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Abstract

We consider the problems of testing and learning quantum k-junta channels, which are
n-qubit to n-qubit quantum channels acting non-trivially on at most k out of n qubits and
leaving the rest of qubits unchanged. We show the following.

1. AnO(k)-query algorithm to distinguish whether the given channel is k-junta channel or
is far from any k-junta channels, and a lower bound Ω(

√
k) on the number of queries;

2. An Õ
(
4k
)
-query algorithm to learn a k-junta channel, and a lower bound Ω

(
4k/k

)
on

the number of queries.

This gives the first junta channel testing and learning results, and partially answers an open
problem raised by [CNY23]. In order to settle these problems, we develop a Fourier analysis
framework over the space of superoperators and prove several fundamental properties, which
extends the Fourier analysis over the space of operators introduced in [MO10].

Besides, we introduce INFLUENCE-SAMPLE to replace FOURIER-SAMPLE proposed in
[AS07]. Our INFLUENCE-SAMPLE includes only single-qubit operations and results in only
constant-factor decrease in efficiency.

1 Introduction

It is crucial in quantum computing to understand the behavior of a quantum process, which is also
modeled as a quantum channel, in a black-box manner. The most general method for doing this is
quantum process tomography (QPT). But it requires a large amount of computational resources,
which is exponential in the number of qubits it acts on, as noted by [CN97] and [GJ14].

A quantum channel is referred to as a k-junta channel if it acts non-trivially on up to k out
of n qubits, leaving the rest qubits unchanged. Characterizing a k-junta channel is easier if k is
small, hence it is interesting to find efficient algorithms to test whether a quantum channel is a
k-junta channel and learn k-junta channels. The problems of testing and learning k-junta boolean
functions is also an important problem in theoretical computer science, having a rich history of
research, see [Gol17] and [BY22]. More recently, testing and learning k-junta unitaries has been
explored by [MO10, Wan11, CNY23]

In this paper, we are concerned about the testing and learning k-junta channels. The setting
is as follows. Given oracle access to a quantum channel Φ, the algorithm is supposed to output
an answer about the channel Φ, where access means the algorithm queries the oracle with any
n-qubit quantum state ρ and obtains Φ(ρ) as an output. For both problems, it requires a distance
function dist(·, ·) to formulate far and close rigorously. With the assistance of the oracle, we are
supposed to determine whether Φ is a k-junta channel or far from any k-junta channels in the
testing problem or output a description of Φ̃, which is close to Φ with respect to the distance.
In this work we choose the distance function induced by the inner product over superoperators,
which will be formally defined in Section 3.
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The first main result is an algorithm testing whether a given black-box channel is a k-junta
channel or far from any k-junta channel with O(k) queries.

Theorem 1 (Testing Quantum k-Junta Channels). There exists an algorithm such that, given ora-
cle access to an n-qubit to n-qubit quantum channel Φ, it makes O(k/ε2) queries and determines
whether Φ is a k-junta channel or dist(Φ,Ψ) ≥ ε for any k-junta channel Ψ with probability at
least 9/10. Furthermore, Any quantum algorithm achieving this task requires Ω(

√
k) queries.

Our second main result is a learning algorithm, which is given a black-box k-junta channel
and outputs a description of a channel close to the channel with O(4k/ε2) queries. We also show
that the algorithm is almost optimal. Hence we can learn a k-junta channel efficiently, especially
without dependence on the total number of qubits.

Theorem 2 (Learning Quantum k-Junta Channels). There exists an algorithm, given oracle access
to an n-qubit to n-qubit k-junta channel Φ, it makes O(4k/ε2) queries and outputs a description
of channel Ψ satisfying dist(Φ,Ψ) ≤ ε with probability at least 9/10. Furthermore, any quantum
algorithm achieving this task requires Ω

(
4k/k

)
queries.

Both algorithms are proved via Fourier-analytic techniques over superoperators defined in
Section 3. In particular, we turn both problems to estimating the influence of a superoperator,
which is a generalization of the influence of boolean functions [O’D14] and the influence of op-
erators [MO10]. We prove a series of fundamental properties of the Fourier analysis and the
influence of superoperators extending similar results on operators. The lower bound on testing
k-junta channels combines the result of testing boolean k-juntas obtained by [BKT20] and a struc-
tural result for k-junta channels. The lower bound on learning k-junta channels is obtained by a
reduction from learning k-junta unitaries.

Besides, we exhibit a simple Influence-Estimator to estimate the influence of channels in Ap-
pendix F. Compared with the estimator in [CNY23], where it requires entanglement and 2-qubit
operations, our Influence-Estimator requires only single-qubit operations and is as efficient as
theirs. Therefore, it might be easily implemented in the lab.

Contributions

1. We develop Fourier analysis over superoperators and prove several basic properties around
influence, which are an extension of Fourier analysis over operators [MO10] and may be of
independent interest;

2. We present the first k-junta channel testing algorithm and a lower bound for this problem,
partially answering an open problem raised by [CNY23]. In addition, we show an almost
optimal algorithm for k-junta channel learning problems;

3. We construct a new and simple Influence-Estimator, which may be easy to implement in the
lab since it includes only single-qubit operations.

Organization In Section 1.1, we present a brief overview of related works. Section 1.2 provides
a high-level overview of the proof techniques. After establishing some preliminaries regarding
quantum channels in Section 2, we demonstrate our Fourier-analytic techniques in Section 3, in-
cluding properties of our distance function. In Section 4 and Section 5, we prove our k-junta
channel testing and learning results respectively. Finally, we conclude in Section 6.

1.1 Related Work

A boolean function f : {0, 1}n → {0, 1} is a k-junta if its value only depends on at most k
coordinates of the inputs. Testing and learning boolean juntas has been extensively studied for

2



decades. The first result explicitly related to testing juntas is obtained by [PRS02], where anO(1)-
queries algorithm is given to test 1-juntas. Then [FKR+04] turned their eyes onto k-junta testing
problem and gave an Õ(k2)-queries algorithm. This upper bound was improved by [Bla09] to a
nearly optimal algorithm which requires only O(k log k) queries, provided an Ω(k) lower bound
proved by [CG04]. More recently, [Sağ18] gave an Ω(k log k) lower bound, which closed the
gap. Junta testing has also been investigated in the setting where only non-adaptive queries are
allowed [STW15], [CST+18] and [LCS+19]. Learning k-junta boolean function has spawned a
large body of work. The learning algorithm obtained by [MOS03] was a breakthrough and fol-
lowed by a series of work [LMMV05], [AR07], [AM08] and [AKL09] discussing k-junta learning
problem under different circumstances, such as learning symmetric juntas, learning with noise,
agnostically learning and considering parameterized learnability. Meanwhile, [BC18] tried to un-
derstand this problem in the membership query model, and [LW19], [BCE+19] and [DMN19]
turned their eyes to tolerant learning k-juntas. More recently, people paid more and more attention
to learning k-junta distribution, see [ABR16] and [CJLW21] for more details.

It is expected that a speedup can be obtained when we use a quantum computer to test or
learn boolean juntas. In [AS07], Atici and Servedio gave the first quantum algorithm, which tests
k-junta boolean functions with O(k) queries. More recently, [ABRdW16] constructed a quantum
algorithm which needs only Õ(

√
k) queries. This was shown to be optimal up to a polylogarithmic

factor [BKT20] In addition, [AS07] also gave an O
(
2k
)
-sample quantum algorithm for learning

k-junta boolean function in the PAC model.
In quantum computing, it is natural to consider the situation where behind the oracle is a

quantum operation instead of a boolean function. The quantum junta unitary testing problem is to
decide if a unitary U with oracle access is a k-junta or ε-far from any k-junta unitary.

Wang gave an algorithm testing k-junta unitaries with O(k) queries in [Wan11]. Montanaro
and Osborne gave a different tester for dictatorship, i.e., 1-junta in [MO10]. Recently, Chen,
Nadimpalli and Yuen have settled both the quantum testing and learning of quantum juntas prob-
lem providing nearly tight upper and lower bounds in [CNY23]. See Table 1.1 for more details.

The algorithms of testing and learning boolean juntas heavily rely on the Fourier analysis of
boolean functions, which is nowadays a rich theory and has wide applications in many branches of
theoretical computer science. Readers may refer to [O’D14] or [dW08] for more details. Fourier
analysis on quantum operations has received increasing attention in the past couple of years.
[MO10] initiated the study of Fourier analysis on the space of operators and established several
interesting properties. Influence is a key notion in Fourier analysis, which describes how much
the function value is affected by some subset of inputs and has many applications in theoretical
computer science. The analogous notion in the space of operators has also played a crucial role in
designing testing and learning algorithms of k-junta unitaries in [Wan11], [CNY23].

We summarize related works in Table 1.1.

1.2 Techniques

In this section, we give a high-level technical overview of our main results.

1.2.1 Testing Junta Channels

Our junta testing algorithm is inspired by the algorithm for k-junta boolean function testing
by [AS07]. The algorithm deeply relies on the notion of the influence of superoperators, which
captures how much a subset of input qubits affect the output of a channel; see Section 3.1 for more
details. The influence of a superoperator is defined through the formal Fourier analysis framework
over superoperators. We prove in Section 3.1 that it has many properties similar to the influence
of boolean functions and unitaries.

To prove the lower bound, we reduce k-junta channel testing to k-junta boolean function test-
ing, which has a lower bound Ω(

√
k) by [BKT20]. To make the reduction work, we prove that a
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Table 1: Our contributions and prior work on testing and learning boolean and quantum k-juntas.

Classical Testing Quantum Testing Quantum Learning

f : {0, 1}n → {0, 1} O(k log k)
[Bla09]

Õ(
√
k)

[ABRdW16]
O(2k)
[AS07]

Ω(k log k)
[Sağ18]

Ω(
√
k)

[BKT20]
Ω(2k)
[AS07]

Unitary U ∈M2n×2n — Õ(
√
k)

[CNY23]
O(4k)

[CNY23]

— Ω(
√
k)

[CNY23]
Ω(4k/k)
[CNY23]

Channel Φ, n to n qubits —
O(k)

this work
O(4k)

this work

— Ω(
√
k)

this work
Ω(4k/k)
this work

tester for k-junta channels is also a tester of k-junta boolean function, if we view a boolean func-
tion as a quantum channel. Moreover, we also show that our algorithm naturally induces a tester
for k-junta unitaries.

