiming at reusing prior
computation [Zhu et al., 2023; Khetarpal et al., 2022].

In this paper, we harness the general human knowledge
encoded in foundation models to endow agents with helpful
skills before they even start interacting with the environment.
This is achieved by using programmatic representations of
policies [Trivedi et al., 2021]—programs written in a domain-
specific language encoding policies—and the foundation mod-
els’ ability to write computer programs. Depending on the lan-

guage used, programmatic policies can generalize better to un-
seen scenarios and be human-interpretable [Verma et al., 2018;
Bastani et al., 2018]. In addition to these advantages and
loosely inspired by the innate abilities of animals [Tinbergen,
1951], we show that these representations of policies allow us
to harness helpful “innate skills” from foundation models.

Given a natural-language description of the problem that
the agent needs to learn to solve, our system, which we call
INNATECODER, queries a foundation model for programs that
encode policies to solve the problem. Although the programs
the model generates are unlikely to encode policies that solve
the problem, we hypothesize that the set of sub-programs we
obtain from these programs can encode helpful temporally
extended actions, or options [Sutton et al., 1999]. We consider
options as functions the agent can call and that will tell it how
to act for a number of steps [Precup et al., 1998].

Options can improve the agent’s learning in different ways.
They can allow the agent to better explore the problem
space [Machado et al., 2017] or transfer knowledge between
different tasks [Konidaris and Barto, 2007]. This paper
presents a novel way of learning options with foundation mod-
els. We also present a novel way of using the learned options,
which is inspired by recent work on learning semantic spaces
of programming languages [Moraes and Lelis, 2024]. In the
semantic space, neighbor programs encode similar but dif-
ferent agent behavior, which can be conducive to algorithms
searching for programmatic policies [Trivedi et al., 2021]. In-
stead of searching only in the space of programs induced by
the syntax of the language, INNATECODER also searches in
the semantic space induced by options. While previous meth-
ods can benefit from up to hundreds of options [Eysenbach
et al., 2019], INNATECODER’s use of programmatic options
allows it to benefit from thousands of them.

INNATECODER’s approach to harnessing options from
foundation models contrasts with previous approaches to
automatically learning them, e.g., [Tessler et al., 2017;
Bacon et al., 2017; Igl et al., 2020; Klissarov and Machado,
2023]. This is because options are harnessed from the general
knowledge encoded in a foundation model, as opposed to the
knowledge the agent gains by interacting with the environ-
ment. This zero-shot approach to learning options is enabled
by the use of a domain-specific language to bridge the gap
between the high-level knowledge encoded in foundation mod-
els and the low-level knowledge required at the sensorimotor



ρ := if h then a

h := frontIsClear | markersPresent

a := move | putMarker | pickMarker

ρ

if h

MP
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Figure 1: Top: Context-free grammar specifying a simplified ver-
sion of the domain-specific language for Karel the Robot. Bot-
tom: Abstract syntax tree for if markersPresent then
pickMarker, where MP and PM stand for markersPresent
and pickMarker, respectively. Karel is a robot acting on a grid,
where it needs to accomplish tasks such as collecting and placing
markers on different locations of the grid. In this program, Karel will
pick up a marker if one is present in its current location on the grid.

control level of the agent [Klissarov et al., 2024]. For example,
foundation models trained on Internet data likely encode the
knowledge that, to win a match of a real-time strategy game,
the player must collect resources and build structures, which
will allow for the training of the units needed to win the game.
However, the model cannot issue low-level actions in real time
to control dozens of units to accomplish this plan. INNATE-
CODER helps bridge this gap by distilling the knowledge of
the model into options that can be executed in real time.

We evaluated our hypothesis that foundation models can
generate helpful programmatic options in the domains of
MicroRTS, a challenging real-time strategy game [Ontañón,
2017], and Karel the Robot [Pattis, 1994], a benchmark for pro-
gram synthesis and reinforcement learning algorithms [Chen
et al., 2018; Trivedi et al., 2021]. The results in both do-
mains support our hypothesis, since INNATECODER was more
sample-efficient than versions of the system that do not use
options or learn options from experience. We also show that
the policies INNATECODER learns are competitive and often
outperform the current state-of-the-art algorithms. INNATE-
CODER is inexpensive because it uses the foundation model a
small number of times as a pre-processing step, making it an
accessible system to smaller labs and companies.1

