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Abstract— Discrete tomography (DT) techniques are capable
of computing better results, even using less number of pro-
jections than the continuous tomography techniques. Discrete
Algebraic Reconstruction Technique (DART) is an iterative
reconstruction method proposed to achieve this goal by ex-
ploiting a prior knowledge on the gray levels and assuming
that the scanned object is composed from a few different
densities. In this paper, DART method is combined with an
initial total variation minimization (TvMin) phase to ensure a
better initial guess and extended with a segmentation procedure
in which the threshold values are estimated from a finite set of
candidates to minimize both the projection error and the total
variation (TV) simultaneously. The accuracy and the robustness
of the algorithm is compared with the original DART by
the simulation experiments which are done under (1) limited
number of projections, (2) limited view problem and (3) noisy
projections conditions.

Index Terms − Discrete Tomography, image reconstruction,
algebraic reconstruction techniques, global thresholding, com-
pressed sensing, total variation minimization

I. INTRODUCTION
Computed Tomography (CT) acquires several projections

by scanning an object with X-rays sent from different angles.
Projections are then used to obtain the 3D representation of
the object, which can also be considered to be a series of
2D slices. These slice images are reconstructed from 1D pro-
jection measurements by using various image reconstruction
techniques. Filtered backprojection (FBP) is the widely used
analytical method that has typically lower computational
cost compared to other methods. However, it requires high
number of projection samples, which also means higher
radiation dose. On the other hand, algebraic methods are able
to reconstruct images from incomplete projections, while
it takes longer time to converge. Algebraic Reconstruction
Technique (ART) [1] is a type of algebraic method whose
principle is Kaczmarz’s method.

Discrete Tomography (DT) [2] and Compressed Sensing
(CS) theory [3] are both approaches which aim image
reconstruction from incomplete projections. DT deals with
the reconstruction of a discrete image from its projections
by limiting the range of the reconstructed image intensity
function to a finite set of gray levels. Discrete Algebraic
Reconstruction Technique (DART) [4] is a well-known DT
algorithm and it is capable of computing better reconstruc-
tions from fewer projections, not only because of its discrete
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nature but also due to its ability to reduce the number of
variables by focusing on the regions where the reconstruction
procedure tend to fail. DART alternates between a continuous
algebraic reconstruction stage and a discretization procedure.
The original DART [4] exploits a-priori gray levels and
uses Otsu’s histogram-based threshold selection scheme [5]
in order to discretize the reconstructed continuous image.
However, it has also been shown that, it is possible to
estimate the gray levels automatically by selecting gray levels
and thresholds which minimizes a cost function on projection
space [6].

Compressed Sensing (CS) theory deals with sparse (or
compressible) signals, or images in our case, and states that
it is possible to reconstruct them from their fewer number of
projections than required according to the Nyquist - Shan-
non sampling criteria [7]. Therefore, the techniques which
solve the CS problems aim to find the sparsest solution,
corresponding to the minimization of `0− or `1 − norm
of the signal. Although the CT images are generally not
sparse, they might have a sparse representation in another
domain. Total variation minimization (TvMin) is a technique
which assumes that the image is sparse in its spatial gradient
domain and aims to minimize the `1−norm of the gradient
magnitude of the image. It is preferred to reconstruct images,
in particular the medical images due to its capability of
preserving high frequency details [8].

II. METHODS

A 3D CT image is considered to be a series of 2D slices
and reconstruction is applied on these slices one-by-one.
Cross sectional reconstruction is said to be a transformation
from 1D projection measurements to 2D images. From an
algebraic point of view, this reconstruction problem can be
formulated as a system of linear equations in the vector form
Ax = b or as the weighted sums of the pixels, i.e. the line
integrals of the rays over the traversed pixels:

n

∑
j=1

ai jx j = bi, i = 1,2, · · · ,m (1)

where x∈Rn, the vector of unknowns, denotes the image and
A∈Rmxn is the projection matrix whose entry ai j corresponds
to the contribution of the pixel x j to the projection bi where
b ∈ Rm.

