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Abstract

We prove an almost optimal hypercontractive inequality for products of quantum erasure
channels, generalizing the hypercontractivity for classical binary erasure channels. To our
knowledge, this is the first tensorization-type hypercontractivity bound for quantum chan-
nels with no fixed states. The traditional inductive arguments for classical hypercontractivity
cannot be generalized to the quantum setting due to the nature of the non-commutativity of
matrices. To overcome the difficulty, we establish a novel quantum log-Sobolev inequality
for Bernoulli entropy, which includes the classical log-Sobolev inequality and the quantum
log-Sobolev inequality as one-partite cases. To our knowledge, its classical counterpart is also
unknown prior to this work. We establish a connection between our quantum log-Sobolev in-
equality and the hypercontractivity bound for quantum erasure channels via a refined quan-
tum Gross’ lemma, extending the analogous connection between the quantum log-Sobolev
inequality and the hypercontractivity for qubit unital channels. As an application, we prove
an almost tight bound (up to a constant factor) on the classical communication complexity
of two-party common randomness generation assisted with erased-noisy EPR states, gener-
alizing the tight bound on the same task assisted with erased-noisy random strings due to
Guruswami and Radhakrishnan.

1 Introduction

The notion of hypercontractivity originates from quantum field theory [Nel66, Gli68, Nel73, SHK72]
and functional analysis [Pal32, Bon68, Kie69, Bon70], which has a rich history of research(see [O’D14,
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Notes in Chapter 9] for more background and history). Hypercontractive inequalities nowadays
are also a fundamental tool in the analysis of Boolean functions, which found wide applications
in various areas of theoretical computer science [KKL88, LMN93, MOO10, KKMO07, MOO10].

A typical hypercontractive inequality is the Bonami-Beckner inequality [Bon68, Bec75]. For
a fixed ρ ∈ [0, 1], consider the noise operator on the space of all functions f : {0, 1}n → R,
defined by

(Tρ(f)) (x) = E
y
[f(y)] ,

where the expectation is taken over y obtained from x by flipping each bit independently with
probability (1−ρ)/2. Intuitively, Tρ “smooths” the function f . That is, the peaks of f are smoothed
out in Tρ(f). Consider the p-norm of f : ∥f∥p = (Ex [|f(x)|p])1/p, where the expectation is over
the uniform distribution on {0, 1}n. The p-norm is monotone non-decreasing with respect to p.
The hypercontractive inequality captures the smoothing effect of Tρ in terms of p-norms. More
precisely, we have

∥Tρ(f)∥q ≤ ∥f∥p, (1)

as long as 1 ≤ p ≤ q and ρ ≤
√

(p− 1)/(q − 1). It has been further generalized to the non-binary
and non-uniform settings [Wol07].

Hypercontractive inequalities in non-commutative settings have received increasing atten-
tion since the quantum computing and quantum information technologies emerge [Gro75a, CL93,
OZ99, BARdW08, KT13, Kin14, FHL+17, Bei21]. To put the classical hypercontractivity in the con-
text of quantum computing, let’s reformulate a Boolean function f : {0, 1}n → R as a 2n × 2n

diagonal matrix with diagonal entries f(x), i.e., Mf =
∑

x∈{0,1}n f(x) |x⟩⟨x|. Then Tρ is equiv-
alent to a product of quantum depolarizing channels acting on Mf , and ∥f∥p is the normalized
Schatten p-norm of Mf , which will be defined later. Thus it is natural to consider the hypercon-
tractivity bound for the product of depolarizing channels acting on an arbitrary operator. The
main challenge in the non-commutative case is the tensorization property, i.e., to generalize the
hypercontractive inequality for a product of n quantum channels, from the hypercontractive in-
equality for a local single copy quantum channel, which is easy in the classical commutative
case. Kastoryano and Temme [KT13] proved a hypercontractive inequality for the product of
depolarizing channels. Furthermore, King [Kin14] generalized this result to the products of all
unital qubit channels, which map identity matrices to identity matrices. Recently, Beigi [Bei21]
further improved the hypercontractivity bound for the product of depolarizing channels with
better parameters. Researchers have also established several variants of non-commutative hy-
percontractive inequalities, which have found applications in quantum communication complex-
ity [GKK+08], quantum coding [BARdW08, AD24], quantum Markov semigroups [BR22] and
quantum non-local games [QY21, QY23], etc.

Besides the hypercontractivity for product of unital channels studied in [Kin14, Bei21], there
are some results concerning the hypercontractivity on non-unital channels in a different point
of view [OZ99, TPK14, MHSFW16]. They focused on the hypercontractive inequalities for an
evolution under Lp norm with respect to the fixed state of the evolution, a.k.a. the stationary
state of the evolution.

In this paper, we focus on the quantum erasure channel (QEC). A QEC acts on the input qubit
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Figure 1: Classical and quantum erasure channel. With probability ε, error occurs and the input
bit/state is erased. In the quantum erasure channel, the state |E⟩⟨E| indicating error replaces ρ in
case of erasure.

and outputs an error with probability ε, and leaves the input state unchanged with probability
1− ε. Formally, given an input qubit ρ, we define the quantum erasure channel Dε as

Dε(ρ) = (1− ε) · ρ+ ε · |E⟩⟨E| . (2)

In case of the error (with probability ε), the input state ρ is replaced by the state |E⟩⟨E| indicating
an erasure error. See Fig. 1 for an illustration. The QEC is one of the most fundamental quantum
channels, which have received extensive studies. There have been various quantum error cor-
recting codes proposed for the quantum erasure channel [GBP97, DZ13, KCP16, DZ20, ZOJ23].
Besides, they are one of the few quantum channels whose asymptotic capacity for faithful trans-
mission can be computed exactly [BDS97].

In this paper, we establish the first hypercontractivity bound for the tensor product of QECs.
It is interesting to note that an almost optimal hypercontractivity bound for quantum depolarizing
channels can be obtained from the hypercontractivity for QECs established in this paper1. The hy-
percontractivity for classical binary erasure channels has been proved by Nair and Wang [NW16]
recently, which have found applications in common randomness generation [GR16] and property
testing [BP21]. Recently, Eldan, Wigderson and Wu [EWW23] have independently proved a hy-
percontractive inequality for the binary erasure channel (in a different language), which was used
to give a sharp version of the “it ain’t over till it’s over” theorem [MOO10].

QECs are non-unital and do not have fixed points as the input space and output space have
different dimensions. Thus they are not covered by existing conclusions from [Kin14, Bei21, OZ99,
TPK14, MHSFW16]. To our knowledge, this is the first quantum channels with no fixed states,
whose tensorized hypercontractivity is established.

The most well-known tensorization proofs for classical hypercontractivities are via the in-
ductive argument on the length of the input. For quantum erasure channels, by combining the
inductive argument and the norm compression inequality, we could solve the case 1 ≤ p ≤ 2 ≤ q.
However, due to the nature of the norm compression for the case 1 ≤ p ≤ q ≤ 2, this inductive ar-
gument fails to reach any reasonable conclusion. To remedy it, the authors in [OZ99, Kin14, Bei21]

1See Appendix C for a proof
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use a new framework for quantum hypercontractivity, which turns out to be very successful for
several quantum channels. A crucial component in this framework is the equivalence between
the log-Sobolev inequality and hypercontractive inequalities via the Gross’ lemma [Gro75a, KT13].

Log-Sobolev inequalities are the functional inequalities that upper bound the entropy of a
function by their Dirichlet forms. Classical log-Sobolev inequalities are amongst the most studied
functional inequalities for semigroups [BH99, FMP13, IM14, CM15, BB21, FOW22], which turn
out to be a versatile tool to analyze mixing time of various Markov processes [BGL+14, CGM21,
CCNW21]. Olkiewicz and Zegarlinski [OZ99] introduced the log-Sobolev inequality in a general
non-commutative setting, which is further studied as quantum log-Sobolev inequalities on finite
dimensional state spaces [KT13, TPK14]. In quantum log-Sobolev inequalities, the entropy is
defined on all quantum operators, using a generalized definition of the entropy on functions in the
commutative case. This is in contrast with the standard quantum information theory definition
of entropy defined primary for quantum states. Quantum log-Sobolev inequalities have played
a crucial role in the proof of hypercontractivity bounds for unital qubit channels [Kin14] and
have also found applications in the study of quantum systems [CM20, BCG+23], noisy quantum
devices [SFGP21], quantum Gibbs samplers [KB16], quantum Markov semigroups [BR22], etc.

To our knowledge, all previous classical or quantum log-Sobolev inequalities are concerned
with the systems with a fixed size (i.e., number of bits in the classical system or the number of
qubits in the quantum system). However, the size of the system varies when considering BECs
because of the extra error dimension |E⟩ in the output system. Hence, we establish a quantum
log-Sobolev inequality for Bernoulli entropy, where the size of the system varies subject to erasure
noise. It includes Kastoryano and Temme’s quantum log-Sobolev inequality [KT13] as a single
partite case. Our quantum log-Sobolev inequality for Bernoulli entropy is essential to the proof
of our QEC hypercontractivity, and is of independent interest as well. To our knowledge, even
the classical analog of our log-Sobolev inequality is unknown. Additionally, the quantum Gross’
lemma [Gro75a, Kin14], which bridges the hypercontractivity and log-Sobolev inequalities, is
replaced by a refined inequality connecting the Schatten p norm of an operator and the Schatten
p norm of its reduced operator. This lemma is used to induce a hypercontractivity bound for the
QEC from the quantum log-Sobolev inequality for Bernoulli entropy.

