
PDX: A Data Layout for Vector Similarity Search
Leonardo Kuffo

CWI
Amsterdam, The Netherlands

Elena Krippner
CWI

Amsterdam, The Netherlands

Peter Boncz
CWI

Amsterdam, The Netherlands

ABSTRACT
We propose Partition Dimensions Across (PDX), a data layout for
vectors (e.g., embeddings) that, similar to PAX [6], stores multi-
ple vectors in one block, using a vertical layout for the dimen-
sions (Figure 1). PDX accelerates exact and approximate similar-
ity search thanks to its dimension-by-dimension search strategy
that operates on multiple-vectors-at-a-time in tight loops. It beats
SIMD-optimized distance kernels on standard horizontal vector
storage (avg 40% faster), only relying on scalar code that gets auto-
vectorized. We combined the PDX layout with recent dimension-
pruning algorithms ADSampling [19] and BSA [52] that accelerate
approximate vector search. We found that these algorithms on the
horizontal vector layout can lose to SIMD-optimized linear scans,
even if they are SIMD-optimized. However, when used on PDX,
their benefit is restored to 2-7x. We find that search on PDX is espe-
cially fast if a limited number of dimensions has to be scanned fully,
which is what the dimension-pruning approaches do. We finally
introduce PDX-BOND, an even more flexible dimension-pruning
strategy, with good performance on exact search and reasonable
performance on approximate search. Unlike previous pruning algo-
rithms, it can work on vector data "as-is" without preprocessing;
making it attractive for vector databases with frequent updates.

ACM Reference Format:
Leonardo Kuffo, Elena Krippner, and Peter Boncz. 2025. PDX: A Data Lay-
out for Vector Similarity Search. In Proceedings of The 2025 International
Conference on Management of Data (SIGMOD ’25). ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
K-Nearest Neighbour Search (KNNS), also referred to nowadays as
Vector Similarity Search (VSS), has rapidly become a core compo-
nent of a variety of applications: information/multimedia retrieval,
data pipelines, code co-piloting, LLMs pipelines, etc. The KNNS
problem consists of finding the K-vectors within a collection that are
the most similar to a query vector based on a distance or similarity
metric (e.g., Euclidean, Cosine, Manhattan). KNNS is computation-
ally intensive, as providing exact answers requires a large number
of computations. The latter makes KNNS inefficient for large-scale
workloads, especially at the throughput needed by LLMs and infor-
mation retrieval applications.

However, certain applications can tolerate approximate answers,
that is, to only obtain a subset of the actual neighbors of the
query (Approximate Nearest Neighbor Search). Giving up exact-
ness opened opportunities to develop approximate indexes based

SIGMOD ’25, June 22–27, 2025, Berlin, Germany
© 2025 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of The 2025 International Conference on Management of Data (SIGMOD ’25), https:
//doi.org/10.1145/nnnnnnn.nnnnnnn.

Figure 1: PDX stores dimensions in a vertical layout, allow-
ing efficient dimension-by-dimension distance calculation,
more opportunities for SIMD execution, and better memory
locality for search algorithms that prune dimensions.

on bucketing [25,28], trees [32,40], and graphs [18,31,33,49] that
when used together with quantization to reduce the size of the
vectors [4,15,20,21,28,30], achieve throughput close to 105 queries
per second on modestly sized datasets [8]. Therefore, it is no sur-
prise that a flurry of improvements to approximate VSS have been
developed in recent years, mainly focusing on improving exist-
ing index structures (better data access patterns [5,48], GPU op-
timizations [24,29], leveraging disk storage [27,41,48], SIMD ker-
nels [5,43]) and reducing the trade-off between losing information
in the vectors (quantization) and achieving higher recalls [4,5,20,30].

Both approximate and exact VSS share a common theme: the
distance calculation (referred to as Distance Comparison Operation
(DCO) in [19]). DCOs are the most time-consuming operation in a
VSS [19,52,53], followed by the access to the data itself (especially
in a RAM-constrained environment) [38]. Despite this, few efforts
have been made to improve these. In other words, during an ap-
proximate or exact search, if one wants to determine if a vector
will make it into the K-nearest neighbours of a query, all of its
dimensions have to be accessed. ADSampling [19] and BSA [52]
improve on this by performing a distance approximation only by
evaluating some dimensions of a vector, an idea first explored many
years back in BOND [13] and FNN [23] for exact search. ADSam-
pling randomly projects the vector collection and queries to make
them suitable for a reliable distance approximation using only a few
dimensions (as low as 2% in some datasets), speeding up IVF [28]
and HNSW [31] index search by x5.6 and x2.6, respectively, with
little accuracy loss. BSA improved ADSampling speed by replacing
the random projection with learned PCA projections, resulting in
tighter approximations and, thus, earlier pruning of vectors at the
expense of more intensive data preprocessing.

We believe that the core idea in ADSampling and BSA of pruning
dimensions at search time is the next leap in VSS, as the DCO is
performed in any VSS setting. However, the current de-facto layout
to store vectors (the vector-by-vector/horizontal/N-ary layout in
Figure 1) prevents these algorithms from always beating SIMD-
optimized searches due to the latency to evaluate their pruning
bounds. Furthermore, the horizontal layout implies that dimen-
sions that are never visited are still loaded, wasting memory band-
width [13,38]. A vertical layout was proposed two decades ago [13]
for column-at-a-time image search with dimensions pruning using

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

partial distance calculations. However, methods like ADSampling
and BSA need to compute full distances before starting pruning,
making them incompatible with the idea of full column-at-a-time
processing.

We introduce Partition Dimensions Across (PDX) (Figure 1),
a data layout for vectors that stores vectors dimension-at-a-time
within blocks (analogous to rowgroups in Parquet [45]). PDX allows
for efficient per-dimension access, which is ideal for performing
partial distance calculations such as the ones recently proposed in
ADSampling and BSA. Furthermore, we introduce PDXearch, a
search framework applicable in exact and approximate KNN that
leverages the PDX layout by adaptively scanning dimensions as
required by the underlying algorithm and query. In PDXearch, a
search happens dimension-by-dimension rather than vector-by-
vector. The latter gets the best out of modern compilers as searches
can be vectorized by processing multiple-vectors-at-a-time [10,54]
while at the same time improving data access patterns and cache
utilization. PDXearch does not rely on SIMD instructions to be fast
(its code auto-vectorizes on float32 vectors), making it portable to
any ISA and SIMD register width. PDXearch speeds up ADSampling
and BSA SIMDized versions by 4.6x and 2.3x without any loss in
recall, achieving 5.3x faster searches than the FAISS [14] IVF_FLAT
index on average in high-dimensional datasets.

Finally, we introduce PDX-BOND: A VSS algorithm in the same
line of ADSampling and BSA that leverages PDX by first accessing
the most relevant dimensions relative to an incoming query. PDX-
BOND does not have any recall trade-off (can do exact search)
and does not require data transformations or parameter tuning to
achieve comparable performance to ADSampling. PDX-BOND also
outperforms USearch [43], Milvus [46], and FAISS (state-of-the-art
systems) on exact search by 4.0x, 3.3x, and 2.5x on average.
Our main contributions are:

• The design of PDX, a new data layout for vectors alongside
PDXearch: a framework to perform pruned VSS dimension-
by-dimension (Section 3).

• The insight that the ADSampling [19] and BSA [52] dimen-
sion pruning algorithms, which were originally evaluated
with scalar code, can be actually slower than SIMD-optimized
searches. Thanks to PDX, they regain clear superiority.

• An experimental evaluation of our search framework on 10
vector datasets and 4 CPU architectures, demonstrating the
versatility and effectiveness of PDX to achieve significant
speedups both in exact and approximate settings (Section 6).

• The design and evaluation of PDX-BOND: A VSS algorithm
that leverages the PDX layout to visit first the most relevant
dimensions relative to the incoming query.

• An open-source implementation of our algorithms in C++
with Python bindings for their ease of use (https://github.
com/cwida/PDX).

2 PRELIMINARIES
2.1 K-Nearest Neighbour Search (KNNS)
Given a collection𝑉 of 𝑛 multi-dimensional objects {𝑣0, 𝑣1, · · · , 𝑣𝑛},
defined on a𝐷-dimensional space, and a𝐷-dimensional query𝑞, the
KNNS problem tries to find a subset 𝑅 ⊂ 𝑉 , containing the 𝑘 most
similar objects to 𝑞. The notion of similarity between two objects

(𝑣, 𝑞) is measured using a function 𝛿 (𝑣, 𝑞). Usually, 𝛿 is a distance
or similarity function defined in an Euclidean space (e.g., Euclidean
Distance L2, Manhattan Distance L1, Hamming Distance, Cosine
Similarity, Inner Product). The KNNS problem consists of finding
the objects that minimize 𝛿 . The Squared Euclidean Distance (L2)
is one of the most commonly used distance metrics for KNNS, and
it is defined as 𝛿 (𝑣, 𝑞) = ∑𝐷

𝑖=0 (𝑣𝑖 − 𝑞𝑖)2.
To obtain 𝑅, 𝛿 needs to be computed for every 𝑣 ∈ 𝑉 , leading

to a large number of operations. In modern CPUs, a KNNS within
millions of vectors and hundreds of dimensions can be answered in
a few hundred milliseconds [8,53]. However, modern applications
such as RAG pipelines often need sub-millisecond performance to
cope with the increasing throughput of requests, rendering KNNS
unfeasible on large-scale data at high throughput. However, in most
embedding-based applications, approximate answers are often as
good as mathematically exact ones. This allowed the KNNS prob-
lem to scale by returning only approximate results, renaming the
problem to Approximate k-Nearest Neighbor Search (ANNS).
ANNS aims to return a result set 𝑅, in which the quality of the
elements of 𝑅, with respect to a query, is measured using the re-
call@k metric. Recall@k measures the percentage of intersection
between the vectors in 𝑅 and 𝑅 when answering the same query
(𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =

𝑅
⋂
�̂�

𝑘
). There is no consensus on a "good enough"

recall, as this depends on the application that uses ANNS.
Trading off accuracy for speed has resulted in two ideas that,

when used together, can achieve throughputs of up to 105 queries
per second (QPS) on modestly sized datasets [8,53]: Approximate
indexes and quantization (reducing the size of the vectors).

