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Abstract. We propose a statistically optimal approach to construct data-driven decisions 
for stochastic optimization problems. Fundamentally, a data-driven decision is simply a 
function that maps the available training data to a feasible action. It can always be expressed 
as the minimizer of a surrogate optimization model constructed from the data. The quality 
of a data-driven decision is measured by its out-of-sample risk. An additional quality mea-
sure is its out-of-sample disappointment, which we define as the probability that the out-of- 
sample risk exceeds the optimal value of the surrogate optimization model. The crux of 
data-driven optimization is that the data-generating probability measure is unknown. An 
ideal data-driven decision should therefore minimize the out-of-sample risk simultaneously 
with respect to every conceivable probability measure (and thus in particular with respect to 
the unknown true measure). Unfortunately, such ideal data-driven decisions are generally 
unavailable. This prompts us to seek data-driven decisions that minimize the in-sample risk 
subject to an upper bound on the out-of-sample disappointment—again simultaneously 
with respect to every conceivable probability measure. We prove that such Pareto dominant 
data-driven decisions exist under conditions that allow for interesting applications: The 
unknown data-generating probability measure must belong to a parametric ambiguity set, 
and the corresponding parameters must admit a sufficient statistic that satisfies a large devi-
ation principle. If these conditions hold, we can further prove that the surrogate optimiza-
tion model generating the optimal data-driven decision must be a distributionally robust 
optimization problem constructed from the sufficient statistic and the rate function of its 
large deviation principle. This shows that the optimal method for mapping data to decisions 
is, in a rigorous statistical sense, to solve a distributionally robust optimization model. 
Maybe surprisingly, this result holds irrespective of whether the original stochastic optimi-
zation problem is convex or not and holds even when the training data are not independent 
and identically distributed. As a byproduct, our analysis reveals how the structural proper-
ties of the data-generating stochastic process impact the shape of the ambiguity set underly-
ing the optimal distributionally robust optimization model.
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1. Introduction
A fundamental challenge in data-driven decision mak-
ing is to construct estimators for the optimal solutions 
of stochastic optimization problems based on limited 
training data. We address this challenge within a well- 
defined framework that is sufficiently general to sup-
port a broad spectrum of applications. The primitives of 
this framework are a stochastic optimization problem 
representing the ground truth against which the estima-
tors will be assessed, a family of probability measures 
that capture prior structural knowledge, and a stochastic 

process that generates training samples. The stochastic 
optimization problem minimizes a generic objective 
function that depends on the probability measure gov-
erning the uncertain problem parameters. Examples of 
such objective functions include the expected value or 
some risk measure of an uncertain loss function, the con-
ditional expectation of an uncertain loss function given 
contextual covariates, the long-run average expected 
cost of a parametric control policy, and so on. The crux 
of data-driven decision making is that the probability 
measure underlying the stochastic optimization problem 
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is unknown. Throughout this paper we assume, how-
ever, that this probability measure is known to belong 
to a parametric family of the form {Pθ : θ ∈Θ}. In addi-
tion, we assume that we have access to a finite trajectory 
of an exogenous stochastic process, which generates 
training samples that provide statistical information 
about θ. Examples of stochastic processes to be studied 
in this paper include processes of independent and 
identically distributed (i.i.d.) random variables on a 
finite state space, finite-state Markov chains, different 
classes of vector autoregressive processes, or i.i.d. pro-
cesses with parametric distribution functions, but many 
other examples are conceivable. These examples high-
light that we actually allow the training samples to dis-
play serial dependence.

It is convenient to embed the original stochastic 
optimization problem into a parametric family of pro-
blems that are obtained by replacing the unknown true 
probability measure with any Pθ, θ ∈Θ. The resulting 
stochastic optimization problems can be concisely re-
presented as minx∈X c(x,θ), θ ∈Θ, where X denotes 
the feasible set and c(x,θ) stands for the risk or cost of 
the decision x under the probability measure Pθ. As 
the parameter θ�corresponding to the true probability 
measure is unknown; however, it is unclear which 
problem instance should be solved. We thus have no 
choice but to solve a data-driven surrogate optimiza-
tion problem minx∈XbcT(x), whose objective function bcT 
is constructed independently of θ�from T training sam-
ples. In the following, we denote by bxT an optimal 
solution of the surrogate optimization problem, which 
is necessarily a function of the T training samples. For 
the sake of a succinct terminology, we henceforth refer 
to bcT as a data-driven predictor because it predicts the 
risk of any decision x in view of the available data. Sim-
ilarly, we refer to bxT as a data-driven prescriptor because 
it prescribes a feasible decision in view of the available 
data. We emphasize that a data-driven prescriptor 
could be essentially any function that maps the avail-
able training data to a feasible decision. Indeed, it is 
easy to convince oneself that any such function can be 
expressed as the minimizer of a carefully constructed 
surrogate optimization problem. The main goal of this 
paper is to design—in a rigorous statistical sense—an 
“optimal” surrogate optimization problem, which is 
equivalent to finding optimal data-driven predictors 
and prescriptors.

The quality of a data-driven prescriptor bxT under Pθ�
is unequivocally measured by its out-of-sample risk 
c(bxT,θ). As the true θ�is unknown, an ideal prescriptor 
would have to minimize the out-of-sample risk simul-
taneously for all θ ∈Θ�and thus necessarily also for the 
unknown true θ. Unfortunately, such ideal data-driven 
prescriptors are unavailable for nontrivial stochastic 
optimization problems. To circumvent this difficulty, 
we recall that any data-driven prescriptor bxT is induced 

by some data-driven predictor bcT, and we define bcT(bxT)

as the in-sample risk of bxT, which is a function of the 
training samples alone and therefore accessible to the 
decision maker. However, bxT may be induced by many 
different data-driven predictors bcT, and our definition 
of the in-sample risk depends on the particular choice 
of bcT. In particular, bcT could be shifted by a constant 
without affecting bxT. Minimizing the in-sample risk 
instead of the out-of-sample risk is therefore nonsensi-
cal unless we restrict the choice of bcT. To this end, we 
define the out-of-sample disappointment of bxT under Pθ�
as the probability that the out-of-sample risk strictly 
exceeds the in-sample risk of bxT. This means that if 
the out-of-sample disappointment is high, then the 
predicted risk of bxT is likely to underestimate its true 
risk, which lulls the decision maker into a false sense 
of security and invariably leads to disappointment 
in out-of-sample tests. The true out-of-sample disap-
pointment is again inaccessible to the decision maker 
because it depends on the unknown parameter θ. By 
construction, however, the out-of-sample disappoint-
ment decreases as bcT increases. This reasoning moti-
vates us to formulate an optimization problem that 
finds data-driven predictor-prescriptor pairs with an 
optimal tradeoff between in-sample risk and out-of- 
sample disappointment. As each data-driven predictor 
encodes itself a surrogate optimization problem, any 
optimization problem over bcT and bxT constitutes indeed 
a meta-optimization problem, that is, an optimization 
problem over surrogate optimization problems.

To describe the envisaged meta-optimization problem 
more precisely, we define the asymptotic in-sample risk 
of a data-driven predictor bcT and the corresponding 
data-driven prescriptor bxT under Pθ�as

lim
T→∞

Eθ[bcT(bxT)], 

and we define the asymptotic decay rate of the out-of- 
sample disappointment of bcT and bxT under Pθ�as

lim sup
T→∞

1
T

logPθ[c(bxT,θ) > bcT(bxT)]:

Both statistical performance indicators, which are well 
defined under mild regularity conditions, depend on the 
unknown parameter θ. We therefore intend to optimize 
them simultaneously for all θ ∈Θ, which leads to a mul-
tiobjective optimization problem. This problem mini-
mizes the asymptotic in-sample risk simultaneously for 
all θ ∈Θ�under the condition that the asymptotic decay 
rate of out-of-sample disappointment is smaller than r ≥
0 for every θ ∈Θ. The risk-aversion parameter r is cho-
sen by the decision maker. Although it plays the role of 
a hyperparameter, it is directly interpretable thanks to 
its link to the out-of-sample disappointment. Multiobjec-
tive optimization problems typically only admit Pareto 
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optimal solutions, that is, feasible solutions that are not 
Pareto dominated by any other feasible solution. Maybe 
surprisingly, however, we will see that the proposed 
meta-optimization problem sometimes admits Pareto 
dominant solutions, that is, feasible solutions that 
Pareto dominate all other feasible solutions. Thus, such 
Pareto dominant solutions simultaneously minimize all 
objective functions of the meta-optimization problem. 
Moreover, if they exist, these solutions are available in 
closed-form and admit an intuitive interpretation.

Data-driven predictors and prescriptors are essen-
tially arbitrary functions of the available T training 
samples. Processing or even storing such functions 
might easily become impractical for large T. A natural 
approach to simplify the proposed meta-optimization 
problem is to compress the observation history of the 
training samples into a statistic bST of constant dimen-
sion and to restrict attention to compressed data-driven 
predictors and prescriptors that depend on the train-
ing samples only indirectly through bST. The resulting 
restricted meta-optimization problem is often easier to 
handle than the original meta-optimization problem.

We are now ready to summarize the main contribu-
tions of this work. 

1. We prove that if the statistic bST satisfies a large 
deviation principle, then the restricted meta-optimization 
problem over all compressed data-driven predictors and 
prescriptors admits a Pareto dominant solution. More-
over, the optimal data-driven predictor evaluates, for 
every fixed decision x, the worst case of the risk c(x,θ)
across all θ�in a ball of radius r around bST, where the dis-
crepancy between bST and θ�is measured via the rate 
function of the large deviation principle at hand. The sur-
rogate optimization problem induced by this optimal 
predictor thus represents a distributionally robust optimi-
zation problem, and the radius r of the underlying ambi-
guity set coincides with the upper bound on the decay 
rate of the out-of-sample disappointment enforced by the 
restricted meta-optimization problem.

2. We demonstrate that the restricted meta-optimization 
problem and its Pareto dominant solution are invariant 
under homeomorphic coordinate transformations of the 
statistic bST and the distribution family {Pθ : θ ∈Θ}. This 
implies that the chosen parametrizations, which are 
invariably somewhat arbitrary, have no impact on how 
the optimal data-driven prescriptor maps the raw data 
to decisions.

3. We prove that if the set {Pθ : θ ∈Θ} represents an 
exponential family with sufficient statistic bST and if bST 
satisfies a large deviation principle, then compressing the 
training samples into bST destroys no useful statistical 
information, and the original meta-optimization problem 
is indeed equivalent to the restricted meta-optimization 
problem. Thus, the original meta-optimization problem 
also admits a Pareto dominant solution that has a distri-
butionally robust interpretation. This result establishes a 

separation principle that enables a decoupling of esti-
mation and optimization, and it can be viewed as a 
nontrivial extension of the celebrated Rao-Blackwell 
theorem (Rao 1945, Blackwell 1947) to data-driven deci-
sion problems.

4. We explicitly derive the optimal data-driven pre-
dictors corresponding to different data-generating sto-
chastic processes including finite-state i.i.d. processes, 
finite-state Markov chains, two different classes of auto-
regressive processes, and i.i.d. processes with paramet-
ric distribution functions.

Our results suggest that the optimal method for map-
ping data to decisions is, in a rigorous statistical sense, 
to solve a distributionally robust optimization model. 
As we will see, this conclusion persists irrespective of 
whether the original stochastic optimization problem is 
convex or not, and it persists even when the training 
data are not i.i.d. As a byproduct, our analysis reveals 
how the structural properties of the data-generating 
stochastic process impact the shape of the ambiguity set 
underlying the optimal (distributionally robust) surro-
gate optimization problem. This paper therefore gener-
alizes the preliminary results for i.i.d. training samples 
on a finite state space reported in Van Parys et al. 
(2021). In fact, we will demonstrate through a running 
example that these results emerge as a special case of a 
significantly more general theory of data-driven deci-
sion making.

The existing literature on data-driven stochastic opti-
mization is vast. Arguably the most popular approach 
is the sample average approximation (SAA), which 
replaces the unknown true probability distribution of 
the uncertain parameters in the problem’s objective 
function with the empirical distribution corresponding 
to the training samples. The asymptotic properties of 
the resulting SAA problem are well understood if the 
training samples are i.i.d. (Shapiro 1989, 1990, 1991, 
1993; King and Wets 1991; King and Tyrrell Rockafellar 
1993; Shapiro et al. 2014). In particular, the optimal 
value of the SAA problem is known to be strongly con-
sistent and asymptotically normal (Shapiro et al. 2014, 
sections 5.1.1–5.1.2), which facilitates a rigorous proba-
bilistic error analysis that yields increasingly accurate 
confidence bounds as the sample size grows. If the sam-
ple size is small relative to the number of uncertain 
problem parameters, however, then the optimal solu-
tion of the SAA problem tends to display an excellent 
in-sample performance alongside a poor out-of-sample 
performance. This phenomenon can be interpreted as 
an overfitting effect, which is sometimes referred to as 
the optimization bias (Shapiro 2003) or the optimizer’s 
curse (Smith and Winkler 2006). Data-driven distribu-
tionally robust optimization (DRO) has been widely 
championed as an effective means to combat this phe-
nomenon. It seeks a decision that minimizes the worst- 
case risk with respect to all probability distributions in 
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an ambiguity set constructed from the training samples. 
If one can guarantee that the unknown true distribution 
belongs to the ambiguity set with high probability, then 
the optimal value of the DRO problem provides an 
upper confidence bound on the out-of-sample perfor-
mance of its optimal solution. Out-of-sample guaran-
tees of this kind were first obtained for a Chebyshev 
ambiguity set that contains all probability distributions 
whose mean vectors and covariance matrices are close 
to the empirical mean and the empirical covariance 
matrix (Delage and Ye 2010). As the sample size grows, 
the moment estimates become increasingly accurate, in 
which case this Chebyshev ambiguity set reduces to the 
family of all probability distributions that share the 
same first- and second-order moments as the unknown 
true distribution. Because this family contains distri-
butions with strikingly different shapes (and not only 
the true distribution), the optimal value of the corre-
sponding DRO problem fails to be asymptotically con-
sistent. Pertinent out-of-sample guarantees have also 
been established for ambiguity sets containing all prob-
ability distributions that are close to the empirical distri-
bution with respect to some information divergence 
(Ben-Tal et al. 2013), for ambiguity sets containing all 
distributions that pass a statistical goodness-of-fit test 
against the observed training data (Bertsimas et al. 
2018), or for ambiguity sets containing all distributions 
that are close to the empirical distribution with respect 
to some Wasserstein distance (Mohajerin Esfahani and 
Kuhn 2018, Kuhn et al. 2019). If these ambiguity sets are 
scaled sufficiently slowly, then the corresponding DRO 
problems can be rendered asymptotically consistent 
without compromising their out-of-sample guarantees. 
By leveraging ideas from empirical likelihood theory, it 
has recently been shown that significantly tighter out- 
of-sample bounds can be obtained by relaxing the 
requirement that the ambiguity set must contain the 
unknown true distribution with high probability (Lam 
2019, Duchi et al. 2021).

