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The classical Kullback-Leibler distance is known to enjoy desirable statistical properties in the context 
of decision-making with noiseless data. However, in most practical situations data is subject to a certain 
amount of measurement noise. We hence study here data-driven prescription problems in which the data 
is corrupted by a known noise source. We derive efficient data-driven formulations in this noisy regime 
and indicate that they enjoy an entropic optimal transport interpretation.
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1. Introduction

Let P be a family of probability measures over a space � and 
let P be an unknown probability measure in this family. We are 
interested in finding an 0 < ε-suboptimal solution to the stochastic 
optimization problem

z(P ) ∈ argε inf
z∈Z

{EP [�(z, ξ)] = ∫
�

�(z, ξ)dP (ξ)}. (1)

In practice, however, the distribution P which describes the 
uncertain parameter ξ is not known. The stochastic optimization 
community has in recent years focused on making decisions di-
rectly based on a finite collection of independent data observations

ξi ∼ P ∀i ∈ [1, . . . , N], (2)

instead. In this paper we will denote this observational model, 
considered by the overwhelming majority of the literature on data-
driven decisions, described in Equation (2) as noiseless. That is, the 
decision maker has access to uncorrupted independent samples 
from the probability measure of interest P . However, it is often 
the case in practice that the data itself is not observed directly 
but rather through a measurement device with known limitations. 
Such noisy data is better known as censored data in statistics [16]. 
An observational model in which the noisy data

ξ ′
i = ξi + ni ∀i ∈ [1, . . . , N], (3)
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is observed instead where the noise terms ni are independent and 
share a known distribution has been widely studied in the system 
control and identification literature. We will come back to this ob-
servational model and further generalizations in Section 2.1. In the 
remainder of this section we first briefly discuss various results of 
interest in the noiseless observational model.

In case the probability measure P is only known to belong 
to the probability simplex P(�), one reasonable substitute for 
P could be its empirically observed counterpart denoted here as 
P N := ∑N

i=1 δξi /N . If on the other hand some prior information is 
available in the sense that the probability measure P is known to 
belong to a subset P ⊂ P(�), a maximum likelihood estimate [19]
may be considered instead. In the machine learning and robust 
optimization community such point estimates are widely known 
to be problematic when used naively in subsequent analysis. In 
particular, it is widely established both empirically as well as in 
theory that a sample average formulation

z(P N) ∈ argε inf
z∈Z

EP N [�(z, ξ)] (4)

which substitutes P with a mere point estimate P N tends to disap-
point out of sample. That is, the actual cost (EP [�(z(P N), ξ)]) ob-
served out of sample exceeds the predicted cost (EP N [�(z(P N ), ξ)])
of the data-driven decision z(P N ). This adversarial phenomenon is 
well known colloquially as the “Optimizer’s Curse” [25] or over-
fitting. Such adversarial phenomena related to over-calibration to 
observed data but poor performance on out-of-sample data can be 
attributed primarily to the treatment of mere point estimates as 
exact substitutes for the unknown probability measure.
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Ambiguity sets consisting of all probability measures suffi-
ciently compatible with the observed data can offer a better al-
ternative to simple point estimates. As the data observations are 
here independent and identically distributed, their order is irrele-
vant, and ambiguity sets AN (P N ) ⊆ P can be made functions of 
the empirical probability measure P N rather than the data itself. 
A large line of work in the robust optimization community, pio-
neered by [29], focuses consequently on data-driven formulations 
of the form

zA(P N) ∈ argε inf
z∈Z

sup {EP [�(z, ξ)] : P ∈AN(P N)} (5)

which can be thought of as robust counterparts to the nomi-
nal sample average formulation stated in Equation (4) and where 
by convention consider the supremum to take the value −∞ in 
case its feasible set AN (P N) is empty. The recent uptick in pop-
ularity of such robust formulations is in no small part due to 
the fact that they are often just as tractable and typically en-
joy superior statistical properties than their nominal counterpart. 
Earlier work [5,11,17,32,34] focused on ambiguity sets consisting 
of probability measures sharing certain given moments. More re-
cent approaches [3,6,18,20,21] however consider ambiguity sets 
AN (P N) = {P ∈P : D(P N , P ) ≤ rN} which are based on some sta-
tistical distance D : P(�) × P(�) → R ∪ {+∞}. Such ambiguity 
sets are interpretable as the set of probability measures suffi-
ciently close to the empirical probability measure P N . Two qual-
itatively different distances have recently positioned themselves as 
the front runners for data-driven decision-making and are now 
briefly discussed.

The optimal transport distance between a measure μ on � and 
a measure ν on another set �′ can be defined as

W0(μ,ν) := inf
T ∈T (μ,ν)

∫
�×�′

d(ξ, ξ ′)dT (ξ, ξ ′) (6)

for a given the cost function d : � × �′ �→ R ∪ {+∞}. Here 
T (μ, ν) := {

T ∈P(� × �′) : ��′ T = μ, ��T = ν
}

is the so called 
transport polytope and consists of all transport measures with 
given marginal measures μ and ν . Assume for a moment that 
� = �′ = Rm and d(ξ, ξ ′) = ∥∥ξ − ξ ′∥∥

2. Then, the optimal trans-
port distance coincides with the classical Wasserstein distance 
between probability measures [28]. Optimal transport distances 
have received a lot of attention both in the context of prescriptive 
analytics [7,8,15,30,35] as well as in the machine learning com-
munity at large [23,27]. In the context of prescriptive analytics 
such distances have become very popular after the seminal work 
[15] pointed out that the resulting robust formulation zW ,r(P N) ∈
minz∈Z {cW ,r(z, P N ) := sup {EP [�(z, ξ)] : W0(P N , P ) ≤ r}} need 
not be intractable and enjoys strong out-of-sample guarantees. 
For r < 1 and 2 ≤ dim(�) < ∞, we have [23] for any P with 
A = EP [exp(‖ξ‖a

2)] < ∞ for some a > 1 that with r′ = (r/C)1/dim(�)

we have

lim
N→∞

1

N
log Pr

[
EP

[
�(zW,r′(P N), ξ)

]
> cW,r′(zW,r′(P N), P N)

]≤ r

(7)

where C is a known positive constant depending only on a, A and 
dim(�). In other words, the probability of being disappointed (the 
actual cost EP

[
�(zW ,r′(P N), ξ)

]
of the decision zW ,r′(P N) exceeds 

the predicted worst-case cost cW ,r′(zW ,r′ (P N), P N)) decays expo-
nentially fast in the number of samples.

