
Accepted in the Journal of Optimization Theory and Applications

Exterior-point Optimization for Sparse and Low-rank
Optimization

Shuvomoy Das Gupta, Bartolomeo
Stellato, and Bart P.G. Van Parys

Abstract Many problems of substantial current interest in machine learning,
statistics, and data science can be formulated as sparse and low-rank opti-
mization problems. In this paper, we present the nonconvex exterior-point
optimization solver (NExOS)—a first-order algorithm tailored to sparse and
low-rank optimization problems. We consider the problem of minimizing a
convex function over a nonconvex constraint set, where the set can be decom-
posed as the intersection of a compact convex set and a nonconvex set involv-
ing sparse or low-rank constraints. Unlike the convex relaxation approaches,
NExOS finds a locally optimal point of the original problem by solving a se-
quence of penalized problems with strictly decreasing penalty parameters by
exploiting the nonconvex geometry. NExOS solves each penalized problem by
applying a first-order algorithm, which converges linearly to a local minimum
of the corresponding penalized formulation under regularity conditions. Fur-
thermore, the local minima of the penalized problems converge to a local
minimum of the original problem as the penalty parameter goes to zero. We
then implement and test NExOS on many instances from a wide variety of
sparse and low-rank optimization problems, empirically demonstrating that
our algorithm outperforms specialized methods.
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1 Introduction

This paper studies optimization problems involving a strongly convex and
smooth cost function over a closed nonconvex constraint set X involving
sparse or low-rank constraints. We propose a first-order algorithm nonconvex
exterior-point optimization solver (NExOS) to solve such problems numerically.
We can write such problems as:

minimize f(x) + (β/2)∥x∥2

subject to x ∈ X ,
(P)

where x takes value in a finite-dimensional vector space E over the reals, f is
a strongly convex and smooth function. In Appendix B.1, we generalize our
framework to the case when f is non-smooth convex.

The regularization parameter β > 0 is commonly introduced in statistics
and machine learning problems to reduce the generalization error without in-
creasing the training error [33, §5.2.2]. In this paper, there is also a theoretical
consideration behind including the term β

2 ∥x∥
2 in problem (P). NExOS finds

a locally optimal point of problem (P) by solving a sequence of penalized sub-
problems with strictly decreasing penalty parameters, where each penalized
subproblem is solved by a first-order algorithm. Under the presence of β

2 ∥x∥
2

with β > 0, we can prove that each penalized subproblem is locally strongly
convex and smooth admitting a unique local minimum (see Proposition 1),
which in turn ensure linear convergence of the first-order method to that local
minimum (see Theorem 1). In the Numerical Experiments section, we demon-
strate that β can be set to a value as small as 10−8. This empirical evidence
suggests that, in practice, the impact of β on the objective value can be made
negligible, yet one can still reap the theoretical benefits. Therefore, while β
plays a crucial role in the theoretical aspects of our algorithm, its influence on
the problems considered in the Numerical Experiments section is minimal and
can be adjusted as per the problem’s requirements.

Furthermore, E is equipped with inner product ⟨· | ·⟩ and norm ∥ · ∥ =√
⟨x | x⟩. For E = Rd, we have ⟨x | y⟩ = x⊤y for x, y ∈ Rd, and for E =

Rm×n, we have ⟨X | Y ⟩ = tr(X⊤Y ), forX,Y ∈ Rm×n. The constraint set X is
closed and nonconvex and can be decomposed as the intersection of a compact
convex set and a nonconvex set involving sparse or low-rank constraints. Sparse
and low-rank constraint sets are very important in modeling many machine
learning problems, because they allow for high interpretability, speed-ups in
computation, and reduced memory requirements [40].
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Sparsity-constrained optimization Sparsity constraints have found applications
in many practical settings, e.g., gene expression analysis [38, pp. 2–4], sparse
regression [40, pp. 155–157], signal transmission and recovery [22,67], hierar-
chical sparse polynomial regression [14], and best subset selection [13], just to
name a few. In these problems, the constraint set X decomposes as X = C

⋂
N ,

where C is a compact convex set, and

N = {x ∈ Rd | card(x) ≤ k}, (1)

where card(x) counts the number of nonzero elements in x. In these optimiza-
tion problems, C can be a polyhedron, infinity-norm ball, box constraint set, or
probability simplex; these sets usually show up in applications involving econo-
metrics, housing price prediction, air-quality prediction, signal processing, and
meteorology [11,25,15,8].

In this paper, we apply NExOS to solve the sparse regression problem
for both synthetic and real-world datasets in §4.1, which is concerned with
approximating a vector b ∈ Rm with a linear combination of at most k columns
of a matrix A ∈ Rm×d with bounded coefficients. This problem has the form:

minimize ∥Ax− b∥22 + (β/2)∥x∥22
subject to card(x) ≤ k, ∥x∥∞ ≤ Γ,

(SR)

where x ∈ Rd is the decision variable, and A ∈ Rm×d, b ∈ Rm, and Γ > 0
are problem data.

Low-rank optimization We can write low-rank optimization problems in the
form of problem (P), which are common in machine learning applications such
as collaborative filtering [40, pp. 279-281], design of online recommendation
systems [45,21], bandit optimization [41], data compression [34,46,60], and low
rank kernel learning [2]. In these applications, the constraint set X decomposes
as X = C

⋂
N , where C is a compact convex set, and

N = {X ∈ Rm×d | rank(X) ≤ r}. (2)

In these optimization problems, C can be matrix-norm ball, Frobenius-
norm ball, hyperplane/half-space induced by trace [10,9]. In this paper, we
apply NExOS to solve the affine rank minimization problem:

minimize ∥A(X)− b∥22 + (β/2)∥X∥2F
subject to rank(X) ≤ r, ∥X∥2 ≤ Γ,

(RM)

where X ∈ Rm×d is the decision variable, b ∈ Rk is noisy measurement data,
and A : Rm×d → Rk is a linear map. The parameter Γ > 0 is the upper
bound for the spectral norm of X. The affine map A is determined by k
matrices A1, . . . , Ak in Rm×d where A(X) = (tr(AT

1X), . . . , tr(AT
kX)). We

present several numerical experiments to solve (RM) using NExOS for both
synthetic and real-world datasets in §4.2.
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1.1 Related work

Convex relaxation approach Due to the presence of the nonconvex set X , the
nonconvex problem (P) isNP-hard [35]. A common way to deal with this issue
is to avoid this inherent nonconvexity altogether by convexifying the original
problem. The relaxation of the sparsity constraint leads to the popular LASSO
formulation and its variants [38], whereas relaxation of the low-rank constraints
produces the nuclear norm based convex models [28].

The basic advantage of the convex relaxation technique is that, in general,
a globally optimal solution to a convex problem can be computed reliably and
efficiently [20, §1.1], whereas for nonconvex problems a local optimal solution
is often the best one can hope for. Furthermore, if certain statistical assump-
tions on the data generating process hold, then it is possible to recover exact
solutions to the original nonconvex problems with high probability by solving
the convex relaxations (see [38] and the references therein).

However, when stringent assumptions do not hold, then solutions to the
convex formulations can be of poor quality and may not scale very well [40,
§6.3 and §7.8]. In this situation, the nonconvexity of the original problem
must be confronted directly, because such nonconvex formulations capture the
underlying problem structures more accurately than their convex counterparts.

First-order methods To that goal, first-order algorithms such as hard thresh-
olding algorithms, e.g., IHT [17], NIHT [18], HTP [30], CGIHT [16], address
nonconvexity in sparse and low-rank optimization by implementing variants
of projected gradient descent with projection taken onto the sparse and/or
low-rank set.

While these first-order methods have been successful in recovering low-
rank and sparse solutions in underdetermined linear systems, they too require
assumptions on the data such as the restricted isometry property for recovering
true solutions [40, §7.5]. Furthermore, to converge to a local minimum, hard
thresholding algorithms require the spectral norm of the measurement matrix
to be less than one, which is a restrictive condition [17].

Besides hard thresholding algorithms, heuristics based on first-order algo-
rithms such as the alternating direction method of multipliers (ADMM) have
gained a lot of traction in the last few years. Though ADMM was originally de-
signed to solve convex optimization problems, since the idea of implementing
this algorithm as a general purpose heuristic to solve nonconvex optimiza-
tion problems was introduced in [19, §9.1-9.2], ADMM-based heuristics have
been applied successfully to approximately solve nonconvex problems in many
different application areas [63,25].

However, the biggest drawback of these heuristics based on first-order
methods comes from the fact that they take an algorithm designed to solve
convex problems and apply it verbatim to a nonconvex setup. As a result,
these algorithms often fail to converge, and even when they do, it need not
be a local minimum, let alone a global one [62, §2.2]. Also, empirical evidence
suggests that the iterates of these algorithms may diverge even if they come
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arbitrarily close to a locally optimal solution during some iteration. The main
reason is that these heuristics do not establish a clear relationship between
the local minimum of problem (P) and the fixed point set of the underlying
operator that controls the iteration scheme. An alternative approach that has
been quite successful empirically in finding low-rank solutions is to consider
an unconstrained problem with Frobenius norm penalty and then using al-
ternating minimization to compute a solution [68]. However, the alternating
minimization approach may not converge to a solution and should be consid-
ered a heuristic [68, §2.4].

Discrete optimization approach For these reasons above, in the last few years,
there has been significant interest in addressing the nonconvexity present in
many optimization problems directly via a discrete optimization approach.
In this way, a particular nonconvex optimization problem is formulated ex-
actly using discrete optimization techniques and then specialized algorithms
are developed to find a certifiably optimal solution. This approach has found
considerable success in solving machine learning problems with sparse and low-
rank optimization [12,66]. A mixed integer optimization approach to compute
near-optimal solutions for sparse regression problem, where problem dimen-
sion d = 1000, is computed in [13]. In [15], the authors propose a cutting
plane method for a similar problem, which works well with mild sample cor-
relations and a sufficiently large dimension. In [39], the authors design and
implement fast algorithms based on coordinate descent and local combinato-
rial optimization to solve sparse regression problem with a three-fold speedup
where d ≈ 106. In [10], the authors propose a framework for modeling and
solving low-rank optimization problems to certifiable optimality via symmet-
ric projection matrices.

However, the runtime of these discrete optimization based algorithms can
often become prohibitively long as the problem dimensions grow [13]. Also,
these discrete optimization algorithms have efficient implementations only for
a narrow class of loss functions and constraint sets; they do not generalize
well if a minor modification is made to the problem structure, and in such a
case they often fail to find a solution point in a reasonable amount of time
even for smaller dimensions [12]. Furthermore, one often relies on commercial
softwares, such as Gurobi, Mosek, or Cplex to solve these discrete optimization
problems, thus making the solution process somewhat opaque [13,66].

1.2 Contributions

The main contribution of this work is to propose NExOS: a first-order al-
gorithm tailored for nonconvex optimization problems of the form (P). The
term exterior-point originates from the fact that the iterates approach a lo-
cal minimum from outside of the feasible region; it is inspired by the convex
exterior-point method first proposed by Fiacco and McCormick in the 1960s
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[29, §4]. By exploiting the underlying geometry of the constraint set, we con-
struct an iterative method that finds a locally optimal point of the original
problem via an outer loop consisting of increasingly accurate penalized for-
mulations of the original problem by reducing only one penalty parameter.
Each penalized problem is then solved by applying an inner algorithm that
implements a variant of the Douglas-Rachford splitting algorithm.

We prove that NExOS, besides avoiding the drawbacks of convex relaxation
and discrete optimization approach, has the following favorable features. First,
the penalized problem has strong convexity and smoothness around local min-
ima, but can be made arbitrarily close to the original nonconvex problem by
reducing the penalty parameter. Second, under mild regularity conditions, the
inner algorithm finds local minima for the penalized problems at a linear con-
vergence rate, and as the penalty parameter goes to zero, the local minima of
the penalized problems converge to a local minimum of the original problem.
Furthermore, we show that, when those regularity conditions do not hold, the
inner algorithm is still guaranteed to subsequentially converge to a first-order
stationary point of the penalized problem at the rate o(1/

√
k).

We implement NExOS in the open-source Julia package NExOS.jl and test
it extensively on many synthetic and real-world instances of different noncon-
vex optimization problems of substantial current interest. We demonstrate
that NExOS very quickly computes solutions that are competitive with or bet-
ter than specialized algorithms on various performance measures. NExOS.jl is
available at https://github.com/Shuvomoy/NExOS.jl.