As an application of our hypercontractive inequality for the QEC, we prove an almost tight
bound (up to a constant factor) on the classical communication complexity of the two-party com-
mon randomness generation problem, where maximally entangled states affected by the QEC are
shared among the communicating parties. Common randomness generation, a classic topic in in-
formation theory and distributed computing, was first raised by Maurer [Mau93] and Ahlswede
and Csiszár [AC98], leading to numerous subsequent works. Devetak and Winter [DW04] intro-
duced the problem of entanglement-assisted common randomness generation, and studied the
case of classical-quantum correlations. Recently, Lami, Regula, Wang and Wilde [LRWW23] gave
efficiently computable upper bounds on the LOCC assisted distillable randomness of a bipartite
quantum state. Also, an upper bound in terms of the fidelity-based smooth min-relative entropy
was given by Nuradha and Wilde [NW24]. The idea of these two results are strongly linked
to those in [DKQ+23]. Readers may refer to the excellent survey [STW20] and the references
therein.
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Most of these works assume that the players share only a limited amount of noisy correla-
tion. In contrast, in this work we assume the noisy correlations are free and unlimited, and try
to minimize the classical communication. Guruswami and Radhakrishnan [GR16] investigated
the communication complexity of common randomness generation when the parties share un-
limited but non-perfect correlation. They considered both the binary symmetric channel and the
binary erasure channel and established tight tradeoffs among the communication complexity,
min-entropy of the common randomness and errors for both cases. Dong and Yao [DY24] inves-
tigated common randomness generation when the players share unlimited depolarized noisy EPR
states, and they also established a tight tradeoff among the classical communication complexity,
min-entropy of the common randomness and errors. They also establish a tradeoff when quantum
communication is allowed, which is not known to be tight. However, the communication com-
plexity of common randomness generation when the players sharing maximally entangled states
effected by the quantum erasure channel remains unknown. For the quantum erasure channel,
this is due to a lack of a tensorized hypercontractivity bound, which is a key component of all
these previous proofs on the communication complexity of common randomness generation. In
this work, by using our hypercontractivity bound for the product of quantum erasure channel,
we are able to prove a communication lower bound when the players share maximally entangled
states affected by the quantum erasure channel. This lower bound matches the classical commu-
nication upper bound of [GR16], where the players share classical correlation with the binary
erasure channel, and thus is tight up to constant a factor.

1.1 Our Results

Hypercontractivity Our main result is a hypercontractivity bound for the product of quantum
erasure channels. Before illustrating our main result, we first state the hypercontractivity bound
for the classical binary erasure channel proved by Nair and Wang [NW16]. A similar inequality
has been independently proved by Eldan, Wigderson and Wu [EWW23].
Theorem 1.1 ([NW16]). Let f : {−1, 1}n → R be a function, X be a random variable uniformly
distributed over {−1, 1}n and Y = BECε(X). Define the function g : {−1, 1, ∗}n → R as

g(y) = E[f(X) | Y = y] . (3)

Then for any ε ∈ [0, 1], p, q > 1 satisfying 1− ε ≤ (p− 1)/(q − 1), it holds that

∥g(Y )∥q ≤ ∥f(X)∥p (4)

where the λ-norm is defined as

∥Z∥λ = E
[
|Z|λ

] 1
λ
. (5)

To express our hypercontractivity bounds, we need to decompose a QEC into two operations:
1. Given a 2 × 2 matrix ρ, we first define an expanding operator D that creates both the

“non-erased” state and the “erased” state, that is

D(ρ) = ρ+ τ(ρ) · |E⟩⟨E| =
(
ρ

τ(ρ)

)
, (6)
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where τ(·) stands for the normalized trace operation, and here τ(ρ) = 1
2
Tr ρ. This is the

analog of the function g(y) = E [f(X)|Y = y].

2. Then we define the noise matrix Πε as

Πε = (1− ε) · 12 + 2ε · |E⟩⟨E| =

1− ε
1− ε

2ε

 . (7)

This matrix reassigns the noise, which simulates taking expectation over Y in the classical
case.

Recall that in Eq. (2) we define

Dε(ρ) = (1− ε) · ρ+ ε · |E⟩⟨E| .

We observe that for any 2× 2 matrix ρ,

Dε(ρ) = Πε ·D(ρ). (8)

We now state our hypercontractivity bound for the quantum erasure channel:

Theorem 1.2 (informal version of Theorem 3.2). Given any 2n × 2n matrix X , 1 ≥ ε ≥ 0,
q ≥ p ≥ 1 and c ≥ 1 satisfying 1− ε ≤

(
p−1
q−1

)c
, let |||·|||p denote normalized Schatten p-norms. The

hypercontractive inequality for the quantum erasure channel(
2−n Tr

[
Π⊗n

ε ·
∣∣D⊗n(X)

∣∣q])1/q ≤ |||X|||p (9)

holds if one of the following conditions is satisfied:

• c = 1 and 1 ≤ p ≤ 2 ≤ q.

• c = 2 and 1 ≤ p ≤ q ≤ 2.

Remark 1.3 (Equivalent form, hypercontractivity for random partial trace). It is not hard to
verify that Eq. (9) is equivalent to the following.∑

S⊆[n]

(1− ε)n−|S|ε|S||||τSX|||qq

1/q

≤ |||X|||p, (10)

where τSX = TrS X/2|S| is the normalized partial trace. Thus, an alternate interpretation of
Theorem 1.2 is a hypercontractive inequality for random partial trace operations.
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Remark 1.4. It might seem opaque that Eq. (9) is a direct quantum generalization of Eq. (4). The
connection becomes clearer when we notice that the expectation on the left-hand side of Eq. (4) is
taken over the random variable Y = BECε(X). The random variable Y is certainly not uniformly
distributed, and we can verify that for each i ∈ [n],

Yi =


0 w.p. (1− ε)/2

1 w.p. (1− ε)/2

∗ w.p. ε
(11)

We can expand the left-hand side of Eq. (4) according to Eq. (11) and get

∥g(Y )∥q =
(
E
Y
[|g(y)|q]

)1/q

=

(∑
y∈Y

µ(y)|g(y)|q
)1/q

(12)

where µ(y) =
∏n

i=1 µ(yi) and each µ(yi) takes the value according to Eq. (11). The matrix 1
2n
Πε

in Eq. (9) acts as the role of µ in Eq. (12) as it reassigns the noise of the matrix when tracing out.

Remark 1.5. For the classical BEC hypercontractivity bound, the parameter c is always c = 1
and this result is tight when ε ≤ 1/2. In our work the tightness of the hypercontractivity results
for the QEC remains unknown.

Remark 1.6. The reader may wonder why we consider an inequality of the form in Eq. (9), as
opposed to the more natural hypercontractivity bound for the QEC expressed as(

2−n Tr
[∣∣D⊗n

ε (X)
∣∣q])1/q ≤ (2−nTr[|X|p]

)1/p
. (13)

It’s easy to check that(
2−n Tr

[∣∣D⊗n
ε (X)

∣∣q])1/q ≤ (2−nTr
[
Π⊗n

ε ·
∣∣D⊗n(X)

∣∣q])1/q .
Hence Eq. (9) is stronger. Moreover, Eq. (13) fails to prove a tight bound on the communica-
tion complexity of common randomness generation considered in Section 5. We posit that the
inequality in Eq. (9) will have broader applicability in a majority of scenarios, as it is exactly
the quantum generalization of its classical counterpart [NW16] as argued in Remark 1.4. Fur-
thermore, Theorem 1.2 also implies an almost optimal hypercontractivity bound for the quantum
depolarizing channel.

Remark 1.7. For the quantum erasure channel, our Theorem 1.2 only proves hypercontractivity
inequalities for p ≤ 2. The p > 2 case remains open. For quantum channels generated by
primitive and reversible Lindblad generators, i.e., the depolarizing channel, a hypercontractivity
inequality for p and q in [1, 2] can be generalized to all parameter ranges. See Proposition 10 and
Theorem 11 from [BDR20]. However, for the quantum erasure channel considered in our work,
Theorem 1.2 does not seem to be able to imply hypercontractivity inequalities for the quantum
erasure channel in the range q > p > 2. The barrier seems to be fundamental: For fixed p, we
expect (and prove) that the left hand side of Eq. (9) is non-increasing over ε. However, for q ≥ 2,
numerical experiments show that this fails to be true. So our proof framework completely fails.
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Quantum Log-Sobolev Inequality for Bernoulli Entropy A key component in the proof of
our hypercontractivity bound is a quantum log-Sobolev inequality for Bernoulli entropy. It is an
extension of the standard quantum log-Sobolev inequality due to Kastoryano and Temme [KT13].

Theorem 1.8 (informal version of Theorem 4.2). Let m,n be integers such that m ≤ n and X is a
positive semi-definite operator. Let τ denote the normalized trace operator. For q ∈ [1, 2], ε ∈ [0, 1],
it holds that

Entε,[m],q[X] ≤ 2
∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[m]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
+2

∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ

[(
τk

[
X

q
2
Sc

])2])
.

(14)

where XT = TrT c X/2n−|T | for T ⊆ [n], and Entε,[m],q is the multipartite Bernoulli entropy defined
as

Entε,[m],q[X] =
∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q ln (τSX)q]

−

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 ln

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 . (15)

We note that when m = 0 and q = 2, the first term on the right hand side disappears and
thus the inequality boils down to the standard quantum log-Sobolev inequality Theorem 4.1.

Common Randomness Generation We present an application of our hypercontractivity
bound for the QEC in the study of common randomness generation, generalizing Guruswami
and Radhakrishnan’s result [GR16] to the quantum setting.

Theorem 1.9 (informal version of Theorem 5.4). Let ε ∈ [0, 1] and |Φ⟩ = (|00⟩+ |11⟩)/
√
2 be an

EPR state. Suppose Alice and Bob share infinitely many copies of the state (12 ⊗Dε)(Φ), and Alice
sends classical messages to Bob. Then to produce a common random string of min-entropy at least k,
Alice needs to send Bob at least

t ≥ εk

2
− o(k) (16)

bits of classical message.

This lower bound is tight up to a constant factor as it suffices for Alice to send εk bits [GR16].

1.2 Proof Overview

The classical hypercontractiviy bound for BECs is proved in [NW16] by an inductive argument
on the length of the input n. The base case is proved via an information-theoretic argument.
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Then, for Boolean functions g : {−1, 1, ∗}n → R with n > 1 and the input y ∈ {−1, 1, ∗}n of
g(y) is split into y = y1y2 where y1 ∈ {−1, 1, ∗}n1 and y2 ∈ {−1, 1, ∗}n2 and n1 + n2 = n.
Then by fixing y1, we may apply the induction on the function g(y1, ·) : {−1, 1, ∗}n2 → R. To
generalize this inductive argument to quantum hypercontractivity, a natural approach is splitting
the matrix into block matrices and applying the induction hypothesis on each block. A key step
is to compare

∥M∥p =
∥∥∥∥(X Y

Y † Z

)∥∥∥∥
p

and m :=

∥∥∥∥(∥X∥p ∥Y ∥p∥Y ∥p ∥Z∥p

)∥∥∥∥
p

for positive semidefinite matrices. It is apparent that the inductive argument holds for the classical
BEC hypercontractivity as M is diagonal and thus ∥M∥p = m in the classical case. King [Kin03]
proved a norm-compression inequality which states that ∥M∥p ≥ m if 1 ≤ p ≤ 2 and ∥M∥p ≤ m
if p ≥ 2. Leveraging this fact, King [Kin14] generalized the inductive argument to the quantum
setting and proved a hypercontractivity bound for the quantum depolarizing channel in the case
that 1 ≤ p ≤ 2 ≤ q.