Approximate indexes aim to build data structures that guide
the search to the most suitable place of the D-dimensional space
in which the query may find its nearest neighbours. There exist
four types of indexes: graph-based [18,31,33,49], tree-based [32,40],
bucket-based [25,28] and hybrids [11,24]. Their common goal is
only to evaluate the distance/similarity function between 𝑞 and a
smaller set of vectors 𝑉 ′ ⊂ 𝑉 , such that 𝑉 ′ contains all or most of
the elements in 𝑅. The approximate indexes that have seen the most
adoption are HNSW [31] (Hierarchical Navigable Small Worlds)
and IVF [28] (Inverted Files).

Graph indexes like HNSW have seen great success in achieving
desirable recall in most datasets [8,53]. Graph indexes organize
objects into a graph where nodes represent the vectors, and edges
reflect their similarity. The property of navigability and "small
world" [50] is desired on the graph so that a greedy search can
reach the answers to a query in logarithmic complexity [49]. On
the other hand, IVF is a bucket-based index that applies a non-
optimized Lloyd algorithm (k-means) to the vector collection to
group them into lists/buckets. At search time, the distance metric
is first evaluated with the centroids of each bucket, and the vectors
inside the nearest centroids buckets are chosen for evaluation. A
higher number of buckets can be probed to trade off speed for
more recall [14,46]. IVF has shown to work modestly well in most
datasets [8,53] while being able to scale better than graph indexes,
which usually are non-feasible to compute in commodity hardware
on huge datasets (in the order of a couple of gigabytes [8]) due to
their memory requirements and long construction times [14]. A

https://github.com/cwida/PDX
https://github.com/cwida/PDX

PDX: A Data Layout for Vector Similarity Search SIGMOD ’25, June 22–27, 2025, Berlin, Germany

Figure 2: Example of an IVF index on a collection of vectors.
The IVF buckets naturally map to the concept of blocks of
vectors in the PDX layout.

Table 1: Vector Datasets
Dataset Semantics Size N. Queries Dim.↓ Distribution

NYTimes TF-IDF Features 290,000 10,000 16

GloVe Word Embeddings 1,183,514 10,000 50

DEEP Image Embeddings 9,990,000 10,000 96

SIFT Image Features 1,000,000 10,000 128

GloVe Word Embeddings 1,183,514 10,000 200

MSong Audio Features 983,185 1,000 420

Contriever Word Embeddings 990,000 10,000 768

arXiv Text Embeddings 2,253,000 1,000 768

GIST Image Features 1,000,000 1,000 960

OpenAI Text Embeddings 999,000 1,000 1536

commonly used hybrid index consists of building anHNSW index on
the centroids generated by IVF to find the most promising buckets
quickly [11]. The latter is usually feasible in commodity hardware
as the amount of centroids is set in the order of

√
𝑛 [14,46].

In this study, we focus our experiments on exact search and
bucketing indexes (IVF), as the PDX layout is a perfect fit for them.
In fact, the notion of blocks is similar to the bucketing characteristic
of IVF (Figure 2). In Section 7, we discuss how the PDX layout can
be used in the near future on graph indexes like HNSW.

2.2 Vector Datasets
Indexes and quantization techniques for VSS can fail to achieve
desirable recall depending on the collection they are applied to [20].
As such, we have chosen for our analysis and evaluation 10 datasets
(see Table 1) that exhibit various characteristics, some commonly
used to evaluate vector similarity search techniques (e.g., SIFT, GIST,
GloVe, MSong, DEEP). From these collections, 3 represent vectors
from image data (SIFT, GIST, DEEP), 6 from text (NYTimes, GloVe
variants, Contriever, arXiv, OpenAI), and 1 from audios (MSong).
One dataset has an int datatype (SIFT); the rest are float32. From
our observations, we classify these datasets based on (i) their di-
mensionality 𝐷 and (ii) the distributions of their dimensions.

Dimensionality. As the dimensionality of a collection increases,
every extra vector evaluated with the distance function adds more
computational overhead and memory consumption (as also mem-
ory footprint and CPU cost increases by D). Also, an effect known
as the curse of dimensionality appears, in which the distance dif-
ference between a vector’s farthest and nearest neighbor becomes

indiscernible [34,35]. This can occur as low as 𝐷 = 10, given that
dimensions are identically distributed and independent. The latter
makes it harder to construct a good enough set 𝑅. Table 1 shows
that vector collections are always of high dimensionality (𝐷 > 10),
and the ones stemming from LLMs (e.g., OpenAI/1536) usually ex-
hibit an even higher dimensionality. Interestingly, these collections
have shown higher resilience to the curse of dimensionality [12].

Value Distributions. In the last column of Table 1, we show a plot
depicting the shape of the distribution of each dimension for every
collection. Here, we observe two types: normal (DEEP, NYTimes,
arXiv, Contriever, GloVe variants) and skewed (SIFT, GIST, MSong,
OpenAI). These distributions are of importance for the pruning
power of algorithms which prune dimensions at search time.

2.3 The Power of Pruning
ADSampling [19] and BSA [52] propose reducing the D-complexity
of each distance evaluation by pruning dimension that are no longer
needed to determine if a vector will make it into the KNN candidates
list of a query (usually a max-heap [14]). These algorithms were
motivated by the observation that most of a query runtime is spent
evaluating vectors that never made it into the KNN candidate list
(>84% in IVF, >63% in HNSW) [19]. However, they are not the first
algorithms to pursue dimensions pruning per vector, as previous
studies tried to do so in an exact fashion by computing exact bounds
on the distancemetric. These algorithms find efficacy since there is a
concentration inequality on the distance between two vectors [44].

Exact bounds to the Euclidean distance have been proposed in
[13,23]. A common idea of these is to compute the best-case scenario
(a lower-bound) of the distance between 𝑣 and 𝑞 after only having
inspected a few dimensions. If this best-case scenario distance is
higher than an existing threshold (usually the current best 𝑘𝑡ℎ exact
distance), then 𝑣 cannot make it to the k-nearest neighbors of 𝑞 (as
the distance is monotonically increasing), resulting in the pruning
of the dimensions of 𝑣 , which have not been evaluated yet. The
simplest of lower-bounds is the partially computed distance itself,
which does not incur additional latency to obtain but may lack the
power to prune early [19].

BOND [13] (Branch-and-bound ON Decomposed data) proposes
computing lower- and upper-bounds to the Euclidean distance. An
upper-bound is an estimation of the worst-case scenario of the dis-
tance between 𝑣 and 𝑞 by only having inspected a few dimensions.
Thanks to this upper-bound, BOND can define a pruning threshold
without ever visiting all the dimensions of any vector. This allows
the data to be vertically decomposed (dimensions are stored to-
gether), enabling the search to happen dimension-by-dimension
(instead of vector-by-vector) without incurring random access. This
vertical decomposition is key to BOND’s main idea: to visit dimen-
sions in an order that more rapidly increases the distance metric
towards the lower-bound, thus pruning vectors earlier. BOND cri-
teria to prioritize dimensions is to first visit the dimension with
the highest value in the query vector (decreasing order). We refer
to this as a query-aware order to visit dimensions. This achieved
a power-law pruning behavior on skewed datasets. However, the
speedup of BOND on KNNS (1.6x faster) was limited by the upper
and lower bounds computation latency.

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

Approximate pruning techniques try to prune vectors with a
low probability of getting into the KNN candidates list of a query
after having inspected a few of their dimensions. The approximate
nature of these techniques makes pruning more efficient and re-
duces the complexity of evaluating whether a vector can be pruned.
ADSampling [19] is the first of its kind. ADSampling performs a
random orthogonal projection on the entire collection. This allows
one to take random samples from a vector projected at different
dimensions just by sequentially scanning it. At search time, for
every vector in the collection, ADSampling reads a subset of its
dimensions. The size of this subset is controlled with a parameter
fixed for a dataset (Δ𝑑). Then, it evaluates the partial distance metric
and estimates if it is already unlikely that the vector will make it
into the resulting KNNs of the query. This evaluation is done via
hypothesis testing by comparing the partial distance with a thresh-
old (the current best 𝑘𝑡ℎ exact distance) using a fixed error bound
(𝜖0). Similar to Δ𝑑 , this error bound is also fixed for a dataset. If the
hypothesis test cannot prune the vector, it continues to read its fol-
lowing Δ𝑑 dimensions and repeats the process. ADSampling prunes
96% of dimension values in GIST, achieving a speedup of 3.0x in a
brute-force search with >0.99 recall. ADSampling also introduced
a data layout that separates the vectors into two blocks: One with
the first Δ𝑑 dimensions (fully scanned first) and the other one with
the rest of the dimensions (scanned only on the vectors not pruned
with the first hypothesis testing). This layout speeds up searches
thanks to the first block being cached more efficiently.

BSA [52] followed ADSampling by transforming the vectors
using a PCA projection on the D-dimensional space instead of AD-
Sampling’s random orthogonal projection. The latter minimizes the
error distribution of the distance approximation. Furthermore, BSA
introduces a framework in which the probability of a vector being
part of the KNN candidates list is evaluated via error quantiles
(given by the Cauchy-Schwarz inequality [9]) rather than hypoth-
esis testing. BSA also proposes a learned approach in which the
error bounds of the PCA projection at each dimension are learned
at preprocessing time using multiple linear regression models. The
latter alleviates the user from configuring the significance value
for the hypothesis testing. However, it is expensive, as a model
has to be trained for every dimension in the collection, and their
effectiveness has yet to be proven under distribution shifts in the
collection [53]. BSA reported searches 1.6x faster than ADSampling,
limited due to its more expensive data transformation and higher
latency of the error quantile evaluation. Like ADSampling, BSA
adopted the dual-block layout and pruning every Δ𝑑 steps.

The effectiveness of these algorithms is dependent on their prun-
ing power during a search. We define pruning power as the percent-
age of individual dimensions not used in distance calculations in
a KNNS (either exact or approximate). Note that pruning power
does not directly translate to speedup, as these algorithms perform
additional work to evaluate bounds. Unfortunately, these studies
(ADSampling and BSA) have analyzed their pruning power as a final
averaged metric. In the next section, we perform a comprehensive
analysis of the behavior of pruning to uncover potential bottlenecks
and missed opportunities of these novel pruning approaches.