Organization of the paper The rest of the paper is organized as follows. We
describe our NExOS framework in §2. We provide convergence analysis of the
algorithm in §3. Then we demonstrate the performance of our algorithm on
several nonconvex optimization problems of significant current interest in §4.
The concluding remarks are presented in §5.

2 Our approach

The backbone of our approach is to address the nonconvexity by working
with an asymptotically exact nonconvex penalization of problem (P), which
enjoys local convexity around local minima. We use the notation ιX (x) that
denotes the indicator function of the set X at x, which is 0 if x ∈ X and ∞
else. Using this, we can write problem (P) as an unconstrained optimization
problem, where the objective is f(x)+(β/2)∥x∥2+ ιX (x). In our penalization,
we replace the indicator function ιX with its Moreau envelope with positive
parameter µ:

µι(x) = min
y

{ιX (y) + (1/2µ)∥y − x∥2} = (1/2µ)d2(x), (3)

where d(x) is the Euclidean distance of the point x from the set X .

https://github.com/Shuvomoy/NExOS.jl
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Properties of Moreau envelope for a nonconvex set. The function µι, though
nonconvex, has many desirable attributes that greatly simplify design and
convergence analysis of our algorithm. We summarize these properties below;
See [3, Proposition 12.9] for the first four properties, and Proposition 1 in §3
for the last one.

1. Bounded. The function µι is bounded on every compact set. In contrast,
ιX is an extended valued function that takes the value +∞ outside the set
X .

2. Finite and jointly continuous. For every µ > 0 and x ∈ E, the function
µι(x) is jointly continuous and finite. Therefore, µι is continuous on E. In
contrast, the indicator function ιX is not continuous.

3. Accuracy of approximation controlled by µ. With decreasing µ, the
approximation µι monotonically increases to ιX , i.e., for any positive µ1, µ2

such that 0 ≤ µ1 ≤ µ2, we have

0 ≤ µ2ιX (x) ≤ µ1ιX (x) ≤ ιX (x)

for any x ∈ E.
4. Asymptotically equal to ιX . The approximation µι is asymptotically

equal to ιX as µ goes to zero, i.e., we have the point-wise limit

lim
µ↓0

µι(x) = ιX (x)

for all x ∈ E.
5. Local convexity and differentiability around points of interest.

Adding any quadratic regularizer to µι makes the sum locally convex and
differentiable around points of interest. To be precise, if at x, the set X is
prox-regular, then for any value of β > 0, the function µι(x) + β

2 ∥x∥
2 is

convex and differentiable on a neighborhood of x.

The favorable features of µι motivate us to consider the following penaliza-
tion formulation of problem (P) denoted by problem (Pµ), where the subscript
µ indicates the penalty parameter:

minimize f(x) + µI(x), (Pµ)

where µI ≡ µι+ (β/2)∥ · ∥2, x ∈ E is the decision variable, and µ is a positive
penalty parameter. We call the cost function in problem (Pµ) an exterior-
point minimization function; the term is inspired by [29, §4.1]. The notation
µI ≡ µι+ (β/2)∥ · ∥2 introduced in problem (Pµ) not only reduces notational
clutter, but also alludes to a specific way of splitting the objective into two
summands f and µI, which will ultimately allow us to establish convergence
of our algorithm in §3. Because µι is an asymptotically exact approximation
of ιX as µ→ 0, solving problem (Pµ) for a small enough value of the penalty
parameter µ suffices for all practical purposes.

To provide intuition on how the exterior-point minimization function in
problem (Pµ) compares against the original minimization function in problem
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Fig. 1 An illustration of how the penalized cost function in problem (Pµ) compares against
the original cost function in problem (P) for different values of µ. Note that the regularization
parameter β is kept fixed at its initial value 1 throughout.

(P), we provide an illustrative one-dimensional example in Figure 1. Figure
1 captures all the key properties of our penalization scheme. In this figure,
f = (1/2)(·)2, β = 1, X = [−2,−1]

⋃
[2, 3]. The problem has two local minima,

one at −1 and one at −2. We see that for larger values of µ, problem (Pµ)
is not a good approximation of problem (P), but around each local minimum
there is a relatively large region where f + µI is strongly convex and smooth.
As µ gets smaller, problem (Pµ) becomes a more accurate approximation of
problem (P), though the regions of convexity and smoothness around local
minima shrink. For µ = 10−4, problem (Pµ) is identical to problem (P) for all
practical purposes. Note that the regularization parameter β is kept fixed at
its initial value 1 throughout.

Now that we have intuitively justified intuition behind working with (Pµ),
we are in a position to present our algorithm.

Algorithm description Algorithm 1 outlines NExOS. The main part is an outer
loop that solves a sequence of penalized problems of the form problem (Pµ)
with strictly decreasing penalty parameter µ, until the termination criterion is
met, at which point the exterior-point minimization function is a sufficiently
close approximation of the original cost function. For each µ, problem (Pµ) is
solved by an inner algorithm, denoted by Algorithm 2.

One can derive Algorithm 2 by applying Douglas-Rachford splitting (DRS)
[3, page 401] to problem (Pµ) as follows. If we apply Douglas-Rachford splitting
[3, page 401] to problem (Pµ) with penalty parameter µ, we have the following
variant with three sub-iterations:

xn+1 = proxγf (z
n)

yn+1 = proxγ µI
(
2xn+1 − zn

)
zn+1 = zn + yn+1 − xn+1.

(DRS)
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given: regularization parameter β > 0, an initial point zinit, initial penalty
parameter µinit, minimum penalty parameter µmin, tolerance for the fixed
point gap ϵ for each inner iteration, tolerance for stopping criterion δ for
the outer iteration, and multiplicative factor ρ ∈ (0, 1).

Initialization. µ := µinit, and z
0 := zinit.

Outer iteration. while stopping criterion is not met do
Inner iteration. Using Algorithm 2, compute xµ, yµ, and zµ that solve problem
(Pµ) with tolerance ϵ, where z0µ := z0 is input as the initial point.
Stopping criterion. quit if
|
(
f(ΠX xµ) + (β/2)∥ΠXxµ∥2

)
− (f(xµ) + µI(xµ))| ≤ δ.

Set initial point for next inner iteration. z0 := zµ.
Update µ. µ := ρµ.

end
return xµ, yµ, and zµ

Algorithm 1: Nonconvex Exterior-point Optimization Solver (NExOS).
Here ΠX (x) denotes the Euclidean projection of x on the nonconvex set X .

given: starting point z0, tolerance for the fixed point gap ϵ, and proximal
parameter γ > 0.

Initialization. n := 0, κ := 1/(βγ + 1), θ := µ/(γκ+ µ).
while ∥xn − yn∥ > ϵ do

Compute xn+1 := proxγf (zn).

Compute ỹn+1 := κ
(
2xn+1 − zn

)
.

Compute yn+1 := θỹn+1 + (1− θ)ΠX
(
ỹn+1

)
.

Compute zn+1 := zn + yn+1 − xn+1.
Update n := n+ 1.

end
return xn, yn, and zn.

Algorithm 2: Inner Algorithm for problem (Pµ). Here ΠX (x) denotes the
Euclidean projection of x on the nonconvex set X , and proxγf denotes the
proximal operator of f with parameter γ > 0 as defined in (4).

The computational cost for proxγ µI is the same as computing a projection
onto the constraint set X , as stated in Lemma 1 below; this result follows from
[5, Theorem 6.13, Theorem 6.63]. It should be noted that [5, Theorem 6.13,
Theorem 6.63] assume convexity of the functions in the theorem statements,
but its proof does not require convexity and works for nonconvex functions as
well.

Lemma 1 (Computing proxγ µI(x) ). Consider the nonconvex compact con-
straint set X in problem (P). Denote κ = 1/(βγ + 1) ∈ [0, 1] and θ =
µ/(γκ + µ) ∈ [0, 1]. Then, for any x ∈ E, and for any µ, β, γ > 0, we have
proxγ µI (x) = θκx+ (1− θ)ΠX (κx).

Finally, combining (DRS), [5, Theorem 6.13], and Lemma 1, we arrive at
Algorithm 2.

Algorithm subroutines The inner algorithm requires two subroutines, evaluat-
ing (i) proxγf (x), which is the proximal operator of the convex function f at
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the input point x, and (ii) ΠX (x), which is a projection of x on the noncon-
vex set X . We discuss now how we compute them in our implementation. To
that goal, we recall that, for a function g (not necessarily convex) its proximal
operator proxγg and Moreau envelope γg, where γ > 0, are defined as:

proxγg(x) = argmin
y∈E

(
g(y) + (1/2γ)∥y − x∥2

)
,

γg(x) = miny∈E

(
g(y) + (1/2γ)∥y − x∥2

)
.

(4)

Computing proximal operator of f For the convex function f , proxγf is always
single-valued and computing it is equivalent to solving a convex optimization
problem, which often can be done in closed form for many relevant cost func-
tions in machine learning [5, pp. 449-450]. If the proximal operator of f does
not admit a closed form solution, then we solve the corresponding convex op-
timization problem (4) to a high precision solution. For this purpose, we can
select any convex optimization solver supported by MathOptInterface, which
is the abstraction layer for optimization solvers in Julia.

Computing projection onto X The notation ΠX (x) denotes the projection op-
erator of x onto the constraint set X , defined as

ΠX (x) = proxγιX (x) = argminy∈X (∥y − x∥2).

A list of nonconvex sets that are easy to project onto can be found in [25,
§4], this includes nonconvex sets such as boolean vectors with fixed cardinal-
ity, vectors with bounded cardinality, quadratic sets, matrices with bounded
singular values, matrices with bounded rank etc. If X is in this list, then we
project onto X directly.

Now consider the case where the constraint set X decomposes as X =
C
⋂
N , where N is a nonconvex set with tractable projection and C is any

compact convex set. In this setup, let ιC and ιN be the indicator functions
of C and N , respectively. Defining ϕ = f + ιC , we write problem (P) as:
minx∈E ϕ(x) + (β/2)∥x∥2 + ιN (x).

For any convex function ϕ, its Moreau envelope νϕ, for any ν > 0, has the
following three desirable features.

1. For every x ∈ E we have νϕ(x) ≤ ϕ(x) and νϕ(x) → ϕ(x) as ν → 0 [53,
Theorem 1.25].

2. we have x⋆ ∈ argminx∈E ϕ(x) if and only if x⋆ ∈ argminx∈E
νϕ(x) with the

minimizer x⋆ satisfying ϕ(x⋆) = νϕ(x⋆) [3, Corollary 17.5].
3. the Moreau envelope νϕ is convex, and smooth (i.e., it is differentiable

and its gradient is Lipschitz continuous) everywhere irrespective of the
differentiability or smoothness of the original function ϕ. The gradient
is: νϕ(x) =

(
x− proxνϕ(x)

)
/ν, which is (1/ν)−Lipschitz continuous [3,

Proposition 12.29].
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These properties make νϕ a smooth approximation of ϕ for a small enough
ν. Hence, we work with the following approximation of the original prob-
lem: minx

νϕ + (β/2)∥x∥2 + ιN (x), where we replace f with νϕ and ιX with
ιN in Algorithms 1 and 2. The proximal operator of νϕ can be computed
using proxγ νϕ(x) = x + (γ/(γ + ν))(prox(γ+ν)ϕ(x) − x), where computing
prox(γ+ν)ϕ(x) corresponds to solving the following convex optimization prob-

lem argminy∈C ϕ(y)+1/(2(γ+ν))∥y−x∥2, which follows from [3, Proposition
24.8].

Remark 1 (Reasons for choosing Douglas-Rachford splitting as the inner algo-
rithm.). Problem (Pµ) involves minimizing the sum of two functions: a convex
function f and a nonconvex function µI. As the objective is split into two parts
in problem (Pµ), selecting any other two-operator splitting algorithm (e.g.,
forward-backward splitting [56, page 25], Chambolle-Pock algorithm [56, page
32], ADMM [48] etc.) can work as the inner algorithm in principle. However,
in the context of our problem setup, Douglas-Rachford splitting might be the
most suitable choice for the following reasons.

1. We have picked Douglas-Rachford splitting over ADMM, because Douglas-
Rachford operates on the original nonconvex problem, whereas ADMM
can be viewed as Douglas-Rachford splitting on the dual of the original
nonconvex problem [65]. As strong duality usually does not hold when the
primal problem is nonconvex, it seems more intuitive to work with the
nonconvex problem directly over its dual.