In view of the many ambiguity sets permeating the 
extant literature, it is natural to wonder which ones of 
them offer optimal statistical guarantees. For example, 
given an ambiguity set with a prescribed “shape” deter-
mined by the choice of a specific information diver-
gence or probability metric, it is natural to seek the 
smallest radius for which the corresponding DRO prob-
lem offers an upper confidence bound on the original 
stochastic optimization problem with a desired signifi-
cance level. The scaling of the optimal radius with 
respect to the sample size T is indeed known both for 
divergence ambiguity sets (Lam 2019, Duchi et al. 2021) 
and for Wasserstein ambiguity sets (Blanchet et al. 2019, 
Gao 2023). A more challenging task than merely tuning 
the size would be to tune the size and the shape of the 
ambiguity set simultaneously. The study of optimal 
ambiguity sets was pioneered in Gupta (2019), where 

the smallest convex ambiguity sets that satisfy a Bayes-
ian robustness guarantee are identified under certain 
convexity assumptions about the stochastic optimiza-
tion problem.

In addition, ambiguity sets that offer optimal statisti-
cal guarantees in view of the central limit theorem are 
investigated in Lam (2019). In this case the optimal 
ambiguity sets constitute carefully scaled Burg-entropy 
divergence balls centered at the empirical distribution. 
Recently it has been shown that if the training samples 
are i.i.d., then among all data-driven decisions whose 
out-of-sample risk is dominated by their in-sample risk 
with high confidence, the decision with the lowest 
in-sample risk can be computed by solving a DRO 
problem with a relative entropy ambiguity set centered 
at the empirical distribution (Van Parys et al. 2021). This 
result indicates that, at least in simple stylized settings, 
data-driven DRO provides an optimal approach for 
mapping data to decisions. In this paper we extend the 
main results of Van Parys et al. (2021) to more general 
(not necessarily risk-neutral) stochastic optimization 
problems, more general (not necessarily finitely sup-
ported) parametric distribution families and more gen-
eral (not necessarily i.i.d.) data-generating stochastic 
processes. As a byproduct of our general theory of data- 
driven decision making, we discover several new DRO 
schemes that are statistically optimal for different struc-
tures of the data-generating stochastic process. Our the-
ory thus provides practical guidance for choosing the 
best decision model in different data-driven decision 
situations. We also stress that Van Parys et al. (2021) 
assumes the predictors and prescriptors to depend on 
the training data only indirectly through the empirical 
distribution. Here, we do not impose such an implicit 
structure. Instead, we consider a much larger class of 
prescriptors that essentially depend on the training 
data in an arbitrary manner.

All statistical guarantees reviewed thus far rely 
indeed on the assumption that the training samples 
are i.i.d. Moreover, the literature on data-driven DRO 
with non-i.i.d. data are remarkably scarce. We are only 
aware of three recent papers addressing this topic. 
First, if the training samples are generated by a fast 
mixing process, then asymptotic confidence intervals 
for the optimal value of a stochastic optimization prob-
lem can be obtained by solving DRO problems with 
divergence ambiguity sets (Duchi et al. 2021). How-
ever, the resulting confidence bounds depend on the 
unknown probability distribution and are therefore 
primarily of theoretical interest. In addition, data- 
driven DRO models with Wasserstein ambiguity sets 
constructed from training samples following an auto-
regressive process are proposed in Dou and Anitescu 
(2019). Although these ambiguity sets offer rigorous 
out-of-sample guarantees, their shapes are chosen ad 
hoc. Finally, distributionally robust Markov decision 
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processes with Wasserstein ambiguity sets for the 
uncertain transition kernel are developed in Derman 
and Mannor (2020). In this case, the training data set 
consists of multiple i.i.d. trajectories of serially corre-
lated states, which may be difficult to acquire in prac-
tice. In contrast to all of these approaches, we devise 
here a principled approach to generate statistically opti-
mal data-driven decisions based on a single trajectory of 
the data-generating process.

Although this paper was under review, its main 
results were extended along several dimensions. For 
example, if the training data are generated by a Markov 
chain, then the statistically optimal DRO models derived 
in Section 5.1 of this paper give rise to high-dimensional 
nonconvex optimization problems. An efficient Frank- 
Wolfe algorithm to solve these problems is developed in 
Li et al. (2021). In addition, a critical assumption of this 
paper is that the training and the test data are generated 
by the same stochastic process. This assumption is 
relaxed in Sutter et al. (2021), where the large deviation- 
type results of this paper for i.i.d. data are combined 
with the principle of minimum discriminating informa-
tion to address data-driven decision problems suffering 
from a distribution shift. Another basic assumption of 
this paper is that the decision maker requires the out-of- 
sample disappointment to decay at a fixed exponential 
rate. This assumption can be relaxed using ideas from 
moderate deviations theory if the training samples are 
generated by a finite state i.i.d. process (Bennouna and 
Van Parys 2021). Specifically, it is shown that if the out- 
of-sample disappointment must decay superexponen-
tially, then the Pareto dominant data-driven prescriptor 
is obtained by solving a classical robust optimization 
model that minimizes the worst-case risk with respect to 
all possible uncertainty realizations. Conversely, if the 
out-of-sample disappointment must decay subexponen-
tially, then the Pareto dominant data-driven prescriptor 
is obtained by solving an empirical risk minimization 
problem with a variance penalty. Finally, we assume in 
this paper that the decision maker has access to noise- 
free training samples. This assumption is relaxed in Van 
Parys (2021), where a DRO model based on an entropic 
optimal tranport distance is shown to provide Pareto 
dominant data-driven prescriptors when the training 
samples are corrupted by noise.

The out-of-sample disappointment and the in-sample 
risk are by no means the only performance criteria for 
which the best representatives within a certain class of 
prescriptors are accessible. Another performance crite-
rion of interest is the regret convergence rate. For exam-
ple, in the context of data-driven linear optimixation 
with side information, it has recently been shown that 
the naïve “estimate and then optimize” approach is 
markedly superior to the “induced empirical risk meth-
od” with respect to this criterion (Hu et al. 2022).

The paper develops as follows. Section 2 formalizes 
our approach to data-driven decision-making and 
constructs the meta-optimization problems that will 
be used to find optimal data-driven predictors and 
prescriptors. Sections 3 and 4 establish sufficient condi-
tions under which the restricted and original meta- 
optimization problems have Pareto dominant solutions, 
respectively, and Section 5 showcases practically relevant 
examples in which these conditions hold. All proofs, 
along with several auxiliary results, are provided in the 
online appendices.

1.1. Notation
A multiobjective optimization problem minx∈X{fα(x)}α∈A 

is determined by its feasible set X and its objective func-
tions fα : X → R indexed by α ∈A. A strong solution is 
a feasible solution x? ∈ X that Pareto dominates every 
other feasible solution in the sense that fα(x?) ≤ fα(x) for 
all x ∈ X and α ∈A. A weak solution is a feasible solu-
tion x? ∈ X that is not Pareto dominated by any other 
feasible solution in the sense that there exists no x ∈ X 

such that fα(x) ≤ fα(x?) for all α ∈A. A function f : X →

Y from X ⊆ Rn to Y ⊆ Rm is called quasi-continuous at 
x ∈ X if for every neighbourhood U ⊆ X of x and every 
neighborhood V ⊆ Y of f(x) there exists a nonempty 
open set W ⊆ U with f (x′) ∈ V for all x′ ∈W. Note that 
W may not contain x. The n-dimensional probability 
simplex is denoted by ∆n � {x ∈ Rn

+ :
Pn

i�1 xi � 1}. For 
any logical expression E, the indicator function 1E eval-
uates to one if E is true and to zero otherwise, and for 
any A, B ∈ Rn×m, the trace inner product is denoted by 
〈A, B〉 � tr(A⊤B).

2. Data-Driven Optimization
Throughout this paper we assume that all random 
objects are defined on the same abstract probability 
space (Ω,F ,P?), and we study a general stochastic opti-
mization problem of the following form:

min
x∈X

c(x,P?), (2.1) 

where the goal is to find a decision x ∈ X ⊆ Rn that mini-
mizes a real-valued objective or “cost” function c(x,P?)

depending on the probability measure P?. We assume 
throughout the paper that X is compact and that c(x,P?)

is continuous in x. These assumptions guarantee that the 
minimum in (2.1) is attained.

Example 2.1 (Objective Functions). A popular objective 
arising in operations research and statistics is to mini-
mize the expected value of a loss function ℓ(x,ξ) that 
depends both on the decision x and an exogenous ran-
dom vector ξ ∈ Rm. Denoting the expectation operator 
with respect to P? by EP?

[·], we thus set

c(x,P?) � EP?
[ℓ(x,ξ)]: (2.2a) 
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In risk averse optimization (Shapiro et al. 2014, chapter 
6), the expectation is replaced with a risk measure ϱP?

[·]. 
We thus set

c(x,P?) � ϱP?
[ℓ(x,ξ)]: (2.2b) 

Examples of risk measures include the variance, the 
value-at-risk, or the conditional value-at-risk of the loss, 
as well as their convex combinations with the expected 
loss. Decision makers sometimes have access to contex-
tual covariates, that is, observable random variables 
that are correlated with the unobservable random vari-
ables impacting the loss function. In such situations, it 
is beneficial to solve a conditional stochastic optimiza-
tion problem that minimizes the conditional expecta-
tion of the loss given the contextual covariates (Ban and 
Rudin 2019, Bertsimas and Kallus 2020, Hu et al. 2022). 
If the matrix C ∈ Rm×mC filters out mC observable covar-
iates from ξ�and if these covariates are known to fall 
within a Borel set B ⊆ RmC (note that B could represent a 
singleton), then we set the objective function to

c(x,P?) � EP?
[ℓ(x,ξ) |Cξ ∈ B]: (2.2c) 

Contextual information may include weather forecasts, 
Twitter feeds or Google Trends data. Stochastic control, 
as a last example, aims to guide a dynamical system to 
a desirable state, assuming that the system’s state obeys 
a recursion st+1 � f (st, ut,ξt) that depends on some con-
trol inputs ut and exogenous random disturbances ξt at 
time t ∈N. If the inputs are set to ut � πx(st) for some 
control policy πx parametrized by x ∈ X and if ℓ(ut, st)

represents the cost at time t, then one may minimize 
the long-run average cost

c(x,P?) � lim
T→∞

1
T
XT

t�1
EP?
[ℓ(πx(st), st)]: (2.2d) 

Note that x impacts Objective Function (2.2d) both 
directly through the policy πx and indirectly through 
the states st, t ∈N, which are defined by a recursion that 
depends on x. We also emphasize that some mild tech-
nical assumptions are needed for Objective Functions 
(2.2a)–(2.2d) to be well defined. However, the previous 
examples show that the abstract stochastic optimiza-
tion problem (2.1) is remarkably general.

When reasoning about the stochastic optimization 
problem (2.1), it is expedient to distinguish the predic-
tion problem, which aims to evaluate the cost c(x,P?)

associated with a fixed decision x, from the prescription 
problem, which aims to find a decision x? that mini-
mizes the cost c(x,P?) across all x ∈ X. We emphasize 
that any procedure for solving the prescription prob-
lem invariably necessitates a procedure for solving the 
corresponding prediction problem. As the prediction 
problem is reminiscent of an uncertainty quantification 

problem (Le Maı̂tre and Knio 2010); however, it is of 
interest in its own right. Unfortunately, already the 
prediction problem poses two formidable challenges. 
On the one hand, the probability measure P?, which is 
needed to evaluate the objective function, is usually 
unobservable. On the other hand, even if one had 
access to P?, computing the objective function c(x,P?)

for a fixed decision x might be difficult. For example, 
evaluating the expectation in (2.2a) is #P-hard even if 
ℓ(x,ξ) is defined as the nonnegative part of an affine 
function of ξ�and if ξ�is uniformly distributed on the 
standard hypercube in Rm under the probability mea-
sure P? (Hanasusanto et al. 2016, corollary 1).

In the following, we develop a systematic approach 
for addressing the prediction and prescription pro-
blems when P? is only indirectly observable through 
finitely many training samples. We endeavor to keep 
the proposed framework as general as possible. In par-
ticular, we will forgo any restrictive independence 
assumptions and explicitly account for the possibility 
that the training data are serially dependent.

2.1. Data-Driven Newsvendor Problem
We first exemplify several popular approaches to data- 
driven decision making in the context of the classical 
newsvendor problem, which captures the fundamental 
dilemma faced by the seller of a perishable good. The 
textbook example of such a seller is a newsvendor who 
sells a daily newspaper that becomes worthless at the 
end of the day. At the beginning of each day, the news-
vendor orders x ∈ X newspapers from the publisher at 
the wholesale price k ≥ 0, where X � {1, : : : , d}. Then, 
the uncertain demand ξ ∈ Ξ�is revealed, where Ξ � X, 
and the newsvendor sells newspapers at the retail 
price p> k until either the inventory or the demand is 
exhausted. The number of newspapers sold is thus 
given by min{x,ξ}, and the total cost amounts to 
ℓ(x,ξ) � kx� pmin{x,ξ}. If the probability measure P?

governing the demand is known, then the problem of 
minimizing the expected cost can be formulated as a 
stochastic optimization problem of Form (2.1) with 
objective function EP?

[ℓ(x,ξ)] �
P

i∈Ξℓ(x, i) (θ?)i, where 
the probability vector θ? ∈ ∆d is defined through (θ?)i �
P?[ξ � i] for all i ∈ Ξ. Note that θ? captures all informa-
tion about P? that is needed to solve the newsvendor’s 
decision problem. By slight abuse of notation, we may 
thus identify P? with θ? and use c(x,θ?) as a shorthand 
for the expected cost of any fixed order quantity x ∈ X. 
If the demands on different days are i.i.d., then the law 
of large numbers guarantees that minx∈Xc(x,θ?) repre-
sents the minimum cost attainable by the newsvendor 
on average in the long run.

In reality, the probability measure P? and the proba-
bility vector θ? are unobservable and must be estimated 
from historical demand realizations ξt ∈ Ξ, t � 1, : : : , T, 
which we refer to as training samples. We assume here 
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for simplicity that the training samples are mutually 
independent, but the general methods developed in 
this paper do not rely on this assumption. Given a batch 
of only T training samples, the newsvendor now seeks 
to answer three intertwined questions: (i) What is the 
expected cost of a given ordering decision? (ii) How 
many newspapers should be ordered so as to minimize 
the expected cost? (iii) What is the probability that the 
unknown true expected cost of the chosen ordering 
decision exceeds the estimated cost?

In the following we designate all estimators (i.e., all 
functions of the data) with a superscript band a sub-
script T indicating the size of the underlying data set. 
For example, we use bcT(x) to denote an estimator of 
the expected cost c(x,θ?) constructed from T demand 
samples, where x is any feasible ordering decision. 
Similarly, we use bxT to denote an estimator for the 
optimal ordering decision constructed from T demand 
samples. Here, we assume that bxT ∈ arg minx∈XbcT(x), 
that is, we assume that any estimator for the optimal 
ordering decision is induced by some estimator for 
the expected cost function. This assumption can be 
imposed without loss of generality. Indeed, any esti-
mator bxT for the optimal decision can be expressed as 
a minimizer of a cost function estimator; for example, 
we may set bcT(x) � (x� bxT)

2.
Questions (i) and (ii) above address the construction 

of the estimators bc(x) and bxT, respectively, whereas 
question (iii) asks for the probability of the event 
c(bxT,θ?) > bcT(bxT). In this event the true (out-of-sample) 
expected cost of the chosen decision bxT exceeds the esti-
mated (in-sample) expected cost, which might lead to a 
budget overrun and force the newsvendor into finan-
cial distress. In the following we refer to the probability 
of this event (with respect to the sampling of the train-
ing data set) as the out-of-sample disappointment. In the 
event c(bxT,θ?) < bcT(bxT), there is also a discrepancy 
between the estimated budget and the true expected 
cost. However, in this event the newsvendor faces no 
severe financial repercussions.