The inductive argument also works for the hypercontractivity for the QEC, when 1 ≤ p ≤
2 ≤ q, which, therefore, induces a hypercontractivity bound for the QEC in this region2. However,
the inductive argument fails for the case 1 ≤ p ≤ q ≤ 2 as the direction of the norm compression
inequality is opposite to what we expect. To resolve this difficulty, we extend the framework
in [OZ99, Kin14, BDR20, Bei21].

We give a brief overview of this proof framework of quantum hypercontractivity. A key
observation is the connection between quantum log-Sobolev inequality [KT13] and quantum
hypercontractivity. Such connections have also been explored in classical settings [PS19, FOW22,
KKK+21]. A fundamental notion in the quantum log-Sobolev inequality is the entropy function,

Ent(X2) = τ
[
X2 lnX2

]
− τ
[
X2
]
ln τ
[
X2
]
, (17)

which captures the overall chaos of the system. It can be obtained by taking the derivative of the
left-hand side of the hypercontractive inequality. The entropy is upper bounded via a quantum
log-Sobolev inequality [KT13] as follows:

Ent(X2) = τ
[
X2 lnX2

]
− τ
[
X2
]
ln τ
[
X2
]
≤ 2

n∑
k=1

(
τ
[
X2
]
− τ
[
(τkX)2

])
. (18)

Intuitively, the entropy is upper bounded by the correlation between each coordinate and the
remaining system. The quantum hypercontractivity can be derived from the quantum log-Sobolev
inequality via the quantum Gross’ lemma [Gro75a, Kin14]. Nonetheless, it only gives a quantum
hypercontractive inequality for positive operators as the quantum log-Sobolev inequality only
concerns about positive matrices. To extend it to general matrices, we can further employed
Watrous’ theorem, which asserts that the ∥·∥q→p norm of a quantum channel can be achieved by
positive matrices [Wat05]. The overall proof is summarized in Fig. 2.

2See Appendix D
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lemma [Gro75a]

Watrous’ theorem [Wat05]

HC for unital channels
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Log-Sobolev for Bernoulli
entropy (Theorem 4.2)
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HC for QEC (Theorem 3.2)

(b) Our work

Figure 2: Proof Overview

To prove the hypercontractive inequality for the QEC, we adopt the same framework. How-
ever, we need to introduce several new ingredient, which is also depicted in Fig. 2.

The major difficulty is that the quantum log-Sobolev inequality is insufficient for the hyper-
contractivity of QEC, because the size of the system considered in Eq. (18) is unchanged, while
the qubits may be erased and the size of the system decreases when considering the QEC. To cap-
ture the “erasing” feature of the QEC, we introduce the notion of multipartite Bernoulli entropy.
Let X be a 2n× 2n positive definite matrix viewed as an operator acting on n qubits, and m ≤ n.
Recall the multipartite Bernoulli entropy defined as

Entε,[m],q[X] =
∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q ln (τSX)q]

−

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 ln

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 . (19)

The multipartite Bernoulli entropy of X captures the expected entropy of a random system ob-
tained by removing each qubit system in the first m qubits systems with probability ε, indepen-
dently. It is a natural extension of the entropy in Eq. (17), which is the case that m = 0 and q = 2.
We establish a quantum log-Sobolev inequality for Bernoulli entropy, which enables us to upper
bound the multipartite Bernoulli entropy in terms of the the expected correlation between each
coordinate and the remaining system, where the expectation is over the random erasure of the
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system.

Entε,[m],q[X] ≤ 2
∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[m]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
+2

∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ

[(
τk

[
X

q
2
Sc

])2])
.

We also note that when m = 0 and q = 2 our quantum log-Sobolev inequality degenerates
to the quantum log-Sobolev inequality above as Eq. (18). It it is worth to note that for q ̸=
2, the inequality resembles, to some extent, the nonlinear log-Sobolev inequality considered in
[PS19, SZ24].

The existing quantum Gross’ lemma is also insufficient to derive a hypercontractivity for
the QEC from the quantum log-Sobolev inequality. To address it, we prove a refined quantum
Gross’ lemma connecting the Schatten p norm of an operator and the Schatten p norm of its
reduced operator via exploiting the majorization argument between a matrix’s eigenvalues and
its diagonal entries.

Finally, we conclude our result by employing Watrous’ theorem [Wat05], which implies that
the above argument for positive semi-definite matrices is sufficient to prove a QEC hypercon-
tractivity for general matrices.

1.3 Discussion and open problems

We prove a hypercontractive inequality for the product of quantum erasure channels. Our hy-
percontractivity is a natural extension of the hypercontractivity bound for the classical binary
erasure channel. To prove the hypercontractivity, we establish a quantum log-Sobolev inequality
for Bernoulli entropy, which is interesting in its own right. As an application, we prove an almost
tight lower bound on the classical communication complexity of common randomness generation
assisted by erased-noisy EPR states. This work raises several open problems for future work.

1. For parameters 2 ≤ p ≤ q < ∞, the hypercontractivity of the quantum erasure channel
remains unknown. Our technique fails because the derivative g′(t) in the proof of Theo-
rem 3.2 fails to be non-increasing for q ≥ 2. More technically, Lemma 3.5 holds only for
q ≥ 2. Thus the hypercontractivity for 2 ≤ p ≤ q <∞ remains open.

2. The tightness of hypercontractivity bound for the QEC is not clear. The hypercontractivity
bound for classical BECs [NW16] indicates that the parameter c in our result could be
pushed to 1. We leave this to future work.

3. To our knowledge, hypercontractive inequalities for tensored channels, i.e., the exact ten-
sorization property, has been proved only for qubit channels [MO10, KT13, Kin14]. For
qudit channels, so far there are only lower bounds from bounds on the log-Sobolev con-
stant [TPK14, MHSFW16] (See the discussion in [BDR20]). Is it possible to establish the
tensorization property for qudit channels? The current approach fails even for the easy
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case 1 ≤ p ≤ 2 ≤ q, because the norm-compression inequality does not hold for t× t block
matrices whenever t ≥ 3 [Aud06]. Hence, we need new techniques to establish quantum
hypercontractive inequalities for the product of qudit channels.

4. There have been several works investigating the hypercontractivity bound for quantum
channels with respect to the fixed states of the channels over this space [BR22, BDR20].
For hypercontractivity bounds with respect to a non-fixed state, Bardet and Rouzé [BR22]
have shown some no-go results: a strong decoherence-free-log-Sobolev inequality does not
hold for a quantum Markov semigroups that is neither primitive nor unital. Can we say
more about a general quantum hypercontractive inequality in weighted non-commutative
Lp spaces with respect to a non-fixed state?

5. Log-Sobolev inequalities are powerful tools to study the mixing time of a random walk on
a fixed graph. Recently, there have been several works investigating random walks on a
random graph [NP08, CHK12, BKW14]. The entropy in the classical log-Sobolev inequality
for Bernoulli entropy captures the average entropy of the random subgraphs of a given
graph, where each vertex is deleted with probability ε. Thus, it is interesting to see whether
our classical log-Sobolev inequality for Bernoulli entropy can provide better analysis on the
mixing time of a random walk on a random graph?

1.4 Organization

In Section 2, we introduce some preliminary concepts, basic mathematical foundations, nota-
tions, and discuss the erasure channel. Section 3 presents the proof of our hypercontractivity
inequality. Section 4 presents the proof of quantum log-Sobolev inequality for Bernoulli entropy.
Subsequently, in Section 5 we demonstrate an application of our results to derive a lower bound
for common randomness generation.
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2 Preliminary

In this paper, we will use lnx to express the natural logarithm of x, which is based on the math-
ematical constant e ≈ 2.7182818. We denote [n] = {1, 2, · · · , n} and for the special case [0] = ∅.
Besides, unless explicitly stated, we assume ε ∈ [0, 1]. For complex number z, we use z to denote
its complex conjugate.

Linear algebra Let 1n be the n × n size identity matrix and we use 1 to represent 12. We
let Mn×m be the set of all n ×m size complex-valued matrices. We use Mn to denote all n × n
square matrices and Hn to denote all n×n Hermitian matrices. For X ∈Mn, we define its trace
as Tr[X] =

∑n
i=1 Xii. Additionally, its normalized trace is defined as τ [X] = 1

n
Tr[X].

X ∈ Mn is a positive semi-definite (PSD) matrix if X is Hermitian and x†Xx ≥ 0 holds for
all vectors x ∈ Cn, where x† is the complex conjugate transpose of x. We may write X ≥ 0 for
a PSD matrix X . If X ≥ 0 satisfies Tr[X] = 1, we say X is a density operator. The set of all PSD
matrices and density operators is denoted as Posn and Dn.

For a vector x = (x1, · · · , xn)
T ∈ Cn and 1 ≤ p < ∞, we use ∥x∥p = (

∑n
i=1 |xi|p)1/p to

denote its p-norm. For X ∈ Mn×m, the Schatten p-norm is defined to be ∥X∥p = (Tr[|X|p])1/p.
We define the normalized Schatten p-norm as |||X|||p = (τ [|X|p])1/p, where |X| =

√
X†X and

X† is the complex conjugate transpose of X .
Let N = 2n for positive integer n and X ∈ MN . All the rows and columns are indexed by

the subsets of [n]. The partial trace of X with respect to S ⊆ [n] is defined as a square matrix
TrS[X] with indices ranging over the subsets of Sc, typically,

TrS[X] =
∑

s∈{0,1}S
(ISc ⊗ ⟨s|)X(ISc ⊗ |s⟩). (20)

Besides, the normalized partial trace is defined as τS[X] = 2−|S| · TrS[X]. For simplicity, we
denote τS[X] by XSc and τk[X] by X{k}c .

Schatten p-norms admit Hölder’s inequality ([Wat18, Eq. 1.174] ): Let A,B ∈ Mn×m and
p, p∗ be positive real numbers satisfying 1/p+ 1/p∗ = 1, we have

∥A∥p = max
{∣∣Tr[C†A

]∣∣ : C ∈Mn×m, ∥C∥p∗ ≤ 1
}

(21)

which implies ∣∣Tr[B†A
]∣∣ ≤ ∥A∥p · ∥B∥p∗ . (22)

p∗ above is called the Hölder conjugate of p. Hölder’s inequality can also be generalized to two
sequences of matrices.