2. We favored Douglas-Rachford splitting over proximal gradient method, be-
cause even when the problem is convex, Douglas-Rachford splitting con-
verges under more general conditions, whereas proximal gradient method
require more restrictive conditions to converge [57, page 49]. Hence, we
believe that Douglas-Rachford splitting represents the most natural choice
for the inner algorithm over the proximal gradient method.

3. Douglas-Rachford splitting is favorably unique in contrast with other two-
operator splitting methods, as Douglas-Rachford splitting is the only two-
operator splitting method that satisfies the following properties simulta-
neously [55]: (i) it is constructed only with scalar multiplication, addition,
and proximal operators, (ii) it computes proximal operators only once ev-
ery iteration, (iii) it converges unconditionally for maximally monotone
operators, and (iv) it does not increase the problem size.
In §3, some of these desirable properties of Douglas-Rachford splitting are
exploited to establish convergence. While other operator splitting algo-
rithms may work to establish convergence as well, some of the unique
features of Douglas-Rachford splitting will be lost [55].

3 Convergence analysis

This section is organized as follows. We start with the definition of the key ge-
ometry property of sets involving sparse and low-rank optimization problems.
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Then we define the local minima of such problems, followed by the assump-
tions we use in our convergence analysis. We next discuss the convergence
roadmap, where the first step involves showing that the exterior point mini-
mization function is locally strongly convex and smooth around local minima,
and the second step entails connecting the local minima with the underlying
operator controlling NExOS. Then, we present the main result, which shows
that, under mild regularity conditions, the inner algorithm of NExOS finds lo-
cal minima for the penalized problems at a linear convergence rate, and as the
penalty parameter goes to zero, the local minima of the penalized problems
converge to a local minimum of the original problem. Furthermore, we show
that, when those regularity conditions do not hold, the inner algorithm is still
guaranteed to subsequentially converge to a first-order stationary point at the
rate o(1/

√
k).

The key geometric property of sparse and low-rank constraint sets that we
use in our convergence analysis is prox-regularity at local minima, i.e., having
single-valued Euclidean projection around local minima [50]. Prox-regularity
of a set at a point is defined as follows.

Definition 1 (Prox-regular set [50]). A nonempty closed set S ⊆ E is prox-
regular at a point x ∈ S if projection onto S is single-valued on a neighborhood
of x. The set S is prox-regular if it is prox-regular at every point in the set.

If the constraint set X decomposes as X = C
⋂

N , where C is a compact
convex set, and N is prox-regular around local minima, then the feasible set X
inherits the prox-regularity property around local minima from the set N (see
Lemma 4 in §3). The set N in (2) is a prox-regular set at any point X ∈ Rm×d

where rank(X) = r [44, Proposition 3.8]. One can show that X inherits the
prox-regularity property at any X with rank(X) = r from the set N ; a formal
proof is given in Lemma 4 in Appendix A.1. Similarly, N in (1) is prox-regular
at any point x satisfying card(x) = k because we can write card(x) ≤ k as a
special case of the low-rank constraint by embedding the components of x in
the diagonal entries of a matrix and then using the prox-regularity of low-rank
constraint set.

In our convergence analysis, we use the prox-regularity property of sparse
and low-rank optimization to establish our convergence results, hence NExOS
can be applied to problems involving other constraint sets that are prox-regular
at local minimal. Some other notable prox-regular sets are as follows. Closed
convex sets are prox-regular everywhere [53, page 612]. Examples of well-
known prox-regular sets that are not convex include sets involving bilinear
constraints [4], weakly convex sets [69], proximally smooth sets [23], strongly
amenable sets [53, page 612], and sets with Shapiro property [59]. Also, a
nonconvex set defined by a system of finitely many inequality and equality
constraints for which a basic constraint qualification holds is prox-regular [52,
page 10].

We next provide the definition of local minimum of problem (P). Recall
that, according to our setup the set X is prox-regular at local minimum.
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Definition 2 (Local minimum of problem (P)). A point x̄ ∈ X is a local
minimum of problem (P) if the set X is prox-regular at x̄, and there exists
a closed ball with center x̄ and radius r, denoted by B(x̄; r) such that for all
y ∈ X ∩B(x̄; r) \ {x̄}, we have f(x̄) + (β/2)∥x̄∥2 < f(y) + (β/2)∥y∥2.

In the definition above, the strict inequality is due to the strongly convex
nature of the objective f + (β/2)∥ · ∥2 and follows from [1, Proposition 2.1]
and [53, Theorem 6.12]. We now state and justify the assumptions used in our
convergence analysis.

Assumption 1 (Strong convexity and smoothness of f). The function f
in problem (Pµ) is α-strongly convex and L-smooth where L > α > 0, i.e.,
f − (α/2)∥ · ∥2 is convex and f − (L/2)∥ · ∥2 is concave.

Assumption 2 (Problem (P) is not trivial). The unique solution to the un-
constrained strongly convex problem minx f(x) + (β/2)∥x∥2 does not lie in X .

Assumption 1 corresponds to the function f + (β/2)∥ · ∥2 being (α + β)-
strongly convex and (L + β)-smooth. In our convergence analysis, β > 0 can
be arbitrarily small, so it does not fall outside the setup described in §1. The
L-smoothness in f is equivalent to its gradient ∇f being L−Lipschitz every-
where on E [3, Theorem 18.15]. In our convergence analysis, this assumption is
required in establishing linear convergence of the inner algorithms of NExOS.

Assumption 2 imposes that a local minimum of problem (P) is not the
global minimum of its unconstrained convex relaxation, which does not in-
cur any loss of generality. We can solve the unconstrained strongly convex
optimization problem minx f(x) + (β/2)∥x∥2 and check if the corresponding
minimizer lies in X ; if that is the case, then that minimizer is also the global
minimizer of problem (P), and there is no point in solving the nonconvex
problem. This can be easily checked by solving an unconstrained convex opti-
mization problem, so Assumption 2 does not cause any loss of generality.

To discuss our convergence roadmap, we introduce some standard opera-
tor theoretic notions as follows. A set-valued operator A : E ⇒ E maps an
element x in E to a set A(x) in E; its domain is defined as domA = {x ∈ E |
A(x) ̸= ∅}, its range is defined as ranA =

⋃
x∈EA(x), and it is completely

characterized by its graph: graA = {(u, x) ∈ E×E | u ∈ A(x)}. Furthermore,
we define fixA = {x ∈ E | x ∈ A(x)}, and zerA = {x ∈ E | 0 ∈ A(x)}.
For every x, addition of two operators A1,A2 : E ⇒ E, denoted by A1 +A2,
is defined as (A1 + A2)(x) = A1(x) + A2(x), subtraction is defined anal-
ogously, and composition of these operators, denoted by A1A2, is defined
as A1A2(x) = A1(A2(x)); note that order matters for composition. Also, if
S ⊆ E is a nonempty set, then A(S) = ∪{A(x) | x ∈ S}.

We next discuss our convergence roadmap. Convergence of NExOS is con-
trolled by the DRS operator of problem (Pµ):

Tµ = proxγ µI
(
2proxγf − I

)
+ I − proxγf , (5)

where µ > 0, and I stands for the identity operator in E, i.e., for any x ∈ E, we
have I(x) = x. Using Tµ, the inner algorithm—Algorithm 2—can be written
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as

zn+1 = Tµ (z
n) (Aµ)

where µ is the penalty parameter and zn is initialized at the fixed point from
the previous inner algorithm.

To show the convergence of NExOS, we first show that for some µmax >
0, for any µ ∈ (0, µmax], the exterior point minimization function f + µI
is strongly convex and smooth on some open ball with center x and radius
rmax, denoted by B(x̄; rmax), where it will attain a unique local minimum xµ.
Then we show that for µ ∈ (0, µmax], the operator Tµ(x) will be contractive
in x and Lipschitz continuous in µ, and connects its fixed point set fixTµ
with the local minima xµ, via the relationship xµ = proxγf (fixTµ). In the
main convergence result, we show that for a sequence of penalty parameters
M = {µ1, µ2, µ3, . . . , µN} and under proper initialization, if we apply NExOS
to M, then for all µm ∈ M,the inner algorithm will linearly converge to xµm

,
and as µN → 0, we will have xµN

→ x̄. Finally, we show that, when the
regularity conditions of the prior result do not hold, the inner algorithm is
still guaranteed to subsequentially converge to a first-order stationary point
(not necessarily a local minimum) at the rate o(1/

√
k).

We next present a proposition that shows that the exterior point mini-
mization function in problem (Pµ) will be locally strongly convex and smooth
around local minima for our selection of penalty parameters, even though prob-
lem (P) is nonconvex. Furthermore, as the penalty parameter goes to zero, the
local minimum of problem (Pµ) converges to the local minimum of the original
problem (P). So, under proper initialization, NExOS can solve the sequence
of penalized problems {Pµ}µ∈(0,µinit] similar to convex optimization problems;
we will prove this in our main convergence result (Theorem 1).

Proposition 1 (Attainment of local minimum by f + µI). Let Assumptions
1 and 2 hold for problem (P), and let x̄ be a local minimum to problem (P).
Then the following hold.

(i) There exist µmax > 0 and rmax > 0 such that for any µ ∈ (0, µmax], the
exterior point minimization function f + µI in problem (Pµ) is strongly
convex and smooth in the open ball B(x̄; rmax) and will attain a unique
local minimum xµ in this ball.

(ii) As µ→ 0, this local minimum xµ will go to x̄ in limit, i.e., xµ → x̄.

Proof. See Appendix B.2.

Because the exterior point minimization function is locally strongly convex
and smooth, intuitively the DRS operator of problem (Pµ) would behave sim-
ilar to that of a DRS operator of a composite convex optimization problem,
but locally. When we minimize a sum of two convex functions where one of
them is strongly convex and smooth, the corresponding DRS operator is con-
tractive [32, Theorem 1]. So, we can expect that the DRS operator for problem
(Pµ) would be locally contractive around a local minimum, which indeed turns
out to be the case as proven in the next proposition. Furthermore, the next
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proposition shows that Tµ(x) is locally Lipschitz continuous in the penalty pa-
rameter µ around a local minimum for fixed x. As Tµ(x) is locally contractive
in x and Lipschitz continuous in µ, it ensures that as we reduce the penalty
parameter µ, the local minimum xµ of problem (Pµ) found by NExOS does
not change abruptly.

Proposition 2 (Characterization of Tµ). Let Assumptions 1 and 2 hold for
problem (P), and let x̄ be a local minimum to problem (P). Then the following
hold.

(i) There exists a contraction factor κ′ ∈ (0, 1) such that for any x1, x2 ∈
B(x̄; rmax) and µ ∈ (0, µmax], we have ∥Tµ(x1)− Tµ(x2)∥ ≤ κ′ ∥x1 − x2∥.

(ii) For any x ∈ B(x̄; rmax), the operator Tµ(x) is Lipschitz continuous in
µ, i.e., there exists an ℓ > 0 such that for any µ1, µ2 ∈ (0, µmax] and
x ∈ B(x̄; rmax), we have ∥Tµ1(x)− Tµ2(x)∥ ≤ ℓ∥µ1 − µ2∥.

Proof. See Appendix B.3.

If the inner algorithm (Aµ) converges to a point zµ, then zµ would be a
fixed point of the DRS operator Tµ. Establishing the convergence of NExOS
necessitates connecting the local minimum xµ of problem (Pµ) to the fixed
point set of Tµ, which is achieved by the next proposition. Because our DRS
operator locally behaves in a manner similar to the DRS operator of a convex
optimization problem as shown by Proposition 2, it is natural to expect that
the connection between xµ and zµ in our setup would be similar to that of
a convex setup, but in a local sense. This indeed turns out to be the case
as proven in the next proposition. The statement of this proposition is struc-
turally similar to [3, Proposition 25.1(ii)] that establishes a similar relationship
globally for a convex setup, whereas our result is established around the local
minima of problem (Pµ).

Proposition 3 (Relationship between local minima of problem (P) and fixTµ).
Let Assumptions 1 and 2 hold for problem (P). Let x̄ be a local minimum to
problem (P), and µ ∈ (0, µmax]. Then, xµ = argminB(x̄;rmax) f(x) +

µI(x) =
proxγf (fixTµ), where the sets fixTµ, and proxγf (fixTµ) are singletons over
B(x̄; rmax).

Proof. See Appendix B.4.

Before we present the main convergence result, we provide a helper lemma,
which shows how the distances between xµ, zµ and x̄ change as µ is varied in
Algorithm 1. Additionally, this lemma provides the range for the proximal
parameter γ. If X is a bounded set satisfying ∥x∥ ≤ D for all x ∈ X , then
term maxx∈B(x̄;rmax)∥∇f(x)∥ in this lemma can be replaced with L×D.

