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Abstract
Many problems of substantial current interest in machine learning, statistics, and
data science can be formulated as sparse and low-rank optimization problems. In
this paper, we present the nonconvex exterior-point optimization solver (NExOS)—
a first-order algorithm tailored to sparse and low-rank optimization problems. We
consider the problem of minimizing a convex function over a nonconvex constraint
set, where the set can be decomposed as the intersection of a compact convex set
and a nonconvex set involving sparse or low-rank constraints. Unlike the convex
relaxation approaches, NExOS finds a locally optimal point of the original problem by
solving a sequence of penalized problems with strictly decreasing penalty parameters
by exploiting the nonconvex geometry. NExOS solves each penalized problem by
applying a first-order algorithm, which converges linearly to a local minimum of the
corresponding penalized formulation under regularity conditions. Furthermore, the
local minima of the penalized problems converge to a local minimum of the original
problem as the penalty parameter goes to zero. We then implement and test NExOS
on many instances from a wide variety of sparse and low-rank optimization problems,
empirically demonstrating that our algorithm outperforms specialized methods.
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1 Introduction

This paper studies optimization problems involving a strongly convex and smooth
cost function over a closed nonconvex constraint set X involving sparse or low-rank
constraints. We propose a first-order algorithm nonconvex exterior-point optimization
solver (NExOS) to solve such problems numerically. We can write such problems as:

minimize f (x)+ (β/2)‖x‖2
subject to x ∈ X ,

(P)

where x takes value in a finite-dimensional vector spaceE over the reals, f is a strongly
convex and smooth function. In Appendix B.1, we generalize our framework to the
case when f is non-smooth convex.

The regularization parameter β > 0 is commonly introduced in statistics and
machine learning problems to reduce the generalization error without increasing the
training error [33, §5.2.2]. In this paper, there is also a theoretical consideration behind
including the term β

2 ‖x‖2 in problem (P). NExOS finds a locally optimal point of
problem (P) by solving a sequence of penalized subproblems with strictly decreasing
penalty parameters, where each penalized subproblem is solved by a first-order algo-
rithm. Under the presence of β

2 ‖x‖2 with β > 0, we can prove that each penalized
subproblem is locally strongly convex and smooth admitting a unique local minimum
(see Proposition 1), which in turn ensure linear convergence of the first-order method
to that local minimum (see Theorem 1). In the Numerical Experiments section, we
demonstrate that β can be set to a value as small as 10−8. This empirical evidence sug-
gests that, in practice, the impact of β on the objective value can be made negligible,
yet one can still reap the theoretical benefits. Therefore, while β plays a crucial role in
the theoretical aspects of our algorithm, its influence on the problems considered in the
Numerical Experiments section is minimal and can be adjusted as per the problem’s
requirements.

Furthermore, E is equipped with inner product 〈· | ·〉 and norm ‖ · ‖ = √〈x | x〉.
For E = Rd , we have 〈x | y〉 = x�y for x, y ∈ Rd , and for E = Rm×n , we have
〈X | Y 〉 = tr(X�Y ), for X , Y ∈ Rm×n . The constraint setX is closed and nonconvex
and can be decomposed as the intersection of a compact convex set and a nonconvex set
involving sparse or low-rank constraints. Sparse and low-rank constraint sets are very
important in modeling many machine learning problems, because they allow for high
interpretability, speed-ups in computation, and reduced memory requirements [40].
Sparsity-constrained optimization Sparsity constraints have found applications in
many practical settings, e.g., gene expression analysis [38, pp. 2–4], sparse regres-
sion [40, pp. 155–157], signal transmission and recovery [22, 67], hierarchical sparse
polynomial regression [14], and best subset selection [13], just to name a few. In these
problems, the constraint set X decomposes as X = C ⋂N , where C is a compact
convex set, and
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N = {x ∈ Rd | card(x) ≤ k}, (1)

where card(x) counts the number of nonzero elements in x . In these optimization
problems, C can be a polyhedron, infinity-norm ball, box constraint set, or probability
simplex; these sets usually show up in applications involving econometrics, housing
price prediction, air-quality prediction, signal processing, and meteorology [8, 11, 15,
25].

In this paper, we apply NExOS to solve the sparse regression problem for both
synthetic and real-world datasets in Sect. 4.1, which is concerned with approximating
a vector b ∈ Rm with a linear combination of at most k columns of a matrix A ∈ Rm×d

with bounded coefficients. This problem has the form:

minimize ‖Ax − b‖22 + (β/2)‖x‖22
subject to card(x) ≤ k, ‖x‖∞ ≤ Γ ,

(SR)

where x ∈ Rd is the decision variable, and A ∈ Rm×d , b ∈ Rm, and Γ > 0 are
problem data.

Low-rank optimization We can write low-rank optimization problems in the form of
problem (P),which are common inmachine learning applications such as collaborative
filtering [40, pp. 279–281], design of online recommendation systems [21, 45], bandit
optimization [41], data compression [34, 46, 60], and low rank kernel learning [2].
In these applications, the constraint set X decomposes as X = C ⋂N , where C is a
compact convex set, and

N = {X ∈ Rm×d | rank(X) ≤ r}. (2)

In these optimization problems, C can be matrix-norm ball, Frobenius-norm ball,
hyperplane/half-space induced by trace [9, 10]. In this paper, we apply NExOS to solve
the affine rank minimization problem:

minimize ‖A(X)− b‖22 + (β/2)‖X‖2F
subject to rank(X) ≤ r , ‖X‖2 ≤ Γ ,

(RM)

where X ∈ Rm×d is the decision variable, b ∈ Rk is noisy measurement data, and
A : Rm×d → Rk is a linear map. The parameter Γ > 0 is the upper bound for the
spectral norm of X . The affinemapA is determined by k matrices A1, . . . , Ak inRm×d

whereA(X) = (tr(AT
1 X), . . . , tr(AT

k X)).We present several numerical experiments
to solve (RM) using NExOS for both synthetic and real-world datasets in Sect. 4.2.

1.1 RelatedWork

Convex relaxation approach Due to the presence of the nonconvex setX , the noncon-
vex problem (P) is NP-hard [35]. A common way to deal with this issue is to avoid
this inherent nonconvexity altogether by convexifying the original problem. The relax-
ation of the sparsity constraint leads to the popular LASSO formulation and its variants

123



798 Journal of Optimization Theory and Applications (2024) 202:795–833

[38], whereas relaxation of the low-rank constraints produces the nuclear norm based
convex models [28].

The basic advantage of the convex relaxation technique is that, in general, a globally
optimal solution to a convex problem can be computed reliably and efficiently [20,
§1.1], whereas for nonconvex problems a local optimal solution is often the best one
can hope for. Furthermore, if certain statistical assumptions on the data generating
process hold, then it is possible to recover exact solutions to the original nonconvex
problems with high probability by solving the convex relaxations (see [38] and the
references therein).

However, when stringent assumptions do not hold, then solutions to the convex
formulations can be of poor quality and may not scale very well [40, §6.3 and §7.8].
In this situation, the nonconvexity of the original problemmust be confronted directly,
because such nonconvex formulations capture the underlying problem structures more
accurately than their convex counterparts.

First-order methods To that goal, first-order algorithms such as hard thresholding
algorithms, e.g., IHT [17], NIHT [18], HTP [30], CGIHT [16], address nonconvexity
in sparse and low-rank optimization by implementing variants of projected gradient
descent with projection taken onto the sparse and/or low-rank set.

While these first-order methods have been successful in recovering low-rank and
sparse solutions in underdetermined linear systems, they too require assumptions on
the data such as the restricted isometry property for recovering true solutions [40,
§7.5]. Furthermore, to converge to a local minimum, hard thresholding algorithms
require the spectral norm of the measurement matrix to be less than one, which is a
restrictive condition [17].

Besides hard thresholding algorithms, heuristics based on first-order algorithms
such as the alternating direction method of multipliers (ADMM) have gained a lot of
traction in the last few years. Though ADMM was originally designed to solve convex
optimization problems, since the idea of implementing this algorithm as a general
purpose heuristic to solve nonconvex optimization problems was introduced in [19,
§9.1−9.2], ADMM-based heuristics have been applied successfully to approximately
solve nonconvex problems in many different application areas [25, 63].

However, the biggest drawback of these heuristics based on first-order methods
comes from the fact that they take an algorithm designed to solve convex problems
and apply it verbatim to a nonconvex setup. As a result, these algorithms often fail to
converge, and evenwhen they do, it need not be a localminimum, let alone a global one
[62, §2.2]. Also, empirical evidence suggests that the iterates of these algorithms may
diverge even if they come arbitrarily close to a locally optimal solution during some
iteration. The main reason is that these heuristics do not establish a clear relationship
between the local minimum of problem (P) and the fixed point set of the underlying
operator that controls the iteration scheme. An alternative approach that has been quite
successful empirically in finding low-rank solutions is to consider an unconstrained
problem with Frobenius norm penalty and then using alternating minimization to
compute a solution [68]. However, the alternating minimization approach may not
converge to a solution and should be considered a heuristic [68, §2.4].
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Discrete optimization approach For these reasons above, in the last few years, there
has been significant interest in addressing the nonconvexity present in many optimiza-
tion problems directly via a discrete optimization approach. In this way, a particular
nonconvex optimization problem is formulated exactly using discrete optimization
techniques and then specialized algorithms are developed to find a certifiably optimal
solution. This approach has found considerable success in solving machine learning
problems with sparse and low-rank optimization [12, 66]. A mixed integer optimiza-
tion approach to compute near-optimal solutions for sparse regression problem, where
problem dimension d = 1000, is computed in [13]. In [15], the authors propose a
cutting plane method for a similar problem, which works well with mild sample cor-
relations and a sufficiently large dimension. In [39], the authors design and implement
fast algorithms based on coordinate descent and local combinatorial optimization to
solve sparse regression problem with a three-fold speedup where d ≈ 106. In [10],
the authors propose a framework for modeling and solving low-rank optimization
problems to certifiable optimality via symmetric projection matrices.

However, the runtime of these discrete optimization based algorithms can often
become prohibitively long as the problem dimensions grow [13]. Also, these discrete
optimization algorithms have efficient implementations only for a narrow class of loss
functions and constraint sets; they do not generalize well if a minor modification is
made to the problem structure, and in such a case they often fail to find a solution point
in a reasonable amount of time even for smaller dimensions [12]. Furthermore, one
often relies on commercial softwares, such as Gurobi, Mosek, or Cplex to solve
these discrete optimization problems, thus making the solution process somewhat
opaque [13, 66].

1.2 Contributions

The main contribution of this work is to propose NExOS: a first-order algorithm tai-
lored for nonconvex optimization problems of the form (P). The term exterior-point
originates from the fact that the iterates approach a local minimum from outside of the
feasible region; it is inspired by the convex exterior-point method first proposed by
Fiacco and McCormick in the 1960s [29, §4]. By exploiting the underlying geometry
of the constraint set, we construct an iterative method that finds a locally optimal point
of the original problem via an outer loop consisting of increasingly accurate penalized
formulations of the original problem by reducing only one penalty parameter. Each
penalized problem is then solved by applying an inner algorithm that implements a
variant of the Douglas–Rachford splitting algorithm.

We prove that NExOS, besides avoiding the drawbacks of convex relaxation and dis-
crete optimization approach, has the following favorable features. First, the penalized
problem has strong convexity and smoothness around local minima, but can be made
arbitrarily close to the original nonconvex problem by reducing the penalty parameter.
Second, under mild regularity conditions, the inner algorithm finds local minima for
the penalized problems at a linear convergence rate, and as the penalty parameter goes
to zero, the local minima of the penalized problems converge to a local minimum of
the original problem. Furthermore, we show that, when those regularity conditions
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do not hold, the inner algorithm is still guaranteed to subsequentially converge to a
first-order stationary point of the penalized problem at the rate o(1/

√
k).

We implement NExOS in the open-source Julia package NExOS.jl and test it
extensively on many synthetic and real-world instances of different nonconvex opti-
mization problems of substantial current interest. We demonstrate that NExOS very
quickly computes solutions that are competitive with or better than specialized algo-
rithms on various performance measures. NExOS.jl is available at https://github.
com/Shuvomoy/NExOS.jl.
Organization of the paper

The rest of the paper is organized as follows. We describe our NExOS framework in
Sect. 2. We provide convergence analysis of the algorithm in Sect. 3. Then we demon-
strate the performance of our algorithm on several nonconvex optimization problems
of significant current interest in Sect. 4. The concluding remarks are presented in
Sect. 5.