1.2.2 Learning Junta Channels

The learning algorithm is inspired by the algorithms in [AS07, CNY23]. We apply PAULI-SAMPLE

to the Choi-state of the channel to find the high-influence registers. Then we apply the efficient
quantum state tomography algorithm by [OW17] to learn the reduced density operator on the
qubits with high influence. The lower bound of learning k-junta channels is obtained by reducing
learning k-junta unitaries to learning k-junta channels.

1.2.3 Influence Estimator

2 Preliminary

We assume that readers are familiar with elementary quantum computing and information theory.
Readers may refer to Chapters 1 and 2 of [NC00] and Chapters 1 and 2 of [Wat18] for more
detailed backgrounds. For natural number n ≥ 1, [n] represents {1, 2, . . . , n}. In represents an
n×n identity matrix. The subscript may be omitted whenever it is clear from the context. We say
a Hermitian matrix is a positive semidefinite matrix (PSD) if all the eigenvalues are nonnegative.

Throughout the paper, we assume that the whole quantum system has n qubits. Let N = 2n

be the dimension of the system. Denote Σ = [N ] X = CΣ. L(X) represents the set of all the
linear maps from X to X itself. Therefore all n-qubit quantum states are a subset of L(X). We
note that L(X) is isomorphic to CN×N , the set of N × N matrices. For any A ∈ L(X), let
vec(A) = (A ⊗ I)

∑N
i=1 |i, i⟩ be the “stretching” column vector of A. For x ∈ Zn4 and T ⊆ [n],

let xT ∈ ZT4 be the substring of x obtained by restricting x to all the coordinates in T . We write
0T ∈ ZT4 to denote all zero string on coordinates in T . The superscript may be dropped whenever
it is clear from the context. We use A∗ to stand for the conjugate transpose of A.

Recall the definition of Pauli operators given by

σ0 =

(
1 0
0 1

)
= I, σ1 =

(
0 1
1 0

)
= X, σ2 =

(
0 −i
i 0

)
= Y, σ3 =

(
1 0
0 −1

)
= Z.

It forms an orthogonal basis for L(C2) (over C) with respect to the Hilbert-Schmidt inner product.
For any x ∈ Zn4 , let σx = ⊗ni=1σxi . It is easy to check {σx}x∈Zn

4
is an orthogonal basis for
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L(CN ) = L(X).
For x ∈ Zn4 , |v(σx)⟩ represents the quantum state corresponding to column vector vec(σx). It

is easy to check {|v(σx)⟩}x∈Zn
4

is an orthogonal basis in C22n .

2.1 Superoperators and quantum channels

A superoperator on L(X) is a linear map from L(X) to itself. T (X) represents the set of all
superoperators on L(X). A quantum channel Φ : L(X) → L(X) is completely positive and a
trace preserving superoperator. In this work, we concern ourselves with the channels mapping
n qubits to n qubits. We use C(X) to denote the set of all quantum channels from L(X) to
itself. For any unitary U ∈ L(X), ΦU represents the channel which acts U on the state, i.e.,
ΦU (ρ) = UρU∗. For any boolean function g : {0, 1}n → {0, 1}, we define Φg = ΦUg , where Ug
is the unitary defined to be Ug |x⟩ = (−1)g(x) |x⟩ for x ∈ {0, 1}n. Next, we introduce the Kraus
representation and the Choi representation of superoperators. The properties and relations around
two representations are postponed to Appendix A.

Definition 3 (Kraus representations, Choi Representations, Choi states). Given superoperator Φ ∈
T (X), its Kraus representation is

Φ(ρ) =
∑
s∈Σ

AsρB
∗
s

where As, Bs ∈ L(X). Its Choi representation is

J(Φ) =
∑
a,b∈Σ

Φ(|a⟩⟨b|)⊗ |a⟩⟨b| = (Φ⊗ I)

∑
a,b∈Σ

|a⟩⟨b| ⊗ |a⟩⟨b|

 ∈ L(X ⊗X),

where J is a linear map from T (X) to L(X ⊗X).
For a quantum channel Φ, the Choi state v(Φ) is defined to be

v(Φ) =
J(Φ)

Tr J(Φ)
.

The Choi state of unitaries is defined similarly. Note that for a unitary U , its Choi state is a pure
state, denoted by |v(U)⟩.

By Fact 25, v(Φ) is a density operator if Φ is a quantum channel.
At the end of this section we introduce k-junta channels.

Definition 4 (k-Junta Channels). Given Φ ∈ C(X) and a subset T ⊆ [n], we say Φ is a T -junta
channel if Φ = ΦT ⊗ IT c . Φ is a k-junta channel if Φ is a T -junta channel for some T ⊆ [n] of
size k.

3 Fourier Analysis over superoperators

We are ready to introduce the Fourier analysis over superoperators. For any superoperators Φ,Ψ ∈
T (X), define the inner product ⟨Φ,Ψ⟩ = ⟨J(Φ), J(Ψ)⟩ = Tr J(Φ)∗J(Ψ). It is easy to verify that
⟨·, ·⟩ is an inner product and (T (X), ⟨·, ·⟩) forms a finite-dimensional Hilbert space. The norm of
Φ is defined to be ∥Φ∥ =

√
⟨Φ,Φ⟩ = ∥J(Φ)∥2, where ∥ · ∥2 is the Frobenius norm. The distance

between Φ and Ψ is defined to be

dist(Φ,Ψ) =
1

N
√
2
∥Φ−Ψ∥ = 1

N
√
2
∥J(Φ)− J(Ψ)∥2 (1)

The normalizer N
√
2 simply keeps the distance between two quantum channels in [0, 1].

Provided the definitions above, we are going to introduce an orthogonal basis.
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Definition 5 (Orthogonal Basis for Superoperators). For any x, y ∈ Zn4 , let

Φx,y(ρ) = σxρσy. (2)

Proposition 6. {Φx,y}x,y∈Zn
4

forms an orthogonal basis in (T (X), ⟨·, ·⟩). Besides, ∥Φx,y∥ = N
for all x, y ∈ Zn4 .

The proof is deferred to Appendix B. We are ready to define the Fourier expansions of super-
operators now.

Definition 7 (Fourier Expansion of Superoperators). For superoperator Φ ∈ T (X), the Fourier
expansion of Φ is defined to be

Φ =
∑

x,y∈Zn
4

Φ̂(x, y)Φx,y

where Φx,y is defined by Eq. (2). Φ̂(x, y)’s are the Fourier coefficients of Φ and Φ̂(x, y) =
1
N2 ⟨Φx,y,Φ⟩. Moreover, we define Φ̂ to be the N2 ×N2 matrix with entries

(
Φ̂(x, y)

)
x,y∈Zn

4

.

Lemma 8. There exists unitary U such that Φ̂ = 1
NU

∗J(Φ)U . Therefore, Φ̂ is PSD if and only
if J(Φ) is PSD. In particular, if J(Φ) is PSD, then Φ̂(x, x) ∈ R for all x ∈ Zn4 . For a quantum
channel Φ, we have 0 ≤ Φ̂(x, x) ≤ 1 for all x ∈ Zn4 and

∑
x∈Zn

4
Φ̂(x, x) = Tr Φ̂ = 1.

The proof is deferred to Appendix C.

3.1 Influence

Given superoperator Φ ∈ T (X) and a subset S ⊆ [n], the influence of S on Φ measures how much
the qubits in S affect Φ. It is an extension of the influence on operators introduced by [MO10],
which, in turn, is inspired by the analogous notion for boolean functions. We will establish several
properties of the influence on quantum channels, which enable us to design both testing algorithms
and learning algorithms for k-junta channels.

Definition 9 (Influence of superoperators). Given superoperator Φ ∈ T (X), S ⊆ [n], the influ-
ence of Φ on S is defined as

InfS [Φ] =
∑

x∈Zn
4 ;xS ̸=0

Φ̂(x, x).

We use Infi[Φ] to represent Inf{i}[Φ] for convenience.

Notice that the influence of a superoperator can be negative, which is different from operators
in [MO10] or boolean functions. However, we only concern ourselves about completely positive
superoperators, whose influence is always nonnegative by Lemma 8.

The following proposition follows from Lemma 8 directly.

Proposition 10. Given quantum channel Φ ∈ C(X), S ⊆ [n], it holds that 0 ≤ InfS [Φ] ≤ 1.

The following are some basic properties of influence, which can be easily derived from the
definition and Lemma 8.

Proposition 11. Given quantum channel Φ ∈ C(X) and S, T ⊆ [n], we have

1. S ⊆ T ⇒ InfS [Φ] ≤ InfT [Φ];

2. InfS [Φ] + InfT [Φ] ≥ InfS∪T [Φ];

3. Inf∅[Φ] = 0, Inf [n][Φ] ≤ 1.
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The following key theorem states that the closeness between a quantum channel and juntas is
captured by the influence.

Theorem 12 (Influence and Distance from k-Junta Channels). Let Φ ∈ C(X) be a quantum
channel. If there exists a subset T ⊆ [n] satisfying that InfT c [Φ] ≤ ε for 0 ≤ ε < 1, then there
exists a T -junta channel Φ′′ such that dist(Φ,Φ′′) ≤

√
ε+ ε/

√
2.

To obtain this theorem, we construct a T -junta channel Φ′′ explicitly from Φ by two steps.
Firstly we construct a T -junta “sub-channel” Φ′ and then complement it into a T -junta channel
Φ′′. The proof of Theorem 12 is deferred to Appendix D.

Corollary 13. Given quantum channel Φ, if Φ is ε-far from any k-junta channels, then InfT c [Φ] ≥
ε2/4 for all T ⊆ [n] with |T | ≤ k.