Optimal transport distances are however computationally quite 
challenging as even determining the optimal transport distance 
between two given measures requires the solution of the associ-
ated linear optimization problem in Equation (6). In fact, optimal 
2

transport distances are often computed numerically, cf., [9], by 
considering their embedding in the larger family of entropic op-
timal transport distances Wε (μ, ν) defined as

inf
T ∈T (μ,ν)

∫
�×�′

d(ξ, ξ ′)dT (ξ, ξ ′) + εKL(T ,��T ⊗ ��′ T ) (8)

as the limit ε ↓ 0 where we denote the entropic divergence be-
tween two finite measures μ and ν on the same space as

KL(μ,ν) = c

∫
log

(
dμ

dν

)
dμ −

∫
dμ +

∫
dν

where the random variable dμ/dν denotes the Radon-Nikodym 
derivative between μ and ν . By convention if μ �� ν then the 
entropic distance is taken as +∞. The previously discussed en-
tropic divergence is a particular member of the class of convex 
f -divergences which like the Wasserstein distance are well known 
[21] to yield tractable robust formulations. Moreover, when the 
loss function �(z, ξ) is continuous on the compact set Z × � the 
associated robust prescriptive formulation (5) can be specialized to 
zKL,r(P N) ∈ minz∈Z {cKL,r(z, P N ) := max {EP [�(z, ξ)] : KL(P N , P ) ≤
r}} and enjoys strong statistical out-of-sample guarantees. One can 
prove [33, Theorem 11] for all P ∈P(�) that indeed

lim
N→∞

1

N
logPr

[
EP

[
�(zKL,r(P N), ξ)

]
>cKL,r(zKL,r(P N),P N )+ε

]≤−r

(9)

for any ε > 0. In other words, the probability of being disappointed 
(the actual cost EP

[
�(zKL,r(P N), ξ)

]
of the decision zKL,r(P N)

exceeds the predicted worst-case cost sup
{

EQ
[
�(zKL,r(P N), ξ)

] :
KL(P N , Q ) ≤ r} by any small amount ε > 0) decays exponentially 
fast in the number of samples with rate precisely the size r of the 
considered ambiguity set.

Equations (7) and (9) reflect the fact that when properly cal-
ibrated robust entropic and Wasserstein formulations enjoy es-
sentially the same out-of-sample guarantees. The classical sample 
average formulation can also be made to enjoy similar out-of-
sample guarantees by naively inflating its objective in Equation (4)
by some bias term b > 0. Indeed, taking the bias term b sufficiently 
large we can guarantee that for all P ∈P we have

lim
N→∞

1

N
log Pr

[
EP [�(zN(P N), ξ)] > EP N [�(zN(P N), ξ)]+b

]≤−r.

(10)

When several prescription formulations enjoy the same out-of-
sample guarantees, we should prefer that formulation which in-
flates the cost prediction the least. However, any formulation 
which enjoys for all P ∈P the out-of-sample guarantee

lim
N→∞

1

N
log Pr

[
EP [�(zN(P N), ξ)] > c̃r(z̃r(P N), P N)

]≤−r (11)

must be more conservative in its cost predictions compared to 
an entropic formulation [33, Theorem 11], i.e., c̃r(z̃r(P N), P N) ≥
cKL,r(zKL,r(P N), P N) indicating that the entropic formulation is uni-
versally least conservative or efficient. We remark however that 
the efficiency of the entropic formulation is intimately tied to the 
noiseless data model. Indeed, the efficiency of the entropic formu-
lation is established [33] by pointing out that the Kullback-Leibler 
divergence is precisely the rate function characterizing large devia-
tions between the empirical distribution P N and the noiseless data 
generating distribution P [12].
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1.1. Notation

We will assume that � and �′ are Polish topological spaces 
and hence so is the product space � × �′ when equipped with 
the product topology. Given any set S ⊂ �′ we denote with 
Sδ = {

s′ ∈ �′ : ∥∥s − s′∥∥ ≤ δ, s ∈ S
}

its δ-inflation. We denote with 
M+(�), M+(�′) and M+(� × �′) the sets of all positive Borel 
measures on the spaces �, �′ and � × �′ , respectively. Similarly, 
we denote with P(�), P(�′) and P(� × �′) the sets of all Borel 
probability measures on the spaces �, �′ and � ×�′ , respectively. 
Given two measures μ and ν we denote with μ ⊗ ν as their prod-
uct measure. The probability simplices P(�), P(�′) and P(� ×�′)
when equipped with the topology of weak convergence of proba-
bility measures are Polish spaces too [12, Section 6.2].

1.2. Contributions

In this paper we generalize the framework of efficient formula-
tions introduced by [33] to problems with noisy data. We present 
three contributions.

First, we prove in Theorem 2.9 that the family of robust formu-
lations

z̃δ(P ′
N) ∈ argε inf

z∈Z
sup

{
EQ [�(z, ξ)] : Q ∈P, Iδ(P ′

N , Q ) ≤ r
}

(12)

parameterized in δ > 0 and where P ′
N = ∑N

i=1 δξ ′
i
/N denotes the 

empirical distribution of the noisy data essentially dominates all 
other formulations mirroring the notion of efficiency enjoyed by 
the entropic distance in the noiseless regime. Perhaps surprisingly 
we show that the rate function I in the noisy setting is too irregu-
lar and its δ-smoothed counterparts

Iδ(μ,ν) := inf
{

I(υ,ν) : υ ∈P(�′), LP(υ,μ) ≤ δ
}

(13)

must be considered instead. This implies in particular that in stark 
contrast to the noiseless setting there is not any longer a single 
most efficient formulation but rather a family of increasingly more 
efficient formulations.

Second, we show in Section 2.3 that by reducing the smooth-
ing parameter δN and robustness parameter rN at an appropriate 
rate, consistent formulations with finite sample guarantees can be 
obtained under an identifiability condition and a mild assumption 
on the loss function �.

