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Learning junta distributions and quantum junta states,

and QAC0 circuits

Francisco Escudero Gutiérrez∗

Abstract

In this work we consider the problems of learning junta distributions, their quantum counter-
part, quantum junta states, and QAC0 circuits, which we show to be juntas.

Junta distributions. A probability distribution p : {−1, 1}n → [0, 1] is a k-junta if it only
depends on k variables. We show that they can be learned with to error ε in total variation
distance from O(2k log(n)/ε2) samples, which quadratically improves the upper bound of Ali-
akbarpour et al. (COLT’16) and matches their lower bound in every parameter.

Junta states. We initiate the study of n-qubit states that are k-juntas, those that are the
tensor product of a k-qubit state and an (n − k)-qubit maximally mixed state. We show that
these states can be learned with error ε in trace distance with O(12k log(n)/ε2) single copies.
We also prove a lower bound of Ω((4k + log(n))/ε2) copies. Along the way, we give a new proof
of the optimal performance of Classical Shadows based on Pauli analysis.

QAC0 circuits. Nadimpalli et al. (STOC’24) recently showed that the Pauli spectrum of
QAC0 circuits (with not too many auxiliary qubits) is concentrated on low-degree. We remark
that they showed something stronger, namely that the Choi states of those circuits are close
to be juntas. As a consequence, we show that n-qubit QAC0 circuits with size s, depth d and

a auxiliary qubits can be learned from 2O(log(s22a)d) log(n) copies of the Choi state, improving

the nO(log(s22a)d) by Nadimpalli et al. In addition, we use this remark to improve on the lower
bounds against QAC0 circuits to compute the address function.

1 Introduction

One of the main questions of computational learning theory is how efficiently can we learn an
unknown object that is promised to have some structure. Two of the most studied structured
objects are juntas, which are multi-bit or multi-qubit objects where only a few of the bits or qubits
are relevant, and constant-depth circuits. There is plenty of literature about learning junta objects,
such as Boolean juntas, junta distributions, quantum junta unitaries and quantum junta channels
[AS07, ABR16, CJLW21, CNY23, BY23]. Two celebrated models of constant-depth circuits that
have been studied from the point of view of learning are AC0 circuits and their quantum analogue,
QAC0 circuits [LMN93, EIS22, NPVY23].

We continue this line of research by improving the upper bounds on learning classical junta
distributions and QAC0 circuits, and by proving the first results on learning junta states. All of
our upper bounds exploit that the considered objects satisfy two properties: their Fourier/Pauli
expansions are close to be supported on a few low-degree sets. In other words, they are low-degree
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and sparse. In the case of juntas these two properties follow from definition, while for QAC0 circuits
these properties are implicit in previous work and we uncover them here.

1.1 Summary of our results

We summarize our learning upper bounds in the following Table 1, where n is the number of bits
or qubits, k stands for the number of relevant variables of a junta, s is the size and d the depth
of a circuit, and ε is the error parameter with respect to metrics that we will specify later. In the
case of classical objects, the complexity measure we consider is the sample complexity, while in the
quantum case we consider the copy complexity.

Classical Quantum
Junta distributions Junta states QAC0 circuits

Previous best
22k log(n)/ε4

—
nlog(s/ε)d

[ABR16] [NPVY23]

Our result 2k log(n)/ε2 12k log(n)/ε2 2log(s/ε)
d

log(n)

Table 1: Summary of our upper bounds.

Before we discuss our results in more detail, we make a few remarks about our main results.

(i) QAC0 circuits. For constant d, s and ε, our result exponentially improves previous work.
However, in the usual regime where s = poly(n) and d, ε are constants, it yields a quasi-
polynomial number of samples, which was already attained in previous work [NPVY23].

(ii) Junta states. Recent works study the junta-learning problem of unitaries and quantum
channels [CNY23, BY23], but there seems to be no previous work about quantum junta
states. Hence, our result for junta states fills a gap in the literature. We also provide a
Ω((4k + log(n))/ε2) lower bound that shows that our upper bound cannot be improved by
much.

(iv) Junta distributions. Our upper bound is essentially optimal, as it matches the lower bound
Ω(2k/ε2 + k log(n)/ε) of [ABR16] in every parameter.

1.2 Learning junta distributions

Learning in the presence of irrelevant information, such as the dummy variables appearing in juntas,
is one of the most famous yet open problems of classical computational learning theory since the
90’s [Blu94, BHL95, BL97]. There are numerous works that consider the problems of learning
and testing junta Boolean functions and distributions [MOS03, Val12, ABR16, CJLW21, CDL+24,
NP24]. In particular, Aliakbarpour, Blais, and Rubinfeld considered the problem of learning a junta
distribution p : {−1, 1}n → [0, 1] from samples x ∼ p(x). They showed that in order to estimate p
up to error ε in total variation distance, O(22kk log(n)/ε4) samples suffice and Ω(2k/ε2+k log(n)/ε)
are needed [ABR16]. We quadratically improve their upper bound matching their lower bound in
every parameter.
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Theorem 1. Let p : {−1, 1}n → [0, 1] be a k-junta distribution. The distribution can be learned
with error ε in total variation distance and success probability ≥ 1 − δ with

O

(
2kk log(n/δ)

ε2

)

samples.

