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Verduyn Lunel, René Allerstorfer, Roope Uola, Tyler Volkoff, and Yiğit Subaşı. It is a privilege
to have each of you as part of my academic journey.

I would especially like to acknowledge Adam Burchardt, Denis Rochette, Philip Verduyn
Lunel, René Allerstorfer, and Jordi Weggemans for the enjoyable and productive problem-
solving sessions we had. Thanks go to Marcus Heinrich for inviting me to collaborate on
bosonic randomised benchmarking. Moreover, I was fortunate to participate in the Los Alamos
Summer School, where I had the pleasure of working with Yiğit Subaşı, Eddie Schoute, and
Tyler Volkoff. I am also grateful to Sam Slezak and Touheed Anwar Atif for our engaging
discussions, and to the school’s organisers, Marco Cerezo and Lukasz Cincio, for making my
participation possible.

Many thanks to Matthias Christandl, Ion Nechita, Michał Studziński, and Mio Murao for
their kind invitations and for organising my academic visits. Each of these visits was not only
highly productive but also genuinely memorable.

Special thanks to Tudor Giurgica-Tiron for our inspiring discussions—I have learned a lot
from you. I would also like to express my sincere gratitude to my amazing collaborators with
whom I am working on other projects not mentioned in this thesis: Adrián Solymos, Amira
Abbas, Chaithanya Rayudu, Cunlu Zhou, Francesco Anna Mele, Francisco Escudero Gutiér-
rez, Jiani Fei, Jun Takahashi, Kevin Thompson, Ludovico Lami, Marek Mozrzymas, Martin
Larroca, Michał Studziński, Michał Horodecki, Mio Murao, Nunzia Cerrato, Ojas Parekh, Pi-
otr Kopszak, Satoshi Yoshida, Sydney Timmerman, Tomasz Młynik, Vladyslav Visnevskyi,
Vojtěch Havlíček, and Zoltán Zimborás.

I thank my paranymphs, Adam Burchardt and Philip Verduyn Lunel. Adam, you are an

xiii



exceptional friend and companion in tackling scientific challenges, and I have learned so much
from your problem-solving approach and expertise. Your support and scientific partnership
have been truly invaluable. Philip, thank you very much for your friendship, for our joint work,
guidance in navigating life in the Netherlands, and for bringing laughter and positivity along
the way.

I would also like to thank my long-term officemates René, Quinten, Mani, and Philip.
Sharing an office with all of you has been a great pleasure. Thank you, Sebas and Joran, for
the enjoyable skiing trip we shared. Additionally, special thanks to Sebas for your friendship,
for your help on various occasions, and for always creating a positive atmosphere.

Moreover, I appreciate and cherish the fantastic community at QuSoft. Warm thanks to all
QuSofters, including Adam Burchardt, Ailsa Robertson, Akshay Ramachandran, Ake Köhne,
Amira Abbas, Anna Luchnikova, Arghavan Safavi-Naini, Arie Soeteman, Arjan Cornelissen,
Chris Cade, Christian Schaffner, Daan Planken, Davi Castro-Silva, Filippo Girardi, Florian
Speelman, Francisco Escudero Gutiérrez, Freek Witteveen, Galina Pass, Garazi Muguruza Lasa,
Gina Muuss, Harold Nieuwboer, Harry Buhrman, Ido Niesen, Jana Sotáková, Jelena Mack-
eprang, Jeroen Zuiddam, Jiri Minar, John van de Wetering, Jonas Helsen, Jordi Weggemans,
Jop Briet, Joppe Stokvis, Joran van Apeldoorn, Junqiao Lin, Kareljan Schoutens, Koen Groen-
land, Koen Leijnse, Krystal Guo, Léo Colisson, Llorenç Escolà Farràs, Lorenzo Grevink, Luca
D’Alessandro, Ludovico Lami, Lynn Engelberts, Marc Farreras Bartra, Manideep Mamindla-
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Chapter 1
Introduction

The Universe is an enormous direct product of
representations of symmetry groups.

Steven Weinberg

Symmetry plays a fundamental role in mathematics and physics. For example, in classical
mechanics, thanks to Noether’s theorem, symmetry is responsible for conservation laws. At
the same time, symmetry is also the focus of a major area of mathematics—representation
theory, whose applications range from physics to biology, chemistry and the arts. “Symmetry
argument” is a common problem solving technique both in physics and mathematics: observing
the symmetries inherent to a problem often allows simplifying the problem. In the absence of
symmetry, difficult problems can often be made more tractable by assuming some form of
symmetry. Generally speaking, the more symmetry a problem has the more tractable it is.

Quantum mechanics, formally established in 1925 with Werner Heisenberg’s breakthrough
article [Hei25], has transformed our fundamental understanding of nature and led to new tech-
nologies. As quantum theory approaches its 100th anniversary, it continues to pose significant
scientific challenges. In particular, questions regarding the quantum nature of information and
the computational foundations of quantum theory were largely overlooked during the field’s
early development. However, the current computation and information era naturally led peo-
ple to ask questions about the nature of quantum information. Interest in quantum information
theory has surged since the late 1980s, and with the discovery of Shor’s algorithm in 1995, inter-
est in quantum computing exploded. Today, quantum information and quantum computing are
thriving research areas, with many open questions that demand more developed mathematical
tools.

On the mathematical side, representation theory has played a crucial role in the development
of quantum mechanics throughout the 20th century, particularly in the study of symmetries,
conservation laws, and the classification of quantum systems. Its ability to reveal hidden
structures has had profound impacts, from understanding atomic spectra to the formulation
of the Standard Model. The broad goal of this thesis is to extend representation-theoretic
techniques to quantum information and computation. More concretely, we study in detail
and apply a certain generalisation of an important representation-theoretic tool, Schur–Weyl
duality, to a broader setting that naturally arises in quantum information theory.

1
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Schur–Weyl duality

The unitary group of symmetries plays a special role in the context of quantum mechanics and
quantum information, and, for systems consisting of many identical parts, the unitary symmetry
becomes intertwined with permutational symmetry. This intimate connection between unitary
and permutation groups acting on several identical quantum systems is expressed via the so-
called Schur–Weyl duality. In its simplest form, it states that the two-qubit singlet state |ψ−⟩ :=
(|01⟩ − |10⟩)/

√
2 is the unique (up to a global phase) state that is invariant under identical

local unitary rotations: (U ⊗ U)|ψ−⟩ = det(U)|ψ−⟩ for any U ∈ U2, as well as the unique
anti-symmetric state: SWAP|ψ−⟩ = −|ψ−⟩. A similar dual characterisation in terms of unitary
and permutational symmetries applies not only to |ψ−⟩ but also its orthogonal complement,
allowing to decompose the whole two-qubit space C2⊗C2 into invariant subspaces. This duality
extends also to (Cd)⊗n where each of the n systems has dimension d.

More formally, Schur–Weyl duality states that unitary and permutation actions are mutual
centralisers within the algebra of linear transformations on (Cd)⊗n. This means that the algebra
generated by the action of Ud is the commutant of the permutation action of Sn, and vice versa.
This duality provides a powerful tool for understanding the representation theory of both groups
and has numerous applications in various branches of mathematics and physics.

A natural situation where Schur–Weyl duality arises in quantum information is when deal-
ing with many copies of some quantum state ρ. The total state ρ⊗n is then invariant under
permutations and transforms in a straightforward way under simultaneous unitary basis change
on each of the n systems. This scenario is very common in quantum information theory where
Schur–Weyl duality has become an important tool [Har05; Bot16]. It has also found numer-
ous applications in the design and analysis of quantum algorithms where weak Schur sampling
[CHW07] and quantum Schur transform [Har05; BCH06; KS18; Kro19] play an important role
[Wri16]. Specific quantum algorithmic tasks where Schur–Weyl duality is used include quantum
spectrum [KW01a] and entropy [AISW20] estimation, quantum spectrum testing [OW15], state
tomography [Key06; HHJWY17; OW16; OW17], and quantum majority vote [BLMMO22].

Mixed Schur–Weyl duality

The classic Schur–Weyl duality admits various generalisations [Ber12; MS14; Ben96; Ben+94;
Dot08]. We are particularly interested in the setting referred to as mixed Schur–Weyl duality.
In this setting, we consider the action U⊗n⊗ Ū⊗m on the space (Cd)⊗n+m. The (n+m)-tensors
in this space are called mixed1 because they have two types of indices: some are acted upon by
U while others by Ū [Hal96; Nik07]. The commutant of this action is known as walled Brauer
algebra and the concrete matrix representation of it on (Cd)⊗n+m is called partially transposed
permutation matrix algebra. The regular Schur–Weyl duality is then the special case when
either n = 0 or m = 0. We are interested in the general case of arbitrary n, m and local
dimension d.

The most common scenario is when either n = 1 or m = 1. Such symmetry naturally occurs
in many quantum tasks with a single input or a single output system, such as asymmetric
quantum cloning [Cer00; NPR21; NPR23], port-based teleportation [IH08; MSSH18; SSMH17;
Led22; Chr+21; SMK22; SS23b; FTH23; WHS23], quantum majority vote [BLMMO22], or
Ud-covariant quantum error correction [KL21; KL22]. It also occurs in situations that involve a
partial transpose on a single system, such as in entanglement detection [EW01; COS18; Hub21].

1This has nothing to do with the notion of mixed states in quantum mechanics.
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Group equivariance

Another place where mixed Schur–Weyl duality appears is in studies of quantum transforma-
tions of states that preserve symmetry. Such quantum transformations are called quantum
channels. A quantum channel Φ is called G-covariant, for some group G, if there exist two
unitary representations of G, ϕin and ϕout, such that Φ

(
ϕin(g) ρ ϕin(g)

†) = ϕout(g) Φ(ρ)ϕout(g)
†,

for any group element g ∈ G and state ρ. The structure of group-covariant quantum chan-
nels can be much simpler than the structure of general channels [MSD17]. For example, while
perfect universal programming of general quantum channels is impossible [NC97], covariant
channels can be programmed [GBW21], even in infinite dimensions [GW21]. Group covariance
is important in many contexts. Let us briefly illustrate two that are less obvious: quantum
error correction and machine learning.

Group covariance is particularly important in the context of quantum error correction and
fault tolerance. Many quantum error correcting codes are covariant with respect to the Clifford
group and thus allow for simple or so-called “transversal” implementation of Clifford gates. An
even higher degree of symmetry, namely possessing a universal set of transversal gates, would
be ideal for devising schemes that can manipulate encoded quantum data. However, codes with
such continuous symmetries are ruled out by the well-known Eastin–Knill theorem [EK09]. The
interplay between continuous symmetries and quantum error correction has received revived
attention in the context of holography and quantum gravity, where an approximate version of
the Eastin–Knill theorem was recently established [Fai+20]. Group-covariant quantum codes
with continuous symmetries are also closely related to the notion of quantum reference frames
[HNPS21; YMRCW22].

A special case of group covariance is equivariance, which means that the representations ϕin

and ϕout are either identical or related to each other in some simple way. Intuitively, equivari-
ance says that applying some transformation on the input is equivalent to applying the same
transformation on the output. This is a natural condition that occurs in many contexts. For
example, in machine learning, the structure of neural networks should respect the symme-
tries of the problem at hand, such as translations and rotations when dealing with images.
Such group-equivariant neural networks can have substantially increased expressive capacity
without the need to increase their number of parameters [Coh21; CW16; BBCV21]. In partic-
ular, unitary-equivariant neural networks that capture the symmetries of many-body quantum
systems have recently found applications in quantum chemistry [Qia+22]. More generally,
coordinate-independent convolutional networks on Riemannian manifolds require equivariance
under local gauge transformations [WFVW21].

In quantum machine learning, group-equivariant convolutional quantum circuits have been
proposed to speed up learning of quantum states [ZLLSK23]. In general, equivariant gatesets
can be used to exploit symmetry in variational quantum algorithms [Mey+23]. A general
framework for group-invariant and equivariant quantum machine learning was recently outlined
in [Lar+22].

A particularly natural special case of group covariance is local unitary equivariance, which
corresponds to the case when Φ is a quantum channel from n to m systems, each of dimension
d, the symmetry group G is the full unitary group Ud, and the two unitary representations
are given by ϕin(U) := U⊗n and ϕout(U) := U⊗m. In other words, applying the same unitary
U ∈ Ud on each of the n input systems of Φ is equivalent to applying U on each of the m output
systems. This is precisely the setting of mixed Schur–Weyl duality.

Symmetries with general values of n > 1 and m > 1 correspond to scenarios with multiple
input and output systems [Key02, Section 7], such as quantum state purification [KW01b]
and cloning [SIGA05; Fan+14], multiport-based teleportation [KMSH21; SMKH22; MSK21].
Such symmetries also occur in situations that involve the partial transpose on several systems,
such as the extendability problem [JV13; JSZ22], entanglement detection [BCS20; BSH24], or
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Figure 1.1: Standard teleportation (left) and port-based teleportation (right) represented as
quantum circuits. In standard teleportation Alice has a qubit state |ψ⟩ and one half of the
maximally entangled state |Ψ+⟩; the other half is with Bob. Alice performs a Bell measurement
on her qubits and sends the two outcome bits i, j to Bob. Bob then performs a correction
operation by applying a product of Pauli unitaries XjZi. In port-based teleportation, Bob
shares with Alice n copies of the |Ψ+⟩ state. Alice performs a joint measurement E on all her
qubits and obtains an outcome k ∈ [n]. Upon receiving the measurement outcome k from Alice,
Bob simply discards (or “traces out”) all systems except for the k-th one (this is denoted by
Tr[n]\k), where the teleported state is to be found without the need for any correction operations.

universality of qudit gate sets [SMZ22; DS23; SS23a]. Universality of quantum circuits with
two-local Ud-equivariant gates has recently been considered in [Mar22; HLM21; MLH24] from
the perspective of conservation laws. Finally, this class of symmetries is also of independent
interest in high-energy physics [KR07; Can11] and the study of quantum spin systems [Rya21;
BRR23].

Port-based teleportation

One of the examples mentioned above where mixed Schur–Weyl duality appears is port-based
teleportation (PBT). Before we describe port-based teleportation, let us remind the standard
teleportation protocol.

Quantum teleportation is a fundamental protocol within quantum information theory, al-
lowing an unknown quantum state to be transferred between parties without the state’s physical
transmission. First proposed by Bennett et al. in 1993 [Ben+93], the classic protocol involves
Alice and Bob, who share an entangled qubit pair. Alice then performs a joint Bell-state mea-
surement on her qubit and the qubit she wishes to teleport. After that, she sends the outcome
to Bob through a classical communication channel. Based on the information provided by Al-
ice, Bob applies a specific unitary operation to his qubit to reconstruct the original quantum
state, see Fig. 1.1.

Port-based teleportation (PBT) is an interesting variant of teleportation that was proposed
by Ishizaka and Hiroshima in 2008 [IH08]. PBT eliminates the need for Bob to perform any
corrective operations after receiving Alice’s classical message. Instead, Alice and Bob share
multiple entangled qubit pairs, known as “ports”. Alice performs a measurement that entangles
her input state with all her qubits and then sends the measurement result to Bob. Bob, upon
receiving this information, selects one of his qubits from the entangled ports as the teleported
state without needing to apply any further transformations, see Fig. 1.1.

A downside of PBT is that the teleportation implemented in this way cannot be perfect,
while standard teleportation achieves perfect transmission of the state. PBT also requires much
more entanglement resources compared to the standard protocol. However, as the amount of
shared entanglement grows, the quality of PBT improves and becomes arbitrarily close to
perfect. PBT offers a solution for teleportation in situations where performing conditional
operations is impractical or when a “correction-free” teleportation is desired. Such situation
arises in the study of non-local quantum computations and a quantum cryptographic primitive
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called quantum position verification.
The theoretical underpinnings of port-based teleportation are closely connected to the mixed

Schur–Weyl duality. However, efficient construction of quantum circuits for this task was a
long-standing open problem. That is why the tools we developed for mixed Schur–Weyl duality
enabled us to make progress on construction of efficient quantum algorithms for PBT.

1.1 Summary of the results
This thesis makes several contributions to the understanding and application of mixed Schur–
Weyl duality in quantum information and quantum computing. Our main contributions are as
follows.

1. We find an explicit action of the generators of the matrix algebra of partially transposed
permutations in the Gelfand–Tsetlin basis of all irreducible representations, see Theo-
rem 3.7.1. This algebra appears naturally in the context of mixed Schur–Weyl duality,
and explicit knowledge of its action is crucial for applications in quantum information
and computing.

2. We adapt existing constructions of primitive and primitive central idempotents to the
matrix algebra of partially transposed permutations in Section 3.6. Our main technical
result here is Theorem 3.6.6, which adapts Jucys–Murphy elements of the walled Brauer
algebra to the matrix algebra of partially transposed permutations.

3. We introduce and develop an efficient quantum circuit for the mixed quantum Schur
transform in Theorem 4.3.1. Mixed quantum Schur transform is a key element to allow
applications of mixed Schur–Weyl duality in quantum computing. The main new ingredi-
ent of the mixed quantum Schur transform is the dual Clebsch–Gordan transform, which
we implement as a quantum circuit in Theorem 4.4.1.

4. We construct efficient quantum algorithms for port-based teleportation in Theorem 5.1.1,
thus solving a long-standing open problem. The key idea is the realisation of the Naimark
dilation theorem in the Hilbert space comprised of paths of the Bratteli diagram of the
matrix algebra of partially transposed permutations, see Section 5.3.

5. We apply mixed Schur–Weyl duality to symmetry reduction of certain semidefinite opti-
misation problems. We show that a class of SDPs with unitary equivariance symmetry
can be reduced to linear programs whose size does not depend on the local dimension d,
see Theorem 6.3.4. As a step towards generalisation of this result, we also describe in
Section 6.4 how a certain class of SDPs can be simplified without additional symmetry
assumptions, see Theorem 6.4.2.

6. As an application of our symmetry reduction framework, we show how to simplify different
SDPs with unitary equivariance symmetry, allowing new insights into previously unsolved
problems, such as transposition of unknown unitaries (see Section 6.5.4).

7. We study the monogamy of entanglement for quantum states respecting unitary, mixed
unitary, and orthogonal symmetries, obtaining new results on the extendibility of these
states, see Theorem 7.1.1. In particular, we obtain the full extendibility region for qubit
Brauer states, see Theorem 7.1.2

These contributions advance the understanding of mixed Schur–Weyl duality and its ap-
plications in quantum information and computing and have implications for the design and
analysis of quantum algorithms and protocols involving unitary symmetries. We now provide
an overview of the chapters.
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1.2 Overview of the thesis

Chapter 2 sets the stage by introducing the notation, the basics of quantum information,
semidefinite programming, and the representation theory of groups and algebras. We describe
the basics of the module-theoretic language and introduce the key notions of Gelfand–Tsetlin
bases and Bratteli diagrams. We also introduce the basics of the representation theory of sym-
metric groups, and unitary and general linear groups. This chapter describes the fundamentals
of Schur–Weyl duality, which serves as a basis for our generalisation in the next chapter.

Chapter 3 describes the representation theory of the partially transposed permutation ma-
trix algebra and introduces the mixed Schur–Weyl duality, which is a generalisation of Schur–
Weyl duality. Our main result in this chapter is the explicit formula for the action of the
partially transposed permutation matrix algebra generators in the Gelfand–Tsetlin basis. This
result extends the Gelfand–Tsetlin basis for the symmetric group, also known as the Young–
Yamanouchi basis. The chapter also includes the construction of primitive and primitive central
idempotents in this basis. Overall, this chapter is central to the whole thesis, building a foun-
dation for the next chapters.

Chapter 4 constructs quantum circuits for the mixed Schur transform by using Clebsch–
Gordan transforms as the main building block. Quantum mixed Schur transform is a new
primitive in quantum information, which did not exist before our work [GBO23a] and an
independent work [Ngu23], which constructs the same quantum circuits. Thus, our work fills
an important gap in the literature. We present two different encodings of the Gelfand–Tsetlin
basis, which we call “standard” and “Yamanouchi”. The first encoding is less space-efficient
but provides a more convenient possibility to implement more complicated unitary operations,
while the second encoding is more space-efficient but may not be optimal for implementing
certain quantum operations. We hope that our work will allow for a deeper understanding
of previously unsolved problems and will find a range of new applications within quantum
information theory. One example of such an application is port-based teleportation, which we
describe in the next chapter.

Chapter 5 presents efficient quantum algorithms for all port-based teleportation protocols,
thus solving a long-standing open problem. Building on previous chapters that study mixed
Schur transform and partially transposed permutation matrix algebras, this chapter presents
efficient quantum algorithms for both probabilistic and deterministic PBT protocols. Two en-
coding schemes are used: one with Õ(n) time complexity and Õ(n) space complexity, and
another with Õ(n2) time complexity but reduced Õ(1) space complexity for constant local
dimension and precision. It also includes the construction of efficient circuits for preparing
optimal resource states for probabilistic PBT. Overall, this chapter presents the culmination of
years of research into PBT, achieving significant advancement in the field of quantum informa-
tion by providing the first known efficient algorithms for this teleportation method. By closing
this long-standing gap, we pave the way towards practical implementation of PBT protocols.

Chapter 6 discusses unitary-equivariant linear and semidefinite programming. This chapter
provides a general framework to reduce unitary-equivariant SDP problems into simpler ones
and, by leveraging additional symmetry assumptions, transforming them into much simpler
linear programs that can be solved more efficiently. The reduction process is made possible by
using results from mixed Schur–Weyl duality and a compact parameterisation of the solution
space via walled Brauer algebra diagrams. The chapter illustrates practical applications of
this framework in quantum information theory, including tasks like determining the principal
eigenvalue of a quantum state, quantum majority vote, asymmetric cloning, and transposition
of a black-box unitary. Overall, this chapter presents a powerful method for solving a large
class of optimisation problems in quantum information and beyond, offering both theoretical
insights and practical tools for reducing the complexity of semidefinite programs.
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Chapter 7 focuses on a fundamental notion in quantum information theory—monogamy of
entanglement. Monogamy limits the degree to which different particles may share entanglement
with each other. This chapter studies a particular aspect of monogamy called “extendibility”
for highly symmetric quantum states on the complete graph. We go beyond the original mixed
Schur–Weyl duality and explore applications of the full Brauer algebra in our setting. The
Brauer algebra is larger than the walled Brauer algebra and appears in the Schur–Weyl duality
for the orthogonal groups. This chapter explores the extendibility problem for three classes
of symmetric quantum states: Werner, isotropic, and Brauer states. For each class, we deter-
mine the amount of bipartite entanglement that a global state can possess if all its two-party
marginals are identical and belong to the given class. We address this question by formulating
the problem as a semidefinite program (SDP), which we solve using tools from representation
theory and SDP duality. One of the key contributions of this chapter is the derivation of the
exact maximum values for projections onto the maximally entangled state and the antisym-
metric Werner state. This chapter also introduces the notion of G-extendibility for symmetric
states, generalising previous results in the area of quantum state extendibility.





Chapter 2

Preliminaries

Representation theory is a branch of mathematics that studies abstract algebraic structures by
representing their elements as linear transformations of vector spaces. This approach allows us
to study complicated abstract algebraic objects within the context of easy-to-understand linear
algebra, providing deep insights into their structure.

This chapter summarises the basics of the representation theory of finite groups and associa-
tive algebras. The aim here is to present the necessary representation-theoretic facts concisely
and introduce relevant notions needed for further chapters. We assume knowledge of standard
definitions such as groups, algebras, and knowledge of linear algebra, complex analysis, basic
topology and differential geometry.

We start this chapter by introducing the notation, basics of quantum information theory
and semidefinite programming, which we will use throughout this thesis.

We base our exposition on the following books on quantum information [NC10; Wat18] and
representation theory [FH91; GW98; Sag13; Eti+11; CR62; DK12; VK92; Kir08].

2.1 Notation

In this thesis, we consider only finite-dimensional complex Hilbert spaces H ∼= Cd, where d is
the dimension of the space. Most of the time, we only need a vector space structure of a Hilbert
space, so we refer to H simply as Cd. We will often use the abbreviation [d] := {1, . . . , d}.

The set of all K-linear maps between two vector spaces V,W over field K is denoted by
HomK(V,W ), and if W = V , we speak of the set of endomorphisms EndK(V ) := HomK(V, V ).
This notation is mostly used to highlight the underlying field. In this thesis, we mostly consider
the field K = C. Therefore we usually drop the subscript and simply write End(V ) ≡ EndC(V )
and Hom(V,W ) ≡ HomC(V,W ). End(V ) is a space of linear transformations of V . Equiva-
lently, End(Cd) denotes the set of all complex d× d matrices.

We denote by Ud all unitary matrices on Cd, i.e., all U ∈ End(Cd) such that U †U = I,
where I is the identity matrix on Cd. A complex d×d matrix H is Hermitian if H† = H, where
H† := H̄T is the conjugate transpose of H. The collection of all Hermitian matrices acting on H
is denoted by Herm(H). For a Hermitian matrix H ∈ Herm(H), we use the notation H ⪰ 0 to
indicate that H is positive semidefinite, i.e. ⟨ψ|H|ψ⟩ ⩾ 0 for all |ψ⟩ ∈ H. A Hermitian matrix
Π ⪰ 0 is a projector if Π2 = Π.

To discuss the complexity of classical and quantum algorithms the big-O notation is often
used. If f(n) and g(n) are functions defined for large values of n, writing f(n) = O(g(n)) is for-
mally equivalent to ∃C > 0, n0 ⩾ 0 such that f(n) ⩽ Cg(n) for all n ⩾ n0. We also often use the
notation poly(n) and polylog(n) to mean poly(n) = O(nk) and polylog(n) = O(logk n) for some
constant k ⩾ 0, respectively. Moreover, we also use soft-O notation Õ(f(n)) to mean Õ(f(n)) :=

9
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O(f(n) logk f(n)) for some constant k ⩾ 0. Occasionally, we can also hide polylog dependence of
some additionally specified parameters into Õ, slightly abusing this notation. Finally, we some-
times use f(n) polylog g(n,m, . . . ) as abbreviation for O(f(n) polylog g(n,m, . . . )) for brevity
and for highlighting which parameters appear inside the logarithm.

2.2 Quantum information

In this section, we review basic notions and concepts of quantum information, which we need
throughout the thesis. For more background on quantum information theory see [NC10; Wat18].

Quantum states

In quantum theory, the state of a physical system is described by a vector in a complex Hilbert
space H. Pure quantum states are unit vectors |ψ⟩ ∈ H, where the unit norm condition is
∥ψ∥ = ⟨ψ|ψ⟩ = 1. For several physical systems, their combined state space is described by the
tensor product of their Hilbert spaces, e.g., H1 ⊗H2.

More generally, in quantum information, a quantum state can be described by a density ma-
trix ρ, which is a positive semidefinite operator on H with trace Tr(ρ) = 1. Density matrices
describe mixed states, which formalise a physical intuition about classical uncertainty in prepar-
ing pure states, or, in other words, they correspond to probabilistic mixtures of pure states.
The density matrix of a pure state |ψ⟩ is ρ = |ψ⟩⟨ψ|. For a mixed state, ρ =

∑
i pi|ψi⟩⟨ψi|,

where {|ψi⟩}i are pure states and {pi} are probabilities with pi ⩾ 0 and
∑

i pi = 1. We denote
by D(H) the set of all density matrices on H.

Evolution of states

The evolution of a closed quantum system is described by unitary operators. This unitary
evolution of density matrices is given by ρ 7→ UρU †. However, unitary evolution is a math-
ematical idealisation. Interactions with an external environment lead to transformations of
quantum states that cannot be described solely by unitary operators. Therefore, in quantum
information, the most general form of evolution is given by the notion of quantum channel.
Let Hin := Cdin and Hout := Cdout be finite-dimensional complex Hilbert spaces. A quantum
channel Φ: End(Hin) → End(Hout) is a completely positive and trace-preserving linear map.
Complete positivity means that, for any reference space Href and state ρ ∈ D(Hin ⊗ Href), we
have (Φ⊗ Iref)(ρ) ⪰ 0 where Iref denotes the identity channel on Href. Trace preservation means
that Tr

(
Φ(ρ)

)
= Tr(ρ), for all ρ ∈ D(Hin).

Quantum channels could be expressed via several equivalent ways. One way is to express
them using the Kraus operators {Ki}, where each Ki is a linear operator Ki : Hin → Hout such
that Φ(ρ) =

∑
iKiρK

†
i and

∑
iK

†
iKi = IHin . The condition

∑
iK

†
iKi = IHin ensures that the

map is trace-preserving, i.e., Tr(Φ(ρ)) = Tr(ρ). Another equivalent way to describe quantum
channels is via Stinespring dilation as Φ(ρ) = TrHe(V ρV

†), where V is some isometry operator
End(Hin) → End(Hout ⊗ He) for some environment system He, i.e. V †V = IHin , and TrHe is
the partial trace over He.

For this thesis, the most useful characterisation of a quantum channel is via its Choi matrix
XΦ ∈ End(Hin ⊗Hout) defined as

XΦ :=

din∑

i,j=1

|i⟩⟨j| ⊗ Φ
(
|i⟩⟨j|

)
(2.1)
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where {|1⟩, . . . , |din⟩} is an orthonormal basis for Hin. The action of Φ on ρ ∈ D(Hin) can be
recovered from its Choi matrix XΦ as follows:

Φ(ρ) = TrHin

[
XΦ(ρT ⊗ Iout)

]
. (2.2)

A given matrix X ∈ End(Hin ⊗Hout) describes a quantum channel if and only if

X ⪰ 0, TrHout(X) = Iin. (2.3)

Quantum measurements

To extract classical information from a quantum system, a quantum measurement is performed.
The most general measurement in quantum mechanics is known as positive operator-valued
measure (POVM), which is a set E := {Ek}nk=1 of positive semidefinite operators Ek ⪰ 0 on
a given Hilbert space H that sum to the identity matrix:

∑n
k=1Ek = IH. The Born rule

postulates the outcome probabilities of this measurement: upon measuring state ρ the classical
outcome k ∈ [n] is obtained with probability Tr(ρEk).

An important simpler subclass of measurements are projective measurements : Π := {Πi}ni=1

is a projection-valued measure (PVM) on a given Hilbert space H if
∑n

i=1Πi = IH and Πi is an
orthogonal projection, i.e. Π2

i = Πi = Π†
i ⪰ 0, for every i ∈ [n].

If {Πi}ni=1 is a PVM then for every pair i, j ∈ [n], i ̸= j the projectors Πi and Πj are mutually
orthogonal, i.e. ΠiΠj = δi,jΠi. Indeed, take any vector |v⟩ ∈ im(Πi) ⊆ H where im(Πi) denotes
the image of Πi. Since

∑
j Πj = IH we have 1 +

∑
j ̸=i⟨v|Πj|v⟩ = 1. Therefore, since each Πj is

positive semidefinite it must be that ⟨v|Πj|v⟩ = 0 for every j ̸= i, which implies ΠiΠj = δi,jΠi.
The converse is also true: if every pair of operators in a given POVM is mutually orthogonal
then this POVM is a PVM.

Finally, we recall a particular instance of Stinespring dilation—the Naimark dilation theo-
rem. This fundamental result states that any POVM can be represented as a PVM on a larger
Hilbert space. This theorem allows any generalised measurement to be realised as a standard
projective measurement in an extended space, which is particularly useful in quantum infor-
mation theory and construction of quantum algorithms. However, finding an explicit Naimark
dilation, which is easy to implement on a quantum computer can be a highly non-trivial task.

2.3 Semidefinite programming
Semidefinite programming is an important subfield of optimisation [WSV12] that has numer-
ous applications in quantum information theory [ST22; Wat18]. A typical formulation of a
semidefinite program (SDP) has the form [WSV12, Section 1.1]

sup
X

Tr(CTX)

s.t. Tr(AT
i X) = bi, ∀i ∈ [m],

X ⪰ 0,

(2.4)

where X is a symmetric real matrix variable, C and Ai are constant symmetric real matrices,
and bi are real constants.1 A special case of SDPs are linear programs (LPs) which correspond
to the case when all matrices involved are diagonal. Any LP can be formulated in the standard
form

sup
x

cTx

s.t. aTi x = bi, ∀i ∈ [m],

x ⩾ 0,

(2.5)

1This formulation can be extended to complex numbers, i.e., X,C,Ai could be Hermitian matrices.
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where x is a real vector variable, c and ai are constant real vectors, and bi are real constants.
In practice, LPs are much faster to solve than SDPs. Therefore, being able to reduce a given
SDP to an LP under additional symmetry assumptions is often desirable. We will encounter
such a scenario in Chapter 6.

A fundamental idea in optimisation theory is that of weak duality : for a given primal
problem, there is an associated dual problem. For example, for the primal SDP (2.4) we can
write a Lagrangian [BV04]:

L(X,λ) := Tr(CTX) +
m∑

i=1

λi(bi − Tr(AT
i X)), (2.6)

where λi ∈ R are real Lagrange multipliers. Note that the problem (2.4) is equivalent to
supX⪰0 infλ∈Rm L(X,λ).

The Min-Max principle states that

sup
X⪰0

inf
λ∈Rm

L(X,λ) ⩽ inf
λ∈Rm

sup
X⪰0

L(X,λ), (2.7)

therefore it is natural to define the dual problem of the primal problem (2.4) as infλ∈Rm

supX⪰0 L(X,λ), which is equivalent to

inf
λ

m∑

i=1

λibi

s.t.
m∑

i=1

λiAi − C ⪰ 0,

λ ∈ Rm.

(2.8)

Weak duality is based on Eq. (2.7) and asserts that p∗ ⩽ d∗, where p∗ and d∗ are the optimal
values of primal and dual problems, respectively. If equality holds, then we say that strong
duality holds. There exist sufficient conditions for strong duality, such as Slater’s condition,
see [BV04; Wat18].

2.4 Representations of finite groups

Basic definitions

We start by defining a concept of representation which, intuitively, one should imagine as a
“shadow” of the group G onto the space of linear transformations.

2.4.1. Definition (Representation). Let G be a finite group. A representation of G on a
vector space V over field K is a homomorphism R : G → End(V ). In other words, the map R
is such that

R(gh) = R(g)R(h) ∀g, h ∈ G. (2.9)

Abusing the notation, we could also specify a representation by mentioning a pair (R, V ) or the
map R or the space V only. The dimension of V is called the degree of the representation. We
also refer to |G| as the size of the group G. In the following, we always assume the ground field
K = C for all vector spaces, unless otherwise specified. Next, we define a concept of intertwiner.
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2.4.2. Definition (Intertwiner). Let (R1, V ) and (R2,W ) be two representations of G. The
linear map ϕ : V → W is called an intertwiner or G-homomorphism if for every g ∈ G:

ϕR1(g) = R2(g)ϕ. (2.10)

The set of all G-homomorphisms between V and W is denoted by HomG(V,W ). In particular,
if W = V then we denote EndG(V ) := HomG(V, V ).

2.4.3. Example (Trivial Representation). The simplest representation is the trivial represen-
tation, where every group element is mapped to the identity matrix of a one-dimensional vector
space. Formally, R(g) = 1 for all g ∈ G.

2.4.4. Example (Left-Regular and Right-Regular Representations). The left-regular represen-
tation L : G→ End(C|G|) acts on an |G|-dimensional vector space with the basis {|g⟩ | g ∈ G}.
C|G| is commonly denoted by

CG := spanC{|g⟩ | g ∈ G}. (2.11)

Each group element h ∈ G acts by permuting these basis vectors: L(h)|g⟩ = |hg⟩. Similarly,
the right-regular representation R : G→ End(C|G|) is defined on CG such that each h ∈ G acts
as R(h)|g⟩ = |gh−1⟩. It is easy to see that these actions commute with each other.

The most important definition in this theory is that of irreducible representation.

2.4.5. Definition (Irreducible Representation). A representation R of G in V is irreducible
if V does not have proper non-zero invariant subspaces under the action of G. That is, there
is no subspace W ⊆ V (other than {0} and V itself) such that R(g)W ⊆ W for all g ∈ G.

We will call irreducible representations simply irreps most of the time. Intuitively, irreducible
representations for group representations are like primes for natural numbers, and we would
like to understand how different representations decompose into simple pieces – the irreducible
representations. The set of labels of all irreducible representations of G is usually denoted by

Ĝ := {λ | Vλ is irreducible representation of G}. (2.12)

Burnside’s theorem provides a useful way to understand what “irreducibility” means.

2.4.6. Theorem (Burnside [LR04]). Suppose R : G→ GL(V ) is an irreducible representation
of G, then

spanC{R(g) | g ∈ G} = End(V ). (2.13)

We can construct new representations by taking direct sum and tensor product. Namely, for
two representations (R1, V1), (R2, V2) we can define

1. Direct sum: R : G→ End(V1 ⊕ V2), for every g ∈ G

R(g) := R1(g)⊕R2(g), (2.14)

2. Tensor product: R : G→ End(V1 ⊗ V2), for every g ∈ G

R(g) := R1(g)⊗R2(g). (2.15)
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Fundamental results

A fundamental fact about finite group representations over C is that every representation is
completely reducible in the following sense:

2.4.7. Theorem (Maschke’s theorem). An arbitrary representation V over C of a finite group
G decomposes into a direct sum of irreducible representations.

Maschke’s theorem implies, in particular, that left-regular representation of G can be decom-
posed into irreducibles.

2.4.8. Theorem. Let G be a finite group. The left-regular representation CG is completely
reducible and

CG ∼=
⊕

λ∈Ĝ

Vλ ⊗ V ∗
λ , (2.16)

where V ∗
λ is a multiplicity space of the left-regular action, which can be indentified with the

right-regular representation of G.

One of the key technical results that permeates across all representation theory is Schur’s
lemma, which puts stringent restrictions on the classes of maps different irreducible represen-
tations can have.

2.4.9. Theorem (Schur’s Lemma). Let V and W be irreducible representations of G. If ϕ :
V → W is a G-homomorphism, then ϕ is either an isomorphism or zero. If V = W , then
any endomorphism ϕ : V → V commuting with all R(g) for g ∈ G is a scalar multiple of the
identity map.

To study how representations decompose into irreps, the concept of a character is very handy.

2.4.10. Definition (Character). The character of a representation R : G → GL(V ) is the
function χ : G→ C defined by

χ(g) := Tr[R(g)] for every g ∈ G, (2.17)

where Tr denotes the trace of a matrix. We say that χ is irreducible whenever R is.

Character theory is a powerful tool to study the decomposition of a given representation into
irreps because they have several important properties:

• χ(g) is a class function, i.e. it is constant on the conjugacy classes2 of the group G;

• the character of the direct sum Rλ ⊕ Rµ of two representations is the sum of their char-
acters: χλ⊕µ = χλ + χµ;

• the character of the tensor product Rλ⊗Rµ of two representations is the product of their
characters: χλ⊗µ = χλ · χµ.

2.4.11. Theorem (Character Orthogonality Relations). Let χ1, χ2, . . . , χn be the complete set
of irreducible characters of G. Then the following orthogonality relations hold:

1

|G|
∑

g∈G

χi(g)χj(g) = δij,
1

|G|
n∑

i=1

χi(g)χi(h) = δg,h, (2.18)

where δ is the Kronecker delta.
2Two elements a and b of a group G are conjugate if there exists an element g ∈ G such that a = gbg−1.

This is an equivalence relation and its equivalence classes are called conjugacy classes.
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The information about characters is usually stored in a character table. The character table
of a finite group G is a square matrix where rows correspond to the irreducible characters and
columns correspond to the conjugacy classes of G.

Character orthogonality relations can be generalised to orthogonality relations between
matrix entries of the corresponding representations. This very important result, relating two
arbitrary unitary irreps Rλ and Rµ, is call Schur Orthogonality Relations :

2.4.12. Theorem (Schur Orthogonality Relations). For two arbitrary unitary irreducible rep-
resentations of G, Rλ : G→ End(Vλ) and Rµ : G→ End(Vµ), their matrix elements satisfy the
following orthogonality relations:

1

|G|
∑

g∈G

Rλ(g)ijRµ(g)kl =
1

dλ
δλµδikδjl, (2.19)

where dλ is the dimension of the irrep Vλ, Rλ(g)ij and Rµ(g)kl are the (i, j)-th and (k, l)-th
elements of the matrices Rλ(g) and Rµ(g), respectively.

Character and Schur orthogonality relations have several important consequences in rep-
resentation theory. They imply that any class function on G can be expressed as a linear
combination of irreducible characters. They also allow the construction of orthogonal projec-
tors onto the isotypic components of representations. Specifically, for a given representation
R : G → End(V ) the isotypic projector R(ελ) onto irreducible representations Vλ, appearing
inside representation V , is given by

R(ελ) =
dλ
|G|

∑

g∈G

χλ(g
−1)R(g), (2.20)

where dλ is the dimension of the irrep λ. It projects onto all irreducible components within
the representation R. The image of this projection inside the space V is usually called isotypic
component λ.

It is useful to think about ελ as a formal linear combination in the group algebra CG (see
Example 2.5.8):

ελ =
dλ
|G|

∑

g∈G

χλ(g
−1)g. (2.21)

This provides an example of primitive central idempotent. We describe this notion in more
detail in Section 2.7.2.

2.5 Modules of finite-dimensional associative algebras
Representation theory of finite-dimensional associative algebras is a logical generalisation of
the representation theory of finite groups. We have already seen an example of an algebra con-
structed from a group – the group algebra, which we defined as the left-regular representation
in Example 2.4.4. However, the representation theory is richer in the case of finite-dimensional
associative algebras. Unlike finite group representation theory over C, representations of alge-
bras over C are not completely reducible. That gives rise to different types of modules. Key
objectives in this field include classifying simple and indecomposable modules, understand-
ing projective and injective modules, and studying extensions between modules. However,
for applications in quantum information, one is usually interested in finite-dimensional matrix
∗-algebras, which are semisimple. Because of this, we will not need all the complicated ma-
chinery developed in the field of finite-dimensional associative algebras. More background on
finite-dimensional algebras and their modules can be found in [DK12; Cox12].
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Basic definitions

We start with the basic definition of an associative algebra.

2.5.1. Definition (Associative Algebra). An associative algebra A over a field K is a vector
space over K equipped with a bilinear multiplication operation · : A×A → A that is associative:

(a · b) · c = a · (b · c) for all a, b, c ∈ A. (2.22)

We also assume that A has a multiplicative identity e3 such that e · a = a · e = a for all a ∈ A.

In the following, we usually drop the adjective “associative” most of the time. Similar to
Cayley’s theorem for groups, any algebra over K is isomorphic to a subalgebra of the full
matrix algebra End(KdimA). Indeed, the action of A on any basis of A produces a matrix
algebra that is analogous to the left-regular representation of a group.

A subalgebra B ⊆ A is a vector subspace of A which is closed under multiplication operation.
An important class of subalgebras are ideals.

2.5.2. Definition (Ideal). An ideal I of an algebra A is a vector subspace I ⊆ A such that
for every a ∈ A and x ∈ I, both a · x ∈ I and x · a ∈ I.

If V is a vector space, a matrix algebra A on V is a linear subspace of End(V ) that is closed
under matrix multiplication. The centraliser or commutant of a matrix algebra A in End(V )
is the set of all matrices acting on V that commute with A:

EndA(V ) := {B ∈ End(V ) | [A,B] = 0 for every A ∈ A}, (2.23)

where [A,B] := AB −BA denotes the commutator of A and B.
If A and B are general abstract algebras, φ : A → B is an algebra embedding if φ is an

injective homomorphism. The embedding is unity-preserving if φ(eA) = eB. We write A ↪→ B
to mean that such embedding exists (in such case one can intuitively think of A as a subalgebra
of B). Similar to matrix algebras, we can define the notion of centraliser for abstract algebras.

2.5.3. Definition (Centraliser and Center). If B ⊆ A then we denote by ZB(A) the cen-
traliser of B in A:

ZB(A) := {a ∈ A | ab = ba for every b ∈ B}. (2.24)

If B = A in the above definition then Z(A) := ZA(A) is known as the center of the algebra A.

A representation of A is a homomorphism R : A → EndK(V ), where V is a finite-
dimensional vector space over K. This means that each element a ∈ A is mapped to a linear
transformation R(a) ∈ EndK(V ) such that

R(ab) = R(a)R(b) for all a, b ∈ A. (2.25)

However, usually in the context of algebras the equivalent word “module” is used. The words
“representation” and “module” are essentially synonyms.

2.5.4. Definition (Module). An A-module M is a vector space over K along with an action
of A on M :

· : A×M →M, (a,m) 7→ a ·m,
satisfying the following properties:

3Sometimes, we simply write 1 instead of e.
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1. (a+ b) ·m = a ·m+ b ·m,

2. a · (m+ n) = a ·m+ a · n,

3. (ab) ·m = a · (b ·m),

4. e ·m = m.

Given a subalgebra A of an algebra B and a B-module V , its restriction to the subalgebra
A is the module V with action coming from A only. We denote such A-module by ResBAV .

A submodule of an A-module M is a subspace W of M such that a · w ∈ W for all w ∈ W
and a ∈ A. (Note that W is an A-module in its own right.) For example, M and {0} are
trivial submodules of an A-module M . If an A-module M has submodules W1 and W2 such
that M = W1 ⊕W2 as a vector space then we say that M is the direct sum of W1 and W2.
A module V is indecomposable if it is not the direct sum of two non-zero submodules, and is
decomposable otherwise.

As in the context of finite groups, we can define “simple” representations, which we will call
simple modules. A module which decomposes into simple modules is semisimple – this is an
analogue of the concept of complete reducibility in the context of groups.

2.5.5. Definition (Simple and Semisimple Modules). Let A be a finite-dimensional algebra
over a field K. A simple A-module is a non-zero finite-dimensional4 A-module M such that
the only submodules of M are {0} and M itself. An A-module M is said to be semisimple if
it is a direct sum of simple A-modules.

A “representation” of an algebra is called a “module”, and the adjective “irreducible” is
usually replaced by “simple”. We will use both terminologies interchangeably. The former is
used more often in the group context, while the latter is used in the context of algebras. We
denote the set of all simple A-modules by Â.

To characterise algebras which only have semisimple modules, we need a concept of Jacobson
radical. The Jacobson radical is also known as simply the radical of the algebra, and it plays a
crucial role in the representation theory of finite-dimensional algebras, allowing to distinguish
between “easy” semisimple algebras and “non-easy” non-semisimple algebras.

2.5.6. Definition (Jacobson Radical). Let A be a finite-dimensional algebra over a field K.
The Jacobson radical of A, denoted by radA, is the intersection of all maximal left ideals of A.
Equivalently, it is the set of all elements a ∈ A such that e+ ax is invertible for all x ∈ A.

In the following, we always assume that the ground field K = C unless specified otherwise.

2.5.7. Theorem. Let A be a finite-dimensional algebra over C. It is semisimple as left A-
module if and only if radA = 0.

A basic example of a semisimple algebra is the group algebra of a finite group G over a field
K, where the characteristic of K does not divide the order of the group G – this is basically a
restatement of Maschke’s theorem.

2.5.8. Example (Group algebra). The group algebra CG is constructed from a group G and
a field C. It consists of formal sums

∑
g∈G agg with ag ∈ C, and multiplication extends linearly

from the group operation:
(∑

g∈G

agg
)(∑

h∈G

bhh
)
=
∑

g,h∈G

(agbh)(gh) =
∑

t∈G

(∑

g∈G

agbg−1t

)
t. (2.26)

4Usually, the requirement is that the module should be finitely generated. However, for the purposes of this
thesis it is enough to consider finite-dimensional modules.
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Another important class of semisimple algebras relevant to quantum information are matrix
∗-algebras over C. Formally, ∗-algebra is defined as follows:

2.5.9. Definition (∗-algebra). A ∗-algebra is a finite-dimensional associative algebra A over
C, equipped with an involution ∗ : A → A, which satisfies the following properties for all
a, b ∈ A and k ∈ C:

1. (a+ b)∗ = a∗ + b∗,

2. (ka)∗ = ka∗,

3. (ab)∗ = b∗a∗,

4. (a∗)∗ = a.

A matrix ∗-algebra is a matrix algebra, where the ∗ operation is the conjugate transpose †. An
example would be the algebra of block-diagonal matrices:

2.5.10. Example (Matrix ∗-algebra). Let V and W be vector spaces. Then

A =

{(
A 0
0 B

) ∣∣∣∣ A ∈ End(V ), B ∈ End(W )

}
(2.27)

is a matrix ∗-algebra. It is a subalgebra of the full matrix algebra End(V ⊕W ).

An example of a non-semisimple matrix algebra is the upper triangular matrix algebra:

2.5.11. Example (Non-semisimple matrix algebra).

A =







a b c
0 d 0
0 0 f



∣∣∣∣∣∣
a, b, c, d, f ∈ C



. (2.28)

Intuitively, being closed under the † operation forbids the existence of “upper triangular”
matrix algebras as the one above. This is formalised in the following statement:

2.5.12. Lemma. Every finite-dimensional matrix ∗-algebra is semisimple.

Fundamental results

A crucial difference between the representation theory of finite groups and algebras is that for
algebras there can be reducible but indecomposable modules in the following sense:

2.5.13. Definition. Let A be a finite-dimensional associative algebra over a field K. A module
M over A is called indecomposable if it cannot be expressed as a direct sum of two non-zero
submodules. In other words, M is indecomposable if for every decomposition M = M1 ⊕M2

where M1 and M2 are submodules of M , we have either M1 = 0 or M2 = 0.

The Krull–Schmidt Theorem proves that indecomposable modules are elementary building
blocks of modules of algebras in the following sense:

2.5.14. Theorem (Krull–Schmidt). A finite-dimensional module over a finite-dimensional as-
sociative algebra decomposes uniquely (up to isomorphism and order) into a direct sum of in-
decomposable modules.

Returning to the semisimple world, for the special case K = C relevant for this thesis the
Wedderburn–Artin theorem provides a classification of semisimple algebras.
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2.5.15. Theorem (Wedderburn–Artin). A finite-dimensional semisimple algebra A over C is
isomorphic to a direct sum of matrix algebras over C:

A ∼=
⊕

λ∈Â

End(Vλ), (2.29)

where each Vλ is a simple A-module.

This isomorphism is very useful since it allows us to think of an abstract semisimple algebra
A as an algebra of block-diagonal matrices, a perspective that we will repeatedly use. Note
that Theorem 2.5.15 implies

dimA =
∑

λ∈Â

d2λ (2.30)

which is analogous to the dimension formula for irreducible representations of groups. Another
way to look at Theorem 2.5.15 is to view A itself as left-regular representation of A, so the
statement of the Wedderburn–Artin theorem is equivalent to complete reducibility of this left-
regular representation.

Similar to finite groups, Schur’s lemma also holds for algebras. Namely, if M and N are
simple modules over an algebra A, then any A-module homomorphism f : M → N is either
zero or an isomorphism.

2.6 Young diagrams and tableaux
Now we would like to take a step back from discussing purely representation-theoretic basics
to introduce some fundamental combinatorial objects, which are needed to talk about repre-
sentations of symmetric groups Sn and unitary groups Ud.

A partition λ ⊢ n of an integer n ⩾ 0 is a tuple of integers λ = (λ1, . . . , λd) such that
λ1 ⩾ · · · ⩾ λd ⩾ 0 and λ1 + · · ·+ λd = n. We denote by ℓ(λ) = max {k | λk > 0} the length of
λ. We use the notation λ ⊢d n to indicate that λ ⊢ n and ℓ(λ) ⩽ d. A partition λ ⊢ n can be
graphically represented as a Young diagram—a collection of n cells arranged in ℓ(λ) rows with
λi of them in the i-th row. For example,

(2.31)

represents the partition λ = (3, 1). Note that the same Young diagram could, for example,
also refer to λ = (3, 1, 0, 0). The size |λ| of Young diagram is the number of boxes n. We call
µ = (µ1, . . . , µd′) a subpartition of λ = (λ1, . . . , λd), and write µ ⊆ λ if d′ ⩽ d and µi ⩽ λi for
i = 1, . . . , d′.

The conjugate or transpose of the partition λ, denoted λ′, is the partition corresponding to
transposing the Young diagram representing λ. E.g. if λ = (3, 1) then

λ = and λ′ = . (2.32)

Sometimes we use column notation to represent partitions. For example, a partition λ = (3, 2)
could be written as λ = (22, 11).

Any cell u ∈ λ of a Young diagram λ can be specified by its row and column coordinates i
and j. The content of cell u = (i, j) is

cont(u) := j − i. (2.33)
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For example, the cells of the Young diagram (5, 3, 3) have the following content:

0 1 2 3 4

−1 0 1

−2 −1 0

. (2.34)

Note that content is constant on diagonals of λ and indicates how far each diagonal is from
the main one. Content increases by one when going right or up, and decreases by one when
going left or down. The axial distance (also known as hook or Manhattan distance) from cell
u = (i, j) to v = (i′, j′) in a Young diagram is

r(u, v) := cont(v)− cont(u) = (j′ − j)− (i′ − i). (2.35)

For example, the axial distance from cell u to all other cells in the Young diagram (5, 3, 3) is
as follows:

−1 u 1 2 3

−2 −1 0

−3 −2 −1

. (2.36)

For a Young diagram λ, a cell u ∈ λ is called removable if the diagram λ \ u obtained by
removing the cell u from λ is a valid Young diagram. In the literature, removable cells are also
called corners of a given Young diagram. Similarly, a cell u /∈ λ is called addable if the diagram
λ ∪ u obtained by adding the cell u to λ is a valid Young diagram. The set of all removable
cells of λ is denoted by RC(λ), while the set of all addable cells by AC(λ). We also need to
define a subset ACd(λ) ⊆ AC(λ) of addable cells to a Young diagram λ that do not increase
the length of λ beyond d:

ACd(λ) := {a ∈ AC(λ) | ℓ(λ ∪ a) ⩽ d}. (2.37)

For example, the Young diagram λ = (5, 3, 3) (shown in gray) has two removable cells: r1 =
(1, 5), r2 = (3, 3), and three addable cells (shown in white): a1 = (1, 6), a2 = (2, 4), a3 = (4, 1):

r1 a1
a2

r2
a3

. (2.38)

The addable cell a3 is omitted from AC3(λ).
A Young tableau T of shape λ ⊢ n is a Young diagram with cells filled with some natural

numbers. A standard Young tableau T of shape λ ⊢ n is obtained by filling the cells of the
Young diagram λ with numbers from [n] := {1, . . . , n} strictly increasing downwards across the
rows and to the right across the columns. For example,

T =
1 2 3

4
, S =

1 2 4

3
, Q =

1 3 4

2
(2.39)

are all standard Young tableaux of shape λ = (3, 1). The set of all standard Young tableaux of
a given shape λ is denoted as SYT(λ). According to the famous hook length formula [Sag13],

|SYT(λ)| = (λ1 + · · ·+ λd)!∏
u∈λ h(u)

(2.40)
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where h(u) denotes the hook length of cell u (the number of cells in λ either to the right of u or
below u, including u itself). The same value can also be obtained by the following alternative
formula [Sag13]:

|SYT(λ)| = (λ1 + · · ·+ λd)!

λ̃1! · · · λ̃d!
∏

1⩽i<j⩽d

(λ̃i − λ̃j) (2.41)

where λ̃i := λi + d− i.
Notice that any standard Young tableau T ∈ SYT(λ) of shape λ ⊢ n can be represented as

a tuple or sequence of n+ 1 Young diagrams:

T = (T 0, . . . , T n) ≡ T 0 → T 1 → · · · → T n, (2.42)

such that T i ⊢ i, T i ⊆ T i+1, and T n = λ. Indeed, T i is obtained from the Young diagram λ ⊢ n
by keeping only those cells of T whose symbols are in [i]. For example, the Young tableau T
from Eq. (2.39) is represented by the following sequence of Young diagrams:

T =
(
∅ , , , ,

)
. (2.43)

This sequence can be thought of as a path in a so-called Bratteli diagram (see Fig. 2.1), a
concept which we will discuss in Section 2.7.

Another way to label such path T is via Yamanouchi word by recording a row where you
add a box at a given step. For example, the Yamanouchi word corresponding to the path T
from Eq. (2.43) is (1, 1, 1, 2).

Consider a standard Young tableau T ∈ SYT(λ) of shape λ⊢n and an arbitrary permutation
π ∈ Sn. We will denote by πT the tableau obtained by permuting cell fillings of T according to
π. For example, the Young tableaux T, S,Q presented in Eq. (2.39) are related in the following
way: S = (34)T , Q = (23)S = (234)T , where (34), (23), (234) ∈ S4. Note that πT is not
necessarily a standard tableau, e.g., consider (14)T .

Given a standard Young tableau T , we define

conti(T ) := cont(T (i) \ T (i−1)). (2.44)

This is simply the content of the cell of T containing i. Moreover, we define ri(T ) to be the
hook distance between the cells containing i and i+ 1, i.e.,

ri(T ) := conti+1(T )− conti(T ). (2.45)

A semistandard Young tableau M of shape λ and entries in [d] is obtained by filling the cells
of the Young diagram λ with symbols from [d], strongly increasing downwards across the rows
and weakly increasing to the right across the columns. For example,

M1 =
1 1 1
2

, M2 =
1 1 2
2

, M3 =
1 2 2
2

(2.46)

are all semistandard Young tableau of shape λ = (3, 1) with entries in [2]. We will denote the
set of all semistandard Young tableaux of shape λ and entries in [d] by SSYT(λ, d). According
to the well-known Weyl dimension formula [Lou08, eq. (11.46)] and hook-content formula,

|SSYT(λ, d)| =
∏

1⩽i<j⩽d

λi − λj + j − i

j − i
=

∏
u∈λ(d+ cont(u))∏

u∈λ h(u)
. (2.47)

Recording the number of times each number appears in tableau M gives a sequence known
as the weight of M , denoted as w(M):

w(M)i := “the number of i’s in tableau M ”. (2.48)
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For example, the tableaux presented in Eq. (2.46) have weights (3, 1), (2, 2), and (1, 3), re-
spectively. We can extend the notion of weight also to tuples of natural numbers. The weight
w(x) = w(x1, . . . , xk) of a sequence x = (x1, . . . , xk) records the number of times each natural
number appears in it. For example,

(1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1) (2.49)

are all sequences of weight w(M) = (1, 3).

2.7 Gelfand–Tsetlin basis
Now we would like to address the following question: are there algebras A for which one can
define a “canonical” basis for all simple A-modules? By “canonical” here we mean some natural
construction, which depends on arbitrary, “mathematically unmotivated” choices as little as
possible. It turns out that this question has a particularly nice answer when there exists a
family of subalgebras with a certain restriction property. This is formalised in the following
definition which is motivated by the canonical example of the sequence CS0 ↪→ CS1 ↪→ · · · ↪→
CSn of symmetric group algebras considered by Okounkov and Vershik in [OV96; VO05]. They
re-derive the classic representation theory of Sn in what is now called the Okounkov–Vershik
approach. We review the key elements of this approach in a more general setting of semisimple
algebras presented in [DLS18].

2.7.1 Bratteli diagram

We start with a key definition of multiplicity-free family.

2.7.1. Definition (Definition 1.1 in [DLS18]). A family A0, . . . ,An of finite-dimensional semi-
simple5 algebras over C is multiplicity-free if the following axioms hold:

(a) A0
∼= C.

(b) For each k, there is a unity-preserving algebra embedding Ak ↪→ Ak+1.

(c) The restriction of a simple Ak-module to Ak−1 is isomorphic to a direct sum of pairwise
non-isomorphic simple Ak−1-modules. We say that in that case the restriction from Ak

to Ak−1 is multiplicity-free.

Given a multiplicity-free family of algebras, one can create a graph that shows how different
simple modules of these algebras restrict to their subalgebras. We denote by Vλ a simple A-
module corresponding to λ ∈ Â. The dimension of this module is denoted by dλ := dimVλ. We
can represent the multiplicity-free restrictions among Ak by a directed acyclic graph known as
Bratteli diagram [Bra72].

2.7.2. Definition. Let A0, . . . ,An be a multiplicity-free family of algebras. Its Bratteli di-
agram A 6 is a directed acyclic graph whose vertices are the isomorphism classes

⊔n
k=0 Âk of

simple Ak-modules. There is an edge λ→ µ from vertex λ ∈ Âk to vertex µ ∈ Âk+1 if and only
5In [DLS18] the algebras are also required to be split. However, since we consider only algebras over C,

which is an algebraically closed field, in our setting all algebras are automatically split.
6Throughout the thesis we mainly use different letters Y ,B,A to refer to different Bratteli diagrams corre-

sponding to different algebras, which should be clear from a given context: Y corresponds to symmetric group
algebras, B corresponds to walled Brauer algebras and A corresponds to partially transposed permutation
matrix algebras. In this chapter, we refer to A as an abstract Bratteli diagram.
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CS0 CS1 CS2 CS3 CS4

∅

Figure 2.1: The Bratteli diagram Y for the family of symmetric group algebras CS0 ↪→ CS1 ↪→
CS2 ↪→ CS3 ↪→ CS4, also known as Young’s lattice. The vertices at level k are labelled by Young
diagrams λ ⊢ k corresponding to all non-isomorphic irreducible representations of CSk.

if Vλ is isomorphic to a direct summand of ResAk+1

Ak
Vµ, the restriction of Vµ to the subalgebra

Ak. We call Âk the k-th level of the Bratteli diagram. We denote the unique vertex in Â0 by
∅ and call it the root, while Ân are called leaves.

An example of a Bratteli diagram for the multiplicity-free family of semisimple symmetric group
algebras CSk [OV96] is shown in Fig. 2.1; it is also called the Young lattice or the Young graph
(see [Sag13]).

Paths7 in the Bratteli diagram play an important role in the representation theory of the
corresponding algebras, so we will introduce some notation for them. If λ and µ are two vertices
at levels i < j of the Bratteli diagram A , we will denote the set of all paths from λ to µ by

Pathsi,j(λ, µ,A ). (2.50)

We will denote the set of all paths starting at the root ∅ and terminating at vertex λ at level
j by

Pathsj(λ,A ) := Paths0,j
(
∅, λ,A

)
. (2.51)

When j = n, i.e., λ is a leaf, we will abbreviate this to

Paths(λ,A ) := Pathsn(λ,A ). (2.52)

Finally, we use Paths(A ) to denote the set of all paths in the Bratteli diagram A . If the
Bratteli diagram A is clear from a given context, we often drop A in the notation and simply
write Pathsi,j(λ, µ), Pathsj(λ), Paths(λ).

An arbitrary path T = (T 0, . . . , T n) in the Bratteli diagram can be decomposed at level
i ∈ {0, . . . , n} as T = T1 → T2 where T1 = (T 0, . . . , T i) and T2 = (T i+1, . . . , T n) belong to
Pathsi(T

i) and Pathsi+1,n(T
i+1, T n), respectively.

Finally, we often use notation µ : λ → µ as a summation index to mean that a given sum
ranges over all vertices µ which are connected to the vertex λ on a previous level in a given
Bratteli diagram.

7By a “path” we always mean a directed path, i.e., a path that traverses edges only in the allowed direction
(from lower to higher levels).
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2.7.2 Idempotents

In this section, we summarize the [DLS18] algorithm for finding the primitive central idempo-
tents of any multiplicity-free family of algebras.

2.7.3. Definition. An idempotent ε in the algebra A is an element with the property ε2 = ε.
Two idempotents a, b ∈ A are said to be orthogonal if ab = ba = 0. A central idempotent ε ∈ A
is an idempotent that commutes with every element a ∈ A, i.e., εa = aε.

Certain types of idempotents are extremely useful for studying the representation theory of
a given algebra. We define them as follows.

2.7.4. Definition. A primitive idempotent is an idempotent that cannot be written as a sum
of two non-zero orthogonal idempotents. A primitive central idempotent is a central idempotent
that cannot be written as a sum of two non-zero orthogonal central idempotents.

If algebra A is semisimple, due to Wedderburn’s theorem (Theorem 2.5.15) we have the
isomorphism

A =
⊕

λ∈Â

ελA ∼=
⊕

λ∈Â

End(Vλ) (2.53)

where ελ are the primitive central idempotents of A and the first direct sum should be un-
derstood as a decomposition of the left-regular representation of A. The primitive central
idempotents ελ are in one-to-one correspondence with simple A-modules labeled by λ ∈ Â and
provide a resolution of the unit element of the algebra A:

∑
λ∈Â ελ = 1.

2.7.3 Gelfand–Tsetlin subalgebra

Let A0, . . . ,An be a multiplicity-free family of algebras (see Definition 2.7.1) with Bratteli
diagram A . We can now define a certain basis for the direct sum

⊕
λ∈Ân

Vλ of all simple An-
modules, where each element of the basis corresponds to a path in the Bratteli diagram A . This
basis can be obtained by choosing any leaf λ ∈ Ân and considering the restriction ResAn

An−1
Vλ

of the corresponding simple An-module Vλ to An−1, which according to Definition 2.7.1 is
multiplicity-free. This restriction can then be iterated further along any path in the Bratteli
diagram towards the root ∅ that corresponds to the one-dimensional algebra A0

∼= C. Doing
this along all Paths(λ) between ∅ and λ results in a decomposition of the chosen simple An-
module Vλ into one-dimensional simple A0-modules. Repeating this procedure for all leaves
λ ∈ Ân produces the Gelfand–Tsetlin basis of

⊕
λ∈Ân

Vλ:
{
|T ⟩

∣∣ T ∈ Paths(A )
}
. (2.54)

These vectors are labeled by elements of Paths(A ) since each sequence of restrictions corre-
sponds to some leaf-root path in the Bratteli diagram.

Now we would like to explicitly construct primitive idempotents inside An which project
onto the Gelfand–Tsetlin basis. To do that we need to look at the maximal commutative
subalgebras of Ak. Due to Eq. (2.53) one can think of them as subalgebras of diagonal matrices,
carrying the information about the projectors onto the Gelfand–Tsetlin basis. This motivates
the following definition.

2.7.5. Definition. For each k ∈ [n], the corresponding Gelfand–Tsetlin subalgebra is

Xk := ⟨Z(A1), . . . ,Z(Ak)⟩ ⊆ Ak (2.55)

where Z(Ai) denotes the center of the subalgebra Ai.
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Note that X1 ⊆ · · · ⊆ Xn. The Gelfand–Tsetlin subalgebra Xk is a maximal commutative
subalgebra of Ak, see Proposition 1.1 of [OV96; VO05]. We will later find a particular set
of generators for Xk, known as Jucys–Murphy elements, which will help us to construct the
primitive central idempotents of An.

For each path T = T 0 → T 1 → · · · → T n ∈ Paths(A ) in the Bratteli diagram, set

εT := εT 1εT 2 · · · εTn (2.56)

where εT i are the primitive central idempotents of Ai, see Eq. (2.53). Note that εT is an element
of the Gelfand–Tsetlin subalgebra Xn since εT i ∈ Z(Ai) for each i.

2.7.6. Proposition (Proposition 1.6 and Corollary 1.7 in [DLS18]). The collection {εT | T ∈
Paths(A )} is a family of orthogonal primitive idempotents in An that sums to the identity 1 and
is a basis for the Gelfand–Tsetlin subalgebra Xn. Moreover, the primitive central idempotents
of An are given by

ελ =
∑

T∈Paths(λ)

εT . (2.57)

Using the isomorphism in Eq. (2.53), the primitive idempotents εT correspond to the pro-
jectors |T ⟩⟨T | onto the Gelfand–Tsetlin basis vectors |T ⟩ ∈⊕λ∈Ân

Vλ.

2.7.4 Jucys–Murphy elements

In this section, we define a certain nice set of elements of the algebra Ak that generate the
Gelfand–Tsetlin subalgebra Xk. They are commonly known as Jucys–Murphy elements.

2.7.7. Definition (Definition 3.1 in [DLS18]). Let A0, . . . ,An be a multiplicity-free family of
algebras and let X1, . . . ,Xn be their Gelfand–Tsetlin subalgebras. Let J1, . . . , Jn be a sequence
of elements in An such that Jk ∈ Xk for each k ∈ [n]. This sequence is

(a) additively central if J1 + · · ·+ Jk ∈ Z(Ak) for all k ∈ [n],

(b) separating if Xk = ⟨J1, . . . , Jk⟩ for all k ∈ [n].