2 Our Approach

The backbone of our approach is to address the nonconvexity by working with an
asymptotically exact nonconvex penalization of problem (P), which enjoys local con-
vexity around local minima. We use the notation ιX (x) that denotes the indicator
function of the set X at x , which is 0 if x ∈ X and ∞ else. Using this, we can
write problem (P) as an unconstrained optimization problem, where the objective is
f (x)+ (β/2)‖x‖2 + ιX (x). In our penalization, we replace the indicator function ιX
with its Moreau envelope with positive parameter μ:

μι(x) = min
y
{ιX (y)+ (1/2μ)‖y − x‖2} = (1/2μ)d2(x), (3)

where d(x) is the Euclidean distance of the point x from the set X .
Properties of Moreau envelope for a nonconvexset.

The function μι, though nonconvex, has many desirable attributes that greatly sim-
plify design and convergence analysis of our algorithm.We summarize these properties
below; See [3, Proposition 12.9] for the first four properties, andProposition 1 in Sect. 3
for the last one.

1. Bounded. The function μι is bounded on every compact set. In contrast, ιX is an
extended valued function that takes the value +∞ outside the set X .

2. Finite and jointly continuous. For every μ > 0 and x ∈ E, the function μι(x)

is jointly continuous and finite. Therefore, μι is continuous on E. In contrast, the
indicator function ιX is not continuous.

3. Accuracy of approximation controlled by μ.With decreasingμ, the approximation
μι monotonically increases to ιX , i.e., for any positive μ1, μ2 such that 0 ≤ μ1 ≤
μ2, we have

0 ≤ μ2 ιX (x) ≤ μ1 ιX (x) ≤ ιX (x)
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Fig. 1 An illustration of how the penalized cost function in problem (Pμ) compares against the original
cost function in problem (P) for different values ofμ. Note that the regularization parameter β is kept fixed
at its initial value 1 throughout

for any x ∈ E.
4. Asymptotically equal to ιX . The approximation μι is asymptotically equal to ιX

as μ goes to zero, i.e., we have the point-wise limit

lim
μ↓0

μι(x) = ιX (x)

for all x ∈ E .
5. Local convexity and differentiability around points of interest. Adding any

quadratic regularizer to μιmakes the sum locally convex and differentiable around
points of interest. To be precise, if at x , the set X is prox-regular, then for any
value of β > 0, the function μι(x) + β

2 ‖x‖2 is convex and differentiable on a
neighborhood of x .

The favorable features of μι motivate us to consider the following penalization
formulation of problem (P) denoted by problem (Pμ), where the subscriptμ indicates
the penalty parameter:

minimize f (x)+ μI(x), (Pμ)

where μI ≡ μι+(β/2)‖·‖2, x ∈ E is the decision variable, andμ is a positive penalty
parameter. We call the cost function in problem (Pμ) an exterior-point minimization
function; the term is inspired by [29, §4.1]. The notation μI ≡ μι + (β/2)‖ · ‖2
introduced in problem (Pμ) not only reduces notational clutter, but also alludes to
a specific way of splitting the objective into two summands f and μI, which will
ultimately allow us to establish convergence of our algorithm in Sect. 3. Because μι

is an asymptotically exact approximation of ιX as μ→ 0, solving problem (Pμ) for
a small enough value of the penalty parameter μ suffices for all practical purposes.

To provide intuition on how the exterior-point minimization function in prob-
lem (Pμ) compares against the original minimization function in problem (P), we
provide an illustrative one-dimensional example in Fig. 1. Figure1 captures all the
key properties of our penalization scheme. In this figure, f = (1/2)(·)2, β = 1,
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X = [−2,−1]⋃[2, 3]. The problem has two local minima, one at −1 and one at
−2. We see that for larger values of μ, problem (Pμ) is not a good approximation of
problem (P), but around each local minimum there is a relatively large region where
f + μI is strongly convex and smooth. As μ gets smaller, problem (Pμ) becomes
a more accurate approximation of problem (P), though the regions of convexity and
smoothness around local minima shrink. For μ = 10−4, problem (Pμ) is identical
to problem (P) for all practical purposes. Note that the regularization parameter β is
kept fixed at its initial value 1 throughout.

Now that we have intuitively justified intuition behind working with (Pμ), we are
in a position to present our algorithm.

given: regularization parameter β > 0, an initial point zinit, initial penalty parameter μinit, minimum
penalty parameter μmin, tolerance for the fixed point gap ε for each inner iteration, tolerance
for stopping criterion δ for the outer iteration, and multiplicative factor ρ ∈ (0, 1).

Initialization. μ:=μinit, and z0:=zinit.
Outer iteration. while stopping criterion is not met do

Inner iteration. Using Algorithm 2, compute xμ, yμ, and zμ that solve problem (Pμ) with
tolerance ε, where z0μ:=z0 is input as the initial point.

Stopping criterion. quit if |
(

f (�X xμ)+ (β/2)‖�X xμ‖2
)
− (

f (xμ)+ μI(xμ)
)| ≤ δ.

Set initial point for next inner iteration. z0:=zμ.
Update μ. μ:=ρμ.

end
return xμ, yμ, and zμ

Algorithm1:Nonconvex Exterior-point Optimization Solver (NExOS). Here�X (x)

denotes the Euclidean projection of x on the nonconvex set X .

given: starting point z0, tolerance for the fixed point gap ε, and proximal parameter γ > 0.
Initialization. n:=0, κ:=1/(βγ + 1), θ :=μ/(γ κ + μ).
while ‖xn − yn‖ > ε do

Compute xn+1:=proxγ f
(
zn)

.

Compute ỹn+1:=κ
(
2xn+1 − zn

)
.

Compute yn+1:=θ ỹn+1 + (1− θ)�X
(

ỹn+1).

Compute zn+1:=zn + yn+1 − xn+1.
Update n:=n + 1.

end
return xn , yn , and zn .

Algorithm 2: Inner Algorithm for problem (Pμ). Here�X (x) denotes the Euclidean
projection of x on the nonconvex set X , and proxγ f denotes the proximal operator
of f with parameter γ > 0 as defined in (4).

Algorithm description Algorithm 1 outlines NExOS. The main part is an outer loop
that solves a sequence of penalized problems of the form problem (Pμ) with strictly
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decreasing penalty parameter μ, until the termination criterion is met, at which point
the exterior-point minimization function is a sufficiently close approximation of the
original cost function. For each μ, problem (Pμ) is solved by an inner algorithm,
denoted by Algorithm 2.

One can derive Algorithm 2 by applying Douglas–Rachford splitting (DRS) [3,
page 401] to problem (Pμ) as follows. If we apply Douglas–Rachford splitting [3,
page 401] to problem (Pμ) with penalty parameter μ, we have the following variant
with three sub-iterations:

xn+1 = proxγ f

(
zn)

yn+1 = proxγ μI
(
2xn+1 − zn

)

zn+1 = zn + yn+1 − xn+1.

(DRS)

The computational cost for proxγ μI is the same as computing a projection onto
the constraint setX , as stated in Lemma 1 below; this result follows from [5, Theorem
6.13, Theorem 6.63]. It should be noted that [5, Theorem 6.13, Theorem 6.63] assume
convexity of the functions in the theorem statements, but its proof does not require
convexity and works for nonconvex functions as well.

Lemma 1 (Computing proxγ μI(x) ) Consider the nonconvex compact constraint set
X in problem (P). Denote κ = 1/(βγ + 1) ∈ [0, 1] and θ = μ/(γ κ + μ) ∈ [0, 1].
Then, for any x ∈ E, and for any μ, β, γ > 0, we have proxγ μI (x) = θκx +
(1− θ)�X (κx).

Finally, combining (DRS), [5, Theorem 6.13], and Lemma 1, we arrive at Algorithm 2.

Algorithm subroutines The inner algorithm requires two subroutines, evaluating (i)
proxγ f (x), which is the proximal operator of the convex function f at the input point
x , and (ii) �X (x), which is a projection of x on the nonconvex set X . We discuss
now how we compute them in our implementation. To that goal, we recall that, for a
function g (not necessarily convex) its proximal operatorproxγ g andMoreau envelope
γ g, where γ > 0, are defined as:

proxγ g(x) = argmin
y∈E

(
g(y)+ (1/2γ )‖y − x‖2

)
,

γ g(x) = miny∈E
(

g(y)+ (1/2γ )‖y − x‖2
)

.

(4)

Computing proximal operator of f For the convex function f , proxγ f is always
single-valued and computing it is equivalent to solving a convex optimization problem,
which often can be done in closed form for many relevant cost functions in machine
learning [5, pp. 449–450]. If the proximal operator of f does not admit a closed form
solution, then we solve the corresponding convex optimization problem (4) to a high
precision solution. For this purpose, we can select any convex optimization solver
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supported by MathOptInterface,which is the abstraction layer for optimization
solvers in Julia.
Computing projection onto X The notation �X (x) denotes the projection operator
of x onto the constraint set X , defined as

�X (x) = proxγ ιX (x) = argminy∈X (‖y − x‖2).

A list of nonconvex sets that are easy to project onto can be found in [25, §4], this
includes nonconvex sets such as boolean vectors with fixed cardinality, vectors with
bounded cardinality, quadratic sets, matrices with bounded singular values, matrices
with bounded rank etc. If X is in this list, then we project onto X directly.

Now consider the case where the constraint set X decomposes as X = C ⋂N ,
where N is a nonconvex set with tractable projection and C is any compact convex
set. In this setup, let ιC and ιN be the indicator functions of C and N , respectively.
Defining φ = f + ιC , we write problem (P) as: minx∈E φ(x)+ (β/2)‖x‖2 + ιN (x).

For any convex functionφ, itsMoreau envelope νφ, for any ν > 0, has the following
three desirable features.

1. For every x ∈ E we have νφ(x) ≤ φ(x) and νφ(x) → φ(x) as ν → 0 [53,
Theorem 1.25].

2. we have x ∈ argminx∈E φ(x) if and only if x ∈ argminx∈E νφ(x) with the
minimizer x satisfying φ(x) = νφ(x) [3, Corollary 17.5].

3. the Moreau envelope νφ is convex, and smooth (i.e., it is differentiable and
its gradient is Lipschitz continuous) everywhere irrespective of the differen-
tiability or smoothness of the original function φ. The gradient is: νφ(x) =(
x − proxνφ(x)

)
/ν,which is (1/ν)−Lipschitz continuous [3, Proposition 12.29].

These properties make νφ a smooth approximation of φ for a small enough ν.
Hence, we work with the following approximation of the original problem: minx

νφ+
(β/2)‖x‖2 + ιN (x), where we replace f with νφ and ιX with ιN in Algorithms 1
and 2. The proximal operator of νφ can be computed using proxγ νφ(x) = x+(γ /(γ+
ν))(prox(γ+ν)φ(x)− x), where computing prox(γ+ν)φ(x) corresponds to solving the
following convex optimization problem argminy∈C φ(y) + 1/(2(γ + ν))‖y − x‖2,
which follows from [3, Proposition 24.8].

Remark 1 (Reasons for choosing Douglas–Rachford splitting as the inner algorithm)
Problem (Pμ) involves minimizing the sum of two functions: a convex function f
and a nonconvex function μI. As the objective is split into two parts in problem
(Pμ), selecting any other two-operator splitting algorithm (e.g., forward-backward
splitting [56, page 25], Chambolle–Pock algorithm [56, page 32], ADMM [48] etc.)
can work as the inner algorithm in principle. However, in the context of our problem
setup, Douglas–Rachford splitting might be the most suitable choice for the following
reasons.

1. We have picked Douglas–Rachford splitting over ADMM, because Douglas–
Rachford operates on the original nonconvex problem, whereas ADMM can be
viewed as Douglas–Rachford splitting on the dual of the original nonconvex prob-
lem [65]. As strong duality usually does not hold when the primal problem is
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nonconvex, it seems more intuitive to work with the nonconvex problem directly
over its dual.

2. We favored Douglas–Rachford splitting over proximal gradient method, because
even when the problem is convex, Douglas–Rachford splitting converges under
more general conditions, whereas proximal gradient method require more restric-
tive conditions to converge [57, page 49]. Hence, we believe that Douglas–
Rachford splitting represents the most natural choice for the inner algorithm over
the proximal gradient method.