As the upper bound of Aliakbarpour et al., ours exploits the fact that k-juntas have Fourier de-
gree at most k. Our improvement comes from also using that their Fourier spectrum is concentrated
on at most 2k sets.

1.3 Learning junta states

In quantum learning theory the most commonly studied objects are states, unitaries and channels
[OW15, HHJ+17, HKOT23]. By contrast, the problems of learning k-junta unitaries and channels
were recently studied [CJLW21, BY23], but to the best of our knowledge no one has explored the
version for states.

Definition 2. An n-qubit state ρ is said to be a k-junta state if there are a set K ⊆ [n] of size k
and a state ρK defined on K such that

ρ = ρK ⊗
I[n]−K

2n−k
.

In other words, ρ is a k-junta state if it is the tensor product of a k-qubit state and the maximally
mixed state on the rest of the qubits.

Note that k-junta states are the quantum generalization of k-junta distributions, so the problem
of learning them is the quantum analogue of the problem considered by Aliakbarpour et al. [ABR16].
We prove a nearly-optimal result for this problem in terms of copy complexity.

Theorem 3. Let ρ be a n-qubit k-junta quantum state. Then, ρ can be learned with error ε in
trace distance and success probability ≥ 1 − δ using

O

(
12k log(n/δ)

ε2

)

copies of ρ, and Ω((log(n) + 4k)/ε2) are necessary for this task. Furthermore, the algorithm just
does Pauli measurements on single copies of the state.

For the upper bound we perform Classical Shadow tomography with Pauli measurements
[HKP20, EFH+22]. Furthermore, we include a novel proof of the rigorous guarantees of the Classical
Shadows algorithm based on Pauli analysis that might be of independent interest (see Theorem 8).
The lower bound Ω(4k/ε2) follows from the lower bound by Haah et al. to learn k-qubit states
[HHJ+17], and for the lower bound Ω(log(n)/ε2) we show that there are n states that 1-junta and
difficult to distinguish.
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1.4 Learning QAC0 circuits

QAC0 circuits were proposed by Moore as the quantum analogue of AC0 circuits [Moo99]. In that
work Moore asked whether QAC0 circuits can compute parity, and despite various efforts the ques-
tion remains open [FFG+03, PFGT20, Ros20, NPVY23, ADOY24]. In a recent work Nadimpalli,
Parham, Vasconcelos and Yuen made progress in this direction, by showing that the Pauli spec-
trum of the Choi state of a QAC0 circuit with not too many auxiliary qubits is concentrated on
low-degree. However, we note that they proved something stronger, and is that the Pauli spectrum
of the Choi state of QAC0 circuits is not only concentrated on low-degree, but also the Choi state
is close to be a junta (see Theorem 10). Using this, alongside the algorithm of Theorem 3, we can
prove the following result.

Theorem 4. Let ρ be the Choi state of a n-qubit QAC0 circuit with size s, depth d, and a auxiliary
qubits. Then, using

2O((log(s22a/ε))d) log(n/δ)

singles copies of ρ, one can output a ρ′ such that

2n
∥∥ρ− ρ′

∥∥2
F
≤ ε.

Furthermore, the algorithm just does Pauli measurements on single copies of the state.

The only previous result on learning QAC0 circuits was [NPVY23, Theorem 39], and our The-

orem 4 improves it from nO((log(s22a/ε))d) copies to 2O((log(s22a/ε))d) log(n) copies. At this point it
might be unclear why we have chosen to learn the Choi state of the circuit in the 2n-Frobenius
norm.1 The reason why this is a good figure of merit for this learning task is explained in Sec-
tion 4.1.1.2

In addition, in Section 4.1.3 we use that QAC0 are close to juntas, and not only to low-degree,
to show new lower bounds for computing the address function, which is the canonical example of
a low-degree function that depends on many variables.

1.5 Our algorithms in a nutshell

All of our algorithms are refinements of the low-degree algorithm of Linial, Mansour and Nisan
[LMN93]. To sketch them, for simplicity, we will consider functions f : {−1, 1}n → [−1, 1]. Assume
that we are promised that the Fourier spectrum of f is supported on L monomials of degree at
most d, i.e.

f(x) =
∑

s∈[L]

f̂(Ss)
∏

i∈Ss

xi

for some Ss ⊆ [n] with |Ss| ≤ d. First, we will see how the low-degree algorithm would perform to
learn f from samples (x, f(x)) where x is uniformly picked from {−1, 1}n.

Low-degree algorithm

Step 1. For every |S| ≤ d, obtain f̂ ′(S) that approximates f̂(S) up to error
√

ε/nd.

Output. We output f ′(x) =
∑

|S|≤d f̂
′(S)

∏
i∈S xi.

1In a soon-to-appear work, Huang and Vasconcelos extend this result to recover not only the Choi-state, but also
the unitary defined by the circuit [VH24].

2This is the same figure of merit as the one considered in [NPVY23], but the authors of that work use a slightly
different notation.
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It is well-known that with (1/α2) · log(M) samples one can estimate M Fourier coefficients of f up
to error α, so the low-degree algorithm requires (nd/ε2) · log(nd) samples. Now, f ′ is close to f ,
because ∑

|S|≤d

|f̂(S) − f̂ ′(S)|2 ≤
∑

|S|≤d

ε

nd
≤ ε,

where in the first inequality we have used the guarantees of Step 1, and in the second that |{|S| ≤
d}| ≤ nd. In particular, this implies that Pr[f(x) 6= sign(f ′(x))] ≤ ε.