There are countless possibilities to construct cost esti-
mators bcT(x) and the corresponding decision estimators 
bxT from the training data. Different estimators may 
offer different statistical guarantees and display differ-
ent computational properties. However, the existing lit-
erature offers little guidance on how to choose among 
these many estimators. Moreover, there could exist yet 
undiscovered estimators that dominate all known esti-
mators in terms of some meaningful statistical criteria. 
In the following, we will compare different estimators 
in terms of the exponential decay rate of their out-of- 
sample disappointment, which is defined as

lim
T→∞
�

1
T

logP?[c(bxT,θ?) > bcT(bxT)], 

and in terms of their asymptotic in-sample cost, which 

is defined as limT→∞EP?
[bcT(bxT)]. We will see later that 

these quantities are well defined for a wide range of 
estimators. In the remainder, we thus view a pair of 
cost and decision estimators as desirable if the asymp-
totic in-sample cost is low (i.e., the expected cost of bxT is 
predicted to be low) and if the decay rate of the out-of- 
sample disappointment is high (i.e., the probability that 
the true expected cost of bxT exceeds the predicted cost 
decays quickly as T grows).

Arguably one of the simplest conceivable cost esti-
mators is the empirical cost bcT(x) � 1

T
PT

t�1 ℓ(x,ξt). Thus, 
we have bcT(x) � c(x, bST), where c(x,θ) �

P
i∈Ξℓ(x, i)θi 

represents the expected cost of the decision x when 
the demand uncertainty is described by the probability 
vector θ ∈ ∆d, and the statistic bST ∈ ∆d stands for the 
empirical probability vector, whose ith component (bST)i 
� 1

T
PT

t�1 1ξt�i records the empirical frequency of the ith 

demand scenario for each i ∈ Ξ. Using the central limit 
theorem, one can show that the expected in-sample cost 
of the empirical cost estimator and its induced decision 
estimator converges to the true optimum minx∈X c(x,θ?)
and that the out-of-sample disappointment converges 
to 50% as T grows. Thus, the decay rate of the out-of- 
sample disappointment vanishes completely (Van Parys 
et al. 2021, example 2).

A naïve approach to force the out-of-sample disap-
pointment to decay would be to add a constant positive 
penalty ε�to the empirical cost estimator, thereby increas-
ing its asymptotic in-sample cost and thus introducing 
a conservative bias. This reasoning suggests that the 
in-sample cost and the out-of-sample disappointment 
stand in direct competition. To provide a better intuition 
for the tradeoff between these statistical performance cri-
teria, we further investigate three distributionally robust 
cost estimators of the form bcT(x) �maxθ∈Θ̂T

c(x,θ), which 
evaluate the worst-case expected cost of the decision x 
with respect to all probability vectors from within some 
ambiguity set bΘT ⊆ ∆d constructed from the training 
data.

Traditionally, distributionally robust optimization has 
mostly studied moment ambiguity sets such as bΘT �

{θ ∈ ∆d : |
P

i∈Ξijθi�
P

i∈Ξij(bST)i | ≤ ε ∀j � 1, : : : , J}: All 
probability vectors in this ambiguity set share, to within 
an absolute error tolerance ε ≥ 0, the same moments of 
all orders up to J as the empirical probability vector bST. 
In the subsequent numerical experiments, we set J�4. 
The tolerance ε�is usually tuned to ensure that bΘT con-
tains the unknown data-generating probability vector θ?
with a prescribed high confidence (see Delage and Ye 
2010, section 3) for the first results of this kind). The 
recent literature has witnessed an increasing interest in 
Wasserstein ambiguity sets of the form bΘT � {θ ∈ ∆d :

dW(θ, bST) ≤ ε}, where dW(θ, bST) denotes the first Was-
serstein distance between θ�and bST (Kantorovich and 
Rubinshtein 1958). This ambiguity set can be viewed 
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as a Wasserstein ball of radius ε ≥ 0 around bST in ∆d. 
Unlike the moment ambiguity set, the Wasserstein 
ambiguity set shrinks to the singleton that contains 
merely the empirical probability vector if we set ε � 0. 
In general, ε�can again be tuned to ensure that θ? ∈ bΘT 
with any prescribed high confidence (Mohajerin Esfa-
hani and Kuhn 2018, section 3). Finally, we also study 
relative entropy ambiguity sets of the form bΘT � {θ ∈
∆d : D(bST‖θ) ≤ ε}, where D(bST‖θ) stands for the rela-
tive entropy (or Kullback-Leibler divergence) of bST 
with respect to θ. This ambiguity set also shrinks to a 
singleton for ε � 0, and ε�can again be tuned to guaran-
tee that bΘT covers θ? with a prescribed probability 
(Ben-Tal et al. 2013, section 3). In contrast to most of 
the existing literature on distributionally robust opti-
mization, here we are not concerned about whether the 
ambiguity set covers θ?. Instead, we view any distribu-
tionally robust optimization model simply as a vehicle 
for transforming data to decisions, and we are merely 
interested in the statistical properties of the resulting 
cost and decision estimators.

Figure 1 visualizes the out-of-sample disappoint-
ment and the expected in-sample cost and the tradeoff 
between the asymptotic in-sample cost and the decay 
rate of the out-of-sample disappointment for different 
estimators. Figure 1(a) shows that, as a function of T, 
the out-of-sample disappointment always traces out 
an almost perfect straight line on a logarithmic scale. 
This observation suggests that the out-of-sample dis-
appointment decays exponentially and is therefore 
faithfully represented by its decay rate.

The solid lines in Figure 1, (a) and (b), correspond 
to the empirical cost estimator (light brown) and to 

distributionally robust cost estimators with a moment 
ambiguity set (green: ε � 0:05, light blue: ε � 0:13, dark 
blue: ε � 0:2), a Wasserstein ambiguity set (orange: 
ε � 0:28), and a relative entropy ambiguity set (magenta: 
ε � 0:12). The ε�hyperparameters are chosen to ensure 
efficient use of the available plotting area. As expected, 
the empirical cost estimator is the most optimistic one 
in the sense that it displays the lowest in-sample cost, 
but its out-of-sample disappointment fails to decay. 
Any distributionally robust cost estimator becomes in-
creasingly pessimistic as the size parameter ε�of the 
underlying ambiguity set increases. The dashed lines 
in Figure 1(c) visualize the tradeoff between the asymp-
totic in-sample cost and the decay rate of the out-of- 
sample disappointment for the naïve penalized empirical 
cost estimator bc(x) � c(x, bST) + ε�(light brown) and for the 
distributionally robust cost estimators with a moment 
ambiguity set (dark blue), a Wasserstein ambiguity set 
(orange) and a relative entropy ambiguity set (magenta) 
as ε�is swept. The six dots in Figure 1(c) correspond to the 
six estimators investigated in Figure 1, (a) and (b). As 
expected, the dashed lines corresponding to the distribu-
tionally robust cost estimators with a Wasserstein and a 
relative entropy ambiguity set intersect because both 
these estimators reduce to the empirical cost estimator 
for ε � 0. Maybe surprisingly, the distributionally robust 
cost estimators associated with the relative entropy ambi-
guity set dominate those associated with the Wasserstein 
ambiguity set and even more so those associated with 
the moment ambiguity set, that is, their asymptotic 
in-sample cost is lowest for any fixed decay rate of the 
out-of-sample disappointment. They also dominate the 
penalized empirical cost estimators. It is now natural to 

Figure 1. (Color online) Statistical Properties of Different Cost and Decision Estimators for a Data-Driven Newsvendor Problem 
with Ordering Cost k � 5 and Retail Price p � 7, Where the Demand ξ�Follows a Shifted Binomial Distribution with 10 trials, 
Success Probability 0.5, and Shift 1 

(a) (b) (c)

Note. All probabilities and expectations involving random training data are evaluated empirically using 104 independent training sets.

Sutter, Van Parys, and Kuhn: Pareto Dominance Principle for Data-Driven Optimization 
Operations Research, 2024, vol. 72, no. 5, pp. 1976–1999, © 2024 INFORMS 1983 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

16
.1

97
.1

94
] 

on
 3

0 
Ja

nu
ar

y 
20

25
, a

t 0
3:

42
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



ask whether there exists a globally least conservative cost 
estimator whose asymptotic in-sample risk is minimal 
across all conceivable cost estimators (not necessarily 
only distributionally robust ones) with a prescribed 
decay rate of the out-of-sample disappointment. For 
example, if we require a decay rate of at least 5%, all 
cost estimators on the right-hand side of the vertical 
dashed line in Figure 1(c) are feasible. A simple line 
search reveals that this includes all penalized empirical 
cost estimators with penalty ε ≥ 1:9, all distributionally 
robust cost estimators with a moment ambiguity set of 
size ε ≥ 0:14, all distributionally robust cost estimators 
with a Wasserstein ambiguity set of radius ε ≥ 0:23, and 
all distributionally robust cost estimators with a relative 
entropy ambiguity set of radius ε ≥ 0:05. However, 
many other estimators not considered in this experiment 
are also feasible. We endeavor to identify the least conser-
vative of all such feasible estimators. In the remainder, 
we address this fundamental challenge under signifi-
cantly more general conditions.

2.2. Data-Driven Predictors and Prescriptors
We now return to the general stochastic optimization 
problem (2.1), and we assume that the unknown proba-
bility measure P? must be learned from a finite sample 
path of a stochastic process {ξt}t∈N with state space 
Ξ ⊆ Rm. Like any random object, this data-generating 
stochastic process is defined on the measurable space 
(Ω,F ). From now on we assume that even though the 
probability measure P? is unknown, it belongs to a 
known finitely parametrized ambiguity set. This pre-
mise is formalized in the following assumption.

Assumption 2.1 (Finitely Parametrized Ambiguity Set). 
The probability measure P? belongs to a finitely parame-
trized ambiguity set P � {Pθ : θ ∈Θ}, where Θ�is the rela-
tive interior of a convex subset of the finite-dimensional 
parameter space Rd, and Pθ�is a probability measure on 
(Ω,F ) for every θ ∈Θ.

As each θ ∈Θ�encodes a unique probabilistic model 
Pθ, for ease of terminology, we will henceforth refer to 
θ�as a model and to Θ�as the model space. The ambiguity 
set P is meant to capture all structural information on 
P? that is available before observing any statistical 
data. This justifies our assumption that P is known to 
contain the probability measure P? with certainty (and 
not only with high confidence). Assumption 2.1 thus 
implies that there exists a model θ? ∈Θ�with Pθ? � P?.

To provide some intuition for the abstract concepts 
introduced in this paper, we use the class of i.i.d. sto-
chastic processes with a finite state space as a running 
example. This example will further show that the 
approach to data-driven decision-making developed in 
Van Parys et al. (2021) emerges as a simple special case 
of a considerably more general framework. Several 

alternative data generation processes will be discussed 
in Section 5.

Example 2.2 (Ambiguity Set for Finite State i.i.d. 
Processes). Assume that Ξ � {1, : : : , d}, the random 
variables ξt are serially independent under P? and 
P?[ξt � i] � (θ?)i > 0 for all i ∈ Ξ�and t ∈N. The vector 
θ? thus encodes the unknown probability mass function 
of ξt, which is independent of t. These assumptions 
imply that P? belongs to an ambiguity set of the form 
P � {Pθ : θ ∈Θ}, where Θ � {θ ∈ Rd

++ :
Pd

i�1 θi � 1} is 
the positive probability simplex, and each θ�encodes a 
probability measure Pθ�on (Ω,F ) satisfying Pθ[ξt � it 
∀t � 1, : : : , T] �

QT
t�1 θit ∀it ∈ Ξ, t � 1, : : : , T, T ∈N:

We now embed the original stochastic optimization 
problem (2.1) into a family of problems corresponding 
to the probability measures Pθ, θ ∈Θ. Therefore, by 
slightly abusing notation with the goal to avoid clutter, 
we henceforth parametrize the objective function of 
Problem (2.1) by θ�instead of Pθ.

Definition 2.1 (Model-Based Predictors and Prescriptors). 
For any fixed model θ ∈Θ, we define the model-based 
predictor c(x,θ) as the objective function of Problem 
(2.1) when P? is replaced with Pθ�and the correspond-
ing model-based prescriptor x?(θ) ∈ arg minx∈Xc(x,θ)
as a decision that minimizes c(x,θ) over x ∈ X.

The stochastic program (2.1) can now be identified 
with the prescription problem of computing x?(θ?). Simi-
larly, the evaluation of the objective function of a given 
decision x ∈ X in (2.1) can be identified with the predic-
tion problem of computing c(x,θ?). In the remainder we 
impose the following regularity condition.

Assumption 2.2 (Uniform Continuity and Boundedness 
of the Model-Based Predictor). The model-based predictor 
c(x,θ) is uniformly continuous and bounded on X ×Θ.

If c(x,θ) is uniformly continuous and bounded on 
X ×Θ, then it admits a unique uniformly continuous 
and bounded extension to X × clΘ�(Aliprantis and Bor-
der 2007, theorem 5.15). By slight abuse of notation, we 
will denote this extension by c(x,θ). Assumption 2.2 is 
trivially satisfied by the newsvendor problem of Sec-
tion 2.1. As neither the model-based predictor c(x,θ?)
nor the model-based prescriptor x?(θ?) can be evalu-
ated for the unknown true model θ?, we will now 
approximate them by functions of the available data. 
To formally define data-driven predictors and prescrip-
tors, we denote by ξ[T] � (ξ1, : : : ,ξT) the history of the 
data-generating process up to time T, and we let FT ⊆

F be the σ-algebra generated by ξ[T] for any T ∈N. We 
also use Eθ[·] to denote the expectation operator with 
respect to Pθ�for any model θ ∈Θ.

Definition 2.2 (Data-Driven Predictors). A decision- 
dependent stochastic process bc � {bcT(x)}T∈N, x∈X valued 
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in R is called a data-driven predictor if it satisfies the 
following conditions. 

i. Continuity in the decisions. The random variable 
bcT(x) is continuous in x ∈ X for all T ∈N.

ii. Nonanticipativity. The process {bcT(x)}T∈N is 
adapted to the filtration {FT}T∈N for every x ∈ X.

iii. Uniform integrability. There exists a nonnega-
tive random variable c such that Eθ[c] < ∞ for all θ ∈
Θ�and |bcT(x) | ≤ cPθ-almost surely for all T ∈N, x ∈ X 
and θ ∈Θ.

iv. Convergence of objective. There exists a deter-
ministic Borel-measurable function c∞ : X ×Θ→ R such 
that, as T grows, bcT(x) converges in probability under Pθ�
to c∞(x,θ) for every x ∈ X and θ ∈Θ.

v. Convergence of optimal value. There exists 
a deterministic Borel-measurable function v∞ :Θ→ R 

such that, as T grows, minx∈XbcT(x) converges in proba-
bility under Pθ�to v∞(θ) for every θ ∈Θ.