We finally state tractable reformulations of the proposed novel 
family of efficient robust prescriptive formulations (12) under cer-
tain technical conditions on the loss function � and space � in 
Section 3. In particular, we exploit a classical representation result 
[31] which seems to be novel in this context and derive a dual 
formulation whose size is independent of the event set �′ .

2. Decision-making with noisy data

2.1. Noisy data

As stated in Equation (3) the distribution of the noisy data ξ ′
may be distinct from the distribution of the unobserved noiseless 
data ξ . We will allow the noisy data to take value in �′ which may 
be different from �. We only assume here that the noisy observa-
tions are drawn independently as

ξ ′
i ∼ O ξi ∀i ∈ [1, . . . , N].

That is, each noisy data point ξ ′
i is obtained as an independent 

draw from a distribution O ξi ∈ P(�′) given a noiseless observa-
tion ξi . We stress here again that we assume that the mapping 
3

O  : � → P(�′) which characterizes our observational model is 
given. In other words, the distributional nature of the noise cor-
rupting the unobserved data points is known. We will refer to O
as our observational model as it precisely characterizes how the 
noisy data is derived from the noiseless data.

To establish the decomposition result in Theorem 2.10 the ob-
servational model will be required to satisfy the following techni-
cal condition.

Assumption 2.1. The measure O ξ is absolutely continuous with re-
spect to a base measure m′ for all ξ ∈ �, i.e., O ξ � m′ for all ξ ∈ �. 
Furthermore, there exists a measurable function d : � × �′ → R so 
that dO ξ /dm′(ξ ′) = exp(−d(ξ, ξ ′)) for all ξ ′ ∈ �′ .

The relationship between the probability measure P ′ of the 
noisy observations and the probability measure P of the unob-
served noiseless data can be characterized as the convolution P ′ :=
O  
 P and is given explicitly as P ′(B) = (O  
 P )(B) := ∫

O ξ (B)dP (ξ)

for all measurable sets B ∈ B(�′). We will denote with the set 
P′ := {

O 
 P ∈P(�′) : P ∈P}
the family of potential distributions 

of our noisy data.
We point out that this noisy data model is quite flexible and 

captures a wide variety of settings.

Example 2.2 (Additive noise). Practical measurements are typically 
corrupted by some amount of measurement error. We consider 
here independent additive measurement error ei from some distri-
bution E ∈P(�′) with �′ = Rdim(�) as an example. In this case we 
observe the noisy data ξ ′

i = ξi + ei instead of the data ξi itself. This 
observational model is characterized by the map O AE : ξ �→ E(ξ)

where E(ξ) denotes the error distribution translated by ξ , i.e., 
E(ξ)[B] = ∫

1 {ξ + e ∈ B}dE(e) for every measurable set B in �′ .

Example 2.3 (Gaussian noise). Perhaps the most classical example 
of the additive noise model discussed previously is the simple case 
of independent zero mean Gaussian additive noise zi with vari-
ance σ 2 I . This observational model is characterized by the map 
O GN : ξ �→ N(ξ, σ 2 I) where N(μ, V ) denotes here a normal dis-
tribution with mean vector μ ∈ Rdim(�) and variance matrix V ∈
Rdim(�)×dim(�) . Assumption 2.1 holds for O GN with �′ = Rdim(�)

and d(ξ, ξ ′) = ∥∥ξ − ξ ′∥∥2
2 /(2σ 2) and m′ = μ′/(σ

√
(2π)dim(�′)) with 

μ′ the Lebesgue measure on �′ .

Example 2.4 (Clipping noise). Most measurement devices have a 
limited output range, i.e., �′ = [a, b] with a < b, which is a strict 
subset of all potential outcomes � = R. In this case we may 
only observe the censured data ξ ′′

i = max(min(ξ ′
i , b), a) instead of 

data ξ ′
i which itself has been corrupted by Gaussian noise as dis-

cussed in Example 2.3. This observational model is characterized 
by the map O C N : ξ �→ N(ξ, σ 2)[−∞, a) · δa + N(ξ, σ 2)(b, ∞] · δb +
N(ξ, σ 2)[a, b] · N[a,b](ξ, σ 2) where N[a,b](ξ, σ 2) denotes here a nor-
mal distribution truncated to the interval [a, b]. Assumption 2.1
holds here with

d(ξ, ξ ′) =

⎧⎪⎨
⎪⎩

− log N(ξ,σ 2)[−∞,a] if ξ ′ = a,∥∥ξ − ξ ′∥∥2
2 /(2σ 2) if ξ ′ ∈ (a,b),

− log N(ξ,σ 2)[b,∞] if ξ ′ = b

for all ξ ∈ � and m′ = μ′/(σ
√

(2π)dim(�′)) + δa + δb with μ′ the 
Lebesgue measure on R and δa and δb two Dirac measures at loca-
tions a and b, respectively.

Example 2.5 (Quantization noise). Digital measurements quantize 
the noisy measurements of Example 2.3 further in the sense that 
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�′ is necessarily only a finite subset of �. Let �ξ ′ denote the col-
lection of all inputs ξ in � which get quantized into the digital 
symbol ξ ′ ∈ �′ . This observational model is characterized by the 
map O Q N : ξ �→ ∑

ξ ′∈�′ N(ξ, σ 2)[�ξ ′ ] · δξ ′ . Assumption 2.1 holds 
here with

d(ξ, ξ ′) = − log N(ξ,σ 2)[�ξ ′ ]
for all ξ ′ ∈ �′ and ξ ∈ � with μ′ the counting measure on �′ .