However, note that the low-degree algorithm does not use that f is supported on L monomials
out of the ∼ nd low-degree monomials. Using that, one can improve on the low-degree algorithm.

Low-degree and sparse algorithm

Step 1. For every |S| ≤ d, obtain f̂ ′(S) that approximates f̂(S) up to error
√

ε/4L.

Step 2. For every |S| ≤ d, if |f̂ ′′(S)| ≤
√

ε/4L, set f̂ ′(S) = 0, otherwise set f̂ ′′(S) = f̂ ′(S).

Output. We output f ′′(x) =
∑

|S|≤d f̂
′′(S)

∏
i∈S xi.

Note that Step 1 now just requires (L/ε2) · log(nd) samples, considerably less than the (nd/ε2) ·
log(nd) samples of the low-degree algorithm. Also, notice that by adding the rounding of Step
2 we make sure that f̂ ′′(S) = 0 for S /∈ {S1, . . . , SL}, and every S ∈ {S1, . . . , SL} satisfies that
|f̂(S) − f̂ ′′(S)| ≤

√
ε/L. Hence, we still have that

∑

|S|≤d

|f̂(S) − f̂ ′(S)|2 =
∑

|S|∈{S1,...,SL}

|f̂(S) − f̂ ′(S)|2 ≤
∑

|S|∈{S1,...,SL}

ε

L
= ε,

where in the first equality we have used that f̂ ′′(S) = 0 for every S /∈ {S1, . . . , SL}.
In conclusion, if we are promised that the Fourier or Pauli spectrum of our object is supported

on L ≪ nd coefficients of degree at most d, one should add a simple rounding step in the low-degree
algorithm. This remark was already exploited by Eskenazis, Ivanisvili and Streck to learn Boolean
functions [EIS22, Theorem 2], and we extend it to other contexts.

2 Preliminaries

Some notation. We will use ℓq to denote the q-norm with the counting measure, and Lq to
denote the q-norm with the uniform probability measure. All expectations are taken with respect
to the uniform probability measure unless otherwise stated. All logarithms are in base 2.

Concentration inequalities. We state a few concentration inequalities that we use often.

Lemma 5 (Hoeffding bound). Let X1, . . . ,Xm be independent-random variables that satisfy −ai ≤
|Xi| ≤ ai for some ai > 0. Then, for any τ > 0, we have

Pr
[∣∣∣
∑

i∈[m]

Xi −
∑

i∈[m]

E[Xi]
∣∣∣ > τ

]
≤ 2 exp

(
− τ2

2(a21 + · · · + a2m)

)
.
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Lemma 6 (Bernstein inequality). Let X1, . . . ,Xm be independent-random variables with |Xi| ≤ M
for some M > 0. Then,

Pr
[∣∣∣
∑

i∈[m]

Xi −
∑

i∈[m]

E[Xi]
∣∣∣ > τ

]
≤ 2 exp

(
− τ2/2∑

i∈[m] Var[Xi] + τM/3

)
.

Lower bounds for state learning. The standard way of showing lower bounds for state learning
is via an argument of Holevo. To state it, we first introduce the Holevo information of a set of
states {ρi}, which is given by

χ({ρi}) = S


 1

n

∑

i∈[n]

ρi


− 1

n

∑

i∈[n]

S (ρi) ,

where S(ρ) = −Tr[ρ log(ρ)] is the von Neumann entropy. Now we are ready to write the precise
statement we will use to show a lower bound for learning k-junta states. For a proof see [MMB+24,
Lemma S14].

Lemma 7. Let {ρi}i∈[M ] be a family of M states that satisfy ‖ρi − ρj‖tr ≥ ε for every i 6= j.
Assume that T copies are sufficient to learn this family of states with probability ≥ 2/3. Then,

χ({ρ⊗T
i }) = Ω(log(M)).

Additionally, we will need two facts about von Neumann entropy. The first is its additivity
under tensor product,

S(ρA ⊗ ρB) = S(ρA) + S(ρB), (1)

and the second is subadditivity
S(ρAB) ≤ S(ρA) + S(ρB). (2)

3 Learning junta distributions

In this section we prove Theorem 1. We begin by recalling what is the usual model for learning
distributions. Given a distribution p : {−1, 1}n → [0, 1], one can access it by sampling x ∈ {−1, 1}n
with probability p(x). The goal of the learner is to use a few samples to output another distribution
p′ : {−1, 1}n → [0, 1] that is ε-close to p in total variation distance, which is given by

dTV(p, p′) =
1

2

∥∥p− p′
∥∥
ℓ1

=
1

2

∑

x∈{−1,1}n

|p(x) − p′(x)|.

If p : {−1, 1}n → [0, 1] is a k-junta depending on the variables of a set K ⊆ [n] of size k, then it
can be written as

p(x) =
∑

S⊆K

p̂(S)
∏

i∈S

xi,

where p̂(S) = Ex∈{−1,1}np(x)
∏

i∈S xi are the Fourier coefficients of p. Note that all non-zero Fourier

coefficients of a k-junta correspond to monomials of degree ≤ k and there is at most 2k of them.
We use this to show a nearly-optimal algorithm to learn k-junta distributions.
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Proof of Theorem 1: Let T = O
(
2k

ε2 k log
(
n
δ

))
be the number of samples (x1, . . . , xT ) we take. For

every S ⊆ [n] with |S| ≤ k we define the empirical Fourier coefficient

p̂′(S) =
1

2nT

∑

s∈[T ]

∏

i∈S

xsi .