If we use data-driven predictors as accessible prox-
ies for inaccessible model-based predictors, then it is 
reasonable to assume that they share all known prop-
erties of the model-based predictors. The continuity 
condition 1 in Definition 2.2 is thus a natural conse-
quence of Assumption 2.2. In addition, as X is com-
pact, this condition guarantees that the data-driven 
decision problem minx∈XbcT(x) is sovlable for every 
T ∈N. The nonanticipativity condition 2 implies via 
Ash and Doléans-Dade (2000) (theorem 5.4.2) that for 
any T ∈N there exists a Borel-measurable function fT :

X × ΞT→ R with bcT(x) � fT(x,ξ[T]). This means that 
bcT(x) may depend only on the history ξ[T] of the data- 
generating process observed up to time T. The uniform 
integrability condition 3 is of technical nature and non-
restrictive in all examples studied in this paper. The 
convergence condition 4 implies that for any fixed 
θ ∈Θ, the predictor bcT(x) represents a consistent esti-
mator for c∞(x,θ) if the data are generated under Pθ. 
We explicitly allow for the possibility that c∞(x,θ)≠ 
c(x,θ); that is, bcT(x)may in fact be a biased estimator for 
the model-based predictor c(x,θ). Similarly, the con-
vergence condition 5 implies that for any fixed θ ∈Θ�
the optimal value bcT(bxT) of the data-driven optimiza-
tion problem minx∈XbcT(x) represents a consistent esti-
mator for v∞(θ) if the data are generated under Pθ. 
Thus, it may be a biased estimator for the optimal value 
of the stochastic optimization problem minx∈Xc(x,θ). 
From now on we denote the set of all data-driven pre-
dictors in the sense of Definition 2.2 by bC.

Definition 2.3 (Data-Driven Prescriptors). A stochastic 
process bx � {bxT}T∈N valued in X is called a data-driven 
prescriptor if it satisfies the following conditions. 

i. Nonanticipativity. The process {bxT}T∈N is adapted 
to the filtration {FT}T∈N.

ii. Compatibility with a data-driven predictor. 
There exists a data-driven predictor bc that induces the 

data-driven prescriptor bx in the sense that bxT ∈

arg minx∈XbcT(x) for all T ∈N.

The nonanticipativity condition 1 implies via Ash 
and Doléans-Dade (2000) (theorem 5.4.2) that for any 
T ∈N there exists a Borel-measurable function gT :

ΞT→ R with bxT � gT(ξ[T]). The compatibility condition 
2 requires that any data-driven prescriptor is a mini-
mizer of some data-driven predictor. From now on we 
use bX to denote the set of all data-driven predictor- 
prescriptor-pairs of the form (bc, bx), where bx is induced 
by bc.

One can show that any data-driven predictor bc 
induces a (not necessarily unique) data-driven pre-
scriptor bx. The reason for this is that because X is com-
pact and because bcT(x) depends continuously on x ∈ X 
and represents an FT-measurable random variable for 
every fixed x, there exists an FT-measurable random 
vector bxT ∈ arg minx∈XbcT(x) thanks to (Rockafellar and 
Roger 1998, theorem 14.37). Combining bxT for all T ∈N 

yields the desired prescriptor.
We emphasize that essentially any procedure for 

mapping the available data to an “asymptotically 
deterministic” feasible decision defines a data-driven pre-
scriptor. Indeed, if a stochastic process bx � {bxT}T∈N with 
state space X is adapted to the filtration {FT}T∈N and con-
verges in probability under Pθ�to some deterministic 
Borel-measurable function x∞(θ) for every θ ∈Θ, then 
one readily verifies that the decision-dependent stochas-
tic process bc � {bcT(x)}T∈N defined through bcT(x) �min 
{1, ‖x� bxT‖2} for all T ∈N is a data-driven predictor in 
the sense of Definition 2.2 that induces bx. This example 
shows that the notion of a data-driven prescriptor is very 
general. Moreover, Definition 2.3 does not even require 
bxT to converge.

Example 2.3 (Empirical Predictor for Finite State i.i.d. 
Processes). In the context of Example 2.2, assume that 
the model-based predictor represents an expected loss, 
that is, set c(x,θ) � Eθ[ℓ(x,ξ)] for some loss function 
ℓ(x,ξ) that is continuous in x and bounded on X × Ξ, 
and assume that the random variable ξ�has the same 
distribution as the i.i.d. training samples {ξt}t∈N. The 
newsvendor problem of Section 2.1 satisfies all these 
assumptions. We now define the empirical predictor 
bc through bcT(x) � 1

T
PT

t�1 ℓ(x,ξt) ∀T ∈N: The empirical 
predictor simply evaluates the sample average of the 
loss across the observed data set and represents a 
data-driven predictor in the sense of Definition 2.2. 
Although the continuity condition 1 and the nonanti-
cipativity assumption 2 hold by construction, the 
boundedness condition 3 holds because bcT(x) is trivi-
ally bounded by the finite constant c �maxx∈X, ξ∈Ξ�
|ℓ(x,ξ) | for every T ∈N. The convergence condition 4 
follows by setting c∞(x,θ) � c(x,θ) and observing that 
limT→∞ |bcT(x)� c(x,θ) | � 0Pθ-almost surely for all θ ∈
Θ�thanks to the strong law of large numbers. Also, 
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c∞(x,θ) is continuous by Assumption 2.2. As ℓ�is con-
tinuous and X is compact, the uniform law of large 
numbers (Newey and McFadden 1994, lemma 2.4) 
further guarantees that limT→∞supx∈X‖

1
T
PT

t�1 ℓ(x,ξt)�

c(x,θ)‖ � 0Pθ-almost surely for all θ ∈Θ. Therefore, 
the convergence condition 5 is satisfied if we set v∞(θ)
�minx∈Xc(x,θ).

We will now investigate sequences of surrogate deci-
sion problems of the form minx∈XbcT(x) indexed by 
T ∈N, where bc is a data-driven predictor. As the set bC of 
admissible predictors is vast, there are endless possibili-
ties to design such surrogate decision problems. An 
ideal design should have the following property for any 
model θ ∈Θ: If the observable data are generated by 
Pθ, then the surrogate decision problem minx∈XbcT(x), 
which must be constructed without knowledge of θ, 
should provide a good approximation for the stochastic 
optimization problem minx∈Xc(x,θ) corresponding to 
model θ. If such an ideal design can be found, it will 
provide—in particular—a good approximation for the 
actual decision problem corresponding to the unknown 
true model θ?. Intuitively, a data-driven predictor bc 
and the corresponding predictor bx provide a good 
design if the data-driven objective function bcT(x) is close 
to the function c(x,θ) for large T and if the data-driven 
decision bxT is near-optimal in the decision problem 
minx∈Xc(x,θ) for large T whenever the data are gener-
ated by Pθ. In the following we will formalize these 
intuitions.

The key idea is to find the best possible data-driven 
predictor bc by solving an optimization problem over bC 

and to find the best possible data-driven prescriptor bx 
by solving an optimization problem over bX . As any 
predictor bc encodes a procedure for transforming data 
to surrogate optimization problems, an optimization 
problem over bC can be viewed as an optimization 
problem over optimization problems. We will there-
fore refer to it as a meta-optimization model. As any 
data-driven prescriptor is induced by a data-driven 
predictor, an optimization problem over the set bX of 
predictor-prescriptor pairs can also be viewed as a 
meta-optimization problem. In the special case when 
the data are generated by a simple i.i.d. processes, 
such meta-optimization problems were already stud-
ied in Van Parys et al. (2021). Here, we will show that 
these ideas have a much wider scope.

To formulate the desired meta-optimization pro-
blems, we first need to introduce some terminology. 
For any fixed model θ ∈Θ�and data-driven predictor bc, 
we will henceforth refer to bcT(x) as the in-sample risk 
and to c(x,θ) as the out-of-sample risk of the decision 
x ∈ X. Specifically, if bx is a data-driven prescriptor 
induced by bc, then bcT(bxT) and c(bxT,θ) represent the 
in-sample and out-of-sample risk of bxT, respectively. 
We emphasize that the out-of-sample risk under the 

true model θ? is the actual quantity of interest as it 
represents the objective function value of a given candi-
date decision in the true stochastic optimization prob-
lem (2.2a). If the data-generating process is ergodic 
(which is the case for all examples studied Section 5), 
then the out-of-sample risk also coincides almost surely 
with the average cost incurred of the given candidate 
decision along an infinitely long sample path. Unfortu-
nately, only the in-sample risk is observable at the time 
when the decision problem needs to be solved. Of 
course, the out-of-sample risk can in principle be com-
puted for any model θ ∈Θ. However, the benefits of 
this capability remain limited as long as θ? is unknown.

The ideal meta-optimization problem over all data- 
driven prescriptors would be tailored to the length T 
of the available observation history and would mini-
mize the out-of-sample risk c(bxT,θ?) of bxT over all 
(bc, bx) ∈ bX . As the true model θ? is unknown, however, 
such an approach would only be successful if there 
existed a Pareto dominant prescriptor that minimizes 
the out-of-sample risk of bxT simultaneously for all 
models θ ∈Θ�(and thus in particular for θ?). Unfortu-
nately, finding such a Pareto dominant prescriptor 
seems too ambitious and is probably impossible. This 
prompts us to work with an alternative notion of opti-
mality. The key idea is to minimize the in-sample risk 
subject to a constraint that forces the out-of-sample 
risk to be smaller than or equal to the in-sample risk. 
As both the in-sample and the out-of-sample risk are 
random objects, we impose this constraint probabilisti-
cally. To this end, we define a notion of out-of-sample 
disappointment.

Definition 2.4 (Out-of-Sample Disappointment). For any 
data-driven predictor bc the probability Pθ[c(x,θ) >
bcT(x)] is referred to as the out-of-sample prediction dis-
appointment of x ∈ X at time T under model θ ∈Θ. Sim-
ilarly, for any data-driven prescriptor bx induced by a 
data-driven predictor bc the probability Pθ[c(bxT,θ) >
bcT(bxT)] is termed the out-of-sample prescription disap-
pointment at time T under model θ ∈Θ.

The out-of-sample disappointment represents the 
probability that the out-of-sample risk strictly exceeds 
the in-sample risk. Intuitively, a smaller out-of-sample 
disappointment should be preferred over a large out- 
of-sample disappointment. For example, in the context 
of the newsvendor problem studied in Section 2.1, a 
high out-of-sample disappointment entailed a high 
probability of budget overruns.

The meta-optimization problem to be developed 
later aims to minimize the in-sample risk. As bcT(x) for 
x ∈ X and bcT(bxT) are random variables; however, this 
informal objective is not well defined. The properties 
of a data-driven predictor laid out in Definition 2.2 fur-
ther imply that even the expected in-sample risk is not 
well defined. Indeed, if the data are generated under 
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Pθ, then Eθ[bcT(x)] converges to c∞(x,θ) as T grows, 
where c∞ is the Borel-measurable function whose exis-
tence is postulated in Definition 2.2(iv). This follows 
directly from Lemma G.1, which applies because of con-
ditions (iii) and (iv) in Definition 2.2. The same lemma 
implies that Eθ[bcT(bxT)] converges to v∞(θ) as T grows, 
where v∞ is the Borel-measurable function whose exis-
tence is postulated in Definition 2.2(v).

The previous reasoning indicates that both the out- 
of-sample disappointment and the expected in-sample 
risk depend on the data-generating model θ�and the 
length T of the available observation history. As θ�is 
unobservable, however, the meta-optimization prob-
lem to be developed may not depend on θ�for other-
wise its solution would not be implementable. Even 
though T is known to the decision maker, we did not 
manage to construct a meta-optimization problem that 
adapts to T and can still be solved. To eliminate the 
dependence on both θ�and T, we thus propose to mini-
mize the asymptotic expected in-sample performance of 
every θ ∈Θ�subject to an upper bound on the asymptotic 
exponential decay rate of the out-of-sample disap-
pointment for every θ ∈Θ. Because the proposed meta- 
optimization problem accommodates multiple objec-
tive functions (one for each θ ∈Θ) and a constraint that 
must hold for all realizations of the uncertain parame-
ter θ ∈Θ, it constitutes a robust multiobjective optimiza-
tion problem.

The meta-optimization problem for finding the best 
data-driven predictor can thus be formulated as

minimize
bc∈bC

lim
T→∞

Eθ[bcT(x)]
� �

x∈X, θ∈Θ

subject to limsup
T→∞

1
T

logPθ[c(x,θ) > bcT(x)] ≤ �r

∀x ∈ X, θ ∈ Θ: (2.4a) 

Recall that the asymptotic expected in-sample risk 
limT→∞Eθ[bcT(x)] under model θ�is well defined and 
coincides with the limit function c∞(x,θ) of Definition 
2.2(iv) for every x ∈ X and θ ∈Θ. The constraint requires 
that the out-of-sample disappointment under model θ�
satisfies Pθ[c(x,θ) > bcT(x)] ≤ e�rT+o(T) for every x ∈ X 
and θ ∈Θ, where r>0 is a risk-aversion parameter cho-
sen by the decision maker.

Similarly, the meta-optimization problem for finding 
the best predictor-prescriptor-pair can be formulated as

minimize
(bc,bx)∈bX

lim
T→∞

Eθ[bcT(bxT)]

� �

θ∈Θ

subject to limsup
T→∞

1
T

logPθ[c(bxT,θ) > bcT(bxT)] ≤ �r

∀θ ∈ Θ: (2.4b) 

As previously stated, limT→∞Eθ[bcT(bxT)] is well defined 
and coincides with the limit function v∞(θ) of Defini-
tion 2.2(v) for every θ ∈Θ, and the constraint requires 
that Pθ[c(bxT,θ) > bcT(x)] ≤ e�rT+o(T) for every θ ∈Θ.

To gain some intuition for the rate constraint in 
(2.4a), recall from Definition 2.2(iv) that bcT(x) converges 
in probability to c∞(x,θ). As convergence in probability 
implies convergence in distribution, we thus have 
limT→∞Pθ[c(x,θ) > bcT(x)] � 1c(x,θ)>c∞(x,θ) for all x ∈ X, 
θ ∈Θwith c(x,θ)≠ c∞(x,θ). The rate constraint in 
(2.4a) requires the out-of-sample disappointment to 
converge to 0 as T grows. The above reasoning thus 
implies that the rate constraint is not satisfiable if there 
exists a decision x ∈ X and a model θ ∈Θ�with c(x,θ)
> c∞(x,θ). In other words, any feasible data-driven 
predictor bc must asymptotically exceed (or match) the 
model-based predictor c(x,θ) for all x ∈ X and θ ∈Θ. 
This conclusion is consistent with the reasoning that 
led to the meta-optimization problem (2.4a). In the 
remainder of the paper, we will show that an exponen-
tially decaying out-of-sample disappointment necessi-
tates indeed a biased data-driven predictor that strictly 
overestimates c(x,θ). In addition, the bias increases 
with the desired decay rate r.

Multiobjective optimization problems such as (2.4a) 
and (2.4b) typically only admit Pareto optimal solutions, 
that is, feasible solutions that are not Pareto dominated 
by any other feasible solution. Perhaps surprisingly, in 
the remainder of this paper we will show that under 
some regularity conditions both (2.4a) and (2.4b) admit 
Pareto dominant solutions, that is, feasible solutions that 
Pareto dominate all other feasible solutions. Moreover, 
these solutions admit intuitive closed-form expressions.

2.3. Data Compression
A defining property of data-driven predictors and pre-
scriptors is that they are adapted to the filtration gener-
ated by the data. Thus, they can be seen as sequences of 
functions that map the increasingly high-dimensional 
observation history ξ[T] ∈ RdT to a cost estimate or a deci-
sion, respectively. Processing or even storing such func-
tions might easily become impractical for large T. As a 
remedy, we will try to compress the observation history 
ξ[T] into a statistic bST of constant dimension d without 
sacrificing useful information.