Lemma 2 (Distance between local minima of problem (P) with local minima
of problem (Pµ)). Let Assumptions 1 and 2 hold for problem (P), and let x̄
be a local minimum to problem (P) over B(x̄; rmax). Then the following hold.
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(i) For any µ ∈ (0, µmax], the unique local minimum xµ of problem (Pµ) over
B(x̄; rmax) satisfies ∥xµ − x̄∥ < rmax/η

′ for some η′ > 1.
(ii) Let zµ be the unique fixed point of Tµ over B(x̄; rmax) corresponding to xµ.

Then for any µ ∈ (0, µmax], we have rmax−∥xµ− x̄∥ > (η′−1)rmax/η
′ and

rmax−∥zµ−x̄∥ > ψ, where ψ = (η′−1)rmax/η
′−γ maxx∈B(x̄;rmax)∥∇f(x)∥ >

0 with the proximal parameter γ taken to satisfy

0 < γ < (η′ − 1)rmax/
(
η′maxx∈B(x̄;rmax)∥∇f(x)∥

)
.

Furthermore, minµ∈(0,µmax] {(rmax − ∥zµ − x̄∥)− ψ} > 0.

Proof. See Appendix B.5.

We now present our main convergence results for NExOS. For convenience,
we denote the n-th iterates of the inner algorithm of NExOS for penalty pa-
rameter µ by {xnµ, ynµ , znµ}. In the theorem, an ϵ-approximate fixed point z̃ of
Tµ is defined by max{∥z̃−Tµ(z̃)∥, ∥zµ − z̃∥} ≤ ϵ, where zµ is the unique fixed
point of Tµ over B(x̄; rmax). Furthermore, define:

ϵ := min{ min
µ∈(0,µmax]

((rmax − ∥zµ − x̄∥)− ψ)/2, (1− κ′)ψ} > 0, (6)

where κ′ ∈ (0, 1) is the contraction factor of Tµ for any µ > 0 (cf. Proposition
2) and the right-hand side is positive due to the third and fifth equations of
Lemma 2(ii). Theorem 1 states that if we have a good initial point zinit for the
first penalty parameter µinit, then NExOS will construct a finite sequence of
penalty parameters such that all the inner algorithms for these penalty param-
eters will linearly converge to the unique local minima of the corresponding
inner problems.

Theorem 1 (Convergence result for NExOS). Let Assumptions 1 and 2 hold
for problem (P), and let x̄ be a local minimum to problem (P). Suppose that
the fixed-point tolerance ϵ for Algorithm 2 satisfies ϵ ∈ [0, ϵ), where ϵ is defined
in (6). The proximal parameter γ is selected to satisfy the fourth equation of
Lemma 2(ii). In this setup, NExOS will construct a finite sequence of strictly
decreasing penalty parameters M = {µ1 := µinit, µ2 = ρµ1, µ3 = ρµ2, . . .},
with µinit ≤ µmax and ρ ∈ (0, 1), such that we have the following recursive
convergence property.

For any µ ∈ M, if an ϵ-approximate fixed point of Tµ over B(x̄; rmax)
is used to initialize the inner algorithm for penalty parameter ρµ, then the
corresponding inner algorithm iterates znρµ linearly converges to zρµ that is the
unique fixed point of Tρµ over B (x̄, rmax), and the iterates xnρµ, y

n
ρµ linearly

converge to xρµ = proxγf (zρµ), which is the unique local minimum to (Pρµ)
over B(x̄; rmax).

Proof. See Appendix B.6.
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From Theorem 1, we see that an ϵ-approximate fixed point of Tρµ over
B(x̄; rmax) can be computed and then used to initialize the next inner algo-
rithm for penalty parameter ρ2µ; this chain of logic makes each inner algorithm
linearly converge to the corresponding locally optimal solution. Finally, for the
convergence of the first inner algorithm we have the following result, which
states that if the initial point zinit is not “too far away” from B(x̄; rmax), then
the first inner algorithm of NExOS for penalty parameter µ1 converges to a
locally optimal solution of (Pµ1).

Lemma 3 (Convergence of the first inner algorithm). Let x̄ be a local mini-
mum to problem (P), where Assumptions 1 and 2 hold. Let zinit be the chosen
initial point for µ1 := µinit such that B(zµ1

; ∥zinit − zµ1
∥) ⊆ B(x̄; rmax), where

zµ1
be the corresponding unique fixed point of Tµ1

. Then, znµ1
linearly converges

to zµ1
and both xnµ1

and ynµ1
linearly converge to the unique local minimum xµ1

of (Pµ1
) over B(x̄; rmax).

Proof. See Appendix B.7.

We now discuss what can be said if the initial point zinit does not necessarily
satisfy the conditions stated in Theorem 1 or Lemma 3. Unfortunately, in such
a situation, we can only show subsequential convergence of the iterates.

Theorem 2 (Convergence result for NExOS for zinit that is far away from
B(x̄; rmax)). Suppose, the proximal parameter γ is selected to satisfy 0 <
γ < 1/L and let zinit be the any arbitrarily chosen initial point that does
not satisfy the conditions of Lemma 3. Then, in this setup, NExOS will con-
struct a finite sequence of strictly decreasing penalty parameters M = {µ1 :=
µinit, µ2 = ρµ1, µ3 = ρµ2, . . .}, and ρ ∈ (0, 1), such that we have the fol-
lowing recursive convergence property. For any µ ∈ M, if an ϵ-approximate
fixed point of Tµ over B(x̄; rmax) is used to initialize the inner algorithm for
penalty parameter ρµ, then the corresponding inner algorithm iterates znρµ
subsequentially converges to zρµ that is a fixed point of Tρµ, and the iter-
ates xnρµ, y

n
ρµsubsequentially converge to a first-order stationary point to (Pρµ)

denoted by xρµ = proxγf (zρµ) with the rate minn≤k ∥∇ (f + µI) (xnρµ)∥ ≤
1−γL
2L o(1/

√
k).

Proof. See Appendix B.8.

4 Numerical experiments

In this section, we apply NExOS to the following nonconvex optimization prob-
lems of substantial current interest for both synthetic and real-world datasets:
sparse regression problem in §4.1, affine rank minimization problem in §4.2,
and low-rank factor analysis problem in §4.3. We illustrate that NExOS pro-
duces solutions that are either competitive or better in comparison with the
other approaches on different performance measures. We have implemented
NExOS in NExOS.jl solver, which is an open-source software package written
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in the Julia programming language. NExOS.jl can address any optimization
problem of the form of problem (P). The code and documentation are available
online at: https://github.com/Shuvomoy/NExOS.jl.

In our numerical experiments, we present a comprehensive evaluation of
NExOS, showing both statistical and optimization-theoretic evaluations. This
dual approach is deliberate—while our primary contribution is in developing
optimization methodology, the optimization problems considered in this sec-
tion—such as sparse regression, affine rank minimization, matrix completion,
and factor analysis—are deeply rooted in the fields of statistics and machine
learning [38,36,37,40,28,7]. Therefore, our numerical experiments are con-
structed not only to demonstrate NExOS efficiently computing local minima
for nonconvex problems but also to highlight its ability to provide statisti-
cally robust solutions, which are also important in the application context.
This dual capacity is of paramount importance for practical applications in
statistics and machine learning, underlining the algorithm’s versatility and
effectiveness. By addressing these aspects, we aim to illustrate the broad ap-
plicability of NExOS across optimization-theoretic and applied statistical or
learning domains. Here, we stress that while our optimization-theoretic evalu-
ations are grounded in both theory and empirical experiments, the statistical
evaluations of NExOS are based on empirical observations made in the context
of the experiments conducted in this section.

To compute the proximal operator of a function f with closed form or easy-
to-compute solution, NExOS.jl uses the open-source package ProximalOperat
ors.jl [61]. When f is a constrained convex function (i.e., a convex function
over some convex constraint set) with no closed form proximal map, NExOS.jl
computes the proximal operator by using the open-source Julia package JuMP

[27] and any of the commercial or open-source solver supported by it. The set X
can be any prox-regular nonconvex set fitting our setup. Our implementation is
readily extensible using Julia abstract types so that the user can add support
for additional convex functions and prox-regular sets. The numerical study is
executed on a MacBook Pro laptop with Apple M1 Max chip with 32 GB
memory. The datasets considered in this section, unless specified otherwise,
are available online at: http://tinyurl.com/NExOSDatasets.

In applying NExOS, we use the following values that we found to be the
best performing based on our empirical observations. We take the starting
value of µ to be 2, and reduce this value with a multiplicative factor of 0.5
during each iteration of the outer loop until the termination criterion is met.
The value of the proximal parameter γ is chosen to be 10−3. We initialize
our iterates at 0. Maximum number of inner iterations for a fixed value of µ
is taken to be 1000. The tolerance for the fixed point gap for each penalized
problem is taken to be 10−4 and the tolerance for the termination criterion is
taken to be 10−6.

Value of β is taken to be 10−8 for the following reasons. In §3, we showed
that the presence of β > 0, ensures that each penalized subproblem is lo-
cally strongly convex and smooth, having a unique local minimum. This, in
turn, helps to establish linear convergence of the inner algorithm for each sub-

https://github.com/Shuvomoy/NExOS.jl
ProximalOperators.jl
ProximalOperators.jl
http://tinyurl.com/NExOSDatasets
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problem. We empirically demonstrate in this section that the impact of the
condition β > 0, despite being critical in the theoretical analysis of our algo-
rithm, seems to only be marginal as it can be made to be as small as 10−8. We
use this extremely small value of β to stress-test NExOS empirically and show
that even for such a small value of β, our algorithm still works well in prac-
tice. Here, we stress that the default value of β = 10−8 used in our numerical
experiments should be viewed as a mere heuristic that seems to empirically
work for the numerical experiments that we considered in our paper. We leave
a more methodical investigation of the smallest admissible values of β or the
effect of completely omitting it to future work.

4.1 Sparse regression

In (SR), we set X := {x | ∥x∥∞ ≤ Γ, card(x) ≤ k}, and f(x) := ∥Ax − b∥22.
A projection onto X can be computed using the formula in [40, §2.2], whereas
the proximal operator for f can be computed using the formula in [48, §6.1.1].
Now we are in a position to apply NExOS to this problem.

4.1.1 Synthetic dataset: comparison with elastic net and Gurobi

We compare the solution found by NExOS with the solutions found by elas-
tic net (glmnet used for the implementation) and spatial branch-and-bound
algorithm (Gurobi used for the implementation). Elastic net is a well-known
method for computing an approximate solution to the regressor selection prob-
lem (SR), which empirically works extremely well in recovering support of the
original signal. On the other hand, Gurobi’s spatial branch-and-bound algo-
rithm is guaranteed to compute a globally optimal solution to (SR). NExOS is
guaranteed to provide a locally optimal solution under regularity conditions;
so to investigate how close NExOS can get to the globally minimum value we
consider a parallel implementation of NExOS running on multiple (20) worker
processes, where each process runs NExOS with different random initialization,
and we take the solution associated with the least objective value.

Elastic net Elastic net is a well-known method for solving the regressor selec-
tion problem, that computes an approximate solution as follows. First, elastic
net solves:

minimize ∥Ax− b∥22 + λ∥x∥1 + (β/2)∥x∥22, (7)

where λ is a parameter that is related to the sparsity of the decision variable
x ∈ Rd. To solve (7), we have used the open-source R pacakge glmnet [31].

To compute λ corresponding to card(x) ≤ k we follow the method pro-
posed in [36, §3.4] and [20, Example 6.4]. We solve the problem (7) for different
values of λ, and find the smallest value of λ for which card(x) ≤ k, and we
consider the sparsity pattern of the corresponding solution x̃. Let the index
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set of zero elements of x̃ be Z, where Z has d − k elements. Then the elastic
net solves:

minimize ∥Ax− b∥22 + (β/2)∥x∥22
subject to (∀j ∈ Z) xj = 0,

(8)

where x ∈ Rd is the decision variable. Solving this problem corresponds to
solving a positive semidefinite linear system, which we solve using the built-in
LinearAlgebra package in Julia.