It is a Jucys–Murphy sequence if it is both additively central and separating.

Since J1, . . . , Jn ∈ Xn and {εT : T ∈ Paths(A )} is a basis of Xn due to Proposition 2.7.6,
we can expand each Jk as a linear combination of εT .

2.7.8. Definition. For a given sequence J1, . . . , Jn with Jk ∈ Xk, we define a tuple called
weight vector cT = (cT (1), . . . , cT (n)) where each cT (k) ∈ C is such that for all k ∈ [n]

Jk =
∑

T∈Paths(A )

cT (k)εT . (2.58)

Sometimes in the literature the tuple cT is also called content vector. Note that under the
isomorphism in Eq. (2.53) {cT (k) | T ∈ Paths(A )} are the eigenvalues of Jk. An important
observation regarding the cT (k) is that the value of cT (k) does not depend on the whole path
T but only on the vertices T k and T k−1, see Lemma 3.9 in [DLS18], which is a consequence of
the property (a) in Definition 2.7.7. This means that the number cT (k) can be assigned to the
edge T k−1 → T k in the Bratteli diagram and we can equivalently write

cTk−1→Tk := cT (k). (2.59)
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2.7.5 Algorithm for computing idempotents

We now have all ingredients to state the [DLS18] algorithm for computing primitive central and
canonical primitive pairwise orthogonal idempotents of any multiplicity-free family A0, . . . ,An

of semisimple finite-dimensional algebras.
Following [DLS18], we assign to each edge λ→ µ between levels k− 1 and k of the Bratteli

diagram an interpolating polynomial Pλ→µ of x ∈ Ak defined as

Pλ→µ(x) :=
∏

µ̃ :λ→µ̃ ̸=µ

x− cλ→µ̃

cλ→µ − cλ→µ̃

, (2.60)

where the product is over all edges λ → µ̃ (other than λ → µ) outgoing from the vertex λ.
According to their main result [DLS18, Theorem 3.11], the primitive central idempotents of Ak

can be computed recursively for any k ∈ [n] and µ ∈ Âk as follows:

εµ =
∑

λ :λ→µ

Pλ→µ(Jk)ελ, (2.61)

where the sum is over all edges λ → µ incoming into µ and J1, . . . , Jn is a Jucys–Murphy
sequence for the algebras A0, . . . ,An. The base case of the recursion is ε(∅) = 1. According
to [DLS18, Theorem 3.8], the canonical primitive idempotents corresponding to the Gelfand–
Tsetlin basis can be found by substituting Eq. (2.60) into Eq. (2.56):

εT =
n∏

k=1

PTk−1→Tk(Jk) =
n∏

k=1

∏

µ :Tk−1→µ̸=Tk

Jk − cTk−1→µ

cTk−1→Tk − cTk−1→µ

(2.62)

where T = T 0 → T 1 → · · · → T n is a path in the Bratteli diagram.
To summarize, using these formulas requires the following data about the family A0, . . . ,An:

1. the Bratteli diagram of A0, . . . ,An,

2. a Jucys–Murphy sequence J1, . . . , Jn for A0, . . . ,An,

3. the scalars cT (k) for all k ∈ [n] and paths T ∈ Paths(A ) in the Bratteli diagram.

2.7.6 Matrix units

Matrix units generalise the notion of primitive idempotents εT for T ∈ Paths(A ). Namely,
for every T, S ∈ Paths(λ,A ) of every λ ∈ Ân we can construct elements ET,S ∈ An such that
under the isomorphism of Theorem 2.5.15 we have

ET,S ∼=
⊕

µ∈Ân

δλ,µ|T ⟩⟨S|, (2.63)

and correspondingly they provide a nice basis for the algebra An

An = spanC{ET,S | T, S ∈ Paths(λ,A ), λ ∈ Ân} (2.64)

whose elements satisfy

ET,SET ′,S′ = δS,T ′ET,S′ ,
∑

T∈Paths(A )

ET,T = 1. (2.65)

Note that we can choose ET,T = εT .
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2.8 Representation theory of Sn
Now we have all necessary ingredients and we are ready to summarize the representation theory
of Sn, which is crucial for the rest of this thesis. The representation theory of the symmetric
group is widely used and has a long history [Sag13; Rut48; CST10; How22].

Formally, the symmetric group is defined as follows:

2.8.1. Definition. Let n ⩾ 1. The symmetric group Sn can be presented with identity 1 and
generators σi for i ∈ {1, . . . , n− 1} with relations:

σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi (|i− j| > 1). (2.66)

One should think that σi correspond to permutations of elements i and i+1 in the set {1, . . . , n}.
We use the notation (i, j) to label a permutation i 7→ j, j 7→ i, so that σi = (i, i + 1). More
generally, we use the cycle notation (a, b, . . . , f) to mean a 7→ b 7→ . . . 7→ f 7→ a.

It is better to think about the elements of Sn as diagrams, with group multiplication cor-
responding to concatenation of diagrams. For example, a permutation (1, 4, 5, 3, 2) ∈ S5 corre-
sponds to

(2.67)

Irreducible representations of Sn, or equivalently simple modules of CSn, are classified by
partitions λ ⊢ n:

ĈSn = {λ ⊢ n}. (2.68)

One way to see this is via the Okounkov–Vershik approach [OV96], the general aspects of
which we outlined in Section 2.7. It is common to call the corresponding simple modules Vλ
Specht modules. The characters of Specht modules are given by the Murnaghan–Nakayama rule
[Sag13], which is a somewhat involved combinatorial formula that we will not present here. A
basis of Specht modules can be labelled by standard Young tableaux, which we introduced in
Section 2.6. In particular, the dimension dλ of a Specht module corresponding to a partition
λ ⊢ n is given by the hook length formula (see Eq. (2.40)):

dλ = |SYT(λ)| = n!∏
u∈λ h(u)

. (2.69)

The symmetric group Sn has a natural action on the tensor product space (Cd)⊗n that
permutes the n tensor factors. This so-called tensor representation of Sn is given by a map
ψdn : CSn → End((Cd)⊗n) that acts as

ψdn(π)
(
|x1⟩ ⊗ · · · ⊗ |xn⟩

)
:= |xπ−1(1)⟩ ⊗ · · · ⊗ |xπ−1(n)⟩ (2.70)

for every π ∈ Sn and x = (x1, . . . , xn) ∈ [d]n. The image of CSn under ψdn gives rise to an
important quotient algebra of CSn – the permutation matrix algebra

Ad
n := ψdn(CSn). (2.71)

We will often abuse the notation and simply write ψ instead of ψdn. It is important to observe
that ψdn has a non-trivial kernel when the local dimension d is smaller than n. For this reason
we will often have to make a distinction between small and large local dimensions d.

2.8.2. Example (Unfaithfulness of ψd3). ψd3
(∑

π∈S3 sign(π)π
)

vanishes when d = 2. Namely,
any string x = (x1, x2, x3) ∈ [2]3 has two positions i ̸= j such that xi = xj. Therefore,
for each π ∈ S3 there is π′ ∈ S3 with sign(π) = − sign(π′) such that πx = π′x, meaning
ψd3
(∑

π∈S3 sign(π)π
)
|x1, x2, x3⟩ = 0. In contrast, it does not vanish when d ⩾ 3.
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d = 2

d = 3

Ad
0 Ad

1 Ad
2 Ad

3 Ad
4

∅

Figure 2.2: The Bratteli diagram for the permutation matrix algebras Ad
0 ↪→ Ad

1 ↪→ Ad
2 ↪→

Ad
3 ↪→ Ad

4 defined in Eq. (2.71) when d ⩾ 4 is the same as Young’s lattice in Fig. 2.1. When
d = 2 or d = 3, vertices with Young diagrams containing more than d rows are removed. We
have highlighted the path corresponding to sequence (2.43) and terminating at leaf λ = (3, 1).

This unfaithfulness is reflected in the fact that the irreps of Ad
n are different from those of CSn:

Âd
n = {λ ⊢ n | ℓ(λ) ⩽ d}. (2.72)

The Bratteli diagram for CS0 ↪→ CS1 ↪→ · · · ↪→ CSn is known as Young’s lattice, see Figs. 2.1
and 2.2. A path T in this Bratteli diagram can also be viewed as a standard Young tableau.
Jucys–Murphy elements of CSn [Juc74; Mur81] are

Jk :=

{
0 if k = 1,∑k−1

i=1 (i, k) if 2 ⩽ k ⩽ n,
(2.73)

where (i, k) is the transposition of elements i and k. Moreover, it turns out that the entries of
the weight vector cT are simply given by the contents, see Eq. (2.44), of the Young tableau T :

cT (k) = contk(T ), (2.74)

thus motivating the name “content vector” for the weight vector cT in Definition 2.7.8. The
Bratteli diagram of Ad

n is closely related to the Young’s lattice and can be obtained by removing
vertices which violate the condition ℓ(λ) ⩽ d. The Bratteli diagrams for the symmetric groups
and permutation matrix algebras are presented in Fig. 2.2.

There are three commonly used forms for irreducible representations of the symmetric group
[Rut48] (see Table 2.1 for examples):

1. Young’s natural form provides invertible matrices with integer entries (i.e., in Z),

2. Young’s seminormal form provides invertible matrices with rational entries (i.e., in Q),

3. Young’s orthogonal form (also known as Young–Yamanouchi basis) provides real orthog-
onal matrices whose entries are square roots of rational numbers (i.e., in ±

√
Q⩾0).

The basis change between Young’s seminormal and orthogonal forms is diagonal and corre-
sponds to normalisation, while the basis change between seminormal and natural forms is
triangular [AH21].

The action of Sn on paths of the Bratteli diagram is given by the following famous result:
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π ∈ S3 e σ2σ1 σ1σ2 σ1 σ1σ2σ1 σ2

Diagram of π

Rnat(π)

(
1 0
0 1

) (
−1 −1
1 0

) (
0 1
−1 −1

) (
1 0
−1 −1

) (
−1 −1
0 1

) (
0 1
1 0

)

Rsemi(π)

(
1 0
0 1

) (
−1/2 −3/2
1/2 −1/2

) (
−1/2 3/2
−1/2 −1/2

) (
1 0
0 −1

) (
−1/2 −3/2
−1/2 1/2

) (
−1/2 3/2
1/2 1/2

)

Rorth(π)

(
1 0
0 1

) (
−1/2 −

√
3/2√

3/2 −1/2

) (
−1/2

√
3/2

−
√
3/2 −1/2

) (
1 0
0 −1

) (
−1/2 −

√
3/2

−
√
3/2 1/2

) (
−1/2

√
3/2√

3/2 1/2

)

Table 2.1: Young’s natural, seminormal, and orthogonal form (denoted by Rnat, Rsemi, and
Rorth, respectively) for the two-dimensional irrep of the symmetric group S3.

2.8.3. Theorem (Young–Yamanouchi basis). For any irrep λ ∈ ĈSn, a transposition σi acts
on a given path T ∈ Paths(λ,Y ) as follows:

ψλ(σi) |T ⟩ =
1

ri(T )
|T ⟩+

√
1− 1

ri(T )2
|σiT ⟩ for i ̸= n, (2.75)

where σiT denotes the path T with vertex T i at level i replaced by T i−1 ∪ (T i+1 \ T i).

An example of this theorem in action is presented in the last row of Table 2.1. Somewhat
confusingly, for historical reasons this basis can be referred to by three different names: “Young’s
orthogonal form”, “Young–Yamanouchi basis”, and “Gelfand–Tsetlin basis”.

Finally, we mention that the primitive idempotents from Section 2.7.5 corresponding to the
Young–Yamanouchi basis are Young symmetrisers, see [DLS18; Sag13]. Young symmetrisers
historically were constructed before the general algorithm in Section 2.7.5 was developed.

2.9 Representation theory of GLd and Ud.
In this section, we summarize the representation theory of complex general linear groups GLd
and unitary groups Ud, which are defined as follows:

GLd := {g ∈ End(Cd) | det g ̸= 0}, (2.76)
Ud := {g ∈ GLd | gg† = I}. (2.77)

There are two important subgroups inside both of them: special linear SLd and special unitary
groups SUd, which are defined as

SLd := {g ∈ GLd | det g = 1}, (2.78)
SUd := {g ∈ Ud | det g = 1}. (2.79)

Complex general linear group GLd and special linear group SLd both can be seen from different
viewpoints as real Lie groups, or complex Lie groups, or linear algebraic groups. These three
structures highlight different nature of the group seen as a real smooth manifold, a complex-
analytic manifold, or an affine algebraic variety, respectively. Correspondingly, this group can
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be studied through the lens of differential geometry or via algebraic geometry. In contrast,
both Ud and SUd, which are important subgroups of GLd, are only real Lie groups, since the
complex conjugation in their definition obstructs them to be complex Lie groups or linear
algebraic groups. We are not going to review the corresponding theories in full detail, since
it is a hopeless task for the thesis format. We merely summarize the main aspects of their
representation theory.

Topology

Topologically, GLd is connected, not simply connected and non-compact. SLd is connected,
simply connected and non-compact. Ud is connected, not simply connected and compact; it
can be seen as maximal compact subgroup of GLd. SUd is compact and simply connected Lie
group; it can be seen as maximal compact subgroup of SLd.

Categories of Representations

Before delving into the representation theory of these groups, it is crucial to distinguish between
different categories of representations: continuous, smooth, analytic, and algebraic. For a Lie
group G, a representation ϕ : G→ End(V ) is called

• continuous if the map ϕ is continuous with respect to the given topology on G,

• smooth if ϕ is infinitely differentiable,

• analytic if ϕ is real-analytic if G is a real Lie group, or complex-analytic if G is a complex
Lie group,

• algebraic if G is an algebraic group and ϕ is a morphism of algebraic varieties; that is,
the matrix entries of ϕ(g) are rational functions in the entries of g.

For compact Lie groups like Ud and SUd, all finite-dimensional continuous representations
are automatically smooth and analytic due to the compactness and smooth manifold structure
of these groups. In contrast, for GLd, which is a complex algebraic group, we are particularly
interested in algebraic representations, where the action is given by polynomial or rational
functions. In this thesis, we focus on finite-dimensional representations, primarily smooth and
algebraic ones, as they are the most relevant for the study of GLd, SLd, Ud, and SUd.

Lie algebras and highest weights

Representation theory of Lie groups and linear algebraic groups is intimately connected with
representation theory of their Lie algebras. The Lie algebra g, defined as the tangent space at
the identity element of its associated Lie group G, carries a bilinear operation known as the
Lie bracket.

2.9.1. Definition (Lie algebra). A Lie algebra over C is a vector space g together with a
binary operation called the Lie bracket, denoted by

[·, ·] : g× g → g, (2.80)

which satisfies the following properties for all x, y, z ∈ g:

1. bilinearity: [ax+ by, z] = a[x, z] + b[y, z], ∀a, b ∈ C,

2. antisymmetry: [x, y] = −[y, x],
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3. Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Assume G is a connected reductive linear algebraic group (such as GLd) with Lie algebra g.
To study a representation R : G→ End(V ) of a Lie group G, by analogy with Definition 2.7.5,
it is natural to understand how a given representation R restricts to maximal abelian subgroup
T of a maximal compact subgroup of G. T is called a torus of G and its Lie algebra is denoted
by t with complexification h. We can naturally restrict the action of g on V to that of h to
obtain a weight decomposition of V :

V =
⊕

ω∈L

Vω, (2.81)

where L ⊆ h∗ is a weight lattice and h∗ := Hom(h,C). The classification of irreducible repre-
sentations of Lie groups relies on the concept of highest weights. Intuitively, highest weights
are special weights that label the “top” or “dominant” state in an irreducible representation,
from which all other (lower) weights are generated by applying lowering operators in the Lie
algebra, see [FH91] for more details.

For the group GLd, the highest weights are elements λ = (λ1, . . . , λd) ∈ Zd satisfying
λ1 ⩾ λ2 ⩾ · · · ⩾ λd. These weights classify the irreducible representations, often referred to as
Weyl modules Wλ:

ĜLd = {λ = (λ1, . . . , λd) ∈ Zd | λ1 ⩾ λ2 ⩾ · · · ⩾ λd}. (2.82)

In the context of polynomial representations, the highest weights correspond to partitions
(Young diagrams) with at most d parts:

ĜLd
∣∣
poly

= {λ ⊢ n | ℓ(λ) ⩽ d, n ∈ Z⩾0}. (2.83)

Here, it is customary to pad partitions with zeros to the right, ensuring that each λ consists of
exactly d integers. We provide some examples of common irreps of GLd.

2.9.2. Example (Defining representation). Highest weight λ = (1, 0, . . . , 0) corresponds to
Young diagram □ and labels the following irrep ϕ□ : GLd → End(Cd) for every g ∈ GLd:

ϕ□(g) := g. (2.84)

2.9.3. Example (Dual of the defining representation). Highest weight λ = (0, 0, . . . ,−1), which
we label by □̄, corresponds to the following irrep ϕ□̄ : GLd → End(Cd) for every g ∈ GLd:

ϕ□̄(g) := (g−1)T. (2.85)

2.9.4. Example (Determinant irrep). Highest weight λ = (1, 1, . . . , 1) = (1d) corresponds to
the following irreducible representation:

ϕ(1d)(g) := det(g). (2.86)

Moreover, for GLd any rational representation µ ∈ ĜLd is of the form µ = detk ·λ for certain
k ∈ Z and λ ∈ ĜLd

∣∣
poly

.
Similarly, the irreducible representations of Ud and SUd are also classified by highest weights:

Ûd = {λ = (λ1, . . . , λd) ∈ Zd | λ1 ⩾ λ2 ⩾ · · · ⩾ λd}, (2.87)

ŜUd = {λ = (λ1, . . . , λd−1) ∈ Zd−1 | λ1 ⩾ λ2 ⩾ · · · ⩾ λd−1 ⩾ 0}. (2.88)
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Lie Algebra Representations and Gelfand–Tsetlin Bases

Simple modules of the Lie algebra gld correspond to the Weyl modules Wλ of the group GLd.
Although constructing explicit actions of GLd in a Gelfand–Tsetlin basis is challenging, it is
more manageable to construct such bases for simple modules of gld. In Section 2.9.2, we discuss
the Gelfand–Tsetlin basis for these modules.

The Gelfand–Tsetlin basis arises from a combinatorial object known as Gelfand–Tsetlin
pattern, which provides a convenient way to label basis vectors in the representation spaces of
gld and GLd. Each valid Gelfand–Tsetlin pattern corresponds to a basis vector in the Weyl
module Wλ. This combinatorial approach provides a powerful tool for studying representations
of gld and, by extension, GLd through the exponential map. By constructing the Gelfand–
Tsetlin basis for the Lie algebra gld, we effectively construct it for the group GLd as well.

2.9.1 Gelfand–Tsetlin patterns

It turns out that the family GL1 ↪→ GL2 ↪→ · · · ↪→ GLd−2 ↪→ GLd is multiplicity-free [VK92],
meaning that we can label the Gelfand–Tsetlin basis for this family as a tuple

(m1,m2, . . . ,md−1,md),

where mi is a highest weight for GLi. We can arrange this tuple into a Gelfand–Tsetlin pattern
M of shape λ and length d, which is represented by a triangular table with d rows and i integers
in the i-th row (when counted from the bottom):

M =




m1,d m2,d · · · md−1,d md,d

m1,d−1 · · · md−1,d−1

. . . ... ...
m1,2 m2,2

m1,1



=




md

md−1
...

m2

m1



, (2.89)

where mj := (m1,j, . . . ,mj,j) ∈ Zj denotes the j-th row of M . The entries mi,j of M are subject
to the following constraints: the top row of M is equal to λ, i.e., md = (m1,d, . . . ,md,d) =
(λ1, . . . , λd), and all entries mi,j satisfy the so-called interlacing or in-betweenness condition:

mi,j ⩾ mi,j−1 ⩾ mi+1,j for all 1 ⩽ i < j ⩽ d. (2.90)

We will write mj−1 ⊑ mj as a shorthand for the interlacing relations (2.90) between vectors
mj−1 and mj. Then all constraints on mi,j can be concisely summarised as

m1 ⊑ m2 ⊑ . . . ⊑ md. (2.91)

We denote by M[k] a smaller Gelfand–Tsetlin pattern which consists of the first k rows of the
original pattern M :

M[k] :=



mk
...

m1


 . (2.92)

We will denote the set of all Gelfand–Tsetlin patterns of shape λ and length d by GT(λ, d)
or simply by GT(λ), since we will always assume that λ is padded to the rank d of the
corresponding Lie group GLd. However, sometimes it will be important to highlight d and we
will use notation GT(λ, d) in that cases.



2.9. Representation theory of GLd and Ud. 33

For any partition λ of length d, the Gelfand–Tsetlin patterns GT(λ) are in one-to-one
correspondence with semistandard Young tableaux SSYT(λ):

mλ := dimWλ = |GT(λ)| = |SSYT(λ)|, (2.93)

where we assumed mi,j ⩾ 0 for every entry of the Gelfand–Tsetlin pattern M ∈ GT(λ). Indeed,
for any tableau T ∈ SSYT(λ) let mi,j be the number of symbols from [j] in the i-th row of T .
Equivalently, mj ⊆ λ is the shape of the subtableau of T formed by entries less than or equal
to j. Then Eq. (2.89) constitutes the Gelfand–Tsetlin pattern of tableau T . For example, the
Gelfand–Tsetlin patterns corresponding to the semistandard Young tableaux in Eq. (2.46) are

M1 =

[
3 1

3

]
, M2 =

[
3 1

2

]
, M3 =

[
3 1

1

]
, (2.94)

which are in fact all Gelfand–Tsetlin patterns GT(λ) for λ = (3, 1). Conversely, given any
Gelfand–Tsetlin pattern M , the corresponding semistandard tableau T has shape λ = md

given by the d-th row of M , while the filling of the i-th row of T can be deduced from the i-th
diagonal of M . Indeed, mi,j −mi,j−1 is the number of j’s in the i-th row of T .

The weight of Gelfand–Tsetlin pattern M consists of differences of consecutive row sums:

w(M) :=
(
w(m1), w(m2)−w(m1), . . . , w(md)−w(md−1)

)
where w(mj) :=

j∑

i=1

mi,j. (2.95)

Notice that the weight of a Gelfand–Tsetlin pattern coincides with the weight (2.48) of the
corresponding semistandard Young tableaux. For example, patterns (2.94) have weights (3, 1),
(2, 2), and (1, 3), respectively.

2.9.2 Gelfand–Tsetlin basis for gld

The Lie algebra of GLd turns out to be the full matrix algebra:

gld = End(Cd). (2.96)

The matrices Eik := |i⟩⟨k|, 1 ⩽ i, k ⩽ d, form a basis of the Lie algebra gld. They satisfy the
following commutation relations:

[Eik, Ejs] = 0 if i ̸= s, k ̸= j, (2.97)
[Eik, Ekk] = Eik if i ̸= k, (2.98)
[Eik, Eki] = Eii − Ekk. (2.99)

The explicit action of the generators Eik on the Weyl modules Wλ was obtained by Gelfand
and Tsetlin [GT50]. They showed that the following explicit formulas satisfy the commutation
relations in Eqs. (2.97) to (2.99):

2.9.5. Theorem (p. 363 of [VK92]). Consider the Weyl module Wλ with the basis labelled by
Gelfand–Tsetlin patterns M ∈ GT(λ). Let ℓp,q := mp,q − p and set

ajp−1 =

(∏p
i=1(ℓi,p − ℓj,p−1)

∏p−2
i=1 (ℓi,p−2 − ℓj,p−1 − 1)∏

i ̸=j(ℓi,p−1 − ℓj,p−1)(ℓi,p−1 − ℓj,p−1 − 1)

)1/2

, (2.100)

bjp−1 =

(∏p
i=1(ℓi,p − ℓj,p−1 + 1)

∏p−2
i=1 (ℓi,p−2 − ℓj,p−1)∏

i ̸=j(ℓi,p−1 − ℓj,p−1)(ℓi,p−1 − ℓj,p−1 + 1)

)1/2

. (2.101)
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Denote the Gelfand–Tsetlin pattern M in which mj,p−1 is replaced with mj,p−1 ± 1 by M±j
p−1.

Then the Gelfand–Tsetlin formulas for the action of the operators Ep−1,p, Ep,p−1, 2 ⩽ p ⩽ d,
and Epp, 1 ⩽ p ⩽ d, are as follows:

Ep−1,p|M⟩ =
p∑

j=1

ajp−1|M+j
p−1⟩, (2.102)

Ep,p−1|M⟩ =
p∑

j=1

bjp−1|M−j
p−1⟩, (2.103)

Ep,p|M⟩ =
(

p∑

i=1

mi,p −
p−1∑

j=1

mj,p−1

)
|M⟩. (2.104)

The other operators Ep,q are obtained with the help of relations Eqs. (2.97) to (2.99).

2.9.3 Tensor product decompositions

Understanding how tensor products of irreducible representations decompose into direct sums
of irreducible representations is a fundamental aspect of the representation theory of GLd. This
decomposition is governed by combinatorial coefficients known as Littlewood–Richardson coeffi-
cients. In this section, we introduce these coefficients and discuss their role in the representation
theory of GLd.

Let Wλ and Wµ be two Weyl modules of GLd corresponding to highest weights λ and µ of
polynomial representations of GLd. Their tensor product Wλ ⊗Wµ is, in general, a reducible
representation of GLd. It decomposes into a direct sum of irreducible representations as follows:

Wλ ⊗Wµ
∼=

⊕

ν⊢d|λ|+|µ|

Wν ⊗ Ccνλµ , (2.105)

where the sum is over all partitions ν of size |ν| = |λ|+ |µ|, and cνλµ ∈ Z⩾0 are the Littlewood–
Richardson coefficients. When cνλµ = 0 the convention is that the corresponding irrep Wν does
not appear as a direct summand in Eq. (2.105). The precise statement on how to compute
general Littlewood–Richardson coefficients can be found in [FH91]. Importantly for our thesis,
in the special case when µ is a single row or column there is a simple formula for cνλµ known as
Pieri’s Rule.

2.9.6. Theorem (Pieri’s Rule [FH91]). If µ has only one row, i.e. µ = (n), the Littlewood–
Richardson coefficient cνλµ = 1 if the Young diagram ν can be obtained from λ by adding n boxes
such that no two of them are added in the same column; otherwise cνλµ = 0. Similarly, if µ′ has
only one column, i.e. µ′ = (1n), then cνλµ = 1 if the Young diagram ν can be obtained from λ
by adding n boxes such that no two of them are added in the same row; otherwise cνλµ = 0.

Equation (2.105) only refers to the multiplicities in the decomposition of the tensor product.
However, how can we find an explicit basis change achieving this decomposition when given
Gelfand–Tsetlin bases in the Weyl modules Wλ and Wµ? The answer is given in the form of
Clebsch–Gordan coefficients, also known as Wigner coefficients [BL68]. The transformation
CGλ,µ achieving this is called Clebsch–Gordan transform: for any g ∈ GLd,

CGλ,µ

(
Rλ(g)⊗Rµ(g)

)
CG†

λ,µ =
⊕

ν⊢d|λ|+|µ|

Rν(g)⊗ Icνλµ , (2.106)

where Rλ, Rµ, Rν are the corresponding irreps of GLd. The Clebsch–Gordan coefficients, which
are matrix entries of a Clebsch–Gordan transform CGλ,µ, can be obtained from Eqs. (2.102)
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to (2.104) for matrix elements of gld generators in the Gelfand–Tsetlin basis [VK92]. In Sec-
tion 4.A.1, we describe a special class of Clebsch–Gordan coefficients for GLd (or equivalently
for Ud) corresponding to arbitrary λ and µ = (1, 0, . . . , 0) or µ = (0, . . . , 0,−1).

2.10 Schur–Weyl duality
Schur–Weyl duality reveals a connection between the general linear group GLd and the symmet-
ric group Sn through their actions on tensor spaces (Cd)⊗n. This duality was first established
by Issai Schur in [Sch27]. Schur’s original motivation was to understand the decomposition
of tensor powers of the standard representation of GLd into irreducible components. He dis-
covered that the actions of GLd and Sn on the tensor space (Cd)⊗n commute and that their
centralisers are mutual centralisers within the matrix algebra End((Cd)⊗n). This means that
the algebra generated by the action of GLd is the commutant of the group algebra CSn acting
via permutation of tensor factors, and vice versa.

Hermann Weyl later expanded upon Schur’s work in the 1930s, incorporating it into the
broader context of Lie group representations and invariant theory. Weyl recognised the signifi-
cance of this duality in understanding the representation theory of classical groups and utilised
it extensively in [Wey46]. The Schur–Weyl duality not only provides a clear framework for de-
composing tensor spaces into irreducible representations but also establishes a bridge between
the representation theories of finite groups and continuous groups.

Over the years, the Schur–Weyl duality has been generalised and extended to various set-
tings, including quantum groups and Hecke algebras. The duality also plays a crucial role
in theoretical physics, particularly in quantum mechanics and quantum information theory,
where it aids in the analysis of symmetries and entanglement in multi-particle systems. For
more background, see [FH91; GW98; Eti+11; Har05].

One way to view Schur–Weyl duality is through the lens of the double centraliser theorem,
see [Eti+11, Theorem 4.54].

2.10.1. Theorem (Double centraliser). Let V be a finite-dimensional vector space over C, and
let A ⊆ End(V ) be a matrix subalgebra of the full matrix algebra on V . Then the double
commutant of A satisfies:

A = A′′, (2.107)

where A′ := EndA(V ) is the commutant of A in End(V ), and A′′ = (A′)′.

To proceed, we need to define the action of GLd on tensor space. A natural way for GLd to
act on (Cd)⊗n is by applying an identical operator on each tensor factor. This is captured by
the tensor representation ϕdn : GLd → End((Cd)⊗n) defined as

ϕdn(U) := U⊗n, (2.108)

for all U ∈ GLd. Let us denote the algebra generated by the image of Ud under ϕdn by

Ud
n := spanC{ϕdn(U) | U ∈ Ud}. (2.109)

It turns out that we could have instead considered the span over GLd, SUd or SLd instead of
Ud—the result would not change.

2.10.2. Lemma. Let ϕdn be the map from Eq. (2.108) and Ud
n the algebra defined in Eq. (2.109).

Then

Ud
n = spanC{ϕdn(U) |U ∈ GLd} = spanC{ϕdn(U) |U ∈ SLd} = spanC{ϕdn(U) |U ∈ SUd}. (2.110)
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Proof:
For the purposes of the proof, we label

SUd
n := spanC{ϕdn(U) | U ∈ SUd}, GLdn := spanC{ϕdn(U) | U ∈ GLd}. (2.111)

From SUd ⊂ Ud ⊂ GLd we easily see that

SUd
n ⊆ Ud

n ⊆ GLdn. (2.112)

We need to show the inverse inclusions in Eq. (2.112) to obtain the desired result.
Firstly, any U ∈ Ud can be written as U = eiθV for some V ∈ SUd and θ ∈ R. It means

that ϕdn(U) = ϕdn(e
iθV ) = einθV ⊗n = einθϕdn(V ), so we can rewrite any linear combination of

ϕdn(U) as a linear combination of ϕdn(V ) for special unitaries V . That shows Ud
n ⊆ SUd

n.
Secondly, we would like to write M⊗n for arbitrary M ∈ GLd as a linear combination of

U⊗n for U ∈ Ud. To show that it is possible we present the argument from [Aub18]. Without
loss of generality, we can take M ∈ GLd to have the following singular value decomposition:

M =
d∑

i=1

si|ei⟩⟨fi|, (2.113)

where {|ei⟩}di=1 and {|fi⟩}di=1 are some orthonormal bases of Cd, and 0 < si < 1 for every i ∈ [d].
Cauchy’s formula tells us that for |s| < 1 we have the following contour integral

s =
1

2πi

∮

Γ

z
dz

z − s
, (2.114)

where Γ denotes the unit circle in the complex plane C. By defining

Uz1,...,zd :=
d∑

i=1

zi|ei⟩⟨fi| (2.115)

and using Cauchy’s formula together with Fubini’s theorem,

M⊗n =
d∑

i1=1

· · ·
d∑

in=1

si1 . . . sin|ei1 , . . . , ein⟩⟨fi1 , . . . , fin| (2.116)

=
d∑

i1,...,in=1

1

(2πi)n

∮

Γn

zi1 . . . zin
dzi1

zi1 − si1
. . .

dzin
zin − sin

|ei1 , . . . , ein⟩⟨fi1 , . . . , fin| (2.117)

=
1

(2πi)n

∮

Γn

U⊗n
z1,...,zd

dzi1
zi1 − si1

. . .
dzin

zin − sin
, (2.118)

which shows that GLdn ⊆ Ud
n.

Finally, since SUd ⊂ SLd ⊂ GLd and SUd
n = GLdn = Ud

n then Ud
n = spanC{ϕdn(U) | U ∈ SLd}

as well. 2

Recall from Eq. (2.71) that Ad
n denotes the permutation matrix algebra on n qudits of

dimension d, and recall from Eq. (2.23) that EndAd
n
((Cd)⊗n) denotes the centraliser of Ad

n in
End((Cd)⊗n), i.e., all matrices in End((Cd)⊗n) that commute with Ad

n. One way to state the
Schur–Weyl duality is that Ud

n is the centraliser of Ad
n, and vice versa.
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2.10.3. Theorem (Schur–Weyl duality). The algebra Ud
n is the centraliser algebra of Ad

n in
End((Cd)⊗n) and vice versa, i.e.,

Ud
n = EndAd

n
((Cd)⊗n), Ad

n = EndUd
n
((Cd)⊗n). (2.119)

Moreover, when d ⩾ n the representation ψdn is faithful, i.e., Ad
n
∼= CSn.

Equivalently, in more practical terms we can reformulate this statement as follows: there
exists a Schur transform unitary USch such that for every σ ∈ Sn and u ∈ Ud:

USch ϕ
d
n(u)U

†
Sch =

⊕

λ∈Âd
n

Iλ ⊗ ϕλ(u), USch ψ
d
n(σ)U

†
Sch =

⊕

λ∈Âd
n

ψλ(σ)⊗ Iλ, (2.120)

where ϕλ : Ud → End(Wλ) and ψλ : Sn → End(Vλ) are irreps of Ud and Sn respectively, i.e. Vλ
is a Specht module and Wλ is a Weyl module. In other words, the vector space (Cd)⊗n seen as
a representation of Ad

n × Ud
n decomposes into its irreducible rperesentations as

(Cd)⊗n ≃
⊕

λ∈Âd
n

Vλ ⊗Wλ. (2.121)

Note that Eq. (2.121) implies to following remarkable combinatorial identity:

dn =
∑

λ⊢dn

dλmλ. (2.122)

The Schur transform USch plays important role in quantum information. We explain the
construction of USch in Chapter 4 where USch appears as a special case of mixed Schur transform.
To get a feeling how USch looks like, let’s consider the simplest non-trivial case.

2.10.4. Example (n = 2 and d = 2). Since S2 = {e, (12)}, the algebra A2
2 is generated corre-

spondingly by the identity matrix and SWAP:

A2
2 :=




x




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ y




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




∣∣∣∣∣∣∣∣
x, y ∈ C




, (2.123)

whereas U2
2 is generated by tensor squares of unitary matrices:

U2
2 := spanC

{(
a b
c d

)
⊗
(
a b
c d

) ∣∣∣∣
(
a b
c d

)
∈ U(2)

}
. (2.124)

Using the two-qubit Schur transform [Har05, p. 121]

USch :=




0 1/
√
2 −1/

√
2 0

1 0 0 0
0 1/

√
2 1/

√
2 0

0 0 0 1


 , (2.125)

we can simultaneously block-diagonalize both algebras:

USchA2
2U

T
Sch =








x− y 0 0 0
0 x+ y 0 0
0 0 x+ y 0
0 0 0 x+ y




∣∣∣∣∣∣∣∣
x, y ∈ C




, (2.126)

USchU2
2U

T
Sch = spanC








ad− bc 0 0 0

0 a2
√
2ab b2

0
√
2ac ad+ bc

√
2bd

0 c2
√
2cd d2




∣∣∣∣∣∣∣∣

(
a b
c d

)
∈ U(2)




. (2.127)
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These algebras centralize each other since

USchA2
2U

T
Sch = C⊕ CI3, USchU2

2U
T
Sch = C⊕ End(C3), (2.128)

where the second equality follows from Burnside’s theorem 2.4.6 since the 3 × 3 block in
Eq. (2.127) is irreducible.



Chapter 3

Mixed Schur–Weyl duality

In this chapter, we present a generalisation of Schur–Weyl duality, commonly referred to as
mixed Schur–Weyl duality, which plays an important role in various contexts within quantum
information theory. This duality relates the walled Brauer algebra to a centraliser of a natural
unitary group action on a mixed tensor space. The natural action of the walled Brauer algebra
on tensor spaces gives rise to the partially transposed permutation matrix algebra, serving as
a matrix representation of the diagrammatic walled Brauer algebra. In this chapter, we focus
on the representation theory of the partially transposed permutation matrix algebra.

Our main technical result is the derivation of an explicit formula for the action of the
walled Brauer algebra generators within the Gelfand–Tsetlin basis of the partially transposed
permutation matrix algebra. This result extends the well-known Gelfand–Tsetlin basis for the
symmetric group, also referred to as Young’s orthogonal form or the Young–Yamanouchi basis.
Furthermore, we provide a construction of both primitive and primitive central idempotents
within the Gelfand–Tsetlin basis for partially transposed permutation matrix algebras.

The results in this chapter are based on [GO24; GBO23a].

3.1 Introduction

The main focus of this chapter is a variant of Schur–Weyl duality, known as mixed Schur–Weyl
duality, which is equally important in quantum information as Schur–Weyl duality but has
received less attention due to its more complicated nature. The simplest instance of mixed
Schur–Weyl duality is for two qubits. Here, instead of the anti-symmetric singlet state |ψ−⟩
which one considers in Schur–Weyl duality, we single out the canonical maximally entangled
state |ϕ+⟩ := (|00⟩ + |11⟩)/

√
2. This state is invariant under the following unitary action

(U ⊗ Ū)|ϕ+⟩ = |ϕ+⟩ for any U ∈ U2. In addition, SWAPΓ|ϕ+⟩ = 2|ϕ+⟩ where SWAPΓ =
2|ϕ+⟩⟨ϕ+| denotes the partial transpose of SWAP. Similarly, the three-dimensional orthogonal
complement of |ϕ+⟩ is also invariant under the action of both U ⊗ Ū and SWAPΓ. Mixed
Schur–Weyl duality generalises this observation by partitioning (Cd)n+m into subspaces that
are invariant under the unitary action U⊗n ⊗ Ū⊗m and the matrix algebra Ad

n,m of partially
transposed permutations that are transposed only on the last m systems [Koi89; Ben+94;
Hal96; Nik07]. In particular, [Ad

n,m, U
⊗n ⊗ Ū⊗m] = 0 for all U ∈ Ud. The usual Schur–Weyl

duality corresponds to the special case when either n = 0 or m = 0.
Mixed Schur–Weyl duality appears in a variety of contexts, particularly in scenarios with

multiple input and output systems such as quantum state purification [KW01b] and cloning
[SIGA05; Fan+14; NPR21], port-based [MSSH18; SSMH17; Led22; Chr+21; SMK22] and
multi-port-based teleportation [KMSH21; SMKH22; MSK21], and quantum algorithmic appli-
cations [BLMMO22]. This symmetry also occurs in situations that involve the partial transpose
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on several systems, such as in entanglement detection [BCS20; BSH24], universality of qudit
gate sets [SMZ22; DS23; SS23a], and Ud-equivariant quantum circuits [HLM21; ZLLSK23]. It
is also relevant in high-energy physics [KR07; Can11].

Partially transposed permutations can be easily visualised as diagrams. The set of all
partially transposed permutation diagrams under composition forms the walled Brauer algebra
Bdn,m. The walled Brauer algebra Bdn,m is a restricted version of the full Brauer algebra [Bra37],
and a prominent example of a diagram algebra, which has been widely studied [Tur89; Koi89;
Ben+94; Ben96; Nik07; Bul20] (see [Koe08] for a survey on Brauer and other diagram algebras).
The characters of the walled Brauer algebra were first derived by Halverson [Hal96] (see also
[Nik07]). Mixed Schur–Weyl duality was established in [Koi89; Ben+94], where the matrix
algebra Ad

n,m of partially transposed permutations was first introduced.
The representation theory of walled Brauer algebras has been strongly influenced by repre-

sentation theory of symmetric group algebras, which correspond to the special case when either
n = 0 or m = 0.

In the context of quantum information, Young’s orthogonal form is by far the most useful
since it provides unitary matrices that can readily be used as operations in a quantum computer.
In particular, irreps of this form are produced by the quantum Schur transform [Har05; Ber12].
Our goal in this chapter is to extend Young’s orthogonal form from the symmetric group to the
matrix algebra Ad

n,m. In Chapter 4, we derive the corresponding mixed Schur transform that
decomposes mixed tensor representation of Ad

n,m into irreps of this form.
While the diagrammatic walled Brauer algebra Bdn,m is well studied, its matrix representation

Ad
n,m has received much less attention. A key difficulty in studying Ad

n,m is the fact that it is a
quotient of the walled Brauer algebra, and hence has a rather complicated description in terms
of the walled Brauer diagrams. In addition, since Bdn,m is not semisimple when d < n+m− 1
[CDDM08], it can be difficult to obtain results for Bdn,m and then transfer them to Ad

n,m (which
is always semisimple).

Our strategy hinges on the close connection between the walled Brauer algebra Bdn,m and
the group algebra C(Sn × Sm) corresponding to its two symmetric subgroups. We will make
use of the fact that Bdn,m is generated by diagrams σ1, . . . , σn+m−1 [Nik07] shown in Eq. (3.10),
where σi (i ̸= n) are transpositions of consecutive systems i and i+ 1 which generate Sn × Sm,
while the remaining generator σn contracts systems n and n+ 1 (see Definition 3.2.2 for more
details). The matrix algebra Ad

n,m is generated by a matrix representation of these generators.

Results

Our main result in this chapter is Theorem 3.7.1, which provides an explicit construction of all
irreducible representations of Ad

n,m, the matrix algebra of partially transposed permutations on
n+m qudits. We provide a formula that allows to evaluate the irrep matrix entries on each of
the generators, which by homomorphism and linearity fully determines the irrep on the rest of
the algebra.

An important feature of our construction is that it provides irrep matrix entries in the
Gelfand–Tsetlin basis. This basis has a recursive definition and hence is automatically adapted
to a natural sequence of subalgebras obtained by including the generators σi one by one. This
guarantees that the generators have a particularly sparse representation and gives a conceptually
simple way to pinpoint their non-zero entries and describe their action.

3.1.1. Theorem (Qualitative statement of Theorem 3.7.1). When evaluated on one of the gen-
erators, any irreducible representation of the matrix algebra Ad

n,m has the following form:

• Transpositions σi (i ̸= n) are represented by a direct sum of 1× 1 and 2× 2 blocks, where
each 1× 1 block is equal to ±1, while for each 2× 2 block there is a constant r ∈ Z such
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that the block is equal to 


1
r

√
1− 1

r2√
1− 1

r2
−1
r


 , (3.1)

which is an orthogonal reflection. The exact signs and values of r can be inferred from
Young’s orthogonal form for symmetric groups.

• The contraction σn is represented by a direct sum of rank-1 matrices with eigenvalue d.

When n = 0 or m = 0, our formula reduces to the well-known Young’s orthogonal form for the
symmetric group, see Theorem 2.8.3.

A concrete example of how all irreps of A3
3,2 look like in the Gelfand–Tsetlin basis is provided

in Table 3.1. The main idea of the proof is that, thanks to this being the Gelfand–Tsetlin basis,
we already know from Young’s orthogonal form how all generators (except for the contraction
σn) are supposed to act. We made an educated guess for the matrix representation of σn and
verified that it indeed works. This requires checking that the matrix representations of all
generators satisfy the walled Brauer algebra relations stated in Definition 3.2.2.

The second main result of this chapter is a construction of idempotents for the matrix algebra
Ad
n,m, which we adapt from Section 2.7. The main technical ingredient for this construction is

Theorem 3.6.6.

Related work

Young’s natural representation for the walled Brauer algebra has been constructed by Nikitin
[Nik07], while Young’s orthogonal form for the full Brauer algebra is described in [Naz96]. In
addition, [ST17] has obtained a seminormal form for the q-deformed version of the walled Brauer
algebra. However, taking the “classical” q → 1 limit of their construction and renormalising the
resulting basis vectors to obtain the corresponding orthogonal form is non-trivial. Moreover,
their construction only works for semisimple walled Brauer algebras Bdn,m, so the problem
of adapting their construction to Ad

n,m is still open. Motivated by applications to quantum
information, previously the algebra Ad

n,m was studied in [ZKW07; SHM13; MHS14; MSH18]
for the m = 1 case. Some aspects of it were also studied for general m in [SMKH22; MSK21].
In particular, [SMKH22] constructs the same action as in our Theorem 3.7.1, but not for
very restricted class of irreducible representations. In this sense, our work generalises that of
[SMKH22].

3.2 Walled Brauer algebra
Let n,m ⩾ 0 be integers and d ∈ C arbitrary1. The walled Brauer algebra Bdn,m consists of
formal complex linear combinations of diagrams, where each diagram has two rows of n +m
nodes each and a vertical wall between the first n and the last m nodes [Tur89; Koi89; Ben+94;
Ben96; Nik07; Bul20]. All nodes are connected in pairs, and any two connected nodes are either
on the same side of the wall and in different rows, or the other way around. For example, the
following diagram

n = 3 m = 2

(3.2)

1We will later require d ⩾ 2 to be an integer as well.
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belongs to Bd3,2. The addition in Bdn,m is defined by simply adding the respective coefficients
in the two formal linear combinations. Multiplication of two diagrams corresponds to their
concatenation by identifying the bottom row of the first diagram with the top row of the
second diagram. Any loops that may have appeared in this process are erased and the resulting
diagram is multiplied by the scalar d#loops:

ρ =

σ =

ρ σ = d · (3.3)

where parameter d of a walled Brauer algebra Bdn,m explicitly appear. Multiplication of diagrams
extends by linearity to multiplication in a walled Brauer algebra Bdn,m.

The walled Brauer algebra Bdn,m itself is a subalgebra of the so-called full Brauer algebra
Bdn+m that is defined similarly but without the wall and with no restrictions on which pairs of
nodes can be connected [Bra37]. This algebra was originally introduced by Richard Brauer for
studying Schur–Weyl-like dualities of orthogonal and symplectic groups.

For any diagram σ ∈ Bdn,m, the partial transpose σΓ is obtained by exchanging the last m
nodes of both rows (i.e., the nodes on the right-hand side of the wall):

( )Γ

= (3.4)

Note that σ ∈ Bdn,m is a walled Brauer algebra diagram if and only if σΓ ∈ Sn+m. In particular,
dim(Bdn,m) = (n+m)! since (Bdn,m)Γ = CSn+m as vector spaces.

The walled Brauer algebra carries the natural structure of a ∗-algebra. The star operation
on diagrams is defined by exchanging the bottom nodes with the top nodes:

( )∗

= (3.5)

Walled Brauer algebras have a natural notion of trace and partial trace, resembling a similar
notion for matrix algebras. The trace Tr: Bdn,m → C of a walled Brauer algebra diagram σ is
defined as

Tr(σ) := dloops(σ), (3.6)
where loops(σ) denotes the number of loops formed by connecting all nodes in the top row of σ
to the corresponding nodes in the bottom row. This definition is extended to the whole of Bdn,m
by linearity. For any subset S ⊆ [n+m], the corresponding partial trace TrS : Bdn,m → Bdn′,m′ is
defined similarly, except we connect only those pairs of nodes in σ that are indicated by S:

TrS(σ) := dloopsS(σ)σ′, (3.7)

where loopsS(σ) denotes the number of loops formed in this way and σ′ ∈ Bdn′,m′ denotes
the smaller diagram left after erasing the loops. Note that n + m = n′ + m′ + |S| where
n′ := n− |S ∩ [n]| and m′ := m− |(S − n) ∩ [m]|.
3.2.1. Example. The trace of a diagram in Bd4,1:

Tr
( )

= = d3. (3.8)

The partial trace of the same diagram over S = {2, 3, 4}:

TrS

( 1 2 3 4 5 )
= = d · . (3.9)
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Note that the group algebra of the permutation group Sn × Sm forms a subalgebra of the
walled Brauer algebra Bdn,m consisting only of those diagrams where no edge goes through the
wall. In fact, the two algebras are isomorphic when n = 0 or m = 0, i.e., CSn ∼= Bdn,0 ∼= Bd0,n for
any value of d.

The walled Brauer algebra Bdn,m is generated by transpositions σi that swap the i-th and
(i + 1)-th node of the two rows, where i ∈ {1, . . . , n + m − 1} \ {n}, and a contraction σn
between the n-th and (n+ 1)-th node within each row. For example, Bd2,2 is generated by

σ1 =

σ2 =

σ3 =

(3.10)

One can also define Bdn,m abstractly in terms of relations between its generators [Nik07; BS12].

3.2.2. Definition. Let n,m ⩾ 0 be integers and d ∈ C. The walled Brauer algebra Bdn,m
is a finite-dimensional associative algebra over C generated by σ1, . . . , σn+m−1 subject to the
following relations:

(a) σ2
i = 1 (i ̸= n), (b) σiσi+1σi = σi+1σiσi+1 (i ̸= n− 1, n), (c) σiσj = σjσi (|i− j| > 1),

(3.11)
(d) σ2

n = dσn, (e) σnσn±1σn = σn, (f) σnσi = σiσn (i ̸= n± 1),
(3.12)

(g) σnσn+1σn−1σnσn−1 = σnσn+1σn−1σnσn+1, (3.13)
(h) σn−1σnσn+1σn−1σn = σn+1σnσn+1σn−1σn. (3.14)

Sometimes, we could refer to the contraction generator σn as σ̄n to highlight that it has
some horizontal strands.

More generally, we define σi,j ≡ (i, j) to be the transposition between i-th and j-th node,
which acts as identity on other n + m − 2 nodes. Similarly, we define σi,j ≡ (i, j) to be the
contraction between i-th and j-th node, which acts as identity on other n+m− 2 nodes.

In the quantum information context, the generator σn can be thought as “unnormalised
EPR state projector”. We can generalise this and introduce special elements τk ∈ Bdn,m defined
formally as

τk :=
k−1∏

i=0

(n− i, n+ 1 + i), (3.15)

which intuitively represent k copies of “unnormalised EPR projector”. They represented by
diagrams with k contractions located near the wall, i.e

τk =

k

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
(3.16)
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3.3 Matrix algebra of partially transposed permutations
Fix the integer d ⩾ 2. We now consider a matrix representation of the walled Brauer algebra
Bdn,m by extending Eq. (2.70) from a tensor representation of Sp to a mixed tensor representation
ψdn,m : Bdn,m → End((Cd)⊗n⊗ (Cd)⊗m) of Bdn,m. Denoting the nodes in the first row of a diagram
σ ∈ Bdn,m by 1, . . . , n+m and in the second row by 1, . . . , n+m, the action of ψdn,m(σ) on the
standard basis tensors of (Cd)⊗n ⊗ (Cd)⊗m is given by

ψdn,m(σ)
(
|x1⟩ ⊗ · · · ⊗ |xn+m⟩

)
=

∑

1⩽x1,...,xn+m⩽d

σx1,...,xn+m
x1,...,xn+m

|x1⟩ ⊗ · · · ⊗ |xn+m⟩, (3.17)

for all x1, . . . , xn+m ∈ {1, . . . , d}, where the coefficients are given by

σx1,...,xn+m
x1,...,xn+m

:=





1 if xr = xs for all connected pairs of vertices
r, s ∈ {1, . . . , n+m, 1, . . . , n+m} of σ,

0 otherwise.
(3.18)

Equivalently,
σx1,...,xn+m
x1,...,xn+m

=
∏

(r,s)∈σ

δxr,xs , (3.19)

where the product is over all pairs (r, s) of nodes that are connected in σ.

3.3.1. Example. According to Eqs. (3.17) and (3.19),

⟨x1, . . . , x5|ψd3,2
( )

|y1, . . . , y5⟩ =
x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

(3.20)

= δx1,y1δx2,y3δx3,x5δx4,y5δy2,y4 (3.21)

for any choice of x1, . . . , x5 ∈ [d] and y1, . . . , y5 ∈ [d].

A crucial fact about the matrix ψdn,m(σ) representing a diagram σ is that its partial traces
are related to those of the diagram. Namely, for any σ ∈ Bdn,m and S ⊆ [n+m],

Tr(ψdn,m(σ)) = Tr(σ), TrS(ψ
d
n,m(σ)) = ψdn′,m′(TrS(σ)), (3.22)

where the diagrammatic traces Tr(σ) and TrS(σ) are defined in Eqs. (3.6) and (3.7), respectively.
We formally establish these two identities in Section 3.A.1.

Similar to Eq. (2.71), we denote the image of Bdn,m under ψdn,m by

Ad
n,m := ψdn,m(Bdn,m) ∼= Bdn,m/ kerψdn,m. (3.23)

This is known as matrix algebra of partially transposed permutations as it is generated by
permutation matrices on n + m qudit registers, partially transposed on the last m registers.
Recall that the partial transpose Γ : End((Cd)⊗n+m) → End((Cd)⊗n+m) is defined as (M ⊗
N)Γ :=M ⊗NT, for all M ∈ End((Cd)⊗n) and N ∈ End((Cd)⊗m). This operation can be used
to relate the maps ψdn,m and ψdn+m defined in Eqs. (2.70) and (3.17), respectively:

ψdn,m(σ) =
(
ψdn+m

(
σΓ
))Γ

, (3.24)

where σΓ denotes the partial transpose of the diagram σ ∈ Bdn,m, see Eq. (3.4). Hence, as vector
spaces, the algebras Ad

n,m and Ad
n+m are related as follows:

Ad
n,m =

(
Ad
n+m

)Γ
. (3.25)

However, because of different product operations, the two algebras are not isomorphic.
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3.3.2. Example (Transposition versus contraction). When n = 2 and m = 0, the only non-
trivial element of Bd2,0 is the transposition σ1 = (12). Its matrix version acts as

ψd2,0

( )
: |i⟩|j⟩ 7→ |j⟩|i⟩, (3.26)

for all i, j ∈ {1, . . . , d}, since the diagram is encoded by σi,jk,l = δi,lδj,k. More generally, any
diagram that represents a permutation (i.e., has no edges across the wall) simply translates
into the corresponding permutation of the tensor factors.

When n = m = 1, the only non-trivial element of Bd1,1 is the contraction of 1 and 2. The
corresponding matrix acts as

ψd1,1

( )
: |i⟩|j⟩ 7→ δi,j

d∑

k=1

|k⟩|k⟩, (3.27)

for all i, j ∈ {1, . . . , d}, since σi,jk,l = δi,jδk,l in this case. In particular, when d = 2,

ψ2
2,0

( )
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , ψ2

1,1

( )
=




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 = ψ2

2,0

( )Γ
, (3.28)

which are known as the SWAP operator and the unnormalised projector onto the canonical
maximally entangled state.

3.4 Mixed Schur–Weyl duality
The mixed Schur–Weyl duality is concerned with the action of Ud and Bdn,m on the mixed tensor
product space (Cd)⊗n ⊗ (Cd)⊗m where n,m ⩾ 0. The m = 0 case is equivalent to the usual
Schur–Weyl duality discussed in Section 2.10 while the n = 0 case is isomorphic to it. As a
generalisation of Eq. (2.108), consider the natural representation ϕdn,m : Ud → End((Cd)⊗n+m)
of Ud defined as

ϕdn,m(U) := U⊗n ⊗ Ū⊗m (3.29)

for all U ∈ Ud, where the entry-wise complex conjugate Ū is the dual of the defining represen-
tation. Similar to Eq. (2.109), let

Ud
n,m := spanC{ϕdn,m(U) | U ∈ Ud}. (3.30)

We are particularly interested in the matrix algebra EndUd
n,m

((Cd)⊗n ⊗ (Cd)⊗m), i.e., the
centraliser of the natural Ud action on (Cd)⊗n⊗(Cd)⊗m, which captures the unitary equivariance
condition. The following result generalises Theorem 2.10.3 to the mixed tensor product space
(Cd)⊗n⊗ (Cd)⊗m and says that EndUd

n,m
((Cd)⊗n ⊗ (Cd)⊗m) is equal to the matrix algebra Ad

n,m

of partially transposed permutations and, when d ⩾ n +m, isomorphic to the walled Brauer
algebra Bdn,m.

3.4.1. Theorem (Mixed Schur–Weyl duality [Koi89; Ben+94]). The algebra Ud
n,m is the cen-

traliser algebra of Ad
n,m in End((Cd)⊗n ⊗ (Cd)⊗m) and vice versa, i.e.,

Ud
n,m = EndAd

n,m
((Cd)⊗n ⊗ (Cd)⊗m), Ad

n,m = EndUd
n,m

((Cd)⊗n ⊗ (Cd)⊗m). (3.31)

Moreover, when d ⩾ n+m the representation ψdn,m is faithful, i.e., Ad
n,m

∼= Bdn,m.
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The simplest non-trivial instance of this duality is illustrated in Example 3.4.2 below. It is
similar to Example 2.10.4, except here the second system of U2

1,1 and A2
1,1 is subject to the dual

action of Ud and the partial transpose, respectively.

3.4.2. Example (n = m = 1 and d = 2). The algebra A2
1,1 is generated by the identity matrix

and the matrix ψd1,1
( )

given in Eq. (3.28):

A2
1,1 :=




x




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ y




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




∣∣∣∣∣∣∣∣
x, y ∈ C




. (3.32)

Note from Eq. (2.123) that A2
1,1 = (A2

2,0)
Γ. We can describe U2

1,1 by introducing the dual
representation: for any invertible matrix M , let M∗ := (M−1)T. Note that M∗ = M̄ when M
is unitary and, for a general M , the entries of M∗ are rational functions in the entries of M .
In particular, (

a b
c d

)∗

=
1

ad− bc

(
d −c
−b a

)
(3.33)

for any a, b, c, d ∈ C such that ad− bc ̸= 0. The algebra U2
1,1 is then given by

U2
1,1 := spanC

{(
a b
c d

)
⊗
(
a b
c d

)∗ ∣∣∣∣
(
a b
c d

)
∈ U2

}
. (3.34)

Using the dual two-qubit Schur transform [BLMMO22]

U :=




1/
√
2 0 0 1/

√
2

0 −1 0 0
1/

√
2 0 0 −1/

√
2

0 0 1 0


 , (3.35)

we can simultaneously block-diagonalize both algebras:

UA2
1,1U

T =








x+ 2y 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x




∣∣∣∣∣∣∣∣
x, y ∈ C




, (3.36)

UU2
1,1U

T = spanC





1

ad− bc




ad− bc 0 0 0

0 a2
√
2ab b2

0
√
2ac ad+ bc

√
2bd

0 c2
√
2cd d2




∣∣∣∣∣∣∣∣

(
a b
c d

)
∈ U2




. (3.37)

These algebras centralize each other since

UA2
1,1U

T = C⊕ CI3, UU2
1,1U

T = C⊕ End(C3). (3.38)

While this appears identical to Eq. (2.128), the decompositions of Ad
n,m and Ud

n,m are generally
very different for d > 2 from those of Ad

n+m and Ud
n+m, see Section 3.6.

3.4.3. Remark. Theorem 3.4.1 can also be seen as an instance of the Double Centraliser
Theorem 2.10.1. Indeed, we can rephrase it as follows: as a representation of Ad

n,m ×Ud
n,m, the

space (Cd)⊗n ⊗ (Cd)⊗m decomposes as

(Cd)⊗n ⊗ (Cd)⊗m ∼=
⊕

λ∈Âd
n,m

Vλ ⊗Wλ, (3.39)
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where Vλ are simple modules of Ad
n,m and Wλ are simple modules of Ud

n,m. This automatically
implies the following combinatorial identity:

dn+m =
∑

λ∈Âd
n,m

dλmλ, (3.40)

where dλ = dimVλ and mλ = dimWλ.

The distinction between Ad
n,m and Bdn,m is crucial if one is interested in small dimensions

d < n+m since the two algebras are not isomorphic in this case. For example, the algebra Ad
n,m

is always semisimple because Ud
n,m is known to be semisimple from the representation theory

of Lie groups [Eti+11, Theorem 4.66], so its commutant Ad
n,m must also be semisimple by the

Double Centraliser Theorem 2.10.1. However, Bdn,m is not semisimple for integer d < n+m− 1
[CDDM08].

One of our main technical results is the determination of primitive central idempotents
of the matrix algebras Ad

n,m, see Section 3.6, which will play a central role in our results in
Chapter 6 on optimisation with unitary-equivariant constraints.

3.5 Mixed Young diagrams, tableaux and staircases

In this section, we introduce combinatorial notions analogous to Young diagrams and tableaux
that can be used to describe paths in the Bratteli diagram for the algebra Ad

n,m later. First, let
us first describe three equivalent ways of representing a pair of Young diagrams.

A mixed Young diagram of length d is a pair of Young diagrams λ = (λl, λr) of total length at
most d: ℓ(λl)+ℓ(λr) ⩽ d. Equivalently, we can represent λ by combining the diagrams λl ∈ Zd⩾0

and λr ∈ Zd⩾0 into a single staircase λ̃ ∈ Zd obtained by subtracting from λl = (λl,1, . . . , λl,d)
the reverse of λr = (λr,1, . . . , λr,d) [Ste87]:

λ̃ :=
(
λl,1 − λr,d, λl,2 − λr,d−1, . . . , λl,d − λr,1

)
. (3.41)

Intuitively, the staircase λ̃ corresponds to rotating the diagram λr by 180 degrees and attaching
it at the bottom of λl (see Fig. 3.1). Since ℓ(λl) + ℓ(λr) ⩽ d, this operation is reversible and
one can easily recover λl and λr from the staircase λ̃. Finally, a third way of representing the
same concept is via walled concatenation (λ̂, s) where s := λr,1 and λ̂ is a Young diagram of
shape

λ̂ := λr,1 + λ̃ =
(
λr,1 + λl,1 − λr,d, λr,1 + λl,2 − λr,d−1, . . . , λr,1 + λl,d−1 − λr,2, λl,d

)
. (3.42)

This diagram corresponds to shifting the staircase λ̃ to the right by λr,1 boxes so that all its
entries become non-negative. Equivalently, we can obtain λ̂ by adding λr,1 columns of d boxes
on the left of λl and then removing the diagram λr (rotated by 180 degrees) from the bottom of
these columns (see Fig. 3.1). This process is reversible, so we can easily convert (λ̂, s) back into
the pair of diagrams (λl, λr) or the staircase λ̃. Mixed Young diagrams, walled concatenations,
and staircases are three equivalent ways of thinking about the same combinatorial object, see
Fig. 3.1. Throughout the chapter, we will use the same symbol λ to denote either of these three
concepts, depending on the convenience in a given context.
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λl = (2) λr = (3, 1)

∼=,

λ̂ = (5, 3, 2, 0) s = 3

∼=

λ̃ = (2, 0,−1,−3)

Figure 3.1: Three equivalent ways of representing a pair of Young diagrams: as a mixed Young
diagram λ = (λl, λr), as a staircase λ̃, or as a walled concatenation (λ̂, λr,1). Here the total
length of all tableaux is d = 4.

Recall from Eq. (2.42) that a sequence of Young diagrams can be interpreted as a standard
Young tableau. Similarly, for any shape λ = (λl, λr), where λl ⊢ n− k and λr ⊢m− k for some
n,m ⩾ 0 and k ⩾ 0 such that 0 ⩽ k ⩽ min(n,m), we define a mixed standard Young tableau
T of length d as a sequence (T 0, T 1, T 2, . . . , T n+m) of mixed Young diagrams such that each T i
has length d and

1. T 0 := (∅,∅) and T n+m := λ = (λl, λr),

2. if n ⩾ i ⩾ 1 then T i−1
l ⊆ T il with |T i−1

l |+ 1 = |T il | and T i−1
r = T ir = ∅,

3. if n+m ⩾ i > n then either

(a) T il ⊆ T i−1
l with |T il |+ 1 = |T i−1

l | and T i−1
r = T ir , or

(b) T i−1
r ⊆ T ir with |T i−1

r |+ 1 = |T ir | and T i−1
l = T il .

This sequence corresponds to a path in a certain Bratteli diagram (see Section 3.6 for more
details).

Similar to Eq. (2.43), we can translate a sequence T of mixed Young diagrams into what is
essentially a pair of standard tableaux, thus justifying calling T a mixed standard Young tableau.
The first n steps of this translation build up the left tableau following the same procedure as
described in Section 2.6. The remaining steps either build up the right tableau in the same way
or add secondary entries to the left tableau indicating at which steps the corresponding boxes
are removed. For example, when n = 3, m = 2, and k = 1, the sequence

T =
(
(∅,∅), ( ,∅), ( ,∅), ( ,∅), ( ,∅), ( , )

)
(3.43)

corresponds to the following pair of tableau:

T =
(

1 2 3,4 , 5
)
. (3.44)

This is a mixed Young tableau of shape λ = ((2), (1)) since the left tableau has only two boxes
remaining. Similarly to Section 2.6, for any permutation π ∈ Sn × Sm we will write πT to
denote the tableau obtained by permuting the cell fillings of T according to π.

In the following section, we summarise a method for constructing primitive central idempo-
tents of multiplicity-free family of walled Brauer algebras which we described in Section 2.7.

3.6 Idempotents for the matrix algebras Ad
n,m

In this section, we provide the necessary ingredients for applying the [DLS18] framework, pre-
sented in Section 2.7, to the partially transposed permutation matrix algebras Ad

n,m. Our main
technical contribution is Theorem 3.6.6 which shows that Jucys–Murphy elements of partially
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transposed permutation matrix algebras can be obtained from Jucys–Murphy elements of walled
Brauer algebras, even when the corresponding walled Brauer algebras are not semisimple.

Consider the following multiplicity-free family of walled Brauer algebras:

C ∼= Bd0,0 ↪→ Bd1,0 ↪→ · · · ↪→ Bdn,0 ↪→ Bdn,1 ↪→ · · · ↪→ Bdn,m, (3.45)

where the embeddings correspond to adding on the right of the diagram an extra pair of nodes
that are connected with a vertical line. For the sake of brevity, let us denote this family by
B := (B0, . . . ,Bn+m) where

Bk :=





C if k = 0,

Bdk,0 if 1 ⩽ k ⩽ n,

Bdn,k−n if n+ 1 ⩽ k ⩽ n+m.

(3.46)

Sometimes we want to highlight the dependence on local dimension, so we can refer to Bk as
Bdk.

Similarly, let A := (A0, . . . ,An+m) where, for every k ∈ {0, . . . , n+m},

Ak := ψdn,m(Bk) ⊆ End((Cd)⊗n ⊗ (Cd)⊗m) (3.47)

is the corresponding partially transposed permutation matrix algebra and ψdn,m is the map from
Eq. (3.17). Note that Ak−1 is the subalgebra of Ak that consists of all matrices of the form
M⊗Id for some M . We will later also write Ad

k
∼= Ak when we want to highlight the dependence

on local dimension d.
For every k ∈ [n+m], let

X B
k := ⟨Z(B1), . . . ,Z(Bk)⟩, XA

k := ⟨Z(A1), . . . ,Z(Ak)⟩ (3.48)

denote the Gelfand–Tsetlin subalgebras of B and A, respectively, see Definition 2.7.5.

Bratteli diagram for walled Brauer algebras

The simple modules of the walled Brauer algebra Bdn,m are labeled by pairs of Young diagrams
(λl, λr) where λl and λr are partitions of n− k and m− k for some 0 ⩽ k ⩽ min(n,m) [BO20]:

B̂dn,m =
{
λ = (λl, λr)

∣∣ 0 ⩽ k ⩽ min(n,m), λl ⊢ n− k, λr ⊢m− k
}
. (3.49)

The Bratteli diagram B (see Definition 2.7.2) for the family B of walled Brauer algebras is
defined as follows. The only vertex at level k = 0 is the root (∅,∅).2 For any k ∈ [n+m], the
vertices at level k are given by B̂k, see Eqs. (3.46) and (3.49). For any pair of adjacent levels
k − 1 and k where k ∈ [n+m], an edge λ→ µ between λ ∈ B̂k−1 and µ ∈ B̂k is present if and
only if

1. k ⩽ n and the diagram µ is obtained from λ by adding one cell to the diagram λl,

2. k > n and µ is obtained from λ by either adding a cell to λr or removing a cell from λl.