Then, E[p̂′(S)] = p̂(S). Moreover, by a Hoeffding bound (Lemma 5) and a union bound over the
at most nk sets of size at most k, we have that with probability ≥ 1 − δ

|p̂′(S) − p̂(S)| ≤ ε

2 · 2n
√

2k
for every |S| ≤ k. (3)

For every |S| ≤ k, we define

p̂′′(S) =

{
0 if |p̂′(S)| ≤ ε/(2 · 2n ·

√
2k),

p̂′(S) otherwise.
(4)

Now, from Eq. (3) it follows that if

p̂(S) = 0, then p̂′′(S) = 0, (5)

so in particular if K is the set of (at most k) variables that p depends on n, then

S 6⊆ K, then p̂′′(S) = 0. (6)

In addition, we have that for every S with |S| ≤ k

|p̂′′(S) − p̂(S)| ≤ ε

2n
√

2k
. (7)

We define p′′(x) =
∑

|S|≤k p̂
′′(S)

∏
i∈S xi and claim that is close to p. Indeed,

∥∥p− p′
∥∥2
L2

=
∑

S⊆K

|p̂(S) − p̂′′(S)|2 +
∑

S 6⊆K

|p̂′′(S)|2

=
∑

S⊆K

|p̂(S) − p̂′′(S)|2

= 2k
ε2

22n2k

=
ε2

22n
,

where in the first line we have used Parseval’s identity; in the second line we have used Eq. (6) and
in the third Eq. (7) and that |P(K)| ≤ 2k. Hence, ‖p− p′‖L2

≤ ε/2n. Finally, as ‖·‖ℓ1 ≤ 2n ‖·‖L2
,

the result follows. �

4 Learning quantum junta states and QAC0 circuits

In this section we prove Theorems 3 and 4. We begin by recalling the usual learning model
for quantum states. We are given copies of ρ on which we can measure. We will only perform
measurements on single copies of ρ, and the measurements may be different for different copies of
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ρ. The goal is to use the outcomes of these measurements to output another state ρ′ that is ε-close
in trace distance to ρ, meaning that

dtr(ρ, ρ
′) =

∥∥ρ− ρ′
∥∥
tr
≤ Tr[|ρ− ρ′|] ≤ ε.

Note that an n-qubit state ρ is a k-junta state if and only if it can be written as

ρ =
∑

P∈{I,X,Y,Z}⊗n

supp(P )⊆K

ρ̂(P )P,

for some K ⊆ [n] of size k, where ρ̂(P ) = Tr[ρP ]/2n are the Pauli coefficients, supp(⊗i∈[n]Pi) =
{i ∈ [n] : Pi 6= I},

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
.

We stress that a quantum state is a generalization of a probability distribution, and that this gen-
eralization extends to the Pauli spectrum several notions related to the Fourier spectrum. Indeed,
given a probability distribution p : {−1, 1}n → [0, 1], it defines a n-qubit quantum state

ρp =
∑

x∈{−1,1}n

p(x) |x〉 〈x| ,

that satisfies ρ̂p(P ) = p̂(supp(P )) if P ∈ {I, Z}⊗n, and ρ̂p(P ) = 0 otherwise. Similarly, the biggest
size of the support of a P such that ρ̂(P ) 6= 0 generalizes the notion of degree. Furthermore, p is a
k-junta distribution if and only if ρp is a k-junta state.

As in the classical case, the non-zero Pauli coefficients of a k-junta state correspond to low-
degree Pauli operators, those with small support, and they are at most 4k. Using this we could
learn k-junta states in a similar way that we used to learn k-junta distributions if we had an
mechanism way of learning the low-degree Pauli coefficients. Such a mechanism is the Classical
Shadows algorithm by Huang, Kueng and Preskill [HKP20], which was later improved by Elben et
al. [EFH+22, Sec.II.B.].

Theorem 8 ([HKP20, EFH+22]). Let ρ be a n-qubit state. Then, by performing Pauli measure-
ments on

O

(
3k log((3n)k/δ)

22nε2

)
3

single copies of ρ one can output estimates ρ̂′(P ) such that with success probability ≥ 1 − δ satisfy

|ρ̂(P ) − ρ̂′(P )| ≤ ε

for every P ∈ {I,X, Y, Z}⊗n with | supp(P )| ≤ k.

We include a proof of Theorem 8 that uses a novel Pauli analytic approach inspired on the
proof of the non-commutative Bohnenblust-Hille inequality by Volberg and Zhang [VZ23].