2 Problem Definition
We consider sequential decision-making problems formulated
as Markov decision processes (MDPs) (S,A, p, r, µ, γ). Here,
S is the set of states and A the set of actions. The func-
tion p(st+1|st, at) is the transition model, which gives the
probability of reaching state st+1 given that the agent is in
st and takes action at at time step t. The agent observes
a reward value of Rt+1 when transitioning from st to st+1.
The reward value the agent observes is returned by the func-
tion r. µ is the distribution of the initial states of the MDP;
states sampled from µ are denoted s0. γ in [0, 1] is the dis-
count factor. A policy π is a function that receives a state s

1INNATECODER is available at https://github.com/rubensolv/
InnateCoder.

and returns a probability distribution over actions available
at s. The goal is to learn a policy π that maximizes the ex-
pected sum of discounted rewards for π starting in an s0:
Eπ,p,µ[

∑∞
k=0 γ

kRk+1]. V π(s) = Ep,π[
∑∞

k=0 γ
kRk+1|s0 =

s] is the value function that measures the expected return for
policy π starting from s. In this work, we approximate the
value function of a policy π and state s with Monte Carlo
roll-outs and denote the approximation as V̂ π(s).

We consider programmatic representations of policies,
which are policies written in a domain-specific language
(DSL). The set of programs a DSL accepts is defined through
a context-free grammar (M,N,R, I), where M , N , R, and
I are the sets of non-terminals, terminals, the production
rules, and the grammar’s initial symbol, respectively. Fig-
ure 1 shows a DSL for a simplified version of the language we
use for Karel the Robot (the complete DSL is shown in Ap-
pendix H of an extended version of this paper [Moraes et al.,
2025]). In this DSL, the set M is composed of symbols ρ, h, a,
while the set N includes the symbols if, frontIsClear,
markersPresent, move, putMarker, pickMarker.
R are the production rules (e.g., h → frontIsClear),
and ρ is the initial symbol. We denote programmatic policies
with letters p and n and their variations such as n′ and n∗.

We represent programs as abstract syntax trees (AST),
where each node n and its children represent a production
rule if n represents a non-terminal symbol. For example, the
root of the tree in Figure 1 represents the non-terminal ρ,
while node ρ and its children represent the production rule
ρ → if h then a. Leaf nodes in the AST represent termi-
nal symbols. Figure 1 shows an example of an AST for the pro-
gram if markersPresent then pickMarker. A
DSL D defines the possibly infinite space of programs JDK,
where in our case each program p in JDK represents a policy.

Given a domain-specific language D, our task is to find a
programmatic policy p ∈ JDK that maximizes the expected
sum of discounted rewards for a given MDP.

3 INNATECODER

Figure 2 shows a schematic view of INNATECODERwith its
three components: one for learning options, another that uses
the options to induce an approximation of the semantic space
of the DSL, and a component to search in such a space. Next,
we explain these components.

3.1 Learning Options
An option is a program encoding a policy that the agent can
invoke in specific states. Once invoked, the program tells the
agent what to do for a number of steps. Once completed, the
option “returns” the control to the agent. An option ω is de-
fined with a tuple (Iω, πω, Tω), where Iω is the set of states in
which the option can be initiated; πω is the policy the agent
follows once ω starts; Tω is a function that returns the proba-
bility in which ω terminates at a given state. INNATECODER
learns programs, written in a given DSL, encoding options.
The programs receive a state of the MDP and return the action
the agent should take at that state, thus encoding πω .

We assume that the set Iω is the set S of all states of the
MDP, which means that the program can be invoked in any

https://github.com/rubensolv/InnateCoder
https://github.com/rubensolv/InnateCoder


Figure 2: INNATECODER has three parts. “Learning Options” harnesses options from a foundation model. The model generates a set of
programmatic policies that are broken into a set of options (Section 3.1). “Semantic Space” uses the options to induce the semantic space of the
DSL (Section 3.2). “Local Search” searches in a mixture of the syntax and semantic spaces for a policy n∗ (Section 3.3).

state. However, note that the program may not return any
actions in a given state s, which is equivalent to s not being in
Iω . For example, “if b1 then c1” returns the action given in c1
only if condition b1 is satisfied in the state in which the option
was queried; it returns no action for states that do not satisfy b1.
The option termination criterion Tω is also determined by the
program; the option terminates when the program terminates.
This termination criterion means that, depending on the DSL,
options have an internal state, representing the line in the
program in which the execution will continue the next time
the agent interacts with the environment. For example, if the
option “c1 c2” is invoked for state st and c1 returns an action,
then the agent’s action in st+1 is determined by c2.