For example, the Bratteli diagram for the multiplicity-free family ending with Bd2,2 is given in
Fig. 3.2.

By construction, the number of paths from the root vertex to any leaf λ in the Bratteli
diagram is equal to the dimension of the corresponding simple module of Bdn,m.

2Here we use (∅,∅) instead of ∅ for the root of the Bratteli diagram of the walled Brauer algebra because
the irreducible representations of this algebra are labeled by pairs of Young diagrams.
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Bd
0,0 Bd

1,0 Bd
2,0 Bd

2,1 Bd
2,2

(∅,∅) ( ,∅)

( ,∅)

(
,∅
)

( , )

( ,∅)

(
,
)

( , )

(
,
)

( , )

(∅,∅)

(
,

)

(
,
)

Figure 3.2: Bratteli diagram associated to the multiplicity-free family C ∼= Bd0,0 ↪→ Bd1,0 ↪→
Bd2,0 ↪→ Bd2,1 ↪→ Bd2,2 of walled Brauer algebras when they are semisimple.

Jucys–Murphy elements and content vectors

If d ∈ C is such that the walled Brauer algebras Bdn,m are semisimple, their Jucys–Murphy
elements are given by [BS12; SS15; JK20]

JB
k :=





0 if k = 1,∑k−1
i=1 (i, k) if 2 ⩽ k ⩽ n,∑k−1
i=n+1(i, k)−

∑n
i=1 (i, k) + d if n+ 1 ⩽ k ⩽ n+m,

(3.50)

where (i, k) is the transposition of elements i and k, and (i, k) is the corresponding contraction.
When the walled Brauer algebra is not semisimple, we still define JB

k via the above formula.
Let T ∈ Paths(B) be an arbitrary root-leaf path in the Bratteli diagram of Bdn,m and let

T k−1 → T k where k ∈ [n +m] denote an edge on this path. Recall from Eq. (3.49) that each
vertex T k of T is labeled by some bipartition (λl, λr). The number cTk−1→Tk introduced in
Definition 2.7.8 and Eq. (2.59) that corresponds to this edge is calculated via the following rule
[BO20; JK20]:

1. if 1 ⩽ k ⩽ n and T k is obtained from T k−1 by adding a cell (i, j) to the left diagram in
the bipartition T k−1 then

cTk−1→Tk = j − i ≡ cont(T kl \ T k−1
l ),

2. if n+1 ⩽ k ⩽ n+m and T k is obtained from T k−1 by removing a cell (i, j) from the left
diagram in the bipartition T k−1 then

cTk−1→Tk = i− j ≡ − cont(T k−1
l \ T kl ),

3. if n + 1 ⩽ k ⩽ n +m and T k is obtained from T k−1 by adding a cell (i, j) to the right
diagram in the bipartition T k−1 then

cTk−1→Tk = j − i+ d ≡ cont(T kr \ T k−1
r ) + d.
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d = 3

d = 2

d = 2

Ad
0,0 Ad

1,0 Ad
2,0 Ad

2,1 Ad
2,2

(∅,∅) ( ,∅)

( ,∅)

(
,∅
)

( , )

( ,∅)

(
,
)

( , )

(
,
)

( , )

(∅,∅)

(
,

)

(
,
)

Figure 3.3: Bratteli diagram associated to the multiplicity-free family C ∼= Ad
0,0 ↪→ Ad

1,0 ↪→
Ad

2,0 ↪→ Ad
2,1 ↪→ Ad

2,2 of partially transposed permutation matrix algebras for different values
of the local dimension d. When d ⩾ 4, this diagram coincides with that of the walled Brauer
algebras (see Fig. 3.2). However, for small values of d (i.e., d = 2 and d = 3) the diagram has
to be modified by removing the designated vertices. Note that removing the vertex ( , ) when
d = 2 eliminates the highlighted path from the root (∅,∅) to the leaf (□,□), which decreases
the dimension of the corresponding simple Ad

2,2-module V(□,□) by one, i.e., dimV(□,□) = 4 if
d > 2 while dimV(□,□) = 3 if d = 2.

Since these formulas are very similar to the definition of the content j−i of a cell (i, j) in a Young
tableau, see Eq. (2.33), it motivates us to introduce a notion of walled content of a cell containing
i in T similar to Eq. (2.44). Namely, for a given path T = (T 0, . . . , T n+m) ∈ Paths(B) we define

wconti(T ) :=





cont(T il \ T i−1
l ) if i ⩽ n,

cont(T ir \ T i−1
r ) + d if i > n and T il = T i−1

l ,

− cont(T i−1
l \ T il ) if i > n and T ir = T i−1

r .

(3.51)

This definition is chosen so that for any k ∈ [n+m]

cTk−1→Tk = wcontk(T ). (3.52)

For example, the path T given in Eqs. (3.43) and (3.44) has the following values of walled
content: wcont1(T ) = 0, wcont2(T ) = 1, wcont3(T ) = 2, wcont4(T ) = −2, wcont5(T ) = d.

We refer to the full vector of walled contents as cT := (wcont1(T ), . . . ,wcontn+m(T )).

Adapting the Bratteli diagram from Bdn,m to Ad
n,m

According to [Ben+94, Theorem 1.11], the simple modules of the Ad
n,m are labeled by pairs of

Young diagrams (λl, λr) where λl and λr are partitions of n − k and m − k for some 0 ⩽ k ⩽
min(n,m) with additional constraint:

Âd
n,m =

{
λ = (λl, λr)

∣∣ 0 ⩽ k ⩽ min(n,m), λl ⊢ n− k, λr ⊢m− k, ℓ(λl) + ℓ(λr) ⩽ d
}
. (3.53)

The Bratteli diagram A for the family of partially transposed permutation matrix algebras
A can be obtained from the Bratteli diagram B for semisimple walled Brauer algebras B by
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removing all vertices (λl, λr) that violate the condition ℓ(λl) + ℓ(λr) ⩽ d. Note that along with
the removed vertices we also remove their incident edges. For example, Fig. 3.3 shows how
Fig. 3.2 should be adapted for small values of d.

Depending on the local dimension d we may need to remove some vertices that are not
leaves of the diagram, which in turn can decrease the number of root-leave paths, thus affecting
the dimension of Vλ (see Fig. 3.3). In particular, a dimension

dλ := dimVλ = |Paths(λ,A )| (3.54)

of the simple An-module Vλ generally depends on the local dimension d.

Adapting Jucys–Murphy elements and content vectors to Ad
n,m

The Jucys–Murphy elements for semisimple walled Brauer algebras B, given in Eq. (3.50), can
be used in the algorithm from Section 2.7.5 to find the primitive central idempotents εBλ and
canonical primitive idempotents εBT of Bdn,m. In this section, we show how this procedure can
be adapted to the partially transposed permutation matrix algebras Ad

n,m. To construct the
primitive central idempotents εAλ and canonical primitive idempotents εAT of Ad

n,m, we can use
the modified Bratteli diagram from Section 3.6, and it only remains to adapt the Jucys–Murphy
elements and content vectors from Bdn,m to Ad

n,m. Below we show that we can use lifted versions
of Jucys–Murphy elements of Bdn,m and their content vectors for that purpose.

Throughout this section we set for every k ∈ [n+m]

JA
k := ψdn,m(J

B
k ) ∈ Ad

n,m, (3.55)

where JB
k are the Jucys–Murphy elements of B given in Eq. (3.50) and ψdn,m is the map from

Eq. (3.17). To establish that JA
1 , . . . , J

A
n+m is a Jucys–Murphy sequence for Ad

n,m, we need to
show that it is both additively central and separating (see Definition 2.7.7).

3.6.1. Lemma. The sequence JA
1 , . . . , J

A
n+m is additively central in Ad

n,m.

Proof:
For any k ∈ [n+m], one can verify that the Jucys–Murphy elements JB

k defined in Eq. (3.50) sat-
isfy JB

k ∈ X B
k and JB

1 +· · ·+JB
k ∈ Z(Bk) [JK20]. Since ψdn,m is a homomorphism, ψdn,m

(
Z(Bk)

)
⊆

Z(Ak) and hence ψdn,m(X B
k ) ⊆ XA

k . Therefore JA
k = ψdn,m(J

B
k ) ∈ ψdn,m(X B

k ) ⊆ XA
k and the se-

quence JA
1 , . . . , J

A
n+m is additively central in Ad

n,m. 2

3.6.2. Lemma. For any T ∈ Paths(A ) in the Bratteli diagram of Ad
n,m,

(JA
1 + · · ·+ JA

n+m) ε
A
T =

(
cont(λl) + cont(λr) + d · |λr|

)
εAT (3.56)

where εAT is the corresponding canonical primitive idempotent of Ad
n,m, λ = (λl, λr) = T n+m is

the last vertex of the path T , cont(λ) is the total content of all cells of the Young diagram λ
and |λ| is the number of cells in λ.

Proof:
See Appendix 3.A.2 for proof. Our proof is reminiscent of [BS12, Lemma 2.3], which is a similar
statement for the walled Brauer algebras. 2

3.6.3. Corollary. For any k ∈ [n + m] and T ∈ Paths(A ), JA
k ε

A
T = wcontk(T )ε

A
T where

wcontk(T ) is the notion of content for the walled Brauer algebra Bdn,m, see Eq. (3.51).
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Proof:
Let T [k] := T 0 → T 1 → · · · → T k denote the first k edges of the path T . Recall from Eq. (2.56)
that the canonical primitive idempotents of A are given by

εAT [k] = εAT 1εAT 2 · · · εATk . (3.57)

Each value of k effectively corresponds to truncating the Bratteli diagram to a certain n and
m. Thus Lemma 3.6.2 with appropriate n and m allows us to compute the eigenvalue of
JA
1 + · · ·+ JA

k for two consecutive εA
Tk :

(JA
1 + · · ·+ JA

k ) ε
A
T [k] =

(
cont(T kl ) + cont(T kr ) + d · |T kr |

)
εAT [k] , (3.58)

(JA
1 + · · ·+ JA

k−1) ε
A
T [k−1] =

(
cont(T k−1

l ) + cont(T k−1
r ) + d · |T k−1

r |
)
εAT [k−1] . (3.59)

Multiplying both equations with the primitive central idempotents of A ranging from εA
Tk to

εATn+m transforms the subscripts T k and T k−1 into T n+m = T :

(JA
1 + · · ·+ JA

k ) ε
A
T =

(
cont(T kl ) + cont(T kr ) + d · |T kr |

)
εAT , (3.60)

(JA
1 + · · ·+ JA

k−1) ε
A
T =

(
cont(T k−1

l ) + cont(T k−1
r ) + d · |T k−1

r |
)
εAT . (3.61)

Subtracting these two equations we get

JA
k ε

A
T =

(
cont(T kl )− cont(T k−1

l ) + cont(T kr )− cont(T k−1
r ) + d ·

(
|T kr | − |T k−1

r |
))
εAT . (3.62)

If k ⩽ n then T kr = T k−1
r = ∅ and cont(T kl )− cont(T k−1

l ) = j− i, where (i, j) is the location
where adding a cell to the Young diagram T k−1

l transforms it into T kl . If k > n then there are
two cases. If T kr = T k−1

r then cont(T kl ) − cont(T k−1
l ) = i − j because the cell (i, j) is removed

from T k−1
l . If T kl = T k−1

l then cont(T kl ) − cont(T k−1
l ) = j − i and size(T kr ) − size(T k−1

r ) = 1,
where (i, j) is the location where adding a cell to the Young diagram T k−1

r transforms it into
T kr . In either case,

JA
k ε

A
T = wcontk(T )ε

A
T , (3.63)

where wcontk(T ) is exactly the notion of content for the walled Brauer algebra Bdn,m as defined
in Eq. (3.51). 2

3.6.4. Lemma. If S, T ∈ Paths(A ) are two paths in the Bratteli diagram of Ad
n,m then S = T

if and only if cS = cT .

Proof:
The forward direction is obvious. For the reverse implication, assume that S ̸= T and cS = cT .
We consider two cases depending on the first location k ∈ [n +m] where the two paths differ,
i.e., Sk ̸= T k while Sk−1 = T k−1 =: (λl, λr).

If k ⩽ n, we can only add cells to the Young diagram λl, so let (i, j) and (i′, j′) denote the
two possible locations. It follows from Corollary 3.6.3 that cT (k) = j − i and cS(k) = j′ − i′,
and hence j − i = j′ − i′. Since any Young diagram has at most one location on any diagonal
where a new cell can be added, (i, j) = (i′, j′) and therefore Sk = T k.

If k > n, the condition cT (k) = cS(k) can be satisfied only if we assume (without loss of
generality) that cT (k) = il− jl and cS(k) = jr− ir+d, implying that il+ ir = jl+ jr+d for the
removed cell (il, jl) of λl and the added cell (ir, jr) of λr. In particular, il+ir = jl+jr+d ⩾ d+2
since jl > 0 and jr > 0. On the other hand, the total length of the two diagrams satisfies
ℓ(λl) + ℓ(λr) ⩽ d, which implies that il + ir ⩽ d, a contradiction. 2
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3.6.5. Corollary. The sequence JA
1 , . . . , J

A
n+m is separating in A.

Proof:
This follows from Lemma 3.6.4 and Proposition 3.5 of [DLS18]. 2

3.6.6. Theorem. JA
1 , . . . , J

A
n+m is a Jucys–Murphy sequence for A.

Proof:
This follows from Lemma 3.6.1 and Corollary 3.6.5. 2

Theorem 3.6.6 establishes that the operators JA
k , which were obtained in Eq. (3.55) by

lifting the Jucys–Murphy sequence JB
k of the walled Brauer algebras Bdn,m to the matrix algebras

Ad
n,m, are indeed Jucys–Murphy elements of Ad

n,m. Furthermore, Corollary 3.6.3 shows that the
content vectors of the two families of algebras agree.

Primitive idempotents of Ad
n,m

We have now established the three ingredients required to apply the [DLS18] algorithm to the
partially transposed matrix algebras Ad

n,m:

1. the Bratteli diagram for A is obtained by truncating the Bratteli diagram of B,

2. the Jucys–Murphy elements of A are obtained by applying ψdn,m to the Jucys–Murphy
elements of B given in Eq. (3.50),

3. the content vectors of A agree with those of B and are given in Section 3.6.

This allows us to use the algorithm described in Section 2.7.5 to compute the primitive central
idempotents and canonical primitive idempotents of A.

A major advantage of this approach is that the entire computation can be performed by
employing linear combinations of diagrams instead of actual matrices (i.e., staying within the
diagrammatic walled Brauer algebra Bdn,m rather than working in the matrix algebra Ad

n,m).
This results in a diagrammatic representation of an idempotent of Ad

n,m as a preimage of the
actual idempotent under ψdn,m. More explicitly, the primitive central idempotents of Ad

n,m can
be computed iteratively as

εAµ :=
∑

λ :λ→µ

ψdn,m
(
Pλ→µ(J

B
k )
)
εAλ , (3.64)

where the polynomials Pλ→µ from Eq. (2.60) are evaluated for the Bratteli diagram of the
family A described in Section 3.6. Similarly to Eq. (2.62), canonical primitive idempotents εT
are adapted to the matrix algebras A as follows:

εAT = ψdn,m



n+m∏

k=1

∏

µ :λk−1→µ ̸=λk

JB
k − cλk−1→µ

cλk−1→λk − cλk−1→µ


 , (3.65)

where the second product runs over edges in the Bratteli diagram A of the family A.
This representation of idempotents is more compact compared to the naive one when d is

large, and easily amenable to further fast diagrammatic calculations. This allows to signif-
icantly lower the computational complexity of various tasks within the partially transposed
permutation matrix algebra, as illustrated later in Chapter 6.
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3.7 Gelfand–Tsetlin basis for partially transposed permu-
tations

A3
0,0 A3

1,0 A3
2,0 A3

3,0 A3
3,1 A3

3,2

(∅,∅) ( ,∅)

( ,∅)

(
,∅
)

( ,∅)

(
,∅
)

(
,∅
)

( , )

( ,∅)

(
,
)

(
,∅
)

( , )

(
,
)

( , )

( ,∅)

(
,

)

(
,
)

1

1

6

6

2

5

Figure 3.4: The Bratteli diagram associated with the family (3.67) of partially transposed
permutation matrix algebras when n = 3, m = 2, and local dimension d = 3. For a chosen
path T =

(
(∅,∅), ( ,∅), ( ,∅), ( ,∅), ( ,∅), ( , )

)
, we have highlighted in blue the set

M(T ) of all paths that agree with T everywhere except for level n. For each leaf, we have
indicated the number of paths from the root to that leaf, which coincides with the dimension
of the corresponding irrep.

Now we are ready to state our main result of this chapter. Recall from Section 3.6 that the
irreducible representations of Ad

n,m are labelled by the following set of mixed Young diagrams
(λl, λr):

Âd
n,m :=

{
λ = (λl, λr)

∣∣∣ 0 ⩽ k ⩽ min(n,m), λl ⊢ n− k, λr ⊢m− k, ℓ(λl) + ℓ(λr) ⩽ d
}
, (3.66)

which corresponds to the following multiplicity-free family of algebras:

Ad
0,0 ↪→ Ad

1,0 ↪→ · · · ↪→ Ad
n,0 ↪→ Ad

n,1 ↪→ · · · ↪→ Ad
n,m. (3.67)

The set of paths Paths(λ) in the Bratteli diagram of the family Eq. (3.67) correspond precisely
to the set of mixed standard Young tableaux of shape λ (see Section 3.5). For example, Fig. 3.4
shows the Bratteli diagram for the sequence (3.67) ending with algebra A3

3,2.
For any λ ∈ Âd

n,m, we will denote the corresponding irrep by

ψλ : Ad
n,m → End(Vλ) where Vλ := CPaths(λ). (3.68)

Our main technical result, Theorem 3.7.1, provides an explicit formula for ψλ(σi), for any
generator σi of Ad

n,m. This effectively describes how the matrix algebra Ad
n,m acts on the

Gelfand–Tsetlin basis vectors |T ⟩, where T is any root-leaf path in the corresponding Bratteli
diagram. Before presenting our formula, we introduce some auxiliary notation.

We define the walled axial distance between cells containing i and i+ 1 in T ∈ Paths(λ) as

ri(T ) := wconti+1(T )− wconti(T ). (3.69)
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The walled axial distance has a simple combinatorial interpretation. Indeed, ri(T ) is the axial
distance between cells containing i and i+ 1 in a staircase representation T̃ of a mixed Young
diagram T , see Fig. 3.1 and Eq. (3.44).

Furthermore, if T n−1 = T n+1 we denote by

M(T ) := {(T 0, . . . , T n−1, µ, T n+1, . . . , T n+m) ∈ Paths(T n+m) | µ ∈ Âd
n,0} (3.70)

and M(T ) := ∅ otherwise. The set of all paths in the Bratteli diagram differing from T only at
the n-th level (see Fig. 3.4 for an example). For a given path T , we define a cell aT , containing
both numbers n and n+ 1 in the mixed Young tableau T , formally as

aT :=

{
T nl \ T n−1

l if T n−1 = T n+1,

∅ otherwise,
(3.71)

where T kl denotes the left diagram in T k = (T kl , T
k
r ). With this notation at hand, we can state

our main technical result.

3.7.1. Theorem (Gelfand–Tsetlin basis for Ad
n,m). For any λ ∈ Âd

n,m, the following represen-
tation ψλ : Ad

n,m → End
(
CPaths(λ)

)
is an irreducible representation of Ad

n,m. Given a generator
σi of Ad

n,m, i = 1, . . . , n +m − 1, the matrix ψλ(σi) acts on the Gelfand–Tsetlin basis vectors
|T ⟩ with T ∈ Paths(λ) as follows:

ψλ(σi) |T ⟩ =
1

ri(T )
|T ⟩+

√
1− 1

ri(T )2
|σiT ⟩, for i ̸= n, (3.72)

ψλ(σn) |T ⟩ = c(T ) |vT ⟩, |vT ⟩ :=
∑

T ′∈M(T )

c(T ′) |T ′⟩, for i = n, (3.73)

where ri(T ) is the walled axial distance defined in Eq. (3.69), σiT denotes the mixed standard
Young tableau T with cell fillings permuted according to σi (see Section 3.5), and the coefficient
c(T ) ⩾ 0 is given by

c(T ) :=

√√√√(d+ cont(aT )
)
∏

c∈RC(Tn−1
l )

(
cont(aT )− cont(c)

)
∏

a∈AC(Tn−1
l )\aT

(
cont(aT )− cont(a)

) =

√
mTn

mTn−1

, (3.74)

where aT is defined in Eq. (3.71), RC/AC are the sets of removable/addable cells, and mTn ,mTn−1

are dimensions of the corresponding Weyl modules.

Table 3.1 provides an example of how Theorem 3.7.1 can be used to compute all irreps of
A3

3,2 using the Bratteli diagram shown in Fig. 3.4. Note, that the second equality in Eq. (3.74)
is immediate consequence of Lemmas 3.7.4 and 3.7.5.

Our proof is similar in spirit to that of [ST17]. However, they described a seminormal basis
for the quantum walled Brauer algebra, while we consider orthonormal basis of the usual walled
Brauer algebra.

Before we start the proof, let’s recall the defining relations for the walled Brauer algebra.
3.7.2. Definition. Let n,m ⩾ 0 be integers and d ∈ C. The walled Brauer algebra Bdn,m
is a finite-dimensional associative algebra over C generated by σ1, . . . , σn+m−1 subject to the
following relations:

(a) σ2
i = 1 (i ̸= n), (b) σiσi+1σi = σi+1σiσi+1 (i ̸= n− 1, n), (c) σiσj = σjσi (|i− j| > 1),

(3.11)
(d) σ2

n = dσn, (e) σnσn±1σn = σn, (f) σnσi = σiσn (i ̸= n± 1),
(3.12)

(g) σnσn+1σn−1σnσn−1 = σnσn+1σn−1σnσn+1, (3.13)
(h) σn−1σnσn+1σn−1σn = σn+1σnσn+1σn−1σn. (3.14)
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( , ) ( , ) ( , ) ( ,∅) ( , ) ( , )

σ1
(
1
) (

1
)




−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(
−1 0
0 1

)



−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1




σ2
(
1
) (

1
)




1
2 0

√
3
2 0 0 0

0 1
2 0

√
3
2 0 0

√
3
2 0 −1

2 0 0 0

0
√
3
2 0 −1

2 0 0

0 0 0 0 1 0
0 0 0 0 0 1







−1 0 0 0 0 0

0 1
2 0

√
3
2 0 0

0 0 1
2 0

√
3
2 0

0
√
3
2 0 −1

2 0 0

0 0
√
3
2 0 −1

2 0

0 0 0 0 0 1




(
1
2

√
3
2√

3
2 −1

2

)




−1 0 0 0 0

0 1
2 0

√
3
2 0

0 0 1
2 0

√
3
2

0
√
3
2 0 −1

2 0

0 0
√
3
2 0 −1

2




σ3
(
0
) (

0
)




0 0 0 0 0 0
0 0 0 0 0 0

0 0 4
3 0 2

√
5

3 0

0 0 0 0 0 0

0 0 2
√
5

3 0 5
3 0

0 0 0 0 0 0







1
3

2
√
2

3 0 0 0 0
2
√
2

3
8
3 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 4
3

2
√
5

3

0 0 0 0 2
√
5

3
5
3




(
0 0
0 0

)




1
3

2
√
2

3 0 0 0
2
√
2

3
8
3 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




σ4
(
1
) (

−1
)




1
2

√
3
2 0 0 0 0

√
3
2 −1

2 0 0 0 0

0 0 1
2

√
3
2 0 0

0 0
√
3
2 −1

2 0 0

0 0 0 0 1
5

2
√
6

5

0 0 0 0 2
√
6

5 −1
5







−1 0 0 0 0 0

0 1
2

√
3
2 0 0 0

0
√
3
2 −1

2 0 0 0

0 0 0 1
2

√
3
2 0

0 0 0
√
3
2 −1

2 0

0 0 0 0 0 1




(
1 0
0 1

)




1 0 0 0 0

0 1
4

√
15
4 0 0

0
√
15
4 −1

4 0 0

0 0 0 1
4

√
15
4

0 0 0
√
15
4 −1

4




Table 3.1: Example of Theorem 3.7.1 in action: the matrices ψλ(σi) in the Gelfand–Tsetlin basis for all irreducible representations ψλ and
generators σi of the matrix algebra A3

3,2. Rows correspond to generators σi, and columns correspond to irrep labels λ = (λl, λr). Note that
irreps with |λl| = 3 and |λr| = 2 vanish on the contraction σ3 since they are irreps of S3×S2. The Bratteli diagram for A3

3,2 is shown in Fig. 3.4.
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Proof:
We will prove the theorem in several steps. First, we check that such action defines a rep-
resentation of Ad

n,m by checking the relations in Eq. (3.11) for transpositions. The relations
for transpositions in Eq. (3.72) are defined in the same way as the Young–Yamanouchi basis
of the symmetric group [Rut48]. It is essentially folklore knowledge today, however, we still
provide the proof for completeness. Next, we check the relations in Eqs. (3.12) to (3.14) for
the contraction σn. Finally, we prove that such representation is irreducible. For simplicity, we
will write σ instead of ψλ(σ) for any σ ∈ Ad

n,m. Note, that our further analysis will hold for all
irreps λ ∈ Ad

n,m and all paths T ∈ Paths(λ,A ), which we fix at the start of the arguments.
(a) To verify σ2

i = 1, consider the action of σi on the invariant subspaces VT for each
T ∈ Paths(λ) defined as

VT := span{|T ⟩, |σiT ⟩}. (3.75)

It is clear from Eq. (3.72) that the matrix σi|VT of this action is

σi
∣∣
VT

=




1
ri(T )

√
1− 1

ri(T )2√
1− 1

ri(T )2
− 1
ri(T )


 , (3.76)

meaning that trivially (σi|VT )2 = 1. Since that holds for every T ∈ Paths(λ), then σ2
i = 1 holds.

(b) To verify (σiσi+1)
3 = 1, consider for every T ∈ Paths(λ) the action of σiσi+1 (according

to Eq. (3.72)) on the invariant vector space

VT := span{|T ⟩, |σiT ⟩, |σi+1σiT ⟩, |σiσi+1σiT ⟩, |(σi+1σi)
2T ⟩, |σi(σi+1σi)

2T ⟩}. (3.77)

Now if we define

a := ri(T ), b := ri(σi+1σiT ), c := ri
(
(σi+1σi)

2T
)
, (3.78)

then the action of σi and σi+1 on the VT in the above basis is given by the following matrices:

σi
∣∣
VT

=




1
a

√
1− 1

a2
0 0 0 0√

1− 1
a2

− 1
a

0 0 0 0

0 0 1
b

√
1− 1

b2
0 0

0 0
√

1− 1
b2

− 1
b

0 0

0 0 0 0 1
c

√
1− 1

c2

0 0 0 0
√

1− 1
c2

− 1
c



, (3.79)

σi+1

∣∣
VT

=




1
c

0
√

1− 1
c2

0 0 0

0 1
b

0 0
√

1− 1
b2

0√
1− 1

c2
0 − 1

c
0 0 0

0 0 0 1
a

0
√

1− 1
a2

0
√

1− 1
b2

0 0 − 1
b

0

0 0 0
√

1− 1
a2

0 − 1
a



. (3.80)

Taking into account the fact b = a + c, it is easy to verify that (σi|VTσi+1|VT )3 = 1. Since this
holds for any T ∈ Paths(λ), it must be (σiσi+1)

3 = 1.
(c) Finally, to verify the relation σiσj = σjσi for (|i− j| > 1) just note, that σiσjT = σjσiT

and
a := ri(σjT ) = ri(T ), b := rj(σiT ) = rj(T ). (3.81)

It means that on VT defined for every T ∈ Paths(A ) as

VT := span{|T ⟩, |σiT ⟩, |σjT ⟩, |σjσiT ⟩} (3.82)
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σi and σj have a tensor product structure:

σi
∣∣
VT

=




1
a

√
1− 1

a2
0 0√

1− 1
a2

− 1
a

0 0

0 0 1
a

√
1− 1

a2

0 0
√

1− 1
a2

− 1
a


 = I2 ⊗

(
1
a

√
1− 1

a2√
1− 1

a2
− 1

a

)
, (3.83)

σj
∣∣
VT

=




1
b

0
√

1− 1
b2

0

0 1
b

0
√

1− 1
b2√

1− 1
b2

0 − 1
b

0

0
√

1− 1
b2

0 − 1
b


 =

(
1
b

√
1− 1

b2√
1− 1

b2
− 1

b

)
⊗ I2, (3.84)

and consecutively σi|VTσj|VT = σj|VTσi|VT . Therefore, σiσj = σjσi when |i− j| > 1.
(d) For each T ∈ Paths(λ) there is an invariant subspace VT := span{|T ′⟩ | T ′ ∈ M(T )}.

If M(T ) = ∅, then we assume VT := span{|T ⟩}. Note that ∥|vT ⟩∥22 = d, according to
Lemma 3.7.6. Moreover, it is easy to see from the definition that σn|VT = |vT ⟩⟨vT |. From
this it is obvious (σn|VT )2 = d · σn|VT , and that implies σ2

n = d · σn.
(f) To check σnσi = σiσn (i ̸= n± 1), we define subspaces

WT := span{|T ′⟩ | T ′ ∈ M(T ) ∪M(σiT )}, VT := span{|T ′⟩ | T ′ ∈ M(T )}. (3.85)

If σiT is not valid mixed Young tableau, then WT
∼= VT and σi

∣∣
WT

acts by scalar multiplication
on WT , so it obviously commutes with σn

∣∣
WT

. Now assume that σiT is valid mixed Young
tableau, then WT

∼= VT ⊗ span{|1⟩, |σi⟩}. In that case, we have a similar tensor product
structure as in the case of transpositions making these generators commute. Namely, since
ri(T ) = ri(T

′) for every T ′ ∈ M(T ) then we have

σn
∣∣
WT

= |vT ⟩⟨vT |
∣∣
VT

⊗ I2, (3.86)

σi
∣∣
WT

= I|M(T )| ⊗




1
ri(T )

√
1− 1

ri(T )2√
1− 1

ri(T )2
− 1
ri(T )


 . (3.87)

Therefore σnσi = σiσn (i ̸= n± 1) holds.
(e) Now let’s first check the relation σnσn−1σn = σn. Note that we can conveniently write

the generator σn in terms of the matrix units ES,T of Ad
n,m. To make our notation more compact,

we introduce the convention ES
T := ES,T .

σn =
∑

µ∈B(λ)

∑

ν∈C(λ,µ)

∑

S1∈Pathsn−2(ν)
S2∈Pathsn+1,n+m(µ,λ)

θ,θ′∈D(λ,µ,ν)

c(µ, θ)c(µ, θ′)E
S1→(ν,µ,θ,µ)→S2

S1→(ν,µ,θ′,µ)→S2
, (3.88)

where we highlighted that coefficients do not depend on paths T fully:

c(µ, θ) := c(T ) for arbitrary T ∈ Paths(λ) : T n−1 = T n+1 = µ, T n = θ. (3.89)

Moreover, we introduced specific sets of vertices in the Bratteli diagram A :

B(λ) := {µ ∈ Âd
n−1,0 | ∃T ∈ Paths(λ) : T n−1 = T n+1 = µ}, (3.90)

C(λ, µ) := {ν ∈ Âd
n−2,0 | ∃T ∈ Paths(λ) : T n−1 = T n+1 = µ, T n−2 = ν}, (3.91)

D(λ, µ, ν) := {θ ∈ Âd
n,0 | ∃T ∈ Paths(λ) : T n−1 = T n+1 = µ, T n−2 = ν, T n = θ}. (3.92)
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Using the above notation, we can write generator σn−1 in terms of the matrix units ES
T , specif-

ically highlighting only the relevant ones,

σn−1 =
∑

µ∈B(λ)

∑

ν∈C(λ,µ)

∑

S1∈Pathsn−2(ν)
S2∈Pathsn+1,n+m(µ,λ)

θ∈D(λ,µ,ν)

f(ν, µ, θ)E
S1→(ν,µ,θ,µ)→S2

S1→(ν,µ,θ,µ)→S2
+ . . . , (3.93)

where we also highlight dependence of rn−1(T ) only on certain nodes of a given path T :

f(ν, µ, θ) :=
1

rn−1(T )
for arbitrary T ∈ Paths(λ) : T n−2 = ν, T n−1 = µ, T n = θ. (3.94)

In Eq. (3.93) we do not write terms with the matrix units which multiply to zero with the
matrix units from the sum of Eq. (3.88). We also abuse the notation by forgetting that ν, µ, θ are
actually pairs of Young diagrams: we only refer to the left diagrams by dropping the subscript l.
Using Eqs. (3.88) and (3.93) we can deduce by direct multiplication, that σnσn−1σn = σn is
equivalent to ∑

θ∈D(λ,µ,ν)

f(ν, µ, θ) · c(µ, θ)2 = 1 (3.95)

for every µ ∈ B(λ), ν ∈ C(λ, µ), S1 ∈ Paths(ν), S2 ∈ Paths(µ, λ). Let c := µ \ ν be the cell
containing n− 1, it is a corner cell of µ, i.e. c ∈ RC(µ). Let also a := θ \ µ, then Eq. (3.95) is
equivalent to

∑

a∈AC(µ)

d+ cont(a)

cont(a)− cont(c)

∏
v∈RC(µ)(cont(a)− cont(v))

∏
v∈AC(µ)\a(cont(a)− cont(v))

= 1 (3.96)

for every µ ∈ B(λ) and c ∈ RC(µ). By rewriting the previous formula as

d ·
∑

a∈AC(µ)

∏
w∈RC(µ)\c(cont(a)− cont(w))

∏
v∈AC(µ)\a(cont(a)− cont(v))

+
∑

a∈AC(µ)

cont(a)

∏
w∈RC(µ)\c(cont(a)− cont(w))

∏
v∈AC(µ)\a(cont(a)− cont(v))

= 1,

and using Lemma 3.7.8 we conclude that Eq. (3.95) holds, finishing the proof of σnσn−1σn = σn.
Similar proof also works for the second relation σnσn+1σn = σn which we do not repeat here.

(g) Finally, checking the relations in Eq. (3.13) is the same in spirit as for (e), but more
cumbersome. Observe that relation (g) could we written in terms of τ2 = σnσn+1σn−1σn from
Eq. (3.15) as

τ2σn−1 = τ2σn+1. (3.97)
So we need to understand how τ2 acts in the Gelfand–Tsetlin basis. Let’s first write the
generators in terms of matrix units:

σn =
∑

µ∈B(λ)
(ν1,ν2)∈C(λ,µ)

∑

S1∈Pathsn−2(ν1)
S2∈Pathsn+2,n+m(ν2,λ)

θ,θ′∈D(λ,ν2,µ,ν1)

c(µ, θ)c(µ, θ′)E
S1→(ν1,µ,θ′,µ,ν2)→S2

S1→(ν1,µ,θ,µ,ν2)→S2
(3.98)

σn−1 =
∑

µ∈B(λ)
(ν1,ν2)∈C(λ,µ)

∑

S1∈Pathsn−2(ν1)
S2∈Pathsn+2,n+m(ν2,λ)

θ∈D(λ,ν2,µ,ν1)

(
fn−1(ν1, µ, θ)E

S1→(ν1,µ,θ,µ,ν2)→S2

S1→(ν1,µ,θ,µ,ν2)→S2
+

+
√

1− f 2
n−1(ν1, µ, θ)E

S1→(ν1,µ
ν1
θ ,θ,µ,ν2)→S2

S1→(ν1,µ,θ,µ,ν2)→S2

)
+ . . . (3.99)

σn+1 =
∑

µ∈B(λ)
(ν1,ν2)∈C(λ,µ)

∑

S1∈Pathsn−2(ν1)
S2∈Pathsn+2,n+m(ν2,λ)

θ∈D(λ,ν2,µ,ν1)

(
fn+1(θ, µ, ν2)E

S1→(ν1,µ,θ,µ,ν2)→S2

S1→(ν1,µ,θ,µ,ν2)→S2
+

+
√

1− f 2
n+1(θ, µ, ν2)E

S1→(ν1,µ,θ,µθν2 ,ν2)→S2

S1→(ν1,µ,θ,µ,ν2)→S2

)
+ . . . (3.100)
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where notation µν1θ (or µθν2) is a shorthand for µ′ which appears at the index n − 1 (or n + 1)
of the corresponding mixed tableau σn−1T (or σn+1T ), where T = S1 → (ν1, µ, θ, µ, ν2) → S2;
we also use the notation similar to the case (e):

B(λ) := {µ ∈ Âd
n−1,0 | ∃T ∈ Paths(λ) : T n−1 = T n+1 = µ},

C(λ, µ) := {(ν1, ν2) ∈ Âd
n−2,0 × Âd

n,2 | ∃T ∈ Paths(λ) : T n−2 = ν1, T
n±1 = µ, T n+2 = ν2}

D(λ, ν2, µ, ν1) := {θ ∈ Âd
n,0 | ∃T ∈ Paths(λ) : T n−2 = ν1, T

n±1 = µ, T n+2 = ν2, T
n = θ},

c(µ, θ) := c(T ) for arbitrary T ∈ Paths(λ) s.t. T n−1 = T n+1 = µ, T n = θ,

fn−1(ν1, µ, θ) :=
1

rn−1(T )
for arbitrary T ∈ Paths(λ) : T n−2 = ν1, T

n−1 = µ, T n = θ,

fn+1(µ, θ, ν2) :=
1

rn+1(T )
for arbitrary T ∈ Paths(λ) : T n = θ, T n+1 = µ, T n+2 = ν2.

Let’s now analyse how τ2 looks like in the Gelfand–Tsetlin basis. Assume ν1 ̸= ν2 in the
previous expressions. In that case, σn−1µ ̸= σn+1µ. Therefore the only terms, which survive
after mulpityling four different matrix units in the expansion of σnσn+1σn−1σn, are as follows:

c(µ, θ′)c(µ, θ′′)
∑

θ∈D(λ,ν2,µ,ν1)

c2(µ, θ)fn−1(ν1, µ, θ)fn+1(θ, µ, ν2)E
S1→(ν1,µ,θ′,µ,ν2)→S2

S1→(ν1,µ,θ′′,µ,ν2)→S2
, (3.101)

where for brevity we omitted the sums over µ, ν1, ν2, θ′, θ′′, S1, S2. However, from Lemma 3.7.7
it follows by a similar technique which was used to show Eq. (3.95) from Lemma 3.7.8 that

∑

θ∈D(λ,ν2,µ,ν1)

c2(µ, θ)fn−1(ν1, µ, θ)fn+1(θ, µ, ν2) = 0, (3.102)

It is crucial that ν1 ̸= ν2, which allows to use Lemma 3.7.8. therefore τ2 acts as zero on paths
of the form S1 → (ν1, µ, θ, µ, ν2) → S2, where ν1 ̸= ν2.

Now assume ν := ν1 = ν2. We would like to understand how τ2 acts on paths of the form
T := S1 → (ν, µ, θ, µ, ν) → S2. It is easy to see that any path T ′ := S1 → (ν, µ′, θ′, µ′, ν) → S2

could be produced upon the action of τ2 on S1 → (ν, µ, θ, µ, ν) → S2, where µ = ν∪a, µ′ = ν∪a′
for a, a′ ∈ ACd(ν), and θ = µ ∪ a for a ∈ ACd(µ), and θ′ = µ′ ∪ a′ for a′ ∈ ACd(µ

′). Let’s
calculate the diagonal elements ⟨T |τ2|T ⟩. Taking into account fn−1(ν, µ, θ

′) = fn+1(θ
′, µ, ν) we

can write

⟨T |τ2|T ⟩ = c2(µ, θ)
∑

θ′∈D(λ,ν,µ,ν)

c2(µ, θ′)fn−1(ν, µ, θ
′)fn+1(θ

′, µ, ν) (3.103)

= c2(µ, θ)
∑

a∈ACd(µ)

c2(µ, µ ∪ a)f 2
n−1(ν, µ, µ ∪ a). (3.104)

By defining the cell x := µ \ ν, we can transform the sum in the expression above into

∑

a∈AC(µ)

d+ cont(a)

(cont(a)− cont(x))2

∏
v∈RC(µ)(cont(a)− cont(v))

∏
v∈AC(µ)\a(cont(a)− cont(v))

=

=
∑

a∈AC(µ)

d+ cont(a)

cont(a)− cont(x)

∏
v∈RC(µ)\x(cont(a)− cont(v))

∏
v∈AC(µ)\a(cont(a)− cont(v))

=

=
∑

a∈AC(µ)∪x

(d+ cont(a))

∏
v∈RC(µ)\x(cont(a)− cont(v))

∏
v∈(AC(µ)∪x)\a(cont(a)− cont(v))

−

− (d+ cont(x))

∏
v∈RC(µ)\x(cont(x)− cont(v))
∏

v∈AC(µ)(cont(x)− cont(v))
=
mµ

mν

, (3.105)
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where in the last equality we observed that the first term is zero due to Lemma 3.7.8 and the
second negative term is mµ

mν
due to Lemmas 3.7.4 and 3.7.5. This shows

⟨T |τ2|T ⟩ = c2(µ, θ)
mµ

mν

=
mθ

mµ

mµ

mν

=
mθ

mν

. (3.106)

By a similar argument, we can deduce that

⟨T ′|τ2|T ⟩ =
√
mθ′mθ

mν

. (3.107)

Now observing that ⟨T ′|τ2(σn−1 − σn+1)|T ⟩ = 0 for every T, T ′ ∈ Paths(λ,A ) is easy. Indeed,
since matrix elements ⟨T ′|τ2|T ⟩ do not depend on the nodes µ′ and µ at levels n − 1 and
n+ 1 of paths T ′ and T , we can always collect the terms such that they cancel due to relation
fn−1(ν, µ, θ) = fn+1(θ, µ, ν). Similar proof also works for the relation (h) in Definition 3.2.2,
which we do not repeat here.

Finally, we need to show the irreducibility of our representation. Due to Lemma 3.7.3 the
spectrum of Jucys–Murphy elements in our basis coincides with the canonical definition of the
action of Jucys–Murphy elements in the Gelfand–Tsetlin basis, see Corollary 3.6.3. Since Jucys–
Murphy elements generate a maximal commutative subalgebra of Ad

n,m their action uniquely
determines the basis. Therefore our basis coincides with the Gelfand–Tsetlin basis for Ad

n,m,
which is originally defined for irreducible representations. 2

3.7.3. Lemma. The action of Jucys–Murphy elements JA
k of the algebra Ad

n,m is diagonal in
the Gelfand–Tsetlin basis and the spectrum is given by the walled content wcontk(T ). More
formally, for every λ ∈ Âd

n,m and every T ∈ Paths(λ,A )

ψλ(J
A
k )|T ⟩ = wcontk(T )|T ⟩ (3.108)

Proof:
For k ⩽ n this is just a statement of the same result for the symmetric group, e.g. see [OV96;
VO05]. In the following, we drop the index A and ψλ, and we simply write Jk := ψλ(J

A
k ).

Moreover, we will drop ψλ everywhere for brevity, but one should remember that all calculations
should be done within fixed irrep λ for all λ ∈ Âd

n,m. The proof for that case can be done by
induction by exploiting the relation Jk+1 = σkJkσk + σk. The base of the induction is trivial.
Now using the induction step we can immediately see that

Jk+1|T ⟩ = (σkJkσk + σk)|T ⟩ = (σkJk + 1)σk|T ⟩ (3.109)

= (σkJk + 1)
(

1
rk(T )

|T ⟩+
√

1− 1
rk(T )2

|σkT ⟩
)

(3.110)

= 1
rk(T )

|T ⟩+
√

1− 1
rk(T )2

|σkT ⟩+ (3.111)

+ σk

(
wcontk(T )
rk(T )

|T ⟩+ wcontk(σkT )
√

1− 1
rk(T )2

|σkT ⟩
)

=
(

wcontk(T )
rk(T )

+ 1
)(

|T ⟩
rk(T )

+
√

1− 1
rk(T )2

|σkT ⟩
)
+ (3.112)

+ wcontk(σkT )
√

1− 1
rk(T )2

(
− |σkT ⟩
rk(T )

+
√

1− 1
rk(T )2

|T ⟩
)

=
(

1
rk(T )

+ wcontk(T )−wcontk+1(T )

rk(T )2
+ wcontk+1

)
|T ⟩+ (3.113)

+
√
1− 1

rk(T )2

(
1 + wcontk(T )−wcontk+1(T )

rk(T )

)
|σkT ⟩

= wcontk(T )|T ⟩, (3.114)
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where we used that wcontk(σkT ) = wcontk+1(T ), rk(σkT ) = −rk(T ) and rk(T ) = wcontk+1(T )−
wcontk(T ).

Similarly, for k ⩾ n+1 we have a similar relation Jk+1 = σkJkσk+σk and the same argument
holds, assuming that Jn+1|T ⟩ = wcontn+1(T )|T ⟩. However, for k = n+ 1 we need to prove the
claim separately.

To show the claim for k = n+ 1, recall that Jn+1 = d− ρ, where

ρ :=
n∑

i=1

(i, n)σn(i, n) (3.115)

and (i, n) is a transposition between sites i and n with the convention (n, n) := 1. Without
loss of generality assume that m = 1. Note that since Jn+1 commutes with Ad

n,0, Jn+1 must be
diagonal in the Gelfand–Tsetlin basis and it has the same eigenvalues for every path T which
goes through a given vertex µ at the level n in the Bratteli diagram. Therefore, we now assume
T ∈ Paths(λ,A) has the property T n = µ. There are two cases:

1. If λr = (1), then there is no mobile cell in T and the action of σn is zero, meaning that
Jn+1|T ⟩ = d|T ⟩ which is consistent with Jn+1|T ⟩ = wcontn+1(T )|T ⟩ for that case.

2. If λr = ∅, then for every T ∈ Paths(λ) with T n = µ we can write:

⟨T |ρ|T ⟩ = 1

dµ

∑

T∈Paths(λ)
Tn=µ

⟨T |ρ|T ⟩ = 1

dµ

∑

T∈Paths(λ)
Tn=µ

n∑

i=1

⟨T |(i, n)σn(i, n)|T ⟩ (3.116)

=
1

dµ

n∑

i=1

∑

T∈Paths(λ)
Tn=µ

⟨T |(i, n)
( ∑

S∈Paths(λ)
Sn=µ
Sn−1=λ

|vS⟩⟨vS|
)
(i, n)|T ⟩ (3.117)

=
1

dµ

n∑

i=1

∑

T,S∈Paths(λ)
Tn=Sn=µ
Sn−1=λ

|⟨vS|(i, n)|T ⟩|2 (3.118)

=
1

dµ

n∑

i=1

∑

T,S∈Paths(λ)
Tn=Sn=µ
Sn−1=λ

c(S)2 · |⟨S|(i, n)|T ⟩|2. (3.119)

Now let’s denote c(λ, µ) := c(S) to indicate that c(S) does not depend on the full path S
but only on the two nodes λ, µ belonging to S.

⟨T |ρ|T ⟩ = c(λ, µ)2

dµ

n∑

i=1

∑

T,S∈Paths(λ)
Tn=Sn=µ
Sn−1=λ

|⟨S|(i, n)|T ⟩|2 (3.120)

=
c(λ, µ)2

dµ

n∑

i=1

∑

S∈Paths(λ)
Sn=µ
Sn−1=λ

⟨S|(i, n)
( ∑

T∈Paths(λ)
Tn=µ

|T ⟩⟨T |
)
(i, n)|S⟩ (3.121)

=
c(λ, µ)2

dµ

n∑

i=1

∑

S∈Paths(λ)
Sn=µ
Sn−1=λ

⟨S|
( ∑

T∈Paths(λ)
Tn=µ

|T ⟩⟨T |
)
(i, n)2|S⟩, (3.122)
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where in the last step we used that (i, n) commutes with εµ :=
∑

T : Tn=µ|T ⟩⟨T | since εµ
is a primitive central idempotent in Ad

n,0. Therefore,

⟨T |ρ|T ⟩ = c(λ, µ)2

dµ

n∑

i=1

∑

T,S∈Paths(λ)
Tn=Sn=µ
Sn−1=λ

|⟨S|T ⟩|2 (3.123)

=
c(λ, µ)2

dµ
· n · dλ = n · dλ

dµ
· mµ

mλ

= d+ cont(µ \ λ), (3.124)

where in Eq. (3.124) we used Lemmas 3.7.4 and 3.7.5. Therefore,

⟨T |Jn+1|T ⟩ = d− ⟨T |ρ|T ⟩ = − cont(µ \ λ)
= − cont(T n \ T n+1) = wcontn+1(T ).

(3.125)

2

Auxiliary Lemmas

3.7.4. Lemma. For every µ⊢n and λ⊢n− 1, such that λ is obtained be adding a cell to µ and
ℓ(µ) ⩽ d and ℓ(λ) ⩽ d,

d+ cont(µ \ λ) = n · dλ
dµ

· mµ

mλ

, (3.126)

where dλ and mλ are dimensions of the Specht module λ and the Weyl module λ respectively.

Proof:
Use the hook length formula (2.40) for dλ and the hook-content formula (2.47) for mλ:

n · dλ
dµ

· mµ

mλ

= n ·
(n−1)!∏
u∈λ h(u)

n!∏
u∈µ h(u)

·

∏
u∈µ(d+cont(u))∏

u∈µ h(u)∏
u∈λ(d+cont(u))∏

u∈λ h(u)

= d+ cont(µ \ λ). (3.127)

2

3.7.5. Lemma (Eqs. (1.6) and (1.8) in [Kos03]). For every µ ⊢ n and λ ⊢ n− 1, such that λ is
obtained be adding a cell x to µ, i.e. x := µ \ λ. Then there holds

n · dλ
dµ

=

∏
a∈AC(λ)\x(cont(x)− cont(a))
∏

c∈RC(λ)(cont(x)− cont(c))
= −

∏
a∈AC(µ)(cont(x)− cont(a))

∏
c∈RC(µ)\x(cont(x)− cont(c))

(3.128)

where dλ is the dimension of the symmetric group irrep λ.

3.7.6. Lemma. For every T such that M(T ) ̸= ∅ there holds ∥|vT ⟩∥22 = d.

Proof:
Denote λ := T n−1

l and use Lemmas 3.7.4 and 3.7.5:

∥|vT ⟩∥22 =
∑

S∈M(T )

c(S)2 =
∑

a∈ACd(λ)

mλ∪a

mλ

= d, (3.129)

where the last equality is due to Pieri’s rule for the irreps of the unitary group. 2
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3.7.7. Lemma ([War79; LB70; CL96]). For each integer k ⩾ 0 and distinct x1, x2, . . . , xn ∈ C
we have

n∑

i=1

xki∏
i ̸=j(xi − xj)

= hk−n+1(x1, . . . , xn), (3.130)

where hr is complete r-homogeneous symmetric polynomial, which is defined as hr = 0 for r < 0
and h0 = 1.

Proof:
Consider the rational function

f(z) =
zk∏n

j=1(z − xj)
. (3.131)

The function f(z) has simple poles at z = xi for i = 1, 2, . . . , n. At each pole z = xi, the residue
can be easily evaluated as

Resz=xi f(z) = lim
z→xi

(z − xi)f(z) =
xki∏

j ̸=i(xi − xj)
. (3.132)

Summing over all residues at finite poles, we get
n∑

i=1

Resz=xi f(z) =
n∑

i=1

xki∏
j ̸=i(xi − xj)

. (3.133)

By the Cauchy’s residue theorem, the sum of all residues, including the residue at infinity, is
zero:

n∑

i=1

Resz=xi f(z) + Resz=∞ f(z) = 0 =⇒
n∑

i=1

xki∏
j ̸=i(xi − xj)

= −Resz=∞ f(z). (3.134)

To find Resz=∞ f(z), expand f(z) as z → ∞:

f(z) = zk−n
n∏

j=1

(
1− xj

z

)−1

. (3.135)

Using absolute convergence of the geometric series for the function g(t) = (1 − t)−1 together
with the generating function for complete homogeneous symmetric polynomials hr [Mac98], we
can expand the product in the previous formula into the following series:

n∏

j=1

(
1− xj

z

)−1

=
∞∑

r=0

hr(x1, . . . , xn)z
−r. (3.136)

Therefore,

f(z) = zk−n
∞∑

r=0

hr(x1, . . . , xn)z
−r =

∞∑

r=0

hr(x1, . . . , xn)z
k−n−r. (3.137)

The residue at infinity is minus the coefficient of z−1 in this expansion. Set k − n − r = −1,
which gives r = k − n+ 1. Thus,

Resz=∞ f(z) = −hk−n+1(x1, . . . , xn). (3.138)

Combining the results, we obtain
n∑

i=1

xki∏
j ̸=i(xi − xj)

= hk−n+1(x1, . . . , xn). (3.139)

2
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3.7.8. Lemma. For every Young diagram λ and arbitrary c ∈ RC(λ) the following holds:

∑

x∈AC(λ)

∏
w∈RC(λ)\c(cont(x)− cont(w))

∏
v∈AC(λ)\x(cont(x)− cont(v))

= 0, (3.140)

∑

x∈AC(λ)

cont(x)

∏
w∈RC(λ)\c(cont(x)− cont(w))

∏
v∈AC(λ)\x(cont(x)− cont(v))

= 1 (3.141)

Proof:
Note that the degree of the numerator as polynomial in cont(x) is |AC(µ)| − 2 in the first
case and |AC(µ)| − 1 in the second case. Now just apply Lemma 3.7.7 with n = |AC(µ)| and
variables being {cont(x) | x ∈ AC(µ)}. 2
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3.A Appendix

3.A.1 Lifting traces from Bdn,m to Ad
n,m

Representing the elements of the matrix algebra Ad
n,m as preimages of diagrams under ψdn,m

is particularly useful when computing traces and partial traces of ψdn,m(σ) for any σ ∈ Bdn,m.
The following two propositions relate the matrix traces of ψdn,m to the diagrammatic traces of
σ defined in Eqs. (3.6) and (3.7).

3.A.1. Proposition. For any σ ∈ Bdn,m,

Tr(ψdn,m(σ)) = Tr(σ). (3.142)

In particular, when σ is a single diagram,

Tr(ψdn,m(σ)) = dloops(σ) (3.143)

where loops(σ) is the number of loops created by connecting all pairs of opposite vertices of σ.

Proof:
To establish Eq. (3.142), it suffices to consider only the case when σ is a single diagram since
the general case follows by linearity. Using Eqs. (3.17) and (3.19),

Tr(ψdn,m(σ)) =
∑

x1,...,xn+m∈[d]

(
⟨x1| ⊗ · · · ⊗ ⟨xn+m|

)
ψdn,m(σ)

(
|x1⟩ ⊗ · · · ⊗ |xn+m⟩

)
(3.144)

=
∑

x1,...,xn+m∈[d]
x1,...,xn+m∈[d]

σx1,...,xn+m
x1,...,xn+m

∏

k∈[n+m]

δxk,xk (3.145)

=
∑

x1,...,xn+m∈[d]
x1,...,xn+m∈[d]

∏

(r,s)∈σ

δxr,xs
∏

k∈[n+m]

δxk,xk (3.146)

= dloops(σ). (3.147)

The last equality follows by partitioning the product of delta functions into closed loops and
observing that all indices on a given loop must have the same value. The final value agrees
with the diagrammatic definition of Tr(σ) in Eq. (3.6). 2

The following generalisation allows to graphically compute the partial trace TrS(ψ
d
n,m(σ))

for any subset of systems S ⊆ [n+m].

3.A.2. Proposition. For any σ ∈ Bdn,m and subset S ⊆ [n+m],

TrS
(
ψdn,m(σ)

)
= ψdn′,m′(TrS(σ)) (3.148)

where TrS(σ) is defined in Eq. (3.7) and n′ and m′ denote the number of leftover systems on
both sides of the wall. In particular, when σ is a single diagram,

TrS
(
ψdn,m(σ)

)
= dloopsS(σ)ψdn′,m′(σS) (3.149)

where σS denotes the diagram σ with opposite pairs of nodes that belong to S contracted, and
loopsS(σ) is the number of loops formed in this process.
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Proof:
By linearity, it suffices to establish the result for any diagram σ ∈ Bdn,m. Note from Eq. (3.17)
that

ψdn,m(σ) =
∑

l1,...,ln+m∈[d]
l1,...,ln+m∈[d]

σ
l1,...,ln+m

l1,...,ln+m
|l1⟩⟨l1| ⊗ · · · ⊗ |ln+m⟩⟨ln+m| =

∑

l,l∈[d]n+m

σll |l⟩⟨l| (3.150)

where l = (l1, . . . , ln+m) and l = (l1, . . . , ln+m). Letting S̄ := [n + m] \ S, we can generalize
Eq. (3.144) as follows:

TrS(ψ
d
n,m(σ)) =

∑

i∈[d]S

(
⟨i|S ⊗ IS̄

)
ψdn,m(σ)

(
|i⟩S ⊗ IS̄

)
(3.151)

=
∑

i∈[d]S

(
⟨i|S ⊗ IS̄

)( ∑

l,l∈[d]n+m

σll |l⟩⟨l|
)(

|i⟩S ⊗ IS̄
)

(3.152)

=
∑

i∈[d]S

∑

l,l∈[d]n+m

σll

(∏

k∈S

δxk,lkδlk,xk

)(⊗

k∈S̄

|lk⟩⟨lk|k
)

(3.153)

=
∑

l,l∈[d]n+m

σll

(∏

k∈S

δlk,lk

)(⊗

k∈S̄

|lk⟩⟨lk|k
)
, (3.154)

where we eliminated the sum over i in the last equality by noting that
∑

xk∈[d]

δxk,lkδlk,xk = δlk,lk (3.155)

for all k ∈ S. Substituting the definition of σll from Eq. (3.19) we get

TrS(ψ
d
n,m(σ)) =

∑

l,l∈[d]n+m

( ∏

(r,s)∈σ

δlr,ls

)(∏

k∈S

δlk,lk

)(⊗

k∈S̄

|lk⟩⟨lk|k
)

(3.156)

= dloopsS(σ)
∑

l′,l′∈[d]S̄

( ∏

(u,v)∈σS

δl′u,l′v

)
|l′⟩⟨l′|, (3.157)

where the second equality is obtained by using a generalisation of Eq. (3.155) to contract the
chains of delta functions along all loops and paths. This collapses the sum from [d]n+m to [d]S̄

and reduces the product to run over edges (u, v) in the remaining smaller diagram σS. Using
Eqs. (3.19) and (3.150) in reverse,

TrS(ψ
d
n,m(σ)) = dloopsS(σ)

∑

l′,l′∈[d]S̄
(σS)l

′
l′ |l′⟩⟨l′| (3.158)

= dloopsS(σ)ψdn′,m′(σS) (3.159)

= ψdn′,m′(TrS(σ)), (3.160)

where we used Eq. (3.7) that defines the diagrammatic partial trace TrS(σ). 2

Finally, note from Eq. (3.150) that we can also easily evaluate the trace of ψdn,m(σ) with any
elementary rank-1 standard basis matrix |i⟩⟨j| for any i, j ∈ [d]n+m:

Tr
(
ψdn,m(σ) |i⟩⟨j|

)
= σij, (3.161)

where σij is given in Eq. (3.19). The partial trace TrS
(
ψdn,m(σ) |i⟩⟨j|

)
can be evaluated similarly.
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3.A.2 Proof of Lemma 3.6.2

3.6.2. Lemma. For any T ∈ Paths(A ) in the Bratteli diagram of Ad
n,m,

(JA
1 + · · ·+ JA

n+m) ε
A
T =

(
cont(λl) + cont(λr) + d · |λr|

)
εAT (3.56)

where εAT is the corresponding canonical primitive idempotent of Ad
n,m, λ = (λl, λr) = T n+m is

the last vertex of the path T , cont(λ) is the total content of all cells of the Young diagram λ
and |λ| is the number of cells in λ.

Proof:
We will use the correspondence between a path T and a pair (τ, L) of a tableaux τ = (τ l, τ r)
of shape (λl, λr) and a tuple L of pairs of numbers from the set [n +m], see Theorem 1.11 of
[Ben+94]. For this proof we assume T := λ1 → λ2 → . . . → λn+m−1 → λ and ψ := ψdn,m, see
Eq. (3.17). Moreover, we will use upper “left” and “right” letters, i.e. λk = (λlk, λ

r
k).

It follows from Lemma 3.6.1 that JA
1 + · · · + JA

n+m ∈ Z(An+m). Therefore it is enough to
consider how this sum acts on any vector in the isotypic component Vλ ⊗Wλ corresponding
to the simple module labeled by λ = (λl, λr) ∈ Âd

n,m in the mixed Schur–Weyl duality, see
Eq. (3.39). In particular, we can take a maximal vector

|tτ,L⟩ := ψ(yτ σ̄L)|βτ,L⟩ ∈ (Cd)⊗n ⊗ (Cd)⊗m (3.162)

from [Ben+94, Definition 2.4], where yτ ∈ C(Sn×Sm) ⊆ Bdn,m is the Young symmetriser for the
tableaux τ , σ̄L ∈ Bdn,m is a diagram that contracts all pairs in L. The Young symmetriser yτ is
defined as yτ := yτ lyτr , the product of standard Young symmetrisers yτ l and yτr , see [Ben+94,
Eq. 2.2]. The Young symmetrisers yτ l and yτr are products of column and row symmetrisers
(the terms which correspond to column and row groups in [Ben+94, Eq. 2.2]). The standard
basis vector |βτ,L⟩ ∈ (Cd)⊗n ⊗ (Cd)⊗m is defined as follows:

|βτ,L⟩ := |u1⟩ ⊗ · · · ⊗ |un⟩ ⊗ |un+1⟩ ⊗ · · · ⊗ |un+m⟩ (3.163)

where each ui ∈ [d] and we distinguish two cases: if 1 ⩽ i ⩽ n then

ui :=

{
j if i belongs to the j-th row of τ l,
1 if i ∈ L,

(3.164)

while if n+ 1 ⩽ i ⩽ n+m then

ui :=

{
d− j + 1 if i belongs to the j-th row of τ r,
1 if i ∈ L.

(3.165)

Recall that JA
1 + · · ·+ JA

n+m ∈ Z(An+m), so
(
JA
1 + · · ·+ JA

n+m

)
|tτ,L⟩ = ψ(yτ σ̄L)

(
JA
1 + · · ·+ JA

n+m

)
|βτ,L⟩. (3.166)

Since JA
k := ψ(JB

k ) and ψ is a homomorphism, we can use the definition of JB
k from Eq. (3.50)

to write the right-hand side more explicitly:

ψ
(
yτ σ̄L

( ∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

σi,j −
∑

1⩽i⩽n
n+1⩽j⩽n+m

σ̄i,j + d ·m
))

|βτ,L⟩. (3.167)

To simplify this, we evaluate all expressions of the form ψ(yτ σ̄Lσi,j)|βτ,L⟩ and ψ(yτ σ̄Lσ̄i,j)|βτ,L⟩,
where we distinguish between transpositions σi,j and contractions σ̄i,j which can be located in
three possible positions relative to L:
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1. i /∈ L, j /∈ L,

2. i ∈ L, j /∈ L or i /∈ L, j ∈ L,

3. i ∈ L, j ∈ L.

We now proceed to consider each of these six cases separately (we will write (1) and (1̄) to
distinguish between the cases with σi,j and σ̄i,j).