Table 2: Best, 𝑝50, 𝑝25, and worst pruning power of ADSam-
pling when trying to prune at every dimension (Δ𝑑=1). The
darker area indicates the portion of values not pruned at that
dimension (x-axis). The number inside the plot indicates the
total percentage of avoided values.

Datasets

Pruning

G
IS
T/
96
0

M
So
ng

/4
20

N
YT

im
es
/1
6

G
lo
Ve

/5
0

D
EE

P/
96

Co
nt
rie

ve
r/
78
6

O
pe
nA

I/1
53
6

SI
FT

/1
28

Best

𝑝50

𝑝25

Worst

2.4 Pruning Behavior
Table 2 shows the behavior of the best, 𝑝50, 𝑝25, and worst prun-
ing power with K=10 on ADSampling within eight datasets: Four
skewed (GIST, MSong, SIFT, OpenAI) and four normal (NYTimes,
GloVe, DEEP, Contriever). We choose ADSampling for this demon-
stration as the pruning behaviors of BSA1 are very similar (both
in shape and pruning power), and BOND cannot prune normally
distributed datasets. The plots show the percentage of vectors from
the collection (y-axis) pruned at each scanned dimension (x-axis).
The darker area represents values that were not pruned. Here, we
visit dimensions one by one (Δ𝑑 = 1), doing the hypothesis testing
at each step to show the real potential of pruning.

We see that normally distributed datasets aremore challenging to
prune than skewed datasets.We can also see how the pruning power
within the same dataset changes on a query basis. For instance, in
Contriever/768 the best pruning power prunes 98.6% of values while
the worst prunes 69.3%. In NYTimes, half of the queries (𝑝50) can
prune less than 67% of the values. From these pruning behaviors,
we make the following key observations: (i) Effective pruning has
a query-dependent starting point. (ii) For most queries and datasets,
once pruning starts, it keeps pruning exponentially fast on the
following dimensions (note the power-law behavior of the plots).
(iii) A small step size is beneficial when pruning starts; however,
benefits are only seen at much bigger steps at later dimensions.
From these key observations, we detect where pruning algorithms
are missing opportunities to optimize their search strategy.

Issue #1: Pruning at fixed steps. In ADSampling and BSA, prun-
ing happens every 32 dimensions (Δ𝑑). Δ𝑑 = 32 was determined by
doing an exhaustive parameter search [19]. However, the optimal
step size depends on both the query and the dataset (Table 2). There-
fore, the step size must be adaptive, starting low and increasing
exponentially. This would also reduce the number of evaluations of
the pruning predicate and alleviate the user from finding an optimal
Δ𝑑 parameter for their data.

Issue #2: Keep pruning at late dimensions: The hypothesis test-
ing no longer brings benefits after a certain dimension (pruning no

1When referring to BSA, we would be referring to BSA𝑟𝑒𝑠–the version of BSA without
the learned instance approach (named BSA𝑝𝑐𝑎), as the latter incurs a huge preprocess-
ing cost and does not improve query latency at high recalls [52].

PDX: A Data Layout for Vector Similarity Search SIGMOD ’25, June 22–27, 2025, Berlin, Germany

Algorithm 1: L2, L1, IP distance kernels on the PDX Layout
1 const PDX_BLOCK_SIZE = 64;
2 float[PDX_BLOCK_SIZE] distances;
3 for (d = 0; d < D; ++d){ // Dimensions loop
4 size_t offset_to_dimension = d * PDX_BLOCK_SIZE;
5 float query_dim = query[d];
6 for (n = 0; n < PDX_BLOCK_SIZE; ++n){ // Vectors loop
7 L2:
8 float to_mul = query_dim − data[offset_to_dimension + n];
9 distances[n] += to_mul * to_mul;
10 L1:
11 float to_abs = query_dim − data[offset_to_dimension + n];
12 distances[n] += std::fabs(to_abs)
13 IP:
14 distances[n] += query_dim * data[offset_to_dimension + n];
15 }
16 }

longer happens). As such, there is no need to keep doing hypothesis
tests; instead, the distance over the rest of the dimensions should
be computed. The latter would lower the cost of hypothesis testing
and open opportunities for SIMDizing the distance kernel.

Issue #3: Not processing multiple vectors at-a-time. Given
the correct data layout, a dimension-by-dimension search would
improve the efficiency of pruning algorithms. A dimension-by-
dimension search can evaluate the pruning bounds on multiple
vectors at-a-time [10,54] in a loop separated from the distance
calculations. Also, it would allow compilers to seamlessly vectorize
the distance calculations as every distance evaluation aggregate
into a different result. The access patterns to the data would also
improve as the CPU cache is not polluted with dimension values
that are not needed, and frequently accessed dimensions are cached
more efficiently. Both approximate and exact search algorithms can
benefit from this vectorized processing, as evaluating the distance
of multiple vectors is unavoidable.

3 THE PDX DATA LAYOUT
We introduce the PDX (Partition Dimensions Across) data lay-
out for vector similarity search (Figure 1), which finds a balance
between a vertically decomposed layout [13] and the traditional
vector-by-vector layout. PDX stores together the values of each
dimension within a block. Blocks define a subset of vectors within
the collection (e.g., IVF/LSH buckets or horizontal partitioning).
The motivation of blocks is to maintain all the dimensions of the
same vector close by in the storage (analogous to rowgroups in
modern file formats such as Parquet [45], DuckDB [37], and Fast-
Lanes [2]). The PDX layout allows for a dimension-by-dimension
search that operates on multiple vectors at-a-time instead of the
traditional vector-by-vector search. Furthermore, partitioning di-
mensions allow pruning algorithms to be adaptive regarding the
number of dimensions explored. Thus, tackling the shortcomings
uncovered in the previous section.

Distance kernels that auto-vectorize. In modern systems, dis-
tance kernels are optimized using explicit SIMD intrinsics ormanual
loop unrolling tailored for every major ISA, processor family, and
datatype being used [14,43,46,51]. This increases code size and is
not future-proof, as new CPU architectures with different register
widths and capabilities are in constant development. More impor-
tantly, these approaches have degraded performance in datasets
with a dimensionality smaller than the available SIMD register
width. The latter is not friendly towards pruning approaches as

Figure 3: An Inner Product calculation on the horizontal lay-
out (N-ary) and the PDX layout with 128-bit SIMD registers.
The PDX kernel does not have dependencies (the distances
of different vectors are aggregated in different SIMD lanes), is
unaffected by dimensionality, and avoids the register reduce
step. Constructing the PDX layout on-the-fly from the N-ary
layout for calculations introduces a non-negligible overhead
(N-ary + Gather), as discussed in section 7.

they would (ideally) inspect only a few dimensions. The PDX layout
addresses these issues using distance kernels that process multiple
vectors-at-a-time [10,54].

Algorithm 1 shows pseudo-code for the Euclidean Distance (L2),
Manhattan Distance (L1), and Inner Product (IP) kernels in the
PDX layout. Here, the inner loop that processes multiple vectors
at-a-time is a natural fit for auto-vectorization, where the distances
of different vectors are aggregated in different SIMD lanes without
dependencies (see PDX in Figure 3). SIMDizing over vectors rather
than dimensions (in the default horizontal approach) is, therefore,
no longer affected by dimensionality. Further, the reduction of the
SIMD register that must happen at the end of every vector (see the
last step of N-ary in Figure 3) is eliminated. Leftover handling at
the end of a vectorized loop (usually handled with masked instruc-
tions) also gets reduced since it happens only at the end of every
dimension rather than at the end of every vector. Note that these
kernels also alleviate technical software debt (absence of intrinsics,
as they auto-vectorize efficiently in any architecture when vectors
are float32). The resulting code is most efficient if loops are tight
enough such that the entire distances array fits into the available
SIMD registers (loaded once before processing and stored once
after finishing the processing). From our experiments, processing
64 vectors at-a-time achieve the highest performance improvement
in all major ISAs (NEON, AVX2, and AVX512). In section 6.2, we
present an in-depth study of the effect of using different block sizes
on different architectures. Finally, in section 7 we study the alter-
nate approach to use Algorithm 1 on N-ary storage, by performing
an on-the-fly gather (depicted in the rightmost part of Figure 3).

Metadata per block. The notion of blocks allows for storing
metadata that can aid a search. Metadata can be defined according
to the needs of an algorithm. For instance, BSA may store the
variance for each dimension of a block. The latter could be used to
tune the pruning process per block while being adaptive to potential
distribution shifts when the variance of the vectors changes. This
idea is not novel, as modern systems, such as DuckDB [37], store
metadata (min/max) per column in a rowgroup to perform skipping
for filter predicates pushed down into the scan.

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

Figure 4: The PDXearch framework within an IVF index: A
search happens dimension-by-dimension per block (bucket).
A linear scan is done in the first block (𝐶0 in the figure) to
set a pruning threshold. In the following blocks (𝐶1), the
search has two phases: WARMUP (keep scanning all vectors
at incremental steps of D) and PRUNE (scan only the not-yet
pruned vectors once they are few).

Inserts and Updates. Within vector databases, the typical work-
loads are bulk load, append, or complete rewrite (e.g., when the
underlying model that produces the vectors changes). Despite up-
dates being less common, vector systems like Weaviate [51] and
Milvus [46] support individual vector updates. PDX currently does
not use compression/quantization, which makes it trivial to update-
in-place if data is memory-resident. Otherwise, PDX can implement
the same well-known strategies to perform updates in PAX: merge-
on-read if updates are frequent or copy-on-write otherwise [26].

4 THE PDXEARCH FRAMEWORK
We introduce PDXearch, a framework for efficient dimension-by-
dimension pruned search on VSS workloads (exact or approximate)
powered by the PDX layout. PDXearch is meant to be used by algo-
rithms that prune dimensions at search time [13,19,23,52]. On PDX-
earch, a search happens block-by-block, propagating the threshold
found in one block to the following ones. In each block, vectors
are inspected dimension-at-a-time on incremental steps, and dis-
tance computations are avoided only when the amount of not-yet
pruned vectors is low. An example of PDXearch on an IVF index is
presented in Figure 4. It is important to note that the framework pre-
serves the correctness and recall levels of the underlying pruning
algorithm. It only changes how many dimensions to inspect at each
step and when to break off computations to maximize efficiency.