Lemma 2.1 (Matrix Hölder’s inequality). [SA13, Theorem 2.6] Let Ai, Bi(i = 1, 2, . . . ,m) be two
sequences of matrices and p, q be positive real numbers satisfying 1/p+ 1/q = 1. We have∣∣∣∣∣Tr

[
m∑
i=1

A†
iBi

]∣∣∣∣∣ ≤
(
Tr

[
m∑
i=1

|Ai|p
])1/p(

Tr

[
m∑
i=1

|Bi|q
])1/q

.
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Specifically, if Ai and Bi are positive semi-definite for all i, then

Tr

[
m∑
i=1

AiBi

]
≤

(
Tr

[
m∑
i=1

Ap
i

])1/p(
Tr

[
m∑
i=1

Bq
i

])1/q

.

Proof. Let A =
⊕m

i=1Ai and B =
⊕m

i=1 Bi. By the Hölder’s inequality for Schatten p-norm∣∣∣∣∣Tr
[

m∑
i=1

A†
iBi

]∣∣∣∣∣ = ∣∣Tr [A†B
]∣∣ ≤ ∥A∥p∥B∥q =

(
Tr

[
m∑
i=1

|Ai|p
])1/p(

Tr

[
m∑
i=1

|Bi|q
])1/q

.

Majorization A doubly stochastic matrix X ∈ Rn×n is a non-negative matrix with all row
sums and column sums equal to 1. For x ∈ Rn, we let x↓ be the vector by rearranging the values
of x in decreasing order.

Definition 2.2 (Majorization). We say x majorizes y (denoted as x ⪰ y) if

n∑
i=1

xi =
n∑

i=1

yi and
k∑

i=1

x↓
i ≥

k∑
i=1

y↓
i

for all k ∈ [n]. Two key properties of majorization are listed below:

Theorem 2.3 (Hardy-Littlewood-Pólya Theorem). [MOA79, page 33] Let x,y ∈ Rn, then x ⪯ y
if and only if there exists a doubly stochastic matrix D such that x = Dy.

Theorem2.4 (Schur-Horn Theorem). [MOA79, page 300] ForX ∈ Hn, letdiag = (X11, · · · , Xnn)
T

be the diagonal entries , λ = (λ1(X), · · · , λn(X))T where λi(X) denotes the i-th biggest eigenvalue
of X . Then diag ⪯ λ.

According to Theorem 2.3, the majorization relation in Theorem 2.4 relates to a doubly stochas-
tic matrix D. The following lemma implicates that D has an intriguing property.

Lemma 2.5. Under the setting of Theorem 2.4, let X = UΣU † be a spectral decomposition of X
with diagonal matrix Σ satisfying Σi,i = λi(X). Then it holds that diag = Dλ, where Dij = |Uij|2
is a doubly stochastic matrix.

Proof. For ∀i ∈ [n], Xi,i =
∑n

j=1 UijΣjjUij =
∑n

j=1 |Uij|2Σjj =
∑n

j=1Dijλj .

Entropy In order to define our entropy notations used in our proof of hypercontractivity in-
equality, we start with a weighted relative entropy, which unifies the three definitions of relative
entropies below. Note that in this work the entropy is usually defined on quantum operators, as
a quantum analog of the entropy for functions in the context of log-Sobolev inequalities. This is
in contrast to the standard quantum information theory definition of entropy primary used for
quantum states.
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Definition 2.6 (Weighted Relative Entropy). Given an index set I , with a sequence of non-
negative numbers (wi)i∈I satisfying

∑
i∈I wi = 1 and PSD matrices (Xi)i∈I , we define the weighted

relative entropy as

Entropy[(wi, Xi)i∈I ] =
∑
i∈I

wi · τ [Xi lnXi]−

(
τ

[∑
i∈I

wi ·Xi

])
ln

(
τ

[∑
i∈I

wi ·Xi

])
.

Generally, one can easily check Entropy[(wi, Xi)i∈I ] ≥ 0 with Jensen’s inequality. In this
paper, we consider three special forms of the weighted relative entropy.

Definition 2.7 (Two-point Relative Entropy). For any a, b > 0, ε ∈ [0, 1],

Entε[a, b] = Entropy [(1− ε, a), (ε, b)]

= (1− ε)a ln a+ εb ln b− ((1− ε) a+ εb) ln ((1− ε) a+ εb) .

This definition is used fruitfully when exploring isoperimetry properties over general prob-
ability distributions. See [BM00, BL98] for more details.

Definition 2.8 (One-Partite Relative Entropy). For X ≥ 0 and q ≥ 1, we define the entropy as:

Entq[X] = Entropy [(1, Xq)]

= τ [Xq lnXq]− τ [Xq] ln τ [Xq].

This definition is related to the quantum relative entropy. Assume X = 2nϕ where ϕ is
a density operator. Then Ent1[X] = D

(
ϕ ∥ 12n

2n

)
, where D

(
ϕ ∥ 12n

2n

)
is the quantum relative

entropy between ϕ and the maximally mixed state.
This particular quantity can be traced back to the work presented in [Gro75b]. Besides, this

term of relative entropy will inevitably arise when we employ the similar derivative techniques
used in [Bei21, BDR20] to prove the quantum hypercontractive inequality.

Here we denote Ent1[X
q] by Entq[X] to keep it consistent with the definition below.

Definition 2.9 (Bernoulli Multi-Partite Relative Entropy). For X ∈ Pos2n , S ⊆ [n] and q ≥ 1,
we define the entropy as:

Entε,S,q[X] = Entropy
[(
(1− ε)|S|−|T |ε|T |, Xq

T c

)
T⊆S

]
(23)

=
∑
T⊆S

(1− ε)|S|−|T |ε|T |τ [Xq
T c ln (X

q
T c)]−(

τ

[∑
T⊆S

(1− ε)|S|−|T |ε|T |Xq
T c

])
ln

(
τ

[∑
T⊆S

(1− ε)|S|−|T |ε|T |Xq
T c

])
.

This definition is equivalent to Eq. (40). The term Bernoulli is derived from the internal utiliza-
tion of the Bernoulli distribution. We identify it as multi-partite due to the inclusion of all partial
traces of X within the expression. This quantity reflects, to some degree, the relative entropy of
each constituent party of X . It’s important to note that this denotes a natural extension of the
one-partite relative entropy.
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QuantumErasure Channel A quantum channelΦ is a linear map inL(Mn,Mn′)with the fol-
lowing properties: (i) completely positive : ∀ PSD matrix X ∈ Mnn′ , we have (Φn ⊗ 1n′)(X) ≥
0; (ii) trace preserving : ∀X ∈ Mn, Tr[Φ(X)] = Tr[X]. A useful equation is [Wat18, Eq. 2.70]:
for Φ : Mn →Mm, X ∈Mn and Y ∈Mm, Tr(Φ(X) · Y ) = Tr

(
X · Φ†(Y )

)
.

To introduce quantum erasure channels, we first define an expanding operatorD inL(M2,M3):

D(X) =

(
X

τ(X)

)
.

The single-qubit quantum erasure channel (QEC) Dε is defined as

Dε(X) = Πε ·D(X), where Πε =

1− ε
1− ε

2ε

 .

Here Πε can be viewed as an erasure noise matrix. The definition above can be extended to the
n-qubit case as follows. Recall that Pauli matrices{

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)}
form a base ofM2 and thus {σ0, σ1, σ2, σ3}⊗n form a base ofM2n . For anyX =

∑
x∈Zn

4

(
X̂x

⊗n
i=1 σxi

)
,

we define D⊗n in L(M2n ,M3n) as

D⊗n(X) =
∑
x∈Zn

4

X̂x

(
n⊗

i=1

D (σxi
)

)

and the n-qubit quantum erasure channel is defined as D⊗n
ε (X) = Π⊗n

ε · D⊗n(X). When the
context is clear, we omit the symbols ⊗n and use D, Πε and Dε to denote the n-qubit case. An
n-qubit QEC induces a norm, which we refer to as the (ε, q)-norm in M2n .

Definition 2.10. For any integer n > 0, ε ∈ [0, 1] and q ≥ 1, the (ε, q)-norm of X ∈M2n is

|||X|||ε,q =
(
2−n · Tr[Πε · |D(X)|q]

) 1
q .

To see that it is a norm, it suffices to verify that |||X|||ε,q =
∣∣∣∣∣∣∣∣∣(Π1/2q

ε )⊗n|D⊗n(X)|(Π1/2q
ε )⊗n

∣∣∣∣∣∣∣∣∣
q
.

For a quantum channel with Kraus representation Φ(ρ) =
∑

iXiρX
†
i , we define the conju-

gate map
Φ†(ρ) =

∑
i

X†
i ρXi.

In particular, the conjugate map of the quantum erasure channel is D†
ε : M3 →M2:

D†
ε(ρ) = (1− ε) ·

(
1 0 0
0 1 0

)
ρ

1 0
0 1
0 0

+ ε ⟨E| ρ |E⟩ · 12. (24)
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Note that the set of all possible outputs of a quantum erasure channel forms a subspace of
M3n , where all elements in the subspaces commute with Π⊗n

ε . Throughout this paper, we will
only encounter matrices in this subspace of M3n . Such matrices have the form of

Y =
∑
S⊆[n]

YSc ⊗ |E⟩⟨E|⊗S (25)

where each YSc lies in the subspace M2n−|S| . The following two facts can be easily verified by the
definition.

Fact 2.11. For any operator X ∈M2n , D⊗n(X) is of Eq. (25) form.

Fact 2.12. Suppose Y ∈M3n is of Eq. (25) form. Then Y commutes with Π⊗n
ε for all 0 ≤ ε ≤ 1.

3 Hypercontractivity

In this section we prove the hypercontractivity for the product of quantum erasure channels.
Recall that for X ∈M2n ,

|||X|||ε,q =
(
2−n · Tr

[
Π⊗n

ε · |D⊗n(X)|q
]) 1

q =

∑
S⊆[n]

(1− ε)n−|S|ε|S||||τSX|||qq

 1
q

.

The following lemma states that it suffices to restrict our argument to positive semi-definite
matrices, as the supremum of |||X|||ε,q/|||X|||p is achieved by a positive semi-definite matrix. This is
implicitly implied by Watrous’ paper [Wat05] by noting that |||X|||ε,q =

∣∣∣∣∣∣∣∣∣(Π⊗n
ε )

1/q ·D⊗n(X)
∣∣∣∣∣∣∣∣∣

q

and that the map X 7→ (Π⊗n
ε )

1/q ·D⊗n(X) is completely positive. For the sake of completeness,
the proof of the following lemma is provided in Appendix A.

Lemma 3.1 (Watrous’ theorem [Wat05]). For 1 ≤ p ≤ q, ε ∈ [0, 1], we have

sup
X∈M2n ,X ̸=0

|||X|||ε,q
|||X|||p

= sup
X∈Pos2n ,X ̸=0

|||X|||ε,q
|||X|||p

.