3.2 Characterizations of Distance Function

In this section, we will compare the distance given in Eq. (1) with other metrics measuring the dis-
tances between two quantum channels. All the proofs in this section can be found in Appendix E.

[CNY23] introduced a distance dist(·, ·) between unitaries, with which the authors gave op-
timal testing and learning algorithms for k-junta unitaries. The distance dist(·, ·) is defined as
follows.

dist(U, V ) =
1√
2N

min
θ∈[0,2π)

∥U − eiθV ∥2 (3)

The following lemma asserts that the distance dist(·, ·) in Eq. (1) and dist(·, ·) in Eq. (3) are
equivalent when considering unitary operations. Recall that ΦU is defined in section 2.1.

Lemma 14 (Related to distance between Unitaries). For unitary matrices U and V , it holds that

dist(U, V ) ≤ dist(ΦU ,ΦV ) ≤
√
2 · dist(U, V ).

The following proposition proves that dist(·, ·) captures the average operator distance between
two channels. We expect that our distance function could be used in other channel property testing
problems.

Proposition 15 (Related to average-case operator distance). For quantum channels Φ and Ψ, it
holds that∫

ψ
∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22dψ =

2N

N + 1
dist(Φ,Ψ)2 +

1

N(N + 1)
∥Φ(I)−Ψ(I)∥22,

where the integral is taken over the Haar measure on all the unit vectors ψ.
Especially for unital channels Φ and Ψ, i.e., Φ(I) = Ψ(I) = I , we have∫

ψ
∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22dψ =

2N

N + 1
dist(Φ,Ψ)2

Similar properties have been established for the distance dist(·, ·) between two unitaries in
Proposition 21 of [MdW16]. We refer interested readers to the discussion about the reason for the
chosen distances in Section 5.1.1 of [MdW16]

Finally, we prove that dist(·, ·) can be very far from the worst-case operator norm. Here we
consider the 1 to 2 diamond norm.

Definition 16 (1 to 2 Diamond Norm). Given Φ ∈ T (X), its 1 to 2 diamond norm is defined to be

∥Φ∥⋄,1→2 = ∥Φ⊗ 1X∥1→2 = max
ρ:∥ρ∥1=1

{∥(Φ⊗ 1X)(ρ)∥2}

Proposition 17 (Related to worst-case operator distance). For quantum channels Φ and Ψ, it holds
that √

2dist(Φ,Ψ) ≤ ∥Φ−Ψ∥⋄,1→2 ≤ N ·
√
2dist(Φ,Ψ)

Both equalities above can be achieved.
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4 Testing k-Junta Quantum Channels

In this section, we show an O(k)-query k-junta channel testing algorithm and an Ω(
√
k) lower

bound. First, we prove an upper bound on the sample complexity by presenting a k-junta channel
tester, where the analysis of the algorithm relies on the Fourier analysis of superoperators. The
lower bound is obtained by reducing k-junta boolean function testing to k-junta channel testing.
Finally, we show that the k-junta channels testing problem is the natural extension of k-junta
unitary testing problem under our distance function of channels, which gives an alternative proof
of the lower bound.

4.1 O(k) Upper Bound and Ω(
√
k) Lower Bound

We firstly show our k-junta channel tester. Our tester is inspired by [AS07]. However, we intro-
duce a new subroutine, INFLUENCE-SAMPLE to replace PAULI-SAMPLE used in [AS07]. Note
that PAULI-SAMPLE requires preparing maximally entanglement state and measurement opera-
tions over the two-qubit Bell basis, whereas INFLUENCE-SAMPLE requires only single-qubit op-
erations. In addition, INFLUENCE-SAMPLE results in only a constant-factor decrease in efficiency.
Our learning algorithm Algorithm 3 also includes INFLUENCE-SAMPLE as a subroutine instead
of PAULI-SAMPLE.

Algorithm 1: INFLUENCE-SAMPLE(Φ, t)
Input : Oracle access to quantum channel Φ ∈ C(X), a natural number t
Output: S ⊆ [n]

1: Initialize S = ∅;
2: Repeat the following for t times;

• Uniformly randomly choose i ∈ {0, 1}n. Prepare state |i⟩;
• Uniformly randomly choose U from{

I =

(
1 0
0 1

)
,H =

1√
2

(
1 1
1 −1

)
, Rx

(π
2

)
=

1√
2

(
1 −i
−i 1

)}
;

• Query Φ to obtain (U⊗n)
†
Φ
(
U⊗n |i⟩⟨i| (U⊗n)

†
)
U⊗n;

• Measure the qubits over the computational basis. Let the result be i′;
• S ← S ∪ {l ∈ [n] | il ̸= i′l}.

3: Return S.

Algorithm 2: JUNTA-CHANNEL-TESTER(Φ, k, ε)
Input : Oracle access to quantum channel Φ ∈ C(X), k, ε
Output: “Yes” or “No”

1: Let S = INFLUENCE-SAMPLE(Φ, 60(k + 1)/ε2);
2: Output “Yes” if |S| ≤ k, or else output “No”.

Theorem 18 (Property of Algorithm 2, Restatement of Theorem 1). Given quantum channel Φ ∈
C(X), with probability at least 9/10, the algorithm JUNTA-CHANNEL-TESTER(Φ, k, ε) outputs
“Yes” if Φ is a k-junta, and outputs “No” if Φ is ε-far from any k-junta channel. The algorithm
makes O

(
k/ε2

)
queries to the channel Φ.

An algorithm is a (k, ε)-channel junta tester if it can distinguish whether the given channel is
k-junta or is ε-far from any k-junta channels. (k, ε)-classical junta testers and (k, ε)-unitary junta
testers are defined similarly.
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Lemma 19. A (k,
√
ε/2)-channel junta tester is a (k, ε)-classical junta tester.

Combining Lemma 19 with the Ω(
√
k) lower bound on testing k-junta boolean function

proved by [BKT20], we obtain an Ω(
√
k) lower bound on testing k-junta channels. Our key

technical lemma is as follows. Recall that Φg is defined in Section 2.1 for boolean function g.

Lemma 20. For a k-junta channel Φ, there exists a k-junta boolean function g′ satisfying that
dist(Φ,Φg′) = ming dist(Φ,Φg), where the minimization is over all boolean functions g : {0, 1}n →
{0, 1}.

With the assistance of this result around the distance structure of k-junta channels, we obtain
the desired reduction in Lemma 19. See Appendix G for the detailed proofs.

4.2 Reduction from k-Junta Unitary Testing

To show our distance function induced by Fourier analysis over superoperators is a natural exten-
sion of the distance function on unitaries discussed in [MdW16], we provide an extra reduction
from k-junta unitary testing. It gives an alternative proof of our testing lower bound. All the proofs
can be found in Appendix G.

Lemma 21 (Reduction from Testing k-Junta Unitaries to Testing k-Junta Channels). A (k, ε)-
channel junta tester is naturally a (k, ε/2)-unitary junta tester.

The key technical result is as follows:

Lemma 22. For every k-junta channel Φ′, there exists a k-junta unitary V , such that dist(Φ′,ΦV ) =
minV dist(Φ′,ΦV ), where the minimization is over all unitaries V .

5 Learning k-Junta Quantum Channels

In this section, we prove a nearly tight bound on k-junta learning problem. Our algorithm is in-
spired by the learning algorithms in [AS07] and [CNY23]. As mentioned above, we use INFLUENCE-SAMPLE

to replace PAULI-SAMPLE to reduce operation complexity, and this replacement results in only a
constant-factor decrease in efficiency. We describe the algorithm JUNTA-CHANNEL-LEARNER as
follows.

Algorithm 3: JUNTA-CHANNEL-LEARNER(Φ, k, ε)
Input : Oracle access to k-junta channel Φ ∈ C(X), ε
Output: A classical description of Φ in the form of its Choi representation, a 4n × 4n

matrix
1: Let S = INFLUENCE-SAMPLE(Φ, O(k log k/ε2));
2: Set t = O(4k/ε2). Call QUANTUM-STATE-PREPARATION(Φ, S) for 10t times to obtain at

least t copies of quantum state ψS ;
3: Return CHANNEL-TOMOGRAPHY(ψ⊗t

S , ε)⊗ v(ISc
) as the result.

Algorithm 4: QUANTUM-STATE-PREPARATION(Φ, S ⊆ [n])
Input : Oracle access to channel Φ ∈ C(X), S ⊆ [n]
Output: A 2|S|-qubit quantum state, or “error”

1: Prepare the state v(Φ);
2: Measure 2|Sc| qubits in Sc onto the Bell basis {|σx⟩}x∈Z|Sc|

4

;

3: If the measurement result is 0S
c
, return the untouched 2|S| qubits. Otherwise, return “error”.
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Algorithm 5: CHANNEL-TOMOGRAPHY(ψ⊗O(4k/ε2), ε)
Input : Independent copies of ψ and ε, enough for TOMOGRAPHY

Output: A classical description of ψ
1: Run TOMOGRAPHY(ψ⊗O(4k/ε2), 0.04ε) to obtain a description of state ψ;
2: Find out, by only local calculation, the Choi state closest to ψ and return the description.

Theorem 23 (Property of Algorithm 3, Restatement of Theorem 1). Given oracle access to k-
junta channel Φ, with probability at least 9/10, JUNTA-CHANNEL-LEARNER(Φ, k, ε) outputs
the description of quantum channel Ψ such that dist(Φ,Ψ) ≤ ε. Furthermore, this algorithm
makes O(4k/ε2) queries.

As for the k-junta channel learning lower bound, recall Lemma 14 shows that our distance
function over channels is equivalent to the distance between unitaries used in [CNY23], up to a
constant factor, it is very natural to reduce learning k-junta unitaries to learning k-junta channels,
and therefore the following lower bound follows.

Theorem 24 (Lower Bound on Learning k-Junta Channels). Any algorithm learning k-junta chan-
nels within precision ε under dist(·, ·) requires Ω(4k log(1/ε)/k) queries.