Case (1): σi,j with i /∈ L, j /∈ L. There are two sub-cases:

(a) If i and j are in the same row of either τ l or τ r, the row symmetriser of yτ does not change
the resulting vector, i.e., ψ(yτσi,j)|βτ,L⟩ = ψ(yτ )|βτ,L⟩. Since σ̄L and yτ commute,

ψ(yτ σ̄Lσi,j)|βτ,L⟩ = |tτ,L⟩. (3.168)

(b) If i and j are in different rows of either τ l or τ r, we denote the corresponding row numbers
by ri and rj. In this case the row symmetriser of yτ acting on ψ(σi,j)|βτ,L⟩ produces a
product of two “W states” at positions defined by the rows ri and rj of τ l/r with the
numbers i and j swapped. The column antisymmetriser of yτ will then kill most terms,
leaving only the terms with basis vectors |ri⟩, |rj⟩ in positions within the same column.
There are λl/rmax{ri,rj} such terms, where λl/rmax{ri,rj} is the size of the smallest of the two
rows ri, rj within the corresponding left or right tableaux τ l/r. After this operation the
resulting vector acquires a minus sign and a different factor compared to ψ(yτ )|βτ,L⟩:

ψ(yτσi,j)|βτ,L⟩ = −ψ(yτ )|βτ,L⟩
λ
l/r
max{ri,rj}

. (3.169)

Again, since σ̄L and yτ commute,

ψ(yτ σ̄Lσi,j)|βτ,L⟩ = − 1

λ
l/r
max{ri,rj}

|tτ,L⟩. (3.170)

Case (1̄): σ̄i,j with i /∈ L, j /∈ L. In this case ψ(σ̄i,j)|βτ,L⟩ can only be non-zero when ui = uj,
which is equivalent to ri = d−rj+1. Thus ri+rj = d+1. But since ri+rj ⩽ ℓ(λl)+ℓ(λr) ⩽ d,

ψ(yτ σ̄Lσ̄i,j)|βτ,L⟩ = 0. (3.171)

Case (2): σi,j with i ∈ L, j /∈ L or i /∈ L, j ∈ L. Without loss of generality we can assume
that i ∈ L and j /∈ L. There are two sub-cases:

(a) If uj = 1 then ψ(σ̄Lσi,j)|βτ,L⟩ = ψ(σ̄L)|βτ,L⟩. This happens when j ∈ τ l and rj = 1 or
j ∈ τ r and rj = d. Therefore

ψ(yτ σ̄Lσi,j)|βτ,L⟩ = |tτ,L⟩. (3.172)

(b) If uj ̸= 1 then ψ(σ̄Lσi,j)|βτ,L⟩ = 0 because ψ(σ̄L) would annihilate the vector ψ(σi,j)|βτ,L⟩.
Therefore

ψ(yτ σ̄Lσi,j)|βτ,L⟩ = 0. (3.173)

Case (2̄): σ̄i,j with i ∈ L, j /∈ L or i /∈ L, j ∈ L. Assume again that i ∈ L and j /∈ L. There
are two sub-cases:
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(a) If uj = 1 then

ψ(σ̄Lσ̄i,j)|βτ,L⟩ = ψ(σ̄L)

(
|βτ,L⟩+

d∑

k=2

(
· · · ⊗ |k⟩ ⊗ · · · ⊗ |k⟩ ⊗ · · ·

)
)
, (3.174)

where the basis vectors labeled by k are in positions i and j. But since j /∈ L all vectors
· · · ⊗ |k⟩ ⊗ · · · ⊗ |k⟩ ⊗ · · · for k ⩾ 2 are annihilated by σ̄L. Therefore in this case

ψ(yτ σ̄Lσ̄i,j)|βτ,L⟩ = |tτ,L⟩. (3.175)

(b) If uj ̸= 1 then ψ(σ̄i,j)|βτ,L⟩ = 0 and therefore

ψ(yτ σ̄Lσ̄i,j)|βτ,L⟩ = 0. (3.176)

Case (3): σi,j with i ∈ L, j ∈ L. Since i and j must belong together either to τ l or τ r,
they cannot belong simultaneously to one pair of L. Since ui = uj = 1, it follows that
ψ(σi,j)|βτ,L⟩ = |βτ,L⟩ and therefore

ψ(yτ σ̄Lσi,j)|βτ,L⟩ = |tτ,L⟩. (3.177)

Case (3̄): σ̄i,j with i ∈ L, j ∈ L. In contrast to the previous case, two sub-cases can occur:

(a) If i and j belong to the same pair in L then

ψ(σ̄Lσ̄i,j)|βτ,L⟩ = ψ(σ̄L)

(
d∑

k=1

(
· · · ⊗ |k⟩ ⊗ · · · ⊗ |k⟩ ⊗ · · ·

)
)

= d · ψ(σ̄L)|βτ,L⟩, (3.178)

where the basis vectors labeled by k are in positions i and j. Therefore

ψ(yτ σ̄Lσ̄i,j)|βτ,L⟩ = d · |tτ,L⟩. (3.179)

(b) If i and j belong to different pairs in L then similarly to the previous case we can write

ψ(σ̄Lσ̄i,j)|βτ,L⟩ = ψ(σ̄L)

(
d∑

k=1

(
· · · ⊗ |k⟩ ⊗ · · · ⊗ |k⟩ ⊗ · · ·

)
)
, (3.180)

where the basis vectors labeled by k are in positions i and j. But now since the positions
i and j are not contracted with each other by ψ(σ̄L), we will not acquire a factor of d:

ψ(yτ σ̄Lσ̄i,j)|βτ,L⟩ = |tτ,L⟩. (3.181)

Collecting everything together and separating the sums in Eq. (3.167) according to the cases
above, we arrive at the following expression:

(
JA
1 + · · ·+ JA

n+m

)
|tτ,L⟩ = ψ

(
yτ σ̄L

( ∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

σi,j −
∑

1⩽i⩽n
n+1⩽j⩽n+m

σ̄i,j + d · q
))

|βτ,L⟩

=
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (1a)

|tτ,L⟩+
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (2a)

|tτ,L⟩+
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (3)

|tτ,L⟩+ d · q (3.182)

−
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (1b)

|tτ,L⟩
λ
l/r
max{ri,rj}

−
∑

1⩽i⩽n
n+1⩽j⩽n+m

case (2̄a)

|tτ,L⟩ −
∑

1⩽i⩽n
n+1⩽j⩽n+m

case (3̄a)

d · |tτ,L⟩ −
∑

1⩽i⩽n
n+1⩽j⩽n+m

case (3̄b)

|tτ,L⟩.
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To simplify this we need to do some counting. Counting all possible pairs within each row of τ
gives us

∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (1a)

|tτ,L⟩ =



ℓ(λl)∑

i=1

(
λli
2

)
+

ℓ(λr)∑

i=1

(
λri
2

)
 |tτ,L⟩. (3.183)

Pairing i and j across different rows gives us:

∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (1b)

|tτ,L⟩
λ
l/r
max{ri,rj}

=



ℓ(λl)∑

i=1

λli(i− 1) +

ℓ(λr)∑

i=1

λri (i− 1)


 |tτ,L⟩. (3.184)

Note that for a single diagram λ it is true that

ℓ(λ)∑

i=1

(
λi
2

)
−

ℓ(λ)∑

i=1

λi(i− 1) = cont(λ), (3.185)

therefore
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (1a)

|tτ,L⟩ −
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (1b)

|tτ,L⟩
λ
l/r
max{ri,rj}

= (cont(λl) + cont(λr)) |tτ,L⟩. (3.186)

Next, simple combinatorics gives us
∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (2a)

|tτ,L⟩ =
∑

1⩽i⩽n
n+1⩽j⩽n+m

case (2̄a)

|tτ,L⟩ =
(
λl1 · |L|+ λrd · |L|

)
|tτ,L⟩, (3.187)

∑

1⩽i<j⩽n or
n+1⩽i<j⩽n+m

case (3)

|tτ,L⟩ =
∑

1⩽i⩽n
n+1⩽j⩽n+m

case (3̄b)

|tτ,L⟩ = 2 ·
(|L|

2

)
|tτ,L⟩, (3.188)

so the corresponding sums cancel each other. Finally,
∑

1⩽i⩽n
n+1⩽j⩽n+m

case (3̄a)

d · |tτ,L⟩ = d · |L| · |tτ,L⟩. (3.189)

Using m− |L| = |λr| and combining everything together gives us the desired result:
(
JA
1 + · · ·+ JA

n+m

)
|tτ,L⟩ = (cont(λl) + cont(λr) + d · |λr|) |tτ,L⟩. (3.190)

Since JA
1 + · · · + JA

n+m ∈ Z(An+m) and εAT |tτ,L⟩ = |tτ,L⟩, we can draw the same conclusion for
εAT : (

JA
1 + · · ·+ JA

n+m

)
εAT = (cont(λl) + cont(λr) + d · |λr|) εAT (3.191)

which completes the proof. 2



Chapter 4

Quantum circuits for mixed Schur transform

In this chapter, we describe how to generalise the Schur transform to tensors of mixed unitary
symmetry, resulting in the mixed Schur transform. We develop an efficient quantum circuit
for the mixed Schur transform. An important feature of the mixed Schur transform is that
it produces the Gelfand–Tsetlin basis for partially transposed permutations, which has useful
applications in quantum information and computing. The essential novel component enabling
the construction of the quantum mixed Schur transform is the efficient dual Clebsch–Gordan
transform, for which we provide a comprehensive description. Additionally, we provide a ma-
trix product state representation of the mixed Schur–Weyl basis vectors. For constant local
dimension, this yields an efficient classical algorithm for computing any entry of the mixed
quantum Schur transform unitary.

This chapter is based on [GBO23a].

4.1 Introduction

Schur–Weyl duality is particularly useful in quantum information, where one often needs to deal
with many identical copies of a quantum state or to apply the same unitary to many systems in
parallel. Its algorithmic manifestation, the quantum Schur transform and the related Clebsch–
Gordan transform, can be efficiently implemented [BCH06; Har05; KS18; Kro19; WS23] and
have many applications [Wri16; Har05], such as quantum spectrum [KW01a] and entropy esti-
mation [AISW20], quantum state tomography [Key06; HHJWY17; OW16; OW17], black-box
inversion of an unknown qubit unitary [YSM23a], and quantum majority vote [BLMMO22].
Some applications do not require the full quantum Schur transform but only a weaker form
called weak Schur sampling [CM23].

Motivated by the wide range of applications of the quantum Schur transform, in this chapter
we investigate the mixed quantum Schur transform which can be used both to block-diagonalize
the matrix algebra Ad

n,m as well as to prepare the Gelfand–Tsetlin basis vectors. More specif-
ically, in Lemma 4.2.1 of Section 4.2.1 we show that the rows of the mixed quantum Schur
transform (or the Schur basis states) admit a matrix product state representation with bond
dimension (n+m)O(d2). This means that, for a constant local dimension d, we can compute the
matrix entries of the mixed Schur transform in polynomial time. In addition, Theorem 4.3.1 of
Section 4.3 provides an efficient quantum circuit with Õ((n+m)d4) gates for computing the
mixed Schur transform on a quantum computer. In particular, this transform produces the
Gelfand–Tsetlin basis from Theorem 3.7.1 on the walled Brauer algebra register. The key new
ingredient that allows us to generalise the standard quantum Schur transform from [BCH06] to
the mixed setting is the construction of an efficient dual Clebsch–Gordan transform in Theo-
rem 4.4.1. Finally, we note that related independent work [Ngu23] constructs the same quantum
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circuits for mixed Schur transform as in our Theorem 4.3.1.

4.2 Mixed Schur transform

Recall from Theorem 3.4.1 that there is a mixed Schur transform unitary USch(n,m) that simul-
taneously block-diagonalises the actions of Ud and Bdn,m on the tensor space:

USch(n,m) : (Cd)⊗n+m →
⊕

λ∈Âd
n,m

Vλ ⊗Wλ. (4.1)

It maps the computational basis to a new basis composed of irreducible representations of Ad
n,m

and Ud:

USch(n,m) ψ
d
n,m(σ) U

†
Sch(n,m) =

⊕

λ∈Âd
n,m

ψλ(σ)⊗ Imλ
, ∀σ ∈ Bdn,m, (4.2)

USch(n,m) ϕ
d
n,m(U) U

†
Sch(n,m) =

⊕

λ∈Âd
n,m

Idλ ⊗ ϕλ(U), ∀U ∈ Ud, (4.3)

where ψdn,m and ϕdn,m are defined in Eqs. (3.17) and (3.29), ψλ is described in Theorem 3.7.1,
and ϕλ is the Weyl module λ of the unitary group Ud.

Recall from Chapter 3 that we can choose the bases of Vλ and Wλ to be of Gelfand–Tsetlin
type1 and label them by paths T ∈ Paths(λ,A ) and Gelfand–Tsetlin patterns M ∈ GT(λ),
respectively:

Vλ := spanC{|T ⟩ | T ∈ Paths(λ,A )}, (4.4)
Wλ := spanC{|M⟩ |M ∈ GT(λ)}. (4.5)

When m = 0 we can equivalently think of T and M as a standard and a semistandard Young
tableau, respectively (see Sections 2.6 and 2.9.1). For general values of n,m, one can interpret
T as a mixed standard Young tableau (see Section 3.5) while M can still be interpreted as a
semistandard tableau by adding an appropriate constant to all entries of the Gelfand–Tsetlin
pattern so that they become non-negative. Note that the irrep label λ ∈ Âd

n,m is implicit in
both T and M . Indeed, it can be recovered from the final vertex of the path T as well as from
the first row of the pattern M . Hence, we can treat the output space in Eq. (4.1) as a formal
linear span of all pairs (T,M):

⊕

λ∈Âd
n,m

Vλ ⊗Wλ = spanC
{
|(T,M)⟩

∣∣ λ ∈ Âd
n,m, T ∈ Paths(λ,A ),M ∈ GT(λ)

}
. (4.6)

Note that because of the direct sum over λ the output space of USch(n,m) does not have a tensor
product structure, i.e., one should not treat |(T,M)⟩ as |T ⟩ ⊗ |M⟩. Nevertheless, for each
individual λ the corresponding subspace Cdλ ⊗ Cmλ is indeed a tensor product.

1Note that mixed Schur transform, defined as a transformation (4.1) which simultaneously decomposes
(Cd)⊗n+m into irreducible modules of Ad

n,m and Ud, is not uniquely defined. Indeed, an arbitrary change of
basis within the modules Vλ and Wλ does not affect the decomposition (4.1). On the other hand, such a change
of basis within the modules is the only degree of freedom for the Schur transform. In this thesis, we make a
specific choice of bases and present the mixed Schur transform for the Gelfand–Tsetlin bases corresponding to
the sequence (3.67) of subalgebras of Ad

n,m and the sequence U1 ↪→ · · · ↪→ Ud of subgroups of the unitary group
Ud. For d = 2, it can be seen as a consecutive composition of spin- 12 particles into a system with well-defined
global spin.
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We would like to find an efficient way of computing the mixed Schur transform matrix
entries

⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩. (4.7)

Here the rows are labeled by pairs (T,M), where T ∈ Paths(λ,A ) and M ∈ GT(λ) for all
choices of λ ∈ Âd

n,m, while the columns are labeled by strings x1, . . . , xn+m ∈ [d].2 The matrix
entries (4.7) can be arranged into a matrix as follows:

USch(n,m) =
∑

λ∈Âd
n,m

∑

T∈Paths(λ)
M∈GT(λ)

∑

x1,...,xn+m∈[d]

⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩ · |(T,M)⟩⟨x1, . . . , xn+m|.

(4.8)
In particular, the mixed quantum Schur transform of any standard basis vector |x1, . . . , xn+m⟩
is

USch(n,m) |x1, . . . , xn+m⟩ =
∑

λ∈Âd
n,m

∑

T∈Paths(λ)
M∈GT(λ)

⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩ · |(T,M)⟩, (4.9)

while the Schur basis vectors ⟨(T,M)| can be expressed in the standard basis as

⟨(T,M)|USch(n,m) =
∑

x1,...,xn+m∈[d]

⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩ · ⟨x1, . . . , xn+m|. (4.10)

The most common way of implementing the regular m = 0 Schur transform is by a sequence
of Clebsch–Gordan transforms [BCH06; Har05; KS18]. The basic idea is to view the space
(Cd)⊗n as tensor product of n defining representations W□ of Ud and sequentially decompose
this tensor product by including one new system at a time, see Section 2.9.3. This approach can
be generalised to any m ⩾ 0 in a straightforward way by incorporating dual Clebsch–Gordan
transforms for an inductive decomposition of

(Cd)⊗n+m ∼= W□ ⊗ . . .⊗W□ ⊗W□̄ ⊗ . . .⊗W□̄ (4.11)

where W□̄ denotes the dual of the defining representation. We can derive an explicit formula
for the matrix entries of the mixed quantum Schur transform obtained in this fashion.

We start with a single qudit in state |x1⟩ where x1 ∈ [d]. At each step k = 2, . . . , n+m we
use the Clebsch–Gordan transform CG(k) ∈ Udk to couple the output state from the previous
iteration with an additional qudit in state |xk⟩ where xk ∈ [d]. The input and output spaces of
CG(k) can be decomposed as follows:

CG(k) :

( ⊕

λ∈Âd
k−1

Vλ ⊗Wλ

)
⊗ Cd →

⊕

µ∈Âd
k

Vµ ⊗Wµ, (4.12)

where we are using the single-subscript convention for the sequence of algebras Ad
k from

Eq. (3.47). For any path T = (T 0, . . . , T k−1) and pattern M ∈ GT(T k−1) the action of CG(k)

is defined as

CG(k)
(
|(T,M)⟩ ⊗ |xk⟩

)
:=

∑

µ : Tk−1→µ

∑

N∈GT(µ)
w(N)=w(M)+w(xk)

cxkN,M |(T → µ,N)⟩, (4.13)

2Note that Eq. (4.1) describes a passive transformation that changes the coordinate system from the com-
putational basis vectors into the basis labeled by tuples (T,M). As the number of such tuples matches the
dimension of (Cd)⊗n+m, it can be seen as a transformation of (Cd)⊗n+m onto itself, after applying any bijection
between the tuples (T,M) and the computational basis vectors. As such, the Schur transform is a unitary
transformation (also active transformation).
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where µ : T k−1 → µ means that µ can be reached from T k−1 by one step in the Bratteli diagram
A , and cxkN,M are the so-called Clebsch–Gordan coefficients (see Section 4.A.1 for an explicit
formula). The mixed quantum Schur transform USch(n,m) is given by a cascade of n + m − 1
Clebsch–Gordan transforms:

USch(n,m) = CG(n+m) ·
(
CG(n+m−1)⊗I

)
· · ·
(
CG(3)⊗I⊗n+m−3

)
·
(
CG(2) ⊗I⊗n+m−2

)
. (4.14)

In particular, the usual Schur transform satisfies USch(k,0) = CG(k)
(
USch(k−1,0) ⊗ I

)
where k =

2, . . . , n.
Let us use Eq. (4.14) to derive an explicit formula for the matrix entries of the mixed

quantum Schur transform. For an arbitrary path T = (T 0, . . . , T n+m) ∈ Paths(λ) and Gelfand–
Tsetlin pattern M ∈ GT(λ), we get from Eqs. (4.13) and (4.14) that

⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩ = ⟨M |CGxn+m

Tn+mTn+m−1 · · ·CGx2
T 2T 1|x1⟩ (4.15)

where |M⟩ is a Gelfand–Tsetlin basis vector of the unitary group irrep corresponding to the
staircase λ, and CGxk

TkTk−1 for k = 2, . . . , n +m are rectangular matrices with rows labeled by
N ∈ GT(T k) and columns labeled by M ∈ GT(T k−1), with the corresponding matrix entry
equal to the Clebsch–Gordan coefficient:

⟨N |CGxk
TkTk−1|M⟩ := cxkN,M . (4.16)

Hence, according to Eq. (4.15), any matrix entry of USch(n,m) can be computed by applying a
sequence of matrices onto |x1⟩. The complexity of this computation depends on the dimensions
of the matrices CGxk

TkTk−1 .
In practice, one can take advantage of the fact that the matrices CGxk

TkTk−1 are block-
diagonal. By tracking which blocks contribute non-trivially to a given ⟨(T,M)|, Eq. (4.15) can
be modified as follows:

⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩ = ⟨M |CGxn+m,w(xn+m−1,...,x1)

Tn+mTn+m−1 · · ·CGx2
T 2T 1|x1⟩, (4.17)

where CG
xk,w(xk−1,...,x1)

TkTk−1 are submatrices of CGxk
TkTk−1 with rows labeled only by N ∈ GT(T k) of

weight w(N) = w(xk, . . . , x1) and columns labeled only by M ∈ GT(T k−1) of weight w(M) =
w(xk−1, . . . , x1).

4.2.1 MPS representation of mixed Schur basis vectors

Notice that Eq. (4.15) presents the Schur basis vectors |(T,M)⟩ as matrix product states (MPS)
with bond dimensions given by mTk = dimWTk = |GT(T k)|, see Fig. 4.1. For fixed local
dimension d, the bond dimensions mTk are upper-bounded by (n+m)O(d2). This can be easily
seen by counting the number of Gelfand–Tsetlin patterns GT(T k). Indeed, for any pair of
Young diagrams λ = (λl, λr) of size |λl| ⩽ n, |λr| ⩽ m and satisfying ℓ(λl) + ℓ(λr) ⩽ d, the
corresponding set of Gelfand–Tsetlin patterns GT(λ) consists of entries mij which must satisfy
−m ⩽ mij ⩽ n. As the number of entries is d(d+1)/2, the size of the set GT(λ) can be upper
bounded by (n+m)O(d2). Note that the length of the MPS is n+m. As a consequence, for fixed
local dimension d the computational complexity of computing ⟨(T,M)|USch(n,m) |x1, . . . , xn+m⟩
is upper bounded by

(n+m)O(d2). (4.18)

Note that the complexity of computing the entries of the matrices CGxk
TkTk−1 (see Section 4.A.1)

is absorbed into the above bound. Thus, we have established the following result.
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4.2.1. Lemma (MPS representation of mixed Schur basis vectors). The mixed Schur basis vec-
tors U †

Sch(n,m)|(T,M)⟩ (or rows of the mixed quantum Schur transform matrix USch(n,m)) admit a
matrix product state representation with bond dimension (n+m)O(d2). Hence, the matrix entries
of the mixed Schur transform USch(n,m) can be computed in time (n+m)O(d2). In particular, for
constant local dimension d, this is polynomial in system size n+m.

Notice that Eq. (4.17) provides a more refined approach for computing the entries of vectors
|(T,M)⟩ in the computational basis, although it is no longer an MPS as the choice of consecutive
matrices CGxk,w(xk−1,...,x1)

TkTk−1 does not depend only on xk. The matrices in this product are of size
|{M ∈ GT(T k) | w(M) = w(x1, . . . , xk)}|, i.e., the number of Gelfand–Tsetlin patterns with a
given weight w(x1, . . . , xk). This is known as Kostka number KTk,w(x1,...,xk) and it depends on
two integer partitions: T k and w(x1, . . . , xk). Clearly, the matrices in Eq. (4.17) are smaller
than those in Eq. (4.15), however, we do not get an asymptotic improvement in the upper
bound. As before, KTk,w(x1,...,xk) can be upper bounded by (n + m)O(d2), which leads to the
same upper bound (4.18).

It is convenient to use tensor network notation to represent the Clebsch–Gordan tensors.
Let us assume λ and µ are staircases that differ only by one box. We will denote by CG+

µ,λ,
CG−

λ,µ the Clebsch–Gordan tensors corresponding to matrices CGx
µ,λ, CG

x
λ,µ, respectively:

CG+
µ,λ =

λ

µ , CG−
λ,µ =

µ

¯

λ , (4.19)

where the circles represent the corresponding tensors and the arrows represent two incoming
and one outgoing irreps, labeled by staircases that differ only by one box (adding a box for
CG+ and removing for CG−).

T 1T 2T 3Tn+m−1Tn+m

· · ·

x2x3xn+m

¯

M x1

Figure 4.1: Tensor network representation of the state U †
Sch(n,m)|(T,M)⟩ defined in Eq. (4.10) as

a matrix product state by using Eq. (4.15). The tensors CG±
TkTk−1 (depicted as white circles for

k ⩽ n and gray circles for k > n) have three indices. The matrices CGxk
TkTk−1 from Eq. (4.16)

are obtained from tensor CG±
TkTk−1 by fixing the index corresponding to xk ∈ [d], indicating the

computational basis state |xk⟩. The bond dimensions mTk = dimWTk = |GT(T k)| are equal
to the number of Gelfand–Tsetlin patterns of shape T k. Asymptotically the maximal value of
mTk for different k is upper bounded by (n+m)O(d2).

4.2.2 Mixed Schur transform achieves the Gelfand–Tsetlin basis

By construction [VK92], the Clebsch–Gordan transform (4.13) achieves the Gelfand–Tsetlin
basis of the unitary group on the unitary group registers Wλ in Eq. (4.1). As a consequence,
the same holds also for the mixed Schur transform (4.14). However, it is also true that the mixed
Schur transform yields the Gelfand–Tsetlin basis of the algebra Ad

n,m in the relevant registers
Vλ. We prove this in Theorem 4.2.2 by showing that the matrix elements of the contraction
generator σn in the mixed Schur basis coincide with the matrix elements in the Gelfand–Tsetlin
basis from Theorem 3.7.1.
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Because the Clebsch–Gordan transform CGk from Eqs. (4.12) and (4.13) acts only on the
unitary irrep registers upon adding a qudit Cd, we get for every σ ∈ Ad

k−1

CG(k)

(( ⊕

µ∈Âd
k−1

ψµ(σ)⊗ Imµ

)
⊗ Id

)
CG(k)† =

⊕

λ∈Âd
k

( ⊕

µ∈Âd
k−1

µ : µ→λ

ψµ(σ)

)
⊗ Imλ

. (4.20)

We see that the CGk does not change the action inside the registers Vλ, meaning that it is
naturally implementing a subalgebra-adapted basis, namely a Gelfand–Tsetlin basis of Ad

n,m.
However, there is still a degree of freedom of choosing phases for the Gelfand–Tsetlin basis
vectors. In [Jor09; Har05] it was argued that our choice of the Clebsch–Gordan transforms
CGk implements exactly the same Gelfand–Tsetlin basis in the Ad

n,m register of the mixed
Schur–Weyl duality as in Theorem 3.7.1 for the permutation generators σi, i ̸= n. For the
contraction generator σn ∈ Ad

n,m this can be proved by directly contracting two tensor networks
from Fig. 4.1 corresponding to two different paths S, T ∈ Paths(λ,A ) for every λ ∈ Âd

n,m.

4.2.2. Theorem. Consider the contraction generator σn ∈ Ad
n,m. For every λ ∈ Âd

n,m, S, T ∈
Paths(λ,A ), and M ∈ GT(λ) we find

⟨(S,M)|USch(n,m)σnU
†
Sch(n,m)|(T,M)⟩ =





√
mTnmSn

mTn−1

if S, T ∈ M(T )

0 otherwise
, (4.21)

where M(T ), defined in Eq. (3.70), denotes the set of all paths that coincide with T , except
possibly at level n, and satisfy T n−1 = T n+1.

Proof:
The proof is crucially based on the following fact relating CG+

µ,λ and the dual CG−
λ,µ Clebsch–

Gordan tensors [VK95, Eq. (10), p. 289]:

CG−
λ,µ =

√
mλ

mµ

CG+
µ,λ . (4.22)

We also need to use the following orthogonality identities for Clebsch–Gordan tensors:

λ′

λ

µ′

µ

¯ = δλ,λ′ δµ,µ′
mλ

mµ

µ

λ′

λ

µ′

µ

= δλ,λ′ δµ,µ′

λ

Note that left relation is also valid for CG+ tensors. Now we can evaluate the matrix entries of
σn by applying the above contraction rules for (dual) Clebsch–Gordan tensors to contract the
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following expression:

mTn+m⟨(S,M)|USch(n,m)σnU
†
Sch(n,m)|(T,M)⟩ =

∑

M∈GT(Tn+m)

⟨(S,M)|USch(n,m)σnU
†
Sch(n,m)|(T,M)⟩ =

Tn+m

Sn+m

¯

Tn+m−1

Sn+m−1

¯

· · ·

· · ·

Tn

Sn

· · ·

· · ·

T 2

S2

= δS1,T 1 · · · δSn−1,Tn−1δSn+1,Tn+1 · · · δSn+m,Tn+m
mTn+m

mTn+1
·

Tn

Sn

Tn+1 Sn−1

Canceling themTn+m term from both sides and using Eq. (4.22) and the orthogonality properties
of Clebsch–Gordan tensors gives us

⟨(S,M)|USch(n,m)σnU
†
Sch(n,m)|(T,M)⟩ = δS1,T 1 . . . δSn−1,Tn−1δSn+1,Tn+1 . . . δSn+m,Tn+m·

· 1

mTn+1

√
mTn+1

mTn

√
mTn+1

mSn

mSn

mTn−1

mTn

mTn−1

δTn−1,Tn+1mTn+1

= δS1,T 1 . . . δSn−1,Tn−1δSn+1,Tn+1 . . . δSn+m,Tn+mδTn−1,Tn+1

√
mTnmSn

mTn−1

, (4.23)

which is exactly what we claimed. 2

A similar result can be proven for diagrams τk from Eq. (3.15), which was also obtained in
[SMKH22] for restricted class of irreps.

The knowledge of explicit action of the generators of Ad
n,m in the Gelfand–Tsetlin basis is

useful for quantum computing applications. For example, it yields the efficient quantum circuit
for port-based teleportation derived in Chapter 5. Equation (4.14) suggests not only a way of
classically computing the matrix entries of the mixed quantum Schur transform unitary but
also a quantum circuit for implementing the corresponding isometry (we will use the same
notation for both). In the next section, we describe a quantum circuit which implements this
basis transformation.

4.3 Quantum circuits for mixed Schur transforms
In this section, we describe a quantum circuit that implements the mixed quantum Schur
transform. It is more precise to think of it as an isometry USch(n,m):

USch(n,m) : (Cd)⊗n+m →
T︷ ︸︸ ︷

CÂd
2 ⊗ · · · ⊗ CÂd

n+m−1 ⊗ CÂd
n+m ⊗

M[d−1]︷ ︸︸ ︷
CÛn+m

d−1 ⊗ · · · ⊗ CÛn+m
1︸ ︷︷ ︸

M

, (4.24)

where the first n+m−1 registers of the output correspond to a path T ∈ Paths(λ,A ) labeling
the corresponding irreps of Ad

k, the last d registers correspond to a Gelfand–Tsetlin pattern
M ∈ GT(λ) for some λ ∈ Âd

n,m, and Ûn+m
k is the set of staircases of bounded size, labeling the

irreps of the group Uk. One should think of Ûn+m
k as the set of all allowed values of the k-th
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row mk in all possible Gelfand–Tsetlin patterns M ∈ GT(λ). The last vertex T n+m of the
path T coincides with the top row md of the Gelfand–Tsetlin pattern M , i.e., T n+m = md = λ;
this explains the overlap between T and M in Eq. (4.24). More precisely, for every integer
n ∈ [n +m] and k ∈ [d], we define the set Ûl

k of staircases as the labels of the following irreps
of Uk:

Ûl
k :=

{{
λ ∈ Ûk

∣∣ |λl|+ |λr| ⩽ l
}

l < n+m or k < d,

Âd
n+m l = n+m and k = d.

(4.25)

The output of the mixed quantum Schur transform in Eq. (4.24) has tensor product struc-
ture both for storing the path T ∈ Paths(λ,A ) as well as the Gelfand–Tsetlin pattern M ∈
GT(λ). The natural way of interpreting the rows of a general Gelfand–Tsetlin pattern M =
(md,md−1,md−2, . . . ,m1) ∈ GT(md) is to use the staircase notation for each row. This means
that one should think of the quantum states |M⟩ as

|M⟩ := |md⟩ ⊗ |md−1⟩ ⊗ · · · ⊗ |m2⟩ ⊗ |m1⟩. (4.26)

Moreover, it is useful to define a shorthand notation M[k] to indicate only the bottom k rows
of the Gelfand–Tsetlin pattern M . The corresponding quantum state for any k ∈ [d] is

|M[k]⟩ := |mk⟩ ⊗ |mk−1⟩ ⊗ · · · ⊗ |m1⟩. (4.27)

Each row mk of the Gelfand–Tsetlin pattern M can be stored as the tensor product of k integers
mi,k, each having absolute value no more than n+m:

|mk⟩ := |m1,k⟩ ⊗ |mk−1,k⟩ ⊗ · · · ⊗ |mk,k⟩. (4.28)

Thus, the total number of qubits required to store mk scales as O(k log(n + m)). The total
number of registers containing the entries mi,k for all rows mk within M is d(d+1)

2
. Consequently,

the total number of qubits required to store M is O(d2 log(n+m)).
There are two options for encoding the paths T ∈ Paths(λ,A ). For the first encoding,

notice from Eq. (4.24) that a path T can be stored as a tensor product state

|T ⟩ := |T 2⟩ ⊗ · · · ⊗ |T n+m⟩, (4.29)

where we have suppressed the registers |T 0⟩ and |T 1⟩ since they are one-dimensional (T 0 = ∅
and T 1 = □ for any path T ). T n+m represents the irrep label, which we usually denote by
λ = T n+m. We call Eq. (4.29) the standard encoding of |T ⟩.

We also consider another more space-efficient isometry implementing the mixed quantum
Schur transform which uses an alternative encoding for T . Notice that for a given path T =
(T 0, . . . , T n+m) ∈ Paths(Λ,A ), the vertex T i is uniquely determined by the previous vertex T i−1

and the row number yi of the added (or removed) box T i \T i−1. The sequence (y1, . . . , yn+m) is
called the Yamanouchi word of path T . Since yi ∈ [d] for each i, encoding a path T as a sequence
of yi instead of T i is more space-efficient. Indeed, each yi can be stored directly in the i-th
input qudit without requiring additional memory, while storing each T i takes O(d log(n+m))
additional qubits and thus O((n+m)d log(n+m)) auxiliary qubits for T in total. We call this
more efficient encoding of the mixed Schur transform the Yamanouchi encoding :

USch(n,m) : (Cd)⊗n+m →

Ty︷ ︸︸ ︷
Cd ⊗ · · · ⊗ Cd

︸ ︷︷ ︸
(y2,...,yn+m)

⊗CÂd
n+m ⊗

M[d−1]︷ ︸︸ ︷
CÛn+m

d−1 ⊗ · · · ⊗ CÛn+m
1︸ ︷︷ ︸

M

. (4.30)

More specifically, we store a path T ∈ Paths(A ) as the following tensor product state:

|Ty⟩ := |y2⟩ ⊗ · · · ⊗ |yn+m−1⟩ ⊗ |yn+m⟩ ⊗ |λ⟩, (4.31)



4.3. Quantum circuits for mixed Schur transforms 81

where the first register |y1⟩ is suppressed since it is one-dimensional (y1 = 1 for any path).
While the Yamanouchi encoding is more space-efficient, it makes certain operations less time-
efficient. For example, to recover the i-th vertex T i of a path T , one needs to perform a certain
computation on y2, . . . , yi stored in the first i−1 registers of |Ty⟩, as opposed to directly looking
up the i-th register |T i⟩ in the standard encoding (4.29).

Now we are ready to present our construction of the mixed quantum Schur transform,
which is a slight modification of the original quantum Schur transform [BCH06; Har05] for the
classical Schur–Weyl duality (i.e., the m = 0 case of our formalism). The original quantum
Schur transform involves a cascade of Clebsch–Gordan isometries CG+

d (see Fig. 4.4), where
each isometry implements one of the unitary Clebsch–Gordan transforms CGk from Eq. (4.12).
The only modification we make to the original construction is to replace CG+

d by a similarly
defined dual Clebsch–Gordan isometry CG−

d in the second half of the circuit (see Fig. 4.2). This
immediately leads to the following result which agrees with [BCH06; Har05] in the m = 0 case.

4.3.1. Theorem (Mixed quantum Schur transform). The mixed quantum Schur transform for
block-diagonalising the algebra Ad

n,m has a quantum circuit with gate and time complexity (n+
m)d4 polylog(d, n,m, 1/ϵ), where d is the local dimension, and n and m are the parameters of
Ad
n,m. Moreover, it can be implemented using two different encodings of the Gelfand–Tsetlin

basis of Ad
n,m with the following auxiliary space complexity:

1. standard encoding: (n+m+ d)d polylog(d, n,m, 1/ϵ) auxiliary qubits (see Fig. 4.2),
2. Yamanouchi encoding: d2 polylog(d, n,m, 1/ϵ) auxiliary qubits (see Fig. 4.3).

Proof:
The proof is by explicit construction, which we have already mentioned: we just need to apply
the (dual) Clebsch–Gordan transformations sequentially, one-by-one, see Fig. 4.2.

The main new building block of the mixed quantum Schur transform circuit is the dual
Clebsch–Gordan isometry CG−

d . It can be obtained by a small modification of the usual CG+
d

isometry, which can be taken directly from [BCH06; Har05]. While both isometries have the
same structure, their representation-theoretic interpretations are slightly different: CG+

d is used
when k ⩽ n to add a new box to T k−1

l , producing a new diagram T kl , while CG−
d is used when

k > n, either to remove a box from T k−1
l or to add a box to T k−1

r . In the staircase notation
from Section 3.5, this is equivalent to adding a box to the staircase T k−1 when k ⩽ n and
removing a box when k > n. We describe efficient quantum circuits for both isometries in
a unified way in Section 4.4. We show that their complexity is poly(d) polylog(d, n,m, 1/ϵ),
where ϵ is the desired error. A more precise calculation shows that, in fact, their complexity
is d4 polylog(d, n,m, 1/ϵ) [Ngu23]. This follows from Theorem 4.4.1, where we need to set the
desired precision to be ϵ/(n+m), since there are n+m quantum Clebsch–Gordan isometries in
the mixed quantum Schur transform. Overall, this leads to the (n+m)d4 polylog(n,m, d, 1/ϵ)
gate and time complexities for the mixed quantum Schur transform USch(n,m).

The Yamanouchi encoding essentially uses the same circuit as in the standard encoding, see
Fig. 4.3. The only difference is how we store paths T ∈ Paths(A ). This slightly affects the
implementation of the Clebsch–Gordan isometries CG±

d , which we describe in Theorem 4.4.1.
The auxiliary qubit count is as follows. To store M ∈ GT(λ) for every λ ∈ Ad

n,m, we need
a quantum register with O(d2) qudits, each of dimension O(n+m), to store each entry of the
Gelfand–Tsetlin pattern M (this register is initialised to |0⟩ in Figs. 4.2 and 4.3). This gives an
additional O(d2 log(n+m)) qubits. In the standard encoding, we have a register that stores all
nodes of the path T as staircases. Each staircase requires at most O(d log(n+m)) qubits, so the
full path T would require O((n+m)d log(n+m)) additional qubits. Together with the additional
memory requirement needed to implement Clebsch–Gordan transforms d2 polylog(d, (n+m)/ϵ)
(see Theorem 4.4.1), this gives the claimed auxiliary space complexity. 2
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CG+
d

∣∣T 1
〉

|x1⟩

CG+
d

∣∣T 2
〉

|x2⟩
∣∣T 3
〉

|x3⟩
∣∣T 4
〉

|xn−2⟩

CG+
d

∣∣Tn−1
〉

|xn−1⟩

CG−
d

|Tn⟩

|xn⟩
∣∣Tn+1

〉

|xn+1⟩
∣∣Tn+2

〉

|xn+m−3⟩

CG−
d

∣∣Tn+m−2
〉

|xn+m−2⟩

CG−
d

∣∣Tn+m−1
〉

|xn+m−1⟩ |Tn+m⟩

|xn+m⟩
∣∣M[d−1]

〉

USch(n,m)

Figure 4.2: Schematic depiction of the mixed quantum Schur transform USch(n,m) and its implementation by a cascade of Clebsch–Gordan
transforms CG±

d . Note that we switch from CG+
d to CG−

d starting at input |xn+1⟩. Also note that the two topmost registers |T 0⟩, |T 1⟩ on the
right are one-dimensional, i.e., their values are always fixed to |T 0⟩ = |(∅,∅)⟩ and |T 1⟩ = |( ,∅)⟩, so we suppress them in USch(n,m). The
state |0⟩ initialises the Gelfand–Tsetlin pattern register, consisting of O(d2 log(n +m)) auxiliary qubits. Moreover, each |T i⟩ register requires
O(d log(n +m)) additinal qubits so that the total overhead for all staircases T i is O(d(n +m) log(n +m)). Finally, there is a space overhead
for implementing CG±

d , which we describe in Theorem 4.4.1 and Lemma 4.4.2.
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|x2⟩ |y3⟩

|xn−1⟩
CG+

d

|yn⟩

|xn⟩
CG−

d

|yn+1⟩

|xn+1⟩ |yn+2⟩

|xn+m−2⟩
CG−

d

|yn+m−1⟩

|xn+m−1⟩
CG−

d

|yn+m⟩

|xn+m⟩ |M⟩

USch(n,m)

Figure 4.3: Mixed quantum Schur transform USch(n,m) in Yamanouchi encoding from Eq. (4.31). Note that the topmost register |y1⟩ on the
right is one-dimensional, i.e., its value is always fixed to |y1⟩ = |1⟩, so we suppress it in USch(n,m). The Clebsch–Gordan transforms CG±

d are
specified in Fig. 4.7 and are implemented in Fig. 4.8 via reduced Wigner operators. The state |0⟩ initialises the Gelfand–Tsetlin pattern register,
consisting of O(d2 log(n+m)) auxiliary qubits. Moreover, there is a space overhead for implementing CG±

d , which we describe in Theorem 4.4.1
and Lemma 4.4.2.
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∣∣T k−1
〉

CG±
d

∣∣T k−1
〉

∣∣M[d−1]

〉 ∣∣T k
〉

|xk⟩
∣∣N[d−1]

〉
=

|md⟩

CG±
d

|md⟩

∣∣M[d−1]

〉
|nd⟩

|x⟩
∣∣N[d−1]

〉

Figure 4.4: Input and output registers of the Clebsch–Gordan isometry CG±
d which appears in

Fig. 4.2. Here T k−1 and T k denote the incoming and outgoing unitary group irreps (they are
denoted by λ and µ in Eq. (4.12)). Moreover, T k−1 = md is the first row of a Gelfand–Tsetlin
pattern M of length d whose remaining rows M[d−1] are encoded by the tensor product state
|M[d−1]⟩ := |md−1⟩ · · · |m1⟩. Similarly, T k = nd is the first row of a Gelfand–Tsetlin pattern N
of length d whose remaining rows N[d−1] are encoded by |N[d−1]⟩ := |nd−1⟩ · · · |n1⟩.

4.4 Quantum Clebsch–Gordan transform
In this section, we describe a recursive quantum circuit of complexity poly(d) polylog(d, n,m, 1/ϵ)
for Clebsch–Gordan isometries CG±

d . The only difference between CG−
d and CG+

d is the for-
mulas for their matrix entries and the labeling scheme of their input and output basis vectors.
Our construction is based on [BCH06; Har05] and can be seen as a consequence of the fact
that both the usual and the dual Clebsch–Gordan coefficients can be expressed as products of
reduced Wigner coefficients3, see Section 4.A.1.

Let us fix an arbitrary level k = 2, . . . , n+m in the Bratteli diagram of Ad
n,m, which is the

same as fixing a position in the cascade of Clebsch–Gordan transforms in Fig. 4.2. Then for
any x ∈ [d] and nd,md ∈ Ûn

d , we define

Cx,±
nd,md

|M[d−1]⟩ :=
∑

N∈GT(nd,d)

cx,±N,M |N[d−1]⟩ (4.32)

where cx,±N,M are defined in Section 4.A.1 and ± refers to either dual or usual Clebsch–Gordan
coefficients. The operators Cx,±

nd,md
defined above are essentially the same as the classical matri-

ces Cxj
T j ,T j−1 defined in Eq. (4.16). Now we can define the quantum Clebsch–Gordan transforms

CG±
d , which are quantum analogues of CGk from Eq. (4.12), as

CG±
d |md⟩|M[d−1]⟩|x⟩ := |md⟩

∑

nd :md→±nd

|nd⟩
(
Cx,±

nd,md
|M[d−1]⟩

)
, (4.33)

where the notation nd : md →± nd means that we obtain a staircase nd by either adding
or removing a box from the staircase md, depending on the chosen CG±

d Clebsch–Gordan
transform. More explicitly, we can write

CG±
d =

∑

x∈[d]

∑

md,nd∈Ûn+m
d

∑

M∈GT(md,d)
N∈GT(nd,d)

cx,±N[d],M[d]
|md,nd, N[d−1]⟩⟨md,M[d−1], x|. (4.34)

Our goal is to recursively implement CG±
d in terms of CG±

d−1. Using Eq. (4.34) we can easily
write the Clebsch–Gordan transform for d− 1:

CG±
d−1 =

∑

x∈[d−1]

∑

md−1,nd−1∈Ûn+m
d−1

∑

M∈GT(md−1,d−1)
N∈GT(nd−1,d−1)

cx,±N[d−1],M[d−1]
|md−1,nd−1, N[d−2]⟩⟨md−1,M[d−2], x|.

(4.35)
3In [BCH06; Har05] this fact is proved from the first principles based on the Wigner–Eckart theorem. In our

approach, the starting point is the fact that Clebsch–Gordan coefficients can be expressed as products of reduced
Wigner coefficients, see [VK92]. Consequently, we try to keep the notation from [VK92], see Section 4.A.1.
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Recall from Section 4.A.1 that for every k ∈ [d] and Gelfand–Tsetlin patterns of length k − 1,

ck,±N[k−1],M[k−1]
:= δN[k−1],M[k−1]

. (4.36)

Moreover, for any symbol x ∈ [k], staircases mk,nk ∈ Ûn+m
k , and Gelfand–Tsetlin patterns

M ∈ GT(mk, k), N ∈ GT(nk, k) the following recursive identity holds:

cx,±N[k],M[k]
=
(
z±
)mk,nk

mk−1,nk−1
· cx,±N[k−1],M[k−1]

. (4.37)

Moreover, note that

|md,nd, N[d−1]⟩⟨md,M[d−1], x| = |md,nd,nd−1, N[d−2]⟩⟨md,md−1,M[d−2], x|
=
(
|md,nd,nd−1⟩⟨md,md−1,nd−1| ⊗ I

)
·
(
I ⊗ |md−1,nd−1, N[d−2]⟩⟨md−1,M[d−2], x|

)
, (4.38)

which implies

cx,±N[d],M[d]
|md,nd, N[d−1]⟩⟨md,M[d−1], x|

=
((
z±
)md,nd

md−1,nd−1
|md,nd,nd−1⟩⟨md,md−1,nd−1| ⊗ I

)
·

·
(
cx,±N[d−1],M[d−1]

I ⊗ |md−1,nd−1, N[d−2]⟩⟨md−1,M[d−2], x|
)
. (4.39)

Together, these observations allow us to rewrite Eq. (4.34) as

CG±
d =

∑

x∈[d]

∑

md,nd∈Ûn+m
d

∑

M∈GT(md,d)
N∈GT(nd,d)

|md,nd, N[d−1]⟩⟨md,M[d−1], x| (4.40)

=
∑

x∈[d]

∑

md,nd∈Ûn+m
d

md−1,nd−1∈Ûn+m
d−1

∑

M∈GT(md−1,d−1)
N∈GT(nd−1,d−1)

((
z±
)md,nd

md−1,nd−1
|md,nd,nd−1⟩⟨md,md−1,nd−1| ⊗ I

)
·

·
(
cx,±N[d−1],M[d−1]

I ⊗ |md−1,nd−1, N[d−2]⟩⟨md−1,M[d−2], x|
)

(4.41)

=

( ∑

md,nd∈Ûn+m
d

md−1,nd−1∈Ûn+m
d−1

(
z±
)md,nd

md−1,nd−1
|md,nd,nd−1⟩⟨md,md−1,nd−1| ⊗ I

)
· (4.42)

·
(
I ⊗

∑

x∈[d]

∑

md−1,nd−1∈Ûn+m
d−1

∑

M∈GT(md−1,d−1)
N∈GT(nd−1,d−1)

cx,±N[d−1],M[d−1]
|md−1,nd−1, N[d−2]⟩⟨md−1,M[d−2], x|

)

=
(
C±
d ⊗ I

)
·
(
I ⊗ C̃G

±
d−1

)
, (4.43)

where we introduced the following two operators:

C±
d :=

∑

md,nd∈Ûn+m
d

md−1,nd−1∈Ûn+m
d−1

(
z±
)md,nd

md−1,nd−1
|md,nd,nd−1⟩⟨md,md−1,nd−1|, (4.44)

C̃G
±
d−1 :=

∑

x∈[d]

∑

md−1,nd−1∈Ûn+m
d−1

∑

M∈GT(md−1,d−1)
N∈GT(nd−1,d−1)

cx,±N[d−1],M[d−1]
|md−1,nd−1, N[d−2]⟩⟨md−1,M[d−2], x|

= CG±
d−1 +

∑

md−1∈Ûn+m
d−1

∑

M∈GT(md−1,d−1)

|md−1,md−1,M[d−2]⟩⟨md−1,M[d−2], d|, (4.45)



86 Chapter 4. Quantum circuits for mixed Schur transform

|md⟩

CG±
d

|md⟩

∣∣M[d−1]

〉
|nd⟩

|x⟩
∣∣N[d−1]

〉

=

|md⟩

C±
d

|md⟩

|md−1⟩

C̃G
±
d−1

|nd⟩
∣∣M[d−2]

〉
|nd−1⟩

|x⟩
∣∣N[d−2]

〉

Figure 4.5: Schematic recursive implementation of the CG±
d isometry. The registers |M[d−1]⟩ and

|N[d−1]⟩ on the left-hand side should be understood as tensor products |M[d−1]⟩ = |md−1⟩|M[d−2]⟩
and |N[d−1]⟩ = |nd−1⟩|N[d−2]⟩.

|md⟩

C±
d

|md⟩

|md−1⟩ |nd⟩

|nd−1⟩ |nd−1⟩
=

|md⟩ |md⟩

|md−1⟩ C̃±
d

|nd⟩

|nd−1⟩ |nd−1⟩

Figure 4.6: Schematic circuit for the C±
d isometry from Eq. (4.44). For the controlled isometry

C±
md,nd−1

from Eq. (4.47) we drop the indices for brevity and refer to it simply by C̃±
d .

where the last term corresponds to x = d. We can translate Eq. (4.43) into a quantum circuit
shown in Fig. 4.5. This procedure can be continued recursively on the parameter d. Doing this
accurately requires careful treatment of the auxiliary and input qudit |x⟩, which we explain in
detail in the next section.

Note from Eq. (4.44) that C±
d is a controlled operation acting on the middle register:

C±
d =

∑

md∈Ûn+m
d

∑

nd−1∈Ûn+m
d−1

|md⟩⟨md| ⊗ C±
md,nd−1

⊗ |nd−1⟩⟨nd−1|, (4.46)

where we define C±
md,nd−1

as

C±
md,nd−1

:=
∑

md−1∈Ûn+m
d−1

∑

nd∈Ûn+m
d

(
z±
)md,nd

md−1,nd−1
|nd⟩⟨md−1|. (4.47)

We can think of C±
d as the quantum circuit shown in Fig. 4.6. Crucially, reduced Wigner op-

erator C±
md,nd−1

is a (d + 1) × (d + 1) unitary matrix. Unitarity of C±
md,nd−1

follows from the
orthogonality relations in [VK92, p. 369, Eqs. (8) and (9)], see also Section 4.A.1. The operator
C±

md,nd−1
admits an efficient implementation as a quantum circuit because the reduced Wigner

coefficients (z±)
md,nd

md−1,nd−1
are efficiently computable, see Eqs. (4.53) to (4.56). From these for-

mulas, we see that computing the reduced Wigner coefficients to accuracy ϵ has complexity
poly(d, log(n), log(m), log(1/ϵ)). Therefore, the complexity of implementing the operator C±

d

to accuracy ϵ is poly(d, log(n), log(m), log(1/ϵ)). This is based on the standard method to
compile unitary gates from [NC10, Section 4.5]. So we get basically the same complexity as in
[BCH06; Har05]. In the next section, we do a more careful unraveling of this recursive construc-
tion and a more precise counting of the gate and space complexity of the C±

d transformation.
For brevity, we will drop the indices in C±

md,nd−1
and refer to it by C̃±

d thus slightly abusing the
notation.
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Quantum circuits for Clebsch–Gordan transforms

|M⟩

CG±
d

|yk⟩

|xk⟩ |N⟩

Figure 4.7: Clebsch–Gordan transforms CG± in Yamanouchi encoding accept as input a
Gelfand–Tsetlin pattern M and a standard basis vector xk. They output an updated Gelfand–
Tsetlin pattern M and the Yamanouchi symbol yk indicating the row of the staircase md where
a box was added or removed.

In this section, we explain in greater detail how to implement the quantum Clebsch–Gordan
transforms based on the scheme outlined in the previous section, both for the standard and
the Yamanouchi encoding of the Ad

n,m register introduced at the beginning of Section 4.3. We
can unravel the recursion from Fig. 4.5 until the end to get a circuit for the Clebsch–Gordan
transform in the Yamanouchi encoding, see Figs. 4.7 and 4.8. Careful accounting for the number
of gates, depth and memory in Fig. 4.8 results in Theorem 4.4.1. We note that a similar result
was also obtained independently in [Ngu23].

4.4.1. Theorem. Consider the Clebsch–Gordan isometries CG±
d that decompose the tensor

product of an irrep λ = (λl, λr), where |λl| ⩽ n and |λr| ⩽ m, with the defining irrep □ or
the dual of the defining irrep □̄. The gate and depth complexities of implementing CG±

d are
d4 polylog(d, n,m, 1/ϵ), where ϵ is the desired precision. The number of auxiliary qubits needed
is d2 polylog(d, 1/ϵ) for the Yamanouchi encoding, see Eq. (4.31), and O(d2 polylog(d, 1/ϵ) +
d log(n+m)) for the standard encoding, see Eq. (4.29).

Proof:
We first analyse the circuit for the reduced Wigner operators C±

d in Fig. 4.8 in the Yamanouchi
encoding. They start with a C̃±

d gate. Using Eqs. (4.47) and (4.53) to (4.56), and taking K =
d polylog(d, n,m) in Lemma 4.4.2, the complexity of implementing the C̃±

d operator controlled
from registers md,nd−1 is d3 polylog(d, n,m, 1/ϵ′), where ϵ′ is the desired precision.

According to Lemma 4.4.2, the memory requirement is d2 polylog(d, 1/ϵ′). Note that we can
reuse the same auxiliary register to implement all C±

k gates sequentially for all k ∈ [d].
Next, implementing the controlled addition/subtraction gate “±” within C±

d requires O(d2)
gates. Therefore, if we sum the complexities for all d gates C±

k with k ∈ [d], we get the total
complexity d4 polylog(d, n,m, 1/ϵ′), where ϵ′ is the precision for each C±

k gate. To implement
the full circuit with precision ϵ we have to set ϵ′ ⩽ ϵ/d. Therefore the total gate and depth
complexity for implementing CG±

d is d4 polylog(d, n,m, 1/ϵ). The memory requirement in Ya-
manouchi encoding is simply d2 polylog(d, 1/ϵ).

In standard encoding, we need to have O(d log(n+m)) more qubits to store the full staircase
instead of just the Yamanouchi symbol yk. We can classically obtain a staircase T k−1 from
the registers |yk⟩ and nd in Fig. 4.8. This operation does not affect the full depth and gate
complexity, but requires O(d log(n + m)) additional qubits to what is already required for
Yamanouchi encoding. 2
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|0⟩d+1 C̃±
1 C̃±

2 C̃±
3 C̃±

d−1 C̃±
d

− |0⟩d+1

|xk⟩ − − − − − + |yk⟩

CG±
d

C±
1 C±

2 C±
3 C±

d−1 C±
d

Figure 4.8: Iterative structure of the Clebsch–Gordan transforms CG±. We store the rows mi of a Gelfand–Tsetlin pattern M in separate
quantum registers: |M⟩ = |md⟩|md−1⟩ . . . |m2⟩|m1⟩. The construction of C̃±

k gates for k ∈ [d] is based on Lemma 4.4.2, and the total complexity
is summarised in Theorem 4.4.1.
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|x⟩

=

|x⟩

|0⟩C C(x) C(x)† |0⟩C

|0⟩G G G† |0⟩G

U(x) R

Figure 4.9: Illustration for Lemma 4.4.2. To implement a unitary U(x) whose matrix entries
depend on another register |x⟩, we use the circuit on the right-hand side. The register C is
for coherent classical computation of the matrix entries Uij(x) of U(x), which is denoted by a
controlled C(x) gate. The register G is for coherent classical computation of the Givens rotation
angles in the gate decomposition of U(x) based on the matrix entries already computed in the
register C. This computation is denoted by a controlled G gate. Finally, unitary operation
R implements the Givens rotations computed in the register G. Note that this gate does not
explicitly depend on classical data x anymore.

4.4.2. Lemma. Consider a d× d unitary matrix U(x) whose entries Uij(x) depend on a tuple
of integers x. Assume that each entry Uij(x) can be computed classically to a precision ϵ′ with
complexity K polylog(1/ϵ′).

Then
∑

x|x⟩⟨x|⊗U(x), i.e., the unitary U controlled on the register |x⟩, can be implemented
with gate and depth complexity d2K polylog(d, 1/ϵ), where ϵ is the desired precision. Moreover,
the implementation requires d2 polylog(d, 1/ϵ) auxiliary qubits.

4.4.3. Remark. The motivation for this lemma comes from the C̃±
k gates in Fig. 4.8. In

particular, we know that each entry of C̃±
k depends only on mk and nk−1, which are tuples

of integers. These entries have exact formulas involving O(d) arithmetical operations, see
Eqs. (4.53) to (4.56). Integer entries in these formulas are of order O(n+m+ d), so computing
them classically would require K = d polylog(d, n,m) in the setting of Lemma 4.4.2, so per-
forming this calculation to some precision ϵ′ on a quantum computer with quantum arithmetic
operations would require K polylog(1/ϵ′) = d polylog(d, n,m, 1/ϵ′) gates.

Proof:
To implement a gate U(x) controlled on |x⟩, we will use two additional registers C and G to
coherently run a reversible classical circuit, see Fig. 4.9, that first evaluates the matrix entries
Uij(x) of U(x) and then computes the gate decomposition of U(x) into Givens rotations. Thus
we need to carefully count the gate and memory complexity of evaluating Uij(x) for all i, j ∈ [d]
(indicated by the operation C(x) in Fig. 4.9) and the subsequent gate decomposition (indicated
by the operation G in Fig. 4.9). We analyse Fig. 4.9 step by step:

1. By assumption, classical reversible circuit description of the evaluation of Uij(x) requires
K polylog(1/ϵ′) gates for every i, j ∈ [d], where ϵ′ is the desired precision. Consequently,
we can implement this classical computation as a quantum circuit with the same com-
plexity K polylog(1/ϵ′). Here we assume that our quantum gateset allows to implement
the classical computation exactly. Since we need to compute d2 entries of U , the total
gate and depth complexity of the operation C in Fig. 4.9 is d2K polylog(1/ϵ′).4 We need
to have d2 log(1/ϵ′) qubits in register C to store each entry to precision ϵ′.

4If there is a clever way to parallelise this computation—for example, by reusing intermediate computation
steps—then the gate and depth complexity could be reduced.
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2. Next we use the standard method based on Givens rotations [NC10, Section 4.5] to
decompose the d× d unitary U(x) whose classical description is stored in register C into
a sequence of d2 polylog(d, 1/ϵ) gates, where ϵ is the desired precision for implementing
U(x). This computation, which we denote by G in Fig. 4.9, is again purely classical
and can be implemented as quantum circuit straightforwardly. It has gate and depth
complexity d2 polylog(d, 1/ϵ) and requires d2 polylog(d, 1/ϵ) qubits in register G to store
the obtained decomposition.

3. Next according to Fig. 4.9 we apply the obtained gate decomposition stored in the register
G on the original target register of U(x). This operation, which we denote by R, is con-
trolled from the register G. It has gate complexity d2 polylog(d, 1/ϵ) and does not require
any additional memory. Here we assume that the choice of our gateset includes arbitrary
single qubit rotations. We can also use Solovay–Kitaev theorem to compile Givens rota-
tions to other gatesets, but this does not change asymptotic complexity d2 polylog(d, 1/ϵ).

4. Finally, we undo both classical computations G and C.

Note, that we need to have ϵ′ ⩽ ϵ/2d2 so that we can guarantee ϵ-precise approximation of
U : the precision of entries obtained by C(x) operation should be high enough for the gate
decomposition obtained by the G operation in Fig. 4.9. Combining everything, we see that the
total gate and depth complexity of the circuit is d2K polylog(d, 1/ϵ) and the auxiliary registers
C and G require d2 polylog(d, 1/ϵ) qubits. 2

4.5 Discussion
We have developed efficient quantum circuits for Clebsch–Gordan transforms, which naturally
led to an efficient quantum algorithm for the mixed Schur transform. Our mixed Schur trans-
form achieves the Gelfand–Tsetlin basis for partially transposed permutations.

The results presented in this chapter lay the groundwork for Chapter 5, where the mixed
Schur transform will play a crucial role in developing efficient quantum algorithms for port-
based teleportation. We anticipate that the mixed Schur transform will prove useful in contexts
involving unitary equivariant channels, as their Choi matrices naturally belong to the algebra
Ad
n,m. We will begin exploring this direction of research in Chapter 6.

One immediate practical question that remains open is the explicit gate decomposition of the
Clebsch–Gordan transform in Theorem 4.4.1. This theorem is grounded in Lemma 4.4.2, which
provides a theoretical guarantee based on standard unitary decomposition methods. While
these methods offer polynomial asymptotic guarantees, they do not directly address the issue
of explicit gate decomposition and circuit optimisation. This raises a natural question: can we
derive practical quantum circuits for Clebsch–Gordan transforms that match the asymptotic
complexity scaling outlined in Theorem 4.4.1?

In [Har05], a conjecture was proposed that the gate complexity of the quantum Schur
transform could scale logarithmically with d. We expect this conjecture to hold naturally for
the mixed Schur transform as well.

Finally, we note that our construction of dual Clebsch–Gordan transforms straightforwardly
generalises to Clebsch–Gordan transforms that decompose the tensor product of Weyl modules
λ and µ, where λ is an arbitrary module and µ = (k, 0, . . . , 0) or µ = (0, . . . , 0,−k) or µ =
(1k). This is because, in these specific cases, “easy” expressions for Clebsch–Gordan coefficients
are available, see [VK92]. However, it remains an open problem to find exact expressions
for arbitrary Clebsch–Gordan coefficients. Solving this problem would allow us to build new
mixed Schur transforms via different coupling schemes. For example, instead of the sequential
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application of the Clebsch–Gordan transforms described in this chapter, we could construct a
tree-like coupling between arbitrary irreps of Ud.

4.A Appendix

4.A.1 Clebsch–Gordan coefficients

This section summarises formulas from [VK92, Chapter 18] for evaluating the Clebsch–Gordan
coefficients of Ud which are matrix entries of transformations CG±

µ,λ from Eq. (4.19). Recall
from Section 2.9.1 that a Gelfand–Tsetlin pattern M ∈ GT(λ) is a column vector

M =



md
...

m1


 , (4.48)

where mn = (m1,n, . . . ,mn,n) are row vectors of non-decreasing integers subject to interlacing
relations (2.90). For any row mn and integer i ∈ {1, . . . , n}, we denote by m±i

n the vector mn

with entry mi,n replaced by mi,n± 1. Let us fix any symbol x ∈ [d]. We define Gelfand–Tsetlin
patterns M+ and M− by modifying the top d− x+ 1 rows of M as follows:

M =




md
...

mx

mx−1
...

m1



, M+ =




m+id
d
...

m+ix
x

mx−1
...

m1



, M− =




m−id
d
...

m−ix
x

mx−1
...

m1



, (4.49)

for some integers ix, . . . , id where 1 ⩽ ij ⩽ j. Intuitively, this means that the semistandard
tableau M+ is obtained from M by adding a box containing x in the row ix, and then consec-
utively bumping the entries j from row ij downwards the tableau.

For any x ∈ [d], the Gelfand–Tsetlin patterns corresponding to x and its dual are defined
as follows:

X+ :=




1 0 0 . . . 0 0 0
1 0 0 . . . 0 0
. . . . . . . . .
1 0 . . . 0
0 . . . 0
. . .
0 0
0




d
d− 1
. . .
x

x− 1
. . .
2
1

, X− :=




0 0 0 . . . 0 0 − 1
0 0 0 . . . 0 − 1
. . . . . . . . .
0 0 · · · − 1
0 . . . 0
. . .
0 0
0




d
d− 1
. . .
x

x− 1
. . .
2
1

. (4.50)

Now we can define the Clebsch–Gordan coefficients cx,±M±,M uniformly as

cx,±M±,M := cX
±

M±,M , (4.51)

where cX±
M±,M is the product of reduced Wigner coefficients :

cX
±

M±,M =
d∏

n=x+1

(
mn x±

n m±in
n

mn−1 x±
n−1 m

±in−1

n−1

)
. (4.52)
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The reduced Wigner coefficients [Har05, p. 152] are also known as reduced Clebsch–Gordan
coefficients or scalar factors [VK92, p. 385] and are defined as follows. We take two consecutive
rows mn and mn−1 (1 < n ⩽ d) of a Gelfand–Tsetlin pattern M and modify them at positions
1 ⩽ i ⩽ n and 1 ⩽ j ⩽ n− 1. The corresponding reduced Wigner coefficients are

(
mn (1,0n−1) m+i

n

mn−1 (0,0n−2) mn−1

)
=

∣∣∣∣∣

∏n−1
j=1 (ℓj,n−1 − ℓi,n − 1)∏

j ̸=i (ℓj,n − ℓi,n)

∣∣∣∣∣

1/2

, (4.53)

(
mn (1,0n−1) m+i

n

mn−1 (1,0n−2) m+j
n−1

)
= S(i, j)

∣∣∣∣∣

∏
k ̸=j (ℓk,n−1 − ℓi,n − 1)

∏
k ̸=i (ℓk,n − ℓj,d−1)∏

k ̸=i (ℓk,n − ℓi,n)
∏

k ̸=j (ℓk,n−1 − ℓj,n−1 − 1)

∣∣∣∣∣

1/2

,

(4.54)

(
mn (0n−1,−1) m−i

n

mn−1 (0n−2, 0) mn−1

)
=

∣∣∣∣∣

∏n−1
j=1 (ℓj,n−1 − ℓi,n)∏
j ̸=i (ℓj,n − ℓi,n)

∣∣∣∣∣

1/2

, (4.55)

(
mn (0n−1,−1) m−i

n

mn−1 (0n−2,−1) m−j
n−1

)
= S(i, j)

∣∣∣∣∣

∏
k ̸=j (ℓk,n−1 − ℓi,n)

∏
k ̸=i (ℓk,n − ℓj,n−1 + 1)∏

k ̸=i (ℓk,n − ℓi,n)
∏

k ̸=j (ℓk,n−1 − ℓj,n−1 + 1)

∣∣∣∣∣

1/2

.

(4.56)

where 0n denotes a row vector with n zeros, ℓk,s := mk,s−k, S(i, j) := 1 if i ⩽ j and S(i, j) := −1
if i > j.

More explicitly, the Clebsch–Gordan coefficient cx,+M+,M is equal to the product of the reduced
Wigner coefficients obtained by cutting the Gelfand–Tsetlin patterns M , x and M± into pairs
of consecutive rows:

cx,+M+,M =

(
mx (1,0) m+ix

x

mx−1 (0,0) mx−1

)
·

d∏

n=x+1

(
mn (1,0) m+in

n

mn−1 (1,0) m
+in−1

n−1

)
. (4.57)

On the other hand, for arbitrary M+ which is not of the form (4.49), Clebsch–Gordan coefficient
cx,+M+,M = 0. A dual Clebsch–Gordan coefficient cx,−M−,M is given by the product of dual reduced
Wigner coefficients:

cx,−M−,M =

(
mx (0,−1) m−ix

x

mx−1 (0, 0) mx−1

)
·

d∏

n=x+1

(
mn (0,−1) m−in

n

mn−1 (0,−1) m
−in−1

n−1

)
. (4.58)

On the other hand, for arbitrary M−,M which is not of the form (4.49), dual Clebsch–Gordan
coefficient cx,−M−,M = 0.

We can summarize the above definitions succinctly as follows. We can define Clebsch–
Gordan coefficients cx,±N[k],M[k]

= 0 for arbitrary k ∈ [d], λ ∈ Ûk, N[k],M[k] ∈ GT(λ, k), x ∈ [k]

recursively as

cx,±N[k],M[k]
=
(
z±
)mk,nk

mk−1,nk−1
· cx,±N[k−1],M[k−1]

, (4.59)

where for every k ∈ [d] and Gelfand–Tsetlin patterns of length k − 1 we define

ck,±N[k−1],M[k−1]
:= δN[k−1],M[k−1]

, (4.60)
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and the coefficients (z±)
mk,nk

mk−1,nk−1
are defined for mk−1 ⊑ mk and nk−1 ⊑ nk as

(
z+
)mk,nk

mk−1,nk−1
:=





(
mk (1,0) m+i

k

mk−1 (1,0) m+j
k−1

)
nk = m+i

k , nk−1 = m+j
k−1, i ∈ [k], j ∈ [k − 1]

(
mk (1,0) m+i

k ,

mk−1 (0,0) mk−1

)
nk = m+i

k for some i ∈ [k], nk−1 = mk−1

1 mk = nk, mk−1 = nk−1,

0 otherwise
(4.61)

and

(
z−
)mk,nk

mk−1,nk−1
:=





(
mk (0,−1) m−i

k

mk−1 (0,−1) m−j
k−1

)
nk = m−i

k , nk−1 = m−j
k−1, i ∈ [k], j ∈ [k − 1]

(
mk (0,−1) m−i

k ,

mk−1 (0, 0) mk−1

)
nk = m−i

k for some i ∈ [k], nk−1 = mk−1

1 mk = nk, mk−1 = nk−1,

0 otherwise
(4.62)

and if either mk−1 ⊑ mk or nk−1 ⊑ nk is not satisfied then we define (z±)
mk,nk

mk−1,nk−1
:= 0.





Chapter 5

Efficient quantum algorithms for port-based
teleportation

Port-based teleportation (PBT) is a variant of quantum teleportation that, unlike the canonical
quantum teleportation protocol by Bennett et al. [Ben+93], does not require a correction
operation on the teleported state. Since its introduction by Ishizaka and Hiroshima in 2008
[IH08], no efficient implementation of PBT was known. We close this long-standing gap by
building on our results on representations of partially transposed permutation matrix algebras
and mixed quantum Schur transform from Chapters 3 and 4. We construct efficient quantum
algorithms for probabilistic and deterministic PBT protocols on n ports of arbitrary local
dimension, both for EPR and optimised resource states. We describe two constructions based
on different encodings of the Gelfand–Tsetlin basis for n qudits: a standard encoding that
achieves Õ(n) time and Õ(n) space complexity, and a Yamanouchi encoding that achieves
Õ(n2) time and Õ(1) space complexity, both for constant local dimension and target error. We
also describe efficient circuits for preparing the optimal resource states.

This chapter is based on [GBO23a; GBO23b].

5.1 Introduction

Quantum teleportation is a cornerstone of quantum information [Ben+93] (we have described
it briefly already in Chapter 1, see Fig. 1.1). However, one potentially undesirable feature of
the original teleportation protocol is that the receiving party needs to perform a correction op-
eration on the received state. Port-based teleportation (PBT) gets around this limitation [IH08;
IH09]. In PBT, Alice and Bob share an entangled resource state distributed among n quantum
systems called ports on each side. To teleport an unknown quantum state, Alice measures it
together with her share of the ports. The measurement outcome, which she communicates to
Bob, indicates the port on Bob’s side to which the state has been teleported. Bob does not
need to perform any correction operation but simply retrieves the state from the correct port.
Each of the quantum systems involved has a fixed local dimension d.

Our current understanding of PBT protocols is very detailed thanks to a long sequence of
works [IH08; IH09; BK11; Ish15; SSMH17; MSSH18; Led22; Chr+21]. In particular, [SSMH17;
MSSH18] were the first to obtain exact formulas for the asymptotic performance of PBT.
The resource requirements for PBT have been studied further in [SMK22; SS23b]. The original
PBT protocol has subsequently been extended to multi-port teleportation [SMKH22; KMSH21;
MSK21] where several systems are teleported simultaneously.