PHASE 0: START. When visiting the first block (start of the
search), we do not yet have a threshold to use for pruning. There-
fore, we compute the distances without pruning dimensions (a
linear scan) to find a threshold for the later search stages. This is a
small overhead as one block is only a small percentage of all data.
Furthermore, trying to prune on the first block does not bring many
benefits, as early in the search is when pruning is least effective.
Once a threshold is defined, every following block will start in the
WARMUP phase.

PHASE 1: WARMUP. In the WARMUP phase, we incrementally
fetch dimensions from the block of vectors (we first fetch 2 di-
mensions, then the following 4 dimensions, then the next 8, and
so on). In Figure 4, we first fetch 1 dimension, then 2, and then

the rest. At each fetching step, we calculate the partial distances,
perform the pruning predicate evaluation (e.g., hypothesis testing
on ADSampling, bounds evaluation in BOND), and keep track of
the number of pruned vectors. In our code implementation, the
pruning predicate evaluation is done in a loop separated from the
distance calculations to avoid if-then-else control structures (code
is vectorized). In the WARMUP, we do not yet break-off distance
computation of the pruned vectors (note in our example that 𝑉6
is still visited in the second step of the WARMUP, despite being
discarded as a candidate on the first step), as when the number
of pruned vectors is still low, it would make the following partial
distance computation slower due to random access [13,38]. Once
the number of remaining vectors is lower than a threshold, we start
the PRUNE phase.

PHASE 2: PRUNE. During the PRUNE phase, only a few vectors
remain as candidates. As such, we break off distance computations
by skipping the already discarded vectors. We do so by maintain-
ing the count of the remaining vectors and their positions within
the block. Then, the following distance calculations are performed
using this positions array. These random accesses can be optimized
on Intel CPUs using a gather operation. As fetching happens expo-
nentially, the last dimension is reached quickly while still trying
to prune vectors. Once the last dimension of the block is reached,
we merge the remaining vectors distances on the max-heap (in our
example, 𝑉4 is merged into the heap, and the pruning threshold
becomes tighter). We keep repeating the WARMUP and PRUNE
phases for the remaining blocks. In our example, blocks represent
buckets on an IVF index, but a block can also represent randomly
partitioned vectors for an exact search without an index.

5 PDX-BOND: OUR DCO OPTIMIZER
BOND’s [13] capabilities to speed up KNNS were limited due to
its inability to fully evaluate the distance between the query and a
vector until the last dimension was visited at the end of the search.
Furthermore, the BOND strategy to prioritize dimension access
(from biggest to smallest value in the query) is only effective if the
values of the query are outliers relative to the dimensions of the
collection.

We propose PDX-BOND, a follow-up to BOND [13] that uses
PDXearch, in which dimensions are accessed in terms of how far
their mean is to the values in the query. Thanks to the START
phase of the PDXearch framework, a tight-enough lower-bound is
found early in the search (tackling the main shortcoming of BOND).
To improve latency, PDX-BOND only uses the partially computed
distance to determine whether a vector can be pruned. As a result,
PDX-BOND is an exact DCO optimizer without extra latency to
compute bounds. Contrary to ADSampling and BSA, PDX-BOND
does not require any data transformation. Hence, it is a plug-and-
play technique to quickly accelerate KNNS on any collection of
vectors (assuming vectors are stored with PDX).

Figure 5 shows an example of how different query-aware strate-
gies to determine the order in which dimensions are visited lead to
different access patterns to the collection. In this example, we use
L1 as the distance metric. The decreasing criteria (used in BOND
[13]) solely leverage the query values, accessing first the dimension
with the highest query value (𝐷1). As 𝐷1 is not enough to reach

PDX: A Data Layout for Vector Similarity Search SIGMOD ’25, June 22–27, 2025, Berlin, Germany

Figure 5: Example of three query-aware access order criteria:
i) Decreasing: the dimension with the highest query value
is accessed first (𝐷1 in the figure), ii) Distance to means: the
dimension of the query with the largest distance to the col-
lection means is accessed first (𝐷5), iii) Dimension zones: the
subset of consecutive dimensions with the highest distance
to the collection means are accessed first (𝐷𝑍2 in the figure).

the pruning threshold in any vector, we have to explore the block
dimensions further. However, by leveraging the block statistics
(mean), one can prioritize 𝐷5 instead, as its mean in the collection
is the farthest from the query value. In this case, 𝐷5 is the only
dimension needed to visit to discard all the vectors.

A high pruning power cannot be achieved without prioritizing
dimensions [19]. However, both the decreasing and distance-to-
means criteria affect the memory access efficiency of the algorithm:
by making more jumps and accessing shorter memory stretches,
automatic prefetching by the Memory Management Unit (MMU) of
a CPU, that is triggered on detecting sequential access, becomes
less efficient. This can make a sequential access of dimensions more
performant than a query-aware order despite its lower pruning
power in certain microarchitectures. Note that we cannot re-order
the collection as the access order depends on the incoming query. To
make up for that, when blocks are small (as buckets in an IVF index
will be), we divide dimensions into dimension zones. Dimension
zones are multiple dimensions residing sequentially in storage,
providing longer sequential stretches. When a query arrives, we
rank each zone based on the "distance-to-means" criteria of its
dimensions and first visit the most promising zones. In Figure 5,
the most promising dimension-zone is 𝐷𝑍2. As such, we visit 𝐷4
and then 𝐷5 to maximize sequential access while still visiting the
most promising dimensions for pruning. Note that the fetching size
of PDXearch still rules the amount of dimensions visited.

6 EVALUATION
We now experimentally evaluate the following research questions:
(Q1) How do the auto-vectorized distance kernels on the PDX

layout compare to the current best SIMD kernels for the
major ISAs (AVX512, AVX2, and NEON)?

(Q2) How does the performance of PDXearch compare against a
pruned search in the horizontal vector-by-vector layout?

(Q3) Is a search that prunes vectors always faster than a linear
scan on modern vector systems?

(Q4) How does PDX-BOND compare to ADSampling and BSA in
terms of its pruning power and speed?

(Q5) What is the performance of an exact search on the PDX
layout, and how does it compare to other systems (USearch,
Milvus, FAISS, and, Scikit-Learn)?

Table 3: Hardware Platforms Used
Architecture Scalar ISA Best SIMD ISA CPU Model Freq.
Intel Sapphire Rapids x86_64 AVX512 Gold 6455B 3.9 GHz
AMD Zen4 x86_64 AVX512 Ryzen9 7900 3.7 GHz
AMD Zen3 x86_64 AVX2 (256-bits) EPYC 7R13 3.6 GHz
AWS Graviton4 ARM64 NEON (128-bits) Neoverse-V2 2.7 GHz

6.1 Setup
We start by evaluating the performance of the auto-vectorized
distance kernels on the PDX layout in subsection 6.2 (Q1). For this,
we used the architectures presented in Table 3. These cover the
major ISAs (AVX512, AVX2, NEON) and popular processors (Intel,
AMD, and Graviton). Here, we compare the auto-vectorization
of our kernels produced by LLVM (C++) against the state-of-the-
art SIMD distance kernels [14,42,46] of three distance metrics: L2-
euclidean, L1-manhattan, and Inner Product. In subsection 6.3, we
experimentally evaluate the PDXearch framework by performing
queries on an IVF index on our presented datasets, optimizing the
distance calculation with ADSampling. Here, we compare the query
throughput of the algorithm when using PDXearch against the
search on the horizontal layout (Q2). FAISS [14] and Milvus [46]
IVF indexes are used as baselines (Q3). All the IVF indexes are
constructed using the same parameters. Next, in subsection 6.4, we
evaluate PDX-BOND against ADSampling and BSA, also within an
IVF index search (Q4). Finally, in subsection 6.5, we evaluate the
end-to-end performance of PDX-BOND on exact queries against
three vector systems (Milvus, FAISS, and USearch [43]) (Q5).

Parameters. We set the parameter Δ𝑑 of ADSampling and BSA
to 32, as recommended by the authors. On the datasets with less
than 128 dimensions, we set Δ𝑑 = 𝐷/4, as using Δ𝑑 = 32 on these
datasets would be unfair. The 𝜖0 parameter on ADSampling, which
tunes the recall, is set to 2.1, as recommended by the authors. The
multiplier𝑚 parameter on BSA is set to achieve a recall similar to
the one of ADSampling. Furthermore, we adopt the dual-block lay-
out proposed by ADSampling, splitting the vectors into two blocks
at Δ𝑑 . For this experiment, we show a Recall vs QPS curve. The
recall is tuned with the nprobe parameter of the IVF index, which de-
termines how many buckets are visited. A higher nprobe increases
recall and reduces QPS as more vectors are explored. Finally, on
the PDX version of the algorithms, we set to 20% the selection
percentage threshold to advance through the PRUNE phase. An
in-depth study of this parameter is presented in subsection 6.6.

Implementation and Hardware. PDXearch was implemented in
C++ and compiled with the Release (CMake) and -O3 compiler flags
alongside the recommended -march or -mtune for each architecture.
For ADSampling and BSA algorithms, we used an optimized version
of the original implementation that improves the performance of the
query transformation phase. These implementations were adapted
to work with PDXearch. Furthermore, in our codebase, we also
SIMDized the original implementation of ADSampling to compare it
fairly to PDXearch. We used the available software of Milvus, FAISS,
and USearch. We used machines with 64GB of RAM (enough to fit
every dataset in memory) and Ubuntu 24.01 as OS. We deactivated
any multi-threading capabilities in all benchmarks to compare raw
performance between different approaches without introducing
possible parallelization artifacts.

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

Table 4: Speedup of the distance calculation (L2, IP and L1)
of auto-vectorized PDX vs. horizontal kernels with explicit
SIMD intrinsics on a variety of float32 vector collections. PDX
is, on average, 2.0x faster across architectures. Crucial for
pruning algorithms is that with few (≤ 32) dimensions, PDX
is much faster than horizontal kernels (1.5-7.4x speedup).