Programmatic options are harnessed from a foundation
model as follows. We provide a natural language descrip-
tion of the MDP and the Backus-Naur form of the DSL to
the model. The model then provides a set of m programs
written in the DSL encoding policies for the MDP. While it is
only rarely that the model generates policies that maximize
the expected return of the MDP, we hypothesize that these
programmatic policies can be broken up into sub-programs
that can encode options. Each program p is broken into one
sub-program for each sub-tree rooted at a non-terminal symbol
in the AST of p. For example, for the program “if b1 then c1
c2” we obtain the sub-programs “if b1 then c1 c2”, “b1”, “c1”,
“c2”, and “c1 c2”. These sub-programs form a set of options O,
which INNATECODER uses to approximate the semantic space
of the DSL. Note that this set of options is generated zero-shot,
before the agent starts interacting with the environment.

3.2 Inducing Semantic Spaces with Options
Methods for searching for programmatic policies traditionally
search in the space of programs defined by the context-free
grammar of the DSL [Verma et al., 2018; Carvalho et al.,
2024]. We refer to this type of space as the syntax space, since

it is based on the syntax of the language.

Definition 1 (Syntax Space). The syntax space of a DSL D
is defined by (D,N x

k , I, E). With JDK defining the set of
candidate programs, or solutions, N x

k (x is for “syntax”) is
the syntax neighborhood function that receives a candidate
and returns k candidates from JDK. I is the distribution of
initial candidates. Finally, E is the evaluation function, which
receives a candidate in JDK and returns a value in R.

We define the distribution of initial candidates I through a
procedure that starts with a string that is the initial symbol of
the grammar and iteratively, and uniformly at random, samples
a production rule to replace a non-terminal symbol in the string.
In the example of Figure 1, we replace the initial symbol ρ with
if(h) then a with probability 1.0, since this is the only
rule available; then, h is replaced with frontIsClear or
markersPresent with probability 0.5 each. This iterative
process stops once the string contains only terminal symbols.

The syntax neighborhood function N x
k defines the structure

of the search space, as it determines the set of candidate so-
lutions that the search procedure can evaluate from a given
candidate n. Given a candidate n, N x

k (n) returns a set of k
neighbors of n. These neighbors are generated by selecting,
uniformly at random, a node that represents a non-terminal
symbol in the AST of n, and then replacing the sub-tree rooted
at the selected node by another randomly generated sub-tree.
This process is repeated k times, to generate k possibly differ-
ent neighbors of n. Finally, E is an approximation of the value
function of the policy encoded in n from a set of initial states
s0, V̂ n(s0); we obtain V̂ n(s0) by averaging the returns after
rolling n out from states s0.

Moraes and Lelis [2024] showed that searching in the syntax
space can be inefficient because often the neighbors n′ of a
candidate n encode policies that are semantically identical to
n; the programs differ in terms of syntax, but encode the same



behavior. As a result, the search process wastes time evaluating
the same agent behavior. They approximate the underlying
semantic space of the DSL, where neighbor programs are
syntactically similar but differ in terms of behavior. In their
setting, the agent learns programs for a set of tasks, which
are used to induce the semantic space, and the induced space
is used in downstream tasks. INNATECODER overcomes the
requirement to operate on a stream of problems by using a
foundation model to learn the options in a zero-shot setting.
Definition 2 (Semantic Space). The semantic space of a DSL
D is defined by (D,Nm

k , I, E), where I and E are identical
to the syntax space (Definition 1). The function Nm

k (m is
for “semantics”) is a semantic neighborhood function that
also receives a candidate and returns k candidates from JDK.

We define the function Nm
k with a set of options Ω, where

each option ω in Ω represents a different agent behavior. A
neighbor of candidate n is obtained by selecting, uniformly
at random, a node c in the AST of n that represents a non-
terminal symbol. Then, we replace the sub-tree rooted at c
with the AST of an option ω in Ω. The option ω is selected,
uniformly at random, among those in Ω whose AST root
represents the same non-terminal symbol c represents. By
matching the non-terminal symbols when selecting ω, we
match ω with the type of the sub-tree that is removed from n.
Similarly to N x

k , Nm
k generates k possibly different neighbors

by repeating this process k times. We require the options in Ω
to encode different agent behaviors to increase the chance of
sampling neighbors with different behaviors.