A crucial feature of port-based teleportation is unitary equivariance, meaning that applying
any unitary on Alice’s input state is equivalent to applying the same unitary to all of Bob’s ports.
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Due to unitary equivariance, PBT can be seen as a concrete example of an approximate univer-
sal programmable quantum processor [IH08]. The quantum no-programming theorem [NC97;
GBW21; YRC20] implies that unitarily equivariant PBT protocols with a finite-dimensional
resource state can only achieve approximate teleportation. Nevertheless, certain PBT protocols
are asymptotically faithful in the limit of a large number of ports.

PBT has diverse applications in non-local quantum computation and quantum communi-
cation [BK11; Buh+16; May22] with applications to quantum position verification [ABSL22;
ABMSL23], channel discrimination [PLLP19], channel simulation [PBP21], and holography in
high-energy physics [May19; May22].

Types of PBT protocols

The two main types of PBT protocols considered are probabilistic exact (pPBT) and determin-
istic inexact (dPBT) [SSMH17; MSSH18; Led22]. “Exact” means that the protocol achieves
perfect entanglement fidelity F = 1, while “inexact” means that F < 1. “Probabilistic” refers to
the fact that the protocol has some non-zero probability of failure, while “deterministic” high-
lights no possibility of failure, i.e., the average success probability of the protocol is psucc = 1.1
Besides pPBT and dPBT, one can also consider probabilistic inexact protocols that interpolate
between pPBT and dPBT. One concrete example is minimal PBT (mPBT) which is a modified
version of dPBT [SS23b].

Two types of resource states for PBT are typically considered: n pairs of maximally en-
tangled states and an arbitrary optimised state; we call these the EPR resource state and the
optimised resource state, respectively. Depending on the application, Alice’s measurement is
chosen either to maximize the entanglement fidelity F (in dPBT) or the average success prob-
ability psucc (in pPBT). While the optimised resource states are different for deterministic and
probabilistic protocols, the optimal measurement for optimised states turns out to be the same
in both cases. Table 5.1 summarises the four main types of PBT protocols and their optimal
fidelity and probability of success.

Resource state
Protocol type

Deterministic inexact (dPBT) Probabilistic exact (pPBT)

EPR
F = 1−O(1/n)

psucc = 1

F/psucc = 1

psucc = 1−O(1/√n)

Optimised
F = 1−O(1/n2)

psucc = 1

F/psucc = 1

psucc = 1−O(1/n)

Table 5.1: Summary of different flavours of PBT protocols. Rows correspond to EPR and op-
timised resource states while columns correspond to deterministic (dPBT) [SSMH17; MSSH18;
Led22; Chr+21] and probabilistic (pPBT) [SSMH17; Chr+21] protocols. Two figures of merit
are used: the average success probability psucc and the entanglement fidelity F (normalised by
the success probability psucc) as functions of the number of ports n, ignoring the dependence on
the local dimension d. Cell colors correspond to different optimal POVMs: is the standard
PGM E defined in Eqs. (5.4) and (5.17), is the dPBT POVM E✩ defined in Eqs. (5.18)
and (5.19) and is the POVM E⋆ defined in Eqs. (5.20) and (5.26).

1For brevity, in the rest of this chapter we will drop the terms “exact” and “inexact” in these cases since
deterministic PBT protocols with finite resources are always inexact, and exact protocols cannot be deterministic
due to [NC97]. Of course, there is still a possibility of having probabilistic inexact protocols.
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Summary of our results

While analytic expressions for the optimal measurement operators in PBT were known [SSMH17;
MSSH18; Led22], efficient quantum circuits that implement them were not known until our
work. Our main result provides explicit quantum circuits for implementing PBT and analyses
their complexity.

5.1.1. Theorem. The measurements for all types of PBT protocols (deterministic/probabilistic
and with optimised/EPR resource state) can be implemented in two ways with the following time
and space complexities:

1. standard encoding: nd4 polylog(d, n, 1/ϵ) time and (n+ d)d polylog(d, n, 1/ϵ) space,

2. Yamanouchi encoding: n2d4 polylog(d, n, 1/ϵ) time and d2 polylog(d, n, 1/ϵ) space,

where n is the number of ports, d is the dimension of the teleported quantum state, and ϵ is the
target error. In both cases, the total gate complexity is the same: n2d4 polylog(d, n, 1/ϵ).

The setting of port-based teleportation is naturally suited for using the representation the-
ory of the matrix algebra Ad

n,1 of partially transposed permutations, see Chapter 3. It is natural
to work in the Gelfand–Tsetlin basis, which can be achieved by applying the mixed quantum
Schur transform, see Chapter 4. Therefore, to prove Theorem 5.1.1 we first explain how to
rewrite PBT measurements in the Gelfand–Tsetlin basis in Sections 5.2.2 and 5.2.3 based on
representation theory of partially transposed permutations (Theorem 3.7.1) and mixed quan-
tum Schur transform (Theorem 4.3.1). Next, we explain how to construct explicitly Naimark
dilations of PBT measurements in Sections 5.2.4 and 5.3. Finally, we use these ingredients to
construct efficient quantum algorithms for PBT in standard encoding in Sections 5.4.1 to 5.4.4
and Yamanouchi encoding in Section 5.5 together with their respective complexity analysis.

We highlight that our construction works also for a large class of generic PBT protocols, see
Section 5.4.3. Moreover, we construct efficient quantum circuits for preparing optimised states
for probabilistic PBT protocols in Section 5.6. The question of preparing efficiently optimised
resource states for deterministic PBT is left open.

Related work

Our initial result for standard PGM from [GBO23a] was obtained independently and simulta-
neously with [FTH23], which solves the problem for dPBT protocols with different methods.
Another independent work [WHS23] tackles specifically the qubit case for all PBT protocols.
In contrast to [WHS23], we solve the problem for dPBT and pPBT protocols for arbitrary
local dimensions in full generality, achieving better time complexities. On the technical side,
both results [FTH23; WHS23] construct their PBT protocols by using general techniques of
block encodings and amplitude amplification, while our construction requires neither technique
and is based on the phase estimation primitive. This leads to more practical circuits and
more appealing theoretical analysis. These features of our constructions are enabled by proper
use of the representation theory of partially transposed permutation matrix algebras via the
Gelfand–Tsetlin basis which we developed in Chapter 3. Moreover, logarithmic space qubit
Schur transforms described in [KS18; WS23] inspired our Yamanouchi encoding construction
presented in Section 5.5.

Finally, a relevant work [DJR04] discusses general methods for Naimark’s dilations of rank
one covariant POVMs. Our work analyses specific multi-rank covariant POVMs used in PBT
and does not employ the techniques used in [DJR04]. However, the ideas presented in [DJR04]
could be useful in understanding and generalising our construction.



98 Chapter 5. Efficient quantum algorithms for port-based teleportation

5.2 Preliminaries

5.2.1 PBT measurement and figures of merit

|Ψ⟩

n k

n

|ψ⟩Ā

E

An

Bn Tr[n]\k B̄

Figure 5.1: Quantum circuit representation of port-based teleportation protocols. A resource
state |Ψ⟩ on registers A1, . . . , An, B1, . . . , Bn is used for teleportation between Alice’s register
Ā and Bob’s register B̄. To achieve teleportation Alice has to run a measurement E.

In this section, we briefly describe the general setting of PBT and the relevant figures of merit.
In a PBT protocol two parties, Alice and Bob, share a resource state distributed among n
quantum systems called ports, each of local dimension d. We denote Alice’s ports by A1, . . . , An
and Bob’s ports by B1, . . . , Bn. Alice has an additional (n + 1)-th register Ā on her side that
contains an unknown input state |ψ⟩Ā ∈ Cd that she must teleport to Bob (see Fig. 5.1).

The main ingredient of every PBT protocol is a measurement or POVM E that is performed
by Alice on all her registers A1, . . . , An, Ā. The rest of the protocol consists of Alice transmitting
the measurement outcome to Bob who uses it to locate the teleported state on one of his ports.

In dPBT, Alice’s measurement has n outcomes and the outcome k ∈ [n] indicates the port
where Bob should find the teleported state |ψ⟩. Probabilistic protocols, such as mPBT and
pPBT, have an additional outcome k = 0 corresponding to the failure of the teleportation task.

We can describe a general PBT protocol in terms of a quantum channel N (see Fig. 5.1):

NĀ→B̄(ρ) :=
n∑

k=1

TrAnĀB′
k

[(
(
√
Ek)AnĀ ⊗ IBn

)
(ΨAnBn ⊗ ρĀ)

(√
EkAnĀ ⊗ IBn

)]
, (5.1)

where An := A1 . . . An and Bn := B1 . . . Bn denote Alice’s and Bob’s ports, B′
k := Bn \ Bk

denotes all of Bob’s ports but the k-th, ΨAnBn is the resource state shared between Alice and
Bob, ρĀ is the state to be teleported, and Ek are Alice’s POVM operators. Note that the sum
in Eq. (5.1) omits the value k = 0, hence N is trace-decreasing if Alice’s POVM contains a
failure operator E0 ̸= 0.

The following two figures of merit are commonly used for characterising the performance of
PBT. The entanglement fidelity of the protocol is given by

F := Tr
[
Φ+
B̄R

(NĀ→B̄ ⊗ IR)
[
Φ+
ĀR

]]
(5.2)

where Φ+
ĀR

denotes the two-qudit maximally entangled state between Ā and a reference system
R. The average success probability is given by

psucc := Tr
[
NĀ→B̄(I/d)

]
, (5.3)

which can be less than 1 since in general N is trace-decreasing.
One can formulate semidefinite optimisation problems for maximising entanglement fidelity

F (for dPBT) or average success probability psucc (for pPBT) for general local dimension d.



5.2. Preliminaries 99

That has been done, and optimal measurements together with optimal resource states were
obtained [SSMH17; MSSH18; Led22].

In the next section, we describe these optimal measurements for different types of PBT
[SSMH17; MSSH18; Led22; SS23b] in the mixed Schur basis (or, equivalently, the Gelfand–
Tsetlin basis). The key role in optimal POVM constructions is played by a special type of
POVM called pretty good measurement (PGM) [HW94]. We describe this standard PGM in
Section 5.2.2. In Section 5.2.3, we describe optimal measurements for dPBT and pPBT using
the standard PGM from Section 5.2.2.

5.2.2 The standard PGM

The fundamental POVM for PBT protocols is of a pretty good measurement type. We denote
this POVM by E = {Ek}nk=0 and call it the standard PGM for PBT. It is used in mPBT for
both types of resource states [SS23b] and it is defined as follows:

Ek := ρ−1/2ρkρ
−1/2 for every k ∈ [n],

E0 := I −
n∑

k=1

Ek,

ρ :=
n∑

k=1

ρk, ρk := πkσnπ
−k,

(5.4)

where ρ−1 is the generalised inverse of ρ, and

π := σ1σ2 . . . σn−2σn−1 ∈ Ad
n,1 (5.5)

is the cyclic shift permutation (1 2 . . . n) on the first n systems, and σn ∈ Ad
n,1 is the contraction

between systems n and n+1 (it corresponds to the unnormalised projection onto the maximally
entangled state between them). Since ρ commutes with Ad

n,0 and thus with π, the POVM
elements Ek for k ∈ [n] can be written as

Ek = πkEnπ
−k where En = ρ−1/2σnρ

−1/2, (5.6)

hence the standard PGM is group-covariant [DJR04] with respect to the cyclic group on n
elements.

The key to finding an efficient implementation of the measurement (5.4) is expressing the
operators Ek in the Gelfand–Tsetlin basis or, equivalently, in the mixed Schur basis, see Chap-
ters 3 and 4. This requires deriving an explicit formula for ψΛ(Ek) for any irrep Λ ∈ Âd

n,1.2
Let’s express ρ operator in the mixed Schur basis first.

Since ρ coincides with the shifted Jucys–Murphy element d − Jn+1 of Ad
n,1, its spectrum

can be easily computed, see Lemma 3.7.3. More concretely, ρ is nonzero and diagonal in the
Gelfand–Tsetlin basis of each irrep (λ,∅) ∈ Âd

n,1:

ψ(λ,∅)(ρ) =
∑

a∈ACd(λ)

(
d+ cont(a)

)
Πλ,a, (5.7)

Πλ,a :=
∑

S∈Pathsn(λ∪a,A )

|S → (λ,∅)⟩⟨S → (λ,∅)|, (5.8)

2In this chapter, we usually write Λ to label an irrep of Ad
n,1. Throughout the chapter we use λ or µ to refer

to the left Young diagram of Λ, i.e. we usually assume Λ = (λ,∅) or Λ = (µ,□).



100 Chapter 5. Efficient quantum algorithms for port-based teleportation

and ψ(µ,□)(ρ) = 0 for every (µ,□) ∈ Âd
n,1. In particular, E0Ek = 0 for every k ∈ [n] or, more

precisely, we have for every k ∈ [n]:

ψ(µ,□)(Ek) = 0 for every (µ,□) ∈ Âd
n,1, ψ(λ,∅)(E0) = 0 for every (λ,∅) ∈ Âd

n,1. (5.9)

Next, due to Eq. (3.73) the generator σn in the Gelfand–Tsetlin basis of any irrep (λ,∅) ∈ Âd
n,1

can be written as

ψ(λ,∅)(σn) =
∑

S∈Pathsn−1(λ,A )

|vS,λ⟩⟨vS,λ|, (5.10)

|vS,λ⟩ :=
∑

a∈ACd(λ)

√
mλ∪a

mλ

|S → (λ ∪ a) → (λ,∅)⟩ (5.11)

and ψ(µ,□)(σn) = 0 for every (µ,□) ∈ Âd
n,1. Also note that due to Lemma 3.7.4 for every

λ ⊢d n− 1 and a ∈ AC(λ) we have

n · dλ
mλ

· mλ∪a

dλ∪a
= d+ cont(a). (5.12)

Using Eqs. (5.7), (5.10) and (5.12), we can rewrite En from Eq. (5.6) in the Gelfand–Tsetlin
basis of irrep Λ = (λ,∅) ∈ Âd

n,1 as follows:

ψ(λ,∅)(En) = ψ(λ,∅)(ρ
−1/2σnρ

−1/2) (5.13)

=
∑

S∈Pathsn−1(λ,A )

(
ψ(λ,∅)(ρ)

)−1/2 |vS,λ⟩⟨vS,λ|
(
ψ(λ,∅)(ρ)

)−1/2 (5.14)

=
∑

S∈Pathsn−1(λ,A )

|wS,λ⟩⟨wS,λ|, (5.15)

where for λ⊢dn−1 and S ∈ Pathsn−1(λ,A ) we defined a vector |wS,λ⟩ in the irrep (λ,∅) ∈ Âd
n,1

as

|wS,λ⟩ :=
∑

a∈ACd(λ)

√
dλ∪a
n · dλ

|S → (λ ∪ a) → (λ,∅)⟩. (5.16)

Summarising everything above, we can write the standard PGM E in the Gelfand–Tsetlin basis
for every irrep Λ ∈ Âd

n,1 and every k ∈ [n] as follows:

ψΛ(E0) =

{
I if Λ = (µ,□),

0 if Λ = (λ,∅),
ψΛ(Ek) =

{
0 if Λ = (µ,□),

ψ(λ,∅)(π
kEnπ

−k) if Λ = (λ,∅),
(5.17)

ψ(λ,∅)(En) =
∑

S∈Pathsn−1(λ,A )

|wS,λ⟩⟨wS,λ|, |wS,λ⟩ =
∑

a∈ACd(λ)

√
dλ∪a
n · dλ

|S → (λ ∪ a) → (λ,∅)⟩.

5.2.3 POVMs for deterministic and probabilistic PBT

We are now ready to describe the optimal POVMs for dPBT and pPBT from [SSMH17;
MSSH18; Led22] in the Gelfand–Tsetlin basis. They are closely related to the standard PGM
E from Eq. (5.4).
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POVM for deterministic PBT

In the case of deterministic PBT there is no failure outcome corresponding to k = 0. The opti-
mal POVMs for optimised and EPR resource states turn out to be the same [Led22; MSSH18]
and are closely related to the standard PGM E from Eqs. (5.4) and (5.17). This POVM
E✩ = {E✩

k }nk=1 is defined as follows:

E✩
k := Ek +

E0

n
, (5.18)

and in the Gelfand–Tsetlin basis for every irrep Λ ∈ Âd
n,1 and every k ∈ [n] it is given as

ψΛ(E
✩
k ) =





I

n
if Λ = (µ,□) where µ ⊢d−1 n,

ψ(λ,∅)(Ek) if Λ = (λ,∅) where λ ⊢d n− 1,
(5.19)

where ψ(λ,∅)(Ek) are given in Eq. (5.17).

Generic PBT measurements

To describe measurements for pPBT, we first need to explain how one can parameterize generic
PBT POVMs. Thanks to [Chr+21, Propositions 1.7 and 3.4] and [YKSQM24, Appendix B],
we can motivate the following definition: a generic PBT measurement E⋆ = {E⋆

k}nk=0 is defined
in the Gelfand–Tsetlin basis as follows for k ∈ [n]:

E⋆
k :=

√
GE✩

k

√
G, E⋆

0 := I −G, I ⪰ G ⪰ 0 (5.20)

for some choice of G ∈ Ad
n,1 such that G commutes with Ad

n,0. Equivalently, G ∈ Ad
n,1 is a

diagonal matrix in the Gelfand–Tsetlin basis:

ψΛ(G) :=

{
gµI if Λ = (µ,□) where µ ⊢d−1 n,∑

a∈ACd(λ)
gλ,aΠλ,a if Λ = (λ,∅) where λ ⊢d n− 1,

(5.21)

where the projectors Πλ,a are defined in Eq. (5.7). Diagonal entries of matrices ψΛ(G)

gλ,a := ⟨S → (λ,∅)|ψ(λ,∅)(G)|S → (λ,∅)⟩, (5.22)
gµ := ⟨T → (µ,□)|ψ(µ,□)(G)|T → (µ,□)⟩ (5.23)

for every λ⊢dn−1, S ∈ Pathsn(λ∪a,A ), a ∈ ACd(λ) and for every µ⊢d−1n, T ∈ Pathsn(µ,A )
respectively satisfy

1 ⩾ gµ ⩾ 0, 1 ⩾ gλ,a ⩾ 0. (5.24)

In particular, the POVM E✩ of dPBT corresponds to G = I, i.e. ψΛ(G) = I for every
Λ ∈ Âd

n,1, and the standard PGM E corresponds to

ψΛ(G) =

{
0 if Λ = (µ,□) where µ ⊢d−1 n,

I if Λ = (λ,∅) where λ ⊢d n− 1.
(5.25)

POVMs for probabilistic PBT

The optimal pPBT measurement for optimised resource state turns out to be equal to the
standard PGM E from Eqs. (5.4) and (5.17), see [SSMH17].3

3Note that the statements regarding optimal POVMs for PBT protocols with optimised resource states in
the original papers [SSMH17; MSSH18] refer to so-called "dressed" effect operators, not the true effects E⋆

i .
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In contrast, the optimal measurement for pPBT with EPR resource state is not the standard
PGM E, but it is still closely related. According to [SSMH17], the optimal POVM for pPBT
with EPR resource state corresponds to the POVM E⋆ from Eq. (5.20) with the operator
G ∈ Ad

n,1 defined as

ψΛ(G) :=





0 if Λ = (µ,□) where µ ⊢d−1 n,
ψ(λ,∅)(ρ)

d+ λ1
if Λ = (λ,∅) where λ ⊢d n− 1,

(5.26)

where ψΛ(ρ) is given in Eq. (5.7). In other words, the matrix ψΛ(G) is diagonal for every
Λ ∈ Âd

n,1 and its diagonal entries corresponding to Eq. (5.21) can be written as

gλ,a =
d+ cont(a)

d+ λ1
, gµ = 0. (5.27)

Note that λ1 is the highest possible content among a ∈ ACd(λ), so Eq. (5.24) is satisfied.

5.2.4 Naimark dilations and implementation of measurements

In this section, we state some facts about projection-valued measures, which we will need in the
later sections to work with Naimark dilations of PBT POVMs. Naimark dilation is a realisation
of a given POVM as a projection-valued measure in a larger, so-called dilated, Hilbert space. In
principle, that is possible for any POVM due to Naimark’s dilation theorem [Wat18]. However,
in general it is not obvious how to achieve a conceptually simple dilation that can be efficiently
implemented. An easy example of a Naimark dilation, which we will need later to implement
the measurement for dPBT.

5.2.1. Lemma. Let E := {Ei}ni=1 be a POMV on a Hilbert space H such that Ei = IH
n

for every
i ∈ n. Then its dilation on the Hilbert space Ĥ := Cn ⊗ H is given by Πi = |i⟩⟨i| ⊗ IH and
isometry V : H → Ĥ defined as V |ψ⟩ = |+⟩ ⊗ |ψ⟩, where |+⟩ = 1√

n

∑n
i=1|i⟩.

Proof:
The isometry V : |ψ⟩ 7→ |+⟩ ⊗ |ψ⟩ means that the input density matrix on H is embedded in
Ĥ as ρ⊗ |+⟩⟨+|. It is easy to see that Tr[(ρ⊗ |+⟩⟨+|)Πi] = Tr[ρEi]. 2

Now assume that for a certain POVM with n+1 outcomes k ∈ {0, 1, . . . , n} we managed to
dilate outcomes k ∈ [n] to some PVM Π. The next lemma explains how to dilate a “leftover”
POVM E, related to Π in a certain way. This result will be used in Section 5.4.3.

5.2.2. Lemma. Let Π := {Πi}ni=1 be a PVM on a Hilbert space H and let G be a positive
semidefinite operator on H such that G ⪯ IH. Suppose that there is also a POVM E := {Ei}ni=0

on H defined as

Ei :=
√
GΠi

√
G for every i ∈ [n], E0 := IH −G. (5.28)

Then one can dilate the POVM E on H to a PVM Π̂ := {Π̂i}ni=0 on Ĥ := C2⊗H via isometric
embedding |ψ⟩ 7→ |0⟩ ⊗ |ψ⟩ as follows:

Π̂i :=




√
GΠi

√
G −

√
GΠi

√
IH −G

−√
IH −GΠi

√
G

√
IH −GΠi

√
IH −G


 ∀ i ∈ [n], (5.29)

Π̂0 :=


 IH −G

√
G
√
IH −G

√
G
√
IH −G G


. (5.30)
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Proof:
It is easy to see that the dilated PVM {Π̂i}ni=0 on Ĥ has the form

Π̂i = U

(
Πi 0

0 0

)
U † ∀ i ∈ [n], and Π̂0 = U

(
0 0

0 IH

)
U †, (5.31)

where the unitary U is defined as

U :=




√
G −√

IH −G
√
IH −G

√
G


. (5.32)

It is easy to see that Π̂2
i = Π̂i = Π̂†

i for every i and
∑n

i=0 Π̂i = IĤ. Therefore Π̂ is indeed a
PVM on Ĥ. This PVM manifestly acts on vectors |0⟩⊗ |ψ⟩ ∈ Ĥ in the same way as the POVM
E acts on |ψ⟩ ∈ H, so it is indeed a Naimark’s dilation of the POVM E. 2

Now we explain how to implement a PVM of a certain form, which we will later use in
Section 5.4.1, assuming one can efficiently implement unitaries which define this PVM. Namely,
assume that we have a PVM Π = {Πk}nk=0 on H := H1 ⊗ H2 for some Hilbert spaces H1,H2

such that
Πk := UkΠnU

†
k for every k ∈ [n],

Πn := IH1 ⊗
(
W |0⟩⟨0|W †)

H2
,

Π0 = IH −
n∑

k=1

Πk

(5.33)

where Un := IH, and we assume that all Uk are some easy-to-implement unitaries on H =
H1 ⊗H2, W is some easy-to-implement unitary on H2 and |0⟩ is a computational basis vector
on H2. We can implement the PVM Π as follows:

• Define a unitary V on H as

V :=
n∑

k=0

ωkn+1Πk, (5.34)

where ωn+1 is root of unity of order n + 1. Observe, that we can implement the unitary V
efficiently thanks to our assumptions via the following circuit on H = H1 ⊗H2:

V =
. . .

. . .

U †
1 U1 U †

n−1 Un−1

W † ωn+1 W W † ωn−1
n+1 W W † ωnn+1 W

The gate ωkn+1 represents the operator ωkn+1|0⟩⟨0| + (I − |0⟩⟨0|) on H2. We also used

Un = IH.

• Note that implementing V i is also easy:

V i =
. . .

. . .

U †
1 U1 U †

n−1 Un−1

W † ωin+1 W W † ω
(n−1)i
n+1 W W † ωnin+1 W
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• Now we can run the phase estimation circuit to measure a given state |ψ⟩ ∈ H with the PVM
Π:

i|0⟩ QFTn+1 QFT†
n+1 k

|ψ⟩ V i

Indeed, this circuit implements the following unitary evolution for every input state |ψ⟩ ∈ H:

|ψ⟩|0⟩ 7→
n∑

i=0

1√
n+1

|ψ⟩|i⟩ 7→
n∑

i=0

1√
n+1

V i|ψ⟩|i⟩

=
n∑

i=0

1√
n+1

n∑

k=0

ωikn+1Πk|ψ⟩|i⟩

=
n∑

k=0

Πk|ψ⟩
n∑

i=0

ωik
n+1√
n+1

|i⟩ 7→
n∑

k=0

Πk|ψ⟩|k⟩,

(5.35)

so measuring k returns the projected state Πk|ψ⟩
∥Πk|ψ⟩∥

according to the Born rule.

5.3 Naimark’s dilation of the standard PGM
Before presenting our circuits, we need to explain how to dilate the POVM E from Eq. (5.4)
to a projective measurement Π. We first explain how to construct such dilation explicitly, and
then in Section 5.4.1 present an efficient circuit for E.

Recall from Chapter 2 that the Bratteli diagram Y of the symmetric group is the Young
lattice (see Fig. 2.1) , and the following identity holds for every λ ⊢ n− 1 [Sag13] in the Young
lattice:

n · dλ =
∑

a∈AC(λ)

dλ∪a, (5.36)

where the notation λ ∪ a denotes the Young diagram in the Young lattice obtained by adding
a box a to λ, and dλ is the dimension of the symmetric group irrep λ.4

The main observation of this section is that for a Young diagram λ ⊢ n − 1, we have
ACd(λ) = AC(λ) if λd = 0 and ACd(λ) ̸= AC(λ) if λd > 0. In particular, when λd = 0 this
implies that

∥|wS,λ⟩∥2 =
∑

a∈ACd(λ)

dλ∪a
n · dλ

=
∑

a∈AC(λ)

dλ∪a
n · dλ

= 1, (5.37)

so ψ(λ,∅)(En) is an orthogonal projector. Since the cyclic shift π acts unitarily, all ψ(λ,∅)(Ei) are
orthogonal projectors as well. Because E provides a resolution of the identity in the irreducible
representation (λ,∅) ∈ Âd

n,1, the POVM E restricted to the irreducible representation (λ,∅)
with λd = 0 is actually a PVM there. We will replace ψ(λ,∅)(En) by ψ(λ,∅)(Πn) from now on to
indicate that E is actually a PVM on (λ,∅) ∈ Âd

n,1.
However, for the irreps λ with λd > 0 the POVM Eλ is not a PVM because AC(λ) =

ACd(λ) ⊔ {(d+ 1, 1)} and the vectors |wS,λ⟩ are not normalised anymore:

∥|wS,λ⟩∥2 =
∑

a∈ACd(λ)

dλ∪a
n · dλ

=

( ∑

a∈AC(λ)

dλ∪a
n · dλ

)
− dλ∪(d+1,1)

n · dλ
= 1− dλ∪(d+1,1)

n · dλ
< 1, (5.38)

4The dimension dλ can be both understood as the number of paths from the root to a vertex λ in the Young
lattice as well as in the Bratteli diagram A of Ad

n,1, since up to level n the Bratteli diagram is a subset of the
full Young lattice and the procedure of adding a cell is monotonic with respect to the number of rows in λ along
a given path in the Young lattice.
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A

Ã

A3
0,0 A3

1,0 A3
2,0 A3

3,0 A3
4,0 A3

5,0 A3
5,1

∅

( , )

( ,∅)

(
,
)

(
,∅
)

(
,
)

(
,∅
)

(
,∅
)

Λ = (λ,∅)

Λ = (µ, )

Figure 5.2: The Bratteli diagram A and the extended Bratteli diagram Ã associated with
the algebra A3

5,1. The extension of A to Ã allows the implementation of optimal POVMs as
PVMs, see Section 5.3. Vertices in the last column correspond to the set Â3

5,1 of irreducible
representations of A3

5,1. A vector space corresponding to an irrep Λ ∈ Â3
5,1 is spanned by

Paths(Λ,A ) the set of all paths terminating at Λ, Eqs. (3.72) and (3.73) describe the action of
the generators σi of the algebra A3

5,1 in corresponding irrep. Irreps Λ ∈ Â3
5,1 are of two different

types: either Λ = (λ,∅), or Λ = (µ, ). Effects of POVMs implementing optimal measurements
for PBT protocols corresponding to successful teleportation outcomes are supported only on
irreps corresponding to Λ = (λ,∅).

where λ∪(d+1, 1) denotes the Young diagram obtained from λ by adding a cell with coordinates
(d + 1, 1), so that ℓ(λ ∪ (d+ 1, 1)) = d + 1. The vertex corresponding to this Young diagram
does not exist in the Bratteli diagram A . Fortunately, Eq. (5.38) suggests immediately how to
construct a Naimark’s dilation Πλ of Eλ for λ with λd > 0. For this construction, one needs to
modify the Bratteli diagram A by adding vertices to each level smaller or equal than n. Then
the set of all paths in this modified Bratteli diagram will define a new basis for the Naimark
dilated Hilbert space.

More concretely, to each level k ⩽ n of the Bratteli diagram A we add all possible vertices
labelled by all Young diagrams ν ⊢ k such that νd+1 = 1. An edge between a pair of Young
diagrams in two consecutive levels is added if the latter diagram can be obtained by adding a
cell to the previous one. This procedure ensures that all the levels up to n of the new Bratteli
diagram form a subset of the Young lattice, such that for every vertex at level n the irrep
dimensions still satisfy Eq. (5.36). We call the new Bratteli diagram Ã . The basis for the
Naimark dilated Hilbert space for the irrep Λ ∈ Âd

n,1 consists of all paths from the root to the
leaf Λ in this modified Bratteli diagram, which we denote by Paths(Λ, Ã ). Formally, for every
Λ ∈ Âd

n,1, if Λ = (λ,∅) for λ ⊢ n− 1, ℓ(λ) ⩾ d we define

Paths(Λ, Ã ) :=
{
T = (T 0, T 1, . . . , T n,Λ) ∈ Âd+1

1,0 × · · · × Âd+1
n,0 × Âd

n,1 | T satisfies Eq. (5.40)
}
,

(5.39)



106 Chapter 5. Efficient quantum algorithms for port-based teleportation

where

T kd+1 ⩽ 1 ∀k ∈ [n], and T k−1 → T k ∀k ∈ [n], and T n = λ ∪ a for some a ∈ AC(λ). (5.40)

If Λr ̸= ∅ then
Paths(Λ, Ã ) := Paths(Λ,A ). (5.41)

This extension of the Bratteli diagram is illustrated in Fig. 5.2.
The action ψ̃Λ of the transposition generators σ1, . . . , σn−1 of Ad

n,1 in this dilated Bratteli
diagram Ã is given by the generalisation of Eq. (2.75) to all paths in Paths(Λ, Ã ), i.e. for
every T ∈ Paths(Λ, Ã ) and every i ∈ [n− 1] we define:

ψ̃Λ(σi) |T ⟩ =
1

ri(T )
|T ⟩+

√
1− 1

ri(T )2
|σiT ⟩ for i ̸= n. (5.42)

For this new Bratteli diagram Ã , we define the dilated versions |w̃S,λ⟩ of vectors |wS,λ⟩ for
S ∈ Pathsn−1(λ, Ã ) as

|w̃S,λ⟩ :=
∑

a∈AC(λ)

√
dλ∪a
n · dλ

|S → (λ ∪ a) → (λ,∅)⟩. (5.43)

Therefore in the dilated space since Eq. (5.36) holds we have

∥|w̃S,λ⟩∥2 =
∑

a∈AC(λ)

dλ∪a
n · dλ

= 1. (5.44)

More importantly, we have the following

5.3.1. Lemma. For every Λ = (λ,∅) in the dilated Hilbert space spanned by Paths(Λ, Ã ) we
have

n∑

k=1

∑

S∈Pathsn−1(λ,Ã )

ψ̃Λ(π
k)|w̃S,λ⟩⟨w̃S,λ|ψ̃Λ(π

−k) = I (5.45)

Proof:
Denote

A :=
n∑

k=1

∑

S∈Pathsn−1(λ,Ã )

ψ̃Λ(π
k)|w̃S,λ⟩⟨w̃S,λ|ψ̃Λ(π

−k). (5.46)

Note that by construction Eq. (5.42) any σ ∈ Sn−1 (we think of σ as an element of the algebra
Ad
n−1,0) commutes with the following element:

∑

S∈Pathsn−1(λ,Ã )

|w̃S,λ⟩⟨w̃S,λ|ψ̃Λ(σ) = ψ̃Λ(σ)
∑

S∈Pathsn−1(λ,Ã )

|w̃S,λ⟩⟨w̃S,λ|, (5.47)

since the above element acts as identity on Pathsn−1(λ, Ã ). Therefore A must commute with
Ad
n,0 since πk are transversals for cosets of Ad

n,0 over Ad
n−1,0:

A =
1

(n− 1)!

∑

σ∈Sn−1

n∑

k=1

∑

S∈Pathsn−1(λ,Ã )

ψ̃Λ(π
kσ)|w̃S,λ⟩⟨w̃S,λ|ψ̃Λ((π

kσ)−1) (5.48)

=
1

(n− 1)!

∑

σ∈Sn

∑

S∈Pathsn−1(λ,Ã )

ψ̃Λ(σ)|w̃S,λ⟩⟨w̃S,λ|ψ̃Λ(σ
−1). (5.49)
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This means that A is a diagonal matrix and ⟨T |A|T ⟩ depends only on T n, so for every a ∈ AC(λ)

and every T ∈ Paths(Λ, Ã ) with T n = λ ∪ a we can write

⟨T |A|T ⟩ = 1

dλ∪a

∑

T∈Paths(Λ,Ã )
Tn=λ∪a

⟨T |A|T ⟩ (5.50)

=
1

dλ∪a(n− 1)!

∑

S∈Pathsn−1(λ,Ã )

T∈Paths(Λ,Ã )
Tn=λ∪a

∑

σ∈Sn

⟨w̃S,λ|ψ̃Λ(σ
−1)|T ⟩⟨T |ψ̃Λ(σ)|w̃S,λ⟩, (5.51)

but in the above formula ψ̃Λ(σ) commutes with
∑

T |T ⟩⟨T |, so

⟨T |A|T ⟩ = 1

dλ∪a(n− 1)!

∑

S∈Pathsn−1(λ,Ã )

∑

σ∈Sn

⟨w̃S,λ|ψ̃Λ(σ
−1)
( ∑

T∈Paths(Λ,Ã )
Tn=λ∪a

|T ⟩⟨T |
)
ψ̃Λ(σ)|w̃S,λ⟩

=
1

dλ∪a(n− 1)!

∑

S∈Pathsn−1(λ,Ã )

∑

σ∈Sn

⟨w̃S,λ|ψ̃Λ(σ
−1)ψ̃Λ(σ)

( ∑

T∈Paths(Λ,Ã )
Tn=λ∪a

|T ⟩⟨T |
)
|w̃S,λ⟩

=
1

dλ∪a(n− 1)!

∑

S∈Pathsn−1(λ,Ã )

∑

σ∈Sn

⟨w̃S,λ|
( ∑

T∈Paths(Λ,Ã )
Tn=λ∪a

|T ⟩⟨T |
)
|w̃S,λ⟩. (5.52)

Therefore,

⟨T |A|T ⟩ = 1

dλ∪a(n− 1)!

∑

σ∈Sn

∑

S∈Pathsn−1(λ,Ã )

T∈Paths(Λ,Ã )
Tn=λ∪a

|⟨T |w̃S,λ⟩|2 =
n · dλ
dλ∪a

dλ∪a
n · dλ

= 1. (5.53)

Since every diagonal element of A is 1, so A = I. 2

Consequently, in the dilated space our POVM E becomes a PVM, which we denote by
Π. From now on assume that we work in the dilated Gelfand–Tsetlin basis spanned by T ∈
Paths(Λ, Ã ) and we want to implement the PVM Π = {Πk}nk=0, where for every k ∈ [n]:

Πk := πkΠnπ
−k, Π0 = I −

n∑

k=1

Πk, ψ̃(λ,∅)(Πn) =
∑

S∈Pathsn−1(λ,Ã )

|w̃S,λ⟩⟨w̃S,λ| (5.54)
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5.4 Efficient quantum circuits for PBT in standard encod-
ing

5.4.1 Standard PGM

Using the results of Section 5.3, our task now is to implement the PVM Π from Eq. (5.54).
We embed Paths(A ) in a Hilbert space with appropriate tensor product structure dictated by
the mixed quantum Schur transform. Mixed quantum Schur transform can be implemented
using two different encodings for the Gelfand–Tsetlin basis of Ad

n,1: the standard encoding or
the Yamanouchi encoding, see Chapter 4. In this section, we discuss how to implement Π with
the standard encoding. The Yamanouchi encoding implementation is explained in Section 5.5.

Before presenting our circuit for Π, we need to define a unitary W̃ acting on registers
T n−1, T n, T n+1, which can be used to prepare the states |w̃S,λ⟩ := |S⟩|w̃λ⟩ for every (λ,∅) ∈ Âd

n,1

and S ∈ Paths(Λ, Ã ). Namely, we first define

W̃λ|0⟩ := |w̃λ⟩,

|w̃λ⟩ :=
∑

a∈AC(λ)

√
dλ∪a
n · dλ

|λ ∪ a⟩, (5.55)

where W̃λ is a unitary matrix of size at most (d+1)× (d+1) with easy-to-compute entries |w̃λ⟩
in its first column. Now we define W̃ , a controlled version of W̃λ, as a unitary which prepares
|w̃λ⟩ conditioned on λ:

W̃ :=
∑

λ⊢dn−1

(( ∑

λ′ ̸=λ
λ′⊢dn−1

|λ′⟩⟨λ′|
)
⊗ I + |λ⟩⟨λ| ⊗ W̃λ

)
⊗ |(λ,∅)⟩⟨(λ,∅)|+

∑

µ⊢d−1n

I ⊗ I ⊗ |(µ,□)⟩⟨(µ,□)|. (5.56)

This transformation can be implemented via a sequence of Givens rotations. Similarly to
Eq. (5.55), we can define a unitary Wλ which prepares the normalised version of |wλ⟩:

Wλ|0⟩ :=
|wλ⟩

∥|wλ⟩∥
,

|wλ⟩ =
∑

a∈ACd(λ)

√
dλ∪a
n · dλ

|λ ∪ a⟩.
(5.57)

The gate W is now defined for Eq. (5.57) in the same way as W̃ in Eq. (5.56).
Assume the initial state is |S⟩|0⟩|λ⟩ := |S2⟩ . . . |Sn−2⟩|λ⟩|0⟩|(λ,∅)⟩ for arbitrary path S ∈

Pathsn−1(λ, Ã ), where |0⟩ is some basis state of the register, corresponding to the n-th level of
the dilated Bratteli diagram Ã . Then we can prepare a state |S⟩|w̃λ⟩|(λ,∅)⟩ as follows:

(
I ⊗ W̃

)
|S⟩|0⟩|λ⟩ = |S⟩|w̃λ⟩|λ⟩, (5.58)

where identity I acts on the registers |S2⟩ . . . |Sn−2⟩. Moreover, note that the amplitudes of
the state |w̃λ⟩ are easy to calculate on a classical computer in time Õ(d) due to Lemma 3.7.5,
which we restate here for convenience.
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5.4.1. Lemma ([Kos03]). For every λ ⊢ n− 1 and a ∈ AC(λ) there holds∏
c∈RC(λ)(cont(a)− cont(c))

∏
c∈AC(λ)\a(cont(a)− cont(c))

=
dλ∪a
n · dλ

. (5.59)

Each W̃λ gate can be implemented as a sequence of simple controlled Ri gates, as shown in
Fig. 5.7, which we define as

Ri|0⟩ :=

√√√√1−∑i
j=1 ηj

1−∑i−1
j=1 ηj

|0⟩+
√

ηi

1−∑i−1
j=1 ηj

|1⟩,

ηj :=
dλ∪aj
n · dλ

(5.60)

where the cell aj ∈ AC(λ) is located in the j-th row of λ. If for a given j there is no such cell
then the control on Ri in Fig. 5.7 is not triggered. In other words, Ri is triggered only when
λi−1 > λi (R1 is always triggered). Note that due to Lemma 5.4.1 the amplitudes in Eq. (5.60)
are easy to compute classically in time Õ(d).

Following the prescription outlined above, we construct in Fig. 5.5 an efficient circuit
for the PGM E dilated as Π. The circuit mainly acts on the dilated space spanned by
(T 0, T 1, T 2, . . . , T n, T n+1) ∈ Paths(Ã ), which form the Gelfand–Tsetlin basis. The ancilla
registers are used implicitly in the circuit (see Lemma 4.4.2 and Fig. 4.9).

First, a mixed quantum Schur transform maps the computational basis to the mixed Schur
basis which is usually labelled by |M[d−1], T ⟩, where M is a Gelfand–Tsetlin pattern and T
is a path in A . We assume a tensor product structure for different vertices T i of the path
T ∈ Paths(A ) and we use the standard encoding for |T ⟩. Moreover, all registers T 2, . . . , T n

are assumed to be dilated, according to the procedure explained in Section 5.3. Since T 0 and
T 1 can only have one possible value, we omit those registers from the diagram since they are
one-dimensional. The last level T n+1 of the path T is labelled by λ and indicates an irreducible
representation. The cyclic permutation gate π = (12 . . . n) = σ1σ2 · · ·σn−1 acts only on n − 1
wires of the dilated Gelfand–Tsetlin basis, and each of the transpositions σi acts only locally
on the registers T i−1, T i, T i+1 (σ1 acts only on T 2, and σ2 acts only on T 2, T 3). W̃ prepares
the state |w̃λ⟩ conditioned on λ, i.e., W̃λ|0⟩ = |w̃λ⟩ where W̃λ is controlled on λ. The phase
gates ωkin+1 act non-trivially only on |0⟩ in the register T n, and are controlled on the condition
T n−1 = T n+1 = λ. Finally, the measurement outcome k = 0 corresponds to the failure of the
protocol, otherwise k ∈ [n] indicates the port where Bob can find the teleported state |ψ⟩ of
dimension d.

Gate complexity

We now argue that the gate complexity of our circuit in Fig. 5.5 is Õ(nd4):

1. The complexity of implementing the mixed quantum Schur transform USch(n,1) is Õ(nd4), see
Theorem 4.3.1, Chapter 4.

2. The complexity of implementing π = σ1σ2 . . . σn−1 based on Fig. 5.3 is Õ(nd2). The factor
n comes from the number of transpositions σi in π. Each transposition σi is 3-local: it acts
only on registers T i−1, T i, T i+1. More specifically, σi is a 2× 2 rotation on T i controlled by
T i−1 and T i+1. According to Fig. 5.6, each σi can be implemented with Õ(d2) gates, each of
which decompose into Õ(1) elementary gates. In particular, each of the Rj,k gates

Rj,k :=




1
rj,k

√
1− 1

r2j,k√
1− 1

r2j,k
− 1
rj,k


 , rj,k := λj − λk + k − j (5.61)
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appearing in Fig. 5.6 can be implemented with Õ(1) elementary gates and Õ(1) auxiliary
qubits for computation of rotation parameters rj,k.

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
...

...
. . .

. . .

. . .

. . .

T 2

π† =

σ1 σ2

T 3 σ3

T 4 σ4

T 5

Tn−3

Tn−2 σn−2

Tn−1 σn−1

Tn

Figure 5.3: Circuit for the cyclic permutation π† = σn−1σn−2 · · ·σ2σ1 in the Gelfand–Tsetlin
basis. Each transposition σi acts locally on registers T i−1, T i, T i+1, with T i−1 and T i+1 used as
controls. Note, that σ1 acts only on T 2, and σ2 acts only on T 2, T 3 because we have dropped
the registers T 0, T 1 (they are always one-dimensional).

3. The operation W̃ defined in Eq. (5.56) is a λ-controlled unitary W̃λ that acts non-trivially
only on a (d + 1)-dimensional subspace of the register T n. This register consists of d + 1
wires corresponding to d + 1 rows of a Young diagram, see Fig. 5.7. The matrix entries
of W̃λ (see Eq. (5.55)) can be reversibly computed on the fly using gates Ri, i ∈ [d + 1]

from Eq. (5.60) in classical time Õ(d), which must be implemented in a quantum circuit
coherently. Therefore, implementing W̃ would have the gate complexity Õ(d2).

4. ωkin+1 denotes the gate ωkin+1|0⟩⟨0| + (I − |0⟩⟨0|) on register T n conditioned on the registers
T n−1 = λ, T n+1 = Λ = (λ,∅). This has complexity Õ(1).

5. The complexity of the Quantum Fourier Transform QFTn+1 is Õ(1).

6. One can optionally implement the correction gate Corr together with inverse mixed Schur
transform at the end to get the right post-measurement state (according to the definition
of PGM E from Eq. (5.4)). For that one needs to uncompute the gates πk for k ∈ [n]

and W̃λ, and instead run the gate Wλ from Eq. (5.56) followed by πk. The complexity of
implementing the correction gate does not change both the total gate and time complexities
of the full circuit, adding only a constant factor overhead.

7. Now we are ready to count the total gate and time complexity. For that, notice that each
gate π† in Fig. 5.5 consisting of local gates σi as in Fig. 5.3 can be pushed to the left of the
circuit. This will reduce the naive complexity Õ(n2d2) of implementing n sequential gates
π† to just Õ(nd2). Counting everything together gives Õ(nd4) total time complexity. The
gate complexity is Õ(n2d4).
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k k k

...
...

...
...

...
...

T 2

Corr
=

π−k πk

T 3

Tn−2

Tn−1

Tn W̃ †
λ

Wλ

Λ

Figure 5.4: Circuit for the correction operation Corr. Wλ gate is defined in Eq. (5.56) and its
implementation is completely analogous to W̃λ from Fig. 5.7.

Space complexity

Similarly, we can count the number of auxiliary qubits needed to implement our circuit Fig. 5.5
in the standard encoding. However, we must be careful with the precision of implementing
each gate. If the total target precision is ϵ then if the circuit has poly(n, d) gates it implies
the precision per each gate must be ϵg := ϵ/ poly(n, d). This will translate into the size of
auxiliary registers for classical computation of matrix entries of the unitaries which need to be
implemented coherently (see Lemma 4.4.2): the number of qubits needed for such computa-
tions will scale as log(1/ϵg) = O(log(1/ϵ) + log(n) + log(d)). Keeping that in mind and using
Lemma 4.4.2, we can summarize the total space complexity:

1. The number of auxiliary qubits needed to implement the mixed Schur transform isometry in
the standard encoding (see Theorem 4.3.1) and create a Naimark dilation from Section 5.3
after the mixed Schur transform is (n+ d)d polylog(d, n, 1/ϵ).

2. The number of auxiliary qubits needed to implement each gate σi from Fig. 5.6 inside π†

gate from Fig. 5.3 is polylog(d, n, 1/ϵ). However, when O(n) gates σi are implemented in
parallel with the shift trick of π† gates we need to have n polylog(d, n, 1/ϵ) auxiliary qubits
available.

3. The gates W̃λ and Wλ require d2 polylog(d, n, 1/ϵ) qubits to implement gates Ri, see Fig. 5.7.

4. Overall, the total number of auxiliary qubits needed is (n+ d)d polylog(d, n, 1/ϵ).

The above analysis completes the proof of the first statement of Theorem 5.1.1 for standard
PGM. In the next section, we describe how to extend the construction for standard PGM for
generic PBT measurements, including the measurement needed to implement pPBT with the
EPR resource state.
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Tn+1 = Λ

Figure 5.5: The circuit implementation of the PGM E from Eqs. (5.4) and (5.17) in standard encoding. The registers T 2, T 3, . . . , T n are dilated
as per Section 5.3. The correction gate Corr together with U †

Sch(n,1) transform is optional: it is used to bring the post-measurement state to the
form defined by the original PGM measurement E.
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T i σi
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Figure 5.6: Quantum circuit for implementing the transposition σi in the Gelfand–Tsetlin basis. The controlled “±” gates perform arithmetic
operations that add / subtract the control register from the target registers. For each j, k such that 1 ⩽ j < k ⩽ d, the corresponding Rj,k gate
defined in Eq. (5.61) acts on the k-th register of T i and has five controls: the j-th and k-th registers of T i−1 and T i+1, and the j-th register of
T i. At this level of abstraction, the implementation of σi contains Õ(d2) gates.
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Figure 5.7: Quantum circuit for implementing the unitary W̃ defined by (5.56) in the Gelfand–Tsetlin basis. The controlled “±” gates perform
arithmetic operations that add / subtract the control register from the target registers, just as on Fig. 5.6. Eq. (5.61) defines rotation gates Rj

that are controlled on 2(d+ 1+ j) registers in total: all registers of T i−1 and T i+1 and first (j − 1) registers of T i. The overall gate complexity
of W̃ is Õ(d2).
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5.4.2 Deterministic PBT measurement

Using the quantum circuit for the standard PGM E Fig. 5.5 we can easily implement the POVM
E✩ for the dPBT protocols from Eqs. (5.18) and (5.19). For that, we need to use Lemma 5.2.1,
which tells us to use one additional auxiliary qudit of dimension n, prepared in the state
|+⟩n =

∑n−1
i=0

1√
n
|i⟩. The resulting circuit is presented in Fig. 5.9. Notice that the circuit is

almost the same as the one for the standard PGM E presented in Fig. 5.5. The only difference
is an additional register of dimension n and a controlled Pauli gate Z :=

∑n−1
i=0 ω

i
n|i⟩⟨i|.

λ

(λ,∅)

k k k k

...
...

...
...

...
...

T 2

Corr =

π−k πk

T 3

Tn−2

Tn−1

Tn W̃ †
λ

Wλ

Λ

X−k

Figure 5.8: Circuit for the correction gate Corr from Fig. 5.9. It is a slight modification of the
correction gate for standard PGM from Fig. 5.4.

5.4.3 Probabilistic PBT measurement with EPR resource state

The measurement for optimised resource state pPBT is the standard PGM E from Fig. 5.5.
For EPR state case, it is straightforward now to extend the quantum circuit for the standard
PGM to a quantum circuit for pPBT POVM defined via Eq. (5.26). For that, we can employ
Lemma 5.2.2 for each irrep (λ,∅) ∈ Âd

n,1, where ψ̃(λ,∅)(U) is determined by the corresponding
diagonal matrix G from Eq. (5.26) extended to Naimark dilated space as ⟨T |ψ̃(λ,∅)(G)|T ⟩ = 0

for all T ∈ Paths(Λ, Ã ) \ Paths(Λ,A ). We introduce an additional qubit on which we would
act with a unitary Uλ,a depending on the irrep (λ,∅) ∈ Âd

n,1 and a ∈ AC(λ):

Uλ,a =




√
gλ,a −

√
1− gλ,a

√
1− gλ,a

√
gλ,a


, (5.62)

where gλ,a are defined in Eq. (5.27) for pPBT with EPR resource state. The resulting circuit
Fig. 5.10 is almost the same as Fig. 5.5. The only difference is an additional register and a
controlled rotation matrix (5.62).

The complexity of computing gλ,a classically is Õ(1). Therefore the time, gate and space
complexities of the circuit Fig. 5.10 are the same as for Fig. 5.5. The correction gate Corr in
Fig. 5.10 is implemented in similar way as in Fig. 5.4, except one needs to uncompute Uλ,a on
the additional qubit register and do the uncomputation conditioned on the outcome k = 0.
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Figure 5.9: The circuit implementation of the POVM E✩ from Eqs. (5.18) and (5.19) for dPBT in standard encoding.
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Figure 5.10: The circuit implementation of the POVM E⋆ for pPBT with EPR resource state defined via Eq. (5.26) in standard encoding.
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Figure 5.11: Circuit for the correction gate Corr from Fig. 5.10. It is a slight modification of
the correction gate for standard PGM from Fig. 5.4.

5.4.4 Efficient quantum algorithms for generic PBT measurements

We can combine two implementations for dPBT and pPBT measurement and implement a
generic measurement E⋆ from Eq. (5.20) defined via G operator, which is given in the Gelfand–
Tsetlin basis via Eq. (5.21).

Given a phase gate Z̃ :=
∑n

i=1 ω
i
n+1|i⟩⟨i| and a unitary UΛ,γ acting on an auxiliary qubit

defined as

UΛ,γ =

{
Ry(gλ,a) if Λ = (λ,∅), γ = λ ∪ a,
Ry(gµ) if Λ = (µ,□), γ = µ ,

Ry(g) :=




√
g −√

1− g

√
1− g

√
g


. (5.63)

we can implement POVM E⋆ as in Fig. 5.13.
Note that our construction works for any diagonal matrix ψΛ(G) as long as its diagonal

entries gλ,a, gµ are efficiently classically computable. The correction gate Corr in Fig. 5.13 is
implemented in a similar way as in Figs. 5.4, 5.8 and 5.11.

λ

(λ,∅) (µ,□)

k k k>0 k

...
...

...
...

...
...

T 2

Corr

=

π−k πk

T 3

Tn−2

Tn−1

Tn W̃ †
λ

Wλ

Λ

X−(k−1)

Figure 5.12: Circuit for the correction gate Corr from Fig. 5.13.
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Figure 5.13: The circuit implementation of a generic POVM E⋆ for PBT from Eq. (5.20) in standard encoding.
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5.5 PBT via Yamanouchi encoding

. . .

. . .

. . .

. . .

...
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...

. . .

. . .

. . .

. . .

. . .

y1

π†

=

σ1
y2

σ2
y3

σ3
y4

yn−2

σn−2

yn−1

σn−1

yn

yn+1

Λ

Figure 5.14: Quantum circuit for the cyclic permutation π† = σn−1σn−2 · · ·σ2σ1 in the Ya-
manouchi encoding. Each transposition σi acts locally on registers yi and yi+1, while being
controlled on all other registers yi and Λ. Note that in standard encoding, σi was controlled
only on two registers, compare with Fig. 5.3. Fig. 5.15 presents the exact form of a transposi-
tion σi gate in Yamanouchi encoding.

Using the Yamanouchi encoding possibility of the mixed quantum Schur transform (see The-
orem 4.3.1), it is possible to reduce the space complexity of the constructions presented in
Section 5.4.1 from Õ(n) to Õ(1). The resulting circuits for generic PBT measurements E⋆,
including standard PGM E, dPBT POVM E✩ and the POVM for EPR pPBT, are presented
in Fig. 5.17. They look essentially the same as Fig. 5.13 except for the differences in implemen-
tation of gates π†, σi and W̃λ which stem from the different type of encoding.

Similarly to Section 5.4.1 we can count the total gate and time complexities in Fig. 5.17 as
follows:

1. The complexity of implementing the mixed quantum Schur transform USch(n,1) in Yamanouchi
encoding is Õ(nd4), see Chapter 4.

2. The complexity of implementing π = σ1σ2 . . . σn−1 based on Fig. 5.14 is Õ(nd2). The factor
n comes from the number of transpositions σi in π, which are implemented sequentially.

3. Each transposition σi is more tricky in Yamanouchi encoding, see Figs. 5.15 and 5.16. More
specifically, to implement σi we need to obtain the full information about the Young diagram
T i−1 by using an auxiliary space and recording the description of T i−1 sequentially from
registers yk for k < i via a Reck gates, see Fig. 5.15. Now, according to Fig. 5.16, each σi
can be implemented with Õ(d2) gates Ri,j from Eq. (5.61), acting on wires yi, yi+1 each of
which decompose into Õ(1) elementary gates and Õ(1) auxiliary qubits for computation of
rotation parameters rj,k.

4. The operation W̃ defined in Eq. (5.56) is implemented similarly to Fig. 5.7 and the recording
procedure described in Fig. 5.15. The time and gate complexities for that are Õ(nd2).

5. The implementation of ωkin+1 has complexity Õ(n).

6. The complexity of the Quantum Fourier Transform QFTn+1 is Õ(1).
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7. One can optionally implement the correction gate Corr together with inverse mixed Schur
transform at the end to get the right post-measurement state as in Fig. 5.13. The complexity
of implementing this does not change both the total gate and time complexities of the full
circuit, adding only a constant factor overhead.

8. Overall, counting everything together gives Õ(n2d4) for both total gate and time complexities
in Yamanouchi encoding: essentially all nontrivial operations run sequentially.

Similarly, we can count the number of auxiliary qubits needed to implement our circuit
Fig. 5.5 in the Yamanouchi encoding similarly to Section 5.4.1:

1. The number of auxiliary qubits needed to implement the mixed Schur transform isometry
in the Yamanouchi encoding and create a Naimark’s dilation from Section 5.3 after the the
mixed Schur transform is d2 polylog(d, n, 1/ϵ), see Theorem 4.3.1. One important technical
remark regarding Figs. 5.14 to 5.17 is that we do not depict an additional qudit of dimension
n+1 which is needed to extend the Bratteli diagram from A to Ã according to Section 5.3:
it extends the space of Yamanouchi words on alphabet [d] to the space of Yamanouchi words
with at most one symbol d+1 among y1, . . . , yn by encoding the location i of the value d+1
among y1, . . . , yn (if there exist i such that yi = d + 1 then it also must be yn+1 = d + 1).
Incorporation of this qubit is trivial and it does not change the time and gate complexities,
however, it is not convenient to draw it, so we omit it from the figures.

2. The number of auxiliary qubits needed for each σi from Fig. 5.16 is polylog(d, n, 1/ϵ). We im-
plement all gates σi sequentially in the Yamanouchi encoding so we can reuse polylog(d, n, 1/ϵ)
auxiliary qubits for each gate.

3. The gates W̃λ and Wλ require d2 polylog(d, n, 1/ϵ) qubits to implement gates Ri, see Fig. 5.7.

4. Overall, the total number of auxiliary qubits needed is d2 polylog(d, n, 1/ϵ).

The above analysis finishes the proof of the second statement of Theorem 5.1.1.
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Figure 5.15: Quantum circuit for implementing a transposition σi in the Yamanouchi encoding. To correctly compute the rotation angles, we
shall recover the information about parts T i−1 and T i+1 of a path T from its form in Yamanouchi encoding. This is achieved by a sequence
of recording gates Reci performed on two auxiliary registers and controlled on yi register. After recovering information about T i−1 and T i+1,
transpoition σi can be simply performed as presented on Fig. 5.16.
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Figure 5.16: Quantum circuit implementing the transposition σi in the Yamanouchi encoding is similar to the circuit in the standard encoding,
see Fig. 5.6. Controlled “±” gates and rotation Rj,k gates are exactly the same as on Fig. 5.6.
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Figure 5.17: The circuit implementation of generic POVM E⋆ in Yamanouchi encoding. Notice that the structure of the circuit is exactly the
same as with standard encoding, see Fig. 5.13, except that wires T 2, . . . , T n containing information about path T = (T 0, . . . , T n) via standard
encoding are replaced by wires y1, . . . , yn+1 which contain the same information via Yamanouchi encoding. This is obtained by another form
of mixed Schur isometry, see Theorem 4.3.1. This requires reformulation for all subsequent gates from the standard to Yamanouchi encoding,
which we present on Figs. 5.14 to 5.16.
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5.6 Quantum circuits for optimised resource states

A3
0,0 A3

1,0 A3
2,0 A3

3,0 A3
3,1 A3

3,2 A3
3,3

∅ ∅ Λ = (∅,∅)

Figure 5.18: A part of the full Bratteli diagram Â corresponding to an irrep Λ = (∅,∅) of
algebra A3

3,3. The set of paths starting at the root and terminating at the end span the Gelfand–
Tsetlin basis of Λ = (∅,∅). A tensor product of n copies of EPR states shared between the first
and second half of the systems is fully supported in irrep Λ = (∅,∅) in the mixed Schur basis.
In fact, it corresponds to a uniform superposition of all symmetric paths in the Gelfand–Tsetlin
basis, see Eqs. (5.66) and (5.67). Similarly, the optimised resource state for PBT protocols can
be expressed as a weighted superposition of symmetric paths in the Gelfand–Tsetlin basis. In
particular, for pPBT the exact formula for the weights might be computed in Õ(d) time, see
Eq. (5.74), while for dPBT, weights are the result of non-trivial optimisation procedure, see
Eq. (5.75).

In this section, we describe efficient quantum circuits for preparing optimised resource states
for the pPBT protocol. To write and present such circuits in a unified way, we shall introduce
another variant of mixed Schur transform USch(n,n) corresponding to the matrix algebra Ad

n,n

of partially transposed permutations acting on n + n qudits, each of local dimension d. The
matrix algebra Ad

n,n acts on (Cd)⊗n+n and its irreducible representations are labelled by the
following pairs of Young diagrams:

Âd
n,n :=

{
(λ, µ)

∣∣∣ λ ⊢ n− k, µ ⊢ n− k, ℓ(λ) + ℓ(µ) ⩽ d, for k ∈ [n]
}
. (5.64)

Furthermore, its Bratteli diagram Â is adapted for the sequence of algebras Ad
0,0 ↪→ Ad

1,0 ↪→
· · · ↪→ Ad

n,0 ↪→ Ad
n,1 ↪→ · · · ↪→ Ad

n,n. For our purpose it is enough to present only one special
irrep Λ = (∅,∅) ∈ Âd

n,n. The set of paths

Paths((∅,∅), Â ) :=
{
(T 0, . . . , T n, T n+1, . . . , T 2n)

∣∣∣T k, T 2n−k ⊢ k for k ⩽ n, and (5.65)

T i−1 → T i, T 2n−i+1 → T 2n−i for i ∈ [n]
}

span the Gelfand–Tsetlin basis {|T ⟩ | T ∈ Paths(Λ,A )} of irreducible representation (∅,∅) ∈
Âd
n,n, see Fig. 5.18.

Mixed Schur–Weyl duality partitions the space (Cd)⊗n+n into subspaces that are invariant
under the natural U⊗n ⊗ Ū⊗n action of U ∈ Ud and the action of the matrix algebra Ad

n,n,
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see Chapter 3 The complexity of implementing the mixed quantum Schur transform isometry
USch(n,n) is Õ(nd4), see Theorem 4.3.1, Chapter 4.

A tensor product of n copies of EPR states shared between the first and second half of the
systems in (Cd)⊗n+n has a relatively simple form in mixed Schur basis [SSMH17]. In particular,
it is supported only on one irrep, namely Λ = (∅,∅) ∈ Âd

n,n. Notice that the unitary group
representation corresponding to Λ = (∅,∅) is one dimensional. With a small abuse of notation
(we supress the unitary irrep register), we have

USch(n,n)

( n⊗

i=1

|Φ+⟩AiBi

)
=
∑

µ⊢dn

√
dµmµ

dn
|EPR[n−1]

µ ⟩ |µ⟩Tn , (5.66)

where

|EPR[n−1]
µ ⟩ :=

∑

S∈Pathsn(µ,Â )

√
1

dµ
|S0⟩T 0 · · · |Sn−1⟩Tn−1|Sn−1⟩Tn+1 · · · |S0⟩T 2n (5.67)

and |Φ+⟩AiBi
:= 1√

d

∑d
k=1|k⟩Ai

|k⟩Bi
is an EPR pair shared between Alice’s register i and Bob’s

register i. Notice that all paths present in the formula above are symmetric with respect to the
middle vertex. The analytical expressions for optimised resource states in dPBT and pPBT
protocols were developed in Ref [SSMH17; MSSH18; Chr+21], and in a mixed Schur basis have
a similar form to n copies of EPR pairs (5.66). Indeed, in both cases, they are of the following
form

|Ψ⟩T =
∑

µ⊢dn

√
fµ |EPR[n−1]

µ ⟩ |µ⟩Tn , (5.68)

where {fµ}µ⊢dn
is some probability distribution satisfying

∑
µ⊢dn

fµ = 1.5 Furthermore, we can
rewrite this expression as

|Ψ⟩T =
∑

λ⊢dn−1

√
fλ|EPR[n−2]

λ ⟩|λ⟩Tn−1|λ⟩Tn+1


 ∑

a∈ACd(λ)

√
fλ∪a
fλ

dλ
dλ∪a

|λ ∪ a⟩Tn


, (5.69)

|EPR[n−2]
λ ⟩ :=

∑

S∈Pathsn−1(λ,Â )

√
1

dλ
|S0⟩T 0 · · · |Sn−2⟩Tn−2|Sn−2⟩Tn+2 · · · |S0⟩T 2n , (5.70)

where fλ are defined in such a way that the state
∑

a∈ACd(λ)

√
fλ∪a

fλ

dλ
dλ∪a

|λ ∪ a⟩Tn is normalised,
namely

fλ
dλ

:=
∑

a∈ACd(λ)

fλ∪a
dλ∪a

. (5.71)

We continue doing this rewriting recursively. That leads to the circuit for the preparation of
|Ψ⟩T presented in Fig. 5.19, where gates Fi prepare the following states controlled on T i−1:

Fi|ν⟩T i−1|0⟩T i = |ν⟩T i−1


 ∑

a∈ACd(ν)

√
fν∪a
fν

dν
dν∪a

|ν ∪ a⟩T i


 (5.72)

In particular, for pPBT [SSMH17] the formulas for fν for every ν ⊢d k turn out to be as follows:

fν =
m2
ν∑

χ⊢dk
m2
χ

(5.73)

5In the PBT literature sometimes a different parametrisation is used: fµ =
cµdµmµ

dn where cµ are variables.
The EPR resource state corresponds to the choice cµ = 1 for every µ ⊢d n.
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Figure 5.19: Circuit for the preparation of the resource state |Ψ⟩T |0⟩M[d−1]
from Eq. (5.68).

Gates Fi are defined in Eq. (5.72) via Eqs. (5.73) and (5.74).

Therefore due to [SSMH17, Proposition 25] and Eq. (5.12) the amplitudes in Eq. (5.72) for
every a ∈ ACd(ν) and ν ⊢ k can be computed efficiently in time Õ(d):

fν∪a
fν

dν
dν∪a

=
d+ cont(a)

d2 + k

mν∪a

mν

=
d+ cont(a)

d2 + k



∏

i : i ̸=r
1⩽i⩽d

νr − νi + i− r + 1

νr − νi + i− r


, (5.74)

where the last equality is due to the Weyl dimension formula and r denotes the row number
where the box a was added to Young diagram ν.

However, we cannot do the same analysis for the dPBT protocol [MSSH18; Led22] since fµ
for µ ⊢d n are defined via non-trivial optimisation problem [Led22, Equation 6.3]:

{fµ}µ⊢dn
= argmax∑

µ fµ=1

∑

λ⊢dn−1

( ∑

a∈ACd(λ)

√
fλ∪a

)2

. (5.75)

We leave it as an open question for future work to understand how to efficiently compute the
amplitudes in Eq. (5.72) for dPBT.
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5.7 Discussion
In this chapter, we used the representation theory of partially transposed permutation matrix
algebras and mixed Schur–Weyl duality (see Chapters 3 and 4) to solve a long-standing open
problem: finding a construction of efficient quantum circuits for both deterministic and prob-
abilistic port-based teleportation in arbitrary local dimension. Our achievement relies on the
efficient construction of the mixed quantum Schur transform (see Theorem 4.3.1). Addition-
ally, our constructions are realised in two distinct encodings: the standard encoding and the
Yamanouchi encoding, which offer a concrete trade-off between the space and time complexi-
ties of our constructions. We also presented efficient quantum circuits for preparing optimised
resource states for probabilistic port-based teleportation.

Finally, we outline two immediate, yet significant, consequences of our efficient port-based
teleportation constructions.