Arch.
Euclidean
Distance L2

Inner Product
IP

Manhattan
Distance L1

D=8 D=16,32 D>32 All D=8 D=16,32 D>32 All D=8 D=16,32 D>32 All
Intel S.R.
AVX512 5.8 2.4 1.3 1.8 5.6 2.4 1.2 1.7 5.3 2.5 1.2 1.7

Zen 4
AVX512 7.4 2.7 1.4 2.0 6.6 2.5 1.4 2.0 6.7 2.8 1.4 2.0

Zen 3
AVX2 6.2 3.3 1.7 2.3 5.9 3.1 1.5 2.1 7.4 3.5 1.4 2.2

Grav. 4
NEON 2.7 1.5 1.8 1.8 3.1 1.8 1.9 2.0 2.6 1.5 1.9 1.9

Avg. 5.5 2.5 1.5 2.0 5.3 2.4 1.5 2.0 5.5 2.6 1.5 2.0

6.2 Distance Kernels on the PDX Layout
We measured the raw performance of three distance kernels (L2,
L1, and Inner Product) in vector collections of different sizes (from
64 to 131K) and dimensionalities (8, 16, 32, 64, 128, 192, 256, 384,
512, 768, 1024, 1536, 2K, 4K, 8K) consisting of standardly distributed
randomly generated float32. Here, we do not perform a KNNS. The
only work measured is the distance calculation between one query
and the entire collection in the N-ary (horizontal) and the PDX
layout. Note that in PDX, we process blocks of 64 vectors at-a-time.
The L2 and IP N-ary kernels were taken from SimSIMD [42] (used
by USearch [43]), and the L1 kernel was taken from FAISS [14].

The auto-vectorized PDX kernels perform never worse and gen-
erally better than the horizontal kernel with SIMD intrinsics in all
scenarios across all architectures (Q1). Table 6.4 highlights the aver-
age speedup at four granularities of dimensionalities: D=8, 8<D≤32,
D>32 and throughout all values of D. The L2 PDX kernel outper-
forms the horizontal explicit SIMD kernels when 𝐷 ≤ 32 (≈4-10x
faster in Zen4, ≈3-9x faster in Zen3, ≈3-8x faster in Intel and ≈2-3x
faster in Graviton4 depending on the size of the collection). Similar
speedups are obtained in the IP and L1 kernels.

These speedup benefits at low D are due to the kernels in the
PDX layout pipelining loops over the number of vectors instead
of the number of dimensions (recall Figure 3), thus always fully
utilizing the SIMD registers. In contrast, in the horizontal kernels,
the entire vector fits in one register when D is low (in AVX512, not
even one full register is utilized when D=8). Note that efficiency on
distance computations with limited dimensions (≤ 32) is crucial for
pruning algorithms, which only fully scan the first dimensions and
then break off full computation thanks to pruning.

The speedups are not limited to these cases of low D, as all
kernels are 1.5x faster, averaging all architectures if we do not
consider the low (≤ 32) dimensionalities. These benefits are thanks
to eliminating the SIMD register reduction step at the end of each
vector, the absence of dependencies, and better loop pipelining as
the distances of different vectors are aggregated in different SIMD
lanes (recall Figure 3). There are also performance benefits when
𝐷 ≥ 4096 (up to 2.1x faster in Zen4, 2.1x in Zen3, and 2.6x faster in
Graviton4 for the L2 kernel). These are due to the tight loops (64 at
a time) avoiding LOAD/STORE instructions from/to the distances

array at every iteration of the outer loop, as the entire array can fit
in the available registers (red registers in Figure 3). When we are

Table 5: Average speedups (higher is better) of the L2 PDX
kernel against the N-ary kernel using different block-sizes
for the vectors on the PDX layout. A block size of 64 achieves
the highest speedups across all architectures

PDX Block SizeArchitecture 16 32 64 128 256 512
Intel S.R. (AVX512) 1.5 1.6 1.8 1.8 1.7 1.6
Zen 4 (AVX512) 1.6 1.9 2.0 2.0 1.8 1.5
Zen 3 (AVX2) 1.7 2.2 2.3 2.0 1.5 1.6
Graviton 4 (NEON) 1.6 1.7 1.8 1.5 1.4 1.4

not memory-bound (data fits in L2), the PDX kernel is consistently
1.5-2.0x faster.

The differences between architectures are due to their different
set of instructions with different latencies, SIMD register widths,
and cache sizes. For instance, in Graviton4, the gains of PDX kernels
at𝐷 ≤ 32 are less evident compared to the gains in Intel/Zen4/Zen3
due to the register width in NEON being 128 bits (fitting four
float32), hence using two full SIMD registers at D=8. In contrast, in
Zen4 (512-bit registers), not even one register can be filled at D=8,
which results in masked instructions and, thus, under-utilization
of the registers.

Study on PDX block sizes. Table 5 shows how different block
sizes affect the speedup of the PDX L2 distance kernel over the
N-ary kernel. Blocks of 64 vectors perform best across all archi-
tectures as the SIMD registers holding the resulting distances are
recycled through the entire block processing without intermediate
LOAD/STORE instructions. When increasing the block size beyond
64, NEON and AVX2 performance is diminished as this effect is not
achieved, leading to intermediate LOAD/STORE instructions. The
latter also happens when increasing the block size beyond 128 in
AVX512 (Sapphire Rapids and Zen4). On the other hand, reducing
the block size hinders performance across all architectures due to
the under-utilization of the available registers. Note that gains are
still present at any block size due to the advantage of PDX kernels
at lower dimensionalities and the elimination of the reduction step.

6.3 PDXearch Framework
Figure 6 shows the higher QPS obtained by ADSampling paired
with PDXearch (PDX-ADS) in contrast to the SIMDized and vanilla
versions of ADSampling on the horizontal layout (SIMD-ADS and
SCALAR-ADS) (Q2), while also being faster than both FAISS and
Milvus, especially in the vector collections stemming from LLMs
(arXiv/768, OpenAI/1536). Here, all the approaches perform queries
within a space-partitioning index (IVF) using L2 as the distance
metric. This index is referred to as IVF_FLAT in the FAISS and Milvus
documentation. In this experiment, the recall is controlled by the
nprobe parameter of the IVF index (at higher recalls, more bucket-
s/blocks are accessed). The highest nprobe we used is 512. FAISS
and Milvus are doing a linear scan of the IVF buckets. A linear
scan is a search (exact or approximate) that fully explores vectors
without pruning dimensions.

Averaging all datasets at the highest recall, PDX-ADS achieves a
4.6x speedup against SIMD-ADS and a 2.2x and 3.5x speedup over
FAISS and Milvus IVF_FLAT index, respectively. Higher gains are
seen on datasets of higher dimensionalities andwhen targeting high
recalls as the pruning strategy can avoid more work. For instance,

PDX: A Data Layout for Vector Similarity Search SIGMOD ’25, June 22–27, 2025, Berlin, Germany

Figure 6: QPS on an IVF index search with KNN=10 in the AMD Zen4 architecture. Three versions of ADSampling are compared:
vanilla (scalar), SIMDized, and using auto-vectorized PDXearch. Only the latter is always superior to the baselines, especially in
the high dimensional datasets of the bottom row (3.1x and 3.5x faster than FAISS and Milvus, respectively). Contrary to the
horizontal versions of ADSampling, PDX-ADS is never worse than FAISS and Milvus.

in OpenAI/1536 and arXiv/768, PDX-ADS is 4.3x and 3.1x faster
than FAISS. FAISS cuts close to our pruned search in PDX at low
recalls (when the number of visited buckets is low) and for datasets
of lower dimensionalities (top row of Figure 4).

Note how only with PDXearch can a pruned search surpass
the performance of FAISS and Milvus (Q3), as these are faster
than SIMD-ADS (2.7x and 1.4x resp. on average). The latter is due
to the pruned vector-by-vector search having few opportunities
to parallelize work as the distance must be evaluated every 32
dimensions, incurring 4x more branch mispredictions that stall
the CPU. On low-dimensional datasets with low pruning power
(NYTimes/16, GloVe/50), SIMD-ADS struggles more due to being
unable to use the available registers at each step fully.

While FAISS and Milvus are superior to the horizontal prun-
ing algorithms in Zen4, the same is not true in the other microar-
chitectures, where the SIMD performance of ADSampling is not
outperformed so heavily. For instance, in Intel Sapphire Rapids,
SIMD-ADS is, on average, 2.0x faster than FAISS, and PDX-ADS
comes on top, being 3.5x faster than FAISS and 5.3x faster when
𝐷 ≥ 420, with a remarkable 7.2x speedup on the OpenAI dataset.
Thanks to PDX, pruning methods become the clear winners regard-
less of the architecture and dimensionality of the data. In Section
6.7, we present a summary of our results across architectures.

It is important to mention that all competitors share the same
IVF index created by FAISS (identical buckets), except Milvus. Mil-
vus uses its own algorithm to train and build the index. As such,
these results are not evidence of better raw performance, as Mil-
vus could be evaluating fewer vectors (or vice-versa). Furthermore,
Milvus uses a dynamic batching mechanism that executes queries
at intervals (≈1ms); thus, the asymptotic behavior at ≈ 103 QPS.

Adaptive vs fixed steps. Figure 7 shows the frequency of runtime
improvements on individual queries by using our proposed incre-
mental steps vs a fixed Δd=32 on the Intel CPU. The only difference
between both experiments is the number of dimensions explored at
each step in the PDXearch algorithm. On GIST, 43% of queries see
a speedup, with 3% being ≥ 1.5x faster and less than 1% seeing a

Figure 7: The effect of using adaptive steps on PDXearch vs. a
fixed one. On GIST–dataset in which Δ𝑑 was determined with
an exhaustive parameter search[19], 43% of queries improved
their runtime, 3% being ≥1.5x faster.

10% slower performance (queries in which the needed granularity
for most vectors is exactly 32). Remarkably, the adaptive threshold
finds gains even on GIST/960 (dataset used in [19] to determine the
value of Δd=32 by doing an exhaustive parameter search). These
speedups happen when only 4, 8, or 16 dimensions are enough to
prune, especially useful at late stages in a search when most vectors
do not make it into the KNN. Also, in PDX, bounds are evaluated
much faster, making these evaluations before the 32nd dimensions
have little overhead on the runtime. Across all datasets, almost half
of queries benefit from having an adaptive threshold, which also
alleviates users to find this parameter in the first place.