We filter the set of options O harnessed from the foundation
model into a set Ω of behaviorally different options. First, we
repeatedly sample an option o ∈ O, roll it out once in the
environment (by playing itself in MicroRTS) from an initial
state s0 sampled from µ, and collect all states observed in
which the agent gets to act into a vector of states S. We
do this until we have at least 300 and at most 700 states in
S.2 Second, we test the options’ behaviors by calling every
option o ∈ O once for each state s ∈ S. We then collect
the actions o returns into a vector called an action signature
Ao for the option o. The i-th entry of Ao corresponds to the
action o chooses for the i-th state in S. We use these action
signatures to characterize the option’s behavior. Finally, in
order to form a set Ω of behaviorally different options, we
keep only one option from O, arbitrarily selected, for each
observed Ao. Note that this assumes discrete action spaces.
Future research will investigate different ways of measuring
behavior in continuous action spaces. Also, filtering O into
Ω uses less than 1% of the computation in our experiments.
Programs that cannot be rolled out (e.g., Boolean expressions
cannot issue actions) are not included in the set of options.

3.3 Searching in Semantic Space
INNATECODER uses stochastic hill-climbing (SHC) to search
in the semantic space of a given DSL D for a policy that max-
imizes the agent’s return. SHC starts its search by sampling a
candidate program n from I. In every iteration, SHC evalu-
ates all k neighbors of n in terms of their E-value. The search

2We chose these values so that we could approximate the behavior
of the options well while being computationally reasonable.

then moves on to the best neighbor of n in terms of E , and
this process is repeated from there. SHC stops if none of the
neighbors has an E-value that is better than the current candi-
date, that is, it reaches a local optimum. SHC uses a restarting
strategy: once SHC reaches a local optimum, if SHC has not
yet exhausted its search budget, it restarts from another initial
candidate sampled from I. SHC returns the best solution,
denoted n∗, encountered in all restarts of the search.

INNATECODER does not search solely in the semantic space,
but mixes both syntax and semantic spaces in the search. This
is because the set of options might cover only a part of the
space of programs the DSL induces. To guarantee that IN-
NATECODER can access all programs in JDK, with probability
ϵ, SHC uses the syntax neighborhood function in the search,
and with probability 1− ϵ, it uses the semantic one. We use
ϵ = 0.4 in our experiments. We chose this value because it
performed better in preliminary experiments.

4 Empirical Evaluation
Although foundation models are unlikely to generate programs
that encode strong policies, we hypothesize that the programs
they generate can be broken into smaller programs encoding
helpful options. We evaluated our hypothesis by measuring the
sampling efficiency of algorithms searching in the semantic
spaces induced by them. We evaluated INNATECODER on
MicroRTS [Ontañón, 2017] and Karel the Robot [Pattis, 1994].
MicroRTS We use the following maps from the MicroRTS
repository,3 with the map size in brackets: NoWhereToRun
(9 × 8), basesWorkers (24 × 24), and BWDistantResources
(32 × 32), and BloodBath (64 × 64). We use these maps
because they differ in size and structure. Since MicroRTS
is a multi-agent problem, we use 2L, a self-play algorithm,
to learn programmatic policies [Moraes et al., 2023]. In the
context of 2L, INNATECODER is required to solve an MDP in
every iteration of self-play (see Appendix M of the extended
paper [Moraes et al., 2025]). We use a new version of the
MicroLanguage as the DSL [Mariño et al., 2021]. The lan-
guage offers specialized functions and an action-prioritization
scheme through for-loops, where nested for-loops allow for
higher priority of actions. We provide a detailed explanation
of the MicroLanguage, as well as images of the maps used, in
Appendices H and K [Moraes et al., 2025].
Karel We use the following Karel problems, from previ-
ous works [Trivedi et al., 2021; Liu et al., 2023]: Stair-
Climber, FourCorners, TopOff, Maze, CleanHouse, Harvester,
DoorKey, OneStroke, Seeder, and Snake. The problems are
described in Appendix I [Moraes et al., 2025]. We use the
more difficult version of the environment known as “crash-
able” [Carvalho et al., 2024], where an episode terminates
with a negative reward if Karel bumps into a wall. We use the
same DSL used in previous work [Trivedi et al., 2021], which
we describe in Appendix H [Moraes et al., 2025].
Baselines The current state-of-the-art methods for both Mi-
croRTS and Karel use programmatic representations of poli-
cies, where the policies are written in the DSLs we use in
our experiments [Moraes et al., 2023; Trivedi et al., 2021].