The main theorem of this section is the following.

Theorem 3.2 (Hypercontractivity for the product of QECs). For any X ∈ M2n , q ≥ p ≥ 1, ε ∈
[0, 1], c ≥ 1 satisfying 1− ε ≤

(
p−1
q−1

)c
, it holds that

|||X|||ε,q ≤ |||X|||p, (26)

whenever either of the following two cases holds.

• Case 1: c = 1 and 1 ≤ p ≤ 2 ≤ q.
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• Case 2: c = 2 and 1 ≤ p ≤ q ≤ 2.

Proof. Case 1 has a simple inductive proof by using the norm-compression inequality [Kin03].
For the sake of completeness, we provide a proof in Appendix D.Case 2 is much more challenging.
The rest of this section is devoted to this case.

By Lemma 3.1, we can assume X to be positive semi-definite. We note that if q = 1, our
conclusion holds trivially. Assume q > 1 for the following arguments. Fix X and p ∈ [1, 2].
Recall that

|||X|||ε,q =
(
2−n · Tr

[
Π⊗n

ε · |D⊗n(X)|q
]) 1

q and |||X|||p =
(
2−n · Tr[|X|p]

) 1
p .

Introduce a parameter t and let p−1
q−1

= e−t/c and ε = 1− e−t. It is easy to see that Eq. (26) holds
with equality at t = 0, since in this case q = p and ε = 0.

Let g(t) = ln |||X|||ε,q, calculating the derivative of g(t) over t yields

g′(t) =
q − 1

c · q2
· 1

|||X|||qε,q
·Entε,[n],q[X]− c · q

q − 1

∑
S⊆[n]

(1− ε)n−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
and recall that Entε,[n],q[X] is defined as

∑
S⊆[n]

(1−ε)n−|S|ε|S|τ [Xq
Sc lnX

q
Sc ]−

∑
S⊆[n]

(1− ε)n−|S|ε|S|τ [Xq
Sc ]

 ln

∑
S⊆[n]

(1− ε)n−|S|ε|S|τ [Xq
Sc ]

.

To show g′(t) ≤ 0, we need to prove

Entε,[n],q[X] ≤ c · q
q − 1

∑
S⊆[n]

(1− ε)n−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
. (27)

Combining Theorem 4.2 with m = n and Lemma 3.3 for c′ = 4/q2, we have

Entε,[n],q[X] ≤
(
2 +

2

q − 1

) ∑
S⊆[n]

(1− ε)n−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
.

Note that
2 +

2

q − 1
=

2 · q
q − 1

=
c · q
q − 1

.

This completes the proof.

The following lemma, to some extent, resembles quantum Gross’ lemma [Gro75a, Kin14],
and the quantum Stroock-Varopoulos inequality [CKMT15, BDR20, Bar17]. Notice that, these
inequalities are essential in the proof of the hypercontractivity of unital qubit channels [Gro75a,
Kin14, Bei21].
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Lemma 3.3 (Refined Gross’ lemma). For X ∈ Pos2n and q ∈ (1, 2],

τ [Xq]− τ

[(
τn

[
X

q
2

])2]
≤ 1

q − 1
(τ [Xq]− τ [(τnX)q]). (28)

Remark 3.4. This lemma differs to the quantum Stroock-Varopoulos inequality from [BDR20]
in that the right hand side is not a Dirichlet form, thus is new as far as we can tell.

The proof of Lemma 3.3 is built on the following Lemma.

Lemma 3.5. Let q ∈ (1, 2],λ ∈ R2n

≥0 and D be a 2n × 2n doubly stochastic matrix. It holds that

∥λ∥qq −
∥∥∥Dλ

q
2

∥∥∥2
2
≤ 1

q − 1

(
∥λ∥qq − ∥Dλ∥qq

)
. (29)

Proof of Lemma 3.3. We will reduce (28) to (29).
Without loss of generality, we assume τnX is diagonal from now on. Otherwise we could

replace X by (V ⊗ 1)†X(V ⊗ 1) where V is a unitary to diagonalize τnX without changing any
term in the equation above.

Let diag(X) be the column vector of X’s diagonal entries and λ(X) be the column vector
of X’s eigenvalues. Both vectors are sorted in non-increasing order. Then there exists a unitary
U s.t. X = UΣU †, where diag(Σ) = λ(X). According to Theorem 2.4 and Lemma 2.5, we
have λ(X) ⪰ diag(X) and diag(X) = Dλ(X) for some doubly stochastic matrix D, where
D depends only on U and is independent of Σ. This property is crucial since we can deduce
diag

(
X

q
2

)
= Dλ

(
X

q
2

)
= Dλ(X)

q
2 with the same D, where we use vq to represent the vector

(vq1, . . . , v
q
n)

T for column vector v = (v1, . . . , vn)
T .

Besides, since τnX is diagonal, we know λ(τnX ⊗ 1) = diag(τnX ⊗ 1) = Mdiag(X) =
MDλ(X) and diag

(
τn
[
X

q
2

]
⊗ 1

)
= Mdiag

(
X

q
2

)
= MDλ(X)

q
2 , where M = 1

2
· 12n−1 ⊗[

1 1
1 1

]
. As an intuition, Mdiag(X) calculates average values of each two corresponding entries

of diag(X). We use D′ to denote M ·D. Note that D′ is also doubly stochastic.
With all the definitions above, we see that

2nτ [Xq] = ∥λ(X)∥qq (30)
2nτ [(τnX)q] = 2nτ [(τnX)q ⊗ 12] = ∥D′λ(X)∥qq (31)

2nτ

[(
τn

[
X

q
2

])2]
=
∥∥∥τn[X q

2

]
⊗ 1

∥∥∥2
2
≥
∥∥∥diag(τn[X q

2

]
⊗ 1

)∥∥∥2
2
=
∥∥∥D′λ(X)

q
2

∥∥∥2
2

(32)

Therefore,

2n
(
τ [Xq]− τ

[(
τn

[
X

q
2

])2])
≤ ∥λ(X)∥qq −

∥∥∥D′λ(X)
q
2

∥∥∥2
2

2n(τ [Xq]− τ [(τnX)q]) = ∥λ(X)∥qq − ∥D
′λ(X)∥qq.
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According to Lemma 3.5, we have

∥λ(X)∥qq −
∥∥∥D′λ(X)

q
2

∥∥∥2
2
≤ 1

q − 1

(
∥λ(X)∥qq − ∥D

′λ(X)∥qq
)

since D′ is a doubly stochastic matrix, thus we conclude that

τ [Xq]− τ

[(
τn

[
X

q
2

])2]
≤ 1

q − 1
(τ [Xq]− τ [(τnX)q]).

Proof of Lemma 3.5. First notice that

∑
ij

Dijλ
q
j =

∑
j

(∑
i

Dij

)
λq
j =

∑
j

λq
j = ∥λ∥

q
q.

Thus Eq. (29) is equivalent to

∑
i

∑
j

Dijλ
q
j +

∑
i

(∑
j

Dijλ
q
2
j

)2

≤ 1

q − 1

(∑
i

∑
j

Dijλ
q
j −

∑
i

(∑
j

Dijλj

)q)
.

It suffices to prove for every i,

∑
j

Dijλ
q
j +

(∑
j

Dijλ
q
2
j

)2

≤ 1

q − 1

(∑
j

Dijλ
q
j −

(∑
j

Dijλj

)q)

holds, which again suffices to prove

n∑
i=1

αiλ
q
i −

(
n∑

i=1

αiλ
q
2
i

)2

≤ 1

q − 1

(
n∑

i=1

αiλ
q
i −

(
n∑

i=1

αiλi

)q)
for an arbitrary non-negative vector {αi}ni=1 satisfying

∑n
i=1 αi = 1 and an arbitrary non-

negative vector {λi}ni=1 and q ∈ (1, 2].
Treating {αi}ni=1 as a distribution over [n] and considering the normalized p-norms

|||λ|||p =

(∑
i

αi|λi|p
)1/p

=

(
E
i
[|λi|p]

)1/p

. (33)

Our goal can be tidied into

|||λ|||q1 ≤ (2− q)|||λ|||qq + (q − 1)|||λ|||qq/2. (34)

We first use the Hölder’s inequality for probability spaces. Let p = q/(2 − q) ≥ 1 and p∗ =
q/(2(q − 1)) be p’s Hölder conjugate, we obtain
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|||λ|||1 = E[λi] = E
i

[
λ2−q
i · λq−1

i

]
≤
∣∣∣∣∣∣λ2−q

∣∣∣∣∣∣
p
·
∣∣∣∣∣∣λq−1

∣∣∣∣∣∣
p∗

=

(
E
i
[λq

i ]

)(2−q)/q

·
(
E
i

[
λ
q/2
i

])2(q−1)/q

= |||λ|||2−q
q · |||λ|||q−1

q/2 . (35)

We now use the following inequality: Let 0 ≤ s ≤ 1 and a, b ≥ 0, then

asb1−s ≤ sa+ (1− s)b. (36)

This follows simply by the concavity of the log function:

log asb1−s = s log a+ (1− s) log b ≤ log(sa+ (1− s)b).

Then we apply Eq. (36) and get

|||λ|||2−q
q · |||λ|||q−1

q/2 ≤ (2− q)|||λ|||q + (q − 1)|||λ|||q/2. (37)

Finally, by convexity of the function x 7→ xq,

|||λ|||q1 ≤
(
(2− q)|||λ|||q + (q − 1)|||λ|||q/2

)q
≤ (2− q)|||λ|||qq + (q − 1)|||λ|||qq/2. (38)

4 Variable Multipartite Log-Sobolev Ineqality

In this section, we will prove a quantum log-Sobolev inequality for multipartite Bernoulli entropy,
which plays a crucial role in the proof of the hypercontractivity for quantum erasure channels.
The standard quantum log-Sobolev inequality is due to Kastoryano and Temme [KT13].

Theorem 4.1 (Quantum log-Sobolev inequality). [KT13] For A ∈ Pos2n , it holds that

Ent2[A] = τ
[
A2 lnA2

]
− τ
[
A2
]
ln τ
[
A2
]
≤ 2

n∑
k=1

(
τ
[
A2
]
− τ
[
(τk[A])

2]).
In Theorem 4.1, the dimension of the system is fixed. We now state our main result of the

variable multipartite quantum log-Sobolev inequality, where the dimension of the system varies
subject to a random partial trace. Recall the definition

Entε,[m],q[X] =
∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q ln (τSX)q]

−

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 ln

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 .
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Theorem 4.2 (Variable Quantum log-Sobolev inequality). Let m,n be integers such that m ≤ n
and X ∈ Pos2n . For q ∈ [1, 2], ε ∈ [0, 1], it holds that

Entε,[m],q[X] ≤ 2
∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[m]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
+2

∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ

[(
τk

[
X

q
2
Sc

])2])
.