Spatial branch-and-bound algorithm The problem (SR) can also be modeled
equivalently as the following mixed integer quadratic optimization problem
[13]:

minimize ∥Ax− b∥22 + (β/2)∥x∥22
subject to |xi| ≤ Γyi, i = 1, . . . , d∑d

i=1 yi ≤ k, x ∈ Rd, y ∈ {0, 1}d,

which can be solved to a certifiable global optimality using Gurobi’s spatial
branch-and-bound algorithm.

Data generation process and setup The data generation procedure is similar
to [25] and [37]. We consider two signal-to-noise ratio (SNR) regimes: SNR
1 and SNR 6, where for each SNR, we vary m from 25 to 50, and for each
value of m, we generate 50 random problem instances. We limit the size of the
problems because the solution time by Gurobi’s spatial branch-and-bound al-
gorithm becomes too large for comparison if we go beyond the aforementioned
size. For a certain value of m, the matrix A ∈ Rm×2m is generated from an
independent and identically distributed normal distribution with N (0, 1) en-
tries. We choose b = Ax̃ + v, where x̃ is drawn uniformly from the set of
vectors satisfying card(x̃) ≤ ⌊m/5⌉ and ∥x̃∥∞ ≤ Γ with Γ = 1. The vec-
tor v corresponds to noise, and is drawn from the distribution N (0, σ2I),
where σ2 = ∥Ax̃∥22/(SNR2/m), which keeps the signal-to-noise ratio to ap-
proximately equal to SNR. We consider a parallel implementation of NExOS
where we have 100 runs of NExOS distrubuted over 20 independent worker
processes on 10 cores. Each run is initialized with a random initial points cho-
sen from the uniform distribution over the interval [−Γ, Γ ]. Gurobi’s spatial
branch-and-bound algorithm also uses 10 cores.

Results Figure 2 compares NExOS (shown in blue), glmnet (shown in red)
and Gurobi (shown in green) for solving (SR). The results displayed in the
figures are averaged over 50 simulations for each value of m, and also show
one-standard-error bands that represent one standard deviation confidence
interval around the mean.

Figures 2(a) and 2(d) show the support recovery (%) of the solutions
found by NExOS, glmnet, and Gurobi for SNR 6 and SNR 1, respectively.
Given a solution x and true signal xTrue, the support recovery is defined as∑d

i=1 1{sign(xi)=sign(xTrue
i )}/d, where 1{·} evaluates to 1 if (·) is true and 0 else,
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(f) Solution time (s) (SNR 1)

Fig. 2 Sparse regression problem: comparison between NExOS (shown in blue), glmnet
(shown in red), and Gurobi (shown in green). The first and second rows correspond to SNR
6 and SNR 1, respectively. For each SNR, the first column compares support recovery, the
second column shows how close the objective value of the solution found by each algorithm
gets to the optimal objective value (normalized as 1), and the third column shows the
solution time (s) of each algorithm.

and sign(t) is 1 for t > 0, −1 for t < 0, and 0 for t = 0. So, higher the
support recovery, better is the quality of the found solution. For both SNRs,
NExOS and Gurobi have almost identical support recovery. For the high SNR,
NExOS recovers most of the original signal’s support and is better than glmnet
consistently. On average, NExOS recovers 4% more of the support than glm-
net. However, this behaviour changes for the low SNR, where glmnet recovers
1.26% more of the support than NExOS. This differing behavior in low and
high SNR is consistent with the observations made in [37].

Figures 2(b) and 2(e) compare the quality of the solution found by the
algorithms in terms of the normalized objective value (the objective value of
the found solution divided by the otimal objective value) for SNR 6 and SNR 1,
respectively. As Gurobi’s spatial branch-and-bound algorithm finds certifiably
globally optimal solution to (SR), its normalized objective value is always 1,
though the runtime is orders of magnitude slower than glmnet and NExOS (see
the next paragraph). The closer the normalized objective value is to 1, better
is the quality of the solution in terms of minimizing the objective value. We
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see that for the high SNR, on average NExOS is able to find a solution that
is very close to the globally optimal solution, whereas the solution found by
glmnet has worse objective value on average. For the low SNR, on average the
normalized objective values of the solutions found by both NExOS and glmnet
get worse, though NExOS does better than glmnet in this case as well.

Finally, in Figures 2(c) and 2(f), we compare the solution times (in seconds
and on log scale) of the algorithms for SNR 6 and SNR 1, respectively. We
see that glmnet is slightly faster than NExOS. This slower performance is
due to the fact that NExOS is a general purpose method, whereas glmnet
is specifically optimized for the convexified sparse regression problem with a
specific cost function. For smaller problems, Gurobi is somewhat faster than
NExOS, however once we go beyondm ≥ 27, the solution time by Gurobi starts
to increase drastically. Beyond m ≥ 50, comparing the solution times is not
meaningful as Gurobi cannot find a solution in 2 minutes, whereas NExOS takes
less than 30 seconds.

4.1.2 Experiments and results for real-world dataset

Description of the dataset We now investigate the performance of our algo-
rithm on a real-world, publicly available dataset called the weather prediction

dataset, where we consider the problem of predicting the temperature half a
day in advance in 30 US and Canadian Cities along with 6 Israeli cities. The
dataset contains hourly measurements of weather attributes e.g., temperature,
humidity, air pressure, wind speed, and so on. The dataset has m = 45, 231
instances along with d = 1, 800 attributes. The dataset is preprocessed in the
same manner as described in [11, §8.3]. Our goal is to predict the temperature
half a day in advance as a linear function of the attributes, where at most k
attributes can be nonzero. We include a bias term in our model, i.e., in (SR)
we set A = [Ā | 1]. We randomly split 80% of the data into the training set
and 20% of the data into the test set.

Results Figure 3 shows the RMS error for the training datasets and the test
datasets for both NExOS and glmnet. The results for training and test datasets
are reasonably similar for each value of k. This gives us confidence that the
sparse regression model will have similar performance on new and unseen data.
This also suggests that our model does not suffer from over-fitting. We also
see that, for k ≥ 20 and k ≥ 5, none of the errors for NExOS and glmnet drop
significantly, respectively. For smaller k ≤ 10, glmnet does better than NExOS,
but beyond k ≥ 10, NExOS performs better than glmnet.

4.2 Affine rank minimization problem

Problem description In (SR), we set X := {X ∈ Rm×d | rank(X) ≤ r, ∥X∥2 ≤
Γ}, and f(X) := ∥A(X)− b∥22. To compute the proximal operator of f , we
use the formula in [48, §6.1.1]. Finally, we use the formula in [25, page 14]
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Fig. 3 RMS error vs k (cardinality) for the weather prediction problem.

for projecting onto X . Now we are in a position to apply the NExOS to this
problem.

Summary of the experiments performed First, we apply NExOS to solve (RM)
for synthetic datasets, where we observe how the algorithm performs in recov-
ering a low-rank matrix given noisy measurements and also compare NExOS
with NCVX—an ADMM-based algorithm [25]. Second, we apply NExOS to a
real-world dataset (MovieLens 1M Dataset) to see how our algorithm per-
forms in solving a matrix-completion problem).

4.2.1 Experiments and results for synthetic dataset

Data generation process and setup We generate the data as follows similar to
[25]. We vary m (number of rows of the decision variable X) from 50 to 75
with a linear spacing of 5, where we take d = 2m, and rank to be equal to
m/10 rounded to the nearest integer. For each value ofm, we create 25 random
instances as follows. The operator A is drawn from an iid normal distribution
with N (0, 1) entries. Similarly, we create the low rank matrix XTrue with
rank r, first drawn from an iid normal distribution with N (0, 1) entries, and
then truncating the singular values that exceed Γ to 0. Signal-to-noise ratio is
taken to be around 20 by following the same method described for the sparse
regression problem.

Results The results displayed in Figure 4 average over 50 simulations for each
value of m and also show one standard error band. We compare NExOS, with
NCVX—an ADMM-based algorithm [25].

Fig 4a plots the normalized fixed point gap of the iterates for both algo-
rithms computed by ∥X⋆

Alg − Y ⋆
Alg∥/∥XTrue∥with Alg ∈ {NExOS,NCVX} and

X⋆
Alg, Y

⋆
Alg representing the final iterates produced by the algorithms. This plot

shows that NCVX iterates have a fixed point gap larger than 0.17, i.e., the
iterates do not converge within a reasonable fixed point gap. On the other
hand, NExOS iterates converge with a normalized fixed-point gap reaching the
desired tolerance of less than or equal to 10−4 for each instance.

Figure 4b shows how well NExOS and NCVX recovers the original matrix
XTrue. To quantify the recovery, we compute the max norm of the difference
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Fig. 4 Affine rank minimization problem: comparison between solutions found by NExOS
and NCVX algorithm by [25].

matrix ∥XTrue−X⋆
Alg∥max = maxi,j |XTrue(i, j)−X⋆

Alg(i, j)|, where the solution
found by Alg is denoted by X⋆

Alg. We see that the worst-case component-wise
error is very small (smaller than 0.005 for each instance) in all the cases for
NExOS, but for NCVX, it is larger than 0.5 for each instance. In other words,
the solution found by NExOS is much closer to the ground truth as compared
to NCVX.

Finally, we show how the training loss of the solutions computed by NExOS
and NCVX compare with the original matrix XTrue in Figure 4c. Note that
for NExOS, the ratio p⋆True/p

⋆
sol is larger than one in most cases, i.e., NExOS

find a solutions with smaller cost compared to XTrue. This is due to the fact
that under the signal-to-noise ratio that we consider, the problem data can be
explained better by another matrix with a lower training loss. That being said,
X⋆

NExOS is not too far from XTrue component-wise as we saw in Figure 4b. On
the other hand, for NCVX algorithm, the ratio p⋆True/p

⋆
sol is smaller than 0.05

for each instance, i.e., the objective value of the solutions is 20 times worse
than that of the original signal.
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4.2.2 Experiments and results for real-world dataset: matrix completion
problem

Description of the dataset To investigate the performance of our problem on a
real-world dataset, we consider the publicly available MovieLens 1M Dataset.
This dataset contains 1,000,023 ratings for 3,706 unique movies; these recom-
mendations were made by 6,040 MovieLens users. The rating is on a scale
of 1 to 5. If we construct a matrix of movie ratings by the users (also called
the preference matrix), denoted by Z, then it is a matrix of 6,040 rows (each
row corresponds to a user) and 3,706 columns (each column corresponds to a
movie) with only 4.47% of the total entries are observed, while the rest being
missing. Our goal is to complete this matrix, under the assumption that the
matrix is low-rank. For more details about the model, see [40, §8.1].

To gain confidence in the generalization ability of this model, we use an
out-of-sample validation process. By random selection, we split the available
data into a training set (80% of the total data) and a test set (20% of the total
data). We use the training set as the input data for solving the underlying
optimization process, and the held-out test set is used to compute the test
error for each value of r. The best rank r corresponds to the point beyond
which the improvement is rather minor. We tested rank values r ranging in
{1, 3, 5, 7, 10, 20, 25, 30, 35}. We compute the RMS error as follows. Let Ωtest

be the index set corresponding to the test data. If X⋆
NExOS is the matrix re-

turned by NExOS, then the corresponding RMS error is computed by using
the formula

RMS =

√√√√∑
(i,j)∈Ωtest

(
(X⋆

NExOS)ij − Zij

)2

|Ωtest|
,

where |Ωtest| is the number of elements in Ωtest.

Matrix completion problem The matrix completion problem is:

minimize
∑

(i,j)∈Ω(Xij − Zij)
2 + (β/2)∥X∥2F

subject to rank(X) ≤ r, ∥X∥2 ≤ Γ,
(MC)

where Z ∈ Rm×d is the matrix whose entries Zij are observable for (i, j) ∈ Ω.
Based on these observed entries, our goal is to construct a matrix X ∈ Rm×d

that has rank r. The problem above can be written as a special case of affine
rank minimization problem (RM).

Results Figure 5 compares the solutions found by NExOS and NCVX.
Fig 5a plots the normalized fixed point gap of the iterates for both algo-

rithms calculated by ∥X⋆
Alg − Y ⋆

Alg∥/∥XTrue∥with Alg ∈ {NExOS,NCVX} and
X⋆

Alg, Y
⋆
Alg representing the final iterates produced by the algorithms. This plot

shows that NCVX iterates do not converge within a reasonable fixed point
gap, whereas NExOS iterates converge for all the instances with a normalized
fixed-point gap less than or equal to 10−6 for each instance.
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Fig. 5 Matrix completion problem: comparison between solutions found by NExOS and
NCVX algorithm by [25].