3https://github.com/Farama-Foundation/MicroRTS/



Therefore, we focus on methods that use programmatic repre-
sentations as baselines. However, we provide comparisons of
INNATECODER with deep reinforcement learning baselines in
Appendices B.1 (MicroRTS) and B.2 (Karel) of the extended
paper [Moraes et al., 2025]. For both MicroRTS and Karel
we use SHC searching in the syntax space as a baseline, as it
represents state-of-the-art performance in both domains in our
non-transfer setting (SHC). We also use two variants of IN-
NATECODER where the options are learned without the help of
a foundation model. These variants can be seen as implementa-
tions of the Library-Induced Semantic Spaces (LISS) [Moraes
and Lelis, 2024] for non-transfer settings. In the first variant,
LISS learns the options as it learns to solve the problem. In
terms of the scheme shown in Figure 2, we skip the “Learning
Options” step and build the set of options from the programs
returned in every complete search of SHC. When we reach the
box “Restart?”, we use the sub-programs of the best program
encountered in that search to augment the set of options. We
call this baseline LISS-o, where “o” stands for “online”. In
the second variant, we sample programs from I and use their
sub-programs as options. We call this baseline LISS-r, where
“r” stands for “random”. We also use the best program the
foundation model generated from all programs used to create
the set of options as a baseline called FM. LISS-o and LISS-
r allow us to evaluate the effectiveness of learning options
from a foundation model, while FM allows us to evaluate the
foundation model as an alternative to solve the problem di-
rectly. We also use the Cross Entropy Method (CEM), which
outperformed DRL algorithms in Karel [Trivedi et al., 2021].

Foundation Models We use OpenAI’s API for GPT 4o,
whose training cut-off date is October 2023. We also per-
form tests, for MicroRTS, using the LLama 3.1 model with
405 billion parameters, whose training cut-off is December
2021. We used the GPT model in both the MicroRTS and
Karel experiments, while the Llama model was used in the
MicroRTS experiments. There were no MicroRTS programs
available online prior to the Llama cut-off date, so the Llama
evaluations on MicroRTS did not suffer from data leakage.
The GPT model might have trained on the MicroRTS and
Karel programs that were available online prior to its training
cut-off date. We attempt to measure how much a possible data
leakage can influence our results by using the FM baseline. If
the model can simply retrieve the solutions seen in training,
one would expect this baseline to perform well.

Other Specifications All experiments were run on 2.6 GHz
CPUs with 12 GB of RAM. We use k = 1, 000 in the neigh-
borhood function. In MicroRTS, SHC is run with a restarting
time limit of 2, 000 seconds for each self-play iteration. In
Karel, since we are solving a single MDP, SHC restarts as
many times as possible within the computational budget. For
MicroRTS, we query the foundation models 120 times to gen-
erate the same number of programs; for Karel, we use 100
programs. We use the same number of programs as the LISS-r
baseline. We perform 30 independent runs (seeds) of each sys-
tem, including the generation of the programs by the model.

Metrics of Performance For MicroRTS, performance is
measured in terms of winning rate: we sum the number of vic-
tories and half the number of draws and divide this sum by the

total number of matches played [Ontañón, 2017]. For Karel,
performance is measured in terms of episodic return [Trivedi
et al., 2021]. We use prompts where we briefly describe each
problem and provide a formal description of the DSL used.
The prompts used in our experiments are given in Appen-
dices L (MicroRTS) and J (Karel) [Moraes et al., 2025]. Both
MicroRTS and Karel are deterministic, so the value of E for
policies can be computed with a single roll-out. We report
average performance and 95% confidence intervals.

Efficiency Experiment We verify the sampling efficiency
of INNATECODER, LISS-o, LISS-r, and SHC. Similarly to pre-
vious work, we present learning curves, where for MicroRTS,
we plot the winning rate by the number of games played (Fig-
ure 3), and for Karel, we plot episodic return by the number of
episodes (Figure 4). For MicroRTS, the winning rate is com-
puted for a system by having the policy the system generated,
after a given number of games played, play against the poli-
cies each of the other systems generated after the maximum
number of games played (rightmost point of each plot).