A. The DART Algorithm

In the DART algorithm [4], the objective is to obtain
discrete reconstructions in which all pixels are assigned
to one of the gray levels from a pre-defined level set.
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Hence, DART combines a continuous iterative reconstruction
algorithm with a discretization step, meaning that an image
segmentation procedure is applied during the algorithm. In
this paper, the SART algorithm, see [9] for details, will be
used as the continuous reconstruction subroutine.

Here, a brief explanation on the DART algorithm is given
step by step. DART starts with an initial approximation
which is computed by SART, and performs the following
steps iteratively:
(1) Reconstructed image is segmented, so that it has only the
gray values from given level set: x j ∈ {ξ1,ξ2, ..,ξL}
(2) From the segmented image, boundary pixels, which differ
from at least one of the adjacent pixels, are determined by
using 8-connected neighbourhood. Then, these pixels are
extended with a randomized scheme which includes a non-
boundary pixel to the set of boundary pixels with |1− p|
probability, where p is called as fix probability. This new set
is called as free pixels uk which imply the only pixels that
will be updated in the next iteration of the DART, and the
remaining pixels are kept fixed.
(3) Residual sinogram rk is computed, by subtracting the
forward projection of the fixed pixels f k from the projection
data as rk = b−A f k.
(4) The SART algorithm is then applied on the residual
sinogram to update u(k) and a Gaussian smoothing filter is
applied on the updated u(k). x(k+1) is obtained as x(k+1) =
f (k)+Su(k)r

(k) where S denotes the SART operator, and the
control is returned back to (1) as long as the termination
criterion, such as the number of iterations or converge, is
not met.

DART reduces the number of unknowns in the original
under-determined system, since almost each succeeding iter-
ation comes up with the reconstruction problem to be solved
for only free pixels. This approach not only improves the
computational cost, but also yields more accurate results.

B. The TvMin Technique

The term total variation (TV) implies the `1− norm (or
`2 − norm for isotropic TV model) of the image gradi-
ent and its minimization is a technique which is used to
solve CS problems, in particular image reconstruction (or
denoising). From compressed sensing point of view, total
variation regularization algorithms recover the images by
utilizing the sparsity of the gradient magnitude of the image.
TV regularization can be formulated as an unconstrained
optimization problem, as in Eq. (2).

minx∈Rn ∑
j
‖D jx‖+

µ

2
‖b−Ax‖2

2 (2)

where D jx is the discrete gradient of x at the pixel j and
µ is the regularization parameter. Eq. (2) aims to minimize
both the TV and the projection error simultaneously.

C. The Proposed TvMin+DART Algorithm Definition

In this section, we describe the proposed algorithm which
aims to improve the DART algorithm by using the TvMin
technique instead of ARM to obtain the initial guess and by

(a) (b)

Fig. 1: Initial reconstructions obtained with t0 = 3 iterations of (a)
SART and (b) TvMin.

combining the histogram-based and the projection data based
approaches to select an optimal threshold value.

Since it is important to start with a good initial estimate to
DART, in the proposed algorithm, the initial reconstruction
is computed by TvMin, as it is defined in Eq. (2), instead of
SART. This approach yields a more convenient reconstruc-
tion to be used in segmentation, since the artefacts formed
after SART are highly reduced while the high frequency
regions are preserved, plus enhanced. Two initial reconstruc-
tions, one from SART and another from TvMin, are shown
in Fig. 1.

TvMin constrained optimization problem is known having
high computational cost due to its non-differentiability. How-
ever, it has already been solved in [10] efficiently and named
as TV minimization scheme based on augmented Lagrangian
and alternating direction algorithms (TVAL3 scheme). This
solver is used to solve Eq. (2), by adding a non-negativity
constraint in the proposed method, in order to obtain an
easier to segment initial guess in a time efficient manner.

In this work, a thresholding scheme is also proposed to
be used in the segmentation step of DART, by combin-
ing a histogram-based approach with the TV regularization
problem. In the proposed threshold selection scheme, the
threshold value, which minimizes both the projection error
and TV, is selected among a number of candidate thresholds,
which are computed by two-stage multilevel Otsu algorithm
(TSMO) [11]. To determine the number of candidate thresh-
olds, a valley estimation (VE) procedure, proposed in [12],
is utilized.