3. Douglas–Rachford splitting is favorably unique in contrastwith other two-operator
splitting methods, as Douglas–Rachford splitting is the only two-operator split-
ting method that satisfies the following properties simultaneously [55]: (i) it is
constructed only with scalar multiplication, addition, and proximal operators, (ii)
it computes proximal operators only once every iteration, (iii) it converges uncon-
ditionally for maximally monotone operators, and (iv) it does not increase the
problem size.
In Sect. 3, some of these desirable properties of Douglas–Rachford splitting
are exploited to establish convergence. While other operator splitting algorithms
may work to establish convergence as well, some of the unique features of
Douglas–Rachford splitting will be lost [55].

3 Convergence Analysis

This section is organized as follows. We start with the definition of the key geome-
try property of sets involving sparse and low-rank optimization problems. Then we
define the local minima of such problems, followed by the assumptions we use in
our convergence analysis. We next discuss the convergence roadmap, where the first
step involves showing that the exterior point minimization function is locally strongly
convex and smooth around local minima, and the second step entails connecting the
local minima with the underlying operator controlling NExOS. Then, we present the
main result, which shows that, under mild regularity conditions, the inner algorithm
of NExOS finds local minima for the penalized problems at a linear convergence rate,
and as the penalty parameter goes to zero, the local minima of the penalized problems
converge to a local minimum of the original problem. Furthermore, we show that,
when those regularity conditions do not hold, the inner algorithm is still guaranteed
to subsequentially converge to a first-order stationary point at the rate o(1/

√
k).

The key geometric property of sparse and low-rank constraint sets that we use in
our convergence analysis is prox-regularity at local minima, i.e., having single-valued
Euclidean projection around local minima [50]. Prox-regularity of a set at a point is
defined as follows.

Definition 1 (Prox-regular set [50]) A nonempty closed set S ⊆ E is prox-regular at
a point x ∈ S if projection onto S is single-valued on a neighborhood of x . The set S
is prox-regular if it is prox-regular at every point in the set.

If the constraint set X decomposes as X = C ⋂N , where C is a compact convex
set, and N is prox-regular around local minima, then the feasible set X inherits the
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prox-regularity property around local minima from the setN (see Lemma 4 in Sect. 3).
The setN in (2) is a prox-regular set at any point X ∈ Rm×d where rank(X) = r [44,
Proposition 3.8]. One can show that X inherits the prox-regularity property at any X
with rank(X) = r from the setN ; a formal proof is given inLemma4 inAppendixA.1.
Similarly, N in (1) is prox-regular at any point x satisfying card(x) = k because we
can write card(x) ≤ k as a special case of the low-rank constraint by embedding the
components of x in the diagonal entries of a matrix and then using the prox-regularity
of low-rank constraint set.

In our convergence analysis, we use the prox-regularity property of sparse and low-
rank optimization to establish our convergence results, hence NExOS can be applied
to problems involving other constraint sets that are prox-regular at local minimal.
Some other notable prox-regular sets are as follows. Closed convex sets are prox-
regular everywhere [53, page 612]. Examples of well-known prox-regular sets that
are not convex include sets involving bilinear constraints [4], weakly convex sets [69],
proximally smooth sets [23], strongly amenable sets [53, page 612], and sets with
Shapiro property [59]. Also, a nonconvex set defined by a system of finitely many
inequality and equality constraints for which a basic constraint qualification holds is
prox-regular [52, page 10].

We next provide the definition of local minimum of problem (P). Recall that,
according to our setup the set X is prox-regular at local minimum.

Definition 2 (Local minimum of problem (P)) A point x̄ ∈ X is a local minimum of
problem (P) if the setX is prox-regular at x̄, and there exists a closed ball with center
x̄ and radius r , denoted by B(x̄; r) such that for all y ∈ X ∩ B(x̄; r) \ {x̄}, we have
f (x̄)+ (β/2)‖x̄‖2 < f (y)+ (β/2)‖y‖2.
In the definition above, the strict inequality is due to the strongly convex nature of
the objective f + (β/2)‖ · ‖2 and follows from [1, Proposition 2.1] and [53, Theorem
6.12]. We now state and justify the assumptions used in our convergence analysis.

Assumption 1 (Strong convexity and smoothness of f ) The function f in problem
(Pμ) is α-strongly convex and L-smooth where L > α > 0, i.e., f − (α/2)‖ · ‖2 is
convex and f − (L/2)‖ · ‖2 is concave.
Assumption 2 (Problem (P) is not trivial) The unique solution to the unconstrained
strongly convex problem minx f (x)+ (β/2)‖x‖2 does not lie in X .

Assumption 1 corresponds to the function f + (β/2)‖ · ‖2 being (α + β)-strongly
convex and (L + β)-smooth. In our convergence analysis, β > 0 can be arbitrarily
small, so it does not fall outside the setup described in Sect. 1. The L-smoothness in
f is equivalent to its gradient ∇ f being L−Lipschitz everywhere on E [3, Theorem
18.15]. In our convergence analysis, this assumption is required in establishing linear
convergence of the inner algorithms of NExOS.

Assumption 2 imposes that a local minimum of problem (P) is not the global
minimum of its unconstrained convex relaxation, which does not incur any loss of
generality. We can solve the unconstrained strongly convex optimization problem
minx f (x)+ (β/2)‖x‖2 and check if the corresponding minimizer lies in X ; if that is
the case, then that minimizer is also the global minimizer of problem (P), and there
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is no point in solving the nonconvex problem. This can be easily checked by solving
an unconstrained convex optimization problem, so Assumption 2 does not cause any
loss of generality.

Todiscuss our convergence roadmap,we introduce some standard operator theoretic
notions as follows. A set-valued operator A : E ⇒ E maps an element x in E to a
set A(x) in E; its domain is defined as domA = {x ∈ E | A(x) �= ∅}, its range
is defined as ranA = ⋃

x∈E A(x), and it is completely characterized by its graph:
graA = {(u, x) ∈ E × E | u ∈ A(x)}. Furthermore, we define fixA = {x ∈ E |
x ∈ A(x)}, and zerA = {x ∈ E | 0 ∈ A(x)}. For every x, addition of two operators
A1,A2 : E ⇒ E, denoted by A1+A2, is defined as (A1+A2)(x) = A1(x)+A2(x),

subtraction is defined analogously, and composition of these operators, denoted by
A1A2, is defined as A1A2(x) = A1(A2(x)); note that order matters for composition.
Also, if S ⊆ E is a nonempty set, then A(S) = ∪{A(x) | x ∈ S}.

We next discuss our convergence roadmap. Convergence of NExOS is controlled
by the DRS operator of problem (Pμ):

Tμ = proxγ μI
(
2proxγ f − I

)+ I− proxγ f , (5)

where μ > 0, and I stands for the identity operator in E, i.e., for any x ∈ E, we have
I(x) = x . Using Tμ, the inner algorithm—Algorithm 2—can be written as

1zn+1 = Tμ

(
zn) (Aμ)

where μ is the penalty parameter and zn is initialized at the fixed point from the
previous inner algorithm.

To show the convergence of NExOS, we first show that for some μmax > 0, for
any μ ∈ (0, μmax], the exterior point minimization function f + μI is strongly
convex and smooth on some open ball with center x and radius rmax, denoted by
B(x̄; rmax), where it will attain a unique local minimum xμ. Then we show that for
μ ∈ (0, μmax], the operatorTμ(x)will be contractive in x and Lipschitz continuous in
μ, and connects its fixed point set fixTμ with the local minima xμ, via the relationship
xμ = proxγ f (fixTμ). In the main convergence result, we show that for a sequence
of penalty parameters M = {μ1, μ2, μ3, . . . , μN } and under proper initialization,
if we apply NExOS to M, then for all μm ∈ M,the inner algorithm will linearly
converge to xμm , and as μN → 0, we will have xμN → x̄ . Finally, we show that,
when the regularity conditions of the prior result do not hold, the inner algorithm
is still guaranteed to subsequentially converge to a first-order stationary point (not
necessarily a local minimum) at the rate o(1/

√
k).

We next present a proposition that shows that the exterior point minimization func-
tion in problem (Pμ) will be locally strongly convex and smooth around local minima
for our selection of penalty parameters, even though problem (P) is nonconvex. Fur-
thermore, as the penalty parameter goes to zero, the local minimum of problem (Pμ)
converges to the local minimum of the original problem (P). So, under proper initial-
ization, NExOS can solve the sequence of penalized problems {Pμ}μ∈(0,μinit] similar
to convex optimization problems; we will prove this in our main convergence result
(Theorem 1).
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Proposition 1 (Attainment of local minimum by f + μI) Let Assumptions 1 and 2
hold for problem (P), and let x̄ be a local minimum to problem (P). Then the following
hold.

(i) There exist μmax > 0 and rmax > 0 such that for any μ ∈ (0, μmax], the exterior
point minimization function f + μI in problem (Pμ) is strongly convex and
smooth in the open ball B(x̄; rmax) and will attain a unique local minimum xμ

in this ball.
(ii) As μ→ 0, this local minimum xμ will go to x̄ in limit, i.e., xμ → x̄ .

Proof See Appendix B.2. ��
Because the exterior point minimization function is locally strongly convex and

smooth, intuitively the DRS operator of problem (Pμ) would behave similar to that of
a DRS operator of a composite convex optimization problem, but locally. When we
minimize a sum of two convex functions where one of them is strongly convex and
smooth, the corresponding DRS operator is contractive [32, Theorem 1]. So, we can
expect that the DRS operator for problem (Pμ) would be locally contractive around a
local minimum, which indeed turns out to be the case as proven in the next proposition.
Furthermore, the next proposition shows that Tμ(x) is locally Lipschitz continuous
in the penalty parameter μ around a local minimum for fixed x . As Tμ(x) is locally
contractive in x and Lipschitz continuous inμ, it ensures that as we reduce the penalty
parameterμ, the local minimum xμ of problem (Pμ) found byNExOS does not change
abruptly.

Proposition 2 (Characterization of Tμ) Let Assumptions 1 and 2 hold for problem
(P), and let x̄ be a local minimum to problem (P). Then the following hold.

(i) There exists a contraction factor κ ′ ∈ (0, 1) such that for any x1, x2 ∈ B(x̄; rmax)

and μ ∈ (0, μmax], we have
∥
∥Tμ(x1)− Tμ(x2)

∥
∥ ≤ κ ′ ‖x1 − x2‖.

(ii) For any x ∈ B(x̄; rmax), the operator Tμ(x) is Lipschitz continuous in μ, i.e.,
there exists an � > 0 such that for any μ1, μ2 ∈ (0, μmax] and x ∈ B(x̄; rmax),
we have

∥
∥Tμ1(x)− Tμ2(x)

∥
∥ ≤ �‖μ1 − μ2‖.

Proof See Appendix B.3. ��
If the inner algorithm (Aμ) converges to a point zμ, then zμ would be a fixed point of

the DRS operator Tμ. Establishing the convergence of NExOS necessitates connecting
the local minimum xμ of problem (Pμ) to the fixed point set of Tμ, which is achieved
by the next proposition. Because our DRS operator locally behaves in a manner similar
to the DRS operator of a convex optimization problem as shown by Proposition 2, it is
natural to expect that the connection between xμ and zμ in our setup would be similar
to that of a convex setup, but in a local sense. This indeed turns out to be the case as
proven in the next proposition. The statement of this proposition is structurally similar
to [3, Proposition 25.1(ii)] that establishes a similar relationship globally for a convex
setup, whereas our result is established around the local minima of problem (Pμ).

Proposition 3 (Relationship between local minima of problem (P) and fixTμ) Let
Assumptions 1 and 2 hold for problem (P). Let x̄ be a local minimum to problem (P),
and μ ∈ (0, μmax]. Then, xμ = argminB(x̄;rmax)

f (x) + μI(x) = proxγ f

(
fixTμ

)
,

where the sets fixTμ, and proxγ f

(
fixTμ

)
are singletons over B(x̄; rmax).
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Proof See Appendix B.4. ��
Before we present the main convergence result, we provide a helper lemma, which
shows how the distances between xμ, zμ and x̄ change as μ is varied in Algorithm 1.
Additionally, this lemma provides the range for the proximal parameter γ . If X is a
bounded set satisfying ‖x‖ ≤ D for all x ∈ X , then term maxx∈B(x̄;rmax)‖∇ f (x)‖ in
this lemma can be replaced with L × D.