(39)

where XT = TrT c X/2n−|T | for T ⊆ [n], and Entε,[m],q is the multipartite Bernoulli entropy defined
as

Entε,[m],q[X] =
∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q ln (τSX)q]

−

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 ln

∑
S⊆[m]

(1− ϵ)m−|S|ϵ|S|τ [(τSX)q]

 . (40)

To the best of our knowledge, even the classical counterpart of Theorem 4.2 is also unknown.
We write it down for readers who are interested in classical log-Sobolev inequalities and their
applications.

Corollary 4.3 (Variable Classical log-Sobolev inequality). For f : {0, 1}n → R≥0, integersm ≤ n,
T ⊆ [n],we define fT : {0, 1}|T | → R≥0 to be fT (x) = E

y∼{0,1}|T
c| [f(x, y)], where x and y are

placed on T and T c, respectively. For ε ∈ [0, 1], q ∈ [1, 2], define

Entε,[m],q[f ] =
∑
S⊆[m]

(1− ε)m−|S| ε|S| E[f q
Sc ln (f

q
Sc)]

−

∑
S⊆[m]

(1− ε)m−|S| ε|S| E[f q
Sc ] ln

∑
S⊆[m]

(1− ε)m−|S| ε|S| E[f q
Sc ]

 .

It holds that

Entε,[m],q[f ] ≤ 2
∑
S⊆[m]

(1− ε)m−|S| ε|S|
∑

k∈[m]\S

(
E[f q

Sc ]− E
[
f q
(S∪{k})c

])
+ 2

∑
S⊆[m]

(1− ε)m−|S| ε|S|
∑

k∈[n]\S

(
E[f q

Sc ]− E
[(

f
q/2
Sc

)2
(S∪{k})c

])
.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Define

J(X,m) =
∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[m]\S

(
τ [Xq

Sc ]− τ
[
Xq

(S∪{k})c

])
,
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K(X,m) =
∑
S⊆[m]

(1− ε)m−|S|ε|S|
∑

k∈[n]\S

(
τ [Xq

Sc ]− τ

[(
τk

[
X

q
2
Sc

])2])
.

It suffices to prove
Entε,[m],q[X] ≤ 2 · J(X,m) + 2 ·K(X,m). (41)

We will prove by induction on m. Recall [0] = ∅ which implies J(X, 0) = 0. Thus our in-
equality in the base case of m = 0 is equivalent to the standard quantum log-Sobolev inequality
Theorem 4.1 where A = X

q
2 .

Now suppose m ≥ 1 and Eq. (41) holds for all integers in [m − 1]. Recall the definition of
two-point relative entropy Entε [·, ·] in Definition 2.7. We expand the left-hand side

Entε,[m],q[X] = (1− ε) · Entε,[m−1],q[X] + ε · Entε,[m−1],q

[
X{m}c

]
+ Entε

 ∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|τ [Xq
Sc ],

∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|τ
[
Xq

(S∪{m})c

].
By the induction hypothesis, we have

(1− ε) · Entε,[m−1],q[X] + ε · Entε,[m−1],q

[
X{m}c

]
=2(1− ε) · J(X,m− 1) + 2(1− ε) ·K(X,m− 1) + 2ε · J

(
X{m}c ,m− 1

)
+ 2ε ·K

(
X{m}c ,m− 1

)
=2J(X,m) + 2K(X,m)− 2

∑
S⊆[m−1]

(1− ε)m−|S|ε|S|
(
τ [Xq

Sc ]− τ
[
Xq

(S∪{m})c

])
since

(1− ε) ·K(X,m− 1) + ε ·K
(
X{m}c ,m− 1

)
= K(X,m),

(1−ε)·J(X,m− 1)+ε·J
(
X{m}c ,m− 1

)
= J(X,m)−

∑
S⊆[m−1]

(1−ε)m−|S|ε|S|
(
τ [Xq

Sc ]− τ
[
Xq

(S∪{m})c

])
.

Finally with Claim 4.4, we obtain

Entε,[m],q[X] ≤ 2 · J(X,m) + 2 ·K(X,m),

which completes the proof of the induction step.

Claim 4.4.

Entε

 ∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|τ [Xq
Sc ],

∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|τ
[
Xq

(S∪{m})c

]
≤ 2

∑
S⊆[m−1]

(1− ε)m−|S|ε|S|
(
τ [Xq

Sc ]− τ
[
Xq

(S∪{m})c

])
.

(42)
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Proof. By Lemma B.2 and the fact that 1 ≤ q ≤ 2, we have for each S,

τ
[
Xq

(S∪{m})c

]
≤ τ [Xq

Sc ] ≤ 16τ
[
Xq

(S∪{m})c

]
.

Thus we are able to apply Lemma B.1, to get

Entε

 ∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|τ [Xq
Sc ],

∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|τ
[
Xq

(S∪{m})c

]
≤ 2(1− ε)

∑
S⊆[m−1]

(1− ε)m−1−|S|ε|S|
(
τ [Xq

Sc ]− τ
[
Xq

(S∪{m})c

])
= 2

∑
S⊆[m−1]

(1− ε)m−|S|ε|S|
(
τ [Xq

Sc ]− τ
[
Xq

(S∪{m})c

])
.

5 Common Randomness Generation

In this section we give a lower bound on the communication cost of common randomness (CR)
generation, in the case where Alice and Bob share maximally entangled states affected by the
quantum erasure channel as free resource.

CR generation refers to the task of producing a common random string X accessible for both
Alice and Bob. In our work we restrict the actions of Alice and Bob to local quantum operations
and one-way classical communication from Alice to Bob. We measure the amount of randomness
of a random variable X by its min-entropy.

Definition 5.1 (Min-Entropy). Let R be a random variable with distribution µ. We define the
min-entropy of R to be

Hmin (R) = min
r∈R

log (1/µ(r)) . (43)

We assume log(1/0) = +∞ in this definition.

Let |Φ⟩ = (|00⟩+ |11⟩)/
√
2 be an EPR state and write Φ = |Φ⟩⟨Φ|. If Alice and Bob share

maximally entangled states, they can apply the same measurements {M0 = |0⟩⟨0| ,M1 = |1⟩⟨1|}
on the shared entanglement and get exactly identical results. Thus they can generate CR without
any classical communication. However, EPRs may suffer various noise in reality. Thus, it is
natural to investigate CR generation with non-perfect quantum correlation.

Recall that the quantum erasure channel Dε : M2 →M3 for 0 ≤ ε ≤ 1 is

Dε(X) = ΠεD(X) = (1− ε) ·X + εTr(X) · |E⟩⟨E| .
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We study the communication cost of CR generation, when Alice and Bob share EPR states while
Bob’s quantum states are affected by a quantum erasure channel. Note that the quantum erasure
channel is not symmetric regarding to maximally entangled states:

(Dε ⊗ 1)(Φ) ̸= (1⊗Dε)(Φ), (44)

so we make explicit here that the noise is applied to Bob’s part, i.e., they share the state (1 ⊗
Dε)(Φ) where Alice has access to the left side and Bob has access to the right side. This is more
interesting because it is Alice who sends one-way information to Bob. Otherwise if the noise is
applied to Alice’s part, Alice can simply tell Bob which qubits are faulty.

Suppose Alice and Bob share n copies of the state (1⊗Dε)(Φ), and their goal is to produce
a CR of min-entropy at least k, with one-way classical communication from Alice to Bob. Alice’s
strategy can be represented by a POVM {Xa,π}a,π, where Xa,π ∈ Pos2n and

∑
a,π Xa,π = 12n .

After receiving the message π from Alice, Bob performs his measurement described by {Y π
a }a,

where Y π
a ∈ Pos3n and

∑
a Y

π
a = 13n for each π. Then their success probability is

Pr [Success] =
∑
a,π

Tr
[
(Xa,π ⊗ Y π

a ) ·
(
1⊗D⊗n

ε

) (
Φ⊗n

)]
.

Our first lemma will be that Bob’s strategy, i.e. the measurement operators Y π
a , will be of the

form of Eq. (25). That is,
Y π
a =

∑
S⊆[n]

Y π
a,Sc ⊗ |E⟩⟨E|⊗S

where for all S ⊆ [n], Y π
a,Sc lies in the subspace M2[n]−S . As for an intuitive perspective, this

means Bob is the one who knows which qubits are polluted and which are not, and can make his
decision only based on the clean qubits. Define

Π0 =

1
1

0

 and Π1 =

0
0

1

 ,

and Πb = Πb1 ⊗ . . .⊗ Πb1 for b ∈ {0, 1}n.

Lemma 5.2. Let X ∈ Pos3n be of Eq. (25) form. Then

max
Y ∈M3n

|Tr[XY ]|

is achieved by a Y of Eq. (25) form.

Proof. Notice that X =
∑

b∈{0,1}n ΠbXΠb. Suppose we have an optimal Y ∈ Pos3n . Let

Ỹ =
∑

b∈{0,1}n
ΠbYΠb.
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Then

Tr
[
XỸ

]
=
∑
b

Tr
[
XΠbYΠb

]
= Tr

[(∑
b

ΠbXΠb

)
Y

]
= Tr [XY ] .

Corollary 5.3. Bob’s strategy can be replaced by measurement operators Ỹ π
a of Eq. (25) form.

Proof. Suppose Bob has an optimal strategy {Y π
a }. Then

Pr [Success] =
∑
a,π

Tr
[
(Xa,π ⊗ Y π

a ) ·
(
1⊗D⊗n

ε

) (
Φ⊗n

)]
=
∑
a,π

Tr
[(

Xa,π ⊗D†
ε

⊗n
(Y π

a )
)
· Φ⊗n

]
= 2−n

∑
a,π

Tr
[
Xa,π ·D†

ε

⊗n
(Y π

a )
T
]

= 2−n
∑
a,π

Tr
[
D⊗n

ε (Xa,π) · (Y π
a )

T
]
.

Notice that for each a, π, the operator D⊗n
ε (Xa,π) is of Eq. (25) form. Let

Ỹ π
a =

∑
b∈{0,1}n

ΠbY
π
a Πb.

By Lemma 5.2, we only need to check they form a POVM measurement. For each π,∑
a

Ỹ π
a =

∑
a,b

ΠbY
π
a Πb =

∑
b

Πb

(∑
a

Y π
a

)
Πb =

∑
b

Πb1Πb =
∑
b

Πb =
(
Π0 +Π1

)⊗n
= 13n .