Figure 5b shows the RMS error of NExOS for the training datatest and test
dataset for each value of rank r. The results for training and test datasets are
reasonably similar for each value of r. We observe that beyond rank 15, the
reduction in the test error is rather minor and going beyond this rank provides
only diminishing returns, which is a common occurrence for low-rank matrix
approximation [42, §7.1]. Thus we can choose the optimal rank to be 15 for all
practical purposes.

Figure 5c shows the RMS error of NCVX for the training dataset and test
dataset for each value of rank r. We see that, unlike NExOS, the test error for
NCVX keeps increasing with r, whereas the training error NCVX is smaller.
Here we note that, because NCVX iterates do not reach a reasonable fixed
point gap, the training or test error of NCVX may not provide meaningful
information.
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4.3 Factor analysis problem

Problem description The factor analysis model with sparse noise (also known
as low-rank factor analysis model) involves decomposing a given positive semidef-
inite matrix as a sum of a low-rank positive semidefinite matrix and a diagonal
matrix with nonnegative entries [38, page 191]. It can be posed as [7]:

minimize ∥Σ −X −D∥2F + (β/2)
(
∥X∥2F + ∥D∥2F

)
subject to D = diag(d), d ≥ 0, X ⪰ 0, rank(X) ≤ r

Σ −D ⪰ 0, ∥X∥2 ≤ Γ,
(FA)

where X ∈ Sp and the diagonal matrix D ∈ Sp with nonnegative entries are
the decision variables, and Σ ∈ Sp

+, r ∈ Z+, and Γ ∈ R++ are the problem
data. A proper solution for (FA) requires that both X and D are positive
semidefinite. The term Σ −D has to be positive semidefinite, else statistical
interpretations of the solution is not impossible [64, page 326].

In (FA), we set X := {(X,D) ∈ Sp × Sp | ∥X∥2 ≤ Γ, rank(X) ≤ r,D =

diag(d), d ≥ 0}, and f(X,D) := ∥Σ −X −D∥2F +IP(X,D),where IP denotes
the indicator function of the convex set P = {(X,D) ∈ Sp × Sp | X ⪰
0, D = diag(d), d ≥ 0, d ∈ Rp}. To compute the projection onto X , we use the
formula in [25, page 14] and the fact that Π{y|y≥ 0}(x) = max{x, 0}, where
pointwise max is used. The proximal operator for f at (X,D) can be computed
by solving:

minimize ∥Σ − X̃ − D̃∥2F + (1/2γ)∥X̃ −X∥2F + (1/2γ)∥D̃ −D∥2F
subject to X̃ ⪰ 0, D̃ = diag(d̃), Σ − D̃ ⪰ 0, d̃ ≥ 0,

where X̃ ∈ Sp
+, and d̃ ∈ Rp

+ (i.e., D̃ = diag(d̃)) are the optimization variables.
Now we are in a position to apply NExOS to this problem.

Comparison with nuclear norm heuristic We compare the solution provided
by NExOS to that of the nuclear norm heuristic, which isthe most well-known
heuristic to approximately solve (FA) [58] via following convex relaxation:

minimize ∥Σ −X −D∥2F + λ ∥X∥∗
subject to D = diag(d), d ≥ 0, X ⪰ 0,

Σ −D ⪰ 0, ∥X∥2 ≤ Γ,
(9)

where λ is a positive parameter that is related to the rank of the decision
variable X. Note that, as X is positive semidefinite, we have its nuclear norm
∥X∥∗ = tr(X).
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(a) bfi objective value (b) neo objective value (c) harman objective value

(d) bfi explained variance (e) neo explained variance (f) harman explained vari-
ance

Fig. 6 Figure showing performance of NExOS in solving factor analysis problem for different
datasets. Each column represents one dataset. The first and second row compares training
loss and proportion of the variance explained of the solutions found by NExOS (shown in
blue) and the nuclear norm heuristic (shown in red).

Performance measures We consider two performance measures. First, we com-
pare the training loss ∥Σ −X −D∥2F of the solutions found by NExOS and
the nuclear norm heuristic. As both NExOS and the nuclear norm heuristic
provide a point from the feasible set of (FA), such a comparison of training
losses tells us which algorithm is providing a better quality solution. Second,
we compute the proportion of explained variance, which represents how well
the r-common factors explain the residual covariance, i.e., Σ−D. For a given
r, input proportion of variance explained by the r common factors is given
by:

∑r
i=1 σi(X)/

∑p
i=1 σi(Σ −D), where X,D are inputs, that correspond to

solutions found by NExOS or the nuclear norm heuristic. As r increases, the ex-
plained variance increases to 1. The higher the value of the explained variance
for a certain solution, the better is the quality of the solution.

Description of the datasets We consider three different real-world bench-mark
datasets that are popularly used for factor analysis. The bfi, neo , and
Harman74 datasets contain (2800 observations, 28 variables), (1000 observa-
tions, 30 variables), and (145 observations, 24 variables), respectively.

Setup In applying NExOS for the factor analysis problem, we initialize our
iterates with Z0 := Σ and z0 := 0. All the other parameters are kept at their
default values as stated in the beginning of §4. For each dataset, we vary the
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number of factors from 1 to ⌊p/2⌋, where p is the size of the underlying matrix
Σ.

Results Figure 6 shows performance of NExOS in solving the factor analysis
problem for different datasets, with each row representing one dataset. The
first row compares the training loss of the solution found by NExOS and the
nuclear norm heuristic. We see that for all the datasets, NExOS finds a solution
with a training loss that is considerably smaller than that of the nuclear norm
heuristic. The second row shows the proportion of variance explained by the
algorithms considered for the datasets considered (higher is better). We see
that in terms of the proportion of explained variance, NExOS delivers larger
values than that of the nuclear norm heuristic for different values of r, which is
indeed desirable. NExOS consistently provides solutions with better objective
value and explained variance compared to the nuclear norm heuristic.

5 Conclusion

In this paper, we have presented NExOS, a first-order algorithm to solve opti-
mization problems with convex cost functions over nonconvex constraint sets—
a problem structure that is satisfied by a wide range of nonconvex optimiza-
tion problems including sparse and low-rank optimization. We have shown
that, under mild technical conditions, NExOS is able to find a locally optimal
point of the original problem by solving a sequence of penalized problems with
strictly decreasing penalty parameters. We have implemented our algorithm in
the Julia package NExOS.jl and have extensively tested its performance on a
wide variety of nonconvex optimization problems. We have demonstrated that
NExOS is able to compute high quality solutions at a speed that is competitive
with tailored algorithms.
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A Proof and derivation to results in §1

A.1 Lemma regarding prox-regularity of intersection of sets

Lemma 4. Consider the nonempty constraint set X = C
⋂

N ⊆ E, where C is compact
and convex, and N is prox-regular at x ∈ X . Then X is prox-regular at x.

Proof to Lemma 4 To prove this result we record the following result from [6], where by
dS(x) we denote the Euclidean distance of a point x from the set S, and S denotes closure
of a set X .

Lemma 5 (Intersection of prox-regular sets [6, Corollary 7.3(a)]). Let S1,S2 be two closed
sets in E, such that S = S1

⋂
S2 ̸= ∅ and both S1,S2 are prox-regular at x ∈ S. If S is

metrically calm at x, i.e., if there exist some ς > 0 and some neighborhood of x denoted by
B such that dS(y) ≤ ς(dS1

(y) + dS2
(y)) for all y ∈ B, then S is prox-regular at x.

Proof. (proof to Lemma 4) By definition, projection onto N is single-valued on some open
ball B(x; a) with center x and radius a > 0 [50, Theorem 1.3]. The set C is compact and
convex, hence projection onto C is single-valued around every point, hence single-valued on
B(x; a) as well [3, Theorem 3.14, Remark 3.15]. Note that for any y ∈ B(x; a), dX (y) = 0 if
and only if both dC(y) and dN (y) are zero. Hence, for any y ∈ B(x; a)

⋂
X , the metrically

calmness condition is trivially satisfied. Next, recalling that the distance from a closed set is
continuous [53, Example 9.6], over the compact set B(x; a) \ X , define the function h, such
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that h(y) = 1 if y ∈ X , and h(y) = dX (y)/(dC(y) + dN (y)) else. The function h is upper-

semicontinuous over B(x; a) \ X , hence it will attain a maximum ς > 0 over B(x; a) \ X
[54, Theorem 4.16], thus satisfying the metrically calmness condition on B(x; a) \X as well.
Hence, using Lemma 5, the constraint set X is prox-regular at x.

B Proofs and derivations to the results in §3

B.1 Modifying NExOS for nonsmooth and convex loss function

We now discuss how to modify NExOS when the loss function is nonsmooth and convex.
The key idea is working with a strongly convex, smooth, and arbitrarily close approximation
of f ; such smoothing techniques are very common in optimization [47,5]. The optimization

problem in this case, where the positive regularization parameter is denoted by β̃, is given
by: minx ϕ(x) + (β̃/2)∥x∥2 + ιX (x), where the setup is same as problem (P), except the
function ϕ : E → R ∪ {+∞} is lower-semicontinuous, proper (its domain is nonempty),

and convex. Let β := β̃/2. For a ν that is arbitrarily small, define the following β strongly
convex and (ν−1 + β)-smooth function: f := νϕ(·) + (β/2)∥ · ∥2 where νϕ is the Moreau
envelope of ϕ with paramter ν. Following the properties of the Moreau envelope of a convex
function discussed in §2, the following optimization problem acts as an arbitrarily close
approximation to the first nonsmooth convex problem: minx f + (β/2)∥x∥2 + ιX (x), which
has the same setup as problem (P).

We can compute proxγf (x) using the formula in by [5, Theorem 6.13, Theorem 6.63].

Then, we apply NExOS to minx f + (β/2)∥x∥2 + ιX (x) and proceed in the same manner as
discussed earlier.

B.2 Proof to Proposition 1

B.2.1 Proof to Proposition 1(i)

We prove (i) in three steps. In the first step, we show that for any µ > 0, f + µI will be
differentiable on some B(x̄; rdiff) with rdiff > 0. In the second step, we then show that, for
any µ ∈ (0, 1/β], f + µI will be strongly convex and differentiable on some B(x̄; rcvxdiff).
In the third step, we will show that there exist µmax > 0 such that for any µ ∈ (0, µmax],
f + µI will be strongly convex and smooth on some B(x̄; rmax) and will attain the unique
local minimum xµ in this ball.

Proof of the first step To prove the first step, we start with the following lemma regarding
differentiability of µι.

Lemma 6 (Differentiability of µι). Let x̄ be a local minimum to problem (P), where As-
sumptions 1 and 2 hold. Then there exists some rdiff > 0 such that for any µ > 0: (i) the
function µι is differentiable on B(x̄; rdiff) with derivative ∇ µι = (1/µ)(I − ΠX ), and (ii)
the projection operator ΠX onto X is single-valued and Lipschitz continuous on B(x̄; rdiff).

Proof. From [50, Theorem 1.3(e)], there exists some rdiff > 0 such that the function d2 is
differentiable on B(x̄; rdiff). As µι = (1/2µ)d2 from (3), it follows that for any µ > 0, µι is
differentiable on B(x̄; rdiff) which proves the first part of (i). The second part of (i) follows
from the fact that ∇d2(x) = 2 (x−ΠX (x)) whenever d2 is differentiable at x [50, page
5240]. Finally, from [50, Lemma 3.2], whenever d2 is differentiable at a point, projection
ΠX is single-valued and Lipschitz continuous around that point, and this proves (ii).

Due to the lemma above, f + µI will be differentiable on B(x̄; rdiff) with rdiff > 0, as
f and (β/2)∥ · ∥2 are differentiable. Also, due to Lemma 6(ii), projection operator ΠX is

L̃-Lipschitz continuous on B(x̄; rdiff) for some L̃ > 0. This proves the first step.
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Proof of the second step To prove this step, we are going to record: (1) the notion
of general subdifferential of a function, followed by (2) the definition of prox-regularity
of a function and its connection with prox-regular set, and (3) a helper lemma regarding
convexity of the Moreau envelope under prox-regularity.