3The factor 22n in the denominator appears because the Pauli coefficients are the expectations of the Pauli
observables over 2n.
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Proof of Theorem 8: We will make use of T = O
(
3k log((3n)k/δ)/(22nε2)

)
copies of ρ. Let BQ

be a basis that diagonalizes Q ∈ {X,Y,Z}⊗n. For every s ∈ [T ], we will pick Qs ∈ {X,Y,Z}⊗n

independently uniformly at random and measure ρ in the basis BQs . For every i ∈ [n], let xsi = ±1
if the outcome of the s-th measurement on the i-th qubit is the ±1 eigen-space of Qs

i . Then, for
every P ∈ {I,X, Y, Z}⊗n we define a empirical estimator of ρ̂(P ) via

ρ̂′(P ) =
3| supp(P )|

2nT

∑

s∈[T ]

∏

i∈supp(P )

xsi δPi=Qs
i
.

We claim that ρ̂′(P ) equals ρ̂(P ) on expectation. Indeed,

Eρ̂′(P ) =
3| supp(P )|

2n
EQ∈{X,Y,Z}⊗n

∏

i∈supp(P )

∑

xi∈{−1,1}

Prρ,BQi
[xi]xiδPi=Qi

=
3| supp(P )|

2n
EQ∈{X,Y,Z}⊗ supp(P )

∏

i∈supp(P )

∑

xi∈{−1,1}

xiPrρ,BQi
[xi]δPi=Qi

=
1

2n

∏

i∈supp(P )

∑

xi∈{−1,1}

xiPrρ,Pi [xi]

=
1

2n

∏

i∈supp(P )

Tr[ρPi] =
1

2n
Tr[ρP ] = ρ̂(P ),

the first line is true because the expectation of ρ̂′(P ) does not change if T changes; the second line
follows from the fact that inside EQ there is no dependence on the variables outside supp(P ); the
third line is true because the term inside EQ is 0 unless Qi = Pi for every i ∈ supp(P ); and fourth
line is true because Prρ,BPi

[xi] = Tr[ρ |Pi(xi)〉 〈Pi(xi)|] where |Pi(xi)〉 is a unit eigenvector of Pi

with eigenvalue xi.

In addition, the second moment (and thus the variance) of ρ̂′(P ) for T = 1 is considerably
smaller than the trivial upper bound E[|ρ̂′(P )|2] ≤ ‖ρ̂′(P )‖2∞ = 9| supp(P )|/4n. Indeed, for T = 1 we
have

E(ρ̂′(P ))2 =
9| supp(P )|

4n
EQ∈{X,Y,Z}⊗n

∏

i∈supp(P )

∑

xi∈{−1,1}

Prρ,BQi
[xi] (xiδPi=Qi)

2

=
9| supp(P )|

4n
EQ∈{X,Y,Z}⊗ supp(P )

∏

i∈supp(P )

∑

xi∈{−1,1}

Prρ,BQi
[xi]δPi=Qi

=
9| supp(P )|

4n
EQ∈{X,Y,Z}⊗ supp(P )

∏

i∈supp(P )

δPi=Qi

=
3| supp(P )|

4n
,

where the second line follows from the fact that the quantity inside EQ∈{X,Y,Z}⊗n does not depend
on the variables outside of supp(P ) and the fact that (xiδPi=Qi)

2 = δPi=Qi ; and the third line is
true because

∑
xi

Prρ,BQi
[xi] = 1.

Now, the claimed result follows from the Bernstein inequality and an union bound over the at
most (3n)k Pauli operators of degree lower than k. �
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Our algorithm to learn k-junta states is robust, in the sense that it also applies in the case of
the Pauli spectrum of the state is (ε2/22n)-concentrated on the Pauli coefficients corresponding to
k-qubits, which is the case where it exists K ⊆ [n] of size k such that

∑

supp(P )6⊆K

|ρ̂(P )|2 ≤ ε2

22n
.

Theorem 9. Let ρ be a n-qubit state whose Pauli spectrum is (ε2/22n)-concentrated on a set of k
qubits. Then, using

O

(
12k log((3n)k/δ)

ε2

)

copies of ρ one can output ρ′ such that with success probability ≥ 1 − δ satisfies

∑

P∈{I,X,Y,Z}⊗n

|ρ̂′(P ) − ρ̂(P )|2 ≤ 2ε2

22n
.

In particular, ‖ρ′ − ρ‖tr ≤
√

2ε. Furthermore, the algorithm just does Pauli measurements on single
copies of the state.

Proof of Theorem 9: Similarly to the the proof of classical case Theorem 1, we use T = O
(
12k log((3n)k/δ)

ε2

)

copies of the state obtain an estimate ρ̂′(P ) for every P with | supp(P )| ≤ k such that

|ρ̂(P ) − ρ̂′(P )| ≤ ε

4
√

4k2n
. (8)

This can be done via Classical Shadows (see Theorem 8). Now, for every P ∈ {I,X, Y, Z}⊗n we
define

ρ̂′′(P ) =





0 | supp(P )| > k,

0 |ρ̂′(P )| ≤ ε/(2 · 2n ·
√

4k) and | supp(P )| ≤ k,
ρ̂′(P ) otherwise.