Definition 2.5 (Statistic). A stochastic process bS �
{bST}T∈N with a closed state space S ⊆ Rd is called a sta-
tistic if it is adapted to the filtration {FT}T∈N and if there 
exists a local homeomorphism S∞ :Θ→ S such that, as 
T grows, bST converges in probability under Pθ�to S∞(θ)
for every θ ∈Θ. If S∞(θ) � θ�for all θ ∈Θ, then the sta-
tistic bS is called a consistent model estimator.

As bS is adapted to {FT}T∈N, we know from Ash and 
Doléans-Dade (2000) (theorem 5.4.2) that for any T ∈N 
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there exists a Borel-measurable function hT : ΞT→ Rd 

with bST � hT(ξ[T]). In the following, we will always 
assume that the state space S ⊆ Rd is defined as the 
smallest closed set that satisfies Pθ[bST ∈ S] � 1 for all 
θ ∈Θ�and T ∈N. It is also useful to define S∞ �

{S∞(θ) : θ ∈Θ} ⊆ S as the set of all asymptotic realiza-
tions of the statistic bS. As Θ�is open with respect to the 
subspace topology on Θ�and as S∞ constitutes a local 
homeomorphism, S∞ is an open subset of S with 
respect to the subspace topology on S.

Example 2.4 (Empirical Distribution for Finite State i.i.d. 
Processes). In the context of the finite state i.i.d. pro-
cesses described in Example 2.2, we define the empiri-
cal distribution bST ∈ Rd through

(bST)i �
1
T
XT

t�1
1ξt�i ∀i ∈ Ξ, T ∈N: (2.5) 

Thus, the ith component of bST records the empirical fre-
quency of observing state i over the first T time periods. 
By construction, bS � {bST}T∈N constitutes a consistent 
model estimator in the sense of Definition 2.5. Indeed, 
the strong law of large numbers guarantees that, under 
Pθ, the empirical distribution bST converges almost 
surely (and thus in probability) to S∞(θ) � θ�for every 
θ ∈Θ. Hence, the set S∞ coincides with the open proba-
bility simplex Θ. As the support of bST is given by ∆d ∩

(Zd=T) for each T ∈N, we also have S � cl(∪T∈N∆d ∩

(Zd =T)) � cl(∆d ∩Qd) � ∆d � clΘ:
We are now ready to introduce families of data- 

driven predictors and prescriptors that depend on the 
data only indirectly through a statistic, which may or 
may not be a consistent model estimator. To our best 
knowledge, all predictors and prescriptors studied in 
the existing literature can be represented in this form.

Definition 2.6 (Compressed Data-Driven Predictors and 
Prescriptors). If S and S∞ represent the state space and 
the set of asymptotic realizations of a statistic bS, then 
c̃ : X × S→ R is called a compressed data-driven pre-
dictor if it is bounded and continuous in x on X × S 

and continuous in (x, s) on X × S∞. In addition, x̃ : S→

X is called a compressed data-driven prescriptor if it 
is quasi-continuous on S∞, and there exists a com-
pressed data-driven predictor c̃ that induces x̃ in the 
sense that x̃(s) ∈ arg minx∈Xc̃(x, s) for all s ∈ S.

One can show that any compressed data-driven pre-
dictor c̃ induces a (not necessarily unique) compressed 
data-driven prescriptor x̃. To see this, the multifunction 
arg minx∈Xc̃(x, s) is nonempty valued because X is com-
pact and c̃(x, s) is continuous in x ∈ X for every fixed 
x ∈ S. Moreover, the restriction of this multifunction to 
S∞ admits a quasi-continuous selector. This follows 
from the reasoning after definition 3 in Van Parys et al. 
(2021), which applies here because c̃ is continuous on 

X × S∞ and X is compact. Any compressed data-driven 
predictor c̃ and the underlying statistic bS induce a data- 
driven predictor bc defined through bcT(x) � c̃(x, bST) for 
all x ∈ X and T ∈N. One readily verifies that bc satisfies 
all conditions of Definition 2.2. Indeed, conditions 1–3 
follow directly from the definitions of the statistic bS 
and the compressed data-driven predictor c̃. To check 
condition 4, fix a probability measure Pθ, and recall 
that bST converges in probability to S∞(θ). By the contin-
uous mapping theorem (Durrett 2010, theorem 3.2.4), 
which applies because S∞(θ) ∈ S∞ and because c̃(x, s) is 
continuous in s ∈ S∞ for every fixed x ∈ X, we may then 
conclude that bcT(x) converges in probability to c̃(x, 
S∞(θ)). As this reasoning applies to every model θ ∈Θ, 
condition 4 holds with c∞(x,θ) � c̃(x, S∞(θ)). To check 
condition 5, fix again a probability measure Pθ, and 
introduce a real-valued function ṽ(s) �minx∈Xc̃(x, s), 
which is continuous in s ∈ S by Berge’s maximum theo-
rem (Berge 1997, pp. 115–116). Invoking the continuous 
mapping theorem as previously done, it then follows 
that ṽ(bST) �minx∈XbcT(x) converges in probability to 
ṽ(S∞(θ)). As this reasoning applies to every model 
θ ∈Θ, condition 5 holds with v∞(θ) � ṽ(S∞(θ)), which 
is a continuous function by construction. Finally, any 
compressed data-driven prescriptor x̃ and the corre-
sponding statistic bS induce a data-driven prescriptor bx 
defined trough bxT � x̃(bST) for all T ∈N. One readily 
verifies that bx satisfies all conditions of Definition 2.3. 
Indeed, condition 1 follows directly from the defining 
properties of a statistic. To check condition 2, recall that 
any compressed data-driven prescriptor x̃ is induced 
by some compressed data-driven predictor c̃. Next, 
define an ordinary data-driven predictor bc through 
bcT(x) � c̃(x, bST) for all x ∈ X and T ∈N. By our earlier 
reasoning, bc satisfies indeed all conditions of Definition 
2.2. Then, we have

bxT � x̃(bST) ∈ arg min
x∈X

c̃(x, bST)

� arg min
x∈X

bcT(x) ∀T ∈N, 

where the two equalities follow from the definitions of 
bxT and bcT, respectively, whereas the membership rela-
tion holds by assumption. Hence, bx is induced by the 
data-driven predictor bc, and thus condition 2 holds.

In analogy to our conventions of Section 2.2, from 
now on we denote the set of all compressed data- 
driven predictors by C̃ and the set of all compressed 
data-driven predictor-prescriptor-pairs by X̃ .

Example 2.5 (Empirical Predictor for Finite State i.i.d. 
Processes Revisited). If bS � {bST}T∈N is any statistic 
whose state space S is a subset of cl(Θ), then the 
model-based predictor c of Definition 2.1 constitutes a 
trivial compressed data-driven predictor with respect 
to bS. Indeed, recall that c admits a continuous exten-
sion to X × cl(Θ) because of Assumption 2.2. In the 
context of the finite state i.i.d. processes described in 
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Example 2.2, it is natural to set bST to the empirical distri-
bution over the first T observations as in Example 2.4. In 
this case, we have S � cl(Θ), which ensures that bcT(x) �
c(x, bST) is well defined for every x ∈ X and T ∈N. In the 
special case when c(x,θ) � Eθ[ℓ(x,ξ)], a direct calculation 
shows that bcT(x) � 1

T
PT

t�1 ℓ(x,ξt). Thus, the data-driven 
predictor bc � {bcT}T∈N induced by c and bS coincides with 
the empirical predictor of Example 2.3.

We now consider a restriction of the meta- 
optimization problem (2.4a) that optimizes only over 
compressed data-driven predictors c̃ ∈ C̃. As in (2.4a), 
we minimize the asymptotic expected in-sample perfor-
mance of every θ ∈Θ�subject to an upper bound on the 
asymptotic exponential decay rate of the out-of-sample 
disappointment for every θ ∈Θ. Identifying each com-
pressed data-driven predictor c̃ with an ordinary data- 
driven predictor bc defined through bcT(x) � c̃(x, bST), T ∈
N, and observing that limT→∞Eθ[c̃(x, bST)] � c̃(x, S∞(θ))
for all x ∈ X and θ ∈Θ�because of the continuous map-
ping theorem (Durrett 2010, theorem 3.2.4) and Lemma 
G.1, the restricted meta-optimization problem can be for-
mulated as follows.

minimize
c̃∈C̃

{c̃(x, S∞(θ))}x∈X, θ∈Θ

subject to limsup
T→∞

1
T logPθ[c(x,θ) > c̃(x, bST)] ≤ �r

∀x ∈ X, θ ∈Θ (2.6a) 

Likewise, identifying each compressed data-driven 
predictor-prescriptor pair (c̃, x̃) with an ordinary data- 
driven predictor-prescriptor pair (bc, bx) defined through 
bcT(x) � c̃(x, bST) and bxT � x̃(bST), T ∈N, and observing 
that limT→∞Eθ[c̃(x̃(bST), bST)] � c̃(x̃(S∞(θ)), S∞(θ)) for all 
θ ∈Θ�thanks to the continuous mapping theorem and 
Lemma G.1, we obtain the following restriction of the 
meta-optimization problem (2.4b).

minimize
(c̃, x̃)∈X̃

{c̃(x̃(S∞(θ)), S∞(θ))}θ∈Θ

subject to limsup
T→∞

1
T

logPθ[c(x̃(bST),θ) > c̃(x̃(bST), bST)]

≤ �r ∀θ ∈Θ (2.6b) 

Focusing on compressed data-driven predictors and 
prescriptors seems natural and is indeed the de facto 
standard. On the one hand, one would expect that 
the corresponding restricted meta-optimization pro-
blems (2.6) are easier to solve than the original meta- 
optimization problems (2.4). On the other hand, it is 
unclear how much performance is sacrificed by this 
restriction. In the following we will first show that 
the restricted meta-optimization problems (2.6) admit 
Pareto dominant solutions whenever the underlying 

statistic bS satisfies a large deviation principle. Later 
we will show that the compressed and original meta- 
optimization problems are equivalent whenever bS 
represents a sufficient statistic.

3. Pareto Dominant Predictors and 
Prescriptors

3.1. Large Deviation Principles
To construct Pareto dominant solutions for the restricted 
meta-optimization problems (2.6), if they exist, we first 
review and extend some fundamental definitions and 
concepts from large deviations theory. Large deviations 
theory provides bounds on the exponential rate at which 
the probabilities of atypical realizations of a given statis-
tic bS decay as the length T of the observation history 
grows. These bounds are expressed in terms of a rate 
function, which depends on a realization of bS and the 
data-generating model θ.

Definition 3.1 (Rate Function (Dembo and Zeitouni 2009, 
section 2.1)). A function I : S × clΘ→ [0,∞] is called a 
rate function if I(s,θ) is lower semicontinuous in s 
throughout S × clΘ.

Definition 3.2 (Large Deviation Principle). The statistic 
bS � {bST}T∈N with state space S satisfies a large devia-
tion principle (LDP) with rate function I if for all θ ∈Θ�
and Borel sets D ⊆ S, we have

� inf
s∈intD

I(s,θ) ≤ liminf
T→∞

1
T logPθ[bST ∈D], (3.1a) 

≤ limsup
T→∞

1
T

logPθ[bST ∈D]

≤ � inf
s∈clD

I(s,θ): (3.1b) 

As the subspace topology on S induced by the Euclidean 
topology on Rd is Hausdorff, we know from Dembo and 
Zeitouni (2009, lemma 4.1.4) that if bS satisfies an LDP, 
then Inequalities (3.1) uniquely determine the rate func-
tion on S ×Θ. However, Definition 3.1 requires the rate 
function to be defined on S × clΘ. Although its values 
on the boundary of Θ�are immaterial, extending the rate 
function to S × clΘ�will simplify some of the derivations 
in Section 3, provided the extension preserves the regu-
larity conditions of Definition 3.3.

Before defining regular rate functions, we discuss a 
few immediate consequences of Inequalities (3.1). First, 
as bST converges in probability to S∞(θ) under Pθ, the 
LDP-bound (3.1b) implies that

0 � lim
T→∞

1
T

logPθ ‖bST � S∞(θ)‖2 ≤
1
k

� �

≤ � inf
s∈S

I(s,θ) : ‖s� S∞(θ)‖2 ≤
1
k

� �

∀k ∈N:
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Thus, there is a sequence {sk}k∈N in S that converges to 
S∞(θ) and satisfies liminfk∈NI(sk,θ) ≤ 0, which implies 
via the nonnegativity and lower semicontinuity of the 
rate function that I(S∞(θ),θ) � 0. This in turn implies 
that the minima of the optimization problems in (3.1a) 
and (3.1b) evaluate to zero whenever S∞(θ) falls within 
the interior of D. In this case the LDP inequalities 
reduce to the trivial statement that Pθ[bST ∈D] con-
verges to one as T grows. In general, LDP Inequalities 
(3.1) imply that the probability Pθ[bST ∈D] is bounded 
below by e�r T+o(T), where r � infs∈intDI(s,θ)) represents 
the I distance between θ�and the interior of D, and 
bounded above by e�r T+o(T), where r � infs∈clDI(s,θ)
represents the I distance between θ�and the closure 
of D.

In the following, we will study the class of com-
pressed data-driven predictors and prescriptors corre-
sponding to a statistic bS that satisfies an LDP. We will 
see that the optimal predictors and prescriptors within 
this class (that is, the Pareto dominant solutions of the 
meta-optimization problems (2.6a) and (2.6b)) can be 
constructed in closed form if this LDP’s rate function is 
regular in the sense of the following definition.

Definition 3.3 (Regular Rate Function). We call a rate 
function I regular if the following conditions hold. 

i. Radial monotonicity in u. cl{θ ∈Θ : I(s,θ) < r} �
{θ ∈ clΘ : I(s,θ) ≤ r} for all s ∈ S∞, r>0.

ii. Continuity. I(s,θ) is continuous on S ×Θ.
iii. Level-compactness. {(s,θ) ∈ S × clΘ : I(s,θ) ≤ r}

is compact for every r ≥ 0.

Definition 3.3 strengthens the more common notion 
of a good rate function. Recall that a rate function I is 
called good if {s ∈ S : I(s,θ) ≤ r} is compact for every 
r ≥ 0 and θ ∈Θ�(Dembo and Zeitouni 2009, section 1.2). 
As S∞ is a subset of S and as S is closed, condition 3 of 
Definition 3.3 implies indeed that every regular rate 
function is good. Also, the radial monotonicity condi-
tion 1 may be difficult to check in practice. A more easily 
checkable sufficient condition for radial monotonicity is 
that for any s ∈ S∞, θ ∈ clΘ�and θs ∈Θ�with S∞(θs) � s 
(θs exists because s ∈ S∞), we have

I(s, (1�λ)θs +λθ) ≤ I(s,θ) ∀λ ∈ [0, 1), (3.2) 

where the inequality is strict if I(s,θ) > 0. Inequality (3.2) 
actually inspired the name radial monotonicity for con-
dition 1. We will now prove that (3.2) together with con-
dition 3 implies condition 1. To this end, fix any s ∈ S∞, 
and set A(s) � {θ ∈Θ : I(s,θ) < r} and B(s) � {θ ∈ clΘ :

I(s,θ) ≤ r}. By construction, we have A(s) ⊆ B(s). As 
B(s) is compact thanks to condition 3, this even implies 
that clA(s) ⊆ B(s). It remains to be shown that (3.2) 
implies the converse inclusion B(s) ⊆ clA(s). To this 
end, fix any θ ∈ B(s), and choose any θs ∈Θ�with s �
S∞(θs), which exists because s ∈ S∞. Next, define θ(λ) �

(1�λ)θs +λθ�for all λ ∈ [0, 1). As θs ∈Θ�and θ ∈ clΘ, 
and as Θ�is open and convex, the line segment principle 
(Bertsekas 2009, proposition 1.3.1) implies that θ(λ) ∈Θ�
for all λ ∈ [0, 1). By (3.2), we also have I(s,θ(λ)) ≤
I(s,θ) ≤ r for all λ ∈ [0, 1), where at least one of the two 
inequalities is strict. This reasoning shows that θ(λ) ∈
A(s) for all λ ∈ [0, 1). As θ(λ) approaches θ�arbitrarily 
closely when λ�increases toward one, we may finally 
conclude that θ ∈ clA(s). We have therefore shown that 
condition 1 holds.