Definition 3 (Fenchel, Fréchet, and general subdifferential). For any lower-semicontinuous
function h : Rn → R ∪ {∞}, its Fenchel subdifferential ∂h is defined as [24, page 1]:
u ∈ ∂h(x) ⇔ h(y) ≥ h(x) + ⟨u | y − x⟩ for all y ∈ Rn. For the function h, its Fréchet
subdifferential ∂F h (also known as regular subdifferential) at a point x is defined as [24,
Definition 2.5]: u ∈ ∂F h(x) ⇔ lim infy→0 (h(x + y) − h(x) − ⟨u | y⟩)/∥y∥ ≥ 0. Finally,
the general subdifferential of h, denoted by ∂Gh, is defined as [52, Equation (2.8)]: u ∈
∂Gh(x) ⇔ un → u, xn → x, f(xn) → f(x), for some (xn, un) ∈ gra ∂F h. If h is additionally
convex, then ∂h = ∂F h = ∂Gh [24, Property (2.3), Property 2.6].

Definition 4 (Connection between prox-regularity of a function and a set [49, Definition
1.1 ]). A function h : Rn → R ∪ {∞} that is finite at x̃ is prox-regular at x̃ for ν̃, where
ν̃ ∈ ∂Gh(x̃), if h is locally l.s.c. at x̃ and there exist a distance σ > 0 and a parameter
ρ > 0 such that whenever ∥x′ − x̃∥ < σ and ∥x − x̃∥ < σ with x′ ̸= x, ∥h(x) − h(x̃)∥ < σ,
∥ν − ν̃∥ < σ with ν ∈ ∂Gh(x), we have h(x′) > h(x) + ⟨ν | x′ − x⟩ − (ρ/2)∥x′ − x∥2. Also, a
set S is prox-regular at x̃ for ν̃ if we have the indicator function ιS is prox-regular at x̃ for
ν̃ ∈ ∂GιS(x̃) [49, Proposition 2.11]. The set S is prox-regular at x̃ if it is prox-regular at x̃
for all ν̃ ∈ ∂GιS(x̃) [53, page 612].

We have the following helper lemma from [49].

Lemma 7 ([49, Theorem 5.2]). Consider a function h which is lower semicontinuous at 0
with h(0) = 0 and there exists ρ > 0 such that h(x) > −(ρ/2)∥x∥2 for any x ̸= 0. Let h be
prox-regular at x̃ = 0 and ν̃ = 0 with respect to σ and ρ (σ and ρ as described in Definition
4), and let λ ∈ (0, 1/ρ). Then, on some neighborhood of 0, the function

λh+ ρ/(2− 2λρ)∥ · ∥2 (10)

is convex, where λh is the Moreau envelope of h with parameter λ.

Now we start proving step 2 earnestly. To prove this result, we assume x̄ = 0. This does
not cause any loss of generality because this is equivalent to transferring the coordinate
origin to the optimal solution and prox-regularity of a set and strong convexity of a function
is invariant under such a coordinate transformation.

First, note that the indicator function of our constraint closed set X is lower semicon-
tinuous due to [53, Remark after Theorem 1.6, page 11], and as x̄, the local minimizer lies
in X , we have ιX (x̄) = 0. The set X is prox-regular at x̄ for all ν ∈ ∂GιX (x) per our setup,
so using Definition 4, we have ιX prox-regular at x̄ = 0 for ν̄ = 0 ∈ ∂GιX (x̄) (because
x̄ ∈ X , we will have 0 as a subgradient of ∂ιX (x̄)) with respect to some distance σ > 0 and
parameter ρ > 0.

Note that the indicator function satisfies ιX (x) = cιX (x) for any c > 0 due to its
definition, so u ∈ ∂GιX (x) ⇔ cu ∈ c∂GιX (x) = ∂(cιGX (x)) = ∂ιGX (x) [53, Equation 10(6)] In
our setup, we have X prox-regular at x̄. So, setting h := ιmathcalX, x̃ := x̄ = 0, ν̃ := ν̄ = 0,
and ν := u/(β/2ρ) in Definition 4, we have ιX is also prox-regular at x̄ = 0 for ν̄ = 0 with
respect to distance σmin{1, β/2ρ} and parameter β/2.

Next, because the range of the indicator function is {0,∞}, we have ιX (x) > −(ρ/2)∥x∥2
for any x ̸= 0. So, we have all the conditions of Theorem 7 satisfied. Hence, applying Lemma
7, we have (1/2µ)

(
d2 + βµ/(2− βµ)∥ · ∥2

)
convex and differentiable on

B (x̄;min {σmin{1, β/2ρ}, rdiff})

for any µ ∈ (0, 2/β), where rdiff comes from Lemma 6. As rdiff in this setup does not
depend on µ, the ball does not depend on µ either. Finally, note that in our exterior-point
minimization function we have µI = (1/2µ)

(
d2 + βµ∥ · ∥2

)
.

So if we take µ ≤ 1
β
, then we have (β/2)µ/ (1− µ(β/2)) ≤ βµ, and on the ball

B (x̄;min {σmin{1, β/2ρ}, rdiff}), the function µI will be convex and differentiable. But
f is strongly-convex and smooth, so f + µI will be strongly convex and differentiable on
B (x̄;min {σmin{1, β/2ρ}, rdiff}) for µ ∈ (0, 1/β]. This proves step 2.
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Proof of the third step As point x̄ ∈ X is a local minimum of problem (P), from
Definition 2, there is some r > 0 such that for all y ∈ B(x̄; r), we have f(x̄) + (β/2)∥x̄∥2 <
f(y) + (β/2)∥y∥2 + ιX (y).

Then, due to the first two steps, for any µ ∈ (0, 1/β], the function f+µI will be strongly
convex and differentiable on B (x̄;min {σmin{1, β/2ρ}, rdiff}). For notational convenience,
denote rmax := min {σmin{1, β/2ρ}, rdiff} , which is a constant. As f + µI is a global
underestimator of and approximates the function f+(β/2)∥·∥2+ιX with arbitrary precision
as µ → 0, the previous statement and [53, Theorem 1.25] imply that there exist some
0 < µmax ≤ 1/β such that for any µ ∈ (0, µmax], the function f + µI will achieve a local
minimum xµ over B(x̄; rmax) where ∇(f + µI) vanishes, i.e.,

∇(f + µI)(xµ) = ∇f(xµ) + βxµ + (1/µ) (xµ −ΠX (xµ)) = 0 (11)

⇒ xµ = (1/(βµ+ 1)) (ΠX (xµ)− µ∇f(xµ)) . (12)

As the right hand side of the last equation is a singleton, this minimum must be unique.
Finally to show the smoothness f + µI, for any x ∈ B(x̄; rmax), we have

∇ (f + µI) (x) a)
= ∇f(x) + (β + (1/µ))x− (1/µ)ΠX (x), (13)

where a) uses Lemma 6. Thus, for any x1, x2 ∈ B(x̄; rmax) we have ∥∇(f + (β/2)∥ · ∥2 +
µι)(x1)−∇(f + (β/2)∥ · ∥2 + µι)(x2)∥ ≤ (L+ β+ (1/µ) + L̃)∥x1 − x2∥, where we have used
the following: ∇f is L-Lipschitz everywhere due to f being an L−smooth function in E ([3,

Theorem 18.15]), and ΠX is L̃-Lipschitz continuous on B(x̄; rmax), as shown in step 1. This
completes the proof for (i).

(ii): Using [53, Theorem 1.25], as µ → 0, we have xµ → x̄, and (f + µI) (xµ) →
f(x̄) + (β/2)∥x̄∥2. Note that xµ reaches x̄ only in limit, as otherwise Assumption 2 will be
violated.

B.3 Proof to Proposition 2

B.3.1 Proof to Proposition 2(i)

We will need the notions of nonexpansive and firmly nonexpansive operators in this proof.
An operator A : E → E is nonexpansive on some set S if it is Lipschitz continuous with
Lipschitz constant 1 on S; the operator is contractive if the Lipschitz constant is strictly
smaller than 1. On the other hand, A is firmly nonexpansive on S if and only if its reflection
operator 2A−I is nonexpansive on S. A firmly nonexpansive operator is always nonexpansive
[3, page 59].

We next introduce the following definition.

Definition 5 (Resolvent and reflected resolvent [3, pages 333, 336]). For a lower-semicontinuous,
proper, and convex function h, the resolvent and reflected resolvent of its subdifferential op-
erator are defined by Jγ∂h = (I + γ∂h)−1 and Rγ∂h = 2Jγ∂h − I, respectively.

The proof of (i) is proven in two steps. First, we show that the reflection operator of
Tµ, defined by

Rµ = 2Tµ − I, (14)

is contractive on B(x̄, rmax), and using this we show that Tµ in also contractive there in the
second step. To that goal, note that Rµ can be represented as:

Rµ = (2proxγ µI − I)(2proxγf − I), (15)

which can be proven by simply using (5) and (14) on the left-hand side and by expanding the
factors on the right-hand side. Now, the operator 2proxγf −I associated with the α-strongly
convex and L-smooth function f is a contraction mapping for any γ > 0 with the contraction
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factor κ = max {(γL− 1)/(γL+ 1), (1− γα)/(γα+ 1)} ∈ (0, 1), which follows from [32,
Theorem 1]. Next, we show that 2proxγ µI − I is nonexpansive on B(x̄; rmax) for any

µ ∈ (0, µmax]. For any µ ∈ (0, µmax], define the function g as follows. We have g(y) = µI(y)
if y ∈ B(x̄; rmax),g(y) = lim inf ỹ→y

µI(ỹ) if ∥y − x̄∥ = rmax, and g(y) = ∞ else. The
function g is lower-semicontinuous, proper, and convex everywhere due to [3, Lemma 1.31
and Corollary 9.10 ]. As a result for µ ∈ (0, µmax], we have proxγg = Jγ∂g on E and proxγg
is firmly nonexpansive and single-valued everywhere, which follows from [3, Proposition
12.27, Proposition 16.34, and Example 23.3]. But, for y ∈ B(x̄; rmax), we have µI(y) = g(y)
and ∇ µI(y) = ∂g(y). Thus, on B(x̄; rmax), the operator proxγ µI = Jγ∇ µI , and it is

firmly nonexpansive and single-valued for µ ∈ (0, µmax]. Any firmly nonexpansive operator
A has a nonexpansive reflection operator 2A − I on its domain of firm nonexpansiveness
[3, Proposition 4.2]. Hence, on B(x̄; rmax), for µ ∈ (0, µmax] the operator 2proxγ µI − I is
nonexpansive using (15).

Now we show that Rµ is contractive for every x1, x2 ∈ B(x̄; rmax) and µ ∈ (0, µmax], we
have ∥Rµ(x1)−Rµ(x2)∥ ≤ ∥(2proxγf − I)(x1)− (2proxγf − I)(x2)∥ ≤ κ∥x1 − x2∥ where
the last inequality uses κ-contractiveness of 2proxγf − I thus proving that Rµ acts as a
contractive operator on B(x̄; rmax) for µ ∈ (0, µmax]. Similarly, for any x1, x2 ∈ B(x̄; rmax),
using (Aµ) and the triangle inequality we have ∥Tµ(x1) − Tµ(x2)∥ ≤ (1 + κ)/2∥x1 − x2∥
and as κ′ = (1 + κ)/2 ∈ [0, 1); the operator Tµ is κ′−contractive on on B(x̄; rmax), for
µ ∈ (0, µmax].

B.3.2 Proof to Proposition 2(ii)

Recalling Tµ = (1/2)Rµ + (1/2)I from (14), using (15), and then expanding, and finally
using Lemma 1 and triangle inequality, we have for any µ, µ̃ ∈ (0, µmax], x ∈ B(x̄; rmax),
and y = 2proxγf (x)− x:∥∥Tµ(x)− Tµ̃(x)∥∥ ≤ ∥(µ/(γ + µ(βγ + 1))− µ̃/(γ + µ̃(βγ + 1)))∥ ∥y∥

+ ∥(γ/(γ + µ(βγ + 1))− γ/(γ + µ̃(βγ + 1)))∥ ∥ΠX (y/(βγ + 1))∥ . (16)

Now, in (16), the coefficient of ∥y∥ satisfies ∥µ/(γ + µ(βγ + 1))− µ̃/(γ + µ̃(βγ + 1))∥ ≤
(1/γ)∥µ− µ̃∥

and similarly the coefficient of ∥ΠX (y/(βγ + 1)) ∥ satisfies

∥γ/(γ + µ(βγ + 1))− γ/(γ + µ̃(βγ + 1))∥ ≤ (β + (1/γ))∥µ− µ̃∥.