Lemma 2 (Distance between local minima of problem (P) with local minima of prob-
lem (Pμ)) Let Assumptions 1 and 2 hold for problem (P), and let x̄ be a local minimum
to problem (P) over B(x̄; rmax). Then the following hold.

(i) For any μ ∈ (0, μmax], the unique local minimum xμ of problem (Pμ) over
B(x̄; rmax) satisfies ‖xμ − x̄‖ < rmax/η

′ for some η′ > 1.
(ii) Let zμ be the unique fixed point of Tμ over B(x̄; rmax) corresponding to xμ.

Then for any μ ∈ (0, μmax], we have rmax − ‖xμ − x̄‖ > (η′ − 1)rmax/η
′ and

rmax−‖zμ−x̄‖ > ψ , where ψ = (η′−1)rmax/η
′−γ maxx∈B(x̄;rmax)‖∇ f (x)‖ >

0 with the proximal parameter γ taken to satisfy

0 < γ < (η′ − 1)rmax/
(
η′maxx∈B(x̄;rmax)‖∇ f (x)‖) .

Furthermore, minμ∈(0,μmax]
{(

rmax − ‖zμ − x̄‖)− ψ
}

> 0.

Proof See Appendix B.5. ��
We now present our main convergence results for NExOS. For convenience, we

denote the n-th iterates of the inner algorithm of NExOS for penalty parameter μ

by {xn
μ, yn

μ, zn
μ}. In the theorem, an ε-approximate fixed point z̃ of Tμ is defined by

max{‖̃z − Tμ(̃z)‖, ‖zμ − z̃‖} ≤ ε, where zμ is the unique fixed point of Tμ over
B(x̄; rmax). Furthermore, define:

ε:=min{ min
μ∈(0,μmax]

((rmax − ‖zμ − x̄‖)− ψ)/2, (1− κ ′)ψ} > 0, (6)

where κ ′ ∈ (0, 1) is the contraction factor of Tμ for any μ > 0 (cf. Proposition 2)
and the right-hand side is positive due to the third and fifth equations of Lemma 2(ii).
Theorem 1 states that if we have a good initial point zinit for the first penalty parameter
μinit, then NExOS will construct a finite sequence of penalty parameters such that all
the inner algorithms for these penalty parameters will linearly converge to the unique
local minima of the corresponding inner problems.

Theorem 1 (Convergence result for NExOS) Let Assumptions 1 and 2 hold for prob-
lem (P), and let x̄ be a local minimum to problem (P). Suppose that the fixed-point
tolerance ε for Algorithm 2 satisfies ε ∈ [0, ε), where ε is defined in (6). The prox-
imal parameter γ is selected to satisfy the fourth equation of Lemma 2(ii). In this
setup, NExOS will construct a finite sequence of strictly decreasing penalty parame-
ters M = {μ1:=μinit, μ2 = ρμ1, μ3 = ρμ2, . . .}, with μinit ≤ μmax and ρ ∈ (0, 1),
such that we have the following recursive convergence property.
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For any μ ∈M, if an ε-approximate fixed point of Tμ over B(x̄; rmax) is used to
initialize the inner algorithm for penalty parameter ρμ, then the corresponding inner
algorithm iterates zn

ρμ linearly converges to zρμ that is the unique fixed point of Tρμ

over B (x̄, rmax), and the iterates xn
ρμ, yn

ρμ linearly converge to xρμ = proxγ f (zρμ),
which is the unique local minimum to (Pρμ) over B(x̄; rmax).

Proof See Appendix B.6. ��
From Theorem 1, we see that an ε-approximate fixed point of Tρμ over B(x̄; rmax)

can be computed and then used to initialize the next inner algorithm for penalty
parameter ρ2μ; this chain of logic makes each inner algorithm linearly converge to
the corresponding locally optimal solution. Finally, for the convergence of the first
inner algorithm we have the following result, which states that if the initial point zinit
is not “too far away" from B(x̄; rmax), then the first inner algorithm of NExOS for
penalty parameter μ1 converges to a locally optimal solution of (Pμ1).

Lemma 3 (Convergence of the first inner algorithm) Let x̄ be a local minimum to
problem (P), where Assumptions 1 and 2 hold. Let zinit be the chosen initial point for
μ1:=μinit such that B(zμ1; ‖zinit− zμ1‖) ⊆ B(x̄; rmax), where zμ1 be the correspond-
ing unique fixed point of Tμ1 . Then, zn

μ1
linearly converges to zμ1 and both xn

μ1
and

yn
μ1

linearly converge to the unique local minimum xμ1 of (Pμ1) over B(x̄; rmax).

Proof See Appendix B.7. ��
We now discuss what can be said if the initial point zinit does not necessarily satisfy

the conditions stated in Theorem 1 or Lemma 3. Unfortunately, in such a situation, we
can only show subsequential convergence of the iterates.

Theorem 2 (Convergence result for NExOS for zinit that is far away from B(x̄; rmax))
Suppose, the proximal parameter γ is selected to satisfy 0 < γ < 1/L and let zinit be
the any arbitrarily chosen initial point that does not satisfy the conditions of Lemma
3. Then, in this setup, NExOS will construct a finite sequence of strictly decreasing
penalty parameters M = {μ1:=μinit, μ2 = ρμ1, μ3 = ρμ2, . . .}, and ρ ∈ (0, 1),
such that we have the following recursive convergence property. For any μ ∈ M,
if an ε-approximate fixed point of Tμ over B(x̄; rmax) is used to initialize the inner
algorithm for penalty parameter ρμ, then the corresponding inner algorithm iterates
zn
ρμ subsequentially converges to zρμ that is a fixed point of Tρμ, and the iterates

xn
ρμ, yn

ρμsubsequentially converge to a first-order stationary point to (Pρμ) denoted

by xρμ = proxγ f (zρμ) with the rate minn≤k ‖∇
(

f + μI)
(xn

ρμ)‖ ≤ 1−γ L
2 L o(1/

√
k).

Proof See Appendix B.8. ��

4 Numerical Experiments

In this section, we apply NExOS to the following nonconvex optimization problems of
substantial current interest for both synthetic and real-world datasets: sparse regres-
sion problem in Sect. 4.1, affine rank minimization problem in Sect. 4.2, and low-rank
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factor analysis problem in Sect. 4.3. We illustrate that NExOS produces solutions
that are either competitive or better in comparison with the other approaches on dif-
ferent performance measures. We have implemented NExOS in NExOS.jl solver,
which is an open-source software package written in the Julia programming lan-
guage. NExOS.jl can address any optimization problem of the form of problem (P).
The code and documentation are available online at: https://github.com/Shuvomoy/
NExOS.jl.

In our numerical experiments, we present a comprehensive evaluation of NExOS,
showing both statistical and optimization-theoretic evaluations. This dual approach is
deliberate—while our primary contribution is in developing optimization methodol-
ogy, the optimization problems considered in this section-such as sparse regression,
affine rank minimization, matrix completion, and factor analysis-are deeply rooted in
the fields of statistics and machine learning [7, 28, 36–38, 40]. Therefore, our numeri-
cal experiments are constructed not only to demonstrate NExOS efficiently computing
local minima for nonconvex problems but also to highlight its ability to provide statis-
tically robust solutions, which are also important in the application context. This dual
capacity is of paramount importance for practical applications in statistics andmachine
learning, underlining the algorithm’s versatility and effectiveness. By addressing these
aspects, we aim to illustrate the broad applicability of NExOS across optimization-
theoretic and applied statistical or learning domains. Here, we stress that while our
optimization-theoretic evaluations are grounded in both theory and empirical experi-
ments, the statistical evaluations of NExOS are based on empirical observations made
in the context of the experiments conducted in this section.

To compute the proximal operator of a function f with closed form or easy-to-
compute solution, NExOS.jl uses the open-source package ProximalOperators.jl
[61]. When f is a constrained convex function (i.e., a convex function over some
convex constraint set) with no closed form proximal map, NExOS.jl computes the
proximal operator by using the open-source Julia package JuMP [27] and any
of the commercial or open-source solver supported by it. The set X can be any prox-
regular nonconvex set fitting our setup. Our implementation is readily extensible using
Julia abstract types so that the user can add support for additional convex functions
and prox-regular sets. The numerical study is executed on a MacBook Pro laptop with
Apple M1 Max chip with 32 GB memory. The datasets considered in this section,
unless specified otherwise, are available online at: http://tinyurl.com/NExOSDatasets.

In applying NExOS, we use the following values that we found to be the best
performing based on our empirical observations. We take the starting value of μ to
be 2, and reduce this value with a multiplicative factor of 0.5 during each iteration
of the outer loop until the termination criterion is met. The value of the proximal
parameter γ is chosen to be 10−3. We initialize our iterates at 0. Maximum number
of inner iterations for a fixed value of μ is taken to be 1000. The tolerance for the
fixed point gap for each penalized problem is taken to be 10−4 and the tolerance for
the termination criterion is taken to be 10−6.

Value of β is taken to be 10−8 for the following reasons. In Sect. 3, we showed
that the presence of β > 0, ensures that each penalized subproblem is locally strongly
convex and smooth, having a unique local minimum. This, in turn, helps to estab-
lish linear convergence of the inner algorithm for each subproblem. We empirically
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demonstrate in this section that the impact of the condition β > 0, despite being crit-
ical in the theoretical analysis of our algorithm, seems to only be marginal as it can
be made to be as small as 10−8. We use this extremely small value of β to stress-test
NExOS empirically and show that even for such a small value of β, our algorithm still
works well in practice. Here, we stress that the default value of β = 10−8 used in
our numerical experiments should be viewed as a mere heuristic that seems to empir-
ically work for the numerical experiments that we considered in our paper. We leave
a more methodical investigation of the smallest admissible values of β or the effect of
completely omitting it to future work.

4.1 Sparse Regression

In (SR), we set X := {x | ‖x‖∞ ≤ Γ , card(x) ≤ k}, and f (x) := ‖Ax − b‖22.
A projection onto X can be computed using the formula in [40, §2.2], whereas the
proximal operator for f can be computed using the formula in [48, §6.1.1]. Now we
are in a position to apply NExOS to this problem.

4.1.1 Synthetic Dataset: Comparison with Elastic Net and Gurobi

We compare the solution found by NExOS with the solutions found by elastic
net (glmnet used for the implementation) and spatial branch-and-bound algorithm
(Gurobi used for the implementation). Elastic net is a well-knownmethod for comput-
ing an approximate solution to the regressor selection problem (SR),which empirically
works extremely well in recovering support of the original signal. On the other hand,
Gurobi’s spatial branch-and-bound algorithm is guaranteed to compute a globally
optimal solution to (SR). NExOS is guaranteed to provide a locally optimal solution
under regularity conditions; so to investigate how close NExOS can get to the globally
minimum value we consider a parallel implementation of NExOS running on mul-
tiple (20) worker processes, where each process runs NExOS with different random
initialization, and we take the solution associated with the least objective value.
Elastic net

Elastic net is a well-known method for solving the regressor selection problem,
that computes an approximate solution as follows. First, elastic net solves:

minimize ‖Ax − b‖22 + λ‖x‖1 + (β/2)‖x‖22, (7)

where λ is a parameter that is related to the sparsity of the decision variable x ∈ Rd .
To solve (7), we have used the open-source R pacakge glmnet [31].

To compute λ corresponding to card(x) ≤ k we follow the method proposed in
[36, §3.4] and [20, Example 6.4]. We solve the problem (7) for different values of λ,
and find the smallest value of λ for which card(x) ≤ k, and we consider the sparsity
pattern of the corresponding solution x̃ . Let the index set of zero elements of x̃ be Z ,
where Z has d − k elements. Then the elastic net solves:

minimize ‖Ax − b‖22 + (β/2)‖x‖22
subject to (∀ j ∈ Z) x j = 0,

(8)
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where x ∈ Rd is the decision variable. Solving this problem corresponds to
solving a positive semidefinite linear system, which we solve using the built-in
LinearAlgebra package in Julia.
Spatial branch-and-bound algorithm

The problem (SR) can also be modeled equivalently as the following mixed integer
quadratic optimization problem [13]:

minimize ‖Ax − b‖22 + (β/2)‖x‖22
subject to |xi | ≤ Γ yi , i = 1, . . . , d

∑d
i=1 yi ≤ k, x ∈ Rd , y ∈ {0, 1}d ,

which can be solved to a certifiable global optimality using Gurobi’s spatial branch-
and-bound algorithm.