PDX vs N-ary disabling vectorization. We performed an experi-
ment disabling the compiler vectorization (-fno-vectorize
-fno-tree-vectorize -fno-slp-vectorize flags). Here, PDX-ADS is
still faster by 1.8x on average, mainly due to better data access
patterns, fewer branch mispredictions, and better cache utilization.
In this experiment, the CPU profiling of AMD shows that PDX-
earch executes twice as many instructions per cycle, incurs 4x fewer
branch mispredictions (retiring 3x fewer branch instructions), and
hits twice as much the L2 cache when compared to the vector-by-
vector search (Q2). Note that PDXearch code is branchless, contrary
to the horizontal versions that interleave the distance calculations
and the bounds evaluation.

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

Figure 8: QPS on an IVF index search with KNN=10 in the Intel architecture. All pruning algorithms are compared in the PDX
layout. PDX-BOND is 2.1x faster than FAISS, with a performance comparable to ADSampling (1.7x and 1.2x slower at 0.99 and
0.90 recall resp.). The performance of PDX-BOND is still remarkable, given that it does not trade-off recall and works on raw
vectors without preprocessing.

Table 6: Best, 𝑝50, 𝑝25, and worst pruning behaviors of PDX-
BOND when trying to prune at every dimension. The darker
area indicates the portion of values not pruned at that di-
mension (x-axis). The number inside the plot indicates the
total percentage of avoided values.

Datasets

Pruning

G
IS
T/
96
0

M
So
ng

/4
20

N
YT

im
es
/1
6

G
lo
Ve

/5
0

D
EE

P/
96

Co
nt
rie

ve
r/
78
6

O
pe
nA

I/1
53
6

SI
FT

/1
28

Best

𝑝50

𝑝25

Worst

6.4 PDX-BOND
Table 6 shows PDX-BOND pruning power, and Figure 8 shows how
its speed compares to ADSampling and BSA (both using the PDX-
earch framework) in Intel Sapphire Rapids. PDX-BOND pruning
behavior adapts perfectly to the PDXearch framework: (i) It has a
starting point, and (ii) once it starts, it prunes exponentially fast,
further demonstrating the versatility of our framework. However,
PDX-BOND pruning power is slightly worse than ADSampling
(shown in Table 2).

On average, PDX-BOND is 2.1x and 3.0x faster than FAISS and
Milvus at the highest recall level, respectively, and 20% slower than
BSA. However, it is 1.9x slower than ADSampling. When looking at
recall levels of ≈0.9, PDX-BOND is only 1.3x slower than ADSam-
pling and on par with BSA (Q4) while still being 30% faster than
FAISS. ADSampling and BSA take the upper hand on datasets of
higher dimensionality due to their higher pruning power, thanks to
their preprocessing on the vectors. Moreover, ADSampling and BSA
benefit from sequential access as dimensions are always accessed
sequentially regardless of the query. PDX-BOND main losses are
in OpenAI/1536 and arXiv/768 (datasets of high-dimensionality

in which the pruning power of PDX-BOND is low). Despite this,
PDX-BOND performance is remarkable as it is an exact method
(does not compromise recall) and does not require data or query
preprocessing (it uses the raw vectors). Therefore, it can be used to
increase the throughput of any VSS application just by changing the
layout of the stored data. Moreover, the absence of preprocessing
means it can fit into systems where data is ingested or updated
frequently and at fine granularity.

Our "dimension zones" approach to trade-off pruning effective-
ness for sequential access is 30% faster on average compared to
accessing individual dimensions based on the "distance to means"
criteria and 40% faster than the "decreasing" criteria of BOND [13]
(recall Figure 5). Another finding of our experiments is that BSA
can be slower than ADSampling, especially at datasets of lower
dimensionality (top row of Figure 8), where it loses to all the other
PDX-competitors.

Breakdown of end-to-end query execution. Table 7 shows
how the IVF query runtime of algorithms is distributed into four
phases: query preprocessing, finding nearest buckets in the IVF
index, bounds evaluation for pruning, and distance calculation. We
only show the OpenAI/1536 dataset at 0.99 recall on Intel for pre-
sentation simplicity. The PDX versions of the algorithms drastically
reduce the time spent evaluating bounds on both ADSampling and
BSA, thanks to the branchless code we use to evaluate bounds
(code is vectorized), evaluating bounds fewer times (incremental
steps), and avoiding the interleaving of distance calculations and
bounds evaluation. The PDX versions also spend less time calculat-
ing distances than N-ary versions due to our faster auto-vectorizing
kernels (see also Table tab:). Similarly, finding the nearest buckets
is also sped up with our kernels, because the bucket centroids are
also stored with the PDX layout. This phase may in future work
also be optimized further by pruning itself. Finally, PDX-BOND
query preprocessing (computing the order in which dimensions are
accessed) is almost free compared to ADSampling/BSA.

PDX: A Data Layout for Vector Similarity Search SIGMOD ’25, June 22–27, 2025, Berlin, Germany

Figure 9: Exact search QPS of all competitors with KNN=10 in the Intel architecture. PDX-BOND is superior to all the other
approaches, thanks to pruning. Note that ADSampling and BSA are not exact methods, due to their probabilistic pruning.

Table 7: IVF query runtime breakdown into components, for
the OpenAI/1536 dataset at 0.95 recall. The PDX version of
the algorithms not only decreases Distance Calculation cost,
but also the Bounds Evaluation latency, thanks to vectorized
execution. It decreases the latency of Finding Nearest Buck-
ets, since centroids are also stored with PDX.

Algorithm
Query
Time
(ms)

Distance
Calculation

Find Nearest
Buckets

Bounds
Evaluation

Query
Preprocessing

N-ary ADS 17.9 64.8% (11.6ms) 6.8% (1.2ms) 26.3% (4.7ms) 2.2% (0.4ms)
PDX ADS 4.9 73.2% (3.3ms) 18.5% (0.8ms) 1.9% (0.1ms) 6.45% (0.3ms)
N-ary BSA 25.5 76.5% (19.5ms) 4.5% (1.1ms) 17.6% (4.5ms) 1.5% (0.4ms)
PDX BSA 3.9 70.1% (2.7ms) 17.7% (0.7ms) 5.9% (0.2ms) 6.4% (0.3ms)
PDX BOND 11.0 91.9% (10.1ms) 7.0% (0.8ms) 1.0% (0.1ms) 0.03% (0.003ms)

6.5 Exact Search
We compare PDX and PDX-BOND capabilities on exact search
against FAISS, USearch, Milvus, and a linear-scan on a fully decom-
posed layout (DSM). Like the ANN-Benchmarks project [8], we use
Scikit-learn [36] as a baseline. In this setting, a block of PDX-BOND
is defined by horizontally partitioning vectors in equally sized par-
titions (each of, at most, 10K vectors). Despite the bigger block size
not allowing tight loops, it enables longer sequential access per
dimension. This allows PDX-BOND to use the "distance to means"
criteria to prioritize dimensions (recall Figure 5), which is the one
that achieves the highest pruning power.

Figure 9 shows the QPS of each competitor on the Intel Sap-
phire Rapids architecture. In this plot, we also show the QPS of
a linear scan on the PDX layout (with our auto-vectorized ker-
nel). Here, PDX-BOND and the linear scan on PDX are the fastest-
performing approaches in all datasets (Q5), being PDX-BOND on
average 2.5x, 3.7x, 4.0x and 6.2x faster than FAISS, USearch, Milvus
and Sklearn respectively; being remarkably higher in some datasets
(e.g., 6.0x faster than USearch in DEEP/96 and 7.6x faster than FAISS
in MSong/420). We can also see how USearch and Milvus are close
to the baseline on relatively low-dimensional datasets (GloVe/50,
NYTimes/16). The latter again shows that the performance of SIMD
kernels on the horizontal layout depends on the high dimensional-
ity of the dataset. Also, in this experiment, the "distance to means"
to prioritize dimensions is 40% faster than the "decreasing" criteria.
Finally, note that a linear-scan on PDX is still faster than doing so
in a DSM layout (1.5x in avg.). The latter is due to a search on DSM
incurring intermediate LOAD/STORE instructions as the distances
array holding the intermediate results prevents tight loops.

PDX-BOND and the linear scan on the PDX layout are the clear
winners (also across architectures) without any recall compromise
by relying only on auto-vectorization of scalar code, making it
superior in code maintainability and portability to different ISAs.

Figure 10: The effect of different selection percentage values
on the speedup of PDXearch over a linear scan on PDXwhich
does not prune vectors in Zen4. A sweet spot is found when
the amount of not-yet pruned vectors is around 20%.

6.6 Effect of Pruning Percentage Threshold
The PDXearch framework uses the percentage of not-yet pruned
vectors as a threshold to advance to the PRUNE phase. Figure 10
shows for 6 datasets how different thresholds effect the speedup
of ADSampling using the PDXearch framework against a linear
scan on PDX which does not prune vectors (in Zen4). Generally,
starting to prune when the selection percentage is too high (>40%)
or too low (<10%) is detrimental to search speed. The sweet spot is
found around 20%. Interestingly, the difference between 5% and 20%
is subtle. This is due to the exponential behavior of pruning that
makes the difference between reaching 20% and 5% have little effect
on search speed (as it is probable that both are reached in the same
step of dimension scanning). On the other hand, on datasets with
low pruning possibilities (NYTimes/16), a linear scan is faster than
pruning. This is due to the pruning predicate evaluation turning
into an overhead without any gains.

6.7 PDXearch Across Architectures
Figure 11 summarizes our experiments across all architectures as
the geometric mean of speedup obtained across all datasets (at all
recall levels in approximate search) against a baseline: Scikit-learn
in exact search and a scalar (non-SIMDized) linear scan in the IVF
index search. On exact search, PDX-BOND and a linear scan on the
PDX layout (PDX-LINEAR-SCAN) are faster than FAISS, Milvus,
USearch and a linear-scan on the DSM layout (DSM-LINEAR-SCAN)
across all architectures, showing the effectiveness and versatility
of our distance kernels and data layout. On the other hand, on an
approximate search on an IVF index, PDXearch brings remarkable
benefits to existing pruning approaches, which, despite not being
exact, still provide guaranteed error bounds that pose little effect on
the search recall. Despite PDX-BOND not taking the upper-hand
in approximate search, it is still faster than the other non-PDX
competitors.

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

Figure 11: Geometric mean of performance over all datasets,
per architecture. PDX-BOND outperforms in exact search
and PDX brings strong benefits to approximate search.