Exponentially improved lower bound for non-local quantum computation

Port-based teleportation has interesting applications in holography and non-local quantum
computation. See [May19; May22], where it was argued that the complexity of the local opera-
tion controls the amount of entanglement needed to implement it non-locally, using ideas from
AdS/CFT correspondence. In particular, it was derived in [May22, Lemma 9] that port-based
teleportation can be used to lower bound the amount of entanglement needed to implement a
given channel (from a large class of one-sided quantum channels) non-locally in terms of the
so-called interaction-class circuit complexity [May22, Definition 3] denoted by C:

Ω(log log C) ⩽ Ec, (5.76)

where Ec is the entanglement cost needed to implement non-locally a unitary with complexity
C, see [May22, Equation 29]. Port-based teleportation can also be used to find an upper bound
[BK11; Spe16; May22]. The derivation of the lower bound uses a trivial upper bound exp(O(p))
for the complexity of the port-based teleportation in terms of the number of ports n, see [May22,
Equation 47]. It is already pointed out in [May22, page 28] that a better implementation of
the port-based teleportation protocol would lead to a better lower bound. Complexities of our
implementations of PBT protocols are Õ(nd4), therefore this immediately translates, according
to [May22, Lemma 9], to a better lower bound:

Ω(log C) ⩽ Ec, (5.77)

thus improving exponentially upon the previous known bound.

Deterministic PBT as an optimal approximate quantum processor

Deterministic port-based teleportation was intially presented as an example of approximate
universal quantum processor [IH08]. Our work provides first explicit efficient construction of
such universal quantum processor for all local dimensions d, which is not based on unitary
estimation procedures [YRC20; HKOT23].

However, as explained in Section 5.6, we were not able to find an efficient algorithm to
produce optimal resource states for dPBT. We suspect that a suboptimal choice for dPBT
resource states, described in [Chr+21, Section B], could be implementable via our scheme
presented in Section 5.6. Moreover, in light of the recent work, which connected port-based
teleportation with unitary estimation [YKSQM24], we also conjecture that it should be possible
to construct optimal states achieving asymptotically optimal entanglement fidelity, based on
the construction of optimal probe states used in unitary estimation protocol from [YRC20].



Chapter 6

Unitary-equivariant linear and semidefinite
programming

Unitary equivariance is a natural symmetry that occurs in many contexts in physics and math-
ematics. Optimisation problems with such symmetry can often be formulated as semidefinite
programs (SDPs) for a dn+m-dimensional matrix variable that commutes with U⊗n ⊗ Ū⊗m, for
all U ∈ Ud. Solving such problems naively can be prohibitively expensive even if n+m is small
but the local dimension d is large. We show that, under additional symmetry assumptions,
this problem reduces to a linear program that can be solved in time that does not scale in d,
and we provide a general framework to execute this reduction under different types of sym-
metries. The key ingredient of our method is a compact parametrisation of the solution space
by linear combinations of walled Brauer algebra diagrams. This parametrisation requires the
idempotents of a Gelfand–Tsetlin basis, which we obtained in Section 3.6. Moreover, using re-
sults on mixed Schur–Weyl duality which we obtained in Sections 3.7 and 4.2, we can conduct
a symmetry reduction of a given unitary-equivariant SDP yielding a simpler SDP with less
variables. To illustrate potential applications of our framework, we use several examples from
quantum information: deciding the principal eigenvalue of a quantum state, quantum majority
vote, asymmetric cloning and transposition of a black-box unitary.

This chapter is based on [GO24; GBO23a]. Moreover, Section 6.5.4 is partially based on
work in progress with Satoshi Yoshida, Mio Murao and Maris Ozols.

6.1 Introduction

Taking the symmetry of the problem into account is a good idea for almost any problem,
including optimisation problems, since this can significantly reduce the number of parameters.
In particular, this is the case for semidefinite optimisation [BGSV12; RMB21]. Given the wide
range of problems in quantum information with local unitary equivariance symmetry [SC23], the
main focus of our work is on linear and semidefinite optimisation under a local (n,m) unitary
equivariance constraint, which naturally sits within the mixed Schur–Weyl duality framework.
Typically, this means optimising over unitary-equivariant quantum channels or other tensors
with this symmetry.

An early example of using U⊗Ū symmetry to reduce a semidefinite optimisation problem to
a linear one is the work of Rains [Rai01] on entanglement distillation under completely positive
partial transpose preserving operations. He characterises the optimal distillation fidelity by a
semidefinite program and then exploits the symmetry

(U ⊗ Ū)
∑

i

|i⟩ ⊗ |i⟩ =
∑

i

|i⟩ ⊗ |i⟩ (6.1)

129



130 Chapter 6. Unitary-equivariant linear and semidefinite programming

of the canonical maximally entangled state to reduce this to a linear program (see Example 3.4.2
for more details). This work has inspired a long sequence of results [APE03; LM15; Wan18;
WW20; HSW23].

The closely related U⊗U symmetry appears in the so-called quantum max cut problem that
has recently received significant attention [AGM20; HNPTW23; PT21; KP22; PT22; Lee22;
Kin23; Tak+23; WCEHK24; LP24]. This problem is concerned with approximating the ground
state and ground energy of a local Hamiltonian on a graph whose vertices are qubits and edges
are assigned the projector |ψ−⟩⟨ψ−| onto the singlet state |ψ−⟩ := (|01⟩− |10⟩)/

√
2. The U ⊗U

symmetry of |ψ−⟩ is one of the basic cases captured by our framework, and the general case of
U⊗n is captured by the Schur–Weyl duality (see Section 2.10).

Other instances of semidefinite optimisation problems with U⊗n⊗Ū⊗m symmetry appearing
in quantum computing are quantum majority vote and basis-independent evaluation of Boolean
functions [BLMMO22], black-box transformations of quantum gates [QDSSM19b; QDSSM19a;
QE21; YSM23b; YSM23a; Ebl+23], asymmetric cloning [NPR21; NPR23], and entanglement
witnesses [HKMV22].

Previously, most of these problems have been approached individually and by ad hoc meth-
ods that work only for restricted choices of n,m, d, such as n = 1, m = 1, or d = 2. Our goal is
to provide a general framework for solving unitary-equivariant semidefinite optimisation prob-
lems for a wide range of values of n,m, d. More specifically, our aim is to answer the following
two questions.

1. How to efficiently eliminate the irrelevant degrees of freedom from a Ud-equivariant opti-
misation problem?

2. Can a Ud-equivariant optimisation problem be solved in time that does not scale in d?

We provide answers to these questions using representation-theoretic and diagrammatic meth-
ods.

Summary of our results

Consider the following general semidefinite program (SDP) for a Hermitian matrix variable X:

max
X

Tr(CX)

s.t. Tr(AkX) ⩽ bk, ∀ k ∈ [m1],

TrSk
(X) = Dk, ∀ k ∈ [m2],[

X,U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ Ud,

X ⪰ 0,

(6.2)

where C,Ak, Dk are fixed Hermitian matrices, bk ∈ R are fixed scalars, m1 and m2 denote the
number of constraints that involve full trace and partial trace, and Sk ⊆ [n+m] denote subsets
of systems that are traced out.

Note that all matrices in Eq. (6.2) are of size dn+m × dn+m. For this problem to have an
efficient description, we assume that C,Ak, Dk are s-sparse, i.e., can be specified as a linear
combination of at most s walled Brauer algebra diagrams (see Section 3.2) and elementary rank-
1 matrices |i⟩⟨j| where i, j ∈ [d]n+m. Our main result, Theorem 6.3.4, provides an efficient way
of converting the above semidefinite program to an equivalent linear program (LP) when the
matrix variable X is subject to one of the following additional symmetries: Sn× Sm symmetry,
walled Brauer algebra symmetry, or Gelfand–Tsetlin symmetry (see Section 6.3.1 for more
details).
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6.1.1. Theorem (Informal). Assuming one of the above additional symmetries on X, the
SDP (6.2) can be converted to an equivalent LP with Ñ ⩽ N variables and m1 + m2N + Ñ
constraints where N := (n+m)!.

Our approach has the advantage that d can be arbitrary1 and the computational resources
are tied only to the value of n + m. For example, let (n,m) = (2, 3) be small constants and
d = 1000 be very large. In this regime, naively solving the above SDP is impossible in practice,
since it has d2(n+m) = 100010 = 1030 scalar variables. However, the complexity of our method
scales only in the parameter N = (n+m)!, which in this case is (2 + 3)! = 5! = 120.

Our method can also provide an advantage when d is small. For example, if d = 2 then
d2(n+m) = 22(2+3) = 210 = 1024 variables are needed naively, while only 42 suffices with our
method (see Table 6.7 in Section 6.A.3).

Although our method provides a significant improvement in terms of d, its complexity still
scales as (n + m)!, so in practice we can only deal with relatively small values of n and m.
However, numerical solutions to small problem instances are still valuable, as they may reveal
structures that can help tackle larger instances. For example, numerical insights can lead
to a refined ansatz with fewer parameters that scales up more easily. Good ansatz, even if
suboptimal, can still be used to obtain numerical bounds. If the ansatz is sufficiently simple, it
might even be amenable to analytic methods. In this way, our method can potentially be used
to bootstrap from small problem instances to much larger ones.

To illustrate potential applications of our method, in Section 6.5 we provide several examples
from quantum information: deciding the principal eigenvalue of a quantum state, quantum
majority vote, and asymmetric cloning.

Our second result does not assume additional symmetries and works as a general framework
from reducing general unitary-equivariant SDPs to simpler forms.

Intuition

The main idea behind our result is as follows. While the naive semidefinite program (6.2)
has d2(n+m) scalar variables, the unitary equivariance condition alone reduces this down to
dim(Ad

n,m), where Ad
n,m is the matrix algebra of partially transposed permutations. This ob-

servation already gives us a d-independent upper bound on the number of parameters since
dim(Ad

n,m) ⩽ (n + m)!. While generally this bound is loose for small d, it saturates when
d ⩾ n+m.

This reduction in the number of parameters occurs due to mixed Schur–Weyl duality (see
Chapter 3). Together with Schur’s lemma, this duality implies that any unitary-equivariant
matrix variable X can be written in mixed Schur basis as

USch(n,m)XU
†
Sch(n,m) =

⊕

λ∈Âd
n,m

Xλ ⊗ Imλ
(6.3)

in some basis, where the size of each block Xλ is independent of d. The main difficulty then
lies in obtaining an ansatz that captures all relevant degrees of freedom for such X, in a way
that does not scale in the local dimension d. In particular, we cannot afford to simply apply
the mixed Schur transform that implements the basis change in Eq. (6.3) since the underlying
space has dimension dn+m.

For simplicity, in Section 6.3, we only consider the special case where each Xλ is diagonal.
This assumption is justified when X is subject to some additional symmetry (see Section 6.3.1
for more details). For example, under certain symmetry X is diagonal in the so-called Gelfand–
Tsetlin basis and can thus be written as a linear combination of primitive idempotents of the

1In fact, d can even be symbolic!
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partially transposed permutation algebra Ad
n,m from Section 3.6. Since the elements of Ad

n,m

can be lifted from Bdn,m, this allows us to perform the entire computation within the walled
Brauer algebra Bdn,m. In contrast to Ad

n,m, Bdn,m is diagrammatic, and hence we do not need to
manipulate any matrices of size dn+m. This is precisely why the complexity of our approach
does not scale in d. In particular, we do not require explicit knowledge of the mixed Schur
transform.

Our second approach, presented in Section 6.4, works with general matrix units ES,T for
the algebra Ad

n,m, so we do not assume that Xλ is diagonal. We use the properties of these
matrix units and their representation in mixed Schur basis to simplify general SDPs of a form
similar to Eq. (6.2) to smaller SDPs without assuming additional symmetries. This provides
a concrete tool for obtaining numerical insights for small instances of previously practically
unsolvable SDPs.

6.2 Preliminaries

Unitary equivariance

Our main motivating problem is the optimisation of a linear function over unitary-equivariant
quantum channels. For this chapter, we define Vin := (Cd)⊗n and Vout := (Cd)⊗m.

6.2.1. Definition. We say that Φ: End(Vin) → End(Vout) is a n → m channel. Such a
channel is locally Ud-equivariant or simply unitary-equivariant if

Φ
(
U⊗n ρU †⊗n) = U⊗mΦ(ρ)U †⊗m (6.4)

for every U ∈ Ud and ρ ∈ D(Vin).

To optimise over such channels, we need to understand their structure or, equivalently, the
structure of the associated Choi matrices. The following is a well-known characterisation of the
unitary equivariance of Φ in terms of its Choi matrix.

6.2.2. Proposition. Let XΦ ∈ End(Vin ⊗ Vout) be the Choi matrix of a n → m channel Φ.
Then Φ is unitary-equivariant if and only if

[
XΦ, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ Ud . (6.5)

Proof:
Using the definition of the Choi matrix Eq. (2.2) we get

Φ
(
U⊗n ρU †⊗n) = TrVin

[
XΦ((U⊗nρU †⊗n)T ⊗ Iout)

]
(6.6)

= TrVin

[
((UT)⊗n ⊗ Iout)X

Φ(Ū⊗n ⊗ Iout)(ρ
T ⊗ Iout)

]
, (6.7)

so unitary equivariance of Φ gives for every U ∈ Ud

Φ(ρ) = TrVin

[
XΦ(ρT ⊗ Iout)

]
(6.8)

= U †⊗mΦ
(
U⊗n ρU †⊗n)U⊗m (6.9)

= TrVin

[
((UT)⊗n ⊗ U †⊗m)XΦ(Ū⊗n ⊗ U⊗m)(ρT ⊗ Iout)

]
. (6.10)

Since the above relation holds for every U ∈ Ud, we can switch Ū → U , so we get
[
XΦ, U⊗n ⊗ Ū⊗m] = 0, (6.11)

i.e. our convention is that the last m registers of XΦ are subject to the dual action of Ud. 2
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Motivating problem

Consider the following motivating semidefinite optimisation problem. Fix a quantum state
ρ ∈ D(Vin) and an arbitrary Hermitian matrix H ∈ End(Vout), and assume that we want to
find a unitary-equivariant n → m channel Φ that maximises the linear function Tr[Φ(ρ)H].
For example, if H = |ψ⟩⟨ψ| for some pure state |ψ⟩ ∈ Vout then Tr[Φ(ρ)H] = ⟨ψ|Φ(ρ)|ψ⟩ is the
fidelity between the output state Φ(ρ) and the desired target state |ψ⟩.

According to Eq. (2.2), Tr[Φ(ρ)H] = Tr
[
XΦ(ρT ⊗ H)

]
, so the constraints on XΦ from

Eq. (2.3) give us the following SDP:

max
XΦ∈End(Vin⊗Vout)

Tr
[
XΦ(ρT ⊗H)

]
, TrVout(X

Φ) = IVin , XΦ ⪰ 0. (6.12)

This problem has a trivial solution—a channel that ignores its input ρ and prepares the principal
eigenvector of H as output. To make the problem non-trivial, consider instead a collection of n
pairs (ρi, Hi), with the goal of maximising the smallest value of Tr[Φ(ρi)Hi], i = 1, . . . , n. This
is captured by the following SDP:

max
XΦ∈End(Vin⊗Vout)

c∈R

c, ∀i : Tr
[
XΦ(ρTi ⊗Hi)

]
⩾ c, TrVout(X

Φ) = IVin , XΦ ⪰ 0. (6.13)

This problem no longer admits a trivial solution where Φ ignores the input state.
Motivated by applications to problems mentioned in Section 6.1, we would like to incorporate

the unitary-equivariance constraint (6.4) on the channel Φ in the SDPs (6.12) and (6.13). Note
that using Proposition 6.2.2 in a naive way would result in an optimisation problem with an
uncountable number of linear constraints and a matrix variable of dimension dn+m that scales
badly in d even for constant n and m. Our main contribution is an efficient method that
can deal with both of these issues simultaneously. Under additional symmetry assumptions, it
reduces the above SDPs to finite linear programs whose size does not scale in d. We further
describe how to remove the symmetry assumption with two different methods, in Section 6.4
and in Section 6.A.2.

Optimisation under unitary equivariance

Symmetry is a powerful tool for simplifying almost any type of problem, including problems in
semidefinite optimisation [BGSV12; RMB21]. Our goal is to investigate semidefinite optimisa-
tion for a matrix variable subject to a unitary equivariance constraint. To simplify the problem
even further, we assume one of several additional symmetries that reduce the semidefinite
program to a linear program.

A naive way of imposing unitary equivariance on Φ in our motivating problem in Eq. (6.13)
is by including Eq. (6.5) as an extra linear constraint. However, this technically constitutes an
uncountably infinite set of constraints. To get around this issue, we could instead demand that

∫

U∈Ud

(
U⊗n ⊗ Ū⊗m)XΦ

(
U⊗n ⊗ Ū⊗m)†dU = XΦ (6.14)

where dU denotes the Haar measure on Ud. This integral can in principle be evaluated using
Weingarten calculus [CMN21; CŚ06], producing a single linear constraint on XΦ. The resulting
SDP has finite size and can be supplied to a standard solver.

However, there is another serious issue that can prevent the SDP from being solvable in
practice. Namely, XΦ is a matrix of size dn+m × dn+m. Since each matrix entry of XΦ is
represented by a separate scalar variable in the SDP, the total number of variables is d2(n+m),
which is prohibitive even for moderate values of d.
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Motivated by this issue, our main goal is to understand whether optimisation problems with
a Ud-equivariance constraint can be solved in time that does not scale in d. In this work, we
focus on linear programming as a special case of semidefinite programming and answer the
above question in the affirmative (see Theorem 6.3.4 for our main result).

In the context of unitary-equivariant channels, linear programs occur naturally when addi-
tional symmetries are imposed on Φ. Indeed, appropriately chosen symmetries guarantee that
the Choi matrix XΦ is diagonal in a certain basis, allowing the semidefinite constraint XΦ ⪰ 0
to be replaced by scalar inequalities.

Additional symmetries

One natural example of additional n→ m channel symmetries is invariance under permutations
of the n input and m output systems, where each type of system is permuted separately.

Recall that the symmetric group Sn on n elements acts naturally on n qudits by permuting
them. This is captured by a representation ψdn : Sn → End(Vin) defined on standard basis
vectors |i1⟩ ⊗ · · · ⊗ |in⟩ with x1, . . . , xn ∈ {1, . . . , d} as

ψdn(π)
(
|x1⟩ ⊗ · · · ⊗ |xn⟩

)
:= |xπ−1(1)⟩ ⊗ · · · ⊗ |xπ−1(n)⟩, (6.15)

for all π ∈ Sn, and extended linearly to all vectors in Vin.

6.2.3. Definition. A n → m channel Φ is input-symmetric if Φ
(
ψdn(π) ρψ

d
n(π)

†) = Φ(ρ), for
every ρ ∈ D(Vin) and π ∈ Sn. Similarly, Φ is output-symmetric if Φ(ρ) = ψdm(σ) Φ(ρ)ψ

d
m(σ)

†, for
every ρ ∈ D(Vin) and σ ∈ Sm. We call Φ symmetric if it is both input- and output-symmetric:

Φ
(
ψdn(π) ρψ

d
n(π)

†) = ψdm(σ) Φ(ρ)ψ
d
m(σ)

†. (6.16)

if for every ρ ∈ D(Vin) and every pair of permutations (π, σ) ∈ Sn × Sm.

Similarly to Proposition 6.2.2, this symmetry of Φ can also be expressed in terms of its Choi
matrix XΦ.

6.2.4. Proposition. A n → m channel Φ is symmetric if and only if its Choi matrix XΦ

satisfies
[
XΦ, ψdn(π)⊗ ψdm(σ)

]
= 0, ∀(π, σ) ∈ Sn × Sm. (6.17)

In Section 6.3.1 we consider two additional types of symmetries and discuss when a unitary-
equivariant SDP reduces to an LP under such symmetries.

The structure of unitary-equivariant quantum channels can be described using a general-
isation of Schur–Weyl duality to mixed tensor products, i.e., mixed Schur–Weyl duality from
Chapter 3.

6.3 Reducing unitary-equivariant SDPs to LPs
In this section, we derive one of the main results—a pre-processing algorithm for LP solvers
which accepts a sparse SDP with a Ud-equivariant constraint as input. Our algorithm also
requests one of several additional symmetries (see Section 6.3.1) that guarantee that the pro-
vided SDP reduces to an LP. Although the input problem has a compact representation due
to all involved matrices being sparse, naively solving it might be impossible in practice due to
prohibitively large d (the SDP matrix variable has dimension dn+m). Our algorithm converts
the implicit input LP to an explicit smaller LP whose naive representation has size that no
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longer depends on d. Although it may generally not be sparse, this LP is much smaller and
can thus be further supplied as input to any standard LP solver.

In Section 6.3.1 we list the additional symmetries our algorithm requires, in Section 6.3.2
we specify the input format of our algorithm, and in Section 6.3.3 we state and prove our main
result.

6.3.1 Types of symmetries

To achieve a reduction from SDP to LP, the SDP matrix variable X needs some additional
symmetry in addition to unitary equivariance. For example, one option is the Sn × Sm permu-
tational symmetry, which is natural in the context of n → m quantum channels, see Proposi-
tion 6.2.4. We show in Section 6.3.1 that an SDP with such symmetry reduces to an LP when
min(n,m) ⩽ 2. The full list of possible symmetries we consider for the SDP variable X is as
follows.

6.3.1. Definition. A matrix X ∈ End((Cd)⊗n+m) possesses

• the Sn × Sm permutational symmetry if for every σ ∈ C(Sn × Sm) ⊂ Bdn,m
[
X,ψdn,m(σ)

]
= 0, (6.18)

or equivalently X ∈ Zψd
n,m(C(Sn×Sm))(Ad

n,m);

• the walled Brauer algebra symmetry if for every σ ∈ Bdn,m, see Section 3.2,

[
X,ψdn,m(σ)

]
= 0, (6.19)

or equivalently X ∈ Z(Ad
n,m);

• the Gelfand–Tsetlin symmetry if for every A ∈ XA
n+m, see Eq. (3.48),

[X,A] = 0, (6.20)

or equivalently X ∈ XA
n+m since XA

n+m is the maximal commutative subalgebra of Ad
n,m

(see Section 3.6).

The last two symmetries have an intuitive interpretation in Schur basis. Recall from The-
orem 3.4.1 that there exists a mixed Schur transform USch(n,m) that block-diagonalises any
unitary-equivariant X:

USch(n,m)X U †
Sch(n,m) =

⊕

λ∈Âd
n,m

Xλ ⊗ Imλ
. (6.21)

We will assume that USch(n,m) is adapted to the Gelfand–Tsetlin basis, meaning that each Xλ is
expressed in this basis. Each symmetry from Definition 6.3.1 results in some simplification of
the matrix variable X as each block Xλ assumes a special form. We discuss this in more detail
in the following sections.
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Full walled Brauer algebra symmetry

The maximal possible symmetry that can be assumed is the full walled Brauer algebra symmetry,
which means that each Xλ in Eq. (6.21) is proportional to the identity matrix, i.e.,

Xλ = vλIdλ (6.22)

for some scalar vλ ∈ R. In this case, the semidefinite constraint Xλ ⪰ 0 reduces to vλ ⩾ 0,
thus simplifying the problem from an SDP to an LP with variables {vλ | λ ∈ Âd

n,m}. The total
number of variables in the LP is

Nd
n,m(WB) :=

∣∣Âd
n,m

∣∣ =
min(n,m)∑

k=0

fdn−k,m−k, (6.23)

where fdn−k,m−k is the number of pairs (λl, λr) of Young diagrams such that λl⊢n−k, λr⊢m−k
and ℓ(λl) + ℓ(λr) ⩽ d. In this case, we can write X as a linear combination of the primitive
central idempotents from Eq. (3.64):

X =
∑

λ∈Âd
n,m

vλε
A(λ). (6.24)

Gelfand–Tsetlin symmetry

A minimal symmetry that can be assumed is the Gelfand–Tsetlin symmetry, which means that
each Xλ is diagonal in the Gelfand–Tsetlin basis, i.e.,

Xλ =

dλ∑

i=1

vλ,i|i⟩⟨i| (6.25)

for some scalars vλ,i ∈ R that become the variables of the LP. The X ⪰ 0 constraint then
reduces to vλ,i ⩾ 0 for all λ ∈ Âd

n,m and i ∈ [dλ]. The total number of LP variables in this case
is

Nd
n,m(GT) :=

∑

λ∈Âd
n,m

dλ, (6.26)

where dλ = dim(Vλ) is the dimension of the corresponding simple module of Ad
n,m. In this case,

we can write X as a linear combination of the canonical primitive idempotents from Eq. (3.65):

X =
∑

T∈Paths(A )

vT ε
A
T . (6.27)

Sn × Sm permutational symmetry

A somewhat intermediate symmetry that can be assumed is the Sn × Sm permutational sym-
metry. This symmetry allows us to simplify Xλ to

Xλ
∼=
⊕

µ⊢dn
ν⊢dm

(Iµ ⊗ Iν)⊗ X̃λ
µ,ν (6.28)

where X̃λ
µ,ν is a Hermitian matrix of dimension mλ

µ,ν(d), see Eq. (6.126) in Section 6.A.1, and a
priori we do not know the basis on the right-hand side.
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There are two cases when this symmetry leads to a reduction from SDP to LP. We show in
Lemmas 6.A.1 and 6.A.2 that mλ

µ,ν(d) ∈ {0, 1} when min(n,m) ⩽ 2 or d = 2, meaning that the
corresponding term in Eq. (6.28) either drops out or X̃λ

µ,ν becomes a scalar x̃λµ,ν ∈ R:

Xλ
∼=

⊕

µ⊢dn
ν⊢dm

mλ
µ,ν(d)=1

x̃λµ,ν(Iµ ⊗ Iν). (6.29)

We show in Proposition 6.3.2 that when min(n,m) = 1 each block Xλ becomes diagonal specif-
ically in the Gelfand–Tsetlin basis. In contrast to Eq. (6.25), some of the diagonal entries of
Xλ must be equal in this case. In the following proposition we assume m = 1. The argument
is completely analogous when n = 1 since one just has to use a different sequence A of alge-
bras C ↪→ Ad

0,1 ↪→ · · · ↪→ Ad
0,m ↪→ Ad

1,m when constructing the Bratteli diagram A and the
corresponding Gelfand–Tsetlin basis.

6.3.2. Proposition. Fix d ⩾ 2 and n ⩾ 1, and let X ∈ End((Cd)⊗n+1) be a Hermitian matrix
with unitary equivariance and Sn × S1 symmetry:

[
X,U⊗n ⊗ Ū

]
= 0, ∀U ∈ Ud, (6.30)[

X,ψdn(π)⊗ Id
]
= 0, ∀π ∈ Sn. (6.31)

Then X can be written as
X =

∑

T∈Paths(A )

vTn,Tn+1εAT , (6.32)

where vTn,Tn+1 ∈ R depends only on the last edge of path T .

Proof:
Let us first understand in what way the Sn × S1 symmetry is special among general Sn × Sm
symmetries. Since the group S1 is trivial, C(Sn⊗S1) ∼= CSn. Moreover, ψdn,1(π×e) = ψdn(π)⊗Id
for any π ∈ Sn, where e ∈ S1 denotes the identity permutation. Hence

ψdn,1
(
C(Sn ⊗ S1)

)
= ψdn(CSn)⊗ Id = Ad

n,0 ↪→ Ad
n,1, (6.33)

so the algebra Ad
n,0 generated by the Sn × S1 symmetry appears in the multiplicity-free family

C ↪→ Ad
1,0 ↪→ · · · ↪→ Ad

n,0 ↪→ Ad
n,1.

We can use this observation to get a better grip on the matrix X. Thanks to the mixed
Schur–Weyl duality (Theorem 3.4.1), Eq. (6.30) implies that X ∈ Ad

n,1. Also, notice from
Eq. (6.33) that Eq. (6.31) is equivalent to [X,Ad

n,0] = 0. By combining these two observations
we see that X ∈ ZAd

n,0
(Ad

n,1).
Writing any A ∈ Ad

n,1 in Schur basis we get

USch(n,1)AU
†
Sch(n,1) =

⊕

λ∈Âd
n,1

Aλ ⊗ Imλ
(6.34)

where the blocks Aλ are expressed in the Gelfand–Tsetlin basis. If we instead take A ∈ Ad
n,0

then, thanks to how the Gelfand–Tsetlin basis is recursively constructed from paths in the
Bratteli diagram, the Aλ in Eq. (6.34) are block-diagonal. That is, Aλ =

⊕
µAλ,µ (there are

no multiplicities here since the embedding Ad
n,0 ↪→ Ad

n,1 is part of a multiplicity-free family).
Since [X,A] = 0 for all A ∈ Ad

n,0, the blocks Xλ of X are of the form Xλ =
⊕

µ cλ,µIλ,µ
for some cλ,µ ∈ R. In particular, they are diagonal in the Gelfand–Tsetlin basis, so X =∑

T∈Paths(A ) vT ε
A
T for some vT ∈ R for each path T . Moreover, all variables vT that correspond
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Symmetry Ansatz for X Formula for Nd
n,m Values of Nd

n,m

Full walled Brauer algebra Eq. (6.24) Eq. (6.23) Table 6.4
Sn × Sm Eq. (6.32) Eq. (6.35) Table 6.6
Gelfand–Tsetlin Eq. (6.27) Eq. (6.26) Table 6.5
Only unitary equivariance Eq. (6.21) dim(Ad

n,m) Table 6.7

Table 6.1: Summary of symmetries from Definition 6.3.1. For each symmetry, we provide
pointers to the corresponding ansatz for X, the number of variables Nd

n,m in this ansatz, and
tables for numerical values of Nd

n,m. Note that the ansatz (6.32) of X in case of the Sn × Sm
symmetry is valid only when m = 1; a similar formula can also be obtained for n = 1 as
explained just before Proposition 6.3.2.

to paths T that go through a fixed vertex at level n of the Bratteli diagram have the same
value (this vertex labels a simple Ad

n,0-module). Formally this means that vT = vS for every
T, S ∈ Paths(A ) such that the paths T and S in the Bratteli diagram of Ad

n,1 share the same
last edge, i.e., (T n, T n+1) = (Sn, Sn+1). In particular, if (T n, T n+1) = (µ, λ) then vT = cλ,µ. 2

The number of variables in this case is

Nd
n,m(Sn × Sm) :=

∑

λ∈Âd
n,m

µ⊢dn
ν⊢dm

(
mλ
µ,ν(d)

)2
. (6.35)

This number can be easily calculated numerically using the results of Section 6.A.1. The results
of this calculation for small d, n,m can be found in Section 6.A.3.

Summary

The chosen symmetry, together with unitary equivariance, guarantees that X can be expressed
as a linear combination of idempotents of the algebra Ad

n,m, see Eqs. (6.24), (6.27) and (6.32):

X =
n∑

i=1

viε
A
i , (6.36)

where the number of terms n is given by Eqs. (6.23), (6.26) and (6.35), respectively (see Table 6.1
for a summary). Since we effectively know the basis in which X is diagonal, the SDP reduces to
an LP. In particular, the scalars v1, . . . , vn ∈ R in Eq. (6.36) will be the variables of the output
LP produced by our algorithm. The number of variables n varies dramatically depending on
the chosen symmetry type, see Section 6.A.3.

6.3.2 Input specification

Our algorithm accepts a sparse SDP composed of the following objects:

1. n,m ⩾ 0 – the number of input and output systems,

2. d ⩾ 2 – the local dimension of (Cd)⊗n+m = Vin ⊗ Vout,

3. X ⪰ 0 – a Hermitian matrix variable acting on (Cd)⊗n+m that has to obey the Ud-
equivariance condition in Eq. (6.5),

4. (in)equality constraints that involve constant sparse matrices,
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5. a desired additional type of symmetry (see Section 6.3.1 for possible options) which guar-
antees that the problem reduces to an LP.

Our algorithm outputs an explicit LP, equivalent to the input one, whose size does not depend
on d and which can be further fed as an input to a standard LP solver. We are concerned only
with this pre-processing step and its complexity.

The input to our algorithm is an SDP in the following form:

max
X

Tr(CX)

s.t. Tr(AkX) ⩽ bk, ∀k ∈ [m1],

TrSk
(X) = Dk, ∀k ∈ [m2],[

X,U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ Ud,

X ⪰ 0,

(6.37)

where m1 and m2 denote the number of constraints that involve full trace and partial trace,
respectively. Recall from Eq. (6.5) that the penultimate condition is equivalent to unitary-
equivariance of the superoperator associated to X.

The Hermitian matrices C and Ak in Eq. (6.37) are constant and s-sparse, meaning that
they can be written as a linear combination of at most s terms, where each term is either
ψdn,m(σ) for some diagram σ of the walled Brauer algebra Bdn,m or an elementary standard basis
matrix whose all entries are 0 and only one entry is 1, i.e., |i⟩⟨j| for some i, j ∈ [d]n+m. Each Dk

is a Hermitian linear combination of at most s diagrams from the walled Brauer algebra Bdnk,mk

obtained by removing the nodes Sk ⊆ [n +m] from Bdn,m. The remaining number of nodes on
each side of the wall of Bdnk,mk

is nk := n − |Sk ∩ [n]| and mk := m − |(Sk − n) ∩ [m]|. The
total size of the input SDP in terms of the number of scalars needed to specify the matrices
C,Ak, Dk is 2

(1 +m1 +m2)s. (6.38)
The SDP may contain additional scalar variables that need not obey the unitary equivariance
condition. Such variables do not require any pre-processing by our algorithm, so they do not
incur additional costs in our setting.

If the input SDP contains partial trace constraints, our algorithm has the following technical
restriction: we require the local dimension d to be sufficiently large, namely

d ⩾ n+m−min
k

|Sk|. (6.39)

In particular, if X is a Choi matrix of a n → m channel and we include the partial trace
constraint TrVout(X) = IVin to capture trace preservation, we require that d ⩾ n. Due to this,
for example, we cannot apply our formalism to the setting of [BLMMO22] where d = 2 and
n is large. To remove this restriction, one would have to know the kernel of the map ψdn,m in
order to correctly process the partial trace constraints in the SDP (see Example 2.8.2 for an
instance where the kernel is non-trivial).

6.3.3. Remark. As outlined in Section 6.A.2, one way to obtain the kernel of ψdn,m is by
using the primitive idempotents εAT to compute the blocks of ψdn,m

(∑(n+m)!
j=1 bjσj

)
where bj are

symbolic variables and σj are walled Brauer diagrams. Equating these blocks to zero produces
linear equations in bj that reveal the linear dependencies among the matrices ψdn,m(σj). We
can store this information in a database and use it to reduce the complexity of multiplication
in the diagrammatic algebra Bdn,m, i.e., the preimage of Ad

n,m under ψdn,m. This can lead to an
improved complexity in our main result Theorem 6.3.4 since the complexity parameter N can
be lowered from (n+m)! to dim(Ad

n,m).
2For simplicity, we do not count the m2 additional parameters needed to specify the scalars bk and the

additional information needed to specify the subsets Sk in Eq. (6.37).



140 Chapter 6. Unitary-equivariant linear and semidefinite programming

6.3.3 Main result

The input to our algorithm is an SDP of the form (6.37) which involves a unitary-equivariant
constraint and has the following parameters:

• n and m – number of input and output systems,

• d – local dimension of each system,

• s – sparsity of matrices C,Ak, Dk,

• m1 – number of inequality constraints,

• m2 – number of equality constraints with partial trace.

We assume that n and m are small constants while d may generally be large. The complexity
of our algorithm will scale in (n + m)! but not d. This is in contrast to the naive approach
of solving an SDP with a matrix variable X of dimension dn+m. While the naive approach
quickly becomes impractical as d grows, our method does not suffer from this problem. In fact,
it even offers performance improvements for small d such as d = 2. Our algorithm requires
assuming that X has one of the symmetries listed in Section 6.3.1, which guarantees that the
SDP reduces to an LP.

The following is a formal statement of our main result.

6.3.4. Theorem. Any SDP of the form (6.37), where X has one of the symmetries listed in
Definition 6.3.1, can be converted to an equivalent LP with Ñ variables and m1 + m2N + Ñ
constraints. The number of variables Ñ := Nd

n,m(sym), which depends on n,m, d and the chosen
symmetry sym (see Table 6.1), can always be bounded as

Nd
n,m(sym) ⩽ dim(Ad

n,m) ⩽ (n+m)! =: N. (6.40)

The algorithm consists of two parts:

1. an input-independent pre-computation that needs to be done only once for each set of
parameters n,m, d, and whose complexity does not scale in d,

2. and SDP-to-LP conversion that takes time

(1 +m1 +m2)s · ÑN (6.41)

where (1 +m1 +m2)s is the size of the input SDP.

If d ⩾ n+m, the run-time of the pre-computation does not scale in d, while for small d < n+m
additional speedup is gained. If the SDP contains partial trace constraints, i.e., m2 > 0, we
require that d ⩾ n+m−mink |Sk|.

6.3.5. Remark. For the sake of simplicity we will ignore various details in our analysis. In
particular, we will assume that the following operations take constant time: multiplying two
walled Brauer algebra diagrams, contracting a diagram with a rank-1 matrix, or computing the
(partial) trace of a diagram. In reality the complexity of these operations scales with n +m,
which is small compared to our yardstick N = (n+m)!. Similarly, we will ignore the fact that
the input size scales as 2(n+m) log2 d when the SDP contains rank-1 matrices. Finally, we will
also ignore the fact that storing the value dloops(σ) requires (n+m) log2 d bits.
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Proof:
Our algorithm consists of two parts: (1) pre-computation of a database of Ad

n,m idempotents
and (2) processing the input SDP to an LP.

The pre-computation of a database of Ad
n,m idempotents can be done upfront since it depends

only on the parameters n,m, d but not the input SDP. The type of idempotents needed depends
on the specified symmetry type sym (see Section 6.3.1). In either case, they can be computed
diagrammatically using the DLS algorithm from Section 3.6. It produces a list of preimages
ε1, . . . , εn ∈ Bdn,m of Ad

n,m idempotents, with each εi expressed as a linear combination of walled
Brauer algebra diagrams σj3:

εi =

(n+m)!∑

j=1

αijσj. (6.42)

The resulting Ñ × (n+m)! coefficient matrix α is the output of the pre-computation step. By
construction, its entries are rational.

The second part of the algorithm requires a Ud-equivariant SDP as input and reduces it to
an explicit LP whose size is d-independent. The main idea of this algorithm is that we can
evaluate all traces appearing in Eq. (6.37) diagrammatically without ever explicitly computing
any of the dn+m × dn+m matrices involved (see Section 3.A.1). Let us discuss this step in more
detail.

Due to unitary equivariance and the additional symmetry sym, we can express the matrix
variable X as a linear combination of idempotents ψdn,m(εi) with unknown coefficients vi ∈ R
as in Eq. (6.36):

X =
Ñ∑

i=1

viψ
d
n,m(εi). (6.43)

These coefficients will be the variables of the output LP. The number Ñ = Nd
n,m(sym) of

variables vi and idempotent preimages εi depends on the type of symmetry (see Table 6.1 in
Section 6.3.1). Since ψdn,m(εi) ⪰ 0 and these idempotents are mutually orthogonal for different
i, the positive semidefinite constraint X ⪰ 0 reduces to

vi ⩾ 0, ∀i = 1, . . . , Ñ . (6.44)

For the target function and each of the constraints in Eq. (6.37), we can evaluate the corre-
sponding trace via diagram contraction. The main idea is to expand X as a linear combination
of ψdn,m(σj) using Eqs. (6.42) and (6.43):

X =
Ñ∑

i=1

vi

(n+m)!∑

j=1

αijψ
d
n,m(σj). (6.45)

Since the constant matrices C and Ak in Eq. (6.37) are s-sparse, they are already provided to
us as linear combinations of diagrams and elementary rank-1 matrices. Using these expansions
together with Eq. (6.45), we can diagrammatically evaluate all traces in Eq. (6.37) by linearity
(see Section 3.A.1 for more details).

In particular, the objective function can be written in terms of the LP variables vi as follows:

Tr(CX) =
Ñ∑

i=1

vi

(n+m)!∑

j=1

αij Tr
(
Cψdn,m(σj)

)
=

Ñ∑

i=1

vici = cTv (6.46)

3By knowing the kernel of ψd
n,m, we can express each εi more economically as εi =

∑m
j=1 αijσj where

m = dim(Ad
n,m) ⩽ (n+m)!.
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where c ∈ RÑ is a vector with entries

ci :=

(n+m)!∑

j=1

αij Tr
(
Cψdn,m(σj)

)
. (6.47)

Since C is s-sparse, we can use Proposition 3.A.1 in Section 3.A.1 to evaluate the trace. The
total time it takes to compute the vector c is

#i ·#j · s = ÑNs. (6.48)

Similarly, the k-th inequality constraint can be expressed as

Tr(AkX) = aTk v ⩽ bk (6.49)

where each ak ∈ RÑ is a vector with entries

(ak)i :=

(n+m)!∑

j=1

αij Tr
(
Akψ

d
n,m(σj)

)
. (6.50)

The total time it takes to compute the tensor a is

#k ·#i ·#j · s = m1ÑNs. (6.51)

Next, let us fix k and deal with the k-th partial trace equality constraint. First, we expand
the partial trace TrSk

(X) by linearity:

TrSk
(X) =

Ñ∑

i=1

vi

(n+m)!∑

j=1

αij TrSk

(
ψdn,m(σj)

)
. (6.52)

If σSk
j denotes the diagram σj with pairs of nodes in the set Sk that are opposite to each other

contracted, then the matrix corresponding to σj has partial trace

TrSk

(
ψdn,m(σj)

)
= dloopsSk

(σj)ψdnk,mk
(σSk

j ) (6.53)

where loopsSk
(σj) is the number of loops formed and (nk,mk) is the remaining number of

systems on each side of the wall, see Proposition 3.A.2 in Section 3.A.1. Substituting this into
Eq. (6.52),

TrSk
(X) =

Ñ∑

i=1

vi

(n+m)!∑

j=1

αijd
loopsSk

(σj)ψdnk,mk
(σSk

j ). (6.54)

We need to compare this to Dk and derive a set of linear constraints.
Since Dk is a linear combination of diagrams,

Dk =

(nk+mk)!∑

l=1

ekl ψ
d
nk,mk

(ρl) (6.55)

for some coefficients ekl ∈ R, where ρl ∈ Bdnk,mk
ranges over all walled Brauer algebra diagrams

on nk +mk = n+m− |Sk| nodes. Since σSk
j is a diagram in Bdnk,mk

,

ψdnk,mk
(σSk

j ) =

(nk+mk)!∑

l=1

δ(σSk
j , ρl)ψ

d
nk,mk

(ρl) (6.56)
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where δ denotes the Kronecker delta function. Substituting this in Eq. (6.54),

TrSk
(X) =

(nk+mk)!∑

l=1

Ñ∑

i=1

vi

(n+m)!∑

j=1

αijd
loopsSk

(σj)δ(σSk
j , ρl)ψ

d
nk,mk

(ρl). (6.57)

Because of the assumption (6.39) that d ⩾ n+m−mink |Sk|, the representation ψdnk,mk
is faithful

due to Theorem 3.4.1, and hence the matrices ψdnk,mk
(ρl) are linearly independent. Comparing

the coefficients at ψdnk,mk
(ρl) in Eqs. (6.55) and (6.57), we conclude that

Ñ∑

i=1

vi

(n+m)!∑

j=1

αijd
loopsSk

(σj)δ(σSk
j , ρl) = ekl. (6.58)

In other words, for every 1 ⩽ l ⩽ (nk +mk)! we get a linear constraint
n∑

i=1

vi(dkl)i = dTklv = ekl (6.59)

where each dkl ∈ RÑ is a vector with entries

(dkl)i :=

(n+m)!∑

j=1

αijd
loopsSk

(σj)δ(σSk
j , ρl). (6.60)

To compute all entries dkli of the above tensor, we can fix k and i and then evaluate the sum
over j. For each j, we determine l such that σSk

j = ρl and add the contribution αijd
loopsSk

(σj)

to the corresponding entry dkli. The total time it takes to perform this computation is

#k ·#i ·#j = m2 · Ñ · (n+m)! = m2ÑN. (6.61)

Combining everything together, the output of our algorithm is the following LP:

max
v

cTv

s.t. aTk v ⩽ bk, ∀k ∈ [m1],

dTklv = ekl, ∀k ∈ [m2], l ∈
[
(nk +mk)!

]
,

vi ⩾ 0, ∀i ∈ [Ñ ].

(6.62)

It has Ñ ⩽ N variables vi and

m1 +

m2∑

k=1

(nk +mk)! + Ñ ⩽ m1 +m2N + Ñ (6.63)

constraints. The total number of scalar constants needed to specify the tensors c, a, d appearing4

in this LP is
(1 +m1 +m2N)Ñ . (6.64)

The total amount of time it takes to compute these tensors is obtained by adding together
Eqs. (6.48), (6.51) and (6.61):

ÑNs+m1ÑNs+m2ÑN ⩽ (1 +m1 +m2)ÑNs. (6.65)

This completes the description and complexity analysis of our algorithm. 2

4The tensor e defined in Eq. (6.55) is already given to us as part of the input.
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6.3.6. Remark. Our proof did not use the assumption that the input matrices Dk are s-
sparse. This assumption only helps to keep the input SDP more compact and makes it easier
to compare its size to that of the output LP. The size of the problem description grows by a
factor of ÑN during the conversion.

6.3.7. Remark. Our framework can be straightforwardly generalised from SDPs of the form
(6.37) to the following slightly more general form:

max
X,x1,...,xM

c1x1 + · · ·+ cMxM

s.t. Tr(AkX) ⩽ x1ak1 + · · ·+ xMakM + bk, ∀k ∈ [m1],

TrSk
(ÃkX) = Dk, ∀k ∈ [m2],[

X,U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ Ud,

X ⪰ 0,

(6.66)

where Ak are constant s-sparse matrices that are provided as a linear combination of diagrams
and elementary rank-1 matrices, and Ãk, Dk are linear combinations of at most s walled Brauer
diagrams on registers that are left after tracing out systems Sk. We use this more general form
of SDPs in Section 6.5.2.

6.4 Simplifying unitary-equivariant SDPs
In this section, we make a step towards removing symmetry assumptions described in Section 6.2
and simplify the SDP defined in Eq. (6.2) directly to a smaller SDP. The key ingredient here is
trace calculations of matrix units (see Section 2.7.6) for the Ad

n,m algebra. Namely, the matrix
units ET,S that can be defined for a pair of paths T, S ∈ Paths(λ,A ) via mixed Schur transform
(see Chapter 3) as follows:

ET,S := U †
Sch(n,m)

( ⊕

µ∈Âd
n,m

δλµ|T ⟩⟨S| ⊗ Imλ

)
USch(n,m), (6.67)

where mλ is the dimension of the Weyl module λ of Ud, Imλ
=
∑

M∈GT(λ,d)|M⟩⟨M | is the
identity matrix on the unitary irrep register for irrep λ. These matrix units form a basis of
Ad
n,m and span the whole algebra:

Ad
n,m = spanC

{
ET,S

∣∣∣ λ ∈ Âd
n,m, S, T ∈ Paths(λ,A )

}
. (6.68)

One can think about matrix units as tensor networks obtained from the matrix product state
representation of mixed Schur basis vectors from Lemma 4.2.1, see Fig. 6.1. Notice that the
trace of a matrix unit for T, S ∈ Paths(λ,A ) is

Tr(ET,S) = δT,Smλ, (6.69)

and their product satisfies
ES,T · ET ′S′ = δT,T ′ES,S′ . (6.70)

Thanks to mixed Schur–Weyl duality (see Chapter 3), the unitary equivariance constraint
on a matrix X ∈ End((Cd)⊗n+m) implies that it can be written as a linear combination of the
matrix units of the matrix algebra Ad

n,m, i.e.,

X =
∑

λ∈Âd
n,m

∑

S,T∈Paths(λ,A )

xS,TES,T (6.71)

for some coefficients xS,T ∈ C.
Therefore, to simplify the full and partial trace constraints in Eq. (6.37) we need to under-

stand how to compute traces of matrix units.
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T 1

T 2

Tn+m−1

S1

S2

Sn+m−1

Tn+m

x1

x2

x3

xn+m−1

xn+m

y1

y2

y3

yn+m−1

yn+m

Figure 6.1: Pictorial representation of the matrix unit ET,S from Eq. (6.67) as a tensor network,
where T, S ∈ Paths(λ,A ) for some λ ∈ Âd

n,m. The strings x1, . . . , xn+m ∈ [d] and y1, . . . , yn+m ∈
[d] index rows and columns of ETS as a matrix in the standard computational basis of (Cd)⊗n+m.

6.4.1 Full trace

In this section, we present methods to efficiently compute the trace Tr(Y X) of the product of
two matrices X and Y , where X is of the form (6.71) and Y is assumed to be of one of three
special forms: it is either a matrix unit ES,T of Ad

n,m, a matrix unit |I⟩⟨J | of End((Cd)n+m), or
ψdn,m(π), where π is a walled Brauer diagram.

First, consider the case when the matrix Y is a matrix unit, i.e. Y = ES,T for some S, T ∈
Paths(λ,A ). As the matrix X is of the form (6.71), by elementary properties of matrix units,

Tr(Y X) =
∑

T ′,S′

xT ′,S′ Tr(ES,TET ′,S′) = xT,S ·mλ. (6.72)

Next, consider the case when the matrix Y is written in the computational basis and has
only a single non-zero entry, i.e. Y = |I⟩⟨J | for some strings I = (i1, . . . , in+m) ∈ [d]n+m and
J = (j1, . . . , jn+m) ∈ [d]n+m. To compute the trace Tr(Y X), we need to rewrite the entries of
the matrix X from (6.71) in the computational basis by applying mixed Schur transform:

Tr(|I⟩⟨J |X) = ⟨J |X|I⟩
=

∑

λ∈Âd
n,m

∑

S,T∈Paths(λ,A )

xTS
∑

M∈GT(λ,d)

⟨J |U †
Sch(n,m)|(T,M)⟩⟨(S,M)|USch(n,m)|I⟩. (6.73)

Using previously derived form of mixed Schur transform in Eq. (4.17), the computation of
⟨(T,M)|USch(n,m)|I⟩ = ⟨I|U †

Sch(n,m)|(T,M)⟩ is reduced to the multiplication of Clebsch–Gordan
matrices:

⟨I|U †
Sch(n,m)|(T,M)⟩ =

{
⟨M |Cin+m,w(in+m−1,...,i1)

Tn+mTn+m−1 · · ·Ci2
T 2T 1|i1⟩ w(I) = w(M),

0 w(I) ̸= w(M),
(6.74)

where |M⟩ is a Gelfand–Tsetlin basis vector for the Weyl module λ and the Clebsch–Gordan
matrices were defined in Eqs. (4.16) and (4.17). Notice that

∑
M∈GT(λ,d)|M⟩⟨M | = Imλ

, hence
we can rewrite Eq. (6.73) as

⟨J |X|I⟩ =
∑

S,T

xS,T ⟨j1|
(
Ci2
S2S1

)† · · ·
(
C
jn+m,w(jn+m−1,...,j1)

Sn+mSn+m−1

)†
C
in+m,w(in+m−1,...,i1)

Tn+mTn+m−1 · · ·Ci2
T 2T 1|i1⟩

(6.75)
when the weights of the strings I, J are the same, i.e. w(I) = w(J); when w(I) ̸= w(J)
then ⟨J |X|I⟩ = 0. As it we demonstrated in Section 4.2.1, the Clebsch–Gordan matrices in the
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above equations have dimensions given the by Kostka numbers KT (k),w(ik,...,i1)
and KS(k),w(jk,...,j1)

respectively, and the complexity of computing the coefficients in Eq. (6.75) is (n+m)O(d2).
Finally, consider the case when the matrix Y is an image of a single Brauer diagram π ∈ Bdn,m,

i.e. Y = ψdn,m(π) ∈ Ad
n,m. In order to compute the trace Tr(ψdn,m(π)X), we shall compute the

matrix entries of ψdn,m(π) in the Gelfand–Tsetlin basis of all irreducible representations of Ad
n,m.

For this purpose, we shall present the diagram π ∈ Bdn,m in terms of the generators σi ∈ Bdn,m
of the walled Brauer algebra Bdn,m. Assume that the diagram π has exactly k contractions. By
applying certain permutations σul , σdl ∈ Sn and σur , σ

d
r ∈ Sm acting on the left and rights sides

of the diagram π, it can be represented as

π = (σul × σur )τk(σ
d
l × σdr ) (6.76)

where τk is defined in Eqs. (3.15) and (3.16).
As σul , σdl ∈ Sn, they might be written as a product of at most n2 transposition generators σi

of the algebra Bdn,m, and similarly σur , σdr ∈ Sm can be written as a product of m2 transposition
generators. Furthermore, the diagram τk can be decomposed into the generators σi of the
algebra Bdn,m as follows:

τk = (σnσn+1 · · ·σn−k+1 · · ·σn−1σn+k−1) · · · (σnσn+1σn+2σn−1σn−2)(σnσn+1σn−1)σn (6.77)

which is of length k2. Altogether, the decomposition of an arbitrary diagram π into generators
of the algebra Bdn,m requires O((n+m)2) multiplications of these generators. We shall multiply
these generators separately in the Gelfand–Tsetlin basis for each irreducible representation
related to λ ∈ Âd

n,m. Such multiplication has a complexity O(d3λ), where dλ is the dimension of
the irreducible representation of Ad

n,m corresponding to λ. Since

dimAd
n,m =

∑

λ∈Âd
n,m

d2λ, (6.78)

the complexity of computing the aforementioned product of generators is O
((
dimAd

n,m

)3/2).
Combining everything together, the total complexity of computing all matrix elements of

ψdn,m(π), i.e. computing ⟨S|ψλ(π)|T ⟩ for all λ ∈ Âd
n,m and S, T ∈ Paths(λ,A ), is

O
(
(n+m)2

(
dimAd

n,m

)3/2)
.

Note that having the matrix elements ⟨S|ψλ(π)|T ⟩ allows us to write

Tr(Y X) = Tr
(
ψdn,m(π)X

)
(6.79)

=
∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)

⟨S|ψλ(π)|T ⟩Tr(ES,TX) (6.80)

=
∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)

⟨S|ψλ(π)|T ⟩ · xT,S ·mλ. (6.81)

6.4.2 Partial trace

In this section, we present methods to efficiently compute the partial trace TrS(XY ) of a
product of two matrices where X is presented as a linear combination of the matrix units
(6.71), and Y is also of one of the special forms mentioned in Section 6.4.1. For simplicity, we
assume that the traced-out systems are always the last systems, i.e. we compute TrSk

(X) for
sets Sk := {k + 1, . . . , n +m} for arbitrary k such that 1 ⩽ k ⩽ n +m − 1. In this case, we
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can use the following general result by Ram and Wenzl [RW92], which we adopt to our setting
of algebras Ad

n,m
5.

6.4.1. Lemma ([RW92]). Consider any irreducible representation λ ∈ Ad
n,m, two paths S, T ∈

Paths(λ,A ) and the corresponding matrix unit ES,T . One can decompose the paths S, T with
respect to the last system, i.e. write S = S̄ → λ and T = T̄ → λ, where S̄ ∈ Pathsn+m−1(µ,A )
and T̄ ∈ Pathsn+m−1(µ

′,A ) where Sn+m−1 = µ and T n+m−1 = µ′. Then the partial trace of the
last system for the matrix unit ES,T is

Trn+mES,T =

{
mλ

mµ
ES̄,T̄ µ = µ′,

0 µ ̸= µ′,
(6.82)

where mλ,mµ are dimensions of the corresponding Weyl modules.

For simplicity of notation, in this subsection, we rewrite the sequence of inclusions among
the algebras Ad

k defined in Eq. (3.47) in the following way:

Ad
0 ↪→ Ad

1 ↪→ · · · ↪→ Ad
n+m−1 ↪→ Ad

n+m, (6.83)

i.e. Ad
k := Ad

k,0 for k ⩽ n and Ad
k := Ad

n,k−n for k ⩾ n.
First, consider the case when Y = I is the identity matrix. Applying Lemma 6.4.1 recur-

sively, we have

TrSk
(X) =

∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)

xS,T Trk Trk+1 . . .Trn+mES,T (6.84)

=
∑

µ∈Âd
k

∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)
Sk=Tk=µ

∀i⩾k :Si=T i

xS,T
mλ

mµ

ES̄,T̄ , (6.85)

where S̄, T̄ ∈ Pathsk(µ) are truncations of S, T ∈ Paths(λ) to the first k levels of the Bratteli
diagram A .

Second, consider the case when the matrix Y = ES′,T ′ is a matrix unit for some S ′, T ′ ∈
Paths(λ,A ). By elementary properties of matrix units and by applying Lemma 6.4.1 recur-
sively, we have

TrSk
(ES′,T ′X) =

∑

T∈Paths(λ)

xT ′,T TrSk
(ES′,T ) =

∑

µ∈Âd
k

∑

T∈Paths(λ)
Tk=µ

∀i⩾k :T i=S′i

xT ′,T
mλ

mµ

ES̄′,T̄ (6.86)

where S̄ ′, T̄ ∈ Pathsk(µ,A ) are truncations of S ′, T ∈ Paths(λ,A ) respectively to the first k
levels of the Bratteli diagram A .

Finally, consider the case where the matrix Y is the image of a single Brauer diagram
π ∈ Bdn,m, i.e. Y = ψdn,m(π) ∈ Ad

n,m. In Section 6.4.1 we showed how to compute all matrix
entries of ψdn,m(π) in all irreducible representations, i.e., how to compute ⟨S|ψλ(π)|T ⟩ in time
O
(
(n +m)2

(
dimAd

n,m

)3/2). Having done so, we can use the same method as in Section 6.4.2

5In fact, it should be possible to adapt the same result for computing the partial trace over all types of
subsystems S ⊂ [n+m]. Indeed, one can “SWAP” any two given subsystems using the so-called 6j-symbol. In
this way, the desired subsystems of S can be effectively swapped to the last positions.
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to compute the partial trace:

TrSk
(Y X) = TrSk

(ψdn,m(π)X) =
∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)

⟨S|ψλ(π)|T ⟩TrSk
(ES,TX) (6.87)

=
∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)

⟨S|ψλ(π)|T ⟩
∑

µ∈Âd
k

∑

T ′∈Paths(λ)
Sk=T ′k=µ

∀i⩾k :T ′i=Si

xT,T ′
mλ

mµ

ES̄,T̄ ′ (6.88)

=
∑

µ∈Âd
k

∑

λ∈Âd
n,m

∑

S,T∈Paths(λ)

∑

T ′∈Paths(λ)
Sk=T ′k=µ

∀i⩾k :T ′i=Si

xT,T ′⟨S|ψλ(π)|T ⟩
mλ

mµ

ES̄,T̄ ′ . (6.89)

6.4.3 Main result

Now we are ready to state the main result of the section. Consider the following class of SDPs,
which is a slightly modified version of Eq. (6.37):

max
X

Tr(CX)

s.t. Tr(AkX) ⩽ bk, ∀k ∈ [m1],

TrSik
(DkX) = Bk, ∀k ∈ [m2],[

X,U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ Ud,

X ⪰ 0,

(6.90)

The matrices Ak, Dk, C are Hermitian, and we consider only a specific choice of the sets Sik ,
namely Sik := {ik, . . . , n+m}. In order to make the optimisation problem tractable, we make
some additional assumptions on the form and sparseness of matrices Ak, C,Dk, Bk in the original
problem. Hence, we analyse some particular cases in which the aforementioned matrices are
given in one of the following forms:

1. they are arbitrary linear combinations of matrix units of Ad
n,m,

2. they are sparse linear combinations of computational basis matrix units,

3. they are sparse linear combinations of diagrams that span Bdn,m.

The main result of this section (Theorem 6.4.2) characterises the complexity of rewriting the
constraints in (6.90) into the mixed Schur basis, which allows to translate the input problem
in Eq. (6.90) into the following equivalent SDP problem:

max
{xS,T }

fC({xS,T})

s.t. fAk
({xS,T}) ⩽ bk, ∀k ∈ [m1],

gQ,RDk,Bk
({xS,T}) = 0, ∀k ∈ [m2], ∀µ ∈ Âd

ik
, ∀Q,R ∈ Pathsik(µ,A )

Xλ ⪰ 0,

(6.91)

where Xλ :=
∑

S,T∈Paths(λ,A ) xS,TES,T is an λ irrep block of X, and fC , fAk
, gQ,RDk,Bk

are some
affine functions depending on indicated matrices and paths Q,R ∈ Pathsik(µ,A ). The above
optimisation problem has dim(Ad

n,m) =
∑

λ∈Âd
n,m

d2λ degrees of freedom. For comparison, the
original optimisation problem has d2(n+m) degrees of freedom.
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First, notice that if all matrices C,Ak, Dk, Bk are written as linear combinations of matrix
units ES,T , the optimisation problem (6.37) can be rewritten to the form (6.91) trivially. Fur-
thermore, we can use the methods presented in Sections 6.4.1 and 6.4.2 to efficiently compute
full and partial traces of products of matrices of different forms. Indeed, summarising the results
from Sections 6.4.1 and 6.4.2, we obtain the following easy generalisation of Theorem 6.3.4:

6.4.2. Theorem. The computational complexity of rewriting the input SDP (6.37) with O(d2(n+m))
variables to the reduced SDP (6.91) with O(dim(Ad

n,m)) variables is

• poly(s,m1,m2, dimAd
n,m) if C,Ak, Dk, Bk are given as s-sparse linear combinations of

matrix units ES,T of Ad
n,m, or are the identity matrix,

• poly(s,m1,m2, (n + m)d(d+1)/2, dimAd
n,m) if C,Ak are given as s-sparse linear combina-

tions of computational basis matrix units, while the matrices Dk, Bk are s-sparse linear
combinations of matrix units ES,T ,

• poly(s,m1,m2, n+m, dimAd
n,m) if C,Ak, Dk are s-sparse linear combinations of diagrams

in Bdn,m and Bk is s-sparse linear combination of diagrams in Bdik , see Eq. (3.46).

The proof of this theorem is essentially identical to Theorem 6.3.4: we expand the full and
partial trace constraints in Eq. (6.90) by linearity according to Sections 6.4.1 and 6.4.2 and
use the derived complexities to evaluate the respective coefficients in the linear constraints of
Eq. (6.91). In all cases, the complexity scales polynomially with the total system size n +m
when the local dimension d is constant. However, since the complexities scale with dim(Ad

n,m), it
implies that the scaling in the parameter n+m would be superpolynomial, as dim(Ad

n,m) scales
superpolynomially in n+m for constant d. On the other hand, because the complexities depend
on dim(Ad

n,m) rather than dim(Bdn,m) = (n+m)!, this can make a significant difference for small
values of the local dimension d. Note that the difference in scaling between dim(Ad

n,m) and
dim(Bdn,m) arises from expressing the matrix variable as a formal linear combination of matrix
units ES,T instead of walled Brauer algebra diagrams.

The purpose of Theorem 6.4.2 is to show that there are certain regimes where this reformu-
lation is feasible and could lead to numerical solutions of SDPs that were previously impossible
to solve. We illustrate the potential of our results (Theorems 6.3.4 and 6.4.2) with several
example applications in Section 6.5.

6.5 Applications
In this section, we discuss several applications of our framework, focussing on four natural
unitary-equivariant problems in quantum information theory: deciding the principal eigenvalue
of a quantum state, quantum majority vote, asymmetric cloning, and transposition of a black-
box unitary operation (they are inspired by [KW01a], [BLMMO22], [NPR21], and [QE21],
respectively). These are only meant as toy examples that illustrate how our framework can be
easily applied to a variety of problems, and hence we do not attempt to derive full analytical
solutions. Similarly, this list of applications is by no means exhaustive. Other potential ap-
plications (within quantum information) include entanglement witness construction [BSH24],
and quantum error-correction [KL22] and machine learning [QE21; ZLLSK23]. The four main
applications mentioned above are discussed in separate sections below.

6.5.1 Deciding the principal eigenvalue

This application is inspired by the problem of estimating the spectrum of a given quantum state
[KW01a]. Let ρ be a d-dimensional quantum state that is picked from some unitary-invariant
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measure. Given ρ⊗n and a threshold value c ∈ [1/d, 1], the problem is to decide whether
λmax < c or λmax ⩾ c, where λmax is the principal eigenvalue of ρ.

For concreteness, we assume that ρ is produced by choosing a uniformly random pure state
in Cd ⊗ Ck and discarding the ancillary k-dimensional system. This guarantees that ρ has a
unitary-invariant measure. Moreover, the eigenvalues λ = (λ1, . . . , λd) of such ρ have the same
probability density as those of a normalised Wishart matrix [Nec07, Proposition 4]:

µd,k(λ1, . . . , λd) :=
1√
d
Cd,kV (λ)2

d∏

i=1

λk−di (6.92)

where Cd,k is a normalisation constant and V (λ) is the Vandermonde determinant:

Cd,k :=
Γ(dk)∏d−1

j=0 Γ(d+ 1− j)Γ(k − j)
, V (λ) :=

∏

1⩽i<j⩽d

(λi − λj). (6.93)

The 1/
√
d factor in Eq. (6.92) accounts for the fact that (unlike in [Nec07]) we treat all λ1, . . . , λd

as independent variables. The density µd,k is normalised to 1 on the standard probability
simplex

∆d−1 := {(λ1, . . . , λd) : λ1 + · · ·+ λd = 1, λ1, . . . , λd ⩾ 0}. (6.94)

Any strategy for this problem can be described by a two-outcome measurement with oper-
ators P,Q ⪰ 0 such that P + Q = Idn , where P and Q correspond to outcomes λmax < c and
λmax ⩾ c, respectively. The optimal probability of distinguishing the two cases correctly is

pnd,k(c) = min
U∈Ud

max
P,Q⪰0
P+Q=I

(6.95)

(∫

λ∈∆d−1

µd,k(λ) Tr
[
ρ(λ, U)⊗n

(
δ
(
1
d
⩽ λmax < c

)
P + δ(c ⩽ λmax ⩽ 1)Q

)])
,

where ρ(λ, U) := U diag(λ)U † and δ denotes the indicator function for the corresponding sub-
region of ∆d−1.

To simplify this expression, we focus on the trace. Using the cyclic property, we can move
the unitary dependence from ρ onto P and Q:

Tr
[
diag(λ)⊗n

(
δ
(
1
d
⩽ λmax < c

)
U †⊗nPU⊗n + δ(c ⩽ λmax ⩽ 1)U †⊗nQU⊗n

)]
. (6.96)

Then, by twirling over Ud, we can turn the worst case probability into the average case and
thus remove the minimisation over U in Eq. (6.95) altogether. Hence, without loss of generality
P,Q ∈ Ad

n,0 in an optimal strategy, i.e., they can be written as linear combinations of n-qudit
permutations. Moreover, since ρ(λ, U)⊗n is invariant under qudit permutations, we can also
twirl P and Q over Sn. Hence, we can write P as a non-negative linear combination of primitive
central idempotents of Ad

n,0, see Eq. (6.36), and set Q = Idn − P .
With these simplifications, we can evaluate the trace in Eq. (6.96) diagrammatically, giving

us a polynomial in the eigenvalues λi. Plugging this back into Eq. (6.95) allows us to evaluate
the integral over λ. The resulting expression depends only on the decomposition of P into
idempotents. This reduces the problem from an SDP to an LP, where we only need to optimise
the weights in the decomposition of P . The following example provides an explicit formula for
pnd,k(c), for a specific combination of parameters, obtained using this procedure.
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6.5.1. Example (n = 3, d = 2, k = 2). An exact formula for the success probability as a func-
tion of the threshold value c in this case is given by

p32,2(c) :=





2(1− c)(4c2 − 2c+ 1) if c ∈ [1/2, c1],
7
5
− 6

5
c(16c4 − 40c3 + 40c2 − 20c+ 5) if c ∈ [c1, c2],

(2c− 1)3 if c ∈ [c2, 1],

(6.97)

where c1 ≈ 0.821569391 and c2 ≈ 0.913830846 are roots of the polynomials 96x5 − 240x4 +
200x3 − 60x2 +3 and 24x5 − 60x4 +70x3 − 45x2 +15x− 3, respectively. A plot of the function
p32,2(c) is shown in Fig. 6.2. Note that p32,2(1/2) = p32,2(1) = 1 since the problem of deciding
the largest eigenvalue becomes trivial for extreme values of c. The success probability p32,2(c) is
always at least p32,2(c2) ≈ 0.566968020 and never below the trivial n = 1 lower bound

p12,2(c) := max{2(1− c)(4c2 − 2c+ 1), (2c− 1)3} (6.98)

whose minimum is 1/2 at c = 1
2
+ 1

24/3
. Using the same procedure, we also obtained explicit

expressions for pn2,2(c) with n = 1, . . . , 8. Their plots are shown in Fig. 6.3.
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Figure 6.2: Plot of the success probability p32,2(c) from Eq. (6.97) as a function of c ∈ [1/2, 1].
The gray curves represent the trivial lower bound from Eq. (6.98) obtained by setting n = 1.