To briefly explain the VE procedure, first of all, a normal-
ized histogram binning (the number of groups is chosen as
K = 32, as in [12]) is applied on the gray-level histogram
of the continuous reconstruction and then, the groups are
scanned twice. In the first scan, a probability is estimated for
each group, according to its location on the histogram and its
frequency. For more details about how these probabilities are
estimated, the reader is referred to [12]. In the second scan,
the estimated non-zero probabilities are updated to 100%, for
the groups whose probabilities exceed 100% when summed
with the adjacent ones and 0%, otherwise. The VE procedure
is used as a pre-process to TSMO in order to estimate
the number of clusters C, corresponding to the number
of groups with 100% probability, and TSMO estimates C
thresholds, which will then be used as candidates by the
proposed algorithm. TSMO has two stages; in the first stage,
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the K = 32 normalized histogram bins are clustered into C
clusters using Otsu’s multi-level thresholding scheme [5],
whose objective is maximizing between-class variance, and
in the second stage, Otsu’s bi-level thresholding is applied
for each cluster. As the final stage of the threshold selection
procedure, each candidate threshold τ ∈ Tcdt estimated by
TSMO is tried if it minimizes Eq. (3) or not and the one
which minimizes the cost, given in Eq. (3), most is used to
segment the reconstructed image.

τ
∗ = argmin

τ∈TC
cdt

{∑
j
‖D jx‖+

1
2
‖b−Ax‖2

2} (3)

where τ∗ is the selected optimum threshold value.
Furthermore, to prevent high fluctuations caused by the

proposed segmentation step, a control operation is carried
out after each threshold selection procedure. This operation
checks the difference ∆cost between the current cost, given
in Eq. (3), computed by using the selected threshold and
the previous cost, and if this difference is greater than a
predefined parameter εpenalty, the algorithm keeps using the
previous threshold value instead of the selected one. This
operation can be defined as follows:

τ
(k) =

{
τ∗, ∆cost < εpenalty

τ(k−1), otherwise
(4)

All other subsequent iterations of our algorithm are similar
to the DART algorithm which has already been described in
Section III.B. The pseudo code of the proposed algorithm is
given as follows:

Algorithm (TvMin+DART)
x(0)←− TVAL3(x := 0,A,b), k := 0
while (stop criterion is not met) do
begin

Compute the histogram Hk

Estimate the number of valleys C←−V E(Hk)

Find C candidate thresholds: Tcdt ←− T SMO(Hk,C)

Select threshold τ∗l which makes Eq. 2 minimum
Segment image: sk←− S(xk,τk)

Subdivide sk into free pixels Uk ⊂ xk and fixed Fk = xk \Uk

Extend Uk with the pixels in Fk with probability |1− p|
Compute the residual sinogram rk←− b−A f k

Update the image of free pixels uk←− ARM(uk,Ak,rk)

Smooth uk and obtain xk+1←− f k +uk

end

D. The Proposed Algorithm with Gray Level Estimation

In this section, the proposed algorithm is extended to
estimate the gray levels, by a formulation which exploits the
differentiability of the projection error, defined as E(x) =
∑

m
i (bi−b

′
i)

2 using Euclidean distance. Since each gray level
is restricted to a prescribe set after each DART iteration, one
knows that x

′
j ∈ {ξ1,ξ2, ..,ξL}. Hence, E(x) can be rewritten

as in Eq. (5) by substituting the forward projection of the
image x

′
obtained from DART instead of b

′
i.

E(x) =
m

∑
i
(bi−

L

∑
l=1

ξlQil)
2 where Qil = ∑

j∈Ωl

ai j (5)

where ξl is the lth gray level of an L element gray level set
and Ωl is the index set of the pixels whose intensities are
set to gray level ξl .