Data generation process and setupThe data generation procedure is similar to [25, 37].
We consider two signal-to-noise ratio (SNR) regimes: SNR 1 and SNR 6, where for
each SNR, we vary m from 25 to 50, and for each value of m, we generate 50 random
problem instances. We limit the size of the problems because the solution time by
Gurobi’s spatial branch-and-bound algorithm becomes too large for comparison if we
go beyond the aforementioned size. For a certain value of m, the matrix A ∈ Rm×2m

is generated from an independent and identically distributed normal distribution with
N (0, 1) entries. We choose b = Ax̃ + v, where x̃ is drawn uniformly from the set
of vectors satisfying card(̃x) ≤ �m/5� and ‖x̃‖∞ ≤ Γ with Γ = 1. The vector
v corresponds to noise, and is drawn from the distribution N (0, σ 2 I ), where σ 2 =
‖Ax̃‖22/(SNR2/m), which keeps the signal-to-noise ratio to approximately equal to
SNR. We consider a parallel implementation of NExOS where we have 100 runs of
NExOS distrubuted over 20 independent worker processes on 10 cores. Each run is
initialized with a random initial points chosen from the uniform distribution over the
interval [−Γ , Γ ]. Gurobi’s spatial branch-and-bound algorithm also uses 10 cores.

Results Figure2 compares NExOS (shown in blue), glmnet (shown in red) and Gurobi
(shown in green) for solving (SR). The results displayed in the figures are averaged
over 50 simulations for each value of m, and also show one-standard-error bands that
represent one standard deviation confidence interval around the mean.

Figures 2a and d show the support recovery (%) of the solutions found by NExOS,
glmnet, and Gurobi for SNR 6 and SNR 1, respectively. Given a solution x and true
signal xTrue, the support recovery is defined as

∑d
i=1 1{sign(xi )=sign(xTruei )}/d, where

1{·} evaluates to 1 if (·) is true and 0 else, and sign(t) is 1 for t > 0, −1 for t < 0,
and 0 for t = 0. So, higher the support recovery, better is the quality of the found
solution. For both SNRs, NExOS and Gurobi have almost identical support recovery.
For the high SNR, NExOS recovers most of the original signal’s support and is better
than glmnet consistently. On average, NExOS recovers 4% more of the support than
glmnet. However, this behaviour changes for the low SNR, where glmnet recovers
1.26% more of the support than NExOS. This differing behavior in low and high SNR
is consistent with the observations made in [37].

Figure 2b and e compare the quality of the solution found by the algorithms in terms
of the normalized objective value (the objective value of the found solution divided
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Fig. 2 Sparse regression problem: comparison between NExOS (shown in blue), glmnet (shown in red),
and Gurobi (shown in green). The first and second rows correspond to SNR 6 and SNR 1, respectively. For
each SNR, the first column compares support recovery, the second column shows how close the objective
value of the solution found by each algorithm gets to the optimal objective value (normalized as 1), and the
third column shows the solution time (s) of each algorithm

by the otimal objective value) for SNR 6 and SNR 1, respectively. As Gurobi’s spatial
branch-and-bound algorithm finds certifiably globally optimal solution to (SR), its
normalized objective value is always 1, though the runtime is orders of magnitude
slower than glmnet and NExOS (see the next paragraph). The closer the normalized
objective value is to 1, better is the quality of the solution in terms of minimizing the
objective value. We see that for the high SNR, on average NExOS is able to find a
solution that is very close to the globally optimal solution, whereas the solution found
by glmnet has worse objective value on average. For the low SNR, on average the
normalized objective values of the solutions found by both NExOS and glmnet get
worse, though NExOS does better than glmnet in this case as well.

Finally, in Fig. 2c and f, we compare the solution times (in seconds and on log
scale) of the algorithms for SNR 6 and SNR 1, respectively. We see that glmnet is
slightly faster than NExOS. This slower performance is due to the fact that NExOS is a
general purpose method, whereas glmnet is specifically optimized for the convexified
sparse regression problem with a specific cost function. For smaller problems, Gurobi
is somewhat faster than NExOS, however once we go beyond m ≥ 27, the solution
time by Gurobi starts to increase drastically. Beyond m ≥ 50, comparing the solution
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Fig. 3 RMS error vs k (cardinality) for the weather prediction problem

times is not meaningful as Gurobi cannot find a solution in 2min, whereas NExOS
takes less than 30s.

4.1.2 Experiments and Results for Real-World Dataset

Description of the dataset We now investigate the performance of our algorithm
on a real-world, publicly available dataset called the weather prediction
dataset, where we consider the problem of predicting the temperature half a day in
advance in 30 US and Canadian Cities along with 6 Israeli cities. The dataset contains
hourly measurements of weather attributes e.g., temperature, humidity, air pressure,
wind speed, and so on. The dataset has m = 45, 231 instances along with d = 1, 800
attributes. The dataset is preprocessed in the same manner as described in [11, §8.3].
Our goal is to predict the temperature half a day in advance as a linear function of the
attributes, where at most k attributes can be nonzero. We include a bias term in our
model, i.e., in (SR) we set A = [ Ā | 1]. We randomly split 80% of the data into the
training set and 20% of the data into the test set.

Results Figure 3 shows the RMS error for the training datasets and the test datasets
for both NExOS and glmnet. The results for training and test datasets are reasonably
similar for each value of k. This gives us confidence that the sparse regression model
will have similar performance on new and unseen data. This also suggests that our
model does not suffer from over-fitting. We also see that, for k ≥ 20 and k ≥ 5,
none of the errors for NExOS and glmnet drop significantly, respectively. For smaller
k ≤ 10, glmnet does better than NExOS, but beyond k ≥ 10, NExOS performs better
than glmnet.

4.2 Affine RankMinimization Problem

Problem description In (SR), we set X := {X ∈ Rm×d | rank(X) ≤ r , ‖X‖2 ≤ Γ },
and f (X) := ‖A(X)− b‖22. To compute the proximal operator of f , we use the
formula in [48, §6.1.1]. Finally, we use the formula in [25, page 14] for projecting
onto X . Now we are in a position to apply the NExOS to this problem.
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Summary of the experiments performed First, we apply NExOS to solve (RM) for syn-
thetic datasets, wherewe observe how the algorithm performs in recovering a low-rank
matrix given noisy measurements and also compare NExOS with NCVX—an ADMM-
based algorithm [25]. Second, we apply NExOS to a real-world dataset (MovieLens
1 M Dataset) to see how our algorithm performs in solving a matrix-completion
problem).

4.2.1 Experiments and Results for Synthetic Dataset

Data generation process and setup We generate the data as follows similar to [25]. We
vary m (number of rows of the decision variable X ) from 50 to 75 with a linear spacing
of 5, where we take d = 2m, and rank to be equal to m/10 rounded to the nearest
integer. For each value of m, we create 25 random instances as follows. The operator
A is drawn from an iid normal distribution withN (0, 1) entries. Similarly, we create
the low rank matrix XTrue with rank r , first drawn from an iid normal distribution with
N (0, 1) entries, and then truncating the singular values that exceed Γ to 0. Signal-to-
noise ratio is taken to be around 20 by following the same method described for the
sparse regression problem.
Results The results displayed in Fig. 4 average over 50 simulations for each value
of m and also show one standard error band. We compare NExOS, with NCVX—an
ADMM-based algorithm [25].

Figure 4a plots the normalized fixed point gap of the iterates for both algorithms
computed by ‖X

Alg − Y 
Alg‖/‖XTrue‖with Alg ∈ {NExOS,NCVX} and X

Alg, Y 
Alg rep-

resenting the final iterates produced by the algorithms. This plot shows that NCVX
iterates have a fixed point gap larger than 0.17, i.e., the iterates do not converge within
a reasonable fixed point gap. On the other hand, NExOS iterates converge with a nor-
malized fixed-point gap reaching the desired tolerance of less than or equal to 10−4
for each instance.

Figure 4b shows how well NExOS and NCVX recovers the original matrix XTrue. To
quantify the recovery, we compute the max norm of the difference matrix ‖XTrue −
X
Alg‖max = maxi, j |XTrue(i, j) − X

Alg(i, j)|, where the solution found by Alg is
denoted by X

Alg. We see that the worst-case component-wise error is very small
(smaller than 0.005 for each instance) in all the cases for NExOS, but for NCVX, it is
larger than 0.5 for each instance. In other words, the solution found by NExOS is much
closer to the ground truth as compared to NCVX.

Finally, we show how the training loss of the solutions computed by NExOS and
NCVX compare with the original matrix XTrue in Fig. 4c. Note that for NExOS, the ratio
p
True/p

sol is larger than one in most cases, i.e., NExOS find a solutions with smaller
cost compared to XTrue. This is due to the fact that under the signal-to-noise ratio that
we consider, the problem data can be explained better by another matrix with a lower
training loss. That being said, X

NExOS is not too far from XTrue component-wise as we
saw in Fig. 4b. On the other hand, for NCVX algorithm, the ratio p

True/p
sol is smaller

than 0.05 for each instance, i.e., the objective value of the solutions is 20 times worse
than that of the original signal.

123



Journal of Optimization Theory and Applications (2024) 202:795–833 817

Fig. 4 Affine rank minimization problem: comparison between solutions found by NExOS and NCVX
algorithm by [25]

4.2.2 Experiments and Results for Real-World Dataset: Matrix Completion Problem

Description of the dataset To investigate the performance of our problem on a real-
world dataset, we consider the publicly available MovieLens 1 M Dataset. This
dataset contains 1,000,023 ratings for 3,706 unique movies; these recommendations
were made by 6,040MovieLens users. The rating is on a scale of 1 to 5. If we construct
a matrix of movie ratings by the users (also called the preference matrix), denoted by
Z , then it is a matrix of 6,040 rows (each row corresponds to a user) and 3,706 columns
(each column corresponds to amovie)with only 4.47%of the total entries are observed,
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while the rest being missing. Our goal is to complete this matrix, under the assumption
that the matrix is low-rank. For more details about the model, see [40, §8.1].

To gain confidence in the generalization ability of this model, we use an out-of-
sample validation process. By random selection, we split the available data into a
training set (80% of the total data) and a test set (20% of the total data). We use the
training set as the input data for solving the underlying optimization process, and the
held-out test set is used to compute the test error for each value of r . The best rank
r corresponds to the point beyond which the improvement is rather minor. We tested
rank values r ranging in {1, 3, 5, 7, 10, 20, 25, 30, 35}. We compute the RMS error
as follows. Let Ωtest be the index set corresponding to the test data. If X

NExOS is the
matrix returned by NExOS, then the corresponding RMS error is computed by using
the formula

RMS =

√
√
√
√

∑
(i, j)∈Ωtest

((
X
NExOS

)
i j − Zi j

)2

|Ωtest| ,

where |Ωtest| is the number of elements in Ωtest.
Matrix completion problem The matrix completion problem is:

minimize
∑

(i, j)∈Ω(Xi j − Zi j )
2 + (β/2)‖X‖2F

subject to rank(X) ≤ r , ‖X‖2 ≤ Γ ,
(MC)

where Z ∈ Rm×d is the matrix whose entries Zi j are observable for (i, j) ∈ Ω . Based
on these observed entries, our goal is to construct a matrix X ∈ Rm×d that has rank
r . The problem above can be written as a special case of affine rank minimization
problem (RM).

Results Figure 5 compares the solutions found by NExOS and NCVX.
Figure 5a plots the normalized fixed point gap of the iterates for both algorithms

calculated by ‖X
Alg − Y 

Alg‖/‖XTrue‖with Alg ∈ {NExOS,NCVX} and X
Alg, Y 

Alg rep-
resenting the final iterates produced by the algorithms. This plot shows that NCVX
iterates do not converge within a reasonable fixed point gap, whereas NExOS iterates
converge for all the instances with a normalized fixed-point gap less than or equal to
10−6 for each instance.

Figure 5b shows the RMS error of NExOS for the training datatest and test dataset
for each value of rank r . The results for training and test datasets are reasonably similar
for each value of r . We observe that beyond rank 15, the reduction in the test error
is rather minor and going beyond this rank provides only diminishing returns, which
is a common occurrence for low-rank matrix approximation [42, §7.1]. Thus we can
choose the optimal rank to be 15 for all practical purposes.