6 Conclusion

We exhibit two algorithms, one for testing k-junta channels and one for learning k-junta channels
and lower bounds respectively. The k-junta channel learning algorithm is nearly optimal. Our
algorithms generalize the work [AS07, CNY23] about testing and learning k-junta unitaries and
k-junta boolean function. To design the algorithms and prove the lower bounds, we introduce
the Fourier analysis over the space of superoperators, which extends the Fourier analysis over
operators in [MO10]. As [MdW16] mentioned, there was not much work on testing the properties
of quantum channels. We expect more applications in designing algorithms for testing and learning
quantum channels through the Fourier analysis presented in this paper.
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A Properties on Kraus and Choi Representations

In this section, we list some basic properties of Kraus and Choi representations, whose proofs can
be found in Section 2.2 in [Wat18].

Fact 25. Given superoperators Φ ∈ T (X),Φ′ ∈ T (X ′), it holds that

1. Φ is completely positive if and only if it has a Kraus representation Φ(ρ) =
∑

s∈ΣAsρA
∗
s .

It is trace preserving if and only if its Kraus representation Φ(ρ) =
∑

s∈ΣAsρB
∗
s . satisfies

that
∑

s∈ΣB
∗
sAs = I;

2. Φ is completely positive if and only if J(Φ) is PSD. It is trace preserving if and only if
TrX1 J(Φ) = IX2 , where J is viewed as a map from L(X) to L(X1) ⊗ L(X2) with X1 =
X2 = X;

3. If Φ(ρ) =
∑

s∈ΣAsρB
∗
s , we have

J(Φ) =
∑
s∈Σ

vec(As)vec(Bs)
∗;

4. J(Φ⊗ Φ′) = J(Φ)⊗ J(Φ′).

B Fourier Basis of Superoperators Is Well-defined

Here we list some basic properties of the inner product and the norm introduced in Section 3,
which are easy to verify by the definitions.

Fact 26 (Properties of Inner Product and Norm). 1. Given Φ(ρ) = AρB∗ and Ψ(ρ) = CρD∗,
we have ⟨Φ,Ψ⟩ = ⟨A,C⟩ · ⟨D,B⟩;

2. For Φ(ρ) = AρB∗, we have ∥Φ∥ =
√
⟨Φ,Φ⟩ =

√
⟨A,A⟩ · ⟨B,B⟩ = ∥A∥2 · ∥B∥2;

3. Suppose Φ = Φ1 ⊗ Φ2 and Ψ = Ψ1 ⊗Ψ2. We have ⟨Φ,Ψ⟩ = ⟨Φ1,Ψ1⟩ · ⟨Φ2,Ψ2⟩.

We are going to prove Proposition 6 now.

Proposition 6. {Φx,y}x,y∈Zn
4

forms an orthogonal basis in (T (X), ⟨·, ·⟩). Besides, ∥Φx,y∥ = N
for all x, y ∈ Zn4 .

Proof. Norm. ∀x, y ∈ Zn4 , ∥Φx,y∥ = ∥σx∥2∥σy∥2 = N using Fact 26.
Orthogonality. ∀x, x′, y, y′ ∈ Zn4 ,x ≠ x′ or y ≠ y′, we have〈

Φx,y,Φx′,y′
〉
=
∏
i∈[n]

〈
Φxi,yi ,Φx′i,y′i

〉
=
∏
i∈[n]

〈
σxi , σx′i

〉
·
〈
σy′i , σyi

〉
= 0

All equalities follow from Fact 26 directly. Note that for non-zero vectors, orthogonality implies
linear independence.

Basis, spanning the whole space. The dimension of T (X) isN4 = 24n and we have 42n = 24n

linearly independent vectors in {Φx,y}x,y∈Zn
4

.
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C Properties of Fourier Expansions of Superoperators

Lemma 8. There exists unitary U such that Φ̂ = 1
NU

∗J(Φ)U . Therefore, Φ̂ is PSD if and only
if J(Φ) is PSD. In particular, if J(Φ) is PSD, then Φ̂(x, x) ∈ R for all x ∈ Zn4 . For a quantum
channel Φ, we have 0 ≤ Φ̂(x, x) ≤ 1 for all x ∈ Zn4 and

∑
x∈Zn

4
Φ̂(x, x) = Tr Φ̂ = 1.

Proof. By the definition of Φ̂, we have

Φ̂(x, y) =
1

N2
⟨Φx,y,Φ⟩

=
1

N2
Tr(vec(σx)vec(σy)

∗)
∗
J(Φ)

=
1

N2
vec(σx)

∗J(Φ)vec(σy),

where the second equality is by the definition of the inner product and the fact that J(Φx,y) =
vec(σx)vec(σy)

∗. Therefore

Φ̂ =
1

N
U∗J(Φ)U

where U =
[
vec
(
σx/
√
N
)]

x∈Zn
4

is a unitary.

The next corollary follows from the properties of Kraus and Choi representations in Fact 25.
We note that Φ(ρ) =

∑
x,y∈Zn

4
Φ̂(x, y)σxρσy is a Kraus representation of Φ. Therefore Φ ∈ T (X)

is trace preserving if and only if
∑

x,y∈Zn
4
Φ̂(x, y)σyσx = I .

Corollary 27. Let Φ ∈ T (X) be a superoperator. The following statements are equivalent.

1. Φ ∈ T (X) is completely positive.

2. Φ̂ is PSD.

The following statements are equivalent as well.

1. Φ ∈ T (X) is trace preserving.

2.
∑

x,y∈Zn
4
Φ̂(x, y)σyσx = I .

Corollary 28 (Relations between Fourier Expansion and Norm and Distance). Let Φ,Ψ ∈ T (X)
be superoperators and Φ̂, Ψ̂ be the corresponding Fourier expansions. Then

1. ∥Φ∥ = N
∥∥∥Φ̂∥∥∥

2
= N

√∑
x,y∈Zn

4

∣∣∣Φ̂(x, y)∣∣∣2;

2. dist(Φ,Ψ) = 1√
2

∥∥∥Φ̂− Ψ̂
∥∥∥
2
= 1√

2

√∑
x,y∈Zn

4

∣∣∣Φ̂(x, y)− Ψ̂(x, y)
∣∣∣2.

D Proof of Theorem 12

Theorem 12 (Influence and Distance from k-Junta Channels). Let Φ ∈ C(X) be a quantum
channel. If there exists a subset T ⊆ [n] satisfying that InfT c [Φ] ≤ ε for 0 ≤ ε < 1, then there
exists a T -junta channel Φ′′ such that dist(Φ,Φ′′) ≤

√
ε+ ε/

√
2.
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Proof. We need two steps to construct Φ′′ explicitly. Firstly we construct a k-junta sub-channel
Φ′, which is completely positive and trace non-increasing, and then turn it to a channel Φ′′.

Construction of sub-channel Φ′ Let

Φ′(ρ) =
∑

x,y∈Zn
4 ;xTc=yTc=0

Φ̂(x, y)σxρσy

Notice that Φ is a quantum channel. By Fact 26 and Corollary 27, it is easy to see Φ′ is a T -junta
sub-channel. Notice that Φ̂′ is a principle submatrix of PSD matrix Φ̂, which implies Φ̂′ is PSD.
Then again by Corollary 27, J(Φ̂′) is also PSD. Now we bound the distance between Φ and Φ′

from above.
By Corollary 28, we have

2 · dist(Φ,Φ′)2 =
∑

x,y∈Zn
4 ;xTc ̸=0 or yTc ̸=0

∣∣∣Φ̂(x, y)∣∣∣2

For any x, y ∈ Zn4 we have
∣∣∣Φ̂(x, y)∣∣∣2 ≤ Φ̂(x, x)Φ̂(y, y) since Φ̂ is a PSD matrix. This implies

∑
x,y∈Zn

4 ;xTc ̸=0 or yTc ̸=0

∣∣∣Φ̂(x, y)∣∣∣2 ≤
∑

x,y∈Zn
4 :xTc ̸=0 or yTc ̸=0

Φ̂(x, x)Φ̂(y, y)

≤

 ∑
x,y∈Zn

4 :xTc ̸=0

+
∑

x,y∈Zn
4 :yTc ̸=0

 Φ̂(x, x)Φ̂(y, y). (4)

Notice
∑

x∈Zn
4
Φ̂(x, x) = 1 by Lemma 8. We have

RHS of Eq. (4) = 2
∑

x∈Zn
4 ;xTc ̸=0

Φ̂(x, x)

To summarize, we have

2 · dist(Φ,Φ′)2 ≤ 2
∑

x∈Zn
4 ;xTc ̸=0

Φ̂(x, x) = 2 · InfT c [Φ] ≤ 2ε

We claim that
∑

x,y∈Zn
4 ;xTc=yTc=0 Φ̂(x, y)σyσx ≤ I .

Let

A =
∑

x,y∈Zn
4 ,xTc=yTc=0

Φ̂(x, y)σyσx, (5)

B =
∑

x,y∈Zn
4 ,xTc ̸=0,yTc ̸=0

Φ̂(x, y)σyσx,

C1 =
∑

x,y∈Zn
4 ,xTc=0,yTc ̸=0

Φ̂(x, y)σyσx,

C2 =
∑

x,y∈Zn
4 ,xTc ̸=0,yTc=0

Φ̂(x, y)σyσx.