We will attempt to infer the unknown probability measure P
from the noisy data based on its empirical probability measure P ′

N . 
Clearly, considering the empirical probability measure rather than 
the noisy data directly imposes no loss of information as the order 
of the data points is of no consequence here. Sanov’s theorem [12, 
Theorem 6.2.10] ensures also here that the sufficient statistic P ′

N
enjoys a large deviation property. That is, the empirical probabil-
ity measure P ′

N satisfies for any open subset O ⊆ P(�′) the large 
deviation lower bound

− inf
P̂ ′∈O

KL( P̂ ′, O 
 P ) ≤ lim
N→∞

1

N
log Pr[P ′

N ∈O] (14a)

and for any closed subset C ⊆ P(�′) the large deviation upper 
bound

lim
N→∞

1

N
log Pr[P ′

N ∈ C] ≤ − inf
P̂ ′∈C

KL( P̂ ′, O 
 P ), (14b)

for the good rate function [12] I( P̂ ′, P ) := KL( P̂ ′, O  
 P ). We re-
mark that large deviation inequalities generally are quite rough in 
nature as indeed (14a) and (14b) only pertain to open or closed 
sets (in the topology of weak convergence), respectively. The rate 
function is observed to be nonnegative and in fact I( P̂ ′, P ′) = 0 if 
and only if P̂ ′ = P ′ . For any ε > 0, the large deviation inequality 
(14b) implies that for all P ∈P we have

lim
N→∞

1

N
log Pr[LP(P ′

N , P ′)≥ε]≤−min
{

I( P̂ ′,P ):LP( P̂ ′,P ′)≥ε
}
<0

where the minimum is indeed achieved as our good rate function 
has compact sublevel sets and the set of all P̂ ′ ∈ P(�′) such that 
the Lévy-Prokhorov metric ball { P̂ ′ : LP( P̂ ′, P ′) ≥ ε} is closed and 
does not contain the distribution P ′ . Hence, the large deviation 
property immediately implies that the empirical probability mea-
sure P ′

N converges in probability to P ′ with an increasing number 
of observations. In fact, the rate function can be interpreted to 
quantify the exponential speed with which this convergence in 
probability takes place.

2.2. Efficiency

We consider a prescriptive problem in which we attempt to 
learn the solution to the stochastic optimization problem stated in 
Equation (1) from the noisy observational data described in Sec-
tion 2.1. Let us denote with P ml

N the maximum likelihood estimate 
for the unobserved probability distribution P . A straightforward 
extension of the sample average formulation in Equation (4) to this 
noisy data would be to consider

z(P ml
N ) ∈ argε inf

z∈Z
EP ml

N
[�(z, ξ)] . (15)

Many other formulations based on different distributional esti-
mates are evidently possible as well. This naturally leads us to 
question if between these many alternative data-driven formula-
tions one ought to be preferred over the other from a statistical 
point of view? To answer this question more broadly we must of 
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urse first define precisely what constitutes a data-driven for-
ulation and secondly agree on how its statistical performance 
ould be quantified. We follow the framework presented in [33]
d define a data-driven formulation as consisting of a predictor 
d prescriptor.

finition 2.6 (Predictors and prescriptors). A measurable function c̃ :
× P(�′) → R is called a predictor. A measurable function z̃ :
(�′) → Z is called a prescriptor if there exists a predictor c̃ that 
duces z̃ in the sense that z̃( P̂ ′) ∈ argε infz∈Z c̃(z, P̂ ′) for all P̂ ′ ∈
(�′). That is, we have c̃(z̃( P̂ ′), P̂ ′) − ε < ṽ( P̂ ′) := infz∈Z c̃(z, P̂ ′)
here we denote the function ṽ : P(�′) → R as the optimal value 
nction of the formulation.

The maximum likelihood formulation (15) employs the cost 
edictor EP ml

N
[�(z, ξ)] to prescribe its decision z(P ml

N ). However, 
e maximum likelihood is a mere point estimate of the unob-
rved probability distribution P . The maximum likelihood formu-
tion can consequently be expected to suffer similar shortcomings 
 the sample average formulation in the noiseless regime. That is, 
e cost budgeted for its prescribed decision is likely to disappoint 
t of sample. Here we say a formulation based on a predictor 
escriptor pair (c̃, ̃z) disappoints if the event

′
N ∈D(c̃, z̃; P ) :=

{
P̂ ′ ∈P(�′) : c(z̃( P̂ ′), P ) > c̃(z̃( P̂ ′), P̂ ′)

}

curs with c(z, P ) = EP [�(z, ξ)] the unknown out-of-sample cost. 
ch disappointment events in which the actual cost of our 
cision, i.e., c(z̃(P ′

N), P ), breaks the predicted cost or budget, 
., c̃(z̃(P ′

N), P ′
N), are undesirable and should be avoided by the 

cision-maker. Consequently, we prefer formulations which keep 
e disappointment rates

im∞
1

N
log Pr[P ′

N ∈D(c̃, z̃; P )] (16)

 small as possible for all P ∈ P. We will only denote here for-
ulations as feasible if their out-of-sample disappointment proba-
lity decays sufficiently fast, i.e., (16) ≤ −r. Evidently, sufficiently 
st disappointment probability decay can be achieved trivially 
 simply inflating the cost budgeted for each decision by some 

rge nonnegative amount. We would hence prefer those formu-
tions which promise minimal biased long term cost prediction 

N→∞ c̃(z̃(P ′
N), P ′

N) for all P ∈P.
We consider here the family of robust formulations defined by 

e predictor prescriptor pairs

(z, P ′
N) := sup

{
EQ [�(z, ξ)] : Q ∈P, Iδ(P ′

N , Q ) ≤ r
}
,

z̃δ(P ′
N) ∈argε infz∈Z c̃δ(z, P ′

N)
(17)

sed on our smooth large deviation rate function defined in Equa-
n (13). We will show using a large deviation argument that this 

mily dominates the very rich class of regular formulations.

finition 2.7 (Regular predictors and prescriptors). A predictor c̃ :
× P(�′) → R is called regular if it is continuous on Z × P(�′). 
prescriptor z̃ :P(�′) → Z is called regular if it is continuous and 
ere exists a regular predictor c̃ that induces z̃ in the sense that 
P̂ ′) ∈ argε infz∈Z c̃(z, P̂ ′) for all P̂ ′ ∈P(�′).