7 DISCUSSION
PDXearch on N-ary Storage. The PDX layout is a transposition of
the horizontal/N-ary layout of the vectors. One could question the
need to physically store the data using PDX, and rather perform a
gather operation [7,16,22,39] on-the-fly during search. To test this,
we implemented a (N-ary+Gather) kernel, depicted in the rightmost
of Figure 3, that does an on-the-fly transposition of the N-ary layout
into blocks of 64 vectors into PDX layout using AVX512 gather

instructions [22] on Intel Sapphire Rapids and AMD Zen4. This
kernel needs multiple scalar loads on NEON, since ARM lacks a
gather instruction.We used the same variety of randomly generated
collections from our kernels experiment (Section 6.2).

In Zen4, this produces an average slowdown of 13x and up to
130x at higher dimensionalities (avg. 33x). In Intel, the slowdowns
go from 1.9x to 17x (avg. 4.6x). In NEON, the slowdowns go from
2.5x to 22x (avg. 8.5x). CPU performance counter profiling on Intel
and AMD showed that these slowdowns happen for two reasons:
(i) increased 𝜇ops of the gather and (ii) increased memory stalls.

Regarding (i): One gather performs 81 𝜇ops on AMD2 and 5-6 on
Intel [1,17]. These benchmarks align with our experiments, which
also showed a similarly increased amount of 𝜇ops and instructions
retired across architectures. We must stress that the PDX kernel is
extremely fast: it processes each float in 0.1 CPU cycles when the
data fits in L1d. For one AVX512 register with 16 floats, it needs
just 3𝜇ops (one load [1𝜇op], one sub [1𝜇op], and one fmadd [1𝜇op]).
While the amount of 𝜇ops does not map 1:1 to runtime, adding 81
(AMD) or even just 5 (Intel) to the original 3 has noticable impact.

Regarding (ii): Figure 12 shows the execution time of the three
kernels (N-ary+Gather, N-ary SIMD, PDX) for different collection
sizes, on Intel. The time is shown relative to the first (N-ary+Gather).
In each bar, we separate CPU distance calculation cost from data
access cost, as measured with CPU performance counters. Contrary
to the other kernels, the gather kernel is always data access-bound,
even when data fits in L1d and L2. When data is bigger than L3, all
kernels become data access-bound, but the gather kernel spends
more time on memory stalls. This results from its non-sequential
memory access patterns that is less able to profit from automatic
hardware prefetching and subsequent cache use. We know of few
cases in which a gather can achieve the same performance as a

2uops.info/html-instr/VGATHERDPS_ZMM_K_VSIB_ZMM.html#ZEN4 and #ADL-P

Figure 12: Performance breakdown for three distance kernels:
N-ary+Gather, N-ary+SIMD, and PDX (bars in order). The Y-
axis shows execution time relative to (N-ary+Gather), which
is always slowest, as its gather operation comes with data
access cost, even if data fits in L1/L2. When data size (X-axis)
exceeds L2, all kernels become data access-bound. As (N-
ary+Gather) runs slower, it shows as less DRAM-bound.
sequential load on Intel CPUs [22,39]. However, these depend on
the SIMD register width, L1d cache alignment, and the width of the
data type being used. Reportedly, AVX512 with 32-bit data cannot
achieve this effect due to size limitations of the L1 cache [22]. These
observations from [22] align with our experiments.

Overall, since (N-ary+Gather) introduces the overhead of the
on-the-fly transposition, it is never faster than PDX. Since this
overhead is higher than the gains from PDX distance calculation, it
is also never faster than (N-ary+SIMD). The performance gap on the
other architectures is larger than in Figure 12 (which shows Intel),
since ARM (resp. AMD) lacks a (fast) gather instruction. Therefore,
we conclude that vectors need to be stored in PDX layout, in order
to reap the benefits from the PDX distance calculation.

PDX vs DSM. We also tried a fully decomposed layout (DSM). Note
that in an IVF index, data gets (horizontally) partitioned in buckets,
so applying vertical decomposition inside buckets yields a PDX
layout. Therefore we tested DSM on linear scan, performed on a
dimension-by-dimension partitioning of the complete dataset. For
the vertical distance computation kernels we propose, DSM max-
imizes sequential access, as one complete dimension is typically
much larger than one IVF bucket. This makes DSM potentially inter-
esting for secondary storage devices that require large access gran-
ularity for efficiency, such as S3 or magnetic drives. However, its
column-at-a-time distance calculation needs to sequentially update
a result array with all distances many times (=for each dimension),
introducing extra load/stores. In our in-memory experiments, this
made it slower than PDX-linear-scan, as shown in Figures 9 and 11.

PDX on Graph Indexes. The PDX layout and PDXearch are a
perfect fit for bucketing indexes and exact search. However, its
effectiveness is yet to be tested on graph indexes like HNSW [31].
Despite these indexes still finding benefits from DCO optimiza-
tion [19,52], the notion of blocks is not intrinsically present in
these data structures. Recent studies have proposed optimized
data layouts for graph indexes, which allows efficient fetching
of neighborhoods-at-a-time during a search when the data is not
memory-resident [41,48]. Here, a block could represent neighbor-
hoods of the graph; consequently achieving the desired benefits of
our proposed layout and pruning algorithm. The latter is a common
use case, as the memory requirements to keep an HNSW index on
modestly sized datasets are beyond commodity hardware.

https://web.archive.org/web/20250207181843/https://uops.info/html-instr/VGATHERDPS_ZMM_K_VSIB_ZMM.html#ZEN4
https://web.archive.org/web/20250207181843/https://uops.info/html-instr/VGATHERDPS_ZMM_K_VSIB_ZMM.html#ADL-P

PDX: A Data Layout for Vector Similarity Search SIGMOD ’25, June 22–27, 2025, Berlin, Germany

PDX Storage Designs. PDX also opens opportunities to improve
speed in memory-constrained environments, as the data only needs
to be loaded in memory not only block- but dimension-at-a-time.
Here, a hybrid storage on disk using both PDX and the traditional
N-ary layout could minimize the random access overhead during
the PRUNE phase of the search. Similarly, PDX could benefit VSS
workloads performed in a hybrid setting where data needed to
perform computations must be fetched through a network. In dis-
tributed settings, vectors could also be partitioned by dimensions
(e.g., certain dimensions are assigned to a node within a cluster).
The latter hints that a follow-up to the PDX layout would be on
efficient compressed representations of dimensions within blocks.
This would reduce even more the memory/network bandwidth
needed and bring more benefits to the PDX distance kernels which
are memory-bounded (recall Figure 12).

PDX in Data Systems. Vector-databases like Weaviate [51] and
Milvus [46] have surged as a new category of data systems, but
(relational) database systems have also added capabilities for vector
storage, search, and indexing. Typically, when database systems im-
plement an array data type, their implementation stores each array
as one data item (the horizontal vector layout). However, in analyti-
cal systems that use row-groups and columnar storage within these,
it will be easy to use the row-groups as blocks for the PDX layout.
Often, within a row-group, data is partitioned per "vector" (in the
meaning of vectorized execution), and these smaller blocks of a few
thousand values, might even be more beneficial to PDX. Thus, PDX
would be well-suited for integration in database systems such as
DuckDB [37], which also support floats compression [3].

8 RELATEDWORK
The recent surge in research attention into ANNS has resulted in
a wide range of studies regarding indexes and quantization which
are orthogonal to this work. Therefore, we redirect readers to the
surveys done in Vector Databases systems [35], approximate graph-
indexes [49], approximate hashing indexing [25,47], quantization
methods [15,47] and benchmarking frameworks [8,53]. This section
focuses on the scenario in which the PDX layout shines: algorithms
that avoid the distance evaluation on every dimension.

Data formats for vectors. .bvecs, .fvecs and .ivecs are three
mainstream formats developed by INRIA to store vectors. These
formats store vectors one after the other as a serialized sequence
of bytes, floats or integer types respectively. The formats contain a
header with the dimensionality of the vectors as a 4 byte unsigned
integer. Figure 1 shows a visual example of the .fvecs format. The
ANN-Benchmarks project [8] stores vectors separated into two
.fvecs datasets (train and test) which are stored within a .hdf5

file. Here, the ground truth of the test set at a predefined k is
also stored. Vector systems adopt the .fvecs format to store raw
vectors [14,43,46] either in memory or disk which are usually only
accessed if the result set 𝑅 needs a re-ranking phase.

BOND [13] proposed a vertically decomposed layout in which
the values of each dimension are stored together. More recently,
ADSampling [19] proposed to divide vectors into two blocks that
follow the .fvecs format. One containing the first Δ𝑑 dimensions
of every vector and the other containing the rest of the dimensions.

During a search, the first block is always scanned fully for all
the vectors, only accessing the second block to inspect the vectors
which were not pruned yet. This dual-block layout improved speeds
thanks to the more efficient use of cache. However, it falls short, as
the optimal number of dimensions to scan are query- and dataset-
dependent. Until the PDX layout, there has not been any research
to develop a new data format for vectors. The PDX layout speeds up
search, makes pruning algorithms more efficient, and can co-exist
with indexes and quantization techniques.

Exact Pruned Search. BOND [13] proposed lower- and upper-
bounds for the Euclidean distance to discard vectors that could
not make it into the KNN of a query after only partial distance
calculations. The novelty of BOND was its vertically decomposed
layout to store vectors. This layout allowed to prioritize the order in
which the algorithm visited dimensions while still benefiting from
sequential access to the data. However, the vertical layout impedes
BOND to fully visit a vector until the end of the search. As such, the
lower bound lacked the necessary tightness to achieve high pruning
powers. Despite being able to prune on skewed datasets, BOND
speedup of x1.6 over an exact KNN was limited by the overhead of
the computation of the bounds.

Approximate Pruned Search. The goal of ADSampling [19] is to
quickly determine when vectors have a low probability of making
it to the KNN candidate list of a query. The key idea of ADSampling
relies on projecting the vector collection to a different number
of dimensions flexibly during the query phase. This is achieved
by randomly transforming each vector with a random orthogonal
transformation (a random rotation). On these transformed vectors,
the level of resolution of the distance metric is given by the number
of sampled dimensions. This level of resolution has a guaranteed
error bound depending on the number of sampled dimensions.
BSA [52] followed up on ADSampling by using learned PCA projec-
tions on the D-dimensional space instead of a random orthogonal
projection, which turns out to further reduce the error-bound of
the approximation and achieve a higher pruning power.