We note that A =
∑

x′,y′∈ZT
4
Φ̂(x′ ◦ 0T c

, y′ ◦ 0T c
)σy′σx′ ⊗ IT

c
=: A′ ⊗ IT c

, where x′ ◦ 0T c

is the concatenation of x′ and 0T
c
. Same for y′ ◦ 0T c

. To see A ≤ I , it is enough to show A′ ≤ I ,
which is equivalent to TrA′ |ϕ⟩⟨ϕ| ≤ 1 for any quantum state |ϕ⟩T .
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Let IT c be a 2|T
c| × 2|T

c| identity matrix. Notice that TrA(|ϕ⟩⟨ϕ| ⊗ ITc

2|Tc| ) = Tr(A′ · |ϕ⟩⟨ϕ|).
It suffices to prove that TrA(|ϕ⟩⟨ϕ| ⊗ ITc

2|Tc| ) ≤ 1 for arbitrary quantum state |ϕ⟩. To this end,

1 = TrΦ

(
|ϕ⟩⟨ϕ| ⊗ IT c

2|T c|

)
=

1

2|T c| (TrA(|ϕ⟩⟨ϕ| ⊗ IT c) + TrB(|ϕ⟩⟨ϕ| ⊗ IT c) + TrC1(|ϕ⟩⟨ϕ| ⊗ IT c) + TrC2(|ϕ⟩⟨ϕ| ⊗ IT c))

≥ 1

2|T c| (TrA(|ϕ⟩⟨ϕ| ⊗ IT c) + TrC1(|ϕ⟩⟨ϕ| ⊗ IT c) + TrC2(|ϕ⟩⟨ϕ| ⊗ IT c))

=
1

2|T c| (TrA(|ϕ⟩⟨ϕ| ⊗ IT c))

where the first inequality is because B is a principle sub-matrix of Φ̂, which is also PSD by
Corollary 27; the last equality is because TrC1(|ϕ⟩⟨ϕ| ⊗ IT c) + TrC2(|ϕ⟩⟨ϕ| ⊗ IT c) = 0. To see
this, we will prove that TrC1(|ϕ⟩⟨ϕ| ⊗ IT c) = 0.

TrC1(|ϕ⟩⟨ϕ| ⊗ IT c) =
∑

x,y∈Zn
4 ,xTc=0,yTc ̸=0

Φ̂(x, y)Trσyσx(|ϕ⟩⟨ϕ| ⊗ IT c)

=
∑

x,y∈Zn
4 ,xTc=0,yTc ̸=0

Φ̂(x, y) ⟨ϕ|σyT σxT |ϕ⟩ · ⟨σyTc , σxTc ⟩

= 0

TrC2(|ϕ⟩⟨ϕ| ⊗ IT c) = 0 follows from the same argument. Therefore A ≤ I .
Construction of Channel Φ′′ We set

Φ′′(ρ) = Φ′(ρ) +
√
I −Aρ

√
I −A,

whereA is given in Eq. (5). By Corollary 27, we have J(Φ′′) = J(Φ′)+vec
(√
I −A

)
vec
(√
I −A

)∗,
which is PSD. Notice that A = A′ ⊗ IT c . Thus Φ′′ is also a T-junta completely positive map. To
prove Φ′′ is a channel, it suffices to prove that Φ′′ is trace-preserving. By the Kraus representation
of Φ′′

Φ′′(ρ) =
∑

x,y∈Zn
4 ;xTc=yTc=0

Φ̂(x, y)σxρσy +
√
I −Aρ

√
I −A,

we have ∑
x,y∈Zn

4 ;xTc=yTc=0

Φ̂(x, y)σyσx +
√
I −A

√
I −A = A+

√
I −A

√
I −A = I,

which implies Φ′′ is trace preserving according to Fact 25.
Next we bound the distance between Φ′ and Φ′′ from above. Note that J(Φ′′) = J(Φ′) +

vec
(√
I −A

)
vec
(√
I −A

)∗, we have

dist(Φ′′,Φ′) =
1

N
√
2

∥∥J(Φ′′)− J(Φ′)
∥∥
2
=

1

N
√
2

∥∥∥vec
(√

I −A
)

vec
(√

I −A
)∗∥∥∥

2

=
1

N
√
2

∥∥∥√I −A∥∥∥2
2
=

1

N
√
2
Tr(I −A)

From the definition ofA, we have 1
N TrA =

∑
x∈Zn

4 ,xTc=0 Φ̂(x, x) = 1−InfT c [Φ], which implies

1

N
√
2
Tr(I −A) = 1√

2
InfT c [Φ].

Therefore
dist(Φ′′,Φ′) ≤ 1√

2
InfT c [Φ] ≤ ε√

2
.

In conclusion, Φ′′ is a T -junta channel and dist(Φ,Φ′′) ≤
√
ε+ε/

√
2, which completes the proof.
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E Characterization of Distance Function

E.1 Proof of Lemma 14

Lemma 14 (Related to distance between Unitaries). For unitary matrices U and V , it holds that

dist(U, V ) ≤ dist(ΦU ,ΦV ) ≤
√
2 · dist(U, V ).

Proof. It’s easy to see

dist(U, V ) =

√
1− 1

N
|⟨U, V ⟩|

and

dist(ΦU ,ΦV ) =

√
1− 1

N2
|⟨U, V ⟩|2

Let α = 1
N |⟨U, V ⟩| ∈ [0, 1]. Lemma 14 follows from the inequality

√
1− α ≤

√
1− α2 ≤√

2
√
1− α.

E.2 Comparison with other operator norms

Proposition 15 (Related to average-case operator distance). For quantum channels Φ and Ψ, it
holds that∫

ψ
∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22dψ =

2N

N + 1
dist(Φ,Ψ)2 +

1

N(N + 1)
∥Φ(I)−Ψ(I)∥22,

where the integral is taken over the Haar measure on all the unit vectors ψ.
Especially for unital channels Φ and Ψ, i.e., Φ(I) = Ψ(I) = I , we have∫

ψ
∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22dψ =

2N

N + 1
dist(Φ,Ψ)2

Proof. Let J = J(Φ)−J(Ψ) = J(Φ−Ψ) =
∑

i,j∈[N ] Ji,j⊗|i⟩⟨j|, where Ji,j = (Φ−Ψ)(|i⟩⟨j|).

∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22 = ∥TrX2(J · (I ⊗ |ψ⟩⟨ψ|))∥
2
2

=

∥∥∥∥∥∥
∑

i,j∈[N ]

Ji,j ⟨j|ψ⟩ ⟨ψ|i⟩

∥∥∥∥∥∥
2

2

=
∑

i,j,i′,j′∈[N ]

〈
Ji,j , Ji′,j′

〉
⟨i|ψ⟩ ⟨ψ|j⟩

〈
j′
∣∣ψ〉 〈ψ∣∣i′〉

Note that ⟨i|ψ⟩ ⟨ψ|j⟩ ⟨j′|ψ⟩ ⟨ψ|i′⟩ = Tr (|j⟩⟨i| ⊗ |i′⟩⟨j′|) · (|ψ⟩⟨ψ| ⊗ |ψ⟩⟨ψ|), we have∫
ψ
∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22dψ

=
∑

i,j,i′,j′∈[N ]

〈
Ji,j , Ji′,j′

〉
Tr
(
|j⟩⟨i| ⊗

∣∣i′〉〈j′∣∣) · ∫
ψ
|ψ⟩⟨ψ|⊗2 dψ

=
∑

i,j,i′,j′∈[N ]

〈
Ji,j , Ji′,j′

〉
Tr
(
|j⟩⟨i| ⊗

∣∣i′〉〈j′∣∣) · I + F

N(N + 1)

=
1

N(N + 1)

 ∑
i,j∈[N ]

⟨Ji,j , Ji,j⟩+
∑

i,j∈[N ]

⟨Ji,i, Jj,j⟩


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In the second equality we use the fact that
∫
ψ |ψ⟩⟨ψ|

⊗2 dψ = (I + F )/N(N + 1), where F is
the swap operator which interchanges two n-qubit quantum systems; see Lemma 7.24 of [Wat18].
The third equality follows from Tr((A⊗B)F ) = TrAB.

By the definition of J , we have

∥J(Φ)− J(Ψ)∥22 = ∥J∥
2
2 = ⟨J, J⟩ =

∑
i,j∈[N ]

⟨Ji,j , Ji,j⟩

∥Φ(I)−Ψ(I)∥22 =

∥∥∥∥∥∥
∑
i∈[N ]

Ji,i

∥∥∥∥∥∥
2

2

=

〈∑
i∈[N ]

Ji,i,
∑
j∈[N ]

Jj,j

〉
=
∑

i,j∈[N ]

⟨Ji,i, Jj,j⟩

and therefore ∫
ψ
∥Φ(|ψ⟩⟨ψ|)−Ψ(|ψ⟩⟨ψ|)∥22dψ

=
1

N(N + 1)

 ∑
i,j∈[N ]

⟨Ji,j , Ji,j⟩+
∑

i,j∈[N ]

⟨Ji,i, Jj,j⟩


=

1

N(N + 1)

(
∥J(Φ)− J(Ψ)∥22 + ∥Φ(I)−Ψ(I)∥22

)
=

2N

N + 1
dist(Φ,Ψ)2 +

1

N(N + 1)
∥Φ(I)−Ψ(I)∥22

Proposition 17 (Related to worst-case operator distance). For quantum channels Φ and Ψ, it holds
that √

2dist(Φ,Ψ) ≤ ∥Φ−Ψ∥⋄,1→2 ≤ N ·
√
2dist(Φ,Ψ)

Both equalities above can be achieved.

Proof. We will show

1

N
∥J(Φ)− J(Ψ)∥2 ≤ ∥(Φ−Ψ)⊗ 1X∥1→2 ≤ ∥J(Φ)− J(Ψ)∥2.

Let |Ψ0⟩ = 1√
N

∑
i∈X |ii⟩, we have

1

N
∥J(Φ)− J(Ψ)∥2 = ∥((Φ−Ψ)⊗ IX)(|Ψ0⟩⟨Ψ0|)∥2 ≤ ∥(Φ−Ψ)⊗ IX∥1→2

and the first inequality follows immediately. To prove the next inequality, By the following fact,
the 1→ 2 diamond norm can be achieved by a rank-1 Hermitian matrix.

Fact 29 (Theorem 3.51 in [Wat18]). There exists an unit vector u ∈ X ⊗X , which satisfies that
∥Φ−Ψ∥⋄,1→2 = ∥((Φ−Ψ)⊗ IX)(uu∗)∥2.