For regular predictors we have that the observed random cost 
z̃(P ′

N), P ′
N) converges almost surely to c̃(z̃(O  
 P ), O  
 P ) as the 

pirical distribution P ′
N converges almost surely to O  
 P fol-

wing [14, Theorem 11.4.1] for every P ∈ P. Remark that the 
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class of all regular formulations is very rich as Definition 2.7 im-
poses only mild structural restrictions. The Berge maximum the-
orem [4, p. 116] indeed implies that the optimal value function 
ṽ( P̂ ′) = minz∈Z c̃(z, P̂ ′) of any regular formulation is a continuous 
function on P′(�) already when the constraint set Z is merely 
compact. The correspondence P̂ ′ �→ {z ∈ Z : c̃(z, P̂ ′) < ṽ( P̂ ′) + ε}
of ε-suboptimal solutions in a regular formulation is consequently 
lower semicontinuous [2, Corollary 4.2.4.1] for any ε > 0. Hence, 
for formulations employing a convex predictor c̃ and P(�′) a com-
pact set, an associated regular predictor can always be found [1, 
Theorem 9.1.]. Should a regular formulation admit unique optimal 
decisions, such decisions will constitute a regular prescriptor as 
well following [4, p. 117]. The need to focus on this restricted but 
nevertheless quite rich class of regular formulations is necessary 
due to the rough nature of the employed large deviation argument.

Assumption 2.8. The cost function c : Z × P → R, (z, P ) �→
EP [�(z, ξ)] is continuous.

We remark that Assumption 2.8 is rather mild and is already 
satisfied when the loss function � : Z × � → R is merely bounded 
and uniformly continuous. The proofs of all results are found in 
Appendix A.

Theorem 2.9. Let Assumption 2.8 hold. Then, the family of predictor pre-
scriptor pairs (c̃δ, ̃zδ) is feasible for any δ > 0, i.e.,

lim
N→∞

1

N
log Pr

[
P ′

N ∈D(c̃δ, z̃δ; P )
] ≤ −r ∀P ∈P. (18)

Furthermore, consider any regular predictor prescriptor pair (c̃, ̃z) which 
satisfies

lim
N→∞

1

N
log Pr

[
P ′

N ∈D(c̃, z̃; P )
] ≤ −r ∀P ∈P. (19)

Then, we have that for all ε > 0 there exists 0 < δ′ so that any 0 < δ ≤ δ′
we have almost surely

lim
N→∞ c̃(z̃(P ′

N), P ′
N) + 3ε ≥ lim

N→∞ c̃δ(z̃δ(P ′
N ), P ′

N) (20)

when the noisy data is generated by any distribution P ′ ∈P′ .

Inequality (18) guarantees that any formulation in our fam-
ily is feasible. Inequalities (19) and (20) guarantee that any other 
feasible regular formulation is dominated (modulo the small con-
stant 3ε > 0) by members of our efficient family for all parameters 
0 < δ ≤ δ′ with 0 < δ′ sufficiently small. The previous theorem 
hence indicates that our family dominates any regular formulation 
in terms of balancing the desire for small out-of-sample disap-
pointment as well as minimal bias under Assumption 2.8 and is 
thus efficient.

In view of the previous discussion it is tempting to con-
sider the data-driven formulation (17) with δ = 0. However, re-
call again that for noisy data when the base measure m′ de-
fined in Assumption 2.1 fails to be atomic, the ambiguity set {

Q ∈P : I(P ′
N , Q ) < ∞} = ∅ is trivial for any empirical distri-

bution P ′
N and consequently (17) with δ = 0 is here obviously 

infeasible. Hence, considering a somewhat smoothed rate function 
Iδ instead of the rate function I directly seems unavoidable when 
faced with noisy observational data.

We conclude here by providing an interesting connection be-
tween the actual rate function I and the entropic optimal transport 
which sheds a light on the role entropic optimal transport plays in 
this noisy observational data regime.
5

Theorem 2.10. Let Assumption 2.1 hold. The jointly convex rate function 
can be decomposed as

I( P̂ ′, P ) = inf
Q ∈P(�)

KL(Q , P ) + KL( P̂ ′,m′) + W1( P̂ ′, Q ) ≥ 0. (21)

In the proof of the previous result we indicate that if P̂ ′ �
m′ the infimum in Problem (21) is achieved at Q 
 whose 
Radon-Nikodym derivative with respect to P is dQ 
/dP (ξ) =∫
�′ [exp(−d(ξ, ξ ′))/

∫
�

exp(−d(ξ ′′, ξ ′))dP (ξ ′′)]d P̂ ′(ξ ′) for all ξ ∈ �. 
The optimization variable Q in Theorem 2.10 can be interpreted to 
represent the unobserved empirical distribution P N of the noise-
less data points. With this interpretation in mind the first term 
KL(Q , P ) ensures that Pr[P N ≈ Q ] � exp(−N · KL(Q , P )) follow-
ing Sanov’s theorem and accounts for the fact that the empirical 
distribution P N of the noiseless data may differ from unknown 
the distribution P when the number of training data points is 
finite. The last two terms account for the fact that we only ob-
serve the empirical distribution P ′

N of the noisy data. One can 
show that this term quantifies indeed Pr[P ′

N ≈ P̂ ′|P N ≈ Q ] �
exp(−N · (KL( P̂ ′, m′) + W1( P̂ ′, Q ))). Informally, we have using the 
law of total probability that

Pr[P ′
N ≈ P̂ ′]

= ∫
Pr[P ′

N ≈ P̂ ′|P N ≈ Q ] Pr[P N ≈ Q ]
� ∫

exp(−N · (KL( P̂ ′,m′) + W1( P̂ ′, Q )))exp(−N · KL(Q , P ))

�exp(−N · infQ ∈P KL(Q , P ) + [KL( P̂ ′,m′) + W1( P̂ ′, Q )]).
We remark that the entropic optimal transport term W1( P̂ ′, Q )

is defined in Equation (8) where its marginal transport cost d is 
identified here as the logarithm of the density function of the 
noise corrupting our data as indicated in Assumption 2.1. The term 
KL( P̂ ′, m′) can be interpreted as a compensation term for the fact 
that any density function arbitrarily depends on the base measure 
m′ considered.

2.3. Consistency

Strong out-of-sample guarantees such as those we impose in 
Equation (18) yield conservative formulations even when a large 
amount of data points are observed. Indeed, even in the noise-
less regime [33], imposing the out-of-sample guarantee (11) with 
r > 0 necessarily leaves any feasible formulation to be incon-
sistent, i.e., EP

[
�(zKL,r(P N), ξ)

]
does not necessarily converge to 

infz EP [�(z, ξ)]. Intuitively, this is a direct result from the fact that 
the employed ambiguity set {Q ∈P : KL(P N , Q ) ≤ r} does not re-
duce to {P } when N is large as the robustness radius r is here 
constant. Nevertheless, if the probability of disappointment is only 
required to be remain bounded rather than to decay exponentially 
as in Equation (9) a consistent formulation can be derived [13,24]
by simply reducing the robustness radius rN with increasing N un-
der mild technical conditions on the cost function �.