Example 3.1 (LDP for Finite State i.i.d. Processes). Con-
sider the class of finite state i.i.d. processes introduced 
in Example 2.2 and let bST be the empirical distribution 
defined in Example 2.4. The classical Sanov theorem 
(Dembo and Zeitouni 2009, theorem 2.1.10) asserts 
that bS satisfies an LPD with good rate function I(s,θ)
�D(s‖θ), where D(s‖θ) �

Pd
i�1 silog(si=θi) denotes the 

relative entropy of s with respect to θ, and where 
we use the standard conventions that 0 log(0=p) � 0 
for any p ≥ 0 and p log(p=0) � ∞ for any p>0. The rel-
ative entropy is also referred to as Kullback-Leibler 
divergence. By the information inequality (Cover and 
Thomas 2006, theorem 2.6.3), it is nonnegative and 
vanishes if and only if θ � s. Moreover, the relative 
entropy is a regular rate function in the sense of Defi-
nition 3.3. To see this, D(s‖θ) is continuous on S ×Θ�
and level-compact (Dembo and Zeitouni 2009, pp. 
13–18). In addition, D(s‖θ) is jointly convex in s and θ�
because of (Cover and Thomas 2006, theorem 2.7.2). 
Recalling from Example 2.4 that S∞ is the identity 
function, for any s ∈ S∞ �Θ�and θ ∈ clΘ, we thus have 
D(s‖(1�λ)s+λθ) ≤ (1�λ)D(s‖s) +λD(s‖θ) ≤ D(s‖θ)
∀λ ∈ [0, 1), where the second inequality holds because 
D(s‖s) � 0 and D(s‖θ) ≥ 0. This inequality is strict for 
D(s‖θ) > 0, and thus D(s‖θ) is radially monotonic in θ�
due to (3.2). Hence, the relative entropy is indeed a 
regular rate function. In Section 5, we will present a 
broad spectrum of additional data-generating stochas-
tic processes for which there exists a statistic that 
satisfies an LDP with a regular rate function.

We are now ready to demonstrate that if the statistic 
bS satisfies an LDP with a regular rate function, then 
the restricted meta-optimization problems (2.6) admit 
Pareto dominant solutions. In Section 3.2, we first 
construct a compressed data-driven predictor that is 
strongly optimal in (2.6a). In Section 3.3, we then con-
struct a compressed data-driven predictor-prescriptor 
pair that is strongly optimal in (2.6b).

3.2. Distributionally Robust Predictors
To solve the meta-optimization problems (2.6) over 
compressed data-driven predictors and prescriptors, 
we assume that the statistic bS satisfies an LDP and that 
the underlying rate function is regular.
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Assumption 3.1 (LDP). The statistic bS satisfies an LDP 
with a regular rate function.

We will impose Assumption 3.1 throughout the rest 
of this section. We can now construct a compressed 
data-driven predictor, which will later be shown to rep-
resent a Pareto dominant solution for (2.6a).

Definition 3.4 (Distributionally Robust Predictor). The 
function c̃? : X × S→ R defined through

c̃?(x, s) �

max
θ∈clΘ
{c(x,θ) : I(s,θ) ≤ r}

if ∃ θ ∈ clΘ with I(s,θ) ≤ r,
sup
θ∈clΘ

c(x,θ) if @ θ ∈ clΘ with I(s,θ) ≤ r,

8
>>><

>>>:

(3.3) 

is the distributionally robust predictor induced by the 
rate function I and the risk-aversion parameter r.

The maximum of the first optimization problem in 
(3.3) is indeed attained because the feasible set is com-
pact due to the level-compactness of the regular rate 
function I(s,θ) and because the objective function 
c(x,θ) is continuous in θ�on X × clΘ�because of the dis-
cussion after Assumption 2.2. In addition, the supre-
mum of the second optimization problem in (3.3) is 
finite because c(x,θ) is bounded on X × clΘ. The fol-
lowing proposition confirms that c̃? is a compressed 
data-driven predictor in the sense of Definition 2.6.

Proposition 3.1 (Continuity of ~c?). If the rate function I is 
regular and r> 0, then the distributionally robust predictor 
c̃?(x, s) is bounded and continuous in x on X × S and con-
tinuous in (x, s) on X × S∞.

Intuitively, the compressed data-driven predictor 
c̃?(x, s) evaluates the worst-case objective function of 
the stochastic optimization problem (2.2) over all prob-
ability measures Pθ�corresponding to models θ ∈ clΘ�
that reside in an I-ball of radius r around s. Thus, c̃?(x, s)
admits a distributionally robust interpretation, which 
justifies our terminology.

Example 3.2 (Distributionally Robust Predictors for Finite 
State i.i.d. Processes). Consider the class of finite state 
i.i.d. processes introduced in Example 2.2 and let bST be 
the empirical distribution defined in Example 2.4. From 
Example 3.1, we know that bS satisfies an LDP and that 
the underlying regular rate function coincides with 
the relative entropy. Thus, the distributionally robust 
predictor (3.4) simplifies to c̃?(x, s) �maxθ∈∆d {c(x,θ) :
D(s‖θ) ≤ r}: This problem is feasible for every possible 
estimator realization because S � ∆d (see Example 2.4), 
and if c(x,θ) � Eθ[ℓ(x,ξ)], then it is equivalent to the 
one-dimensional convex minimization problem c̃?(x, s)
�minα≥ℓ(x)α� e�rQd

i�1(α� ℓ(x, i))si with ℓ(x) �maxi∈Ξℓ�
(x, i), which can be solved efficiently via line search 
methods (Van Parys et al. 2021, proposition 2).

The following theorem establishes that the distribu-
tionally robust predictor (3.3) strikes an optimal bal-
ance between expected in-sample performance and 
out-of-sample disappointment.

Theorem 3.1 (Optimality of ~c?). If Assumptions 2.1, 2.2, 
and 3.1 hold and if r > 0, then c̃? is a Pareto dominant solu-
tion of the meta-optimization problem (2.6a).

3.3. Distributionally Robust Prescriptors
We will now demonstrate that if the statistic bS satisfies 
an LDP with a regular rate function, then the distribu-
tionally robust predictor c̃? of Definition 3.4 and any 
compressed data-driven prescriptor x̃? induced by c̃?
represent a Pareto dominant solution for the meta- 
optimization problem (2.6b).

Definition 3.5 (Distributionally Robust Prescriptor). If c̃?
is a distributionally robust predictor in the sense of 
Definition 3.4, then any function x̃? : S→ X that is 
quasi-continuous on S∞ and satisfies

x̃?(s) ∈ arg min
x∈X

c̃?(x, s) ∀s ∈ S (3.4) 

is a distributionally robust prescriptor.

One can show that any distributionally robust predic-
tor ̃c? induces at least one distributionally robust prescrip-
tor x̃?. To see this, the multifunction arg minx∈X c̃?(x, s) is 
nonempty valued because X is compact and c̃?(x, s) is 
continuous in x on X × S (Proposition 3.1). Moreover, the 
restriction of this multifunction to S∞ admits a quasi- 
continuous selector. This follows from the reasoning after 
definition 3 in Van Parys et al. (2021), which applies here 
because c̃? is continuous on X × S∞ and X is compact. 
Therefore, (c̃?, x̃?) belongs to the family X of all com-
pressed data-driven predictor-prescriptor-pairs.

Theorem 3.2 (Optimality of ð~c?, ~x?Þ). If Assumptions 2.1, 
2.2, and 3.1 hold and if r > 0, then (c̃?, x̃?) is a Pareto domi-
nant solution of the meta-optimization problem (2.6b).

An interesting question arises as to whether an alter-
native parametrization for either the statistic bS or the 
model class Θ�would impact the optimal data-driven 
predictor-prescriptor pair. Notably, an invariance princi-
ple can be demonstrated, indicating that the optimal 
solution remains unchanged under homeomorphic coor-
dinate transformations. A detailed discussion of this 
invariance is relegated to Online Appendix A.

4. Separation of Estimation and 
Optimization

We are now ready to tackle a fundamental question in 
data-driven decision making that is of theoretical and 
practical interest: Under what conditions on the statistic 
bS can we restrict the class of all data-driven predictors 
and prescriptors to the subclass of all compressed data- 
driven predictors and prescriptors induced by bS 

Sutter, Van Parys, and Kuhn: Pareto Dominance Principle for Data-Driven Optimization 
Operations Research, 2024, vol. 72, no. 5, pp. 1976–1999, © 2024 INFORMS 1991 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

16
.1

97
.1

94
] 

on
 3

0 
Ja

nu
ar

y 
20

25
, a

t 0
3:

42
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



without incurring any loss of optimality? In other 
words, we aim to identify conditions under which any 
decision-relevant information contained in the raw data 
ξ[T] is also contained in the summary statistic bST for 
every T ∈N, such that the meta-optimization problems 
(2.4a) and (2.4b) become equivalent to (2.6a) and (2.6b), 
respectively. In statistical estimation, it is well known 
that the possibility of lossless compression is intimately 
related to the existence of a sufficient statistic (Lehmann 
and Casella 1998). In the following, we will argue that 
such a result also holds in the context of data-driven 
decision making. Although this result has intuitive 
appeal, it seems not to have been established before, 
and we find it surprisingly difficult to prove.
Definition 4.1 (Sufficient Statistic). A statistic bS with 
state space S is called sufficient for θ�if the conditional 
distribution of ξ[T] given bST � s under Pθ�is indepen-
dent of θ ∈Θ�for all s ∈ S and T ∈N.

Intuitively, bS is a sufficient statistic for θ�if knowing 
the full observation history ξ[T] provides no advantage 
for estimating θ�over only knowing bST. In other words, 
compressing ξ[T] into bST, which is equivalent to a 
Borel-measurable function of ξ[T], does not destroy any 
information that could be useful for estimating θ. The 
Pitman-Koopman-Darmois theorem (Koopman 1936) 
implies that if the observed data are i.i.d. over time, 
then there exists a sufficient statistic if and only if the 
data generation process belongs to an exponential fam-
ily. Even though we do not restrict attention to i.i.d. 
processes, this result prompts us to require that the 
ambiguity set P represents an exponential family of 
stochastic processes. To formalize this requirement, we 
henceforth denote by PT

θ�the restriction of the probabil-
ity measure Pθ�to the σ-algebra FT generated by ξ[T]
for all T ∈N and θ ∈Θ. In addition, for any T ∈N we 
define the log-moment generating function ΛT : Rd ×

Θ→ (�∞, +∞] of bST through ΛT(λ,θ) � logEθ[exp 
(〈λ, bST〉)] if the expectation is finite and ΛT(λ,θ) � +∞
otherwise. As ΛT(0,θ) � 0 by construction, the function 
ΛT(λ,θ) is proper in λ. Moreover, ΛT(λ,θ) is convex 
and lower semicontinuous in λ�because of Barndorff- 
Nielsen (2014) (theorem 7.1).
Assumption 4.1 (Exponential Family of Stochastic Pro-
cesses). The ambiguity set P represents a time-homogeneous 
exponential family of stochastic processes. This means that there 
exist a baseline model θ ∈Θ, a continuous parametrization 
function g :Θ→ Rd and a sequence of log-partition functions 
AT : Rd→ (�∞, +∞] for T ∈N defined through AT(λ) �
ΛT(λ,θ) such that Tg(θ) ∈ dom(AT) for all θ ∈Θ�and

dPT
θ

dPT
θ

� exp(〈Tg(θ), bST〉�AT(Tg(θ))) ∀T ∈N, θ ∈Θ:

(4.1) 

Exponential families that obey Assumption 4.1 are 
called time-homogeneous because the parametrization 
function g is independent of T (Küchler and Sørensen 
2006, section 3.1). As the Radon-Nikodym derivative 
(4.1) is strictly positive, all probability measures within 
a given exponential family are mutually equivalent. For 
every T ∈N and θ ∈Θ, the log-partition function AT 
ensures that the probability measure PT

θ�is normalized, 
and it inherits properness, convexity and lower semi-
continuity from the log-moment generating function 
ΛT. Although the log-partition function was defined as 
the log-moment generating function corresponding to 
the baseline model θ, any other log-moment generating 
function corresponding to an arbitrary model θ ∈Θ�can 
be recovered from AT. This follows from the change of 
measure Equation (4.1) and the observation that expec-
tations of FT-measurable functions with respect to Pθ�
depend only on the restriction of Pθ�to FT, i.e.,

ΛT(λ,θ) � logEθ[exp(〈λ, bST〉+ 〈Tg(θ), bST〉�AT(Tg(θ)))]

�AT(λ+Tg(θ))�AT(Tg(θ)): (4.2) 

Assumption 4.1 guarantees via the Fisher-Neyman fac-
torization theorem (Lehmann and Casella 1998, theo-
rem 6.5) that the statistic bS is sufficient. This can also be 
verified directly. Indeed, if it is known that bST � s for 
some s ∈ S, then the Radon-Nikodym derivative (4.1) 
reduces to a deterministic function, and therefore the 
conditional distribution of ξ[T] given bST � s is identical 
under PT

θ�and PT
θ

; that is, it does not depend on θ ∈Θ. 
As this argument holds for every s ∈ S and T ∈N, we 
may conclude that bS is indeed a sufficient statistic.

The next assumption will ensure via the celebrated 
Gärtner-Ellis theorem that bS also satisfies an LDP.

Assumption 4.2 (Log-Moment Generating Functions). 
The log-moment generating functions corresponding to the 
statistic bS display the following properties. First, we have 
ΛT(λ,θ) < ∞ for all λ ∈ Rd and T ∈N, and the limiting 
log-moment generating function Λ : Rd ×Θ→ (�∞,∞]
defined as the limit

Λ(λ,θ) � lim
T→∞

1
T
ΛT(Tλ,θ) (4.3) 

exists as an extended real number for all λ ∈ Rd and θ ∈Θ. 
In addition, the origin belongs to the interior of domΛ(·,θ)
for all θ ∈Θ. Finally, the gradient ∇λΛ(λ,θ) exists on the 
interior of domΛ(·,θ), and its norm tends to infinity when 
λ�approaches the boundary of domΛ(·,θ) for all θ ∈Θ.