Let u be the unit vector in Fact 29 and A be a matrix satisfying that u = vec(A) =
√
N(A⊗

I) |Ψ0⟩ =
√
N(I ⊗AT ) |Ψ0⟩. We have

∥Φ−Ψ∥⋄,1→2 = ∥((Φ−Ψ)⊗ I)(vec(A)vec(A)∗)∥2
= N ·

∥∥((Φ−Ψ)⊗ I)((I ⊗AT ) |Ψ0⟩⟨Ψ0| (I ⊗AT )∗)
∥∥
2

= N ·
∥∥(I ⊗AT )((Φ−Ψ)⊗ I)(|Ψ0⟩⟨Ψ0|)(I ⊗AT )∗

∥∥
2

=
∥∥(I ⊗AT )(J(Φ)− J(Ψ))(I ⊗AT )∗

∥∥
2
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Applying the norm inequality ∥ABC∥2 ≤ ∥A∥∞∥B∥2∥C∥∞ and
∥∥I ⊗AT∥∥∞ =

∥∥AT∥∥∞ =
∥A∥∞ ≤ ∥A∥2, we have∥∥(I ⊗AT )(J(Φ)− J(Ψ))(I ⊗AT )∗

∥∥
2
≤
∥∥I ⊗AT∥∥∞ · ∥J(Φ)− J(Ψ)∥2 ·

∥∥(I ⊗AT )∗∥∥∞
≤ ∥A∥22 · ∥J(Φ)− J(Ψ)∥2
= ∥J(Φ)− J(Ψ)∥2

The last equality is because ∥A∥2 = ∥vec(A)∥2 = ∥u∥2 = 1.
To see the tightness of the first inequality, let Φ = ΦU where U = X ⊗ I⊗n−1 and ΦU is

defined in section 2.1. Let Ψ be an identity channel, it’s easy to check ∥J(Φ)− J(Ψ)∥2/N =
∥Φ−Ψ∥⋄,1→2 =

√
2. For second inequality, let Φ be

Φ(|1⟩⟨1|) = |2⟩⟨2| ,Φ(|2⟩⟨2|) = |1⟩⟨1|
Φ(|i⟩⟨i|) = |i⟩⟨i| , ∀i ̸= 1, 2

Φ(|i⟩⟨j|) = 0N×N , ∀i ̸= j

and Ψ be

Ψ(|i⟩⟨i|) = |i⟩⟨i| , ∀i
Ψ(|i⟩⟨j|) = 0N×N , ∀i ̸= j

To verify Φ and Ψ are quantum channels, note that J(Φ) and J(Ψ) are both PSD and they are
trace preserving obviously. Meanwhile, ∥J(Φ)− J(Ψ)∥2 =

√
2 = ∥(Φ−Ψ)(|1⟩⟨1|)∥2.

F A Simple Influence Estimator

In this section, we will describe a new influence estimator. The estimator only includes single-
qubit operations though it fulfills the same function efficiently as the raw influence estimator
in [CNY23], which needs two-qubit operations and maximally entanglement states.

Algorithm 6: INFLUENCE-ESTIMATOR(Φ, S)
Input : Oracle access to quantum channel Φ ∈ C(X), S ⊆ [n]
Output: Y ∈ {0, 1}

1: Uniformly randomly choose i ∈ {0, 1}S , j ∈ {0, 1}Sc
. Prepare state |i⟩S |j⟩Sc ;

2: Uniformly randomly choose U from{
I =

(
1 0
0 1

)
,H =

1√
2

(
1 1
1 −1

)
, Rx

(π
2

)
=

1√
2

(
1 −i
−i 1

)}
;

3: Query Φ to obtain (U⊗n)
†
Φ
(
U⊗n |i⟩⟨i|S ⊗ |j⟩⟨j|Sc (U⊗n)

†
)
U⊗n;

4: Measure qubits in S over the computational basis, set Y = 0 if the result is i, otherwise set
Y = 1;

5: Return Y .

Theorem 30. Given quantum channel Φ and S ⊆ [n], let Y be the output of Algorithm 6. For
arbitrary δ > 0, we have:

1. InfS [Φ] = 0⇒ Y = 0 with probability 1;

2. InfS [Φ] ≥ δ ⇒ E[Y ] ≥ 2
3 · InfS [Φ] ≥

2
3 · δ.
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Proof. In the first case, when InfS [Φ] = 0, we know Φ = Φ̃Sc ⊗ IS for some Φ̃Sc , therefore
Y = 0 with probability 1. We focus on the second case.

Pr[Y = 0 | U = I] =
1

2n

∑
i∈{0,1}S

∑
j∈{0,1}n−S

Pr[Y = 0 | i, j, U = I]

=
1

2n

∑
i

∑
j

Tr (⟨i|S ⊗ ISc) · Φ(|i, j⟩⟨i, j|) · (|i⟩S ⊗ ISc)

=
1

2n

∑
i

∑
j

∑
x,y∈Zn

4

Tr ⟨i| ⊗ I · Φ̂(x, y)σx |i, j⟩⟨i, j|σy · |i⟩ ⊗ I

=
1

2n

∑
i

∑
j

∑
x,y∈Zn

4

Φ̂(x, y) ⟨i|σxS |i⟩ ⟨i|σyS |i⟩ · ⟨j|σyScσxSc |j⟩

=
1

2n

∑
x,y∈Zn

4

Φ̂(x, y)

(∑
i

⟨i|σxS |i⟩ ⟨i|σyS |i⟩

)
·

∑
j

⟨j|σyScσxSc |j⟩

.
For the summation in the first bracket, We note that if xS /∈ {0, 3}S , say, xS contains 1 or 2,

⟨i|σxS |i⟩ = 0 for all i. Same for yS . Thus if xS ̸= yS ∈ {0, 3}S , then
∑

i ⟨i|σxS |i⟩ ⟨i|σyS |i⟩ =
0. For the summation in the second bracket, we have

∑
j ⟨j|σyScσxSc |j⟩ = ⟨σySc , σxSc ⟩, which

is zero if ySc ̸= xSc and 2n−S if ySc = xSc . Hence,

Pr[Y = 0 | U = I] =
1

2n

∑
x,y∈Zn

4

Φ̂(x, y)

(∑
i

⟨i|σxS |i⟩ ⟨i|σyS |i⟩

)
·

∑
j

⟨j|σyScσxSc |j⟩


=

∑
x∈Zn

4 ;xS∈{0,3}S
Φ̂(x, x).

Note thatH†σ0H = σ0,H†σ1H = σ3,H†σ2H = −σ2,H†σ3H = σ1. We useRx as an alias
for Rx

(
π
2

)
used in the algorithm above and have R†

xσ0Rx = σ0, R†
xσ1Rx = σ1, R†

xσ2Rx = −σ3,
R†
xσ3Rx = σ2. With similiar calculations as above, we obtian

Pr[Y = 0 | U = H] =
∑

x∈Zn
4 ;xS∈{0,1}S

Φ̂(x, x),

Pr[Y = 0 | U = Rx] =
∑

x∈Zn
4 ;xS∈{0,2}S

Φ̂(x, x).

Recall that
1− InfS [Φ] =

∑
x∈Zn

4 ;xS=0

Φ̂(x, x).

We can deduce that

E[Y ] =
1

3
(Pr[Y = 1 | U = I] + Pr[Y = 1 | U = H] + Pr[Y = 1 | U = Rx])

≥ 1

3
· 2 · InfS [Φ].

The conclusion follows.

G Testing Quantum k-Junta Channels

G.1 O(k) Upper Bound on Testing k-Junta Quantum Channels, Proof of Theo-
rem 18

Firstly we show a key property of Algorithm 1, INFLUENCE-SAMPLE.
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Lemma 31 (Property of Algorithm 1). For every iteration in INFLUENCE-SAMPLE(Φ, t), we have
with probability at least 2

3 · InfSc [Φ], S become larger in this iteration.

Proof. Following the similar calculation of the proof pf Theorem 30, recall that i is the random
string sampled in the iteration of INFLUENCE-SAMPLE and i′ is the corresponding measurement
result, we have

Pr[S becomes larger] = Pr
[
∃l, l ∈ [n]\S, il ̸= i′l

]
= Pr[INFLUENCE-ESTIMATOR(Φ, Sc) = 1]

≥ 2

3
· InfSc [Φ].

Theorem 18 (Property of Algorithm 2, Restatement of Theorem 1). Given quantum channel Φ ∈
C(X), with probability at least 9/10, the algorithm JUNTA-CHANNEL-TESTER(Φ, k, ε) outputs
“Yes” if Φ is a k-junta, and outputs “No” if Φ is ε-far from any k-junta channel. The algorithm
makes O

(
k/ε2

)
queries to the channel Φ.

Proof. Recall that S is the output of INFLUENCE-SAMPLE(Φ, 60(k + 1)/ε2). If Φ is a k-junta
channel, let R be the qubits in which Φ has non-trivial effect. We have |R| ≤ k. It is easy to see
S ⊆ R with probability 1, therefore the algorithm always outputs “Yes” in this case.

For the case Φ is ε-far from any k-junta channel, we let Xi, i ∈ {0, 1, . . . , k} be the number
of iterations between when the i-th coordinate is added to S and when the i + 1-th coordinate
is added to S. As an example of n = 5, S’s are ∅, {1, 2}, {1, 2, 4} through three iterations, we
have X0 = 2, X1 = 0, X2 = 1. According to Corollary 13, for any |S| ≤ k, InfSc [Φ] ≥ ε2/4.
Combining with Lemma 31, which says when |S| = i, for each iteration, S becomes largers with
probability at least 2

3 ·InfSc [Φ] ≥ ε2

6 . Therefore, E[Xi] ≤ 6
ε2

, for ∀i ∈ {0, 1, . . . , k}. We conclude
that

E

[
k∑
i=0

Xi

]
≤ 6(k + 1)

ε2
.

By Markov Inequality,

Pr

[
k∑
i=0

Xi ≥
60(k + 1)

ε2

]
≤ 1

10
.

Thus in the case Φ is ε-far from any k-junta channel, the algorithm outputs “No” with probability
at least 9/10.

Besides, JUNTA-CHANNEL-TESTER(Φ, k, ε) makes O(k/ε2) queries to Φ. Theorem 18 fol-
lows.

G.2 Ω(
√
k) Lower Bound on Testing Quantum k-Junta Channels, Proof of Lemma 20

and Lemma 19

Before proving Lemma 20, we need the following technical lemma.