We remark here that by imposing the strong out-of-sample 
guarantee in Equation (18), our family of efficient formulations 
is also inconsistent as their associated ambiguity sets {Q ∈P :
Iδ(P ′

N , Q ) ≤ r
}

do not shrink to {P } even when N is large as both 
here both r as well as δ are constant. Motivated by the previous 
discussion we consider simply reducing rN and δN as N grows and 
consider the robust formulation

c̃N(z, P ′
N) := sup

{
EQ [�(z, ξ)] : Q ∈P, IδN (P ′

N , Q ) ≤ rN
}
,

z̃ (P ′ ) ∈arg inf c̃ (z, P ′ ).
(22)
N N ε z∈Z N N
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We first show that the ambiguity set associated with the previ-
ously introduced formulation contains indeed P with high proba-
bility as the number of observations is large and both rN and δN

are reduced at appropriate rates with increasing N .

Proposition 2.11. Assume that P ′ = O  
 P has bounded fourth 
moment and consider two nonincreasing sequences rN > 0 and 
δN > 0 with rN = (Nγ −1) and δN = (N−γ ′/(2 dim(�′))) for some 
0 < γ ′ < γ < 1. Then, limN→∞ Pr[∃Q ∈ P(�′) s.t. LP(P ′

N , Q ) ≤
δN , I(Q , P ) ≤ rN ] = 1.

When there exists Q ∈ P(�′) so that LP(P ′
N , Q ) ≤ δN and 

I(Q , P ) ≤ rN , the distribution P must be contained in the am-
biguity set of the predictor c̃N which by definition implies that 
cN(z, P ′

N) > EP [�(z, ξ)] for any z ∈ Z . The previous proposition 
hence immediately implies that Pr[EP [�(z̃N (P ′

N), ξ)] > c̃N(z̃N (P ′
N),

P ′
N)] decays to zero, however, not necessarily exponentially fast.

Remark 2.12 (Finite sample guarantees). We remark that Equation 
(A.9) in the proof of Proposition 2.11 provides a finite sample guar-
antee on the disappointment probability Pr

[
EP

[
�(z̃N (P ′

N), ξ)
]

>

c̃N (z̃N (P ′
N), P ′

N)
]
. This enables the construction for any desired 

maximum disappointment probability β ∈ (0, 1] of two particu-
lar sequences r


N > 0 and δ

N > 0 tending to zero at an appropriate 

speed (with in fact r

N = O(Nγ −1) and δ


N = O(N−γ ′/(2 dim(�′))) for 
some 0 < γ ′ < γ < 1) so that Pr[EP [�(z̃N (P ′

N), ξ)] > c̃N(z̃N (P ′
N),

P ′
N)] ≤ β for all N ≥ 1. Furthermore, we remark that our efficiency 

guarantee in Theorem 2.10 on the formulation proposed in Equa-
tion (17) is asymptotic in nature. The result does hence not say 
after what number of samples our asymptotic guarantees are sup-
posed to kick in. In particular, for small δ > 0, the associated am-
biguity set {Q ∈ P : Iδ(P N , Q ) ≤ r} may be empty and hence the 
formulation disappoints as by convention here EP [�(z̃δ(P ′

N), ξ)] >
c̃δ(z̃δ(P ′

N), P ′
N) = −∞. If finite sample guarantees are a con-

cern, we propose the robust formulation in Equation (22) with 
δN = δ/2 + δ


N and rN = r + r

N which trivially satisfies both the 

finite sample guarantee Pr[EP [�(z̃N (P ′
N), ξ)] > c̃N (z̃N (P ′

N), P ′
N)] ≤

β, ∀N ≥ 1 as c̃N (z̃N (P ′
N), P ′

N) ≥ c̃δ/2(z̃δ/2(P ′
N), P ′

N) and the asymp-
totic guarantee limN→∞ 1

N log Pr[EP [�(z̃N (P ′
N ), ξ)] > c̃N(z̃N (P ′

N),

P ′
N)] ≤ −r as δN ≥ δ


N and rN ≥ r

N . Furthermore, the proposed 

formulation does not asymptotically impose any additional con-
servatism as indeed limN→∞ c̃δ(z̃δ(P ′

N), P ′
N) ≥ limN→∞ c̃N(z̃N (P ′

N),

P ′
N) due to limN→∞ δN = δ/2 < δ.

When there exists Q ∈ P(�′) so that LP(P ′
N , Q ) ≤ δN and 

I(Q , P ) = KL(Q , P ′) ≤ rN , in fact all distributions in the set {
Q ∈P : O 
 Q = P ′} are contained in the ambiguity set of the 

predictor c̃N . Proposition 2.11 establishes that with high probabil-
ity the ambiguity set will not only contain P but in fact all distri-
butions in the set 

{
Q ∈P : O 
 Q = P ′}. Unsurprisingly, consis-

tency demands at a bare minimum that the distribution P is iden-
tifiable from P ′ , i.e., we must impose 

{
Q ∈P : O 
 Q = P ′} = {P }

on the observational model O . Not all observational models satisfy 
this assumption as certain types of measurement noise may lead 
to information loss. In an extreme case where O ξ = P ′ indepen-
dent of ξ then clearly all information regarding the noiseless data 
is lost and in fact 

{
Q ∈P : O 
 Q = P ′} =P. We remark that our 

efficiency notion is independent of identifiability. We prove here 
consistency for the additive error setting under a mild assumption 
on the loss function � which is slightly stronger than the condition 
imposed in Assumption 2.8.

Assumption 2.13 (Identifiability). Let ϕE : Rdim(�) → C, t �→∫
exp(i 〈t, e〉) dE(e) be the characteristic function of the error dis-
6

tribution E . Assume that ϕE has no roots, i.e., ϕE(t) �= 0 for 
t ∈ Rdim(�) .