We are now ready to prove our main theorem for this section.

Theorem 5.4. Let 0 ≤ ϵ ≤ 1/2. Suppose Alice and Bob share infinitely many pairs of (1⊗Dε)(Φ),
and Alice is allowed to send classical messages to Bob. Then for any k ≥ 1, γ ∈ (0, 1), to produce
a common random string R ∈ {0, 1}∗ with Hmin (R) ≥ k and a success probability at least 2−γk,
Alice needs to send at least (

ε′(1− γ)− 2
√

ε′(1− ε′)γ
)
· k

bits, where ε′ = ε/2.
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Remark 5.5. Grusuwami and Radhakrishnan [GR16] showed that it suffices for Alice to send
(ε(1− γ)− 2

√
ε(1− ε)γ)k bits to Bob to achieve the same task, even if they share erased-noisy

random strings. Hence, the lower bound given in Theorem 5.4 is tight up to a constant.

Proof of Theorem 5.4. Our proof follows closely the proof for the classical counterpart [GR16].

Pr [Success] =
∑
a,π

Tr
[
(Xa,π ⊗ Y π

a ) ·
(
1⊗D⊗n

ε

) (
Φ⊗n

)]
=
∑
a,π

Tr
[(

Xa,π ⊗D†
ε

⊗n
(Y π

a )
)
· Φ⊗n

]
= 2−n

∑
a,π

Tr
[
Xa,π ·D†

ε

⊗n
(Y π

a )
T
]

= 2−n
∑
a,π

Tr
[
D⊗n

ε (Xa,π) · (Y π
a )

T
]

= 2−n
∑
a,π

Tr
[
Π⊗n

ε D⊗n(Xa,π) · (Y π
a )

T
]
.

Then, by Lemma 2.1 with parameters q and q∗, since (Y π
a )

T commutes with Πε, we have

Pr [Success] ≤ 2−n
∑
π

(∑
a

Tr
[
Π⊗n

ε D⊗n(Xa,π)
q
])1/q

·

(∑
a

Tr
[
Π⊗n

ε (Y π
a )

T q∗
])1/q∗

.

We first upper bound the second term. Since (Y π
a )

T ≤ 13, we have (Y π
a )

T q∗ ≤ (Y π
a )

T , and thus

∑
a

Tr
[
Πε(Y

π
a )

T q∗
]
≤
∑
a

Tr
[
Πε (Y

π
a )

T
]
= Tr

[
Πε

∑
a

(Y π
a )

T

]
= Tr

[
Π⊗n

ε 13n
]
= 2n. (45)

Applying Eq. (45), we get

Pr [Success] ≤ 2−n+n/q∗
∑
π

(∑
a

Tr
[
Π⊗n

ε D⊗n(Xa,π)
q
])1/q

.

Now let t be the number of bits sent from Alice to Bob. Then the number of different choices
of the message π is at most 2t. So by the concavity of the function x 7→ x1/q, we can put the
summation over π into the parenthesis and get

Pr [Success] ≤ 2−n+n/q∗+t/q∗

(∑
a,π

Tr
[
Π⊗n

ε D⊗n(Xa,π)
q
])1/q

.
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We now apply hypercontractivity Theorem 3.2 with p = 1 + (1− ϵ)1/c(q − 1) and c = 2 to get

Pr [Success] ≤ 2t/q
∗

(∑
a,π

(
2−nTr

[
Xp

a,π

])q/p)1/q

.

From the assumption that Hmin (R) ≥ k, we have 2−nTr [Xa,π] ≤ 2−k. Notice ∥Xa,π∥ ≤ 1.
Hence,

Pr [Success] ≤ 2t/q
∗

(∑
a,π

(
2−nTr [Xa,π]

)q/p)1/q

= 2t/q
∗

(∑
a,π

(
2−nTr [Xa,π]

)
·
(
2−nTr [Xa,π]

)(q−p)/p

)1/q

≤ 2t/q
∗

(∑
a,π

(
2−nTr [Xa,π]

)
· 2−k(q−p)/p

)1/q

= 2t/q
∗−k q−p

pq .

Let δ = q−1, then q = 1+δ and p = 1+(1−ϵ)1/cδ. From the assumption thatPr[Success] ≥ 2−γk,
we get for every δ > 0,

t ≥ −(1 + δ)γk

δ
+

1− (1− ϵ)1/c

1 + (1− ϵ)1/cδ
k

≥ −(1 + δ)γk

δ
+

ϵ/c

1 + (1− ϵ/c)δ
k

=

(
ϵ/c

1 + (1− ϵ/c)δ
− γ

δ
− γ

)
· k.

Maximizing over δ, with c = 2, we get

t ≥
(
(ϵ/c)(1− γ)− 2

√
(ϵ/c)(1− ϵ/c)γ

)
k.
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A Proof of Lemma 3.1

Lemma 3.1 (Watrous’ theorem [Wat05]). For 1 ≤ p ≤ q, ε ∈ [0, 1], we have

sup
X∈M2n ,X ̸=0

|||X|||ε,q
|||X|||p

= sup
X∈Pos2n ,X ̸=0

|||X|||ε,q
|||X|||p

.

Proof. Note that for any X ∈M2n ,

(
2−n Tr[Πε · |D(X)|q]

) 1
q =

∑
S⊆[n]

(1− ε)n−|S|ε|S||||τS[X]|||qq

 1
q

.

Let X ∈ M2n satisfy |||X|||p = 1. For any S ⊆ [n], let YSc ∈ M2n−|S| satisfy = |||YSc|||q∗ = 1,
where q∗ is the Hölder conjugate of q. Consider the singular value decompositions of X and YSc :

X =
2n∑
i=1

li |ui⟩⟨vi| and YSc =

mS∑
j=1

rS,j |wS,j⟩⟨xS,j|

where mS denotes the number of singular values of YSc .
Define XL, XR, YSc,L, YSc,R as follows:

XL =
2n∑
i=1

li |ui⟩⟨ui| and ∀S ⊆ [n], YSc,L =

mS∑
j=1

rS,j |wS,j⟩⟨wS,j| ,
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XR =
2n∑
i=1

li |vi⟩⟨vi| and ∀S ⊆ [n], YSc,R =

mS∑
j=1

rS,j |xS,j⟩⟨xS,j| .

We point out that |||XL|||p = |||XR|||p = |||YSc,L|||q∗ = |||YSc,R|||q∗ = 1. Also, XL, XR, YSc,L, YSc,R

are positive semi-definite.
Therefore,∑

S⊆[n]

(1− ε)n−|S|ε|S|
∣∣∣τ[Y †

Sc · (τSX)
]∣∣∣ = ∑

S⊆[n]

(1− ε)n−|S|ε|S|
1

2n−|S|

∣∣∣∣∣
mS∑
j=1

rS,j ⟨wS,j| τSX |xS,j⟩

∣∣∣∣∣
=
∑
S⊆[n]

(1− ε)n−|S|ε|S|
1

2n

∣∣∣∣∣∣
mS∑
j=1

2|S|∑
k=1

rS,j ⟨wS,j, k|X |xS,j, k⟩

∣∣∣∣∣∣
=
∑
S⊆[n]

(1− ε)n−|S|ε|S|
1

2n

∣∣∣∣∣∣
2n∑
i=1

mS∑
j=1

2|S|∑
k=1

lirSc,j ⟨wS,j, k|ui⟩ ⟨vi|xS,j, k⟩

∣∣∣∣∣∣
≤ 1

2n

√∑
S⊆[n]

(1− ε)n−|S|ε|S|
∑
i,j,k

lirS,j|⟨wS,j, k|ui⟩|2 ·
√∑

S⊆[n]

(1− ε)n−|S|ε|S|
∑
i,j,k

lirS,j|⟨vi|xS,j, k⟩|2

=

√∑
S⊆[n]

(1− ε)n−|S|ε|S|
∣∣∣τ[Y †

Sc,L · τSXL

]∣∣∣ ·√∑
S⊆[n]

(1− ε)n−|S|ε|S|
∣∣∣τ[Y †

Sc,R · τSXR

]∣∣∣
≤
√∑

S⊆[n]

(1− ε)n−|S|ε|S||||YSc,L|||q∗ · |||τSXL|||q ·
√∑

S⊆[n]

(1− ε)n−|S|ε|S||||YSc,R|||q∗ · |||τSXR|||q

≤

√√√√√∑
S⊆[n]

(1− ε)n−|S|ε|S||||YSc,L|||q
∗

q∗

 1
q∗
∑

S⊆[n]

(1− ε)n−|S|ε|S||||YSc,R|||q
∗

q∗

 1
q∗

|||XL|||ε,q|||XR|||ε,q

=
√
|||XL|||ε,q · |||XR|||ε,q.

Taking the supremum over all YSc , we conclude that for ∀X ∈M2n , satisfying |||X|||p = 1,

|||X|||ε,q ≤
√
|||XL|||ε,q · |||XR|||ε,q.

Without loss of generality, suppose |||XL|||ε,q ≤ |||XR|||ε,q, then
|||X|||ε,q ≤ |||XR|||ε,q.

Note that XR is positive semi-definite and |||XR|||p = 1, so the lemma is proved.

B Lemmas for Proof of Claim 4.4

We need two technical lemmas. Recall the two-point relative entropy function
Entε[a, b] = (1− ε) · a ln a+ ε · b ln b− [(1− ε)a+ εb] ln[(1− ε)a+ εb].
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Lemma B.1. For 16b ≥ a ≥ b > 0 and 0 ≤ ε ≤ 1,

Entε[a, b] ≤ 2 (1− ε) (a− b) . (46)

Proof. Fix a and b. Let f(ε) = Entε[a, b] − 2(1 − ε)(a − b). We see that f(1) = 0, so we only
need to prove that f is non-decreasing for ε in the interval [0, 1]. Calculating the derivatives of
f over ε we get

d

dε
f(ε) = −a ln a+ b ln b+ 3(a− b) + (a− b) ln((1− ε)a+ εb),

and
d2

dε2
f(ε) = − (a− b)2

(1− ε)a+ εb
≤ 0.

Thus f is concave. To prove d
dε
f(ε) ≥ 0 for ε ∈ [0, 1], we only need d

dε
f(1) ≥ 0, which is

−a ln a+ 3(a− b) + a ln b ≥ 0

for any 16b ≥ a ≥ b.
Now we only fix on a and define the function g : [a/16, a]→ R as

g(b) = −a ln a+ 3(a− b) + a ln b.