Figure 5c shows the RMS error of NCVX for the training dataset and test dataset
for each value of rank r . We see that, unlike NExOS, the test error for NCVX keeps
increasing with r , whereas the training error NCVX is smaller. Here we note that,
because NCVX iterates do not reach a reasonable fixed point gap, the training or test
error of NCVX may not provide meaningful information.
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Fig. 5 Matrix completion problem: comparison between solutions found by NExOS and NCVX algorithm
by [25]

4.3 Factor Analysis Problem

Problem description The factor analysis model with sparse noise (also known as
low-rank factor analysis model) involves decomposing a given positive semidefinite
matrix as a sum of a low-rank positive semidefinite matrix and a diagonal matrix with
nonnegative entries [38, page 191]. It can be posed as [7]:
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minimize ‖Σ − X − D‖2F + (β/2)
(‖X‖2F + ‖D‖2F

)

subject to D = diag(d), d ≥ 0, X � 0, rank(X) ≤ r
Σ − D � 0, ‖X‖2 ≤ Γ ,

(FA)

where X ∈ Sp and the diagonal matrix D ∈ Sp with nonnegative entries are the
decision variables, and Σ ∈ Sp

+, r ∈ Z+, and Γ ∈ R++ are the problem data. A
proper solution for (FA) requires that both X and D are positive semidefinite. The
term Σ − D has to be positive semidefinite, else statistical interpretations of the
solution is not impossible [64, page 326].

In (FA), we set X := {(X , D) ∈ Sp × Sp | ‖X‖2 ≤ Γ , rank(X) ≤ r , D =
diag(d), d ≥ 0}, and f (X , D):= ‖Σ − X − D‖2F + IP (X , D),where IP denotes
the indicator function of the convex set P = {(X , D) ∈ Sp × Sp | X � 0, D =
diag(d), d ≥ 0, d ∈ Rp}. To compute the projection onto X , we use the formula
in [25, page 14] and the fact that �{y|y≥0}(x) = max{x, 0}, where pointwise max is
used. The proximal operator for f at (X , D) can be computed by solving:

minimize ‖Σ − X̃ − D̃‖2F + (1/2γ )‖X̃ − X‖2F + (1/2γ )‖D̃ − D‖2F
subject to X̃ � 0, D̃ = diag(d̃), Σ − D̃ � 0, d̃ ≥ 0,

where X̃ ∈ Sp
+, and d̃ ∈ Rp

+ (i.e., D̃ = diag(d̃)) are the optimization variables. Now
we are in a position to apply NExOS to this problem.

Comparison with nuclear norm heuristic We compare the solution provided byNExOS
to that of the nuclear norm heuristic, which isthe most well-known heuristic to
approximately solve (FA) [58] via following convex relaxation:

minimize ‖Σ − X − D‖2F + λ ‖X‖∗
subject to D = diag(d), d ≥ 0, X � 0,

Σ − D � 0, ‖X‖2 ≤ Γ ,

(9)

where λ is a positive parameter that is related to the rank of the decision variable X .
Note that, as X is positive semidefinite, we have its nuclear norm ‖X‖∗ = tr(X).

Performance measures We consider two performance measures. First, we compare
the training loss ‖Σ − X − D‖2F of the solutions found by NExOS and the nuclear
norm heuristic. As both NExOS and the nuclear norm heuristic provide a point from
the feasible set of (FA), such a comparison of training losses tells us which algo-
rithm is providing a better quality solution. Second, we compute the proportion of
explained variance, which represents how well the r -common factors explain the
residual covariance, i.e., Σ − D. For a given r , input proportion of variance explained
by the r common factors is given by:

∑r
i=1 σi (X)/

∑p
i=1 σi (Σ−D),where X , D are

inputs, that correspond to solutions found by NExOS or the nuclear norm heuristic. As
r increases, the explained variance increases to 1. The higher the value of the explained
variance for a certain solution, the better is the quality of the solution.

Description of the datasetsWeconsider three different real-world bench-mark datasets
that are popularly used for factor analysis. The bfi, neo , and Harman74 datasets
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Fig. 6 Figure showing performance of NExOS in solving factor analysis problem for different datasets.
Each column represents one dataset. The first and second row compares training loss and proportion of the
variance explained of the solutions found by NExOS (shown in blue) and the nuclear norm heuristic (shown
in red)

contain (2800 observations, 28 variables), (1000 observations, 30 variables), and (145
observations, 24 variables), respectively.

Setup In applying NExOS for the factor analysis problem, we initialize our iterates
with Z0 := Σ and z0 := 0. All the other parameters are kept at their default values
as stated in the beginning of Sect. 4. For each dataset, we vary the number of factors
from 1 to �p/2�, where p is the size of the underlying matrix Σ .

Results Figure 6 shows performance of NExOS in solving the factor analysis problem
for different datasets, with each row representing one dataset. The first row compares
the training loss of the solution found byNExOS and the nuclear norm heuristic.We see
that for all the datasets, NExOS finds a solution with a training loss that is considerably
smaller than that of the nuclear norm heuristic. The second row shows the proportion
of variance explained by the algorithms considered for the datasets considered (higher
is better). We see that in terms of the proportion of explained variance,NExOS delivers
larger values than that of the nuclear norm heuristic for different values of r , which
is indeed desirable. NExOS consistently provides solutions with better objective value
and explained variance compared to the nuclear norm heuristic.
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5 Conclusion

In this paper, we have presented NExOS, a first-order algorithm to solve optimization
problemswith convex cost functions over nonconvex constraint sets—aproblem struc-
ture that is satisfied by a wide range of nonconvex optimization problems including
sparse and low-rank optimization. We have shown that, under mild technical condi-
tions,NExOS is able to find a locally optimal point of the original problem by solving a
sequence of penalized problems with strictly decreasing penalty parameters. We have
implemented our algorithm in the Julia package NExOS.jl and have extensively
tested its performance on a wide variety of nonconvex optimization problems. We
have demonstrated that NExOS is able to compute high quality solutions at a speed
that is competitive with tailored algorithms.

A Proof and Derivation to Results in §1

A.1 Lemma Regarding Prox-Regularity of Intersection of Sets

Lemma 4 Consider the nonempty constraint setX = C ⋂N ⊆ E, where C is compact
and convex, and N is prox-regular at x ∈ X . Then X is prox-regular at x.

Proof to Lemma 4 To prove this result we record the following result from [6], where
by dS(x) we denote the Euclidean distance of a point x from the set S, and S denotes
closure of a set X .

Lemma 5 (Intersection of Prox-Regular Sets [6, Corollary 7.3(a)]) Let S1,S2 be two
closed sets in E, such that S = S1

⋂S2 �= ∅ and both S1,S2 are prox-regular
at x ∈ S. If S is metrically calm at x, i.e., if there exist some ς > 0 and some
neighborhood of x denoted by B such that dS(y) ≤ ς(dS1(y)+dS2(y)) for all y ∈ B,
then S is prox-regular at x.

Proof to Lemma 4 By definition, projection onto N is single-valued on some open
ball B(x; a) with center x and radius a > 0 [50, Theorem 1.3]. The set C is com-
pact and convex, hence projection onto C is single-valued around every point, hence
single-valued on B(x; a) as well [3, Theorem 3.14, Remark 3.15]. Note that for any
y ∈ B(x; a), dX (y) = 0 if and only if both dC(y) and dN (y) are zero. Hence, for
any y ∈ B(x; a)

⋂X , the metrically calmness condition is trivially satisfied. Next,
recalling that the distance from a closed set is continuous [53, Example 9.6], over the
compact set B(x; a) \ X , define the function h, such that h(y) = 1 if y ∈ X , and
h(y) = dX (y)/(dC(y) + dN (y)) else. The function h is upper-semicontinuous over
B(x; a) \ X , hence it will attain a maximum ς > 0 over B(x; a) \ X [54, Theorem
4.16], thus satisfying themetrically calmness condition on B(x; a)\X as well. Hence,
using Lemma 5, the constraint set X is prox-regular at x . ��
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B Proofs and Derivations to the Results in §3

B.1 ModifyingNExOS for Nonsmooth and Convex Loss Function

We now discuss how to modify NExOS when the loss function is nonsmooth and
convex. The key idea is working with a strongly convex, smooth, and arbitrarily close
approximation of f ; such smoothing techniques are very common in optimization [5,
47]. The optimization problem in this case, where the positive regularization parameter
is denoted by β̃, is given by:minx φ(x)+(β̃/2)‖x‖2+ιX (x), where the setup is same as
problem (P), except the function φ : E→ R∪{+∞} is lower-semicontinuous, proper
(its domain is nonempty), and convex. Let β:=β̃/2. For a ν that is arbitrarily small,
define the following β strongly convex and (ν−1 + β)-smooth function: f := νφ(·)+
(β/2)‖ · ‖2 where νφ is the Moreau envelope of φ with paramter ν. Following the
properties of the Moreau envelope of a convex function discussed in §2, the following
optimization problem acts as an arbitrarily close approximation to the first nonsmooth
convex problem: minx f + (β/2)‖x‖2+ ιX (x), which has the same setup as problem
(P).

We can compute proxγ f (x) using the formula in by [5, Theorem 6.13, Theorem
6.63]. Then, we apply NExOS to minx f + (β/2)‖x‖2 + ιX (x) and proceed in the
same manner as discussed earlier.

B.2 Proof to Proposition 1

B.2.1 Proof to Proposition 1(i)

We prove (i) in three steps. In the first step, we show that for any μ > 0, f + μI will
be differentiable on some B(x̄; rdiff) with rdiff > 0. In the second step, we then show
that, for any μ ∈ (0, 1/β], f +μI will be strongly convex and differentiable on some
B(x̄; rcvxdiff). In the third step, we will show that there exist μmax > 0 such that for
any μ ∈ (0, μmax], f + μI will be strongly convex and smooth on some B(x̄; rmax)

and will attain the unique local minimum xμ in this ball.
Proof of the first step

To prove the first step, we start with the following lemma regarding differentiability
of μι.

Lemma 6 (Differentiability of μι) Let x̄ be a local minimum to problem (P), where
Assumptions 1 and 2 hold. Then there exists some rdiff > 0 such that for any μ > 0: (i)
the function μι is differentiable on B(x̄; rdiff) with derivative ∇ μι = (1/μ)(I−�X ),

and (ii) the projection operator �X onto X is single-valued and Lipschitz continuous
on B(x̄; rdiff).
Proof From [50, Theorem 1.3(e)], there exists some rdiff > 0 such that the function
d2 is differentiable on B(x̄; rdiff). As μι = (1/2μ)d2 from (3), it follows that for
any μ > 0, μι is differentiable on B(x̄; rdiff) which proves the first part of (i). The
second part of (i) follows from the fact that ∇d2(x) = 2 (x −�X (x)) whenever d2

is differentiable at x [50, page 5240]. Finally, from [50, Lemma 3.2], whenever d2
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is differentiable at a point, projection �X is single-valued and Lipschitz continuous
around that point, and this proves (ii). ��
Due to the lemma above, f + μI will be differentiable on B(x̄; rdiff) with rdiff > 0,
as f and (β/2)‖ · ‖2 are differentiable. Also, due to Lemma 6(ii), projection operator
�X is L̃-Lipschitz continuous on B(x̄; rdiff) for some L̃ > 0. This proves the first
step.

Proof of the second step To prove this step, we are going to record: (1) the notion of
general subdifferential of a function, followed by (2) the definition of prox-regularity
of a function and its connectionwith prox-regular set, and (3) a helper lemma regarding
convexity of the Moreau envelope under prox-regularity.

Definition 3 (Fenchel, Fréchet, and general subdifferential) For any lower-
semicontinuous function h : Rn → R∪{∞}, its Fenchel subdifferential ∂h is defined
as [24, page 1]: u ∈ ∂h(x)⇔ h(y) ≥ h(x)+〈u | y − x〉 for all y ∈ Rn . For the func-
tion h, its Fréchet subdifferential ∂ F h (also known as regular subdifferential) at a point
x is defined as [24, Definition 2.5]: u ∈ ∂ F h(x)⇔ lim inf y→0 (h(x+ y)−h(x)−〈u |
y〉)/‖y‖ ≥ 0. Finally, the general subdifferential of h, denoted by ∂Gh, is defined as
[52, Equation (2.8)]: u ∈ ∂Gh(x) ⇔ un → u, xn → x, f (xn) → f (x), for some
(xn, un) ∈ gra ∂ F h. If h is additionally convex, then ∂h = ∂ F h = ∂Gh [24, Property
(2.3), Property 2.6].