Assumption 2.14 (Bounded Lipschitz loss). Assume that the loss 
function � is uniformly bounded and Lipschitz, i.e., we have L > 0
and L > 0 so that supξ∈� |�(z, ξ)| ≤ L as well as
supz∈Z ,ξ1 �=ξ2∈� |�(z, ξ1) − �(z, ξ2)|/‖ξ1 − ξ2‖ ≤L for all z ∈ Z .

Recall that any distribution in P(Rdim(�)) is uniquely deter-
mined by its characteristic function and that the characteristic 
function of a convolution between two distributions is given as the 
product of their characteristic functions [22, Chapter 6]. Assump-
tion 2.13 guarantees that from the noisy distribution P ′ = O AE 
 P
we can identify the noiseless distribution P via its characteris-
tic function ϕP = ϕP ′/ϕE . Remark that the characteristic function 
of a zero mean normal distribution with variance σ 2 is given as 
ϕN(0,σ 2 I)(t) = exp(− ‖σ t‖2

2 /2) > 0 and hence Example 2.3 satisfies 
Assumption 2.13.

Theorem 2.15 (Consistency). Consider an additive error model O AE

for which Assumption 2.13 is satisfied. Assume that P ′ = O AE 
 P has 
bounded fourth order moment, the loss � satisfies Assumption 2.14 and 
assume that rN and δN decay to zero with rN = (Nγ −1) and δN =
(N−2γ ′/ dim(�′)) for some 0 < γ ′ < γ < 1. Then,
limN→∞ Pr[EP [�(z̃N (P ′

N), ξ)] ≤ infz∈Z EP [�(z, ξ)] + 2ε] = 1.

3. Finite formulations

Our family of efficient robust formulations in Equation (17) is 
stated in terms of a saddle-point problem which may be difficult to 
solve in general. Indeed, even the original stochastic optimization 
problem (1) may not be easy to solve. For the sake of simplic-
ity we assume here that nothing is known about P and hence 
P = P(�). We remark though that the presented analysis gener-
alizes to the case where P is a convex subset of P(�) with only 
minor modifications. If the loss function �(z, ξ) is convex in the de-
cision variable z for any ξ then the robust formulations in Equation 
(17) only require the solution of a convex optimization problem 
in the decision variable. Whether or not the convex optimization 
problem characterizing the optimal decision is tractable depends 
on whether the prediction function c̃δ(z, P ′

N) can be evaluated ef-
ficiently which we will discuss now in more depth.

The maximization problem characterizing the prediction func-
tion c̃δ(z, P ′

N) in Equation (17) is convex in the distribution P . 
Indeed, the closed metric balls { P̂ ′ ∈ P(�′) : LP( P̂ ′, P ′

N) ≤ δ} :=
{ P̂ ′ ∈ P(�′) : P ′

N(B) ≤ P̂ ′(Bδ) + δ ∀B ⊆ �′} are convex. Conse-
quently, we have that the predictor is characterized here as

c̃δ(z, P ′
N) = sup EQ [�(z, ξ)]

s.t. Q ∈P(�), P̂ ′ ∈P(�′),
I( P̂ ′, Q ) ≤ r, LP( P̂ ′, P ′

N) ≤ δ.

(23)

However, even in the case where both event sets � and �′ have 
finite cardinality the terminal Lévy-Prokhorov constraint is char-
acterized using 2

∣∣�′∣∣
linear inequalities which becomes prohibitive 

even for moderately sized event sets �′ .

3.1. Strassen representation

Surprisingly, by exploiting the Strassen [31] representation the 
Lévy-Prokhorov metric need not result in intractable formulations. 
To the best of our knowledge, the application of the Strassen repre-
sentation to derive a tractable reformulation of the Lévy-Prokhorov 
distance is novel.
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Theorem 3.1 (Strassen representation). Let �′
N = supp(P ′

N ) denote the 
support of P ′

N . Then, c̃δ(z, P ′
N) is equal to

sup EQ [�(z, ξ)]
s.t. Q ∈P(�), P̂ ′ ∈M+(�′), T ∈M+(�′ × �′

N),

I( P̂ ′, Q ) ≤ r,
��′ T = P̂ ′,��′

N
T = P ′

N ,∫
�′×�′

N
1
{∥∥ξ ′ − ξ ′

i

∥∥ ≤ δ
}

dT (ξ ′, ξ ′
i ) ≥ 1 − δ.

(24)

The equivalent formulation stated in Theorem 3.1 can be solved 
efficiently using an off-the-shelf exponential cone optimization 
solver [10] when both event sets � and �′ have finite cardinality. 
Perhaps the only complication is that the size of this equivalent 
formulation counts O(|�′||�′

N |) variables for O(|�′| + |�′
N |) con-

straints which may limit its practicality.
We now indicate that even if the event set �′ is not finite, op-

timization problem (24) still admits a finite reduction. Consider a 
finite partition of �′ which is generated by the closed balls around 
the observed data points, i.e.,

�′
k = ∩

∣∣�′
N

∣∣
i=1

{
ξ ′ ∈ �′ :

∥∥ξ ′ − ξ ′
i

∥∥ ≤ δ if b(k, i) = 1∥∥ξ ′ − ξ ′
i

∥∥ > δ if b(k, i) = 0

}

for 0 ≤ k ≤ K −1 with K = 2
∣∣�′

N

∣∣
and b(k, i) the ith digit of the nat-

ural number k written down in binary notation. Clearly, we have 
�′

k ∩ �′
k′ = ∅ if k �= k′ and ∪K−1

k=0 �′
k = �′ . Note that it may happen 

that �′
k = ∅ for some 0 ≤ k ≤ K − 1.

Lemma 3.2. Let �′
N = supp(P ′

N) denote the support of P ′
N and let � be 

finite. Then, c̃δ(z, P ′
N) = c̃δ

f (z, P ′
N) with

c̃δ
f (z, P ′

N) := sup
∑

ξ∈� �(z, ξ)qξ

s.t. qξ ≥ 0 ∀ξ ∈�, p̂′∈RK , t∈RK×∣∣�′
N

∣∣
∑K−1

k=0 p̂′
k log

(
p̂′

k∑
ξ∈� O ξ (�′

k)qξ

)
≤ r,

∑∣∣�′
N

∣∣
i=1 tk,i = p̂′

k 0 ≤ k ≤ K − 1,∑K−1
k=0 tk,i = P ′

N(ξ ′
i ) 1 ≤ i ≤ ∣∣�′

N

∣∣ ,∑∣∣�′
N

∣∣
i=1

∑K−1
k=0 b(k, i)tk,i ≥ 1 − δ.