Again we see that g(b) is concave because d2

db2
g(b) = − 1

b2
≤ 0. To prove g(b) ≥ 0 in the range

[a/16, a], it suffices to check

• g(a) = −a ln a+ 3(a− a) + a ln a = 0.

• g(a/16) = 45
16
a− a ln 16 = a ·

(
45
16
− ln 16

)
≥ 0 since ln 16 ≈ 2.77 < 45

16
= 2.8125.

Lemma B.2. Let A ∈M2 ×Mn be positive semi-definite. Then for q ≥ 1,

τ(τ1[A])
q ≤ τAq ≤ 4qτ(τ1[A])

q. (47)

Proof. The inequality τ(τ1[A])
q ≤ τAq is Proposition 1 in [Ras12] in disguise. The inequality

τAq ≤ 4qτ(τ1[A])
q is a simple corollary of the inequality by Zhang [Zha19], who as Proposition

3.4 proved that
4τ1[A]⊗ 12 = 2Tr1[A]⊗ 12 ⪰ A.

Then
4q(τ1[A])

q ⊗ 12 ⪰ Aq

and our lemma follows.
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C QEC hypercontractivity impliesqantum depolar-

izing channel hypercontractivity

Definition C.1 (quantum depolarizing channel). Let 0 ≤ ρ ≤ 1, the quantum depolarizing
channel ∆ρ is defined as

∆ρ(X) = ρX + (1− ρ)τX · 12. (48)

Lemma C.2. For any p and q, suppose Eq. (9) holds for any matrix X . Then for any Y of Eq. (25)
form, it holds that ∣∣2−n Tr

[
Y †D⊗n

ε (X)
]∣∣ ≤ |||X|||p(2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

, (49)(
2−n Tr

∣∣∣D⊗n
ε

†
(Y )
∣∣∣p∗)1/p∗

≤
(
2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

, (50)

where p∗ and q∗ are the Hölder conjugates of p and q, respectively. Moreover, Eq. (9), Eq. (49), Eq. (50)
are all equivalent to each other.

Proof. • Eq. (9) =⇒ Eq. (49)∣∣2−n Tr
[
Y †D⊗n

ε (X)
]∣∣ = ∣∣2−nTr

[
Π⊗n

ε Y †D⊗n(X)
]∣∣

≤
(
2−nTr

[
Π⊗n

ε

∣∣D⊗n(X)
∣∣q])1/q(2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

≤ |||X|||p
(
2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

.

• Eq. (49) =⇒ Eq. (9)(
2−n Tr

[
Π⊗n

ε

∣∣D⊗n(X)
∣∣q])1/q

=max
Y

{∣∣∣2−n Tr
[
Y †(Π⊗n

ε

)1/q
D⊗n(X)

]∣∣∣ : Y ∈M3n , |||Y |||q∗ ≤ 1
}

=max
Y

{∣∣2−nTr
[
Y †Π⊗n

ε D⊗n(X)
]∣∣ : Y ∈M3n ,

(
2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

≤ 1

}
≤|||X|||p.

where the maximizations are over Y of Eq. (25) form and the first equality follows from
Eq. (21) and Lemma 5.2.

• Eq. (50) =⇒ Eq. (49)∣∣2−n Tr
[
Y †D⊗n

ε (X)
]∣∣ = ∣∣∣2−nTr

[
D⊗n

ε
†
(Y †)X

]∣∣∣
≤ |||X|||p

(
2−nTr

∣∣∣D⊗n
ε

†
(Y )
∣∣∣p∗)1/p∗

≤ |||X|||p
(
2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

.
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• Eq. (49) =⇒ Eq. (50)(
2−nTr

∣∣∣D⊗n
ε

†
(Y )
∣∣∣p∗)1/p∗

= max
X

{∣∣∣2−nTr
[
X†D⊗n

ε
†
(Y )
]∣∣∣ : |||X|||p ≤ 1

}
= max

X

{∣∣2−nTr
[
D⊗n

ε (X†)Y
]∣∣ : |||X|||p ≤ 1

}
≤ |||X|||p

(
2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

≤
(
2−nTr

[
Π⊗n

ε |Y |
q∗
])1/q∗

.

where the first equality is Eq. (21).

Lemma C.3. Suppose there exist parameters ε, p, q, r such that Eq. (9) holds for

• q ← r∗ and p← q∗ and

• q ← r and p← p,

where r∗ and q∗ are the Hölder conjugates of r and q, respectively. Then for any matrix X , for
ρ ≤ 1− ε, we have the hypercontractivity inequality∣∣∣∣∣∣∆⊗n

ρ (X)
∣∣∣∣∣∣

q
≤ |||X|||p. (51)

Proof. Note that
∆⊗n

ρ (X) = D⊗n
ε

†(
D⊗n(X)

)
.

So we have ∣∣∣∣∣∣∆⊗n
ρ (X)

∣∣∣∣∣∣
q
=
(
2−nTr

∣∣∣D⊗n
ε

†
(D⊗n(X))

∣∣∣q)1/q
≤
(
2−nTr

[
Π⊗n

ε

∣∣D⊗n(X)
∣∣r])1/r

≤ |||X|||p.

Corollary C.4. Suppose Eq. (9) holds for all 1− ε ≤
(

p−1
q−1

)c
and any matrix X , then Eq. (51) holds

for all ρ = 1− ε ≤
(

p−1
q−1

)c/2
and any matrix X .

Proof. Let r = 1 + (p− 1)/(1− ε)1/c, then we can check that(
r − 1

q − 1

)c

= 1− ε,

and (
p− 1

r − 1

)c

= 1− ε.

Then we can apply Lemma C.3 with the parameters ε, p, q, r to prove Eq. (51).
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D Proof of Hypercontractivity for 1 ≤ p ≤ 2 ≤ q

Lemma D.1 ([Kin03]). Let M be a 2n × 2n positive semidefinite matrix. It can be written in the
block form

M =

(
X Y
Y † Z

)
(52)

Define the 2× 2 matrix

mp =

(
∥X∥p ∥Y ∥p
∥Y ∥p ∥Z∥p

)
(53)

Then mp is positive semidefinite and

• for 1 ≤ p ≤ 2
∥M∥p ≥ ∥mp∥p (54)

• for 2 ≤ p ≤ ∞
∥M∥p ≤ ∥mp∥p (55)

Lemma D.2. Let X, Y be two 2 × 2 real valued positive semidefinite matrices such that for all
i, j ∈ {1, 2}

Xij ≤ Yij (56)

then for any Schatten p-norm ∥·∥ we have

∥X∥ ≤ ∥Y ∥ (57)

Proof. Define the intermediate matrix

Z =

(
Y11 X12

X12 Y22

)
= X +

(
Y11 −X11

Y22 −X22

)
(58)

it is clear that X ⪯ Z and thus ∥X∥ ≤ ∥Z∥. We only need to prove ∥Z∥ ≤ ∥Y ∥.
Let λ1 ≥ λ2 ≥ 0 be the eigenvalues of Y and γ1 ≥ γ2 ≥ 0 be the eigenvalues of Z . Since

TrY = TrZ , we have λ1+λ2 = γ1+ γ2. Since det(Y ) ≤ det(Z), we have λ1 ·λ2 ≤ γ1 · γ2. Thus
{λ1, λ2} majorises {γ1, γ2} and thus ∥Y ∥ ≥ ∥Z∥.

Lemma D.3. Let A ∈M2n , then for all 1 ≤ p ≤ 2 ≤ q and 0 ≤ ε ≤ 1 satisfying 1− ε ≤ p−1
q−1

,

(
Tr
[
Π⊗n

ε

∣∣D⊗n(X)
∣∣q])1/q ≤ ∥X∥p · 2n·( 1

q
− 1

p). (59)

Proof. By Lemma 3.1, we can assume X to be positive semi-definite. For n = 1, the inequality
collapses to the classical case and has been proven by Nair and Wang [NW16]. For n > 1, we can
write X as a block matrix

X =

(
X11 X12

X21 X22

)
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then (
Π⊗n

ε

)1/q
D⊗n(X) =

Z11 Z12

Z21 Z22

Z33


where we let Yij = (Π⊗n−1

ε )
1/q

D⊗n−1(Xij) for i, j ∈ {1, 2} and Zij = (1 − ε)1/qYij for i, j ∈
{1, 2} and Z33 = (2ε)1/q Y11+Y22

2
. Since q ≥ 2, Lemma D.1 implies

(
Tr
[
Π⊗n

ε D⊗n(X)q
])1/q

=

Tr

Z11 Z12

Z21 Z22

Z33

q1/q

=

∥∥∥∥∥∥

∥∥∥∥(Z11 Z12

Z21 Z22

)∥∥∥∥
q

∥Z33∥q

∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥

∥∥∥∥(∥Z11∥q ∥Z12∥q
∥Z12∥q ∥Z22∥q

)∥∥∥∥
q

∥Z33∥q

∥∥∥∥∥∥
q

By triangle inequality we have

∥Z33∥q = (2ε)1/q
∥∥∥∥Y11 + Y22

2

∥∥∥∥
q

≤ (2ε)1/q

2
∥Y11∥q +

(2ε)1/q

2
∥Y22∥q

Thus (
Tr
[
Π⊗n

ε D⊗n(X)q
])1/q ≤ ∥∥∥∥Π1/q

ε D

(
∥Y11∥q ∥Y12∥q
∥Y12∥q ∥Y22∥q

)∥∥∥∥
q

(60)

By induction hypothesis we also have

∥Yij∥q =
(
TrΠ⊗n−1

ε D⊗n−1(Xij)
q
)1/q ≤ ∥Xij∥p · 2

(n−1)·( 1
q
− 1

p) (61)

thus by Lemma D.2 and again by induction hypothesis

(
Tr
[
Π⊗n

ε D⊗n(X)q
])1/q ≤ ∥∥∥∥Π1/q

ε D

(
∥X11∥p ∥X12∥p
∥X12∥p ∥X22∥p

)∥∥∥∥
q

· 2(n−1)·( 1
q
− 1

p)

≤
∥∥∥∥(∥X11∥p ∥X12∥p
∥X12∥p ∥X22∥p

)∥∥∥∥
p

· 2n·(
1
q
− 1

p) (62)

Finally we use Lemma D.1 again for 1 ≤ p ≤ 2 which implies∥∥∥∥(∥X11∥p ∥X12∥p
∥X12∥p ∥X22∥p

)∥∥∥∥
p

≤
∥∥∥∥(X11 X12

X†
12 X22

)∥∥∥∥
p

= ∥X∥p

and the lemma is proved.
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