0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.7

0.8

0.9

1.0

Figure 6.3: Plots of pn2,2(c) for n = 1, . . . , 8 (darker lines correspond to larger values of n). As
n gets larger, the curves move upwards and the number of their segments increases.
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6.5.2 Quantum majority vote

This application of our framework is inspired by the work of [BLMMO22] on optimal unitary-
equivariant quantum channels for evaluating permutation-equivariant and symmetric Boolean
functions.

As usual, let n,m ⩾ 0 denote the number of inputs and outputs, and let d ⩾ 2 denote their
dimension. We are interested in functions of the form f : [d]n → [d]m, or more generally in
multi-valued functions or relations f ⊆ [d]n × [d]m.

We call f equivariant with respect to the symmetric group Sd on the alphabet [d] if f(π ·x) =
π ·f(x) for every π ∈ Sd, where π ·(x1, . . . , xn) := (π(x1), . . . , π(xn)) for all x1, . . . , xn ∈ [d] (this
is a classical analogue of Definition 6.2.1). We say that f is symmetric if its inputs and outputs
have Sn × Sm permutation symmetry, i.e., if f(π ◦ x) = σ ◦ f(x) for every (π, σ) ∈ Sn × Sm,
where π ◦x := (xπ−1(1), . . . , xπ−1(n)) and σ ◦ f(x) is defined similarly (this is a classical analogue
of Definition 6.2.3).

The most important example of an equivariant and symmetric function is the majority vote
function f : [d]n → [d] that outputs the most frequently occurring input symbol. Since, in
general, this symbol may not be unique, we prefer to think of f ⊆ [d]n × [d] as a relation.
One can also consider generalisations with m ⩾ 1 where the m most popular symbols must be
output in any order.

A natural quantum generalisation of an equivariant function f is a unitary-equivariant map
Ψf : End(Vin) → End(Vout) such that Ψf (|x⟩⟨x|) = |f(x)⟩⟨f(x)| for all x ∈ [d]n. In case of
a multi-valued function f , the ideal quantum map can be taken as Ψf (|x⟩⟨x|) = Πf(x), where
Πf(x) :=

∑
y∈f(x)|y⟩⟨y| is the rank-|f(x)| orthogonal standard basis projector on all valid output

states. Note that the ideal map Ψf may not be a quantum channel in general.
Given a classical Sd-equivariant and Sn × Sm symmetric relation f ⊆ [d]n × [d]m, we would

like to find a unitary-equivariant n → m quantum channel Φf that approximates the ideal
functionality. Namely, one that maximises the worst-case fidelity

min
x∈[d]n

Tr
(
Φf (|x⟩⟨x|)Πf(x)

)
. (6.99)

We can formulate this as an SDP for computing the worst-case fidelity F ∈ R of an optimal
quantum channel represented by its Choi matrix X ∈ End((Cd)⊗n+m):

max
X,F

F

s.t. Tr
(
X
(
|x⟩⟨x| ⊗ Πf(x)

))
⩾ F, ∀x ∈ [d]n,

TrVout(X) = IVin ,[
X,U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ Ud,

X ⪰ 0.

(6.100)

As a generalisation of [BLMMO22], we consider the majority relation on any alphabet [d]
with d ⩾ 3. For simplicity, we restrict ourselves to the case of n = 3 inputs (and m = 1
outputs). In this case the majority relation for any d ⩾ 3 is fully defined by

111 7→ 1,

112 7→ 1, (6.101)
123 7→ 1, 2, 3,

which are extended to the whole domain using symmetry and equivariance. These rules cover
three distinct cases: when all three inputs are equal, when one of them is different, and when
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all three are different. Since there is no clear majority in the last case, the relation can output
any of the three symbols.

For quantum majority vote with n = 3, m = 1, and d ⩾ 3 the symmetries of the Choi
matrix X of the optimal quantum channel Φf allow us to reduce the SDP (6.100) to an LP
using the ansatz (6.36) for X:

X =

N(d)∑

i=1

viε
A
Ti
, (6.102)

where εTi are primitive idempotents that correspond to distinct root-leaf paths Ti in the Bratteli
diagram of Ad

3,1, and N(d) := Nd
3,1(GT) is the total number of such paths, see Eq. (6.26). Based

on Eq. (6.101), which defines the majority relation on three symbols, the resulting LP for any
d ⩾ 3 has the following form:

max
F,v1,...,vN(d)

F

s.t.
N(d)∑

i=1

vi⟨111, 1|εATi |111, 1⟩ ⩾ F,

N(d)∑

i=1

vi⟨112, 1|εATi |112, 1⟩ ⩾ F,

N(d)∑

i=1

vi

3∑

y=1

⟨123, y|εATi|123, y⟩ ⩾ F,

N(d)∑

i=1

viTrVout ε
A
Ti
= IVin ,

vi ⩾ 0, ∀i ∈ [N(d)],

vi = vj whenever Ti and Tj share the same last edge.

(6.103)

The last condition is a consequence of Proposition 6.3.2 and ensures Sn × S1 symmetry of the
majority relation. Enforcing this symmetry effectively decreases the number of variables in
the LP (6.103) from N(d), which corresponds to the Gelfand–Tsetlin symmetry, to the smaller
value of Nd

3,1(S3×S1) (see Eq. (6.35)) that corresponds to the S3×S1 symmetry. Explicit values
of these numbers can be found in Tables 6.5 and 6.6 in Section 6.A.3.

The LP (6.103) can be solved exactly and the optimal fidelity turns out to be F = 8/9 for
all d ⩾ 2, thus extending the d = 2 result of [BLMMO22].

6.5.3 Asymmetric cloning

In this section, we provide an example of how our approach based on primitive idempotents
can be used to solve a general unitary-equivariant SDP that does not reduce to an LP. This
example is based on the problem of asymmetric cloning from [NPR21; NPR23]. The problem is
to find a 1 → m quantum channel Φ: End(Cd) → End(Vout) whose marginals Φi := Tr[m]\{i}◦Φ
satisfy

Φi(ρ) = piρ+ (1− pi)
I

d
(6.104)

for all i ∈ [m] and states ρ ∈ D(V ) where V = Cd. We consider the case m = 3 with d = 2 and
d = 3, and plot the set of triples (p1, p2, p3) in Eq. (6.104) that are physically realizable. Note
that this set is invariant under permutations of pi.
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According to [NPR21], the Choi matrix XΦ of the channel Φ is a linear combination of
partially transposed permutation matrices, i.e., XΦ ∈ Ad

1,m. We can use the primitive idem-
potents from Eq. (3.65) to construct the blocks XΦ

λ without explicitly computing the Schur
transform USch(n,m), see Section 6.A.2 for more details. The resulting blocks are then subject
to positive semidefinite and trace constraints. In this way we can formulate the question of
physical realizability of the channel Φ as a semidefinite feasibility problem.

Two examples of SDPs resulting from this procedure are given below. They characterise
asymmetric 1 → 3 cloning in dimensions d = 2 and d = 3. Here we denote for brevity X i := XΦ

λi

for every λi ∈ Âd
1,m.

6.5.2. Example (m = 3 and d = 2). Positive semidefinite constraints:

(
X1

1,1

)
⪰ 0,

(
X2

1,1 X2
1,2

X2
2,1 X2

2,2

)
⪰ 0,



X3

1,1 X3
1,2 X3

1,3

X3
2,1 X3

2,2 X3
2,3

X3
3,1 X3

3,2 X3
3,3


 ⪰ 0. (6.105)

Trace constraint:

5X1
1,1 +X2

1,1 +X2
2,2 + 3X3

1,1 + 3X3
2,2 + 3X3

3,3 = 2. (6.106)

Expressions for realizable triples (p1, p2, p3):

p1 =
1

3

(
3X3

1,1 +X2
1,1 + 5X1

1,1 + 3X3
2,2 + 9X3

3,3 + 3X2
2,2 − 3

)
, (6.107)

p2 =
1

6

(
6X3

1,1 + 5X2
1,1 + 10X1

1,1 + 15X3
2,2 + 3

√
3X3

2,3 + 3
√
3X3

3,2 (6.108)

+ 9X3
3,3 +

√
3X2

1,2 +
√
3X2

2,1 + 3X2
2,2 − 6

)
,

p3 =
1

6

(
14X3

1,1 + 5X2
1,1 + 10X1

1,1 + 2
√
2X3

1,2 + 2
√
2X3

2,1 + 7X3
2,2 (6.109)

+ 9X3
3,3 + 2

√
6X3

1,3 + 2
√
6X3

3,1 +
√
3X3

2,3 +
√
3X3

3,2 −
√
3X2

1,2

−
√
3X2

2,1 + 3X2
2,2 − 6

)
.

The feasible region for (p1, p2, p3) is shown in Fig. 6.4.

6.5.3. Example (m = 3 and d = 3). Positive semidefinite constraints:
(
X1

1,1

)
⪰ 0,

(
X2

1,1 X2
1,2

X2
2,1 X2

2,2

)
⪰ 0,



X3

1,1 X3
1,2 X3

1,3

X3
2,1 X3

2,2 X3
2,3

X3
3,1 X3

3,2 X3
3,3


 ⪰ 0,



X4

1,1 X4
1,2 X4

1,3

X4
2,1 X4

2,2 X4
2,3

X4
3,1 X4

3,2 X4
3,3


 ⪰ 0. (6.110)

Trace constraint:

X4
1,1 + 2X3

1,1 + 5X2
1,1 + 8X1

1,1 +X4
2,2 +X4

3,3 + 2X3
2,2 + 2X3

3,3 + 5X2
2,2 = 1. (6.111)
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Expressions for realizable triples (p1, p2, p3):

p1 =
1

8

(
3X4

1,1 + 6X3
1,1 + 15X2

1,1 + 24X1
1,1 + 3X4

2,2 (6.112)

+ 12X4
3,3 + 6X3

2,2 + 24X3
3,3 + 15X2

2,2 − 4
)
,

p2 =
1

8

(
3X4

1,1 + 6X3
1,1 + 15X2

1,1 + 24X1
1,1 + 11X4

2,2 + 2
√
2X4

2,3 + 2
√
2X4

3,2 (6.113)

+ 4X4
3,3 + 22X3

2,2 + 4
√
2X3

2,3 + 4
√
2X3

3,2 + 8X3
3,3 + 15X2

2,2 − 4
)
,

p3 =
1

8

(
9X4

1,1 + 21X3
1,1 + 15X2

1,1 + 24X1
1,1 + 8X3

3,3 + 15X2
2,2 (6.114)

+ 5X4
2,2 + 7X3

2,2 + 4X4
3,3 + 2

√
3X4

1,2 + 2
√
3X4

2,1 − 4

−
√
2X4

2,3 −
√
2X4

3,2 −
√
6X4

3,1 −
√
6X4

1,3 +
√
15X3

1,2

+
√
15X3

2,1 +
√
30X3

3,1 +
√
30X3

1,3 +
√
2X3

2,3 +
√
2X3

3,2

)
.

The feasible region for (p1, p2, p3) is shown on th right in Fig. 6.4.

Figure 6.4: Plot of the feasible region for (p1, p2, p3) in the asymmetric cloning SDP for m = 3,
d = 2 (left) and m = 3, d = 3 (right).

6.5.4 Universal transposition of unitaries

Following the work of [QE21] and others [QDSSM19b; QDSSM19a; YSM23b; YSM23a; Ebl+23],
we present another application of our method—transforming a black-box unitary operation.
Consider the following general problem: given n copies of an unknown d-dimensional unitary
U , the task is to find a universal protocol that implements f(U), where f is some function of
U . This protocol can be either deterministic or probabilistic, depending on whether it always
succeeds or not, and either exact or non-exact, depending on the channel fidelity between the
ideal channel and the one implemented by the protocol. In particular, we focus on the deter-
ministic case where f(U) = UT. Our main result in this section is the existence of an exact
and deterministic protocol which transforms 4 copies of a black-box single-qubit unitary U into
f(U) = UT. This result is similar to the work [YSM23a], which proves the same claim for
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the function f(U) = U−1. For more detailed background on this topic, we refer the reader
to [QE21; YSM23a]; here we only introduce the necessary ingredients needed to describe our
approach.

Following previous work, we use the formalism of quantum superchannels. We search for
a deterministic sequential protocol accomplishing our task by expressing it as a quantum se-
quential superchannel [QE21]. A quantum superchannel is a linear map C : ⊗n

i=1

(
End(Ii) →

End(Oi)
)
→
(
End(P) → End(F)

)
that transforms n quantum channels into a new quantum

channel. Here the spaces Ii = Oi = P = F = Cd correspond to the inputs Ii and outputs Oi of
the i-th copy of the channel U(ρ) := UρU † associated with the unknown input unitary U , and
P and F are the input and output spaces of the desired output channel Uf (ρ) := f(U)ρf(U)†

that represents the target unitary f(U). Let In :=
⊗n

i=1 Ii and On :=
⊗n

i=1Oi. A quantum
sequential superchannel C (also known as a quantum comb) is a quantum superchannel with
certain additional constraints on its Choi matrix C ∈ End(P ⊗ In ⊗On ⊗F) [CDP08]:

C ⪰ 0, (6.115)
TrC = 1, (6.116)

TrIi Ci = Ci−1 ⊗ IOi−1
, ∀i ∈ [n+ 1], (6.117)

where Cn+1 := C, In+1 := F , O0 := P and Ci−1 :=
1
d
TrIiOi−1

Ci.
Finding a deterministic sequential superchannel C which implements the operation C(U⊗n) =

UT with highest possible average channel fidelity is equivalent to solving the following SDP for
the Choi matrix C of C [QE21]:

max
C

Tr(CΩn,d)

s.t. C satisfies (6.115)–(6.117),
(6.118)

where Ωn,d is given by

Ωn,d :=
1

d2

∑

λ,µ∈Âd
n,1

∑

T,T ′∈Paths(λ,A )

(Eλ
T,T ′)InF ⊗ (Eλ

T,T ′)OnP

mλ

, (6.119)

where Eλ
T,T ′ are matrix units for the Gelfand–Tsetlin basis of Ad

n,1, adapted to the sequence
Ad

0,0 ↪→ Ad
1,0 ↪→ . . . ↪→ Ad

n,0 ↪→ Ad
n,1, and A is the Bratteli diagram corresponding to this

sequence of algebras. Notice that Ωn,d has the mixed unitary symmetry:
[
Ωn,d, V

⊗n
In ⊗ V̄F ⊗ U⊗n

On ⊗ ŪP
]
= 0, ∀U, V ∈ Ud . (6.120)

Therefore without loss of generality the optimal solution of the SDP (6.118) also has the same
symmetry: [

C, V ⊗n
In ⊗ V̄F ⊗ U⊗n

On ⊗ ŪP
]
= 0, ∀U, V ∈ Ud, (6.121)

which allows us to use the following ansatz for C:

C =
∑

λ,µ∈Âd
n,1

∑

S,S′∈Paths(λ,A )

∑

Q,Q′∈Paths(µ,Ã )

cλµSS′QQ′(E
λ
S,S′)InF ⊗ (Ẽµ

Q,Q′)POn , (6.122)

where Ẽλ
Q,Q′ are matrix units for the Gelfand–Tsetlin basis of Ad

n,1, adapted to a different
sequence Ad

0,0 ↪→ Ad
0,1 ↪→ Ad

1,1 ↪→ . . . ↪→ Ad
n,1, and Ã is the Bratteli diagram corresponding

to it. The reason we choose a different Gelfand–Tsetlin basis on the systems POn is that this
choice is more suitable to apply Lemma 6.4.1 for simplification of partial trace constraints in
Eq. (6.117).
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f(U)
d

n 1 2 3 4

UT

2 0.500000 0.750000 0.933013 1.000000
3 0.222222 0.407407 0.626597 0.799250
4 0.125000 0.218750 0.362903 0.544148
5 0.080000 0.136000 0.214954 0.331871

U−1

2 0.500000 0.750000 0.933013 1.000000
3 0.222222 0.333333 0.444444 0.555556
4 0.125000 0.187500 0.250000 0.312500
5 0.080000 0.120000 0.160000 0.200000

Table 6.2: Optimal values of the SDP (6.118). The column f(U) indicates the task, for which
we want to find a deterministic sequential superchannel C.

Note that the semidefinite constraint (6.115) becomes

C ⪰ 0 ⇔
[
cλµSS′QQ′

]
(SQ),(S′Q′) ⪰ 0, ∀λ, µ ∈ Âd

n,1, (6.123)

where we think of
[
cλµSS′QQ′

]
(SQ),(S′Q′) ∈ End(Cdλ ⊗ Cdµ) as matrices.

Using Eqs. (6.119) and (6.122) we can rewrite the objective function as

Tr(CΩn,d) =
1

d2

∑

λ,µ∈Âd
n,1

∑

T,T ′∈Paths(λ,A )

Q,Q′∈Paths(µ,Ã )

cλ,µT ′TQQ′

mλmµ

Tr(ψdn+1(π)E
λ
TT ′ψdn+1(π

−1)Ẽµ
TT ′), (6.124)

where ψdn+1(π) is the tensor representation of the full cyclic permutation on (Cd)n+1. The co-
efficients Tr(ψdn+1(π)E

λ
TT ′ψdn+1(π

−1)Ẽµ
TT ′) could be computed numerically using tensor network

representation of matrix units (see Fig. 6.1). Finally, we can rewrite constraints of the SDP
(6.118) using our methods from Section 6.4 and solve the new simplified SDP numerically. Our
numerical results are summarised in Table 6.2.

We can also solve a similar problem for the function f(U) = U−1 and verify the results
obtained in [YSM23a]. In that case, the SDP (6.118) has the same form, except that the
matrices C and Ωn,d posses a different symmetry: they commute with U⊗n+1

OnP ⊗V ⊗n+1
InF for every

U, V ∈ Ud. This corresponds to the case m = 0 in the formalism of mixed Schur–Weyl duality.
In both tasks we successfully reproduce the known results from [QE21; YSM23a], while

obtaining a range of new values for the transposition task.

6.6 Discussion
We have described how symmetry reduction can be utilised for unitary-equivariant SDPs, which
commonly arise in quantum information theory. Nevertheless, our work raises several interesting
open questions that we have not yet been able to resolve:

1. Derive an explicit basis in which our ansatz for X is diagonal under the Sn×Sm symmetry
when d = 2 or min(n,m) = 2.

2. Characterise the kernel of the map ψdn,m that embeds the walled Brauer algebra Bdn,m into
the partially-transposed permutation matrix algebra Ad

n,m. This would allow removing the
technical restriction (6.39) in Theorem 6.3.4 that d must be sufficiently large. Moreover,
this could also provide additional speed-ups for small d since all calculations could be
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performed using a linearly independent diagram basis of size much smaller than (n+m)!.
One possible method for computing kerψdn,m is sketched in Remark 6.3.3.

3. The number of variables Nd
n,m in Tables 6.5 and 6.7 does not depend on n +m. Could

we prove it?

4. It should be possible to treat the local dimension d symbolically and deduce the asymp-
totic scaling of the solution as d→ ∞.

Moreover, our SDP reduction procedures could be made faster by applying the Fast Fourier
transform (FFT). Indeed, FFT was successfully adapted to the setting of finite groups and some
finite-dimensional semisimple algebras [MRW18a; MRW18b] and could be easily adapted for
the full walled Brauer algebra Bdn,m, when it is semisimple. However, for the algebra of partially
transposed permutations Ad

n,m, it is not clear to us how to present the set of vectors which
span the entire algebra Ad

n,m. The non-triviality of the ideal ker(ψdn,m) makes the adaptation
of [MRW18a; MRW18b] highly non-trivial, so we leave it for future work.

The applications provided in Section 6.5 are only for illustrative purposes. We expect that
one should be able to go much further by bearing the full weight of our method. For example,
concerning the application in Section 6.5.4, we would like to find, for any given d, how many
copies of a black-box unitary U are needed to implement f(U) exactly and deterministically
via a sequential superchannel.

Our approach is an example of the general philosophy outlined in [BGSV12] for solving
SDPs with ∗-matrix algebra symmetries. Other instances of this setting are also useful in
quantum information [GNW21] and hence worth investigating.

Finally, given a solution X of a unitary-equivariant SDP that describes a Choi matrix, it
is interesting to find an efficient quantum circuit that implements the corresponding quantum
channel. Note that [BLMMO22] achieves this when d = 2, n = 2k + 1 and m = 1. Recently,
some work has been done in that direction: [Ngu23] described some classes instances where con-
struction of efficient circuits is possible. This approach is based on the mixed Schur transform
USch(n,m) for general values of n,m, d. Could there be more examples which were not considered
in [Ngu23]?
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6.A Appendix

6.A.1 Restriction to Sn × Sm permutational symmetry

In this appendix we describe how the simple module Vλ of Ad
n,m restricts to the algebra

ψdn,m(C(Sn × Sm)). This question was first answered in [Kin70; Kin71]. It also follows from
[Koi89, Proposition 2.2, Corollary 2.3.1] and [Hal96, Theorem 1.7] that a general formula for
this restriction is

Res
Ad

n,m

Sn×Sm
Vλ ∼=

⊕

µ⊢dn
ν⊢dm

(Sµ ⊗ Sν)⊕m
λ
µ,ν(d) (6.125)

where Sµ and Sν are simple modules of CSn and CSm, respectively. For λ = (λl, λr) ∈ Âd
n,m

with ℓ(λl) + ℓ(λr) ⩽ d and µ ⊢ n, ν ⊢m with ℓ(µ), ℓ(ν) ⩽ d the multiplicity mλ
µ,ν(d) is given by

the following formula:
mλ
µ,ν(d) :=

∑

λ̃:f(λ̃,d)=λ

ℓ(λ̃l)⩽d
ℓ(λ̃r)⩽d

g(λ̃, d)
∑

γ⊢k(λ̃)

cµ
γλ̃l
cν
γλ̃r

(6.126)

where λ̃ = (λ̃l, λ̃r) is a pair of partitions λ̃l⊢n−k(λ̃) and λ̃r⊢m−k(λ̃) for some integer k(λ̃) ⩾ 0,
and cµ

γλ̃r
, cν

γλ̃l
are the Littlewood–Richardson coefficients. The numbers g(λ̃, d) ∈ {−1, 0, 1}

and the bipartitions f(λ̃, d) are defined as follows. If ℓ(λ̃l) + ℓ(λ̃r) ⩽ d then f(λ̃, d) := λ̃
and g(λ̃, d) := 1. If ℓ(λ̃l) + ℓ(λ̃r) > d then f(λ̃, d) and g(λ̃, d) are obtained via the following
procedure (here µ′ denotes the transpose of the Young diagram µ):

• If d− λ̃r′i − λ̃r1 + i = λ̃l′j − λ̃r1 − j + 1 for some i ∈ [λ̃r1] and j ∈ [λ̃l1], then g(λ̃, d) := 0 and
f(λ̃, d) is left undefined.

• Otherwise, sort the (distinct) numbers
(
d− λ̃r′i − λ̃r1 + i : i = λ̃r1, . . . , 1

)
∪
(
λ̃l′j − λ̃r1 − j + 1 : j = 1, . . . , λ̃l1

)
(6.127)

in decreasing order and denote the resulting list by (k1, . . . , kλ̃r1+λ̃l1). Denote the per-
mutation that achieves this sorting by π and let g(λ̃, d) := sgn(π). The bipartition
f(λ̃, d) =

(
f(λ̃, d)l, f(λ̃, d)r

)
is then defined via its transpose as follows:

f(λ̃, d)l′ :=
(
d− ki − i+ 1 : i = λ̃r1, . . . , 1

)
, (6.128)

f(λ̃, d)r′ :=
(
kλ̃r1+j + λ̃r1 + j − 1 : j = 1, . . . , λ̃l1

)
. (6.129)

Using a more geometric understanding of this procedure from [Kin71, eq. (2.18)] we arrive at
the following multiplicity-free results.

6.A.1. Lemma. If min(n,m) ⩽ 2 then the multiplicity mλ
µ,ν(d) defined in Eq. (6.126) is either

0 or 1 for any valid λ, µ, ν, d.

Proof:
Fix a valid combination of λ, µ, ν, d, i.e., µ ⊢ n, ν ⊢m with ℓ(µ), ℓ(ν) ⩽ d and λ = (λl, λr) with
n− |λl| = m− |λr| ⩾ 0 and ℓ(λl) + ℓ(λr) ⩽ d. Assume that λ̃ = (λ̃l, λ̃r) is a pair of partitions
λ̃l ⊢ n − k(λ̃) and λ̃r ⊢ m − k(λ̃) for some integer k(λ̃) ⩾ 0. Without loss of generality it is
enough to consider only the m = 1 and m = 2 cases.
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Case m = 1. Assume that ℓ(λ̃l) ⩽ d and ℓ(λ̃r) = 1. Then according to [Kin71] we have that

g(λ̃, d) =

{
1 if ℓ(λ̃l) + ℓ(λ̃r) ⩽ d,

0 if ℓ(λ̃l) + ℓ(λ̃r) = d+ 1.
(6.130)

The set {λ̃ : f(λ̃, d) = λ} contains at most two elements corresponding to ℓ(λ̃l) + ℓ(λ̃r) ⩽ d
and ℓ(λ̃l) + ℓ(λ̃r) = d + 1. Moreover, there is only one term in the sum

∑
γ⊢k(λ̃) c

µ

γλ̃l
cν
γλ̃r

in
Eq. (6.126) corresponding to either the empty partition γ = ∅ or γ = (1). Each of these
Littlewood–Richardson coefficients is either zero or one due to the Pieri rule [Mac98], which
is a special case of the Littlewood–Richardson rule [BZ88; RS98; Gas98; Ste02]. Therefore
mλ
µ,ν(d) ∈ {0, 1}.
Case m = 2. Assume that ℓ(λ̃l) ⩽ d and ℓ(λ̃r) ⩽ 2. Analogously, from [Kin71] it follows

that

g(λ̃, d) =





1 if ℓ(λ̃l) + ℓ(λ̃r) ⩽ d,

−1 if ℓ(λ̃l) = d and ℓ(λ̃r) = 2 and λ̃l′1 > λ̃l′2 ,

0 otherwise.
(6.131)

There are three possible cases depending on the value of k(λ̃) ∈ {0, 1, 2}:

• If k(λ̃) = 0 then the only term in the sum
∑

γ⊢k(λ̃) c
µ

γλ̃l
cν
γλ̃r

corresponds to γ = ∅
and each Littlewood–Richardson coefficient is either zero or one, which implies that∑

γ⊢k(λ̃) c
µ

γλ̃l
cν
γλ̃r

∈ {0, 1}.

• If k(λ̃) = 1 then λ̃r = (1) and the only term in the sum
∑

γ⊢k(λ̃) c
µ

γλ̃l
cν
γλ̃r

corresponds to
γ = (1), which means that

∑
γ⊢k(λ̃) c

µ

γλ̃l
cν
γλ̃r

∈ {0, 1}.

• If k(λ̃) = 2 then λ̃r = ∅ and therefore
∑

γ⊢k(λ̃)

cµ
γλ̃l
cν
γλ̃r

=
∑

γ⊢k(λ̃)

cµ
γλ̃l
δν,γ = cµ

νλ̃l
∈ {0, 1}, (6.132)

where the conclusion follows from ν ⊢ 2 and the Pieri rule.

Moreover, for any valid λ there is either exactly one λ̃ for which f(λ̃, d) = λ (namely λ̃ = λ)
or exactly two different λ̃1, λ̃2 with g(λ̃1, d) = −1 and g(λ̃2, d) = 1. Therefore mλ

µ,ν(d) ∈ {0, 1}.
2

6.A.2. Lemma. If d = 2 then the multiplicity mλ
µ,ν(d) defined in Eq. (6.126) is either 0 or 1

for any valid λ, µ, ν.

Proof:
Fix a valid combination of λ, µ, ν, i.e., µ ⊢ n, ν ⊢m with ℓ(µ), ℓ(ν) ⩽ 2 and λ = (λl, λr) with
k := n − |λl| = m − |λr| ⩾ 0 and ℓ(λl) + ℓ(λr) ⩽ d. Assume that λ̃ = (λ̃l, λ̃r) is a pair of
partitions λ̃l⊢n−k(λ̃) and λ̃r⊢m−k(λ̃) for some integer k(λ̃) ⩾ 0 with ℓ(λ̃l) ⩽ 2 and ℓ(λ̃r) ⩽ 2.
Again, we use a result of [Kin71] stating that for d = 2,

g(λ̃, 2) =





1 if ℓ(λ̃l) + ℓ(λ̃r) ⩽ 2,

−1 if ℓ(λ̃l) = ℓ(λ̃r) = 2 and λ̃l′1 > λ̃l′2 and λ̃r′1 > λ̃r′2 ,

0 otherwise.
(6.133)
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We need to consider only two different cases.
Case k = min(n,m). Without loss of generality assume k = m, i.e., λr = ∅. Then according

to Eq. (6.133) the first sum in Eq. (6.126) contains only one term corresponding to λ̃ = λ:

mλ
µ,ν(2) =

∑

γ⊢k

cµ
γλl
cνγ∅ =

∑

γ⊢k

cµ
γλl
δν,γ = cµ

νλl
. (6.134)

Since ℓ(µ), ℓ(ν), ℓ(λl) ⩽ 2, it follows from the Littlewood–Richardson rule that mλ
µ,ν(2) = cµ

νλl
∈

{0, 1}.
Case k < min(n,m). In this case λl, λr are non-empty Young diagrams with only one row,

i.e., ℓ(λl) = ℓ(λr) = 1. According to Eq. (6.133) there are now two λ̃ such that f(λ̃, 2) = λ and
g(λ̃, 2) ̸= 0, namely λ̃ = λ which corresponds to g(λ̃, 2) = 1 and λ̃ = (λ̃l, λ̃r) = ((λl1, 1), (λ

r
1, 1))

which corresponds to g(λ̃, 2) = −1. Therefore

mλ
µ,ν(2) =

∑

γ⊢k

cµ
γλl
cνγλr −

∑

γ⊢k−1

cµ
γ(λl1,1)

cνγ(λr1,1). (6.135)

Since ℓ(λl) = ℓ(λr) = 1 and ℓ(µ), ℓ(ν) ⩽ 2 we can use the Pieri rule to deduce cµ
γλl
, cνγλr ∈ {0, 1}

and calculate

cµ
γλl

̸= 0 iff γ ⊢ k and ℓ(γ) ⩽ 2 and µ2 ⩽ γ1 ⩽ µ1 and γ2 ⩽ µ2,

cνγλr ̸= 0 iff γ ⊢ k and ℓ(γ) ⩽ 2 and ν2 ⩽ γ1 ⩽ ν1 and γ2 ⩽ ν2.

Therefore the first sum in Eq. (6.135) becomes

|{(γ1, γ2) ⊢ k : max(µ2, ν2) ⩽ γ1 ⩽ min(µ1, ν1), γ2 ⩽ min(µ2, ν2)}| =

=

∣∣∣∣
{
γ2 ∈ Z : max(0, k − µ1, k − ν1) ⩽ γ2 ⩽ min

(⌊
k

2

⌋
, k − µ2, k − ν2, µ2, ν2

)}∣∣∣∣. (6.136)

It can be rewritten as
∑

γ⊢k

cµ
γλl
cνγλr = max

(
min

(⌊
k

2

⌋
, k − µ2, k − ν2, µ2, ν2

)
−max(0, k − µ1, k − ν1) + 1, 0

)
.

(6.137)

Similarly, the Littlewood–Richardson rule implies that cµ
γ(λl1,1)

, cνγ(λr1,1)
∈ {0, 1}. Furthermore,

cµ
γ(λl1,1)

̸= 0 iff γ ⊢ k − 1 and ℓ(γ) ⩽ 2 and µ2 ⩽ γ1 + 1 ⩽ µ1 and γ2 ⩽ µ2 − 1,

cνγ(λr1,1) ̸= 0 iff γ ⊢ k − 1 and ℓ(γ) ⩽ 2 and ν2 ⩽ γ1 + 1 ⩽ ν1 and γ2 ⩽ ν2 − 1.

The second sum in Eq. (6.135) now becomes

|{(γ1, γ2) ⊢ k − 1 : max(µ2, ν2) ⩽ γ1 + 1 ⩽ min(µ1, ν1), γ2 ⩽ min(µ2, ν2)− 1}| =

=

∣∣∣∣
{
γ2 ∈ Z : max(0, k − µ1, k − ν1) ⩽ γ2 ⩽ min

(⌊
k − 1

2

⌋
, k − µ2, k − ν2, µ2 − 1, ν2 − 1

)}∣∣∣∣.
(6.138)

It can be rewritten as
∑

γ⊢k−1

cµ
γ(λl1,1)

cνγ(λr1,1) =

= max

(
min

(⌊
k − 1

2

⌋
, k − µ2, k − ν2, µ2 − 1, ν2 − 1

)
−max(0, k − µ1, k − ν1) + 1, 0

)
.

(6.139)

From Eqs. (6.135), (6.137) and (6.139) we clearly see that mλ
µ,ν(2) ∈ {0, 1}. 2
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6.A.2 Computing the blocks of Ad
n,m in the Gelfand–Tsetlin basis

Here we propose an algorithm for computing the blocks of an arbitrary Ad
n,m algebra element

in the Gelfand–Tsetlin basis. In line with our philosophy, the algorithm is fully diagrammatic,
namely, all computation takes place in Bdn,m instead of Ad

n,m. Here we only sketch the reasoning
behind the algorithm, and we leave it to future work to establish its correctness formally. This
paves one possible route for removing the additional symmetry assumption in Theorem 6.3.4 and
thus extending our framework from linear to general semidefinite unitary-equivariant programs,
alongside with other approach described in Section 6.4.

The natural ∗-algebra structure of Bdn,m is the important ingredient in this section. Consider
a random hermitian (with respect to the natural ∗-algebra structure) element of Bdn,m given as
a linear combination of diagrams with random real coefficients bi:

B :=

(n+m)!∑

i=1

biσi. (6.140)

Throughout this section we fix λ ∈ Âd
n,m and choose an arbitrary ordering i ∈ [dλ] of all paths

in Paths(λ). Let Bij denote the (i, j)-th entry of block λ when the matrix ψdn,m(B) ∈ Ad
n,m is

expressed in the Gelfand–Tsetlin basis. That is, let Bij := (Aλ)ij for all i, j ∈ [dλ], where Aλ is
a matrix of size dλ × dλ that appears in the first register of the decomposition:

USch(n,m) ψ
d
n,m(B)U †

Sch(n,m) =
⊕

λ∈Âd
n,m

[Aλ ⊗ Imλ
]. (6.141)

Note from Eq. (6.140) that Bij is a linear combination of the variables bk. Our goal is to
determine Bij for all choices of λ ∈ Âd

n,m and i, j ∈ [dλ].
Let T = λ0 → · · · → λn+m be the i-th path in the Bratteli diagram of Bdn,m that goes from

the root to the leaf λ. Let us denote the preimage of εAT under ψdn,m by

εi :=
n+m∏

k=1

∏

µ:λk−1→µ̸=λk

JB
k − cλk−1→µ

cλk−1→λk − cλk−1→µ

∈ Bdn,m, (6.142)

where, in contrast to Eq. (3.65), the second product runs over edges in the Bratteli diagram of
the family B instead of A. By construction, the block λ of εi is equal to |i⟩⟨i| while all other
blocks vanish:

USch(n,m) ψ
d
n,m(εi)U

†
Sch(n,m) =

⊕

µ∈Âd
n,m

[
δλ,µ|i⟩⟨i| ⊗ Imµ

]
. (6.143)

Since ψdn,m(εiBεi) = Bii · ψdn,m(εi), knowing εi allows us to diagrammatically extract Bii by
computing

Bii =
Tr(Bεi)

Tr(εi)
, (6.144)

where Tr(εi) = mλ for every i ∈ [dλ].
To extract the off-diagonal entries Bij, we would like to have operators εij that are analogous

to εi but instead of |i⟩⟨i| have |i⟩⟨j|, for any i, j ∈ [dλ], in block λ of Eq. (6.143). While we do
not have an expression for εij, knowing εi and εj is enough to diagrammatically extract Bij.
This can be done via the following algorithm:

1. For every i ∈ [dλ], diagrammatically compute ε1Bεi and εiBε1. Since

ψdn,m(ε1Bεi) · ψdn,m(εiBε1) = B1iBi1 · ψdn,m(ε1), (6.145)
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we can diagrammatically compute

B1iBi1 =
Tr
(
(ε1Bεi) · (εiBε1)

)

Tr(ε1)
. (6.146)

2. Since the element B is hermitian with real coefficients, B1i = Bi1 as real numbers. From
Eq. (6.146) we can set

B1i = Bi1 :=

√
Tr
(
(ε1Bεi) · (εiBε1)

)

Tr(ε1)
(6.147)

3. For every i ∈ [dλ] we set

ε1i :=
ε1Bεi
B1i

, εi1 :=
εiBε1
Bi1

. (6.148)

4. Once we know all of the ε1i and εi1, we can diagrammatically compute

Bij =
Tr
(
ε1iBεj1

)

Tr(ε1)
(6.149)

for every i, j ∈ [dλ]. We can also compute εij = εi1ε1j for every i, j ∈ [dλ].

Since the multiplication of two arbitrary linear combinations of diagrams has complexity
O
(
dim(Bdn,m)2

)
, the complexity O

(
dim(Bdn,m)2 dim(Ad

n,m)
)

of the above algorithm does not de-
pend on d asymptotically since

O
(
((n+m)!)2 dim(Ad

n,m)
)
⩽ O

(
((n+m)!)3

)
, (6.150)

where we used dim(Ad
n,m) ⩽ dim(Bdn,m) = (n+m)! (that is quite crude bound for small d).

6.A.3 Numerical values for the number of variables Nd
n,m

n+m 2 3 4 5 6 7 8 9 10

d

2 1.20 1.81 2.41 3.01 3.61 4.21 4.82 5.42 6.02
3 1.91 2.86 3.82 4.77 5.73 6.68 7.63 8.59 9.54
4 2.41 3.61 4.82 6.02 7.22 8.43 9.63 10.84 12.04
5 2.80 4.19 5.59 6.99 8.39 9.79 11.18 12.58 13.98
6 3.11 4.67 6.23 7.78 9.34 10.89 12.45 14.01 15.56
7 3.38 5.07 6.76 8.45 10.14 11.83 13.52 15.21 16.90
8 3.61 5.42 7.22 9.03 10.84 12.64 14.45 16.26 18.06
9 3.82 5.73 7.63 9.54 11.45 13.36 15.27 17.18 19.08
10 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Table 6.3: The logarithm of the number of variables log10(d
2(n+m)) in a naive implementation

of the SDP (6.37).
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d
n m 2 3 4 5 6 7 8 9 10
1 1 2
1 2 2 3
1 3 3 4 5
2 2 3 5 6
1 4 3 6 7 8
2 3 3 6 8 9
1 5 4 7 10 11 12
2 4 4 8 12 14 15
3 3 4 8 12 14 15
1 6 4 9 13 16 17 18
2 5 4 10 15 19 21 22
3 4 4 10 16 21 23 24
1 7 5 11 17 21 24 25 26
2 6 5 12 21 27 31 33 34
3 5 5 12 21 28 33 35 36
4 4 5 13 23 31 37 39 40
1 8 5 13 21 28 32 35 36 37
2 7 5 14 25 35 41 45 47 48
3 6 5 15 27 39 47 52 54 55
4 5 5 15 28 41 50 56 58 59
1 9 6 15 27 36 43 47 50 51 52
2 8 6 17 32 46 57 63 67 69 70
3 7 6 17 34 50 63 71 76 78 79
4 6 6 18 37 56 72 82 88 90 91
5 5 6 18 36 54 70 80 86 88 89

Table 6.4: The number of variables Nd
n,m in a unitary-equivariant LP with full walled Brauer

algebra symmetry, see Eq. (6.23).

n+m 2 3 4 5 6 7 8 9 10

d

2

2

3 6 10 20 35 70 126 252
3

4

9 21 51 127 323 835 2,188
4

10

25 70 196 588 1,764 5,544
5

26

75 225 715 2,347 7,990
6

76

231 756 2,556 9,096
7

232

763 2,611 9,415
8

764
2,619 9,486

9
2,620

9,495
10 9,496

Table 6.5: The number of variables Nd
n,m in a unitary-equivariant LP with Gelfand–Tsetlin

symmetry, see Eq. (6.26).
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d
n m 2 3 4 5 6 7 8 9 10
1 1 2
1 2 3 4
1 3 4 6 7
2 2 6 9 10
1 4 5 9 11 12
2 3 7 14 17 18
1 5 6 12 16 18 19
2 4 10 22 30 33 34
3 3 10 25 34 37 38
1 6 7 16 23 27 29 30
2 5 11 30 44 52 55 56
3 4 13 39 60 70 73 74
1 7 8 20 31 38 42 44 45
2 6 14 41 67 82 90 93 94
3 5 16 56 96 119 129 132 133
4 4 19 66 116 143 154 157 158
1 8 9 25 41 53 60 64 66 67
2 7 15 52 91 119 134 142 145 146
3 6 19 79 148 195 219 229 232 233
4 5 22 97 189 253 282 293 296 297
1 9 10 30 53 71 83 90 94 96 97
2 8 18 66 126 172 201 216 224 227 228
3 7 22 102 213 298 347 371 381 384 385
4 6 28 139 306 434 505 535 546 549 550
5 5 28 149 332 478 556 587 598 601 602

Table 6.6: The number of variables Nd
n,m in a unitary-equivariant SDP with an Sn×Sm symme-

try, see Eq. (6.35). Such SDP reduces to an LP when min(n,m) ⩽ 2 or d = 2, see Section 6.A.1.
These cases are highlighted in grey.

n+m 2 3 4 5 6 7 8 9 10

d

2

2

5 14 42 132 429 1,430 4,862 16,796
3

6

23 103 513 2,761 15,767 94,359 586,590
4

24

119 694 4,582 33,324 261,808 2,190,688
5

120

719 5,003 39,429 344,837 3,291,590
6

720

5,039 40,270 361,302 3,587,916
7

5,040

40,319 362,815 3,626,197
8

40,320
362,879 3,628,718

9
362,880

3,628,799
10 3,628,800

Table 6.7: The number of variables Nd
n,m = dim(Ad

n,m) in a unitary-equivariant SDP with no
additional symmetry.





Chapter 7

Monogamy of highly symmetric states

In this chapter, we go a little bit beyond the standard setting of mixed Schur–Weyl duality and
explore another version of Schur–Weyl duality involving the orthogonal group. The specific
problem we focus on is quantum state extendibility. More precisely, we investigate the extent
to which two particles can be maximally entangled when they are similarly entangled also with
other particles on the complete graph, specifically focusing on Werner, isotropic, and Brauer
states. We approach the problem by formalising it as a semidefinite program (SDP), which we
solve analytically using tools from representation theory of symmetric, unitary and orthogonal
groups, and the Brauer algebra.

This chapter is based on [All+23].

7.1 Introduction

Monogamy of entanglement is a fundamental feature of quantum theory [Ter04; KW04]. In-
tuitively, it states that if two quantum systems are entangled with each other, they cannot be
too entangled with other systems. Incarnations of monogamy include the so-called quantum
de Finetti theorem, allowing, for example, security proofs of quantum cryptography [Ren08],
SDP relaxations for bilinear optimisation [BBFS22], and ground energy approximations of local
Hamiltonians via product states [BH13]. Studying monogamy in full generally is equivalent to
the so-called quantum marginal problem [WDGC13; Sch15; Kly04; Kly06], which is a notori-
ously difficult problem. Restricted versions of the quantum marginal problem known as state
extension or state extendibility problems [Wer89a; Doh14] are fundamental in quantum infor-
mation. The main idea behind state extension is to certify or find a suitable global state on
several quantum systems such that certain subsystems are in a fixed specified state.

In this chapter, we formalize state extension by introducing the concept of G-extendibility
for arbitrary graphs G, and study it analytically for several important classes of symmetric
states widely used in quantum information on clique graphs G = Kn.

More concretely, a bipartite symmetric quantum state σ is G-extendible for a graph G if
there exists a global state ρ, on the vertices of G, such that for all edges e of G the reduced
state ρe is equal to σ. Our graph extendibility approach, which can be viewed as a continuation
of the work described in [WVC03], not only generalises existing concepts but also serves as a
unifying framework for various problems in quantum information theory.

Consider the scenario where the graph G is a star graph K1,n. In this case, our K1,n-
extendibility is equivalent to the established notion of n-extendibility of a bipartite quantum
state, which was first used to formalize the intuition behind monogamy of entanglement [Ter04].
It states that if a bipartite state is n-extendible for every n, it must be a separable state of the
form

∑
i piρi ⊗ σi [FLV88; RW88; DPS04].

167
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In the instance where the graph G is a complete bipartite graph Kn,m, then our Kn,m-
extendibility correspond to the n,m-extendibility, also known as symmetric extendibility [TDS03].
Moreover, a bipartite state is n,m-extendible for all n,m, if and only if it is n-extendible for all
n [JV13].

In the case where the graph G equals a complete graph Kn, then our Kn-extendibility is
equivalent to the n-exchangeability of a bipartite symmetric quantum state. This notion is
related to the celebrated quantum de Finetti theorem. It asserts that if a bipartite state is
n-exchangeable for every n, then it is a convex combination of product states of the form∑

i piρi ⊗ ρi [HM76; CFS02; KR05; CKMR07].
All these notions have a lot of applications. For example, the K1,n-extendibility of isotropic

states is intrinsically related to 1 → n quantum cloning problem [Wer98; KW99; NPR23].
One approach to obtaining the optimal 1 → n symmetric quantum cloning map is to exploit
Choi–Jamiołkowski’s isomorphism to translate a K1,n-extendible isotropic state into a quan-
tum channel. Furthermore, extendibility on circle graphs has direct implications for quantum
cryptography in the context of quantum position verification [Buh+14; KMS11; Unr14]. Our
framework is also suitable for quantum network applications, notably in generating multiple
EPR-pairs from an n-party resource state [BSSW24].

In quantum information, it is common to consider classes of symmetric states, such as the
one-parameter families of Werner and isotropic states [Wer89b; HH99]. They admit a two-
parameter generalisation to what we call Brauer states [VW01; PJPY24], which are defined
through the Schur–Weyl duality of the orthogonal group [Bra37]. Brauer states can be seen
as a generalisation of Choi states of quantum channels commonly known as Werner–Holevo
channels.

In this work, we focus on understanding the monogamy of entanglement of such states. In
particular, we determine the exact possible maximum values of the projection to the maximally
entangled state and antisymmetric Werner state. Before our work, the exact values in arbitrary
local dimensions for the projection overlap in the case of Werner, and isotropic states were
known only in the context of the monogamy theorem, namely for K1,n-extendibility [VW01]
and for complete bipartite graph Kn,m-extendibility [JSZ22]. Some aspects of Kn-extendibility
were also studied in [JSZ18; JZ21; Jak22].

Understanding the properties of the mentioned symmetric states is important in quantum
information. Examples of applications of these symmetries can be found in recent work fo-
cusing on developing approximation algorithms for local Hamiltonians, notably the quantum
Max-Cut problem [Tak+23; WCEHK24]. In these applications, the analytical values that we
derive are crucial for understanding this model, as they provide insights beyond what can be ob-
tained by asymptotic approximations. In the context of constructing approximation algorithms
to quantum Max-Cut problem, exact K1,n-extendibility value played a crucial role in obtain-
ing better approximation ratios beyond product state approximations [AGM20; PT21; Lee22;
Kin23; LP24]. We expect our results to be similarly helpful for obtaining better approximation
values for such optimisation problems.

Summary of our results

We informally summarize our results here. We shall consider the n-exchangeability of the three
distinct families of symmetric quantum states: Werner, Brauer, and isotropic. We provide
analytical solutions of maximum values of the projection onto the antisymmetric state in the
Werner case, as well as into the maximally entangled state in the Brauer and isotropic case.
We call these values qW (n, d), pB(n, d) and pI(n, d), respectively.
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7.1.1. Theorem (Summary of Theorems 7.4.1, 7.4.2, 7.4.10 and Lemma 7.4.9). The maximum
values of the above projections are:

Werner: qW (n, d) =
d− 1

2d

(n+ k + d)(n− k)

n(n− 1)
+
k(k − 1)

n(n− 1)
, where k = n mod d,

Brauer: pB(n, d) =
1

d
+

(
1− 1

d

)
1

n+ n mod 2− 1
,

qB(n, d) = qW (n, d),

Isotropic: pI(n, d) =





1
d2

+
(
1− 1

d2

)
1

n+n mod 2−1
if d > n or either d or n is even,

1
d2

+
(
1− 1

d2

)
min

{
2d+1
2dn+1

, 1
n−1

}
if n ⩾ d and both d and n are odd.

As a corollary, if we parametrize the Werner and isotropic states with a parameter p, and the
Brauer states with two parameters p and q (see Section 7.2.2), we can summarize in the following
table the parameter values for which these families of states are K1,n-extendible (n-extendible)
and Kn-extendible (n-exchangeable) for all n:

K1,n-extendibility Kn-extendibility
Werner q ⩽ 1

2
q ⩽ d−1

2d

Brauer p ⩽ 1
d
∧ q ⩽ 1

2
p ⩽ 1

d
∧ q ⩽ f(p)

isotropic p ⩽ 1
d

p = 1
d2

where f(p) is some unknown function such that it is upper bounded as f(p) ⩽ d−1
2d

, see Con-
jecture 7.5.1. However, for qubits the whole Brauer (p, q)-extendibility region can be obtained
analytically for all n:

7.1.2. Theorem (Theorem 7.4.15). For d = 2 and all n ⩾ 2 the maximal value q(p) for every
p ∈ [0, 1] equals to

q(p) =





⌈n/2⌉+1
⌈n/2⌉−1

p if p < ⌈n/2⌉−1
2(2⌈n/2⌉−1)

,
⌈n/2⌉

2⌈n/2⌉−1
− p if ⌈n/2⌉

2⌈n/2⌉−1
⩾ p ⩾ ⌈n/2⌉−1

2(2⌈n/2⌉−1)
,

0 otherwise.
(7.1)

In particular, this theorem implies f(p) = 1/4− |1/4− p| for qubits, see Fig. 7.6.
The chapter is organised as follows. In Section 7.2 we recall some basic definitions and

known representation theory results. In Section 7.3, we set up the problems through primal
and dual SDP formulations. Section 7.4 contains the main results of the chapter, namely,
the solution of the problems in the case of the complete graph for the above three families of
symmetric states.

7.2 Preliminaries
In this chapter, the term graph refers to an undirected, simple graph that has no self-loops. A
graph G = (V,E) has vertex set V , edge set E ⊂ V × V , and its number of vertices is equal to
n := |V |. We denote by Aut(G) the automorphism group of the graph G. The complete graph
Kn with n vertices includes all possible edges, i.e. (u, v) ∈ E for each distinct pair of vertices u
and v in V (e.g., see Fig. 7.1a). This graph has n(n−1)/2 edges, which is the maximum number
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of edges in an n-vertex graph. The star graph K1,n on n+1 vertices has a distinct central vertex
v ∈ V that is connected to each of the remaining n vertices, i.e. E = {(u, v) | u ∈ V, u ̸= v}
(e.g., see Fig. 7.1b). An edge-transitive graph is a graph G such that for any two edges e1 and
e2 in E, there exists an automorphism of G that maps e1 to e2 [Big93]. Equivalently, a graph G
is edge-transitive if and only if G \ e1 ≃ G \ e2 for all e1, e2 ∈ E [ADSV92]. Both the complete
graphs and the star graphs are edge-transitive. An example of a non edge-transitive graph is
given in the path graph P5 Fig. 7.1c.

(a) K5 (b) K1,5 (c) P5

Figure 7.1: The complete graph K5 with Aut(K5) ≃ S5, the star graph K1,5 with Aut(K1,5) ≃
S5, and the path graph P5 with Aut(P5) ≃ Z2.

Let H := Cd denote a complex Hilbert space of finite dimension d ⩾ 2. For any graph G,
we will associate a separate copy of H to each vertex of G (we will refer to d = dimH as local
dimension). The combined space associated to V is then the n-fold tensor power H⊗n. If ρ is
a quantum state on H⊗n and e = (u, v) ∈ E an edge, we will denote by ρe the reduced state on
systems u and v:

ρe := TrV \{u,v} ρ. (7.2)

In quantum information literature, a bipartite quantum state ρ on HA ⊗ HB is called n-
extendible with respect to HB if there exists a quantum state σ on HA ⊗H⊗n

B , invariant under
any permutation of the HB subsystems, such that

ρ = TrB⊗n−1 σ. (7.3)

We can express this concept as a marginal problem within the context of the star graph K1,n,
where the central vertex corresponds to the system HA, and the leaves represent the subsystems
HB. A quantum state ρ is n-extendible if and only if there exists a state on K1,n with reduced
states along all edges equal ρ. Therefore, in the current chapter, we refer to n-extendibility as
K1,n-extendibility.

Let W, I,F ∈ Herm(H ⊗H) denote the unnormalised maximally entangled and maximally
mixed states, and the flip operator on two systems:

W :=
d∑

i,j=1

|ii⟩⟨jj|, I :=
d∑

i,j=1

|ij⟩⟨ij| and F :=
d∑

i,j=1

|ij⟩⟨ji|. (7.4)

Note that TrW = d, Tr I = d2 and TrF = d.

7.2.1 Schur–Weyl duality for the orthogonal group

For this chapter, in addition to Schur–Weyl duality for the symmetric group (see Section 2.10),
we also need a similar result for the orthogonal group. This Schur–Weyl duality result was
discovered by Richard Brauer for orthogonal and symplectic groups [Bra37]. In the following,
we only focus on the complex orthogonal group Od. Brauer’s variant of Schur–Weyl duality
states that the commutant of the diagonal action of the complex orthogonal group Od on the
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space (Cd)⊗n is the image of the Brauer algebra Brdn. More precisely, using the same diagonal
action ϕdn from Eq. (2.108) for the subgroup Od ⊂ GLd

ϕdn(g)(|x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩) = g|x1⟩ ⊗ g|x2⟩ ⊗ · · · ⊗ g|xn⟩ (7.5)

for every g ∈ Od, we define the matrix algebra

Od
n := spanC

{
ϕdn(g) | g ∈ Od

}
. (7.6)

The commutant of Od
n will turn out to be the image of the Brauer algebra Brdn which we define

now.
A Brauer diagram is a diagram with two columns of n vertices which are paired up in an

arbitrary way, i.e. it is a pairing on a set of 2n elements. The set of all Brauer diagrams is
denoted Brn. For example, a diagram from Br5 may look like

(7.7)

The Brauer algebra Brdn for any d ∈ C is defined as the complex vector space spanned by all
Brauer diagrams π ∈ Brn, i.e. Brdn := spanC{π ∈ Brn}. The multiplication in Brdn is defined
by concatenation of such diagrams, counting the number of loops formed, erasing them and
multiplying the result by a factor of d#loops. This exactly identital to the walled Brauer algebra,
see Section 3.2. Note that the symmetric group algebra CSn, is a subalgebra of the Brauer
algebra, CSn ⊂ Brdn, consisting only of diagrams which do not have vertical pairings on the
same side of the diagram.

The Brauer algebra Brdn admits an action on (Cd)⊗n defined via a linear map ψdn : Brdn →
(Cd)⊗n, such that for every diagram π ∈ Brdn and x1̄, . . . , xn̄, x1, . . . , xn ∈ [d],

(
⟨x1̄|⊗· · ·⊗⟨xn̄|

)
ψdn(π)

(
|x1⟩⊗· · ·⊗|xn⟩

)
:=

{
1 if xk = xl for all vertices k and l connected in π,
0 otherwise,

(7.8)
which is exactly analogous to Eq. (3.17). The image ψdn(Br

d
n) of the diagram algebra Brdn is a

matrix representation of Brdn which we will denote by

Bdn := spanC
{
ψdn(π) | π ∈ Brdn

}
. (7.9)

Note that, in contrary to Eq. (3.46), in this chapter Bdn refers to the matrix representation of the
Brauer algebra and not to the walled Brauer algebra. The matrix algebra Bdn is always semisim-
ple, while the diagram algebra Brdn is not for small integers d [Wen88; DWH99; Rui05; RS06;
AST17]. The irreducible representations of Bdn are labelled using the following set [Oka16]:

B̂dn :=

{
λ ⊢ n− 2r

∣∣∣∣ r ∈
{
0, . . . ,

⌊n
2

⌋}
and λ′1 + λ′2 ⩽ d

}
. (7.10)

We will denote by V Bd
n

λ and WOd
n

λ the spaces on which the corresponding irreducible representa-
tions of Bdn and Od

n act. Now we are ready to state the version of Schur–Weyl duality discovered
by Brauer.

7.2.1. Theorem (Brauer). The matrix algebras Bdn and Od
n are mutual commutants of each

other. Equivalently, the space (Cd)⊗n decomposes into isotypic sectors labelled by λ ∈ B̂dn
consisting of tensor product of irreducible representations of Bdn and Od

n:

(Cd)⊗n ≃
⊕

λ∈B̂d
n

V
Bd
n

λ ⊗W
Od

n
λ . (7.11)
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7.2.2 Werner, isotropic and Brauer states

In this chapter, we consider three classes of symmetric bipartite states ρAB based on different
commutation relations:

1. a Werner state ρAB commutes with U ⊗ U , i.e.,
[
ρ, U ⊗ U

]
= 0 for every U ∈ Ud,

2. an isotropic state ρAB commutes with Ū ⊗ U , i.e.,
[
ρ, Ū ⊗ U

]
= 0 for every U ∈ Ud,

3. a Brauer state1 ρAB commutes with O ⊗O, i.e.,
[
ρ,O ⊗O

]
= 0 for every O ∈ Od.

Using the Schur–Weyl dualities from Sections 2.10 and 7.2.1, we can observe that these states
are just linear combinations of the operators I, F, W. For our purposes, it will be better to
parameterize them in terms of the projectors onto irreducible representations of the Brauer
algebra Bd2 :

Π∅ :=
W

d
, Π :=

I− F

2
, Π :=

I + F

2
− W

d
, (7.12)

and the projectors onto the irreducible representations of Sd2 , known as antisymmetric and
symmetric subspaces, are

ε :=
I− F

2
, ε :=

I + F

2
. (7.13)

These projectors are primitive central idempotents, see Section 2.7.5. More generally, we can
define a primitive central idempotent ελ known as Young symmetriser which corresponds to
an irreducible representation λ of Sdn. We also call ελ an isotypic projector onto the relevant
sector λ in the classical Schur–Weyl duality, see Section 2.10. Note that

Π∅ +Π +Π = I, ε = Π , ε = I− Π = Π +Π∅, (7.14)

and
TrΠ∅ = 1, TrΠ =

d(d− 1)

2
, TrΠ =

d(d+ 1)

2
− 1. (7.15)

The three classes of states can then be parameterised as follows:

1. The Werner states form a one-parameter family, parameterised by q ∈ [0, 1], given by a
convex combination of the normalised antisymmetric and symmetric projectors:

q · Π

TrΠ
+ (1− q) · I− Π

Tr(I− Π )
. (7.16)

2. The isotropic states form a one-parameter family, parameterised by p ∈ [0, 1], given by a
convex combination of the maximally entangled state and the normalised projection onto
its orthogonal complement:

p · Π∅ + (1− p) · I− Π∅

Tr(I− Π∅)
. (7.17)

3. The Brauer states form a two-parameter family, parameterised by p, q ∈ [0, 1] with p+q ⩽
1, given by a convex combination of all three normalised orthogonal projectors:

p · Π∅ + q · Π

TrΠ
+ (1− p− q) · Π

TrΠ
. (7.18)

A Werner state ρAB is separable if and only if q ⩽ 1
2

[Wer89b], an isotropic state ρAB is
separable if and only if p ⩽ 1

d
[HH99], and a Brauer state ρAB is separable if and only if q ⩽ 1

2

and p ⩽ 1
d

(see Section 7.A.5).
1More precisely, we are talking about orthogonal Brauer states. In the case of the symplectic group, the

commutant is also a Brauer algebra, so the corresponding states would be called symplectic Brauer states.
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7.2.3 Jucys–Murphy elements

Special elements of the symmetric group algebra CSn and the Brauer algebra Brdn, called Jucys–
Murphy elements, generate maximal commutative subalgebras inside the matrix algebras Ad

n

and Bdn, respectively. They allow us, in principle, to build a representation theory of these
algebras starting purely from the knowledge of their spectrum ( see Section 2.7).

Recall from Eq. (2.73) that for CSn the Jucys–Murphy elements JS
k are defined as JS

1 := 0
and for every k ∈ {2, . . . , n}

JS
k :=

k−1∑

i=1

(i, k), (7.19)

where (i, k) is the transposition of i and k. Similarly, for the Brauer algebra Brdn the Jucys–
Murphy elements JBr

k are defined as JBr
1 := 0 and, for every k ∈ {2, . . . , n},

JBr
k :=

k−1∑

i=1

(i, k)− (i, k), (7.20)

where (i, k) is the vertical pairing vertices i and k. The sum of all Jucys–Murphy elements is
central in the corresponding matrix algebra. Its spectrum is well-known and summarised in the
next two lemmas which we adapt to our notation from [DLS18].

7.2.2. Lemma. Consider the following element of the matrix algebra Ad
n:

JS :=
n∑

k=1

ψdn
(
JS
k

)
=

∑

1⩽i<j⩽n

Fi,j. (7.21)

Then, for any irreducible representation µ ∈ Âd
n, the element JS acts on the irrep µ as a

multiple of the identity:
ψµ(JS) = cont(µ) · I. (7.22)

7.2.3. Lemma. Consider the following element of the matrix algebra Bdn:

JB :=
n∑

k=1

ψdn
(
JBr
k

)
=

∑

1⩽i<j⩽n

(Fi,j −Wi,j). (7.23)

Then, for any irreducible representation λ ∈ B̂dn, the element JB acts on the irrep λ as a multiple
of the identity:

ψλ(JB) =

(
cont(λ)− n− |λ|

2
(d− 1)

)
· I, (7.24)

where ψλ is irreducible representation of the algebra Bdn.

7.2.4. Remark. The commutation relation [JS , JB] = 0 holds for all n and d. This implies in
particular that JS and JB share a common eigenbasis and can be simultaneously diagonalised.

7.2.4 Restrictions of Brauer algebra representations

We saw in Section 7.2.1 that under the action of the Brauer algebra Brdn, the space
(
Cd
)⊗n

decomposes into irreducible representations as
(
Cd
)⊗n ≃

⊕

λ∈B̂d
n

V
Bd
n

λ ⊗W
Od

n
λ . (7.25)
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By restricting the irreducible representations V Bd
n of the algebra Bdn to the algebra Ad

n, the
space

(
Cd
)⊗n decomposes further as

(
Cd
)⊗n ≃

⊕

λ∈B̂d
n

Res
Bd
n

Ad
n

(
V

Bd
n

λ

)
⊗W

Od
n

λ (7.26)

≃
⊕

λ∈B̂d
n

(⊕

µ∈Âd
n

V Ad
n

µ ⊗ Cmλ,µ

)
⊗W

Od
n

λ (7.27)

≃
⊕

µ∈Âd
n

V Ad
n

µ ⊗
(⊕

λ∈B̂d
n

W
Od

n
λ ⊗ Cmλ,µ

)
. (7.28)

The multiplicities mλ,µ have no known concise formula. Even the set

Ωn,d :=
{
(λ, µ) ∈ B̂dn × Âd

n | mλ,µ ̸= 0
}

(7.29)

is still unknown analytically. However, Okada characterises it through an algorithm [Oka16,
Proposition 2.5]. He finds a relatively simple subset Γn,d ⊂ Ωn,d [Oka16, Theorem 5.4] defined
as

Γn,d :=
{
(λ, µ) ∈ B̂dn × Âd

n | λ = (1m), r(µ) = m for some m ∈ {0, . . . , d}
}
, (7.30)

where r(µ) is the number of rows with odd size in the Young diagram µ and (10) := ∅ is the
empty partition.

The algorithm from [Oka16, Proposition 2.5, Proposition 2.6, Theorem 5.4] gives an ana-
lytical characterisation of some subsets of the set Ωn,d in the following three easy cases:

1. if λ = (1m) for some m ∈ {0, . . . , d}, then (λ, µ) ∈ Ωn,d if and only if r(µ) = m, i.e.,
(λ, µ) ∈ Γn,d,

2. if λ ⊢ n, then (λ, µ) ∈ Ωn,d if and only if µ = λ,

3. if µ = (n), then (λ, µ) ∈ Ωn,d if and only if λ = (n− 2r) for some r ∈ {0, . . . , ⌊n
2
⌋}.

7.2.5. Remark. When the dimension d is 2, a complete and simple characterisation of positive
multiplicities mλ,µ can be found from the Okada algorithm [Oka16, Proposition 2.5] (see also
[Rya, Proposition 6.6]): (λ, µ) ∈ Ωn,2 if and only if λ1 ⩽ µ1−µ2, with the exceptions of λ = ∅,
in which case both rows of µ must be even, and λ = (1, 1), in which case both rows of µ must
be odd.

7.3 General formalisation of the problem
In this section, we formalize our problem. We quantify the monogamy of our highly symmetric
entangled states via the following general semidefinite programs (SDPs). Let Π ∈ Herm(H⊗H)
be any flip-invariant two-qudit projector, i.e., FΠF† = Π. Later Π will be either Π∅ or Π ,
and one should think about these projectors as the ones which select the entangled subspace
of interest of the total Hilbert space. Now we want to solve the following SDPs for different
choices of graph G = (V,E) and projectors Π:

p̃wΠ(G, d) := max
ρ,p

p s.t. Tr[Πeρ] ⩾ p ∀e ∈ E, Tr[ρ] = 1, ρ ⪰ 0, (7.31)

pwΠ(G, d) := max
ρ,p

p s.t. Tr[Πeρ] = p ∀e ∈ E, Tr[ρ] = 1, ρ ⪰ 0, (7.32)

pavgΠ (G, d) := max
ρ

1

|E|
∑

e∈E

Tr[Πeρ] s.t. Tr[ρ] = 1, ρ ⪰ 0, (7.33)



7.3. General formalisation of the problem 175

where Πe is defined for every edge e ∈ E as Πe := Π ⊗ Iē, and Iē is the identity on all
vertices except those of e. Note that pavgΠ (G, d) is just the largest eigenvalue of the Hamiltonian
1
|E|
∑

e∈E Πe:

pavgΠ (G, d) = λmax

(∑

e∈E

1

|E|Πe

)
. (7.34)

We can also formalize our intuition from Section 7.1 a bit differently. Namely, given a one-
parameter family of bipartite states σ(p) and a graph G, we want to maximize p by finding a
global state ρ such that ρe = σ(p) for every edge e ∈ E:

pσ(G, d) := max
ρ,p

p s.t. ρe = σ(p) ∀e ∈ E, Tr[ρ] = 1, ρ ⪰ 0, (7.35)

The parameter p should be understood as some measure of entanglement. We focus on the
cases, where σ states are Werner, Brauer or isotropic with p being the overlap onto the relevant
projector Π defined as p = Tr[Πσ(p)].