Definition 4 (Connection between prox-regularity of a function and a set [49, Defini-
tion 1.1 ]) A function h : Rn → R ∪ {∞} that is finite at x̃ is prox-regular at x̃ for
ν̃, where ν̃ ∈ ∂Gh(x̃), if h is locally l.s.c. at x̃ and there exist a distance σ > 0
and a parameter ρ > 0 such that whenever ‖x ′ − x̃‖ < σ and ‖x − x̃‖ < σ

with x ′ �= x , ‖h(x) − h(x̃)‖ < σ , ‖ν − ν̃‖ < σ with ν ∈ ∂Gh(x), we have
h(x ′) > h(x) + 〈

ν | x ′ − x
〉 − (ρ/2)‖x ′ − x‖2. Also, a set S is prox-regular at x̃

for ν̃ if we have the indicator function ιS is prox-regular at x̃ for ν̃ ∈ ∂G ιS(x̃) [49,
Proposition 2.11]. The set S is prox-regular at x̃ if it is prox-regular at x̃ for all
ν̃ ∈ ∂G ιS(x̃) [53, page 612].

We have the following helper lemma from [49].

Lemma 7 ( [49, Theorem 5.2]) Consider a function h which is lower semicontinuous
at 0 with h(0) = 0 and there exists ρ > 0 such that h(x) > −(ρ/2)‖x‖2 for any
x �= 0. Let h be prox-regular at x̃ = 0 and ν̃ = 0 with respect to σ and ρ (σ and ρ

as described in Definition 4), and let λ ∈ (0, 1/ρ). Then, on some neighborhood of 0,
the function

λh + ρ/(2− 2λρ)‖ · ‖2 (10)

is convex, where λh is the Moreau envelope of h with parameter λ.

Nowwe start proving step 2 earnestly. To prove this result, we assume x̄ = 0. This does
not cause any loss of generality because this is equivalent to transferring the coordinate
origin to the optimal solution and prox-regularity of a set and strong convexity of a
function is invariant under such a coordinate transformation.
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First, note that the indicator function of our constraint closed setX is lower semicon-
tinuous due to [53, Remark after Theorem 1.6, page 11], and as x̄, the local minimizer
lies inX ,wehave ιX (x̄) = 0.The setX is prox-regular at x̄ for all ν ∈ ∂G ιX (x)per our
setup, so using Definition 4, we have ιX prox-regular at x̄ = 0 for ν̄ = 0 ∈ ∂G ιX (x̄)

(because x̄ ∈ X , we will have 0 as a subgradient of ∂ιX (x̄)) with respect to some
distance σ > 0 and parameter ρ > 0.

Note that the indicator function satisfies ιX (x) = cιX (x) for any c > 0 due to its
definition, so u ∈ ∂G ιX (x)⇔ cu ∈ c∂G ιX (x) = ∂(cιGX (x)) = ∂ιGX (x) [53, Equation
10(6)] In our setup, we have X prox-regular at x̄ . So, setting h:=ιmathcal X , x̃ :=x̄ =
0, ν̃:=ν̄ = 0, and ν:=u/(β/2ρ) in Definition 4, we have ιX is also prox-regular at
x̄ = 0 for ν̄ = 0 with respect to distance σ min{1, β/2ρ} and parameter β/2.

Next, because the range of the indicator function is {0,∞}, we have ιX (x) >

−(ρ/2)‖x‖2 for any x �= 0. So, we have all the conditions of Theorem 7 satisfied.
Hence, applying Lemma 7, we have (1/2μ)

(
d2 + βμ/(2− βμ)‖ · ‖2) convex and

differentiable on

B (x̄;min {σ min{1, β/2ρ}, rdiff})
for any μ ∈ (0, 2/β), where rdiff comes from Lemma 6. As rdiff in this setup does not
dependonμ, the ball does not dependonμ either. Finally, note that in our exterior-point
minimization function we have μI = (1/2μ)

(
d2 + βμ‖ · ‖2).

So if we take μ ≤ 1
β
, then we have (β/2)μ/ (1− μ(β/2)) ≤ βμ, and on the ball

B (x̄;min {σ min{1, β/2ρ}, rdiff}), the function μI will be convex and differentiable.
But f is strongly-convex and smooth, so f + μI will be strongly convex and dif-
ferentiable on B (x̄;min {σ min{1, β/2ρ}, rdiff}) for μ ∈ (0, 1/β]. This proves step
2.

Proof of the third stepAs point x̄ ∈ X is a local minimum of problem (P), from
Definition 2, there is some r > 0 such that for all y ∈ B(x̄; r), we have f (x̄) +
(β/2)‖x̄‖2 < f (y)+ (β/2)‖y‖2 + ιX (y).

Then, due to the first two steps, for any μ ∈ (0, 1/β], the function f + μI will
be strongly convex and differentiable on B (x̄;min {σ min{1, β/2ρ}, rdiff}). For nota-
tional convenience, denote rmax:=min {σ min{1, β/2ρ}, rdiff} ,which is a constant.As
f +μI is a global underestimator of and approximates the function f +(β/2)‖·‖2+ιX
with arbitrary precision as μ → 0, the previous statement and [53, Theorem 1.25]
imply that there exist some 0 < μmax ≤ 1/β such that for any μ ∈ (0, μmax], the
function f + μI will achieve a local minimum xμ over B(x̄; rmax) where ∇( f + μI)

vanishes, i.e.,

∇( f + μI)(xμ) = ∇ f (xμ)+ βxμ + (1/μ)
(
xμ −�X

(
xμ

)) = 0 (11)

⇒ xμ = (1/(βμ+ 1))
(
�X (xμ)− μ∇ f (xμ)

)
. (12)

As the right hand side of the last equation is a singleton, this minimummust be unique.
Finally to show the smoothness f + μI, for any x ∈ B(x̄; rmax), we have

∇ (
f + μI)

(x)
a)= ∇ f (x)+ (β + (1/μ)) x − (1/μ)�X (x), (13)
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where a) uses Lemma 6. Thus, for any x1, x2 ∈ B(x̄; rmax) we have ‖∇( f + (β/2)‖ ·
‖2 + μι)(x1) − ∇( f + (β/2)‖ · ‖2 + μι)(x2)‖ ≤ (L + β + (1/μ) + L̃)‖x1 − x2‖,
where we have used the following: ∇ f is L-Lipschitz everywhere due to f being an
L−smooth function in E ( [3, Theorem 18.15]), and �X is L̃-Lipschitz continuous
on B(x̄; rmax), as shown in step 1. This completes the proof for (i).

(ii): Using [53, Theorem 1.25], as μ → 0, we have xμ →
x̄, and

(
f + μI)

(xμ) → f (x̄) + (β/2)‖x̄‖2. Note that xμ reaches x̄ only in limit,
as otherwise Assumption 2 will be violated.

B.3 Proof to Proposition 2

B.3.1 Proof to Proposition 2(i)

We will need the notions of nonexpansive and firmly nonexpansive operators in this
proof. An operator A : E → E is nonexpansive on some set S if it is Lipschitz
continuous with Lipschitz constant 1 on S; the operator is contractive if the Lipschitz
constant is strictly smaller than 1. On the other hand,A is firmly nonexpansive on S if
and only if its reflection operator 2A− I is nonexpansive on S. A firmly nonexpansive
operator is always nonexpansive [3, page 59].

We next introduce the following definition.

Definition 5 (Resolvent and reflected resolvent [3, pages 333, 336]) For a lower-
semicontinuous, proper, and convex function h, the resolvent and reflected resolvent of
its subdifferential operator are defined by Jγ ∂h = (I+ γ ∂h)−1 andRγ ∂h = 2Jγ ∂h−I,
respectively.

The proof of (i) is proven in two steps. First, we show that the reflection operator of
Tμ, defined by

Rμ = 2Tμ − I, (14)

is contractive on B(x̄, rmax), and using this we show that Tμ in also contractive there
in the second step. To that goal, note that Rμ can be represented as:

Rμ = (2proxγ μI − I)(2proxγ f − I), (15)

which can be proven by simply using (5) and (14) on the left-hand side and by expand-
ing the factors on the right-hand side.Now, the operator 2proxγ f−I associatedwith the
α-strongly convex and L-smooth function f is a contraction mapping for any γ > 0
with the contraction factor κ = max {(γ L − 1)/(γ L + 1), (1− γα)/(γ α + 1)} ∈
(0, 1), which follows from [32, Theorem 1]. Next, we show that 2proxγ μI − I

is nonexpansive on B(x̄; rmax) for any μ ∈ (0, μmax]. For any μ ∈ (0, μmax],
define the function g as follows. We have g(y) = μI(y) if y ∈ B(x̄; rmax),g(y) =
lim inf ỹ→y

μI(ỹ) if ‖y − x̄‖ = rmax, and g(y) = ∞ else. The function g is lower-
semicontinuous, proper, and convex everywhere due to [3, Lemma 1.31 and Corollary
9.10 ]. As a result for μ ∈ (0, μmax], we have proxγ g = Jγ ∂g on E and proxγ g is
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firmly nonexpansive and single-valued everywhere, which follows from [3, Propo-
sition 12.27, Proposition 16.34, and Example 23.3]. But, for y ∈ B(x̄; rmax), we
have μI(y) = g(y) and ∇ μI(y) = ∂g(y). Thus, on B(x̄; rmax), the operator
proxγ μI = Jγ∇ μI , and it is firmly nonexpansive and single-valued forμ ∈ (0, μmax].
Any firmly nonexpansive operator A has a nonexpansive reflection operator 2A − I

on its domain of firm nonexpansiveness [3, Proposition 4.2]. Hence, on B(x̄; rmax),

for μ ∈ (0, μmax] the operator 2proxγ μI − I is nonexpansive using (15).
Now we show that Rμ is contractive for every x1, x2 ∈ B(x̄; rmax) and μ ∈

(0, μmax], we have ‖Rμ(x1)−Rμ(x2)‖ ≤ ‖(2proxγ f−I)(x1)−(2proxγ f−I)(x2)‖ ≤
κ‖x1 − x2‖ where the last inequality uses κ-contractiveness of 2proxγ f − I thus
proving that Rμ acts as a contractive operator on B(x̄; rmax) for μ ∈ (0, μmax]. Sim-
ilarly, for any x1, x2 ∈ B(x̄; rmax), using (Aμ) and the triangle inequality we have
‖Tμ(x1) − Tμ(x2)‖ ≤ (1 + κ)/2‖x1 − x2‖ and as κ ′ = (1 + κ)/2 ∈ [0, 1); the
operator Tμ is κ ′−contractive on on B(x̄; rmax), for μ ∈ (0, μmax].

B.3.2 Proof to Proposition 2(ii)

Recalling Tμ = (1/2)Rμ + (1/2)I from (14), using (15), and then expanding, and
finally using Lemma 1 and triangle inequality, we have for anyμ, μ̃ ∈ (0, μmax], x ∈
B(x̄; rmax), and y = 2proxγ f (x)− x :

∥
∥Tμ(x)− Tμ̃(x)

∥
∥ ≤ ‖(μ/(γ + μ(βγ + 1))− μ̃/(γ + μ̃(βγ + 1)))‖ ‖y‖
+ ‖(γ /(γ + μ(βγ + 1))− γ /(γ + μ̃(βγ + 1)))‖ ‖�X (y/(βγ + 1))‖ .

(16)

Now, in (16), the coefficient of ‖y‖ satisfies ‖μ/(γ +μ(βγ +1))−μ̃/(γ +μ̃(βγ +
1))‖ ≤ (1/γ )‖μ− μ̃‖

and similarly the coefficient of ‖�X (y/(βγ + 1)) ‖ satisfies

‖γ /(γ + μ(βγ + 1))− γ /(γ + μ̃(βγ + 1))‖ ≤ (β + (1/γ ))‖μ− μ̃‖.