Competition Experiment We evaluate INNATECODER
against COAC, Mayari, and RAISocketAI, the winners of the
previous three MicroRTS competitions. We randomly select 9
from the 30 programs generated in the “Efficiency Experiment”
and evaluate them against the competition winners. We report
the average results of the 9 programs against each opponent in
the four maps we use.

Size and Information Experiments We also evaluate the
effect of the size of the set of options on the sample efficiency
of INNATECODER. We evaluated sets Ω with 300, 600, 1400,
5000, 7000 and 30000 options on the LetMeOut map (16
× 8); all options were generated with the Llama 3.1 model.
In Appendix C [Moraes et al., 2025], we evaluate INNATE-
CODER using prompts with more or less information and in
Appendix D with GPT 3.5, to verify if performance decreases
if using a smaller model. Using more information was never
worse than using less information, and switching from GPT 4
to 3.5 did not reduce performance.

4.1 Learning Curve Results
Figures 3 and 4 show the learning curves for MicroRTS and
Karel, respectively, where INNATECODER is denoted as IC-
GPT or IC-Llama, depending on the model it uses to learn the
options. INNATECODER is often much more sample-efficient
than all baselines and, in many cases, by a large margin. We
did not observe significant differences between IC-GPT and
IC-Llama. LISS-o and LISS-r perform worse than INNATE-
CODER and SHC in MicroRTS. However, LISS-o was com-
petitive with SHC in Karel and LISS-r could outperform SHC
(DoorKey and Seeder). The LISS-o and LISS-r results on Mi-
croRTS suggest that the semantic space can be less conducive
to search than the syntax space, depending on the quality of the
options used to induce it. LISS-r performs better in Karel than
in MicroRTS, probably because it uses a distribution I that
uses a handcrafted probability distribution over the production
rules of the language [Trivedi et al., 2021]. The resulting
grammar allows for the generation of helpful options.

FM performs poorly in all experiments. The results of
FM and INNATECODER support our hypothesis that INNATE-



Figure 3: Winning rate (maximum is 100) per number of games played. The winning rate of the policies each system generates for a given
number of games played is computed considering as opponents the policies all systems generate at the end of the learning process. The plots
show the average winning rate of 30 independent runs (seeds) and the 95% confidence interval.
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Figure 4: Average episodic return (maximum is 1.0 for all tasks) per number of episodes. The plots show average episodic return of 30
independent runs (seeds) and the 95% confidence interval.

INNATECODER COAC RAI AI Mayari Average

GPT-4o 53.75 36.25 71.25 53.75
Llama 3.1 43.79 70.00 58.17 57.32
Llama 3.1 + GPT-4o 70.14 72.92 46.39 63.15

Table 1: Winning rate of INNATECODER against winners of previous
competitions, averaged across all 4 maps used in our experiments.

CODER can extract helpful options from foundation models
even if the programs the model generates do not encode strong
policies. In MicroRTS, some of the options allowed the agent
to allocate units to collect resources and train other units.
Other systems had to learn such skills from scratch, while
INNATECODER’s agent had them “innately available”. The
FM results also suggest that data contamination was not an
issue, as the model performed poorly on all tasks.

4.2 Competition results
Table 1 shows the results of INNATECODER against the win-
ners of previous MicroRTS competitions, averaging its win-
ning rate across 4 maps. COAC and Mayari are human-written
policies, and RAISocketAI is a DRL agent [Goodfriend, 2024].
RAISocketAI was trained with a larger computational budget
than INNATECODER, thus giving it an advantage. We evalu-
ated GPT-4o and Llama 3.1 while generating 120 programs.
We also evaluate INNATECODER with the union of the pro-
grams generated by both GPT-4o and Llama (Llama 3.1 +
GPT-4o in the table). The combination of GPT-4o and Llama
3.1 resulted in the best winning rate.

The combination of programs written by Llama 3.1 and
GPT-4o does not lead to “monotonic improvements”, as evi-
denced by the drop in performance against Mayari. This hap-
pens because none of the competition winners is constrained
by the DSL we use in our experiments. As a result, the opti-



Figure 5: Average winning rate of INNATECODER policies for differ-
ent sizes of the option set over 10 independent runs (seeds) of each
version. We also present the 95% confidence intervals.

mization done in self-play might not be specific for the oppo-
nents evaluated in Table 1, but to policies written in the DSL
and encountered during the self-play process.