Lemma 32. Let n,m be natural numbers and ra,b ∈ R, ra,a ≥ 0 for a, b ∈ [n]. The maximum
value

max
x

∑
a,b∈[n]

ra,bxaxb

s.t. xa ∈ [−m,m], ∀a ∈ [n]

can be achieved if we restrict x satisfying that xa ∈ {m,−m}, for all a ∈ [n].

21



Proof. For arbitrary a ∈ [n],

∂2
∑

a,b∈[n] ra,bxaxb

(∂xa)
2 = 2ra,a ≥ 0.

Thus the objective function is convex in xa for all a ∈ [n]. The conclusion follows.

We will prove our key technical lemma, Lemma 20.

Lemma 20. For a k-junta channel Φ, there exists a k-junta boolean function g′ satisfying that
dist(Φ,Φg′) = ming dist(Φ,Φg), where the minimization is over all boolean functions g : {0, 1}n →
{0, 1}.

Proof. For any k-junta channel Φ, let boolean function g minimize dist(Φ,Φg). We will show g
could be a k-junta boolean function.

g = argmin
g

dist(Φ,Φg)

= argmin
g

∥∥∥∥∥∥
∑

a,b∈{0,1}n
(Φ(|a⟩⟨b|)− Φg(|a⟩⟨b|))⊗ |a⟩⟨b|

∥∥∥∥∥∥
2

2

= argmin
g

∑
a,b∈{0,1}n

∥Φ(|a⟩⟨b|)− Φg(|a⟩⟨b|)∥22

= argmin
g

∑
a,b∈{0,1}n

(
⟨a|Φ(|a⟩⟨b|) |b⟩ − (−1)g(a)+g(b)

)2
Since Φ is a k-junta channel, there exists T ⊆ [n],|T | = k, such that Φ(ρ) = Φ̃(ρT ) ⊗ ρT c . We
have

g = argmin
g

∑
a,b∈{0,1}n

(
⟨a|Φ(|a⟩⟨b|) |b⟩ − (−1)g(a)+g(b)

)2
= argmin

g

∑
a′,b′∈{0,1}T

a′′,b′′∈{0,1}Tc

(〈
a′, a′′

∣∣ Φ̃(∣∣a′〉〈b′∣∣)⊗ ∣∣a′′〉〈b′′∣∣ ∣∣b′, b′′〉− (−1)g(a′,a′′)+g(b′,b′′)
)2

= argmin
g

∑
a′,b′∈{0,1}T

a′′,b′′∈{0,1}Tc

(〈
a′
∣∣ Φ̃(∣∣a′〉〈b′∣∣) ∣∣b′〉− (−1)g(a′,a′′)+g(b′,b′′)

)2

= argmax
g

∑
a′,b′∈{0,1}T

a′′,b′′∈{0,1}Tc

(〈
a′
∣∣ Φ̃(∣∣a′〉〈b′∣∣) ∣∣b′〉+ ⟨a′| Φ̃(|a′⟩⟨b′|) |b′⟩) · (−1)g(a′,a′′) · (−1)g(b′,b′′)

= argmax
g

∑
a′,b′∈{0,1}T

(〈
a′
∣∣ Φ̃(∣∣a′〉〈b′∣∣) ∣∣b′〉+ ⟨a′| Φ̃(|a′⟩⟨b′|) |b′⟩) · g′(a′) · g′(b′)

where g′(a′) =
∑

a′′∈{0,1}Tc (−1)g(a′,a′′),a′ ∈ {0, 1}T . Let ra′,b′ = 2Re
(
⟨a′| Φ̃(|a′⟩⟨b′|) |b′⟩

)
, we

know ra′,a′ ≥ 0 since Φ̃(|a′⟩⟨b′|) is PSD.
Combining with Lemma 32, we know that there exists g′ which achieves the maximum sat-

isfying that g′(a′) = 2n−k or g′(a′) = −2n−k, for all a′ ∈ {0, 1}T . Thus, we can take k-junta
boolean function g to obtain the minimum of dist(Φ,Φg).

Before we prove Lemma 19, we need the following lemma.

Lemma 33. Given boolean function f , if f is ε-far from any k-junta boolean function, then for
any k-junta boolean function g, we have dist(Φf ,Φg) ≥

√
2ε.
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Φg Φf

Φ′

d1

d3d2

boolean function channel

k-junta channel

Step 1: d1 is large
Step 2: d2 ≤ d3
Goal: d3 is large

Figure 1: Illustration of proof of Lemma 19

Proof. For k-junta boolean function g, if 1/2 ≥ dist(f, g) ≥ ε, we claim that dist(Φf ,Φg) ≥√
2dist(f, g) ≥

√
2ε. Recall that dist(f, g) = Prx[f(x) ̸= g(x)].

dist(Φf ,Φg) =
1√
2N
∥vec(Uf )vec(Uf )

∗ − vec(Ug)vec(Ug)
∗∥2

=
1√
2N

√ ∑
a,b∈{0,1}n

[
(−1)f(a)+f(b) − (−1)g(a)+g(b)

]2
=

√
2

N

√ ∑
a,b∈{0,1}n

(1[f(a) ̸= g(a)] · 1[f(b) = g(b)] + 1[f(a) = g(a)] · 1[f(b) ̸= g(b)])

=

√
2

N

√
2(1− dist(f, g))dist(f, g) ·N2

≥
√
2ε

Lemma 19. A (k,
√
ε/2)-channel junta tester is a (k, ε)-classical junta tester.

Proof. We will analyze the output of a (k,
√
ε/2)-channel junta tester given oracle to Φf for some

boolean function f : {0, 1}n → {0, 1}.
If f is a k-junta, it is easy to see Φf is also a k-junta. Thus the channel junta tester outputs

“Yes” with probability at least 9/10.
If f is ε-far from any k-junta boolean function, we are going to show Φf is

√
ε/2-far from any

k-junta channel. We give an illustration of our proof as Figure 1. Our goal is show for any k-junta
channel Φ′, dist(Φf ,Φ′) = d3 is large. We firstly show, from Lemma 33, that for any k-junta
boolean function g, dist(Φf ,Φg) = d1 is also large (as Step 1 in figure 1). Next we show for any
k-junta channel Φ′, there exists k-junta boolean function g such that dist(Φ′,Φg) ≤ dist(Φf ,Φ′),
i.e., d2 ≤ d3. Finally, we conclude that d3 ≥ (d2 + d3)/2 ≥ d1.

For any k-junta channel Φ′, let g = argming is a boolean function dist(Φ′,Φg). Then g is a k-junta
by Lemma 20. We have

dist(Φ′,Φg) ≤ dist(Φ′,Φf )
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and since g is a k-junta, according to Lemma 33,

dist(Φf ,Φg) ≥
√
2ε

To conclude, we have

dist(Φ′,Φf ) ≥
1

2

(
dist(Φ′,Φf ) + dist(Φ′,Φg)

)
≥ 1

2
dist(Φf ,Φg) ≥

√
ε

2

for any k-junta channel Φ′.

G.3 Reduction from k-Junta Unitary Testing, Proof of Lemma 22 and Lemma 21

The proof of Lemma 22 follows the same line as Lemma 20. We first show a lemma similar to
Lemma 32, which will be used later.

Lemma 34. Let n be a natural number. For a, b ∈ [n], let Aa,b ∈ Cn×n be an n × n matrix. Set
A =

∑
a,b∈[n]Aa,b ⊗ |a⟩⟨b| ∈ Cn2×n2

to be the Choi representation of a quantum channel Φ. In
other words, A is PSD and there exists (Bs)s, Bs ∈ Cn×n, s.t., A =

∑
s vec(Bs)vec(Bs)

∗ and∑
sB

∗
sBs = I . The maximum value

max
V ∈Cn×n

∑
a,b∈[n]

⟨a|V ∗Aa,bV |b⟩

s.t. V ∗V ≤ I

can be achieved if we restrict V satisfying that V ∗V = I .

Proof. Note that ∑
a,b∈[n]

⟨a|V ∗Aa,bV |b⟩ = vec(V )∗Avec(V )

=
∑
s

vec(V )∗vec(Bs)vec(Bs)
∗vec(V )

=
∑
s

|⟨V,Bs⟩|2,

where V takes over all matrices in

{V | V ∈ Cn×n, V ∗V ≤ I}
= {WΣW ′ |W,W ′ are unitaries,Σ is a diagonal real matrix,−I ≤ Σ ≤ I}

by the SVD decomposition. Suppose Σ = Diag(x1, . . . , xn). It is not hard to see∑
s

|⟨V,Bs⟩|2 =
∑
s

∣∣〈WΣW ′ |W,Bs
〉∣∣2

is a quadratic form in x1, . . . , xn. The coefficients of xa is B′2
s,aa ≥ 0, where B′

s = W ∗BsW
′∗.

By Lemma 22, the maximum can be achieved if xa = ±1. We conclude the result.

Lemma 22. For every k-junta channel Φ′, there exists a k-junta unitary V , such that dist(Φ′,ΦV ) =
minV dist(Φ′,ΦV ), where the minimization is over all unitaries V .
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Proof. For any k-junta channel Φ′, let unitary V minimize dist(Φ′,ΦV ). We will show V could
be a k-junta unitary.