Putting the last two inequalities in (16), and then replacing y = 2proxγ f (x)− x , we
have for any x ∈ B, and for any μ, μ̃ ∈ R++,

∥
∥Tμ(x)− Tμ̃(x)

∥
∥ ≤ (1/γ ) ‖μ− μ̃‖ ‖y‖ + (β + (1/γ )) ‖μ− μ̃‖ ‖�X (y/(βγ + 1))‖

={(1/γ )‖2proxγ f (x)− x‖ + (β + (1/γ ))‖�X ((2proxγ f (x)− x)/(βγ + 1))‖}‖μ− μ̃‖.
(17)

Now, as B(x̄; rmax) is a bounded set and x ∈ B, norm of the vec-
tor y = 2proxγ f (x) − x can be upper-bounded over B(x̄; rmax) because
2proxγ f − I is continuous (in fact contractive) as shown in (i). Similarly,
‖�X

(
(2proxγ f (x)− x)/(βγ + 1)

) ‖ can be upper-bounded on B(x̄; rmax). Com-
bining the last two-statements, it follows that there exists some � > 0 such
that
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sup
x∈B(x̄;rmax)

(1/γ )‖2proxγ f (x)− x‖ + (β + 1/γ )
∥
∥�X

(
(2proxγ f (x)− x)/(βγ + 1)

)∥
∥

≤ �,

and putting the last inequality in (17), we arrive at the claim.

B.4 Proof to Proposition 3

The structure of the proof follows that of [3, Proposition 25.1(ii)]. Let μ ∈ (0, μmax].
Recalling Definition 5, and due to Proposition 1(i), xμ ∈ B(x̄; rmax) satisfies

xμ = argmin
B(x̄;rmax)

f (x)+ μI(x) = zer(∇ f +∇ μI)

a)⇔ (∃y ∈ E) xμ = Jγ∇ μIRγ∇ f (y) and xμ = Jγ∇ f (y), (18)

where a) uses the facts (shown in the proof to Proposition 2) that: (i) Jγ∇ f is a single-
valued operator everywhere, whereas Jγ∇ μI is a single-valued operator on the region
of convexity B(x̄; rmax), and (ii) xμ = Jγ∇ f (y) can be expressed as xμ = Jγ∇ f (y)⇔
2xμ − y = (

2Jγ∇ f − I
)

y = Rγ∇ f (y). Also, using the last expression, we can write
the first term of (18) as Jγ∇ μIRγ∇ f (y) = xμ ⇔ y ∈ fix(Rγ∇ μIRγ∇ f ). Because for
lower-semicontinuous, proper, and convex function, the resolvent of the subdifferential
is equal to its proximal operator [3, Proposition 12.27, Proposition 16.34, and Example
23.3], we have Jγ ∂ f = proxγ f with both being single-valued. Using the last fact along
with (18), y ∈ fix(Rγ∇ μIRγ∇ f ), we have xμ ∈ proxγ f

(
fix

(
Rγ∇ μIRγ ∂ f

))
, but xμ

is unique due to Proposition 1, so the inclusion can be replaced with equality. Thus
xμ, satisfies xμ = proxγ f

(
fix

(
Rγ∇ μIRγ ∂ f

))
where the sets are singletons due to

Proposition 1 and single-valuedness of proxγ f . Also, because Tμ in (5) and Rμ in
(14) have the same fixed point set (follows from (14)), using (15), we arrive at the
claim.

B.5 Proof to Lemma 2

(i): This follows directly from the proof to Proposition 1.
(ii): FromLemma 2(i), and recalling that η′ > 1, for anyμ ∈ (0, μmax], we have the

first equation. RecallingDefinition 5, and using the fact that for lower-semicontinuous,
proper, and convex function, the resolvent of the subdifferential is equal to its proximal
operator [3, Proposition 12.27, Proposition 16.34, and Example 23.3], we have Jγ ∂ f =
proxγ f with both being single-valued. So, from Proposition 3: xμ = proxγ f (zμ) =
(I+ γ ∂ f )−1 (zμ)⇔ zμ = xμ + γ∇ f (xμ). Hence, for any μ ∈ (0, μmax]:

‖zμ − x̄‖ = ‖xμ + γ∇ f (xμ)− x̄‖ ≤ ‖xμ − x̄‖ + γ ‖∇ f (xμ)‖
⇔rmax − ‖zμ − x̄‖ ≥ rmax − ‖xμ − x̄‖ − γ ‖∇ f (xμ)‖ a)≥ (η′ − 1)rmax/η

′ − γ ‖∇ f (xμ)‖,
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where a) uses the first equation of Lemma 2(ii). Because, for the strongly convex and
smooth function f , its gradient is bounded over a bounded set B(x̄; rmax) [51, Lemma
1, §1.4.2], then for γ satisfying the fourth equation of Lemma 2(ii) and the definition
ofψ in the third equation of Lemma 2(ii), we have the second equation of Lemma 2(ii)
for any μ ∈ (0, μmax]. To prove the final equation of Lemma 2(ii), note that

lim
μ→0

(
rmax − ‖zμ − x̄‖)− ψ

a)= lim
μ→0

(
rmax − ‖xμ + γ∇ f (xμ)− x̄‖)− (η′ − 1)rmax/η

′ + γ maxx∈B(x̄;rmax)‖∇ f (x)‖
b)= (rmax − ‖x̄ + γ∇ f (x̄)− x̄‖)− (η′ − 1)rmax/η

′ + γ maxx∈B(x̄;rmax)‖∇ f (x)‖
= (1/η′)rmax + γ

(
maxx∈B(x̄;rmax)‖∇ f (x)‖ − ‖∇ f (x̄)‖) > 0, (19)

where in a) we have used zμ = xμ + γ∇ f (xμ) and the third equation of
Lemma2(ii), in b)wehave used smoothness of f alongwith Proposition 1(ii). Inequal-
ity (19) along with the second equation of Lemma 2(ii) implies the final equation of
Lemma 2(ii).

B.6 Proof to Theorem 1

We use the following result from [26] in proving Theorem 1.

Theorem 3 (Convergence of local contraction mapping [26, pp. 313–314]) Let A :
E → E be some operator. If there exist x̃ , ω ∈ (0, 1), and r > 0 such that (a) A is
ω-contractive on B(x̃; r), i.e., for all x1, x2 in B(x̃; r), and (b) ‖A(x̃)− x̃‖ ≤ (1−ω)r .
Then A has a unique fixed point in B(x̃; r) and the iteration scheme xn+1 = A(xn)

with the initialization x0 := x̃ linearly converges to that unique fixed point.

Furthermore, recall that NExOS (Algorithm 1) can be compactly represented using
(Aμ) as follows. For any m ∈ {1, 2, . . . , N } (equivalently for each μm ∈
{μ1, . . . , μN }),

zn+1
μm
= Tμm

(
zn
μm

)
, (20)

where z0μm
is initialized at zμm−1 . From Proposition 2, for any μ ∈ M, the operator

Tμ is a κ ′-contraction mapping over the region of convexity B(x̄; rmax), where κ ′ ∈
(0, 1). From Proposition 1, there will be a unique local minimum xμ of problem (Pμ)
over B(x̄; rmax). Suppose, instead of the exact fixed point zμm−1 ∈ fixTμm−1 , we
have computed z̃, which is an ε-approximate fixed point of Tμm−1 in B(x̄; rmax), i.e.,
‖̃z − Tμm−1 (̃z)‖ ≤ ε and ‖̃z − zμm−1‖ ≤ ε, where ε ∈ [0, ε). Then, we have:

‖Tμm−1 (̃z)− zμm−1‖ = ‖Tμm−1 (̃z)− Tμm−1(zμm−1)‖
a)≤ κ ′ ‖̃z − zμm−1‖︸ ︷︷ ︸

≤ε

≤ ε,

(21)
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where a) uses κ ′-contractive nature of Tμm−1 over B(x̄; rmax). Hence, using triangle
inequality,

‖̃z − x̄‖ a)≤ ‖̃z − Tμm−1 (̃z)‖ + ‖Tμm−1 (̃z)− zμm−1‖ + ‖zμm−1 − x̄‖ b)≤ 2ε + ‖zμm−1 − x̄‖,

where a) uses triangle inequality and b) uses (21). As ε ∈ [0, ε), where ε is defined
in (6), due to the second equation of Lemma 2(ii), we have rmax − ‖̃z − x̄‖ > ψ .

Define Δ = (
(1− κ ′)ψ − ε

)
/�, which will be positive due to ε ∈ [0, ε) and (6).

Next, select θ ∈ (0, 1) such that Δ = θΔ < μ1, hence there exists a ρ ∈ (0, 1) such
that Δ = (1− ρ)μ1. Now reduce the penalty parameter using

μm = μm−1 − ρm−2Δ = ρμm−1 = ρm−1μ1 (22)

for any m ≥ 2. Next, we initialize the iteration scheme zn+1
μm
= Tμm

(
zn
μm

)
at z0μm

:=̃z.
Around this initial point, let us consider the open ball B (̃z, ψ). For any x ∈ B (̃z;ψ),
we have ‖x − x̄‖ ≤ ‖x − z̃‖ + ‖̃z − x̄‖ < ψ + ‖̃z − x̄‖ < rmax, where the last
inequality follows from rmax − ‖̃z − x̄‖ > ψ . Thus we have shown that B (̃z;ψ) ⊆
B(x̄; rmax). Hence, from Proposition 2, on B (̃z;ψ), the Douglas–Rachford operator

Tμm is contractive. Next, we have ‖Tμm (̃z)− z̃‖ ≤ (1−κ ′)ψ , because ‖Tμm (̃z)− z̃‖ a)≤
‖Tμm (̃z)−Tμm−1 (̃z)‖+‖Tμm−1 (̃z)− z̃‖ b)≤ �‖μm−μm−1‖+ε

c)≤ ε+�Δ
d)≤ (1−κ ′)ψ,

where a) triangle inequality, b) uses Proposition 2(ii) and ‖̃z − Tμm−1 (̃z)‖ ≤ ε, c)
uses (22) and ‖μm − μm−1‖ ≤ Δ ≤ Δ d) uses the definition of Δ. Thus, both
conditions of Theorem 3 are satisfied, and zn

μm
in (20) will linearly converge to the

unique fixed point zμmof the operator Tμm , and xn
μm

, yn
μm

will linearly converge to
xμm . This completes the proof.

B.7 Proof to Lemma 3

First, we show that, for the given initialization of zinit, the iterates zn
μ1

stay in

B(zμ1; ‖zinit − zμ1‖) for any n ∈ N via induction. The base case is true via given.

Let, zn
μ1
∈ B(zμ1; ‖zinit − zμ1‖). Then, ‖zn+1

μ1
− zμ1‖ a)= ‖Tμ1(z

n
μ1

) − Tμ1(zμ1)‖
b)≤

κ ′‖zn
μ1
−zμ1‖

c)≤ κ ′‖zinit−zμ1‖, where a) uses zμ1 ∈ fixTμ, and b) uses Proposition 2,

and c) uses ‖zn
μ1
−zμ1‖ ≤ ‖zinit−zμ1‖. So, the iterates zn

μ1
stay in B(zμ1; ‖zinit−zμ1‖).

As, κ ′ ∈ (0, 1), this inequality also implies that zn
μ linearly converges to zμ with the

rate of at least κ ′. Then using similar reasoning presented in the proof to Theorem 1,
we have xn

μ and yn
μ linearly converge to the unique local minimum xμ of problem

(Pμ). This completes the proof.

B.8 Proof to Theorem 2

The proof is based on the results in [43, Theorem 4] and [65, Theorem 4.3]. The func-
tion f is L-Lipschitz continuous and strongly smooth, hence f is a coercive function

123



Journal of Optimization Theory and Applications (2024) 202:795–833 831

satisfying lim inf‖x‖→∞ f (x) = ∞ and is bounded below [3, Corollary 11.17]. Also,
μI(x) is jointly continuous hence lower-semicontinuous in x and μ and is bounded
below by definition. Let the proximal parameter γ be smaller than or equal to 1/L .
Then due to [43, (14), (15) andTheorem4], {xn

μ, yn
μ, zn

μ} (iterates of the inner algorithm
of NExOS for any penalty parameter μ) will be bounded. This boundedness implies
the existence of a cluster point of the sequence, which allows us to use [43, Theorem
4 and Theorem 1] to show that for any zinit, the iterates xn

μ and yn
μ subsequentially

converges to a first-order stationary point xμ satisfying ∇ (
f + μI)

(xμ) = 0. The
rate minn≤k ‖∇

(
f + μI)

(xn
ρμ)‖ ≤ ((1 − γ L)/2 L)o(1/

√
k) is a direct application

of [65, Theorem 4.3] as our setup satisfies all the conditions to apply it.
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