9 CONCLUSIONS
We have presented PDX: a new data layout for vectors that allows
vector similarity search to happen dimension-by-dimension. This
turned out to be a better layout for existing [19,52] dimension prun-
ing algorithms. Furthermore, we introduced PDXearch, a search
framework that allows pruning algorithms to be adaptive to any
query and dataset and improve cache efficiency. We showed its
effectiveness in improving query throughput using a wide variety
of vector datasets on four mainstream CPUs (Zen4, Intel Sapphire
Rapids, Zen3, Graviton4). We also introduced PDX-BOND: a prun-
ing algorithm that does not need data transformations (it works on
raw floats) and does not have any recall trade-off (can be used for
exact search).

As for future work, we think that pruning algorithms can benefit
from GPU processing. Furthermore, fusing the idea of PDX-BOND
(dimensions reordering in terms of query) and ADSampling (ran-
dom sampling of projections at different levels) could bring benefits
to the pruning power.

SIGMOD ’25, June 22–27, 2025, Berlin, Germany Leonardo Kuffo, Elena Krippner, and Peter Boncz

REFERENCES
[1] Andreas Abel and Jan Reineke. 2019. uops. info: Characterizing latency, through-

put, and port usage of instructions on intel microarchitectures. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 673–686.

[2] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:
Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB
Endow. 16, 9 (jul 2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[3] Azim Afroozeh, Leonardo X. Kuffo, and Peter A. Boncz. 2023. ALP: Adaptive
Lossless floating-Point Compression. Proc. ACM Manag. Data 1, 4 (2023), 230:1–
230:26.

[4] Cecilia Aguerrebere, Ishwar Bhati, Mark Hildebrand, Mariano Tepper, and Ted
Willke. 2023. Similarity search in the blink of an eye with compressed indices.
arXiv preprint arXiv:2304.04759 (2023).

[5] Cecilia Aguerrebere, Mark Hildebrand, Ishwar Singh Bhati, Theodore Willke,
and Mariano Tepper. 2024. Locally-Adaptive Quantization for Streaming Vector
Search. arXiv preprint arXiv:2402.02044 (2024).

[6] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance.. In VLDB, Vol. 1. 169–180.

[7] Hossein Amiri and Asadollah Shahbahrami. 2020. SIMD programming using
Intel vector extensions. J. Parallel and Distrib. Comput. 135 (2020), 83–100.

[8] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374.

[9] Rajendra Bhatia and Chandler Davis. 1995. A Cauchy-Schwarz inequality for
operators with applications. Linear algebra and its applications 223 (1995).

[10] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[11] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale
approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199–5212.

[12] Zhonghan Chen, Ruiyuan Zhang, Xi Zhao, Xiaojun Cheng, and Xiaofang Zhou.
2025. Exploring the Meaningfulness of Nearest Neighbor Search in High-
Dimensional Space. In Australasian Database Conference. Springer, 181–194.

[13] Arjen P de Vries, Nikos Mamoulis, Niels Nes, and Martin Kersten. 2002. Efficient
k-NN search on vertically decomposed data. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. 322–333.

[14] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The faiss library. arXiv preprint arXiv:2401.08281 (2024).

[15] Matthijs Douze, Hervé Jégou, and Florent Perronnin. 2016. Polysemous codes. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part II 14. Springer, 785–801.

[16] Agner Fog. 2016. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers. Software
optimization resources (2016).

[17] Agner Fog et al. 2011. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs. Copenhagen
University College of Engineering 93 (2011), 110.

[18] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

[19] Jianyang Gao and Cheng Long. 2023. High-dimensional approximate nearest
neighbor search: with reliable and efficient distance comparison operations.
Proceedings of the ACM on Management of Data 1, 2 (2023), 1–27.

[20] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search.
Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.

[21] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine Learning. PMLR, 3887–3896.

[22] Dirk Habich, Johannes Pietrzyk, Alexander Krause, Juliana Hildebrandt, and
Wolfgang Lehner. 2022. To use or not to use the SIMD gather instruction?. In
Proceedings of the 18th International Workshop on Data Management on New
Hardware. 1–5.

[23] Yoonho Hwang, Bohyung Han, and Hee-Kap Ahn. 2012. A fast nearest neighbor
search algorithm by nonlinear embedding. In 2012 IEEE conference on computer
vision and pattern recognition. IEEE, 3053–3060.

[24] Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of indexing based on
k-nearest neighbor graph for proximity search in high-dimensional data. arXiv
preprint arXiv:1810.07355 (2018).

[25] Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and
Chidambaram Crushev. 2021. A survey on locality sensitive hashing algorithms
and their applications. arXiv preprint arXiv:2102.08942 (2021).

[26] Paras Jain, Peter Kraft, Conor Power, Tathagata Das, Ion Stoica, andMatei Zaharia.
2023. Analyzing and Comparing Lakehouse Storage Systems.. In CIDR.

[27] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information Pro-
cessing Systems 32 (2019).

[28] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[29] V Karthik, Saim Khan, Somesh Singh, Harsha Vardhan Simhadri, and Jyothi
Vedurada. 2024. BANG: Billion-Scale Approximate Nearest Neighbor Search
using a Single GPU. arXiv e-prints (2024), arXiv–2401.

[30] Anthony Ko, Iman Keivanloo, Vihan Lakshman, and Eric Schkufza. 2021. Low-
precision quantization for efficient nearest neighbor search. arXiv preprint
arXiv:2110.08919 (2021).

[31] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[32] Marius Muja and David Lowe. 2009. Flann-fast library for approximate nearest
neighbors user manual. Computer Science Department, University of British
Columbia, Vancouver, BC, Canada 5, 6 (2009).

[33] Javier Vargas Munoz, Marcos A Gonçalves, Zanoni Dias, and Ricardo da S Torres.
2019. Hierarchical clustering-based graphs for large scale approximate nearest
neighbor search. Pattern Recognition 96 (2019), 106970.

[34] Gonzalo Navarro. 2002. Searching in metric spaces by spatial approximation.
The VLDB Journal 11 (2002), 28–46.

[35] James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of vector database
management systems. arXiv preprint arXiv:2310.14021 (2023).

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[37] Mark Raasveldt and Hannes Mühleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 Int. Conference on Manag. of Data. 1981–1984.

[38] Viktor Sanca and Anastasia Ailamaki. 2024. Efficient Data Access Paths for Mixed
Vector-Relational Search. In Proceedings of the 20th International Workshop on
Data Management on New Hardware. 1–9.

[39] Lennart Schmidt, Johannes Pietrzyk, Juliana Hildebrandt, Alexander Krause,
Dirk Habich, and Wolfgang Lehner. 2025. Rethinking MIMD-SIMD Interplay for
Analytical Query Processing in In-Memory Database Engines. CIDR 12 (2025).

[40] Spotify. 2017. ANNOY by Spotify. https://github.com/spotify/annoy
[41] Kento Tatsuno, Daisuke Miyashita, Taiga Ikeda, Kiyoshi Ishiyama, Kazu-

nari Sumiyoshi, and Jun Deguchi. 2024. AiSAQ: All-in-Storage ANNS with
Product Quantization for DRAM-free Information Retrieval. arXiv preprint
arXiv:2404.06004 (2024).

[42] Ash Vardanian. 2023. SimSimd: Up to 200x Faster Dot Products Similarity Metrics.
https://github.com/ashvardanian/SimSIMD

[43] Ash Vardanian. 2023. USearch by Unum Cloud. https://doi.org/10.5281/zenodo.
7949416

[44] Roman Vershynin. 2018. High-dimensional probability: An introduction with
applications in data science. Vol. 47. Cambridge university press.

[45] Deepak Vohra. 2016. Apache Parquet. 325–335. https://doi.org/10.1007/978-1-
4842-2199-0_8

[46] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[47] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on
learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2017), 769–790.

[48] Mengzhao Wang, Weizhi Xu, Xiaomeng Yi, Songlin Wu, Zhangyang Peng, Xi-
angyu Ke, Yunjun Gao, Xiaoliang Xu, Rentong Guo, and Charles Xie. 2024.
Starling: An I/O-Efficient Disk-Resident Graph Index Framework for High-
Dimensional Vector Similarity Search on Data Segment. Proceedings of the ACM
on Management of Data 2, 1 (2024), 1–27.

[49] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

[50] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442.

[51] Weaviate. 2019. Weaviate. https://github.com/weaviate/weaviate
[52] Mingyu Yang, Jiabao Jin, XiangyuWang, Zhitao Shen,Wei Jia, Wentao Li, andWei

Wang. 2024. Bridging Speed and Accuracy to Approximate 𝐾 -Nearest Neighbor
Search. arXiv preprint arXiv:2404.16322 (2024).

[53] Xianzhi Zeng, Zhuoyan Wu, Xinjing Hu, Xuanhua Shi, Shixuan Sun, and Shuhao
Zhang. 2024. CANDY: A Benchmark for Continuous Approximate Nearest
Neighbor Search with Dynamic Data Ingestion. Preprint arXiv:2406.19651 (2024).

[54] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
scalar RAM-CPU cache compression. In 22nd International Conference on Data
Engineering (ICDE’06). IEEE, 59–59.

https://doi.org/10.14778/3598581.3598587
https://github.com/spotify/annoy
https://github.com/ashvardanian/SimSIMD
https://doi.org/10.5281/zenodo.7949416
https://doi.org/10.5281/zenodo.7949416
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://github.com/weaviate/weaviate

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 K-Nearest Neighbour Search (KNNS)
	2.2 Vector Datasets
	2.3 The Power of Pruning
	2.4 Pruning Behavior

	3 The PDX Data Layout
	4 The PDXearch Framework
	5 PDX-BOND: Our DCO optimizer
	6 Evaluation
	6.1 Setup
	6.2 Distance Kernels on the PDX Layout
	6.3 PDXearch Framework
	6.4 PDX-BOND
	6.5 Exact Search
	6.6 Effect of Pruning Percentage Threshold
	6.7 PDXearch Across Architectures

	7 Discussion
	8 Related Work
	9 Conclusions
	References