By differentiating Eq. (5) it with respect to the ξl to find
the labels which minimize the error, one comes up with the
following solution:

∂E
∂ξl

=
∂

∂ξl
{

m

∑
i=1

(bi−
L

∑
l=1

ξlQil)
2}

=
∂

∂ξt
{

m

∑
i=1

(bi− (
L

∑
l=1
l 6=t

ξlQil +Qitξt))
2}

=−2{
m

∑
i=1

(biQit −
L

∑
l=1
l 6=t

QilQitξl −Q2
itξt)}

=−2
m

∑
i=1

Qit(bi−
L

∑
l=1
l 6=t

Qilξl)+2ξt

m

∑
i=1

Q2
it

(6)

where t = 1, ..,n. Therefore, the gray levels can easily be
estimated by using the following equation:

ξt =

∑
m
i=1 Qit(bi−∑

L
l=1
l 6=t

Qilξl)

∑
m
i=1 Q2

it
. (7)

Once Eq. (7) is computed, the previous gray level set is
updated with the new labels and this procedure is repeated
for each iteration, after the thresholds are determined and the
image is segmented.

III. SIMULATION EXPERIMENTS

All implementations are done in MATLAB environment.
AIR Tools package [13] is exploited for the simulation of the
parallel beam geometry and SART algorithm. To estimate
an initial guess by solving the TvMin problem, TVAL3
MATLAB solver [10] is used.

As the performance evaluation metrics, misclassification
percentage, given in Eq. (8), and root means squared error
(RMSE), given in Eq. (9), are used. RMSE is used to measure
the quality of the image which is reconstructed by using the
gray level estimation.

misclassi f ication(%) =
100

n

n

∑
j=1

(1−δ (x,x′)) (8)

RMSE =
(∑

n
j=1 (x j− x′ j)

2

n

)1/2

(9)

where x′ denotes the reconstructed image.
Phantom image used in the experiments is same with one

of the phantoms used in the paper, in which the original
DART is proposed [4]. For each projection angle, 512
measurements are detected which is equal to the image
dimensions. The relaxation parameter (λ ) of SART and the
fix probability (p) are fixed as 0.8 (as suggested in [13]),
and 0.85 (as suggested in [4]), respectively. The randomized
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(a) (b) (c)

Fig. 2: The misclassification percentage of DART and the proposed algorithm with respect to (a) the number of projections, (b) the
angular range and (c) the noise level.

(a) (b)

Fig. 3: (a) Exact phantom and (b) reconstruction of the proposed
algorithm with gray level estimation

procedure is applied both the DART and the TvMin+DART
algorithms simultaneously, meaning that the free pixels,
which are selected with |1− p| probability, are determined
once and used for both algorithms. Also, the number of the
initial estimation iterations t0 for the TvMin and the SART
are both fixed to 3, like the subsequent SART iterations (t)
which are also set to 3. For each cases, k = 150 iterations
are used, which is enough to converge.

In Fig. 2a and Fig. 2b, limited number of projections and
limited view experiments are considered, respectively. In the
former experiment, we sampled the projections at equidistant
intervals in full range [0,π). In the later one, we gradually
narrowed the range down, from [0,π) to [4π/9,5π/9), and
sampled the projections at 1 degree intervals for each range.
All experiments except the one shown in Fig. 2c are done
using noise-free measurements. In Fig. 2c, the robustness of
the algorithms with respect to noise are compared. To sim-
ulate a noisy projection, the projection samples are polluted
by adding a noise vector on them, as b̃ = b+η‖b‖ e

‖e‖ where
e is a random noise vector, b̃ denotes the noisy projection
measurements and η is the level of noise.

In Fig. 3, the result of the gray level estimation experiment
is provided. Final reconstruction, shown in Fig 3b, has the
labels which are very close to the exact gray levels. We
started with the label set {0.3,0.7} while the exact gray
levels are {0,1}, after the algorithm is iterated k = 150 times,
the final labels were estimated as {0,0.97}. The RMSE was
measured as 0.088.

IV. CONCLUSION
In this paper, we have proposed an algorithm which

extends the DART by using the TvMin technique to estimate
the initial guess and selecting the threshold, which is optimal
in the sense of TV regularization cost function, from a finite
set of candidates, which are estimated by a histogram-based
thresholding scheme. Furthermore, a gray level estimation
formulation has been presented and tested. The results show
that the proposed algorithm improves the DART algorithm,
either slightly or significantly, in terms of accuracy in almost
all incomplete projection experiments.
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