In particular, from Eq. (8) it follows that for every S with | supp(S)| ≤ k we have that

|ρ̂(P ) − ρ̂′′(P )| ≤ ε

2n
√

4k
. (9)

In addition, we claim that for every P ∈ {I,X, Y, Z}⊗n

|ρ̂(P ) − ρ̂′′(P )| ≤ |ρ̂(P )|. (10)

Indeed, the only non-trivial case of Eq. (10) corresponds to P with | supp(P )| ≤ k and |ρ̂′(P )| ≥
ε/(2 · 2n ·

√
4k). In that case, we have that

|ρ̂(P )| ≥ |ρ̂′(P )| − |ρ̂(P ) − ρ̂′(P )|
≥ ε/(4 · 2n ·

√
4k)

≥ |ρ̂(P ) − ρ̂′(P )|
= |ρ̂(P ) − ρ̂′′(P )|,

where the first is due to triangle inequality; the second line is true because of Eq. (8) and the
hypothesis on P ; the third line again follows from Eq. (8); and the fourth line is true because of
the choice of P and the definition of ρ̂′′(P ).
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Finally, we claim that ρ′′ =
∑

P ρ̂′′(P )P is a good approximation to ρ. Indeed, let K ⊆ [n] be
the subset of qubits where the spectrum of ρ is concentrated on, then

∑

P∈{I,X,Y,Z}⊗n

|ρ̂(P ) − ρ̂′′(P )|2 =
∑

P∈{I,X,Y,Z}⊗K

|ρ̂(P ) − ρ̂′′(P )|2 +
∑

P /∈{I,X,Y,Z}⊗K

|ρ̂(P ) − ρ̂′′(P )|2

≤
∑

P∈{I,X,Y,Z}⊗K

ε2

22n4k
+

∑

P /∈{I,X,Y,Z}⊗K

|ρ̂(P )|2

≤ 2
ε2

22n
,

where in the second line we have used Eqs. (9) and (10); and in the third line that |{I,X, Y, Z}⊗K | =
4k and that the spectrum of ρ is (ε2/22n)-concentrated on K. �

Now we are ready to prove our learning result for k-junta states.

Proof of Theorem 3: The upper bound follows from Theorem 9. The lower bond Ω(4k/ε2) follows
from the fact that k-qubit states are k-juntas and the lower bound for learning k-qubit states of
Haah et al. [HHJ+17]. For the lower bound Ω(log(n)/ε2) we will provide a set of n states {ρi}i∈[n]
of n qubits that are 1-junta, and satisfy

‖ρi − ρj‖tr ≥ ε if i 6= j, (11)

χ({ρ⊗T
i }) ≤ Tε2 for every T ∈ N. (12)

From Eqs. (11) and (12) the lower bound Ω(log(n)/ε2) follows from Lemma 7. For every ε ∈ (0, 1/2)
we define

ρε =
1

2

(
1 + ε 0

0 1 − ε

)
.

For i ∈ [n], we define

ρi =
I

2
⊗ · · · ⊗ ρε︸︷︷︸

i-th qubit

⊗ · · · ⊗ I

2
.

Eq. (11) holds because if i 6= j, then

‖ρi − ρj‖tr =

∥∥∥∥ρε ⊗
I

2
− I

2
⊗ ρε

∥∥∥∥
tr

=

∥∥∥∥∥∥∥∥

1

2




0
ε

−ε
0




∥∥∥∥∥∥∥∥
tr

= ε.

Proving Eq. (12) requires just a bit more work. We begin by noting that

|S(ρε) − 1| ≤ O(ε2) (13)

for every ε < 1/2. Indeed,

|S(ρε) − 1| = | −
∑

x∈{±1}

1 + xε

2
log

(
1 + xε

2

)
− 1| = |

∑

x∈{±1}

1 + xε

2
log (1 + xε) |

= |
∑

x∈{±1}

1 + xε

2
(xε + O(ε2))| = O(ε2),

11



where in the second line we have applied Taylor’s theorem. We recall that the Holevo information
is given by

χ({ρ⊗T
i }) = S


 1

n

∑

i∈[n]

ρ⊗T
i




︸ ︷︷ ︸
(∗)

− 1

n

∑

i∈[n]

S
(
ρ⊗T
i

)

︸ ︷︷ ︸
(∗∗)

.

We will analyze the terms (∗) and (∗∗) separately. We begin with (∗∗):

(∗∗) = S(ρ⊗T
1 ) = T [S(ρε) + (n− 1)] ≥ Tn−O(Tε2),

where we have applied additivity of the entropy under tensor product (see Eq. (1)) and Eq. (13).
The analysis of the term (∗) is a bit more involved:

(∗) = S

(
1

n

{
ρ⊗T
ε ⊗

(
I

2

)⊗T

⊗ · · · ⊗
(
I

2

)⊗T

+ · · · +

(
I

2

)⊗T

⊗ · · · ⊗ ρ⊗T
ε

})

≤ nS

(
1

n

{
ρ⊗T
ε + (n− 1)

(
I

2

)⊗T
})

≤ nTS

(
1

n

{
ρε + (n− 1)

I

2

})

= nTS
(
ρ ε

n

)

≤ nT + TO(ε2/n2),

where in the lines 2 and 3 we have applied subadditivity of the entropy (see Eq. (2)), and in the
last line Eq. (13). Putting the analysis for terms (∗) and (∗∗) together, Eq. (12) follows. �

4.1 QAC0 circuits

4.1.1 Very brief introduction to QAC0 circuits

A QAC0 is a circuit composed by single-qubit gates and Toffoli gates, which are the unitaries
defined via

|x1, . . . , xl, b〉 → |x1, . . . , xl, b · AND(x1, . . . , xl)〉,
where here x1, . . . , xl, b ∈ {−1, 1} and AND(x1, . . . , xl) = −1 if and only if x1 = · · · = xl = −1.
Given a (n + a + 1)-qubit QAC0 circuit one should think of the first n qubits as input qubits, of
the next a qubits as auxiliary qubits and of the last qubit as an output qubit. Also, the last a + 1
qubits are initialized in a fixed state σ. Hence, a QAC0 circuit defines an n-to-1 qubit channel via

Φσ(ρ) = Tr[n+a][U(ρ⊗ σ)U †],

where U is the unitary implemented by the circuit and Tr[n+a] is the trace with respect to the
input and auxiliary qubits. The Choi state of a QAC0 circuit is the Choi state of its correspondent
channel, namely the (n + 1)-qubit state

ρΦσ = Φσ ⊗ Idn(|EPRn〉 〈EPRn|),

where |EPRn〉 is the tensor product of n EPR states.

12



The original motivation when Moore introduced of QAC0 circuits was to use them to approx-
imate Boolean functions f : {−1, 1}n → {−1, 1} [Moo99], namely to approximate n-to-1 qubit
channels like

Φf (ρ) =
∑

x∈{−1.1}n

〈x| ρ |x〉 |f(x)〉 〈f(x)| .

It is easy to check that the Choi state of these channels is given by

ρf =
1

2n


I⊗(n+1) +

∑

S⊆[n]

f̂(S)ZS ⊗ Z


 , (14)

where ZS = ⊗i∈nZ
δi∈S . Hence, for f, g : {−1, 1}n → {−1, 1}, we have that

2n ‖ρf − ρg‖2F = 22n
∑

P∈{I,X,Y,Z}⊗(n+1)

|ρ̂f (P ) − ρ̂g(P )|2 =
∑

S⊆[n]

|f̂(S) − ĝ(S)|2 = Pr[f(x) 6= g(x)],

(15)
where in the first equality we have used Parseval’s identity, in the second Eq. (14) and the last
equality is elementary. From Eq. (14) follows that learning the Choi state of a QAC0 circuit in the
2n-Frobenius norm is a pretty natural problem.

4.1.2 Learning QAC0 circuits

Nadimpalli et al. showed that, for fixed depth and size, the Pauli spectrum of the Choi state of a
QAC0 circuit is concentrated on low-degree coefficients [NPVY23, Theorem 18]. However, we have
noticed that they proved something stronger, namely that these states are close to be juntas.

Theorem 10. Let ρ be the Choi state of (n + a + 1) QAC0 circuit of depth d and size s and let
ε > 0. Then, there exists a set K ⊆ [n + 1] with |K| ≤ (log(2as2/ε))d such that

∑

supp(P )6⊆K

|ρ̂(P )|2 ≤ ε

22n
.

Note that Theorem 4 quickly follows from Theorems 9 and 10 and using that for two n-qubit
states ρ and ρ′ we have that by Parseval’s identity

22n
∑

P∈{I,X,Y,Z}⊗n

|ρ̂(P ) − ρ̂′(P )|2 = 2n
∥∥ρ− ρ′

∥∥2
F
.

As Theorem 10 was not explicitly stated in [NPVY23], we prove it here. To do that, we just
have to borrow a few lemmas from [NPVY23] and apply them in a careful way. We note that in
that work results are stated for the Choi representation of a channel and in our work we use the
Choi state of the channel. Both are easily related, as the Choi state is obtained by dividing the
Choi representation by the dimension of the space.

Let U be the unitary implemented by a (n+a+1) QAC0 circuit. Then, it defines a (n+a+1)-
to-1 qubit channel via

Φ(·) = Tr[n+a][U · U †].

The first lemma we need states that the Choi state of this (n + a + 1)-to-1 qubit channel does not
change much if one removes from the circuit a few Toffoli gates acting on many qubits [NPVY23,
Lemma 23].
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Lemma 11 ([NPVY23]). Let Φ be the (n+a+1)-to-1 channel defined by an (n+a+1)-qubit QAC0

circuit. Let Φ′ be the (n+a+ 1)-to-1 channel obtained by removing from the circuit m Toffoli gates
acting on at least l qubits each. Then, the Choi states satisfy

∑

P∈{I,X,Y,Z}⊗(n+a+2)

|ρ̂Φ(P ) − ρ̂Φ′(P )|2 = O

(
m2

2l22(n+a+2)

)
.

Recall that (n + a + 1)-qubit QAC0 circuit also defines an n-to-1 qubit channel when the
auxiliary register is initialized on a fixed (a + 1)-qubit state σ, namely

Φσ(ρ⊗ σ) = Φ(ρ⊗ σ).

The second lemma we need relates the Pauli spectrum of the Choi states of Φσ and Φ [NPVY23,
Proposition 28].

Lemma 12 ([NPVY23]). Let Φ and Φσ be the channels as above determined by a QAC0 circuit.
Then, their Choi states satisfy

ρ̂Φσ(P ) = 2a+1
∑

Q∈{I,X,Y,Z}⊗n

ρ̂Φ(P ⊗Q) Tr[QσT ].

Now, we are ready to prove Theorem 10.