As ΛT(0,θ) � 0 for all T ∈N, it is clear that Λ(0,θ)
� 0; that is, the origin belongs to domΛ(·,θ). Assump-
tion 4.2 imposes the stronger condition that the origin 
belongs to the interior of domΛ(·,θ). Recall next that 
the log-moment generating functions ΛT(λ,θ) are con-
vex in λ�for all T ∈N. By Dembo and Zeitouni (2009, 
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lemma 2.3.9), their asymptotic counterpart Λ(λ,θ) in-
herits convexity in λ. Assumption 4.2 further stipulates 
that domΛT(·,θ) � Rd, which implies via Barndorff- 
Nielsen (2014, theorem 7.2) that ΛT(λ,θ) is analytical in 
λ, throughout all Rd, for all T ∈N. By leveraging 
the dominated convergence theorem, it is then easy 
to prove that ∇λΛT(0,θ) � Eθ[bST] for all T ∈N. The 
following lemma extends this result to the gradient 
∇λΛ(0,θ) of the limiting log-moment generating func-
tion, which exists thanks to Assumption 4.2.

Lemma 4.1. If Assumption 4.2 holds, then we have ∇λΛ(0,θ)
� limT→∞Eθ[bST] for all θ ∈Θ.

Remark 4.1. Lemma 4.1 admits the following generali-
zation. If Assumptions 4.1 and 4.2 hold and η � g(θ′)
�g(θ) for some θ,θ′ ∈Θ, then one can proceed as in 
the proof of Lemma 4.1 to show that ∇λ[Λ(λ,θ)]λ�η �
limT→∞Eθ[bST · exp(〈η, TbST〉�ΛT(Tη,θ))]:

The following example shows that Assumptions 4.1
and 4.2 are satisfied if the observable data are governed 
by an i.i.d. process with a finite state space and if bST 
denotes the empirical distribution.

Example 4.1 (Exponential Families of Finite State i.i.d. 
Processes). Consider the class of finite state i.i.d. pro-
cesses introduced in Example 2.2, and let bST be the 
empirical distribution defined in Example 2.4. In this 
case, the Assumptions 4.1 and 4.2 are satisfied. To see 
this, set the baseline model θ0 to the uniform probabil-
ity vector, that is, set (θ0)i � 1=d for all i � 1, : : :d. 
Recalling that the probability of observing ξ[T] is given 
by 

QT
t�1 θξt under an arbitrary model θ ∈Θ�and by 

d�T under the baseline model θ, we then find dPT
θ=

dPT
θ
� dTQT

t�1θξt � dTQd
j�1θ

PT
t�1 1ξt�j

j � exp(〈Tlogθ, bST〉

+Tlogd), where logθ�is evaluated component-wise. In 
addition, the Tth log-moment generating function is 
given by

ΛT(λ,θ)

� logEθ exp 1
T
XT

t�1

Xd

j�1
λj1ξt�j

0

@

1

A

2

4

3

5

� logEθ
YT

t�1
exp 1

T
Xd

j�1
λj1ξt�j

0

@

1

A

2

4

3

5

� TlogEθ exp 1
T
Xd

j�1
λj1ξ1�j

0

@

1

A

2

4

3

5

� Tlog
Xd

i�1
θiexp 1

T
Xd

j�1
λj1i�j

0

@

1

A � Tlog
Xd

i�1
θieλi=T, 

where the second equality follows from the serial inde-
pendence of the observations, and the third inequality 

holds because all observations have the same marginal 
distribution as ξ1. Thus, the family of all finite state i.i.d. 
processes corresponding to the models θ ∈Θ�form a 
time-homogeneous exponential family with parametri-
zation function g(θ) � logθ�and log-partition function 
AT(λ) �ΛT(λ,θ0) � Tlog 1

d
Pd

i�1 eλi=T, which ensures that 
AT(Tg(θ)) ��Tlogd. This confirms Assumption 4.1 and 
consequently shows that the empirical distribution is a 
sufficient statistic for θ. Next, observe that ΛT(λ,θ) < ∞
for all T ∈N and λ ∈ Rd, Λ(λ,θ) � limT→∞

1
TΛT(Tλ,θ) �

log
Pd

i�1 θieλi < ∞ and ∂λiΛ(λ,θ) � θieλi=(
Pd

j�1 θjeλj) for 
all i � 1, : : : , d and λ ∈ Rd. Therefore, Λ(λ,θ) is smooth 
and convex in λ�and continuous in θ�on Rd ×Θ. These 
findings imply that Assumption 4.2 holds.

Assumption 4.2 guarantees via the celebrated Gärtner- 
Ellis theorem that bS satisfies an LDP.

Theorem 4.1 (G€artner-Ellis Theorem (Dembo and Zeitouni 
2009, theorem 2.3.6)). If the limiting log-moment generat-
ing function Λ�satisfies Assumption 4.2, then the statistic 
bS satisfies an LDP with good rate function

I(s,θ) � sup
λ∈Rd
〈λ, s〉�Λ(λ,θ): (4.4) 

The limiting log-moment generating function Λ(λ,θ)
and the rate function I(s,θ) of Theorem 4.1 are only 
defined on Rd ×Θ. However, it is usually easy to extend 
I(s,θ) to Rd × clΘ�so that it becomes a rate function in the 
sense of Definition 3.1. In Section 5, we will provide sev-
eral examples where I(s,θ) can even be extended to a reg-
ular rate function on Rd × clΘ. Note that I(s,θ) displays 
the following properties for every fixed θ ∈Θ. First, it 
coincides with the convex conjugate of the limiting log- 
moment generating function Λ(λ,θ) with respect to λ. 
Consequently, I(s,θ) represents a pointwise supremum 
of affine functions and is thus convex and lower semicon-
tinuous in s. By Assumption 4.2, Λ(λ,θ) is essentially 
smooth in λ, that is, the gradient ∇λΛ(λ,θ) exists on the 
interior of domΛ(·,θ), and its norm tends to infinity 
when λ�approaches the boundary of domΛ(·,θ). This 
implies via (Rockafellar 1970, theorem 26.3) that the rate 
function I(s,θ) is strictly convex in s on the relative inte-
rior of domI(·,θ). Conversely, if I(s,θ) is strictly convex 
in s, then the same theorem guarantees that Λ(λ,θ) is 
essentially smooth in λ. This implication is sometimes 
useful to verify Assumption 4.2. As Λ(0,θ) � 0, we fur-
ther have I(s,θ) ≥ 0 for all s ∈ S. Finally, as we will show 
in the following lemma, Assumption 4.2 implies via the 
Gärtner-Ellis theorem that S∞(θ) � ∇λΛ(0,θ).

Lemma 4.2 (Asymptotic Consistency of bS). If Assump-
tion 4.2 holds, then, as T grows, bST converges in probability 
under Pθ�to ∇λΛ(0,θ) for every θ ∈Θ. This implies that 
S∞(θ) � ∇λΛ(0,θ).

The following example shows that the Gärtner-Ellis 
theorem subsumes Sanov’s theorem as a special case.
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Example 4.2 (LDP for Finite State i.i.d. Processes 
Revisited). Consider the class of finite state i.i.d. processes 
of Example 2.2, and let bST be the empirical distribution 
defined in Example 2.4. From Example 4.1 we know that 
the limiting log-moment generating function is given 
by Λ(λ,θ) � log

Pd
i�1 θieλi and that Assumptions 4.1 and 

4.2 are satisfied. By Theorem 4.1, bS thus satisfies an LPD 
with good rate function I(s,θ) � supη∈Rd〈η, s〉�Λ(η,θ)
�D(s‖θ), where the second equality follows from 
an elementary but tedious calculation. This reasoning 
reveals that Sanov’s theorem (Dembo and Zeitouni 
2009, theorem 2.1.10), which describes an LDP for the 
empirical distributions on i.i.d. data, emerges as a spe-
cial case of the Gärtner-Ellis theorem. Recall also from 
Example 3.1 that the relative entropy admits a lower 
semicontinuous extension to S × clΘ � ∆d × ∆d and 
constitutes a regular rate function.

We will now demonstrate that if the statistic bS not 
only satisfies an LDP with a regular rate function but is 
also sufficient, then even the original meta-optimization 
problems (2.4) admit Pareto dominant solutions that 
are available in closed form. To this end, denote as usual 
by c̃? the distributionally robust predictor of Definition 
3.4 and introduce a data-driven predictor bc ? defined 
through bc ?T(x) � c̃?(x, bST) for all T ∈N.

Theorem 4.2 (Optimality of bc ?). If Assumptions 2.1, 2.2, 
4.1, and 4.2 hold, the rate function (4.4) is regular, and 
r> 0, then bc ? is a Pareto dominant solution of the meta- 
optimization problem (2.4a).

The assumptions of Theorem 4.2 ensure via the 
Gärtner-Ellis theorem that bS satisfies an LDP, and thus 
they imply the assumptions of Theorem 3.1. From The-
orem 3.1, we further know that c̃? represents a Pareto 
dominant solution to the restricted meta-optimization 
problem (2.6a) over compressed data-driven predic-
tors. The discussion after Example 2.5 finally implies 
that the objective function value of bc ? in (2.4a) coincides 
with that of c̃? in (2.6a) for every fixed decision x ∈ X 
and model θ ∈Θ, that is, we have

lim
T→∞

Eθ[bc ?T(x)] � c̃?(x, S∞(θ)):

As Theorem 4.2 identifies bc ? as a Pareto dominant solu-
tion to (2.4a), the previous identity thus implies that the 
original meta-optimization problem (2.4a) is indeed 
equivalent to the restricted meta-optimization problem 
(2.6a). In other words, compressing the raw data ξ[T]
into bST incurs no loss of optimality.

Theorem 4.2 can be interpreted as establishing a sepa-
ration principle that enables a decoupling of estimation 
and optimization. Instead of directly solving a data- 
driven optimization problem of the form minx∈XbcT(x)
constructed from the raw data ξ[T], which may become 
increasingly difficult as T grows, we can first solve an 

estimation problem that evaluates the statistic bST and 
subsequently solve an optimization problem minx∈Xc̃ 
(x, bST) constructed merely from bST. Theorem 4.2 guaran-
tees that if these two data-driven optimization problems 
are designed optimally, then no optimality is sacrificed 
by this separation.

Next, we show that the meta-optimization problem 
(2.4b) over data-driven predictor-prescriptor pairs also 
admits a Pareto dominant solution. To this end, define 
the distributionally robust predictor c̃? and the corre-
sponding data-driven predictor bc ? as before, and let x̃?
be a distributionally robust prescriptor as in Definition 
3.5. Then, introduce a data-driven prescriptor bx ? defined 
through bx ?

T � x̃?(bST) for all T ∈N.

Theorem 4.3 (Optimality of ðbc ?,bx?Þ). If Assumptions 2.1, 
2.2, 4.1, and 4.2 hold, the rate function (4.4) is regular, and 
r > 0, then (bc ?, bx?) is a Pareto dominant solution of the 
meta-optimization problem (2.4b).

The assumptions of Theorem 4.3 imply the assump-
tions of Theorem 3.2, which in turn implies that (c̃?, x̃?)
represents a Pareto dominant solution to the restricted 
meta-optimization problem (2.6b). The discussion after 
Definition 2.6 further implies that the objective function 
value of (bc ?, bx ?

) in (2.4b) coincides with that of (c̃?, x̃?)
in (2.6b) for every fixed model θ ∈Θ; that is, we have

lim
T→∞

Eθ[bc ?T(bx
?

T)] � c̃?(x̃?(S∞(θ)), S∞(θ)):

As Theorem 4.3 identifies (bc ?, bx?) as a Pareto dominant 
solution to (2.4b), the original meta-optimization prob-
lem (2.4b) is thus equivalent to the restricted meta- 
optimization problem (2.6b). Therefore, Theorem 4.3
establishes another separation principle that enables a 
decoupling of estimation and optimization.

Theorems 4.2 and 4.3 are reminiscent of the cele-
brated Rao-Blackwell theorem (Rao 1945, Blackwell 
1947), which asserts that any given estimator bθT of the 
unknown parameter θ�can be improved by condition-
ing it on a sufficient statistic bST. The resulting estimator 
Eθ[bθT | bST] is noninferior to bθT with respect to the mean 
squared error criterion and depends on the available 
data only through bST. The proof of the Rao-Blackwell 
theorem critically relies on Jensen’s inequality, which 
is applicable because the mean squared error is convex 
in bθT. Unfortunately, it is not possible to improve a 
given data-driven predictor bcT(x) by simply condition-
ing it on bST. This approach fails because the out- 
of-sample disappointment is nonconvex in bcT(x). The 
proofs of Theorems 4.2 and 4.3 are therefore substan-
tially more involved than that of the Rao-Blackwell 
theorem.

Example 4.3 (Optimal Predictors and Prescriptors for 
Finite State i.i.d. Processes). Consider the class of finite 
state i.i.d. processes of Example 2.2, and let bST be the 
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empirical distribution defined in Example 2.2. We 
know from Example 3.1 that bST satisfies an LDP with 
regular rate function D(s‖θ). By Theorems 3.1 and 3.2, 
the distributionally robust predictor c̃? with a relative 
entropy ambiguity set and the corresponding prescrip-
tor x̃? thus provide Pareto dominant solutions for 
the restricted meta-optimization problems (2.6). From 
Example 4.1, we further know that Assumptions 4.1
and 4.2 hold. By Theorems 4.2 and 4.3, the data-driven 
predictor bc? and the corresponding prescriptor bx? in-
duced by c̃? and x̃?, respectively, thus provide Pareto 
dominant solutions for the original meta-optimization 
problems (2.4).

5. Data-Generating Processes
We now describe several data-generating processes for 
which the restricted meta-optimization problems (2.6) 
or even the original meta-optimization problems (2.4) 
admit Pareto dominant solutions.

5.1. Finite-State Markov Chains
Assume that {ξt}

T
t�1 represents a time-homogeneous 

ergodic Markov chain with state space Ξ � {1, : : : , m}
and dummy deterministic initial state ξ0 � i0 ∈ Ξ�satisfy-
ing limt→∞P?[ξt � i, ξt+1 � j] � (θ?)ij > 0 for all i, j ∈ Ξ. 
The matrix θ? encodes the stationary probability mass 
function of the doublet (ξt,ξt+1), and thus
X

j∈Ξ
(θ?)ij � lim

t→∞

X

j∈Ξ
P?[ξt � i, ξt+1 � j] � lim

t→∞
P?[ξt � i]

� lim
t→∞

X

j∈Ξ
P?[ξt�1 � j, ξt � i] �

X

j∈Ξ
(θ?)ji, 

that is, the row sums of θ? coincide with the respec-
tive column sums. These properties of θ? prompt us to 
define Θ � {θ ∈ Rm×m

++ :
P

i, j∈Ξθij � 1,
P

j∈Ξθij �
P

j∈Ξθji 
∀i ∈ Ξ} as the set of all strictly positive doublet probabil-
ity mass functions with balanced marginals. Every θ ∈Θ�
induces a unique row vector πθ ∈ R1×m

++ of stationary 
state probabilities and a unique transition probability 
matrix Pθ ∈ Rm×m

++ defined through (πθ)i �
P

j∈Ξθij and 
(Pθ)ij � θij=(πθ)i, respectively. By construction, Pθ�is a 
stochastic matrix whose rows represent strictly positive 
probability vectors, and the stationary distribution πθ�
satisfies πθPθ � πθ�(see Ross 2010, chapter 4) for further 
details on Markov chains). We conclude that P? belongs 
to a finitely parametrized ambiguity set of the form 
P � {Pθ : θ ∈Θ}, where each model θ ∈Θ�encodes a 
probability measure Pθ�on (Ω,F )with

Pθ[ξ[T] � (i1, : : : , iT)]

�
YT

t�1
(Pθ)it�1it+1

∀(i1, : : : , iT) ∈ ΞT, T ∈N:

Also, Θ�is embedded in a Euclidean space of finite 
dimension d �m2. In summary, we have thus shown 

that Assumption 2.1 holds. Next, we define the empiri-
cal doublet distribution bST ∈ Rm×m through

(bST)ij �
1
T
XT

t�1
1(ξt�1,ξt)�(i, j) ∀i, j ∈ Ξ: (5.1) 

By construction, bS � {bST}T∈N constitutes a statistic with 
state space S � cl(∪T∈N∆m×m ∩ (Z

m×m=T)) � cl(∆m×m ∩

Qm×m) � ∆m×m: We emphasize that S is a strict superset 
of the model space Θ. The ergodic theorem for Markov 
chains further ensures that the empirical doublet distri-
bution bST converges Pθ-almost surely to the true dou-
blet distribution θ�as T grows (Ross 2010, theorem 4.1). 
Consequently, we have S∞(θ) � θ�for all θ ∈Θ, which 
implies that bS is a consistent model estimator in the 
sense of Definition 2.5 and that the set S∞ of all asymp-
totic realizations of bS coincides with Θ. In addition, S∞
is clearly a local homeomorphism.