(25)

It should be remarked although optimization problem (25) is 
of finite size it may be very large as indeed we have that K =
O(2

∣∣�′
N

∣∣
). This clearly limits the practical usefulness of (25) to sit-

uations where the number of observed distinct data points �′
N is 

very small. Surprisingly, using a dual equivalent formulation in-
stead the computational burden of evaluating cδ(z, P ′

N) can be 
further reduced to O(|�′

N |) variables and O(1) constraints which 
is the subject of the following section.

3.2. Dual representation

Consider the minimization problem

inf βr−∫
�′ v(ξ ′)dP ′

N (ξ ′) + γ (δ − 1)

+ maxξ∈�

[
�(z, ξ) + β

∫
�′ exp

(
u(ξ ′)/β − 1

)
dO ξ (ξ

′)
]

s.t. β ≥ 0, u : �′ → R, v : �′
N → R, γ ≥ 0,

γ 1
{∥∥ξ ′−ξ ′

i

∥∥ ≤ δ
}+v(ξ ′

i )≤u(ξ ′) ∀ξ ′ ∈ �′, ξ ′
i ∈ �′

N .

(26)

We label the previous problem as the dual problem of the pri-
mal problem (24) which is nontrivial if c̃δ(z, P ′

N ) is finite.

Theorem 3.3 (Dual representation). Let � be finite. Suppose that (23)
enjoys the Slater constraint qualification condition, i.e., there exist Q s ∈
7

Fig. 1. The associated partition of the event set �′
N = ∪ J (v)+1

j=1 �′
j(v) associated with 

the vector v given in Example 3.4. (For an interpretation of the colors the reader is 
referred to the web version of this article.)

P(�), P̂ ′
s ∈ P(�′) with I( P̂ ′

s, Q s) < r and LP( P̂ ′
s, P ′

N) < δ. Then, we 
have c̃δ(z, P ′

N) = (26).

First note that the dual characterization of the prediction func-
tion in Theorem 3.3 allows for the convex saddle-point formulation 
(17) to be solved as an ordinary convex minimization problem 
as the dual formulation (26) is jointly convex in z ∈ Z and the 
dual variables. This may be desirable in practice as saddle-point 
optimization solvers are typically not as mature as solvers address-
ing standard optimization problems. This dual formulation counts 
O(|�′

N | + |�′|) variables for O(|�′||�′
N |) constraints.

We now show that this can be further reduced to O(|�′
N |)

variables for O(1) constraints and in fact allows for a finite 
optimization characterization independent of the cardinality of 
the event set �′ . Consider v : �′

N → R and define J (v) :=
|{v(ξ ′) : ξ ′ ∈ �′

N }|. Let ξ ′
[ j](v) for j ∈ [1, . . . , J (v)] denote any 

partition of the observed data points in �′
N such that the dual 

variables v(ξ ′
[ j](v)) are non-increasing. That is, we have �′

N =
[ξ ′[1](v), . . . , ξ ′

[ J (v)](v)] and v(ξ̃ ′) ≥ v(ξ̂ ′) for all ξ̃ ′ ∈ ξ ′
[ j](v), ̂ξ ′ ∈

ξ ′
[ j′](v) with 1 ≤ j < j′ ≤ J (v) as well as v(ξ̃ ′) = v(ξ̂ ′) for all 

ξ̃ ′, ̂ξ ′ ∈ ξ ′
[ j](v) with 1 ≤ j ≤ J (v). We may now partition the event 

set �′ = ∪ J (v)+1
j=1 �′

j(v) using the sets �′
0(v) = ∅, �′

j(v) = {ξ ′ ∈
�′ : min{||ξ ′ − ξ̃ ′|| : ξ̃ ′ ∈ ξ ′

[ j](v)} ≤ δ} \ ∪l∈[1,..., j−1]�′
l(v) for 

j ∈ [1, . . . , J (v)], and �′
J (v)+1(v) = �′ \ ∪l∈[1,..., J (v)]�′

l(v).

Example 3.4. Let �′
N = [ξ ′

1, . . . , ξ
′
5] and consider v : �′

N → R
given as v(ξ ′

1) = 1, v(ξ ′
2) = v(ξ ′

5) = 3, v(ξ ′
3) = 4 and v(ξ ′

4) = 2. 
Then, J (v) = 4 and ξ ′[1](v) = {ξ ′

3}, ξ ′[2](v) = {ξ ′
2, ξ

′
5}, ξ ′[3](v) = {ξ ′

4}, 
ξ ′[4](v) = {ξ ′

1}. The associated partition of the event set �′ is given 
in Fig. 1.

Lemma 3.5 (Finite convex dual representation). The dual problem (26)
admits the following convex reformulation

inf βr−∑ J (v)

j=1 v(ξ ′
[ j])P ′

N (ξ ′
[ j]) + γ (δ − 1)

+ maxξ∈�

[
�(z, ξ) + O ξ (�

′
J (v)+1(v))

β
e exp

(
v(ξ ′[1](v))

β

)

+ ∑ J (v)

j=1 O ξ (�
′
j(v))

β
e exp

(
max(v(ξ ′[1](v)),v(ξ ′

[ j](v))+γ )

β

)]
s.t. β ≥ 0, v : �′

N → R, γ ≥ 0.

(27)

The dual representation (27) can be solved as a finite con-
vex optimization problem using a (stochastic) black-box optimiza-
tion method [26] as long as we have a (stochastic) oracle which 
can evaluate the probabilities O ξ (�

′ (v)) for all ξ ∈ � and j ∈
j
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[1, . . . , J (v) + 1]. The complexity of our efficient formulation (23)
is hence reduced to the complexity of integration of the noise dis-
tribution over certain intersections and unions of norm balls; see 
also Fig. 1.

Data availability

No data was used for the research described in the article.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .orl .2024 .107089.
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