Proof: Let Φ be the (n+a+1)-to-1 channel determined by (n+a+1)-qubit QAC0 circuit of depth
d a size s. Let l ∈ N to be fixed later. Let Φ′ be the (n+ a+ 1)-to-1 channel obtained by removing
from the circuit the Toffoli gates that act on more than l qubits. As there is at most s of them, by
Lemma 11 we have that the Choi states satisfy

∑

P∈{I,X,Y,Z}⊗(n+a+2)

|ρ̂Φ(P ) − ρ̂Φ′(P )|2 = O

(
s2

2l22(n+a+1)

)
. (16)

Now, by a light-cone argument, as the depth of the circuit without the long Toffoli gates gates is
at most d, then at the end of the circuit the output qubit only depends on at most ld other qubits.
This implies that the ρΦ′ is a k-junta state for k = ld + 1. By Eq. (16), if K ⊆ [n+ a+ 2] is the set
of k qubits on which ρΦ′ depends on, then

∑

P /∈{I,X,Y,Z}K

|ρ̂Φ(P )|2 = O

(
s2

2l22(n+a+2)

)
. (17)
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Now, if K ′ ⊆ [n + 1] is the subset of non-auxiliary qubits of K, i.e., K ′ = K ∩ [n + 1], then

∑

supp(P )⊆[K ′]

|ρ̂Φ′(P )|2 = 22(a+1)
∑

supp(P )⊂[K ′]

|
∑

Q∈{I,X,Y,Z}⊗(a+1)

ρ̂Φ(P ⊗Q) Tr[QσT ]|2

≤ 22(a+1)
∑

supp(P )⊂[K ′]


 ∑

Q∈{I,X,Y,Z}⊗(a+1)

|ρ̂Φ(P ⊗Q)|2

 ·


 ∑

Q∈{I,X,Y,Z}⊗(a+1)

|Tr[QσT ]|2



= 23(a+1)
∥∥σT

∥∥2
F

∑

supp(P )⊂[K ′]

∑

Q∈{I,X,Y,Z}⊗(a+1)

|ρ̂Φ(P ⊗Q)|2

≤ 23(a+1)
∑

supp(P )6⊆[K]

|ρ̂Φ(P )|2

= 23(a+1)O

(
s2

2l22(n+a+2)

)

= O

(
s22a+1

2l22(n+1)

)
,

where the first line is true by Lemma 12; in the second we apply Cauchy-Schwarz; in the third we use
Parseval identity with σT ; in the fourth line we use that if supp(P ) 6⊆ K ′, then supp(P ⊗Q) 6⊆ K;
and in the fifth line we use Eq. (17). Now, the result follows by taking l = log(s22a+1/ε2). �

4.1.3 New lower bounds on the computing power of QAC0 circuits

Finally, we show how to use Theorem 10 to improve on the lower bounds on the computing power
of QAC0 circuits. To improve on the lower bounds that one would obtain with [NPVY23, Theorem
18], one should seek for functions of low-degree that are far from being juntas. With that purpose,
we consider the address function, that is known to be the Boolean function of degree D + 1 that
depends on more variables [NS94]. To define it, let add: {−1, 1}D → [2D] be a bijection. The

D-address function f : {−1, 1}D × {−1, 1}2D → {−1, 1} defined by

f(x, y) =
∑

a∈{−1,1}D ,y∈{−1,1}2D

(
x1a1 + 1

2

)
. . .

(
xkak + 1

2

)
yadd(a) (18)

for every x ∈ {−1, 1}D and y ∈ {−1, 1}2D . Note that f has degree D + 1, but depends on 2D + D
variables. Moreover, we can show that f is far from every Boolean function that depends on less
than 2D variables.

Fact 13. Let f be the D-address function. Let k ∈ [2D]. Then, the degree of f is D + 1 and f is
((2D − k)/2D+1)-far from being a k-junta.

Proof: Let g : {−1, 1}D+2D → {−1, 1} be a k-junta. The distance between g and f is

d(f, g) = Prx,y[g(x, y) 6= f(x, y)] = 1 − Prx,y[g(x, y) = f(x, y)] = 1 − Prx,y[g(x, y) = yadd(x)],

where in the last equality we have used that
(
x1a1+1

2

)
. . .
(
xkak+1

2

)
= δa,x. Now,

Prx,y[g(x, y) = yadd(x)] =
1

2D

∑

x∈{−1,1}D

Pry[g(x, y) = yadd(x)] ≤
1

2D

(
k +

1

2
(2D − k)

)
,

15



where in the inequality we have used that g depends on at most k variables of y1, . . . , y2D , and that
if g does not depend on yi, then Pry[g(x, y) = yi] = 1/2. Putting everything together follows that
d(f, g) ≥ ((2D − k)/2D+1). �

Corollary 14. In order to compute the D-address function with a depth d, size s QAC0 circuit
with a-auxiliary qubits up to error 1/4, the parameters need to satisfy

s22a = Ω(2(2
D)1/d).

Proof: By Fact 13 it follows that the D-address function is 1/8-far from every ((3/4)2D)-junta.
One the other hand, by Theorem 10 it follows that the Choi-state of the QAC0 that does not
satisfy log(s22a)d = Ω(2D) circuit is 1/8-close to a ((3/4)2D)-junta. Putting both things together,
the claimed result follows. �

Remark 15. If one used [NPVY23, Theorem 18] instead of Theorem 10 in the proof of Corollary 14,
one would obtain a weaker lower bound s22a = Ω(2D/d).
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