Putting the last two inequalities in (16), and then replacing y = 2proxγf (x) − x, we have
for any x ∈ B, and for any µ, µ̃ ∈ R++,∥∥Tµ(x)− Tµ̃(x)∥∥ ≤ (1/γ) ∥µ− µ̃∥ ∥y∥+ (β + (1/γ)) ∥µ− µ̃∥ ∥ΠX (y/(βγ + 1))∥

={(1/γ)∥2proxγf (x)− x∥+ (β + (1/γ))∥ΠX ((2proxγf (x)− x)/(βγ + 1))∥}∥µ− µ̃∥.
(17)

Now, as B(x̄; rmax) is a bounded set and x ∈ B, norm of the vector y = 2proxγf (x)−x
can be upper-bounded over B(x̄; rmax) because 2proxγf − I is continuous (in fact contrac-

tive) as shown in (i). Similarly, ∥ΠX
(
(2proxγf (x)− x)/(βγ + 1)

)
∥ can be upper-bounded

on B(x̄; rmax). Combining the last two-statements, it follows that there exists some ℓ > 0
such that

sup
x∈B(x̄;rmax)

(1/γ)∥2proxγf (x)− x∥+ (β + 1/γ)
∥∥ΠX

(
(2proxγf (x)− x)/(βγ + 1)

)∥∥ ≤ ℓ,

and putting the last inequality in (17), we arrive at the claim.
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B.4 Proof to Proposition 3

The structure of the proof follows that of [3, Proposition 25.1(ii)]. Let µ ∈ (0, µmax]. Recall-
ing Definition 5, and due to Proposition 1(i), xµ ∈ B(x̄; rmax) satisfies

xµ = argmin
B(x̄;rmax)

f(x) + µI(x) = zer(∇f +∇ µI)

a)⇔ (∃y ∈ E) xµ = Jγ∇ µIRγ∇f (y) and xµ = Jγ∇f (y), (18)

where a) uses the facts (shown in the proof to Proposition 2) that: (i) Jγ∇f is a single-valued
operator everywhere, whereas Jγ∇ µI is a single-valued operator on the region of convex-
ity B(x̄; rmax), and (ii) xµ = Jγ∇f (y) can be expressed as xµ = Jγ∇f (y) ⇔ 2xµ − y =(
2Jγ∇f − I

)
y = Rγ∇f (y). Also, using the last expression, we can write the first term of

(18) as Jγ∇ µIRγ∇f (y) = xµ ⇔ y ∈ fix(Rγ∇ µIRγ∇f ). Because for lower-semicontinuous,
proper, and convex function, the resolvent of the subdifferential is equal to its proximal op-
erator [3, Proposition 12.27, Proposition 16.34, and Example 23.3], we have Jγ∂f = proxγf
with both being single-valued. Using the last fact along with (18), y ∈ fix(Rγ∇ µIRγ∇f ), we

have xµ ∈ proxγf

(
fix

(
Rγ∇ µIRγ∂f

))
, but xµ is unique due to Proposition 1, so the in-

clusion can be replaced with equality. Thus xµ, satisfies xµ = proxγf

(
fix

(
Rγ∇ µIRγ∂f

))
where the sets are singletons due to Proposition 1 and single-valuedness of proxγf . Also,
because Tµ in (5) and Rµ in (14) have the same fixed point set (follows from (14)), using
(15), we arrive at the claim.

B.5 Proof to Lemma 2

(i): This follows directly from the proof to Proposition 1.
(ii): From Lemma 2(i), and recalling that η′ > 1, for any µ ∈ (0, µmax], we have the first

equation. Recalling Definition 5, and using the fact that for lower-semicontinuous, proper,
and convex function, the resolvent of the subdifferential is equal to its proximal operator
[3, Proposition 12.27, Proposition 16.34, and Example 23.3], we have Jγ∂f = proxγf with

both being single-valued. So, from Proposition 3: xµ = proxγf (zµ) = (I + γ∂f)−1 (zµ) ⇔
zµ = xµ + γ∇f(xµ). Hence, for any µ ∈ (0, µmax]:

∥zµ − x̄∥ = ∥xµ + γ∇f(xµ)− x̄∥ ≤ ∥xµ − x̄∥+ γ∥∇f(xµ)∥

⇔rmax − ∥zµ − x̄∥ ≥ rmax − ∥xµ − x̄∥ − γ∥∇f(xµ)∥
a)

≥ (η′ − 1)rmax/η
′ − γ∥∇f(xµ)∥,

where a) uses the first equation of Lemma 2(ii). Because, for the strongly convex and smooth
function f, its gradient is bounded over a bounded set B(x̄; rmax) [51, Lemma 1, §1.4.2],
then for γ satisfying the fourth equation of Lemma 2(ii) and the definition of ψ in the third
equation of Lemma 2(ii), we have the second equation of Lemma 2(ii) for any µ ∈ (0, µmax].
To prove the final equation of Lemma 2(ii), note that

lim
µ→0

(rmax − ∥zµ − x̄∥)− ψ

a)
= lim

µ→0
(rmax − ∥xµ + γ∇f(xµ)− x̄∥)− (η′ − 1)rmax/η

′ + γ maxx∈B(x̄;rmax)∥∇f(x)∥

b)
= (rmax − ∥x̄+ γ∇f(x̄)− x̄∥)− (η′ − 1)rmax/η

′ + γ maxx∈B(x̄;rmax)∥∇f(x)∥

= (1/η′)rmax + γ
(
maxx∈B(x̄;rmax)∥∇f(x)∥ − ∥∇f(x̄)∥

)
> 0, (19)

where in a) we have used zµ = xµ + γ∇f(xµ) and the third equation of Lemma 2(ii), in b)
we have used smoothness of f along with Proposition 1(ii). Inequality (19) along with the
second equation of Lemma 2(ii) implies the final equation of Lemma 2(ii).
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B.6 Proof to Theorem 1

We use the following result from [26] in proving Theorem 1.

Theorem 3 (Convergence of local contraction mapping [26, pp. 313-314]). Let A : E → E
be some operator. If there exist x̃, ω ∈ (0, 1), and r > 0 such that (a) A is ω-contractive
on B(x̃; r), i.e., for all x1, x2 in B(x̃; r), and (b) ∥A(x̃) − x̃∥ ≤ (1 − ω)r. Then A has a
unique fixed point in B(x̃; r) and the iteration scheme xn+1 = A(xn) with the initialization
x0 := x̃ linearly converges to that unique fixed point.

Furthermore, recall that NExOS (Algorithm 1) can be compactly represented using (Aµ)
as follows. For any m ∈ {1, 2, . . . , N} (equivalently for each µm ∈ {µ1, . . . , µN}),

zn+1
µm

= Tµm

(
znµm

)
, (20)

where z0µm
is initialized at zµm−1 . From Proposition 2, for any µ ∈ M, the operator Tµ is

a κ′-contraction mapping over the region of convexity B(x̄; rmax), where κ′ ∈ (0, 1). From
Proposition 1, there will be a unique local minimum xµ of problem (Pµ) over B(x̄; rmax).
Suppose, instead of the exact fixed point zµm−1 ∈ fixTµm−1 , we have computed z̃, which
is an ϵ-approximate fixed point of Tµm−1 in B(x̄; rmax), i.e., ∥z̃ − Tµm−1 (z̃)∥ ≤ ϵ and
∥z̃ − zµm−1∥ ≤ ϵ, where ϵ ∈ [0, ϵ). Then, we have:

∥Tµm−1 (z̃)− zµm−1∥ = ∥Tµm−1 (z̃)− Tµm−1 (zµm−1 )∥
a)

≤ κ′ ∥z̃ − zµm−1∥︸ ︷︷ ︸
≤ϵ

≤ ϵ, (21)

where a) uses κ′-contractive nature of Tµm−1 over B(x̄; rmax). Hence, using triangle in-
equality,

∥z̃ − x̄∥
a)

≤ ∥z̃ − Tµm−1 (z̃)∥+ ∥Tµm−1 (z̃)− zµm−1∥+ ∥zµm−1 − x̄∥
b)

≤ 2ϵ+ ∥zµm−1 − x̄∥,

where a) uses triangle inequality and b) uses (21). As ϵ ∈ [0, ϵ), where ϵ is defined in (6),
due to the second equation of Lemma 2(ii), we have rmax − ∥z̃ − x̄∥ > ψ.

Define∆ = ((1− κ′)ψ − ϵ) /ℓ, which will be positive due to ϵ ∈ [0, ϵ) and (6). Next, select
θ ∈ (0, 1) such that ∆ = θ∆ < µ1, hence there exists a ρ ∈ (0, 1) such that ∆ = (1− ρ)µ1.
Now reduce the penalty parameter using

µm = µm−1 − ρm−2∆ = ρµm−1 = ρm−1µ1 (22)

for any m ≥ 2. Next, we initialize the iteration scheme zn+1
µm = Tµm

(
znµm

)
at z0µm

:= z̃.
Around this initial point, let us consider the open ball B(z̃, ψ). For any x ∈ B(z̃;ψ), we
have ∥x− x̄∥ ≤ ∥x− z̃∥+ ∥z̃ − x̄∥ < ψ + ∥z̃ − x̄∥ < rmax, where the last inequality follows
from rmax − ∥z̃ − x̄∥ > ψ. Thus we have shown that B(z̃;ψ) ⊆ B(x̄; rmax). Hence, from
Proposition 2, on B(z̃;ψ), the Douglas-Rachford operator Tµm is contractive. Next, we have

∥Tµm (z̃)−z̃∥ ≤ (1−κ′)ψ, because ∥Tµm (z̃)−z̃∥
a)

≤ ∥Tµm (z̃)−Tµm−1 (z̃)∥+∥Tµm−1 (z̃)−z̃∥
b)

≤

ℓ∥µm−µm−1∥+ϵ
c)

≤ ϵ+ℓ∆
d)

≤ (1−κ′)ψ, where a) triangle inequality, b) uses Proposition 2(ii)
and ∥z̃−Tµm−1 (z̃)∥ ≤ ϵ, c) uses (22) and ∥µm − µm−1∥ ≤ ∆ ≤ ∆ d) uses the definition of
∆. Thus, both conditions of Theorem 3 are satisfied, and znµm

in (20) will linearly converge
to the unique fixed point zµmof the operator Tµm , and xnµm

, ynµm
will linearly converge to

xµm . This completes the proof.

B.7 Proof to Lemma 3

First, we show that, for the given initialization of zinit, the iterates z
n
µ1

stay in B(zµ1 ; ∥zinit−
zµ1∥) for any n ∈ N via induction. The base case is true via given. Let, znµ1

∈ B(zµ1 ; ∥zinit−
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zµ1∥). Then, ∥zn+1
µ1 − zµ1∥

a)
= ∥Tµ1 (z

n
µ1

) − Tµ1 (zµ1 )∥
b)

≤ κ′∥znµ1
− zµ1∥

c)

≤ κ′∥zinit − zµ1∥,
where a) uses zµ1 ∈ fixTµ, and b) uses Proposition 2, and c) uses ∥znµ1

−zµ1∥ ≤ ∥zinit−zµ1∥.
So, the iterates znµ1

stay in B(zµ1 ; ∥zinit − zµ1∥). As, κ′ ∈ (0, 1), this inequality also implies
that znµ linearly converges to zµ with the rate of at least κ′. Then using similar reasoning
presented in the proof to Theorem 1, we have xnµ and ynµ linearly converge to the unique
local minimum xµ of problem (Pµ). This completes the proof.

B.8 Proof to Theorem 2

The proof is based on the results in [43, Theorem 4] and [65, Theorem 4.3]. The function
f is L-Lipschitz continuous and strongly smooth, hence f is a coercive function satisfying
lim inf∥x∥→∞ f(x) = ∞ and is bounded below [3, Corollary 11.17]. Also, µI(x) is jointly
continuous hence lower-semicontinuous in x and µ and is bounded below by definition. Let
the proximal parameter γ be smaller than or equal to 1/L. Then due to [43, (14), (15) and
Theorem 4], {xnµ, ynµ , znµ} (iterates of the inner algorithm of NExOS for any penalty param-
eter µ) will be bounded. This boundedness implies the existence of a cluster point of the
sequence, which allows us to use [43, Theorem 4 and Theorem 1] to show that for any zinit,
the iterates xnµ and ynµ subsequentially converges to a first-order stationary point xµ satis-

fying ∇ (f + µI) (xµ) = 0. The rate minn≤k ∥∇ (f + µI) (xnρµ)∥ ≤ ((1− γL)/2L)o(1/
√
k) is

a direct application of [65, Theorem 4.3] as our setup satisfies all the conditions to apply it.


	Introduction
	Our approach
	Convergence analysis
	Numerical experiments 
	Conclusion
	Proof and derivation to results in §1
	Proofs and derivations to the results in §3