4.3 Evaluating Number of Options
Figure 5 presents the learning curves for different versions
INNATECODER, where we vary the size of the set of options
Ω. The three lines with the highest winning rate are for option
sets of sizes 5000, 7000, and 30000. The versions of INNATE-
CODER with option sets of sizes 300, 600, and 1400 perform
worse. These results demonstrate that INNATECODER can
benefit from thousands of options. This is possible due to
INNATECODER’s way of using options through the induction
of the language’s underlying semantic space.

These results also show that INNATECODER’s sample ef-
ficiency plateaus at 5000 options, since the use of 7000 and
30000 options does not increase performance. Interestingly,
performance does not degrade either as we increase the set
size. We conjecture that this occurs because many of the op-
tions will encode different and yet similar behaviors that do
not affect the agent’s winning rate. Although the set of distinct
behaviors encoded in the set options grows with larger sets,
the relative number of options with behaviors that affect the
winning rate remains roughly the same. As a result, the func-
tion Nm

k that uses option sets of sizes 5000, 7000, or 30000
induces spaces that are similarly conducive to search.

5 Related work
Programmatic Policies One of the key challenges in gen-
erating programmatic policies is that the search space is dis-
continuous and gradient-based optimization cannot be used.
Some previous work relied on imitation learning to guide the
search for policies [Verma et al., 2018; Verma et al., 2019;
Bastani et al., 2018]. The issue of this imitation learning ap-
proach is known as representation gap [Qiu and Zhu, 2022;
Medeiros et al., 2022], where the space of programmatic poli-
cies does not include the oracle policy that the system tries
to imitate. As a result, the oracle might guide the search to
unpromising parts of the space. Previous work tried to learn
latent spaces of programming languages that are conducive to

search [Trivedi et al., 2021; Liu et al., 2023], which was shown
to be outperformed by the syntax space with SHC [Carvalho et
al., 2024]. Semantic spaces were shown to be more conducive
to search than syntax spaces, but required a sequence of tasks,
where the agent learns the space in one task and reuses it in
others [Moraes and Lelis, 2024]. Our work does not require
an oracle nor a sequence of tasks to learn the semantic space,
which is learned in a zero-shot setting.

Options Options were shown to improve the sampling
efficiency of learning agents through faster credit assign-
ment [Mann and Mannor, 2014], better exploration [Baranes
and Oudeyer, 2013; Bellemare et al., 2020], and trans-
fer of knowledge across tasks [Konidaris and Barto, 2007;
Alikhasi and Lelis, 2024]. However, previous methods for
learning options require the user to design them before learn-
ing starts [Sutton et al., 1999] or to provide considerable
information as input to the process, such as the option du-
ration [Frans et al., 2017; Tessler et al., 2017] or the num-
ber of options learned [Bacon et al., 2017; Igl et al., 2020].
Other methods rely on the agent interaction with the current
environment [Achiam et al., 2018; Machado et al., 2018;
Jinnai et al., 2020] or with other earlier environments, as
in transfer learning approaches [Konidaris and Barto, 2007;
Alikhasi and Lelis, 2024]. We present a novel way of learning
options as they are not learned from the agent’s experience nor
designed by the user, but harnessed from foundation models.
While we use options to define a search space, future work
will explore their use as functions neural policies can call.

6 Conclusions
In this paper, we introduced INNATECODER, a system that
equips learning agents with skills, in the form of programmatic
options, before the agent starts to interact with the environ-
ment. This is achieved by extracting programmatic options
from foundation models. We hypothesized that even if the
model is unable to write programs encoding strong policies
for a problem, sub-programs of the generated program could
encode helpful options. We tested our hypothesis in MicroRTS
and Karel, two domains in which programmatic policies rep-
resent the current state of the art. The policies INNATECODER
generated outperformed, often by a large margin, a baseline
that did not attempt to learn options; a baseline that learned the
options while learning how to solve the problem; a baseline
that learned the options from programs sampled directly from
the domain-specific language; and the foundation model that
attempted to generate programmatic policies directly. We also
showed that some of the policies INNATECODER generated
were competitive or outperformed the winners of previous Mi-
croRTS competitions, including programmatic policies written
by human programmers and a deep reinforcement learning
agent that used a larger computational budget than we allowed
INNATECODER to use. These results place INNATECODER as
the current state-of-the-art in both Karel and MicroRTS. Our
experiments also showed that INNATECODER’s scheme of
using programmatic options to induce semantic spaces allows
it to benefit from thousands of options, while most previous
work can benefit only from dozens or at most hundreds of
options [Eysenbach et al., 2019].
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