V = argmin
V

dist(Φ′,ΦV )

= argmin
V

∥∥∥∥∥∥
∑

a,b∈{0,1}n

(
Φ′(|a⟩⟨b|)− ΦV (|a⟩⟨b|)

)
⊗ |a⟩⟨b|

∥∥∥∥∥∥
2

2

= argmin
V

∑
a,b∈{0,1}n

∥∥Φ′(|a⟩⟨b|)− ΦV (|a⟩⟨b|)
∥∥2
2

= argmin
V

∑
a,b∈{0,1}n

∥∥Φ′(|a⟩⟨b|)− V |a⟩⟨b|V ∗∥∥2
2

Since Φ′ is a k-junta, there exists T ⊆ [n],|T | = k, s.t., Φ′ = Φ̃′
T⊗IT c . Let V =

∑
x∈ZTc

4
Vx⊗σx.

Besides, because
∑

a,b ∥V |a⟩⟨b|V ∗∥22 = 4n, we have:

V = argmin
V

∑
a,b∈{0,1}n

∥∥Φ′(|a⟩⟨b|)− V |a⟩⟨b|V ∗∥∥2
2

= argmax
V

∑
a,b∈{0,1}n

Re
{
⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩

}
= argmax

V

∑
a,b∈{0,1}n

⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩

= argmax
V

∑
a′,b′∈{0,1}T

∑
a′′,b′′∈{0,1}Tc

∑
x,y∈ZTc

4

〈
b′
∣∣V ∗

x Φ̃
′(
∣∣b′〉〈a′∣∣)Vy ∣∣a′〉 · 〈b′′∣∣σx ∣∣b′′〉 · 〈a′′∣∣σy ∣∣a′′〉

= argmax
V

∑
a′,b′∈{0,1}T

∑
x,y∈ZTc

4

〈
b′
∣∣V ∗

x Φ̃
′(
∣∣b′〉〈a′∣∣)Vy ∣∣a′〉 · Trσx · Trσy

= argmax
V

∑
a′,b′∈{0,1}T

〈
b′
∣∣V ∗

0Tc Φ̃′(
∣∣b′〉〈a′∣∣)V0Tc

∣∣a′〉
where the second equality follows from∥∥Φ′(|a⟩⟨b|)− V |a⟩⟨b|V ∗∥∥2

2
=
∥∥Φ′(|a⟩⟨b|)

∥∥2
2
+ ∥V |a⟩⟨b|V ∗∥22 − 2 · Re

{
⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩

}
=
∥∥Φ′(|a⟩⟨b|)

∥∥2
2
+ ∥|a⟩⟨b|∥22 − 2 · Re

{
⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩

}
and the first two terms have nothing to do with V . The third equality is because, if a = b,
⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩ ∈ R and Re {⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩} = ⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩. If a ̸= b,∑
a,b∈{0,1}n,a ̸=b

⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩ =
∑

a,b∈{0,1}n,a<b

⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩+ ⟨a|V ∗Φ′(|a⟩⟨b|)V |b⟩

=
∑

a,b∈{0,1}n,a<b

⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩+ ⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩

=
∑

a,b∈{0,1}n,a<b

2 · Re
{
⟨b|V ∗Φ′(|b⟩⟨a|)V |a⟩

}
∈ R

Notice that TrT c V ∗V =
∑

x,y∈ZTc
4
V ∗
x Vy⟨σx, σy⟩ = 2n−k

∑
x∈ZTc

4
V ∗
x Vx = 2n−kIT . By Lemma 34,

the maximum can be achieved when V ∗
0TcV0Tc = IT , which implies Vx = 0 for x ̸= 0T

c
. Thus,

we can take k-junta unitary V to obtain the minimum of dist(Φ′,ΦV ).

The proof of Lemma 21 is similar to Lemma 19.
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Lemma 21 (Reduction from Testing k-Junta Unitaries to Testing k-Junta Channels). A (k, ε)-
channel junta tester is naturally a (k, ε/2)-unitary junta tester.

Proof. Let U be a unitary matrix. It suffices to show that if U is ε-far from any k-junta unitary,
then ΦU is ε/2-far from any k-junta channel. We firstly show that for any k-junta unitary V ,
dist(ΦU ,ΦV ) is large. Next, we show for any k-junta channel Φ′, there exists k-junta unitary V
such that dist(Φ′,ΦV ) ≤ dist(Φ′,ΦU ).

For any k-junta channel Φ′, let V = argminunitary V dist(Φ′,ΦV ). By Lemma 22, V is k-junta.
For any unitary U , if U is ε-far from any k-junta unitary, then therefore dist(ΦU ,ΦV ) ≥ ε. Thus

dist(ΦU ,Φ′) ≥ 1

2
(dist(ΦU ,Φ′) + dist(Φ′,ΦV )) ≥

1

2
dist(ΦU ,ΦV ) ≥ ε/2.

The last inequality follows directly from Lemma 14. We complete the proof.

H O(4k/ε2) Upper Bound on Learning Quantum k-Junta Channels,
Proof of Theorem 23

Before describing the learning algorithm JUNTA-CHANNEL-LEARNER, we introduce a tomogra-
phy algorithm from [OW17].

Fact 35 (Corollary 1.4 of [OW17]). There exists an algorithm TOMOGRAPHY, which is given
O(4k/ε2) copies of an unknown 2k qubit state ρ and outputs the description an estimated state ρ̃
satisfying that ∥ρ− ρ̃∥2 ≤ ε, with probability at least 0.99.

Now we are ready to prove Theorem 23.

Theorem 23 (Property of Algorithm 3, Restatement of Theorem 1). Given oracle access to k-
junta channel Φ, with probability at least 9/10, JUNTA-CHANNEL-LEARNER(Φ, k, ε) outputs
the description of quantum channel Ψ such that dist(Φ,Ψ) ≤ ε. Furthermore, this algorithm
makes O(4k/ε2) queries.

Proof. Let R be the subset of [n], over which Φ acts non-trivially. Recall that S is the output of
the call to Algorithm 1, INFLUENCE-SAMPLE in line 1 of JUNTA-CHANNEL-LEARNER(Φ, k, ε).
It is easy to see S ⊆ R with probability 1. From a similar calculation as the proof of Lemma 31,
for each i ∈ R with Infi[Φ] ≥ ε2

8k , the probability that i is not added to S in one interation is at
most 2

3 ·
ε2

8k , therefore

Pr[i /∈ S] ≤
(
1− 2

3
· ε

2

8k

)O(k log k/ε2)

≤ 1

100k
.

Thus with probability at least 0.99, for all i ∈ R with Infi[Φ] ≥ ε2

8k , we have i ∈ S, and with
probability at least 0.99, InfR−S [Φ] ≤ ε2

8k · |R| ≤
ε2

8 .
Let Φ = ΦR ⊗ IR

c
and v(Φ) = v(ΦR) ⊗ v(IR

c
). Consider the quantum state ψ returned

by QUANTUM-STATE-PREPARATION. We conclude that the probability that it does not output
“error” is

Tr v(Φ) ·
(
IS ⊗

∣∣v(ISc
)
〉〈
v(IS

c
)
∣∣) = ∑

x,y∈Zn
4

Φ̂(x, y)Tr v(ΦxS ,yS ) · ⟨v(σ0)| v(ΦxSc ,ySc ) |v(σ0)⟩

=
∑

x∈Zn
4 ,xSc=0

Φ̂(x, x)

= 1− InfR−S [Φ] ≥ 1− ε2/8.
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The step 2 of JUNTA-CHANNEL-LEARNER collects t copies of ψ in 10t calls to the preparation
subroutine with probability at least 0.99 for large enough k, since the expectation of successful
collections is at least (1− ε2/8) · 10t ≥ 8t. We will show ψ ⊗ v(IR−S) is close to v(ΦR).

It is easy to calculate that

ψ =
1

InfSΦ
IS ⊗ ⟨v(σ0)| · v(Φ) · IS ⊗ |v(σ0)⟩

=
1

InfSΦ

∑
x,y∈Zn

4

Φ̂(x, y)v(ΦxS ,yS ) · ⟨v(σ0)| · v(ΦxSc ,ySc ) · |v(σ0)⟩

=
1

InfSΦ

∑
x,y∈Zn

4 ,xSc=ySc=0

Φ̂(x, y)v(ΦxS ,yS )

Let ψ′ = InfS [Φ] · ψ =
∑

x,y∈Zn
4 ,xSc=ySc=0 Φ̂(x, y)v(ΦxS ,yS ). We have∥∥ψ ⊗ v(ISc

)− v(Φ)
∥∥
2
≤
∥∥ψ ⊗ v(ISc

)− ψ′ ⊗ v(ISc
)
∥∥
2
+
∥∥ψ′ ⊗ v(ISc

)− v(Φ)
∥∥
2

= (1− InfS [Φ])
∥∥ψ ⊗ v(ISc

)
∥∥
2
+
∥∥ψ′ ⊗ v(ISc

)− v(Φ)
∥∥
2

≤ ε2

8
+
∥∥ψ′ ⊗ v(ISc

)− v(Φ)
∥∥
2

and

∥∥ψ′ ⊗ v(ISc
)− v(Φ)

∥∥2
2
=

∥∥∥∥∥∥
∑

x,y∈Zn
4 ,xSc ̸=0 or ySc ̸=0

Φ̂(x, y)v(Φx,y)

∥∥∥∥∥∥
2

2

=
∑

x,y∈Zn
4 ,xSc ̸=0 or ySc ̸=0

∣∣∣Φ̂(x, y)∣∣∣2
≤

∑
x,y∈Zn

4 ,xSc ̸=0 or ySc ̸=0

Φ̂(x, x)Φ̂(y, y)

≤ 2
∑

x,y∈Zn
4 ,xSc ̸=0

Φ̂(x, x)Φ̂(y, y)

= 2InfSc [Φ] ≤ ε2

4

Therefore
1√
2

∥∥ψ ⊗ v(ISc
)− v(Φ)

∥∥
2
≤ 1√

2
·
(
ε2

8
+
ε

2

)
≤ 0.45ε

By the step 1 of TOMOGRAPHY, we get a description of quantum state ϕ with probability 0.99
s.t. ∥ϕ− ψ∥2 ≤ 0.04ε and

∥∥ϕ⊗ v(ISc
)− v(Φ)

∥∥
2
/
√
2 ≤ 0.49ε. After we find the closest Choi

state ϕ′ to ϕ in the step 2 of TOMOGRAPHY, we are sure that
∥∥ϕ′ ⊗ v(ISc

)− v(Φ)
∥∥
2
≤ ε and the

returned channel is close to Φ with distance at most ε with probability at least 9/10.
To see the query complexity, the call to PAULI-SAMPLE costs onlyO

(
k log k/ε2

)
queries to Φ

and the preparation and tomography need O
(
4k/ε2

)
queries. The total queries are O

(
4k/ε2

)
.
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