We now follow the reasoning in Billingsley (1961) 
to show that the ambiguity set P represents a time- 
homogeneous exponential family. Specifically, we de-
fine the baseline model θ ∈Θ�through θij � 1=m2 for 
all i, j ∈ Ξ. The observations ξt, t ∈N, are thus serially 
independent and uniformly distributed under Pθ , and 
the corresponding transition probability matrix satisfies 
(Pθ)ij � 1=m for all i, j ∈ Ξ. In addition, the probability of 
observing ξ[T] under Pθ�is given by 1=mT, and dPT

θ=

dPT
θ
�mTQT

t�1 (Pθ)ξt�1ξt
�mTQ

i, j∈Ξ(Pθ)
PT

t�1 1(ξt�1,ξt)�(i, j)
ij �mT 

Q
i, j∈Ξ�(Pθ)

T(bST)ij
ij � exp(〈Tlog(Pθ), bST〉 +Tlogm), where 

the logarithm of the matrix Pθ�is evaluated element- 
wise. This reveals that P constitutes an exponential 
family in the sense of Assumption 4.1 with parametriza-
tion function g(θ) � log(Pθ) and that bS is a sufficient 
statistic. The Tth log-moment generating function 
ΛT(λ,θ)—and thus also the log-partition function 
AT(λ)—admit no concise closed-form expression. How-
ever, the proof of Dembo and Zeitouni (2009) (theorem 
3.1.2) implies that the limiting log-moment generating 
function Λ(λ,θ) � limT→∞

1
TΛT(Tλ,θ) is everywhere 

finite and differentiable in λ�for all θ ∈Θ. In addition, 
we have ∇λΛ(0,θ) � limT→∞Eθ[bST] � Eθ[limT→∞bST] � θ, 
where the three equalities follow from Lemma 4.1, the 
dominated convergence theorem, and our insight that bS 
converges Pθ-almost surely to θ. Hence, Assumption 
4.2 holds, which ensures via the Gärtner-Ellis theorem 
that bS satisfies an LDP (Dembo and Zeitouni 2009, theo-
rem 3.1.13). The corresponding rate function I(s,θ) is 
given by the convex conjugate of the limiting log-moment 
generating function Λ(λ,θ)with respect to λ, which coin-
cides with conditional relative entropy of s with respect to 
θ�(Dembo and Zeitouni 2009, section 3.1.3).

Definition 5.1 (Conditional Relative Entropy). Using the 
standard convention that 0log(0=p) � 0 for any p ≥ 0, 
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the conditional relative entropy of s ∈ S with respect 
to θ ∈Θ�is defined as

Dc(s‖θ) �
X

i, j∈Ξ
sij log

sij
P

k∈Ξ sik

� �

� log
θij

P
k∈Ξ θik

� �� �

:

If we denote the ith rows of the transition probability 
matrices Ps and Pθ�by (Ps)i· and (Pθ)i·, respectively,1 and 
if we denote the relative entropy as usual by D(·‖·), then 
an elementary calculation reveals that Dc(s‖θ) �

P
i∈Ξ�

(πs)i D((Ps)i·‖(Pθ)i·): Thus, Dc(s‖θ) can be viewed as the 
relative entropy distance between the transition proba-
bility vectors under s and θ�emanating from a random 
state of the Markov chain, averaged by the invariant 
state distribution associated with s. This interpretation 
justifies the name “conditional relative entropy.” Also, 
Definition 5.1 specifies Dc(s‖θ) only on S ×Θ�and that 
Dc(s‖θ) is continuous on S ×Θ�because of our standard 
conventions for the logarithm. We emphasize that 
Dc(s‖θ) cannot be continuously extended beyond S ×Θ. 
However, Dc(s‖θ) admits a unique lower semicontinu-
ous extension to S × clΘ, which is obtained by setting

Dc(s‖θ) � lim
δ↓0

inf
(s′,θ′)∈S×Θ

{Dc(s′‖θ′) : ‖(s′,θ′)� (s,θ)‖ ≤ δ}

∀(s,θ) ∈ S × (clΘ\Θ);

see also (Rockafellar and Roger 1998, definition 1.5). In 
the following, we will always mean this lower semi-
continuous extension to S × clΘ�when referring to the 
conditional relative entropy Dc(s‖θ). The next proposi-
tion establishes that the conditional relative entropy 
represents a regular rate function in the sense of Defi-
nition 3.3.

Proposition 5.1 (Properties of the Conditional Relative 
Entropy). The conditional relative entropy Dc(s‖θ) is a reg-
ular rate function in the sense of Definition 3.3. In addition, 
Dc(s‖θ) is convex in s.

By Theorems 3.1 and 3.2, we may now conclude that 
the distributionally robust predictor c̃? with a condi-
tional relative entropy ambiguity set and the correspond-
ing prescriptor x̃? provide Pareto dominant solutions for 
the restricted meta-optimization problems (2.6). More-
over, by Theorems 4.2 and 4.3, the data-driven predictor 
bc? and the corresponding prescriptor bx? induced by c̃?
and x̃?, respectively, provide Pareto dominant solutions 
for the original meta-optimization problems (2.4). As 
Dc(s‖θ) fails to be convex in θ, computing c̃?(x, s) for a 
fixed x ∈ X and s ∈ S necessitates the solution of a chal-
lenging nonconvex optimization problem with O(m2)

decision variables (Li et al. 2021). In Online Appendix C, 
we show that the restricted meta-optimization problems 
sometimes admit Pareto dominant solutions even if the 
training data are generated by an autoregressive process 
with an uncountable state space instead of a finite-state 
Markov chain.

5.2. Independent Observations with Identical 
Parametric Distribution Functions

As a last example, assume that the observations {ξt}
T
t�1 

are valued in Rm and that they are serially independent 
and share the same distribution function Fθ? under P?; 
that is, we have P?[ξt ≤ z] � Fθ?(z) for all z ∈ Rm and 
t ∈N. Here, Fθ, θ ∈Θ, is a family of distribution func-
tions with common support Ξ ⊆ Rm, where the param-
eter θ�ranges over the relative interior Θ�of a convex 
subset of Rd, and θ? denotes the unknown true param-
eter. Clearly, the mean value of Fθ�must be a function 
of θ�and can thus be expressed as S∞(θ). Throughout 
this section, we assume that the function S∞ constitu-
tes a homeomorphism from the set Θ�to its image 
S∞ � {S∞(θ) : θ ∈Θ}. As any homeomorphism is in-
vertible, this assumption means that the parameter θ�is 
uniquely determined by the mean value of Fθ. We may 
then conclude that P? belongs to an ambiguity set 
{Pθ : θ ∈Θ}, where each θ ∈Θ�encodes a probability 
measure Pθ�on (Ω,F ) satisfying

Pθ[ξt ≤ zt ∀t � 1, : : : , T] �
YT

t�1
Fθ(zt) ∀z ∈ RmT, T ∈N:

To estimate the mean value S∞(θ) (and thereby implic-
itly also θ), we use the sample mean

bST �
1
T
XT

t�1
ξt ∀T ∈N: (5.2) 

By our standard conventions, the state space S of bS is 
given by the closure of the convex hull of Ξ. In the fol-
lowing, we assume that the distribution function Fθ�has 
exponentially bounded tails for every θ ∈Θ. The strong 
law of large numbers then implies that bST converges 
Pθ-almost surely to S∞(θ). More specifically, we hence-
forth focus on several popular families of distribution 
functions that are susceptible to analytical treatment: 

(a) Normal distributions on Rm with an unknown 
mean vector θ ∈ Rm and a positive definite covariance 
matrix Σ ∈ Rm×m

(b) Exponential distributions on R+ with an unknown 
rate parameter θ > 0

(c) Gamma distributions on R+ with an unknown scale 
parameter θ > 0 and a shape parameter k>0

(d) Poisson distributions on N ∪ {0}with an unknown 
rate parameter θ ∈ R++

(e) Bernoulli distributions on {0, 1} with an unknown 
success probability θ ∈ (0, 1)

(f) Geometric distributions on N with an unknown 
success probability θ ∈ (0, 1)

(g) Binomial distributions on N ∪ {0}with an unknown 
success probability θ ∈ (0, 1) and N ∈N trials

Clearly, each of these examples satisfies Assumption 
2.1. It is also well known that each of these examples 
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gives rise to a time-homogeneous exponential family in 
the sense of Assumption 4.1 and that the sample mean 
(5.2) is a sufficient statistic for θ. To see that the sample 
mean also satisfies an LDP with a regular rate function, 
for i.i.d. data, the limiting log-moment generating func-
tion simplifies to

Λ(λ,θ) � lim
T→∞

1
T

logEθ[exp(〈Tλ, bST〉)]

� log
Z

Rm
eλ
⊤ξ dFθ(ξ)

� �

: (5.3) 

As Fθ�is assumed to have exponentially bounded tails, 
Λ(λ,θ) is finite on a neighborhood of λ�0 for every 
fixed θ ∈Θ. Moreover, Λ(λ,θ) is available in closed 
form for all families of distribution functions listed previ-
ously (Online Appendix B). In each case, one can there-
fore verify by inspection that the gradient ∇λΛ(λ,θ)
exists on the interior of domΛ(·,θ) and that its norm 
tends to infinity when λ�approaches the boundary of 
domΛ(·,θ). Thus, Assumption 4.2 holds, which ensures 
via the Gärtner-Ellis theorem that bS satisfies an LDP. The 
corresponding rate function I(s,θ) coincides with the 
Cramér function Λ∗(s,θ), that is, the convex conjugate of 
the limiting log-moment generating function (5.3) with 
respect to λ. The Cramér function is again available in 
closed form for all examples listed above (Table 1 in 
Online Appendix). In each case, one can verify by inspec-
tion that Λ∗(s,θ) represents in fact a regular rate function. 
By Theorems 3.1 and 3.2, the distributionally robust pre-
dictor c̃? constructed from the Cramér function and the 
corresponding prescriptor x̃? thus provide Pareto domi-
nant solutions for the restricted meta-optimization 
problems (2.6). Moreover, by Theorems 4.2 and 4.3, the 
data-driven predictor bc? and the corresponding prescrip-
tor bx? induced by c̃? and x̃?, respectively, provide Pareto 
dominant solutions for the original meta-optimization 
problems (2.4).

6. Conclusions
This paper proposes a rigorous framework for identify-
ing optimal estimators for the objective functions and 
the optimal solutions of data-driven decision problems. 
To conclude, we provide recommendations for practi-
tioners and discuss potential generalizations of our 
results.

Our paper offers the following three-step guideline for 
practitioners faced with a data-driven decision problem. 
First, users should identify a finitely parametrized time 
series model consistent with the observable data. Second, 
they should find a statistic for the unknown parameters 
of the time series model that satisfies an LDP. Third, they 
should construct efficient data-driven predictors and 
prescriptors by solving DRO Problems (3.3) and (3.4), 
which involve an ambiguity set constructed form the 

rate function of the LDP. The out-of-sample disappoint-
ment of these predictors and prescriptors is guaranteed 
to be equal to e�rT+o(T), where r is the radius of the ambi-
guity set. Because of its direct physical interpretation, 
we believe that it is natural for decision makers to choose 
r in view of their risk tolerance instead of calibrating 
it algorithmically. Nevertheless, some decision makers 
may want to calibrate r via cross-validation with the goal 
to minimize the out-of-sample risk. In doing so, how-
ever, direct control over the out-of-sample disappoint-
ment is lost.

The main results of this paper rely on several 
assumptions, some of which could be generalized. 
Assumption 2.1 requires that Θ�constitutes a finitely 
parametrized ambiguity set. However, we believe that 
the results of Section 3 extend to infinitely parametrized 
(i.e., nonparametric) ambiguity sets. For example, in 
Van Parys et al. (2021), our results for finite-state i.i.d. 
processes are extended to i.i.d. processes with a contin-
uous state space. This generalization does not require 
fundamentally new ideas but requires more sophisti-
cated topological arguments that make the proofs less 
accessible. Assumption 2.2 requires c(x,θ) to be uni-
formly continuous and bounded. It is nonrestrictive 
for practical purposes. We believe that it can be relaxed 
to requiring that c(x,θ) be lower semicontinuous at 
the expense of complicating the proofs of Proposition 
3.1, Theorem 3.1, and Theorem 3.2. Assumption 3.1
requires the statistic bS to satisfy an LDP with a regular 
rate function and thus guarantees that the restricted 
meta-optimization problems (2.6) are solvable. This 
assumption seems more difficult to relax as our results 
critically rely on large deviations theory. Assumption 
4.1 requires P � {Pθ : θ ∈Θ} to represent an exponen-
tial family, and Assumption 4.2 captures standard 
technical conditions required for the Gärtner-Ellis 
Theorem (Theorem 4.1). Together, these assumptions 
imply that bS is a sufficient statistic satisfying an LDP, 
and thus they imply Assumption 3.1. Clearly, the sta-
tistic bS must satisfy some notion of sufficiency for The-
orems 4.2 and 4.3 to hold. Nevertheless, we believe 
that Assumptions 4.1 and 4.2 can be relaxed and that 
Theorems 4.2 and 4.3 remain valid if bS is only sufficient 
in an asymptotic sense. Finally, the meta-optimization 
problems (2.4) and (2.6) involve two asymptotic perfor-
mance criteria, that is, the asymptotic in-sample risk 
and the asymptotic decay rate of the out-of-sample dis-
appointment. Although the asymptotic nature of these 
performance criteria is undesirable from a modeling 
perspective, the meta-optimization problems corre-
sponding to a fixed sample size T may no longer admit 
Pareto dominant solutions. However, if the statistic bST 
enjoys a finite sample guarantee, then the distribution-
ally robust predictors and prescriptors (3.3) and (3.4) 
may still be approximately Pareto dominant.
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Endnote
1 If (πs)i �

P
j∈Ξsij � 0, then we may define without loss of generality 

(Ps)ij � 1 if j� i and (Ps)ij � 0 otherwise.
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