7.3.1 Dual SDP approach

The Lagrangian [BV04] associated with the optimisation problem (7.31) is defined as

L
(
p, ρ, Z, (xe)e, y

)
:= p+ y

(
Tr[ρ]− 1

)
+
∑

e∈E

xe
(
Tr[Πeρ]− p

)
+
〈
Z, ρ

〉
, (7.36)

where y ∈ R and (xe ∈ R)e are real Lagrange multipliers, Z ∈ Herm
(
(Cd)⊗n

)
and ⟨·, ·⟩ denotes

the Frobenius inner product 〈
A,B

〉
:= Tr

[
A∗B

]
. (7.37)

The Min-Max principle states that

max
p,ρ⪰0

min
y,xe⩾0
Z⪰0

L
(
p, ρ, Z, (xe)e, y

)
⩽ min

y,xe⩾0
Z⪰0

max
p,ρ⪰0

L
(
p, ρ, Z, (xe)e, y

)
. (7.38)

In fact, Slater’s condition holds true for our SDP (take ρ = 1
dn

· I⊗n and p = 0) and we have
the equality. Rewriting the Lagrangian gives

L
(
p, ρ, Z, (xe)e, y

)
= −y + p

(
1−

∑

e∈E

xe

)
+
〈
H + Z + yI, ρ

〉
, (7.39)

where H :=
∑

e∈E xeΠe. Making the constraints of the Lagrangian explicit, that is,

max
p,ρ⪰0

L
(
p, ρ, Z, (xe)e, y

)
=

{
−y if

∑
e∈E xe = 1 and 0 ⪰ H + Z + yI

∞ otherwise
(7.40)

after substitution y 7→ −y the dual SDP of Eq. (7.32) becomes

p̃wΠ(G, d) = min
(xe)e,y,Z

y s.t.
∑

e∈E

xe = 1, xe ⩾ 0 ∀e ∈ E, 0 ⪰ H+Z−yI, Z ⪰ 0. (7.41)

Recall that for any Hermitian matrix M the smallest λ ∈ R such that λI ⪰ M is equal
to the largest eigenvalue λmax(M). Then Eq. (7.41) can be, after simplifying the variable Z,
rewritten as

p̃wΠ(G, d) = min∑
e∈E xe=1

xe⩾0, ∀e∈E

λmax

(∑

e∈E

xeΠe

)
. (7.42)
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A similar calculation for pwΠ(G, d) from Eq. (7.31) shows that

pwΠ(G, d) = min∑
e∈E xe=1

λmax

(∑

e∈E

xeΠe

)
. (7.43)

We conjecture that p̃wΠ(G, d) = pwΠ(G, d), and even more generally that:

7.3.1. Conjecture. For any graph G and a flip-invariant orthogonal projection Π,

min∑
e∈E xe=1

λmax

(∑

e∈E

xeΠe

)
= min∑

e∈E xe=1
xe⩾0,∀e∈E

λmax

(∑

e∈E

xeΠe

)
. (7.44)

7.3.2 Automorphism group action and edge-transitive graphs

Let ρ be an optimal solution of the primal SDP (7.32) for a given graph G = (V,E) with
objective value p, and let us twirl it using the symmetries of G:

ρ̃ =
1

|Aut(G)|
∑

π∈Aut(G)

ψdn(π)ρψ
d
n(π

−1), (7.45)

where Aut(G) is the automorphism group of G. Let o(e) denote the orbit of edge e ∈ E under
this action. Note that ρ̃ still satisfies the inequality constraints of SDP (7.31):

Tr[Πeρ̃] =
1

|o(e)|
∑

e′∈o(e)

pe′ ⩾ p, (7.46)

where pe := Tr[Πeρ] and we used that pe ⩾ p for the feasible solution ρ. That means that we
can always restrict the set of feasible solutions only to those that are invariant under the action
of the automorphism group of the graph G. This observation simplifies the dual SDP (7.42):

p̃wΠ(G, d) = min∑
o∈O(G) xo=1

xo⩾0, ∀o∈O(G)

λmax

( ∑

o∈O(G)

xo
∑

e∈o

1

|o|Πe

)
, (7.47)

where o denotes an orbit in the set of all orbits O(G) of the induced automorphism group
Aut(G) action on the set of edges E. An edge-transitive graph G has only one orbit, so the
condition xo ⩾ 0 naturally holds for Eq. (7.32) and Eq. (7.47) simplifies to

p̃wΠ(G, d) = λmax

(∑

e∈E

1

|E|Πe

)
= pavgΠ (G, d) = pwΠ(G, d). (7.48)

In the following sections, we will focus on understanding the values pwΠ(G, d) for the complete
graph G = Kn for the following choices of Π:

qW (n, d) := pwΠ(Kn, d) for Π := Π , (7.49)
pB(n, d) := pwΠ(Kn, d) for Π := Π∅. (7.50)

We will also formulate a similar problem for isotropic states (which form a subset of Brauer
states). In that case, we will refer to the optimised value by pI(n, d), see Section 7.4.2.
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7.4 Kn-Extendibility

7.4.1 Werner states

Let us first consider in detail the case where the reduced two-body state is a Werner state,
i.e., Π = Π = I−F

2
. One can, in principle, directly solve Eq. (7.32) using techniques from

[CKMR07], see Section 7.A.1. In this section, we will show how Jucys–Murphy elements help
to solve the dual SDP in a simpler manner. It is easy to see that

qW (n, d) = λmax(HKn) =
1

2

(
1− λmin(JS)

|E|

)
, (7.51)

where JS =
∑n

i=1 Ji and Ji are Jucys–Murphy elements for symmetric group Sn. The spectrum
for Jucys–Murphy elements is well known, see Section 7.2.3, so we can write:

λmin(JS) = min
λ⊢n
l(λ)⩽d

cont(λ), (7.52)

with cont(λ) the content of the Young diagram λ ⊢ n. The optimal Young diagram λ∗ that
achieves the minimum is the tallest one with the constraint that the number of rows is less
than or equal to d, i.e. the most rectangular shape possible:

λ∗1 = · · · = λ∗k =
n− k

d
+ 1, λ∗k+1 = · · · = λ∗d =

n− k

d
, (7.53)

where k := n mod d. Therefore we can write

λmin(J) =
k−1∑

i=0

(
−
(
n− k

d
+ 1

)
i+

n− k

2d

(
n− k

d
+ 1

))

+
d−1∑

i=k

(
−n− k

d
i+

n− k

2d

(
n− k

d
− 1

))
(7.54)

=

(
n− k

d
+ 1

)(
k(n− k)

2d
− k(k − 1)

2

)

+
n− k

d

(
d− k

2

(
n− k

d
− 1

)
− (d− k)(d+ k − 1)

2

)
(7.55)

=
k(d− k)(d+ 1)

2d
+
n(n− d2)

2d
. (7.56)

The above argument gives a proof for the following theorem.

7.4.1. Theorem. The optimisation problem Eq. (7.49) has the optimal value

qW (n, d) =
d− 1

2d

(n+ k + d)(n− k)

n(n− 1)
+
k(k − 1)

n(n− 1)
, (7.57)

where k = n mod d.

7.4.2 Isotropic states

Another important class of bipartite states with symmetries are isotropic states of the form
Eq. (7.17), which form a subset of Brauer states. A convenient way to write an isotropic state
is using as a linear combination of W

d
and I

d2
:

p′ · W
d

+ (1− p′) · I

d2
. (7.58)
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2 3 4 5 6 7 8 9
2 1 1/2 1/2 2/5 2/5 5/14 5/14 1/3

3 1 1 2/3 3/5 3/5 11/21 1/2 1/2

4 1 1 1 3/4 2/3 9/14 9/14 7/12

5 1 1 1 1 4/5 5/7 19/28 2/3

6 1 1 1 1 1 5/6 3/4 17/24

7 1 1 1 1 1 1 6/7 7/9

8 1 1 1 1 1 1 1 7/8

9 1 1 1 1 1 1 1 1

d
n

Figure 7.2: The first values of qW (n, d). The values of qW (n, d), for which the Werner states ρe
are separable (i.e. q ⩽ 1/2), are in grey.

When −1
d2−1

⩽ p′ ⩽ 1, the state ρ is positive semidefinite and unit trace, and hence a quantum
state. The parameters p of Eq. (7.17) and p′ of Eq. (7.58) are related via

p′ = p+
p− 1

d2 − 1
= p

d2

d2 − 1
− 1

d2 − 1
, p =

1

d2
+

(
1− 1

d2

)
p′ (7.59)

and an isotropic state ρ becomes separable if and only if p′ ⩽ 1
d+1

.
If we want to formulate an optimisation problem similar to that in Eq. (7.32) for isotropic

states, then one should add additional constraints [ρe, U⊗ Ū ] = 0 for every edge e ∈ E(Kn) and
arbitrary unitary U ∈ Ud, to the optimisation problem (7.32). Equivalently, we can formulate
the problem Eq. (7.35) for isotropic states as the following SDP:

p′I(n, d) := max
ρ,p′

p′ s.t. ρe =
p′

d
·W+

1− p′

d2
· I ∀e ∈ E, Tr[ρ] = 1, ρ ⪰ 0. (7.60)

This problem depends on the number of quantum systems n and their dimension d. The aim is
to find a state on a complete graph such that the reduced states between each pair of vertices
are as maximally entangled as possible. Note that in the previous SDP (7.60), the condition
Tr[ρ] = 1 is superfluous, and the optimisation problem reduces to:

p′I(n, d) = max
ρ,p′

p′ s.t. ρe =
p′

d
·W+

1− p′

d2
· I ∀e ∈ E, ρ ⪰ 0. (7.61)

It turns out that the dual problem can written as follows (see Section 7.A.2 for the derivation):

p′I(n, d) = min
x∈R

λmax

(∑

e∈E

((
1

|E|(1− d)
− x

)
(Ie − d · Fe) + x(Fe −We)

))
. (7.62)

We can find the value Eq. (7.62) analytically, which is one of the main results of this chapter:

7.4.2. Theorem. The optimisation problem Eq. (7.62) has the optimal value

p′I(n, d) =

{
1

n+n mod 2−1
if d > n or either d or n is even

min
{

2d+1
2dn+1

, 1
n−1

}
if n ⩾ d and both d and n are odd.

(7.63)

The corresponding value pI(n, d) can be obtained from the relation Eq. (7.59):

pI(n, d) =

{
1
d2

+
(
1− 1

d2

)
1

n+n mod 2−1
if d > n or either d or n is even

1
d2

+
(
1− 1

d2

)
min

{
2d+1
2dn+1

, 1
n−1

}
if n ⩾ d and both d and n are odd.

(7.64)
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2 3 4 5 6 7 8 9
2 1 1/3 1/3 1/5 1/5 1/7 1/7 1/9

3 1 7/19 1/3 7/31 1/5 7/43 1/7 1/8

4 1 1/3 1/3 1/5 1/5 1/7 1/7 1/9

5 1 1/3 1/3 11/51 1/5 11/71 1/7 11/91

6 1 1/3 1/3 1/5 1/5 1/7 1/7 1/9

7 1 1/3 1/3 1/5 1/5 5/33 1/7 15/127

8 1 1/3 1/3 1/5 1/5 1/7 1/7 1/9

9 1 1/3 1/3 1/5 1/5 1/7 1/7 19/163

d
n

(a) The first values of p′I(n, d).

2 3 4 5 6 7 8 9
2 1 1/2 1/2 2/5 2/5 5/14 5/14 1/3

3 1 25/57 11/27 29/93 13/45 11/43 5/21 2/9

4 1 3/8 3/8 1/4 1/4 11/56 11/56 1/6

5 1 9/25 9/25 21/85 29/125 67/355 31/175 71/455

6 1 19/54 19/54 2/9 2/9 1/6 1/6 11/81

7 1 17/49 17/49 53/245 53/245 13/77 55/343 121/889

8 1 11/32 11/32 17/80 17/80 5/32 5/32 1/8

9 1 83/243 83/243 17/81 17/81 29/189 29/189 187/1467

d
n

(b) The first values of pI(n, d).

Figure 7.3: The first values of p′I(n, d) and pI(n, d). The values for which the isotropic states
ρe are separable (i.e. p ⩽ 1/d), are in grey. Note that they decrease with respect to n, but are
not monotonic with respect to d.

The proof of this theorem is provided in the next sections. Our strategy is to prove the theorem
in the two cases separately:

• when d > n or d is even or n is even,

• when d ⩽ n and d is odd and n is odd,

by combining Theorem 7.4.5 and Theorem 7.4.8. We begin by establishing a simple lower bound
using the notion of perfect matching of a graph.

Lower bound

We can get a simple lower bound on p′I(n, d) by looking at a set of perfect matchings on the
complete graph. A perfect matching on a graph is a set of edges, such that every vertex is
contained in exactly one of those edges.

7.4.3. Proposition. There are (2n − 1)!! perfect matchings on K2n, and if e is an edge on
K2n, then there are (2n− 3)!! perfect matchings on K2n containing e.

Proof:
Let an be the number of perfect matching on K2n; clearly a1 = 1. Now assume n > 1 and let
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v be a vertex in V . This vertex can be matched with 2n− 1 other vertices, let u ∈ V be such
other vertex matched with v. Remove u and v from K2n, the resulting graph K2n \ {u, v} is
the complete graph K2(n−1). Thus, by induction on n, the number of perfect matchings on K2n

satisfies the recursive relation:

an = (2n− 1)an−1 =⇒ an = (2n− 1)!!. (7.65)

Assume e = (u, v) in E, thus the number of perfect matchings containing e is the number of
perfect matchings on K2n \ {u, v}, that is (2n− 3)!!. 2

A lower bound on the optimisation problem in Eq. (7.60) can be written as follows. For
even n, let E1, . . . , E(n−1)!! be all the perfect matchings on Kn, and for each perfect matching
Ek, define the quantum state ρ(k) on Kn by,

ρ(k) :=
∏

e∈Ek

We

d
. (7.66)

For odd n, let v be a vertex in V , and let Ev,1, . . . , Ev,(n−2)!! be all the perfect matchings on
Kn \ {v}. Define the quantum state ρ(v,k) on Kn by,

ρ(v,k) :=
Iv
d2

·
∏

e∈Ev,k

We

d
. (7.67)

That is a quantum state maximally entangled on the perfect matching edges, and a maximally
mixed state Iv

d2
on the remaining vertex v in the odd case. For example, on K6 the quantum

state constructed from the perfect matching
{
(1, 2), (3, 4), (5, 6)

}
is equal to

W

d
⊗ W

d
⊗ W

d
, (7.68)

and on K7 the quantum state constructed from the perfect matching
{
(2, 3), (4, 5), (6, 7)

}
of

K7 \ {1} is equal to
I

d
⊗ W

d
⊗ W

d
⊗ W

d
. (7.69)

Let ρ be the quantum state defined on Kn, as a uniform combination of the previously
constructed states ρ(k) and ρ(v,k):

(n even) ρ :=
1

(n− 1)!!

∑

1⩽k⩽(n−1)!!

ρ(k)

(n odd) ρ :=
1

n(n− 2)!!

∑

v∈Kn
1⩽k⩽(n−2)!!

ρ(v,k),

Then for all edges e in Kn, the reduced quantum state ρe is

ρe =

{
1

n−1
1
d
·W+ n−2

n−1
1
d2

· I n even
1
n
1
d
·W+ n−1

n
1
d2

· I n odd,
(7.70)

where the corresponding normalisation factors can be found using Proposition 7.4.3. The lower
bound becomes

p′I(n, d) ⩾

{
1

n−1
n even

1
n

n odd.
(7.71)

In particular, the lower bound is independent of the dimension d.
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Proof of Theorem 7.4.2

Using Lemmas 7.2.2 and 7.2.3, the decomposition of the vector space
(
Cd
)⊗n under the action

of the Brauer algebra Bdn, and under the decomposition of the restriction of the irreducible
representations of the Brauer algebra Bdn to the symmetric group Sn, we can write

f(x) := λmax

(∑

e∈E

((
1

|E|(1− d)
− x

)
(Ie − dFe) + x(Fe −We)

))
= max

(λ,µ)∈Ωn,d

fµ,λ(x), (7.72)

for affine functions fµ,λ(x) defined as

fµ,λ(x) :=
1

d− 1

(
d cont(µ)

|E| − 1

)
+ x
(
cont(λ) + d cont(µ)− r(d− 1)− |E|

)
, (7.73)

with |λ| = n− 2r. The dual optimisation problem is then the minimum value of the max over
a set of affine functions, i.e.,

p′I(n, d) = min
x∈R

max
(λ,µ)∈Ωn,d

fµ,λ(x). (7.74)

Case when d > n or d is even or n is even.

A feasible solution for our dual problem Eq. (7.74) (i.e., an upper bound for the SDP Eq. (7.60))
can be made by setting x = 1

|E|(1−d) . Note that in this case x < 0, since d ⩾ 2. Then Eq. (7.74)
becomes

p′I(n, d) ⩽ min
λ∈B̂d

n

2

n(n− 1)(1− d)

(
cont(λ)− r(d− 1)

)
. (7.75)

7.4.4. Lemma. If d > n, or either d or n is even, then,

p′I(n, d) ⩽

{
1
n

if n is odd
1

n−1
if n is even.

(7.76)

Proof:
It is enough to prove that

min
λ∈B̂d

n

cont(λ)− r(d− 1) ⩽





(1−d)(n−1)
2

if n is odd
(1−d)n

2
if n is even,

(7.77)

If d > n, the minimisation can be restricted to only single-column partitions λ :=
(
1(n−2r)

)
,

for all r ∈ {0, . . . , ⌊n
2
⌋}, which is always possible when d > n. Let |λ| := n− 2r, then

min
λ∈B̂d

n

cont(λ)− r(d− 1) ⩽ min
r∈{0,...,⌊n

2
⌋}
cont

(
1(n−2r)

)
− r(d− 1) (7.78)

= min
r∈{0,...,⌊n

2
⌋}
−|λ|

(
|λ| − 1

)

2
− (d− 1)

n− |λ|
2

(7.79)

=





(1−d)(n−1)
2

if n is odd
(1−d)n

2
if n is even.

(7.80)
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Otherwise, if d is even, let r∗ = ⌈n
2
⌉− d

2
. Then the single-column partition λ :=

(
1(n−2(r+r∗))

)

satisfies λ′1 + λ′2 ⩽ d for all r ∈ {0, . . . , ⌊n
2
⌋ − r∗}, and,

min
λ∈B̂d

n

cont(λ)− r(d− 1) ⩽ min
r∈{0,...,⌊n

2
⌋−r∗}

cont
(
1(n−2r)

)
− (r + r∗)(d− 1) (7.81)

=





(1−d)(n−1)
2

if n is odd
(1−d)n

2
if n is even.

(7.82)

The same result holds if n is even. 2

7.4.5. Theorem. If d > n, or either d or n is even, then,

p′I(n, d) =

{
1
n

if n is odd
1

n−1
if n is even.

(7.83)

Proof:
Using construction from Section 7.4.2 and Lemma 7.4.4, the dual optimisation problem is lower
and upper bounded by 1

n
if n is odd and 1

n−1
if n is even. 2

Case when d ⩽ n and d is odd and n is odd.

Let us evaluate the affine functions fµ,λ of Eq. (7.73) at the negative coordinate x̃ := 1
|E|(1−d) :

fµ,λ(x̃) =
1

d− 1

(
d cont(µ)

|E| − 1

)
+ x̃(cont(λ) + d cont(µ)− r(d− 1)− |E|) (7.84)

=
1

n− 1
+ x̃ · h(λ), (7.85)

where h(λ) is defined by h(λ) := 1
2

∑λ1
i=0 λ

′
i(d − λ′i + 2(i − 1)). At this coordinate the affine

functions do not depend on µ anymore, so we define

g(λ) := fµ,λ(x̃). (7.86)

The offsets of the affine functions do not depend on λ either, therefore we define

a(µ) :=
1

d− 1

(
d cont(µ)

|E| − 1

)
. (7.87)

Let n ⩾ d and k := ⌊n−d
2
/d⌋ and m := n−d

2
mod d. Then we can define two partitions λ1, λ2

in B̂dn and three partitions µ1, µ2, µ̃2
2 in Âd

n:

λ1 := (1d) µ1 := (n)

λ2 := (1) µ2 := (n− d+ 1, 1d−1)

µ̃′
2 := (d2k+1,m2).

(7.88)

2In the definition above, µ̃2 is given using the column notation µ̃′
2. Using the row notation it becomes

µ̃2 =
(
(2k + 3)m, (2k + 1)d−m

)
: m rows of size (2k + 3) and d − m rows of size (2k + 1). For example, see

Fig. 7.4, where µ̃2 of the current proof corresponds to µ4 on the plot.
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x̃ 0

a(µ1)

a(µ2)

a(µ3)

a(µ4)

a(µ5)

(x∗, p′I(n, d))

f(x)

x

f µ
,λ
(x
)g(λ1)

g(λ2)
g(λ3)
g(λ4)

g(λ5)

g(λ6)

Figure 7.4: A typical behavior of the spectrum fµ,λ(x) (thin red lines; f(x) is in bold red)
for all (λ, µ) ∈ Ωn,d when d is odd, n is odd and d ⩽ n ⩽ 2d + 1. The coordinate x = x∗

corresponds to the optimal value f(x∗) = p′I(n, d). The plot corresponds to the parameters
n = 5 and d = 3. The partitions λ corresponding to the points (x̃, g(λ)) are λ1 = (13),
λ2 = (1), λ3 = (2, 1), λ4 = (3), λ5 = (4, 1), λ6 = (5). The partitions µ characterising the offsets
a(µ) for the functions fµ,λ(x) are µ1 = (5), µ2 = (4, 1), µ3 = (3, 2), µ4 = (3, 1, 1), µ5 = (2, 2, 1).
Some other values in that case are x̃ = 1/20, g(λ1) = 1/4, x∗ = −3/62, p′(n, d) = 7/31.

7.4.6. Lemma. Let d and n odd, n ⩾ d, and λ1, µ2 from Eq. (7.88), then

g(λ1)− a(µ2) =
2d+ 2− n

n− 1
. (7.89)

In particular g(λ1) < a(µ2) if n ⩾ 2d+ 3, and g(λ1) > a(µ2) if n ⩽ 2d+ 1.

Proof:
The content of µ2 is (n−d+1)(n−d)

2
− d(d−1)

2
. Also h(λ1) = 0, so g(λ1) = 1

n−1
. Then

g(λ1)− a(µ2) =
1

n− 1
− 1

d− 1

(
d cont(µ2)

|E| − 1

)
(7.90)

= −d(n− d+ 1)(n− d)− d(d− 1)

n(n− 1)(d− 1)
+

1

d− 1
+

1

n− 1
(7.91)

=
2d+ 2− n

n− 1
. (7.92)

2

7.4.7. Lemma. Let d and n odd, n ⩾ d, and the partitions defined in Eq. (7.88), then for all i
and j we have (λi, µj) ∈ S, and the relations

g(λ) ⩽ g(λ2) ⩽ g(λ1) and a(µ) ⩽ a(µ1), (7.93)

for all λ ̸= λ1 in B̂dn and all µ ̸= µ1 in Âd
n. Moreover for all (λ1, µ) ∈ Ωn,d we have

a(µ) ⩽ a(µ2). (7.94)
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Proof:
By definition of S, we have (λi, µj) ∈ S for all i and j. Let λ in B̂dn then

g(λ) =
1

n− 1
+ x̃h(λ), (7.95)

with x̃ < 0 and h(λ) = 1
2

∑λ1
i=0 λ

′
i(d − λ′i + 2(i − 1)). But since λ′1 ⩽ d holds for all λ in B̂dn,

then h(λ) ⩾ 0. In particular, h(λ2) = d−1
2

, and h(λ) = 0 iff λ = λ1. Assume there exists λ in
B̂dn such that

g(λ2) ⩽ g(λ) ⩽ g(λ1), (7.96)
then necessarily the first term of h(λ) is either h(λ1) or h(λ2), since it minimised for the
columns (1) and (1d). But since all the terms in h(λ) are positive, then either g(λ) = g(λ1) or
g(λ) = g(λ2).

Because µ1 is the n-box Young diagram that maximises the content function, then

a(µ) ⩽ a(µ1), (7.97)

for all µ ̸= µ1 in Âd
n.

Assume there exists µ such that (λ1, µ) ∈ Ωn,d and

a(µ2) ⩽ a(µ) ⩽ a(µ1). (7.98)

Since
(
(1d), µ

)
∈ S implies

(
(1d), µ

)
∈ Ωn,d, then (λ1, µ) ∈ S, and by definition r(µ) = d. Thus

necessarily cont(µ2) ⩽ cont(µ), which implies that the first row of µ2 is of size at most n−d+1.
But the content of a Young diagram is a non-decreasing function of the first row’s size, i.e. for
all Young diagrams ν ⊢ n and µ ⊢ n with the same number of boxes n such that ν1 ⩽ µ1 we
have cont(ν) ⩽ cont(µ). Then µ2 and µ share the same first row, and µ2 = µ. 2

7.4.8. Theorem. When d is odd, n is odd and n ⩾ d, the value p′I(n, d) is

p′I(n, d) = min

(
2d+ 1

2dn+ 1
,

1

n− 1

)
. (7.99)

Proof:
Let λ1, λ2 and µ1, µ2, µ̃2 as in Eq. (7.88), and let us prove that the optimal solution of the dual
problem is p′I(n, d) = g(λ1) when n ⩾ 2d + 3, and lies at intersection of the affine functions
fµ1,λ2 and fµ2,λ1 , when n ⩽ 2d+ 1. Now since

cont(µ̃2) =
2k+1∑

i=1

(
−d(d− 1)

2
+ (i− 1)d

)
+

2k+3∑

i=2k+2

(
−m(m− 1)

2
+ (i− 1)m

)

=
d(2k + 1)(2k + 1− d)

2
+m(4k + 4−m), (7.100)

and n− d = 2kd+ 2m with m ∈ {0, . . . , d− 1}, we can write

g(λ1)− a(µ̃2) =
1

n− 1
− 1

d− 1

(
d cont(µ̃2)

|E| − 1

)
(7.101)

=
n(d+ n− 2)− 2d cont(µ̃2)

n(n− 1)(d− 1)
(7.102)

=
(d+ 2)(2m2 − 2dm− n+ dn)

n(n− 1)(d− 1)
(7.103)

⩾
(d+ 2)

(
−(d− 1)(d+ 1)/2 + d(d− 1)

)

n(n− 1)(d− 1)
(7.104)

=
(d+ 2)(d− 1)

2n(n− 1)
> 0, (7.105)
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where in the first inequality we used n ⩾ d and that the minimum of 2m2−2dm on the domain
m ∈ {0, . . . , d − 1} is achieved for m = (d − 1)/2. Geometrically this means that the point
(0, a(µ̃2)) is always lower than (x̃, g(λ1)).

Suppose that n ⩾ 2d+ 3, then the relation

g(λ1) < a(µ2), (7.106)

holds by Lemma 7.4.6. Therefore p′I(n, d) ⩾ g(λ1) since the optimal point should be above the
intersection of the affine functions fµ2,λ1 and fµ̃2,λ1 that is, above g(λ1). But since g(λ) ⩽ g(λ1)

for all λ in B̂dn by Lemma 7.4.7, it must be p′I(n, d) = g(λ1).
Suppose that n ⩽ 2d+ 1, then the relation

a(µ) ⩽ a(µ2), (7.107)

holds for all (λ1, µ) ∈ Ωn,d, by Lemma 7.4.7. Then p′I(n, d) lies above the affine function fµ2,λ1 .
But g(λ) ⩽ g(λ1) for all λ in B̂dn, by Lemma 7.4.7, then p′I(n, d) must lie on the affine function
fµ2,λ1 , at the intersection with another affine function fµ,λ with g(λ) ⩽ a(µ). Among all such
affine functions there are no functions with λ = λ1 due to Lemma 7.4.7. Because g(λ) ⩽ g(λ2)

for all λ ̸= λ1 in B̂dn and a(µ) ⩽ a(µ1) for all µ ∈ Âd
n, by Lemma 7.4.7, it must be that this

function is fµ1,λ2 . Therefore p′I(n, d) lies at intersection of the affine functions fµ1,λ2 and fµ2,λ1 .
In order to find the intersection of fµ1,λ2 and fµ2,λ1 we need to solve p′I(n, d) := fµ1,λ2(x

∗) =
fµ2,λ1(x

∗), which gives x∗ = 4d
(d−1)(n−1)(2dn+1)

and p′I(n, d) =
2d+1
2dn+1

.
In conclusion, when n ⩾ 2d + 3 then p′I(n, d) =

1
n−1

, and when n ⩽ 2d + 1 then p′(n, d) =
2d+1
2dn+1

, which is equivalent to the statement of the theorem. 2

7.4.3 Brauer states

Understanding the Kn-extendibility in full generality in the case of Brauer states

p · Π∅ + q · Π

TrΠ
+ (1− p− q) · Π

TrΠ
(7.108)

means to find the full 2D region of allowed (p, q) values for arbitrary n and d. As a first step
to solve this general problem, this section aims to determine the maximum values of q and p,
denoted qB(n, d) and pB(n, d), for the Kn-extendibility of Brauer states, as well as the complete
Kn-extendibility polytope of qubit Brauer states.

Maximising the qB(n, d)

We define qB(n, d) formally as follows:

qB(n, d) := max
ρ,q,p

q

s.t. ρe = p · Π∅ + q · Π

TrΠ
+ (1− p− q) · Π

TrΠ
∀e ∈ E,

Tr[ρ] = 1, ρ ⪰ 0.

(7.109)

It turns out that this value is the same as the corresponding value for the Werner state case.

7.4.9. Lemma. For every n and d the following relation holds

qB(n, d) = qW (n, d). (7.110)
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2 3 4 5 6 7 8 9
2 1 2/3 2/3 3/5 3/5 4/7 4/7 5/9

3 1 5/9 5/9 7/15 7/15 3/7 3/7 11/27

4 1 1/2 1/2 2/5 2/5 5/14 5/14 1/3

5 1 7/15 7/15 9/25 9/25 11/35 11/35 13/45

6 1 4/9 4/9 1/3 1/3 2/7 2/7 7/27

7 1 3/7 3/7 11/35 11/35 13/49 13/49 5/21

8 1 5/12 5/12 3/10 3/10 1/4 1/4 2/9

9 1 11/27 11/27 13/45 13/45 5/21 5/21 17/81

d
n

Figure 7.5: The first largest values of pB(n, d) of the Kn-extendible Brauer states. All 2-body
Brauer states corresponding to these values are entangled due to Corollary 7.4.11, in contrast
to Fig. 7.2.

Proof:
Given any solution ρ to the optimisation problem (7.109), we can twirl it over unitary group
action U⊗n without changing the value of the optimisation problem since Π is invariant under
U⊗2 action. It means that 2-body marginals of the twirled ρ are Werner states, and we reduced
the problem of calculating qB(n, d) to calculating qW (n, d). 2

Now, we move to the more complicated case of understanding the value pB(n, d).

Maximising the pB(n, d)

Consider now Eq. (7.32) for the projector onto maximally entangled state Π := W
d

on the
complete graph Kn. We have due to Eq. (7.48):

pB(n, d) =
1

d · |E|λmax

(∑

e∈E

We

)
, (7.111)

and with the help of Jucys–Murphy elements we can get the spectrum of the Hamiltonian
HB :=

∑
e∈E We. Just note that the sum of Jucys–Murphy elements for the symmetric group

algebra and the Brauer algebra commute. It means that we can subtract the corresponding
spectra to get

spec(HB) =
{
g(µ, λ)

∣∣µ ∈ Âd
n, λ ∈ B̂dn, (λ, µ) ∈ Ωn,d

}
, (7.112)

where Ωn,d is defined in Eq. (7.29) and

g(µ, λ) := cont(µ)− cont(λ) +
(n− |λ|)(d− 1)

2
. (7.113)

Therefore
pB(n, d) =

1

d · |E| max
(µ,λ)∈Ωn,d

g(µ, λ). (7.114)

7.4.10. Theorem. The optimisation problem Eq. (7.50) has the optimal value

pB(n, d) =
1

d
+

(
1− 1

d

)
1

n+ n mod 2− 1
. (7.115)
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Proof:
Let λ ⊢ n− 2r, λ ∈ B̂dn for some fixed r and define

f(λ) := − cont(λ) +
(n− |λ|)(d− 1)

2
. (7.116)

Since the content of a Young diagram λ is a non-decreasing function of the first row’s size (when
the number of boxes is fixed), then in order to maximize f(λ) we can assume that λ takes the
most rectangular shape possible in order to minimize cont(λ). Namely, f(λ∗) ⩾ f(λ) where
λ∗ ⊢ n− 2r

λ∗1 = . . . = λ∗k =
n− 2r − k

d
+ 1, λ∗k+1 = . . . = λ∗d =

n− 2r − k

d
, (7.117)

and k := n−2r mod d. Then, in particular, we can use our calculation from Eq. (7.56) to write

f(λ∗) =
1

2d

(
nd(d− 1)− |λ∗|2 + d|λ∗| − k(d− k)(d+ 1)

)
(7.118)

Assume |λ∗| > d and consider three cases:

1. n−2r−k is even. Define r̃ := n−2r−k
2

. Then n−2r−2r̃ = k and we can set λ̃⊢k as a vertical
one column Young diagram λ̃ := (1k). Since k̃ := |λ̃| mod d = k. We see from Eq. (7.118) that
f(λ̃) > f(λ∗).

2. n− 2r − k is odd and k = 0. Then also d is odd, meaning that we can set λ̃ ⊢ d, λ̃ := (1d)
preserving k̃ = k = 0. Again we deduce from Eq. (7.118) that f(λ̃) > f(λ∗).

3. n−2r−k is odd and k > 0. In this case we define λ̃⊢k−1, λ̃ := (1k−1). Using |λ∗| ⩾ d+k,
we can estimate the difference f(λ̃)− f(λ∗) as

2d(f(λ̃)− f(λ∗)) = |λ∗|2 − |λ̃|2 − d(|λ∗| − |λ̃|)− (k − 1)(d− k + 1)(d+ 1) + k(d− k)(d+ 1)

= |λ∗|(|λ∗| − d)− (k − 1)2 + d(k − 1) + (d+ 1)(1 + d− 2k)

= |λ∗|(|λ∗| − d) + d2 − k2 + d− kd

⩾ (d+ k)k + d2 − k2 + d− kd = d(d+ 1) > 0, (7.119)

meaning that again f(λ̃) > f(λ∗).

The above analysis means that we can assume without loss of generality that the maximiser of
the function f(λ) over λ ∈ B̂dn is a Young diagram λ with one column only, i.e. λ = (1k) for
some k ⩽ d. Therefore

max
(µ,λ)∈Ωn,d

g(µ, λ) = max
(µ,λ)∈Γn,d

g(µ, λ) =

{
g((n),∅) n even,
g((n), (1)) n odd,

(7.120)

which gives us

pB(n, d) =
2

dn(n− 1)

(
n(n− 1)

2
+

(n− n mod 2)(d− 1)

2

)
(7.121)

=
1

d
+

(n− n mod 2)(d− 1)

dn(n− 1)
. (7.122)

2
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7.4.11. Corollary. For all n and d, any feasible solution ρ for the optimal value pB(n, d)
has entangled reduced Brauer states ρe.

Proof:
Using the PPT criterion from Section 7.A.5, an element from the two-parameter (p, q) family
of Brauer states for any fixed d ⩾ 2, is separable if and only if it lies in the region specified by

{
0 ⩽ p ⩽ 1

d

0 ⩽ q ⩽ 1
2

(7.123)

But from Theorem 7.4.10, we always have pB(n, d) > 1
d

for any finite n. 2

7.4.12. Theorem. For all n and d, there exists a feasible solution ρ for the optimal value
pB(n, d) such that for all edges e:

ρe = pB(n, d) · Π∅ +
(
1− pB(n, d)

)
· Π

TrΠ
.

Proof:
We are going to solve the following optimisation problem:

p∗(n, d) = max
ρ,p

p

s.t. ρe = p · Π∅ + (1− p) · Π

TrΠ
∀e ∈ E, Tr[ρ] = 1, ρ ⪰ 0.

(7.124)

and show that, in fact, p∗(n, d) = pB(n, d). This suffices to prove the claim. In Section 7.A.3
we show that actually

p∗(n, d) = min
x∈R

max
(λ,µ)∈Ωn,d

1

d · |E|

(
cont(µ)− cont(λ) +

(n− |λ|)(d− 1)

2

)
+
x

d

(
1− cont(µ)

|E|

)
.

(7.125)
Equivalently, we want to minimize over x ∈ R a piecewise linear function

h(x) := max
(λ,µ)∈Ωn,d

hλ,µ(x), (7.126)

where we define affine functions hλ,µ(x) as

hλ,µ(x) :=
1

d · |E|

(
cont(µ)− cont(λ) +

(n− |λ|)(d− 1)

2

)
+
x

d

(
1− cont(µ)

|E|

)
. (7.127)

Note that the finite optimum value p∗(n, d) is always achieved at an intersection of at least two
different affine functions hλ,µ(x), and there must be at least one function among them with
non-positive slope and at least one with non-negative slope. However, cont(µ) ⩽ |E| so all
functions hλ,µ(x) have non-negative slopes. Moreover, the functions hλ,µ(x) with µ = (n) are
the only ones which have zero slopes (because this is the only µ which achieves cont(µ) = |E|).
So it means that the optimum value is achieved for µ = (n) and some λ such that (λ, µ) ∈ Ωn,d

with the formula

p∗(n, d) = max
(λ,(n))∈Ωn,d

1

d · |E|

(
|E| − cont(λ) +

(n− |λ|)(d− 1)

2

)
, (7.128)

where we used the fact that cont(µ) = |E|. But we have already calculated this quantity in
Theorem 7.4.10, so

p∗(n, d) =
1

d · |E| max
(µ,λ)∈Ωn,d

g(µ, λ) = pB(n, d), (7.129)

which proves the claim. 2
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Kn-extendibility polytope for qubits

0 0.2 0.4 0.6 0.8 1
0
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0.8
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q(
p
,n
,2
)

n = 2
n = 3 and n = 4
n = 5 and n = 6
n = 7 and n = 8

Figure 7.6: In blue, the optimal values of q(p, n, 2) for n ∈ {2, . . . , 8}. The Kn-extendibility for
qubits Brauer states is the polytope given by the extremal points of those piecewice functions,
see Theorem 7.4.15. The blues dots correspond to the optimal values of Theorem 7.4.10. The
green line corresponds to the parameters (p, q) of Werner states, and the green dots to the
optimal values of Theorem 7.4.1. The red line corresponds to the parameters (p, q) of isotropic
states, and the red dots to the optimal values of Theorem 7.4.2.

To understand the complete Kn-extendibility for qubit Brauer states, we solve the following
optimisation problem in this subsection

q(p, n, d) = max
ρ,q

q

s.t. ρe = p · Π∅ + q · Π

TrΠ
+ (1− p− q) · Π

TrΠ
, ∀e ∈ E

ρ ⪰ 0,

(7.130)

for all p ∈ [0, 1], n ⩾ 2 and d = 2, i.e. the largest values of q, given a fixed p such that the
Brauer state with parameter (p, q) is Kn-extendible. Note that from Section 7.4.3, the optimal
solution q(p, n, d) is zero when p is larger than pB(n, d).

Recall that from Remark 7.2.5, the complete set Ωn,2 is known: (λ, µ) ∈ Ωn,2 if and only if
λ1 ⩽ µ1 − µ2, with the exceptions of λ = ∅, in which case both rows of µ must be even, and
λ = (1, 1), in which case both rows of µ must be odd.

In Section 7.A.4 we show that q(p, n, 2) is equal to the following optimisation problem:

q(p, n, 2) = min
x∈R

max
(λ,µ)∈Ωn,2

fµ,λ(p, x)

fµ,λ(p, x) =
x

2 · |E|

(
cont(µ)− cont(λ) +

(n− |λ|)
2

)
+

1

2

(
1− cont(µ)

|E|

)
− p · x.

(7.131)

Similarly to the proof of the Kn-extendibility of isotropic states (see Section 7.4.2), let x̃ := 1,
and define the two functions:

g(p, λ) := fµ,λ(p, x̃) and a(µ) := fµ,λ(p, 0),
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where fµ,λ(p, x̃) does not depend on µ, and fµ,λ(p, 0) does not depend on λ nor on p.
Let µ in Ωn,2, then µ = (n − k, k) for some k ∈ {0, . . . , ⌊n

2
⌋}, and hence there are ⌊n

2
⌋ + 1

possibilities for µ, namely:

(n, 0), (n− 1, 1), (n− 2, 2), · · ·
(
n− ⌊n

2
⌋, ⌊n

2
⌋
)
.

We will prove that for all µ = (n− k, k) there exist λ1 and λ2 defined by

λ1 :=

{
(1) if n is odd
(1, 1) if n is even

and λ2 :=

{
(1) if n is odd
∅ if n is even,

(7.132)

such that either (λ1, µ) ∈ Ωn,2 or (λ2, µ) ∈ Ωn,2

7.4.13. Lemma. Let λ1, λ2 be the partitions defined by Eq. (7.132), and let µ = (n− k, k) for
some k ∈ {0, . . . , ⌊n

2
⌋}, then:

• if n is odd, both (λ1, µ) and (λ2, µ) are in Ωn,2,

• if n is even and k is odd, (λ1, µ) ∈ Ωn,2,

• if n is even and k is even, (λ2, µ) ∈ Ωn,2.

Moreover for all λ in Ωn,2, then

g(p, λ1) = g(p, λ2) ⩾ g(p, λ).

Proof:
The first part is a direct consequence of the Remark 7.2.5: if n is odd then µ1−µ2 ∈ {1, . . . , n}
is always larger or equal to 1, otherwise both rows of µ have the same parity as k, and the
result holds by the two exception rules of Remark 7.2.5.

Note that given any λ, λ′ in Ωn,2, such that g(0, λ) ⩾ g(0, λ′), the inequality g(p, λ) ⩾ g(p, λ′)
holds for any p ∈ [0, 1]. Hence we will prove the second part of the Lemma for p = 0. We have

g(0, λ1) = g(0, λ2) =
n

2(n− 1)
.

Using that λ = (1, 1) is the only possible vertical Young diagram (i.e. with negative content)
of B̂2

n, since

B̂2
2k = {(1, 1)} ∪ {(2k − 2r) | r ∈ {0, . . . , k}} (7.133)

B̂2
2k+1 = {(2k + 1− 2r) | r ∈

{
0, . . . , k

}
}, (7.134)

and given that

g
(
0, (n− 2r)

)
=

− cont
(
(n− 2r)

)
+ r

2 · |E| +
1

2
, (7.135)

is an increasing function of r ∈
{
0, . . . , ⌊n

2
⌋
}

with maximum at r = ⌊n
2
⌋, i.e. g(0,∅) if n is

even, and g(0, (1)) if n is odd; we conclude that

g(0, λ1) = g(0, λ2) ⩾ g
(
0, (n− 2r)

)
, (7.136)

for all r ∈
{
0, . . . , ⌊n

2
⌋
}
, and thus in particular for all λ in Ωn,2. 2

Let λ in Ωn,2, then either λ equals (1, 1) or ∅, or there exists a r ∈
{
0, . . . , ⌊n−1

2
⌋
}

such that
λ = (n− 2r). We will see now which pair (µ, λ) are in Ωn,2 in the latter case.
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7.4.14. Lemma. Let λ = (n − 2r) for some r ∈
{
0, . . . , ⌊n−1

2
⌋
}
. Then a pair (µ, λ) with

µ = (n− k, k) is in Ωn,2 if and only if k ∈ {0, . . . , r}.

Proof:
Let µ = (n−k, k) for some k ∈ {0, . . . , ⌊n

2
⌋}. Since λ is neither ∅ nor {1, 1} (the two exceptions

of Remark 7.2.5) we know hat (µ, λ) ∈ Ωn,2 if and only if

n− 2r ⩽ n− 2k, (7.137)

that is, if r ⩾ k. 2

Let µ = (n− k, k) with k ∈ {0, . . . , ⌊n
2
⌋}, then the function

k 7−→ a
(
(n− k, k)

)
=
k(n+ 1− k)

n(n− 1)
,

is a positive increasing function on the interval [0, n+1
2
].

Let λ = (n− 2r) for some r ∈
{
0, . . . , ⌊n−1

2
⌋
}
, and µ = (n− r, r). Then the function

p 7−→ g(p, λ)− a(µ) =
r(n− r − 1)

n(n− 1)
− p,

is positive for all p ⩽ r(n−r−1)
n(n−1)

, i.e. the affine function fµ,λ has positive slope. In particular, the
affine function f(n),(n) has always a non-positive slope for p ⩾ 0.

Now we are ready to characterise Kn-extendibility for qubit Brauer states, which is given
by the polytope in Fig. 7.6. Its boundary is described in the following theorem:

7.4.15. Theorem. For all n, and all p ∈ [0, 1] the optimal value q(p, n, 2) is equal to

q(p, n, 2) =





⌈n/2⌉+1
⌈n/2⌉−1

p if p < ⌈n/2⌉−1
2(2⌈n/2⌉−1)

,
⌈n/2⌉

2⌈n/2⌉−1
− p if ⌈n/2⌉

2⌈n/2⌉−1
⩾ p ⩾ ⌈n/2⌉−1

2(2⌈n/2⌉−1)
,

0 otherwise.
(7.138)

Proof:
From Lemma 7.4.13, we know that for all µ ∈ Âd

n, either (λ1, µ) or (λ2, µ) is in Ωn,2, and
the function λ 7→ g(p, λ) is maximised for those two λ’s. Since a(µ) is maximised for µ1 :=(
n − ⌊n

2
⌋, ⌊n

2
⌋
)
, we know that the optimal value q(p, n, 2) lies at the intersection of the affine

functions fµ1,λ1 or fµ1,λ2 .
If n is even, the affine functions fµ1,λ1 and fµ1,λ2 have slopes equal to

g
(
p, (1, 1)

)
− a
(
n
2
, n
2

)
= g
(
p,∅

)
− a
(
n
2
, n
2

)
=

n− 2

4(n− 1)
− p. (7.139)

Note that in this case, only one of the two affine functions fµ1,λ1 and fµ1,λ2 are included in the
optimisation problem q(p, n, 2). When n = 2 and p = 0, both fµ1,λ1 and fµ1,λ2 are constant
functions and optimal value q(p, n, 2) equals to fµ1,λ1(0) = fµ1,λ2(0) = 1, as expected.

Let n even and p ⩽ n−2
4(n−1)

, then fµ1,λ1 and fµ1,λ2 have non-negative slope, and the optimal
value q(p, n, 2) must lie at the intersection of another affine function fµ,λ with non-positive
slope. From Lemma 7.4.14 we know that for all r ∈

{
0, . . . , ⌊n−1

2
⌋
}

and all k ∈ {0, . . . , r}, the
pair (λr, µk) with λr = (n− 2r) and µk = (n− k, k) is in Ωn,2. Thus if fµk,λr has non-positive
slope for some r and k, then given k′ ⩾ k, the affine function fµk′ ,λr has also non-positive
slope. Moreover the intersection between fµk′ ,λr and fµ1,λ1 or fµ1,λ2 is always higher than the
intersection between fµk,λr and fµ1,λ1 or fµ1,λ2 . Thus we can restrict the intersection problem
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x̃0

g(p, λ4)

0

g(p, λ3)

g(p, λ1)
g(p, λ2)

fµ,λ(x)

x̃0

a(µ3)

a(µ2)

a(µ1)

(
x∗, q(p, n, 2)

) f(x)

x̃0

g(p, λ4)

0

g(p, λ3)

g(p, λ1)
g(p, λ2)

fµ,λ(x)

x̃0

a(µ3)

a(µ2)

a(µ1)

(
x∗, q(p, n, 2)

)f(x)

Figure 7.7: Two typical behaviors of the spectrum fµ,λ(x) (thin red lines; f(x) is in bold red)
for all (λ, µ) ∈ Ωn,2, for small p on the top and large p on the bottom. The coordinate x = x∗

corresponds to the optimal value f(x∗) = q(p, n, 2). The plot corresponds to the parameters
n = 5 with p = 3

20
on the top and p = 1

3
on the bottom. The partitions λ corresponding to the

points (x̃, g(p, λ)) are λ1 = λ2 = (1), λ3 = (3), λ4 = (5). The partitions µ characterising the
offsets a(µ) for the functions fµ,λ(x) are µ1 = (3, 2), µ2 = (4, 1), µ3 = (3, 2), µ4 = (5).
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to affine functions fµr,λr with r ∈
{
0, . . . , ⌊n−1

2
⌋
}
. The affine functions fµr,λr intersect fµ1,λ1 or

fµ1,λ2 at

xr =
4

2r − n+ 2
− 1 and yr =

4p(1− n) + n− 2

(n− 1)(2r − n+ 2)
+

1

n− 1
+ p. (7.140)

The largest value of yr is reached at r = 0 and is equal to y0 = p(n+2)
n−2

. Not that since
g
(
p, (1, 1)

)
− a
(
n
2
, n
2

)
and g

(
p,∅

)
− a
(
n
2
, n
2

)
are both non-negative, and from Lemma 7.4.13:

g(p, λ1) = g(p, λ2) ⩾ g(p, λ),

for all λ in Ωn,2, then there is no µ in Ωn,2 such that fµ,λ1 or fµ,λ2 has non-positive slope. Thus
if n even and p ⩽ n−2

4(n−1)
, then q(p, n, 2) = p(n+2)

n−2
.

Let n even and p > n−2
4(n−1)

, then fµ1,λ1 and fµ1,λ2 have negative slope, and the optimal value
q(p, n, 2) must lie at the intersection of another affine function fµ,λ with non-negative slope.
But from Lemma 7.4.13:

g(p, λ1) = g(p, λ2) ⩾ g(p, λ),

for all λ in Ωn,2. Thus no intersection can occur at a point higher than g(p, λ1) = g(p, λ2). But
from Lemma 7.4.13, we know that for any µk = (n − k, k) for some k ∈ {0, . . . , ⌊n

2
⌋}, either

(λ1, µk) or (λ2, µk) is in Ωn,2. In particular, the affine functions fµ0,λ1 or fµ0,λ2 have non-negative
slope when g(p, λ1) = g(p, λ2) ⩾ 0, that is p ⩽ n

2(n−1)
, and intersect fµ1,λ1 or fµ1,λ2 identically

at
x0 = 1 and y0 =

n

2(n− 1)
− p. (7.141)

Thus if n even and n
2(n−1)

⩾ p > n−2
4(n−1)

, then q(p, n, 2) = n
2(n−1)

− p.
If n is odd, both fµ1,λ1 and fµ1,λ2 are included in the optimisation problem q(p, n, 2), and

the two affine functions fµ1,λ1 , fµ1,λ2 coincide with slopes equal to

g
(
p, (1)

)
− a
(
⌈n
2
⌉, ⌊n

2
⌋
)
=
n− 1

4n
− p. (7.142)

Let n be odd and p ⩽ n−1
4n

, then fµ1,λ1 and fµ1,λ2 have a non-negative slope, and the optimal
value q(p, n, 2) must be at the intersection of another affine function fµ,λ with a non-positive
slope. Following the same argument as for even n: the affine functions fµr,λr intersect fµ1,λ1 or
fµ1,λ2 at

xr =
4

2r − n+ 1
− 1 and yr =

n− 4pn− 1

n(2r − n+ 1)
+

1

n
+ p. (7.143)

The largest value of yr is reached at r = 0, is equal to y0 = p(n+3)
n−1

, and no other intersection
occurs higher. Thus if n odd and p ⩽ n−1

4n
, then q(p, n, 2) = p(n+3)

n−1
.

Let n odd and p > n−1
4n

, then fµ1,λ1 and fµ1,λ2 have negative slope, and the optimal value
q(p, n, 2) must lie at the intersection with another affine function fµ,λ with non-negative slope.
Following the same argument as for even n: the affine functions fµ0,λ1 or fµ0,λ2 have non-negative
slope when g(p, λ1) = g(p, λ2) ⩾ 0, that is p ⩽ n+1

2n
, and intersect fµ1,λ1 or fµ1,λ2 identically at

x0 = 1 and y0 =
1

2

(
1

n
− 2p+ 1

)
. (7.144)

Thus if n odd and n+1
2n

⩾ p > n−1
4n

, then q(p, n, 2) = 1
2

(
1
n
− 2p+ 1

)
= n+1

2n
− p.
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Collecting everything together we get the following answer:

q(p, n, 2) =





n+2
n−2

p if n even and p < n−2
4(n−1)

,
n

2(n−1)
− p if n even and n

2(n−1)
⩾ p ⩾ n−2

4(n−1)
,

n+3
n−1

p if n odd and p < n−1
4n
,

n+1
2n

− p if n odd and n+1
2n

⩾ p ⩾ n−1
4n
,

0 otherwise,

(7.145)

=





⌈n/2⌉+1
⌈n/2⌉−1

p if p < ⌈n/2⌉−1
2(2⌈n/2⌉−1)

,
⌈n/2⌉

2⌈n/2⌉−1
− p if ⌈n/2⌉

2⌈n/2⌉−1
⩾ p ⩾ ⌈n/2⌉−1

2(2⌈n/2⌉−1)
,

0 otherwise.
(7.146)

2

7.5 Discussion
Asymptotic limits

It is interesting to analyse the asymptotic behavior of qW (n, d), pB(n, d), and pI(n, d) as the
dimension d becomes large. Deriving from Theorem 7.4.1, the asymptotic behavior of the
Werner case qW (n, d) is:

lim
d→∞

qW (n, d) = lim
d→∞

(
d− 1

2d
· (n+ k + d)(n− k)

n(n− 1)
+
k(k − 1)

n(n− 1)

)
= 1, (7.147)

with k = n mod d. Correspondingly, for the Brauer case pB(n, d), Theorem 7.4.10 yields:

lim
d→∞

pB(n, d) = lim
d→∞

(
1

d
+

1

n+ n mod 2− 1
− 1

d(n+ n mod 2− 1)

)
=

1

n+ n mod 2− 1
.

(7.148)

Lastly, the isotropic case p′I(n, d), from Theorem 7.4.2, takes the form::

lim
d→∞

pI(n, d) = lim
d→∞

p′I(n, d) = lim
d→∞

{
1

n+n mod 2−1
if d > n or either d or n is even

min
{

2d+1
2dn+1

, 1
n−1

}
if n ⩾ d and both d and n are odd

=
1

n+ n mod 2− 1
. (7.149)

It can be observed that in large dimensions, pB(n, d) and pI(n, d) become equal.
As the number of vertices n grows, p′I(n, d) converges to zero. This implies that an isotropic

state ρ is Kn-extendible for all n if and only if ρ = I
d2

. For Werner and Brauer states, the limits
limn→∞ qW (n, d) = d−1

2d
and limn→∞ pB(n, d) =

1
d

hold, which makes non-trivial Kn-extendible
Werner and Brauer states possible.

Moreover, due to Section 7.A.5, it is interesting to note that for a fixed d and for every
n ⩾ 2, there exists entangled Brauer state which is Kn-extendible. However, this is not true
neither for Werner nor for isotropic states.

We could not solve a general Brauer Kn-extendibility region problem. However, we are
tempted to formulate the following conjecture:

7.5.1. Conjecture. Brauer Kn-extendibility region is a polytope for all n and d. However,
in the limit n→ ∞ it is not a polytope.
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Figure 7.8: Asymptotic Kn-extendibility for qutrit Brauer states is not a polytope.

For example, one could see how the limiting shape of the Brauer Kn-extendibility region for
d = 3 looks numerically in Fig. 7.8. Related to that example, we expect that results and
methods developed in [Rya; JSZ18; Jak22] could be helpful to tackle specifically the d = 3 case
analytically for arbitrary n.

Optimal states

The optimal state for the Werner case which achieves qW (n, d) can be easily obtained from the
proof in Section 7.A.1. Namely, an optimal state ρ is the normalised projector onto the isotypic
component λ:

ρ =
ελ

Tr ελ
, (7.150)

such that
λ1 = . . . = λk =

n− k

d
+ 1, λk+1 = . . . = λd =

n− k

d
, (7.151)

where k := n mod d.
In general, it is not known which quantum state ρ gives the optimal value pB(n, d), or

p′I(n, d), but using Section 7.2.1, it must be in the algebra generated by the action of the
Brauer algebra into the tensor space (Cd)⊗n. We leave it as an open problem to analyse and
understand in detail the structure of the optimal states in terms of the Brauer diagrams.

Kn,m-extendibility

One can formulate optimisation problems Eqs. (7.35) and (7.48) in the setting of other edge-
transitive graphs G. In particular, if G is a complete bipartite graph Kn,m, then the relevant
optimisation problems were solved in [JSZ22] for Werner and isotropic states. For example, the
optimal values pI(Kn,m, d) and pB(Kn,m, d) are:

pI(Kn,m, d) = pB(Kn,m, d) =
1

d
+

(
1− 1

d

)
1

max(n,m)
. (7.152)

Note, that in the case of a complete bipartite graph Kn,m the value pB(Kn,m, d) of the
Brauer state optimisation problem Eq. (7.48) coincides with the value pI(Kn,m, d) above due
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to symmetries of the graph Kn,m: one can twirl the solution of the Brauer state optimisation
problem with U⊗Ū to get the isotropic solution without changing the optimal value pB(Kn,m, d).

Notably, qW (Kn,m, d) does not have a nice expression for general d [JSZ22], so it is currently
an open problem to find one. In the special case m = 1, the formula for qW (Kn,1, d) was found
in [JV13]:

qW (Kn,1, d) = min

(
n+ d− 1

2n
, 1

)
. (7.153)

In general, it is interesting to understand the values qW (G, d), pI(G, d), pB(G, d) as well as
the full (p, q) extendibility region for arbitrary edge-transitive graphs.
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7.A Appendix

7.A.1 Kn-Extendibility of Werner states via primal SDP

Let n ⩾ 1 be the number of systems and d ⩾ 2 the local dimension of each system. We want to
solve the optimisation problem Eq. (7.32) for Π = I−F

2
, i.e. our goal is to determine qW (n, d).

Given an optimal ρ, we can assume without loss of generality that it has U⊗n and Sn symmetry.
This means, that we want to find an n-qudit density matrix ρ whose any two-body marginal
corresponding to an edge e in the graph Kn is

ρe = pρ + (1− p)ρ (7.154)

where p ∈ [0, 1] and
ρ :=

ε

Tr ε
, ρ :=

ε

Tr ε
, (7.155)

with ranks Tr ε = d(d−1)
2

and Tr ε = d(d+1)
2

.
Since the solution ρ has U⊗n and Sn symmetry, then we can assume

ρ =
∑

λ⊢n
l(λ)⩽d

βλρλ, (7.156)

where βλ is some probability distribution {βλ |λ⊢n} and ρλ are normalised isotypical projectors
ελ onto the subspace λ in the Schur–Weyl duality:

ρλ :=
ελ

Tr ελ
=

ελ
dλmλ

. (7.157)

Their ranks Tr ελ = dλmλ are given by dimensions of symmetric and unitary group irreps, see
Eqs. (2.40) and (2.47). The key result which allows us to find qW (n, d) is the following lemma.

7.A.1. Lemma ([CKMR07]). Tr[n]\e ρλ = αλε + αλε where

αλ =
s∗(λ)

m n(n− 1)
, (7.158)

where s∗µ(λ) is the shifted Schur function s∗µ evaluated for the partition λ, see [OO97].

Therefore, if we compute for every edge e the reduced density matrix ρe then we get

ρe = Tr[n]\e ρ =
∑

λ⊢n
l(λ)⩽d

βλTr[n]\e ρλ =
∑

λ⊢n
l(λ)⩽d

βλ(α
λε + αλε )

=

(∑

λ⊢n
l(λ)⩽d

βλα
λTr ε

)
ρ +

(∑

λ⊢n
l(λ)⩽d

βλα
λ Tr ε

)
ρ ,

(7.159)

which means that
p =

∑

λ⊢n
l(λ)⩽d

βλ
d s∗(λ)

n(n− 1)
. (7.160)

So after using a formula for the shifted Schur function [OO97] we get the following solution to
our optimisation problem:

qW (n, d) = max
λ⊢n
l(λ)⩽d

d s∗(λ)

n(n− 1)
= max

λ⊢n
l(λ)⩽d

∑
d⩾i>j⩾1 λi(λj + 1)

n(n− 1)
(7.161)
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7.A.2. Example. When d = 2, the general formula for α is

λ2(λ1 + 1)

n(n− 1)
. (7.162)

We want to maximize this subject to n ⩾ λ1 ⩾ λ2 ⩾ 0 and λ1 + λ2 = n. The optimal value is

α =

{
1
4
+ 3

4n
if n is odd,

1
4
+ 3

4(n−1)
if n is even.

(7.163)

7.A.3. Theorem. The general answer to Eq. (7.161) is

qW (n, d) =
d− 1

2d
· (n+ k + d)(n− k)

n(n− 1)
+
k(k − 1)

n(n− 1)
(7.164)

where k = n mod d.

Proof:
We will guess the optimal solution for the Young diagram λ and prove that it is not possible
to improve on it. The conjectured optimal solution:

λ1 = . . . = λk =
n− k

d
+ 1, λk+1 = . . . = λd =

n− k

d
(7.165)

Consider an arbitrary Young diagram µ = λ+∆, which you get by a perturbation ∆, i.e. ∆ :=
(∆1, . . . ,∆d) with the properties

∑d
i=1∆i = 0 and

∑j
i=1 ∆i ⩾ 0 for all j ∈ {1, . . . , d}. Then we

can estimate the difference between shifted Schur functions as

s∗(µ)− s∗(λ)

d
=

∑

d⩾i>j⩾1

(
(λi +∆i)(λj +∆j + 1)− λi(λj + 1)

)

=
∑

d⩾i>j⩾1

(∆iλj + λi∆j +∆i +∆i∆j)

=
d∑

i=2

∆i

i−1∑

j=1

λj +
d−1∑

i=1

∆i

d∑

j=i+1

λj +
d∑

i=2

∆i(i− 1)− 1

2

d∑

i=1

∆2
i

= ∆d

d−1∑

j=1

λj +∆1

d∑

j=2

λj +
d−1∑

i=2

∆i

d∑

j=1

λj −
d−1∑

i=2

∆iλi +
d−1∑

j=2

d∑

i=j

∆i −
1

2

d∑

i=1

∆2
i

= ∆d(n− λd) + ∆1(n− λ1)− n(∆d +∆1)−
d−1∑

i=2

∆iλi −
d−1∑

j=2

j−1∑

i=1

∆i −
1

2

d∑

i=1

∆2
i

= −
d∑

i=1

∆iλi −
d−1∑

j=2

j−1∑

i=1

∆i −
1

2

d∑

i=1

∆2
i

= −
k∑

i=1

∆i

(
n− k

d
+ 1

)
−

d∑

i=k+1

∆i
n− k

d
−

d−1∑

j=2

j−1∑

i=1

∆i −
1

2

d∑

i=1

∆2
i

= −
k∑

i=1

∆i −
d−1∑

j=2

j−1∑

i=1

∆i −
1

2

d∑

i=1

∆2
i ⩽ 0,

which shows that λ is actually the optimal solution. Evaluating the shifted Schur function at
λ gives the answer. 2
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7.A.2 The dual SDP: Isotropic states

In this section we are going to solve the optimisation problem Eq. (7.61):

p′I(n, d) = max
ρ,p′

p′ s.t. ρe =
p′

d
·W+

1− p′

d2
· I ∀e ∈ E, ρ ⪰ 0.

The Lagrangian [BV04] associated with it is defined as,

L
(
p, ρ, (he)e, Z

)
:= p+

∑

e∈E

〈
he, ρe −

p

d
W − (1− p)

d2
I
〉
+
〈
Z, ρ

〉
, (7.166)

where (he)e is a family of Hermitian matrices acting on
(
Cd
)⊗2, Z is a Hermitian matrix acting

on
(
Cd
)⊗n and ⟨·, ·⟩ denotes the Frobenius inner product. The Min-Max principle states that

max
ρ,p

min
Z,(he)e
Z⪰0

L
(
p, ρ, Z, (he)e

)
⩽ min

Z,(he)e
Z⪰0

max
ρ,p

L
(
p, ρ, Z, (he)e

)
.

In fact, Slater’s condition holds for our SDP (take ρ = 1
dn

· I⊗n and p = 0) and we have the
equality. Rewriting the Lagrangian gives,

L
(
p, ρ, (he)e, Z

)
= −Tr[H]

dn
+ p

(
1−

∑

e∈E

〈
he,

W

d
− I

d2

〉)
+
〈
H + Z, ρ

〉
,

where H :=
∑

e∈E(he ⊗ Iē) and Iē is the identity on all vertices except those of e. Therefore
the dual SDP of Eq. (7.61) is

p′I(n, d) = min
(he)e,Z

−Tr[H]

dn
s.t.

∑

e∈E

〈
he,

W

d
− I

d2

〉
= 1, H + Z = 0, Z ⪰ 0. (7.167)

Recall that for any Hermitian matrix M the smallest λ ∈ R such that λI ⪰ M is equal to the
largest eigenvalue of M , denoted λmax(M). Then using the substitution (he − Tr[he]

d2
Ie) 7→ he

the Eq. (7.167) can be rewritten as

p′I = min
(he)e

λmax

(∑

e∈E

he ⊗ Iē

)
s.t.

∑

e∈E

〈
he,

W

d

〉
= 1, Tr[he] = 0 ∀e ∈ E. (7.168)

We can simplify Eq. (7.168) even further, using the commutation relation of the isotropic
states, i.e

[ρ, Ū ⊗ U ] = [ρ,O ⊗O] = 0, ∀U ∈ Ud, ∀O ∈ Od, (7.169)

by twirling the operator H with respect to the orthogonal group. Let (h∗e)e = arg p′I(n, d) be
a family of Hermitian matrices acting on

(
Cd
)⊗2 optimal for the dual problem p′I(n, d). For all

edges e ∈ E, define the twirling of h∗e as follows:

h̃∗e :=

∫

Od

O⊗2h∗e
(
O∗)⊗2

dO, (7.170)

where the integral is taken with respect to the normalised Haar measure on the orthogonal
group. Twirling in the same fashion the operator H∗ we get H̃∗. Then by the convexity of
λmax,

λmax(H
∗) ⩾ λmax

(
H̃∗
)
.
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The constraints of the Eq. (7.168) are also satisfied with
(
h̃∗e
)
e

by the cyclic property of the
trace, and hence we can restrict the dual problem to twirled

(
h̃e
)
e
.

Since each h̃e commutes with the action of the orthogonal group, we can write (see Sec-
tion 7.2.1),

h̃e = αeIe + βeWe + γeFe, (7.171)

where F :=
∑d

i,j=1|ij⟩⟨ji| is the flip operator. Note that condition Tr[h̃e] = 0 is equivalent to
αe = −βe+γe

d
. Then Eq. (7.168) becomes

p′I(n, d) = min
(βe,γe)e

λmax

(∑

e∈E

(
−βe + γe

d
Ie + βeWe + γeFe

)
⊗ Iē

)

s.t. (d2 − 1)

(∑

e∈E

βe

)
+ (d− 1)

(∑

e∈E

γe

)
= d.

(7.172)

Similarly, using the commutation relation

[ρ, ψdn(π)] = 0, ∀π ∈ Sn, (7.173)

we get that for all edges e ∈ E the values of βe and γe are equal, i.e. we can write for some
β ∈ R and γ ∈ R:

∀e ∈ E : βe = β and γe = γ. (7.174)

Therefore we can rewrite Eq. (7.172) as follows:

p′I(n, d) = min
β,γ

λmax

(∑

e∈E

(
−β + γ

d
Ie + βWe + γFe

)
⊗ Iē

)

s.t. (d2 − 1)|E|β + (d− 1)|E|γ = d.

(7.175)

Using the constraint (d2−1)|E|β+(d−1)|E|γ = d to eliminate γ, and by the change of variable
−β 7→ x and rewriting

f(x) := λmax(H(x)), H(x) :=
∑

e∈E

((
1

|E|(1− d)
− x

)
(Ie − dFe) + x(Fe −We)

)
⊗ Iē,

(7.176)
we reformulate Eq. (7.175) as

p′I(n, d) = min
x∈R

f(x). (7.177)

7.A.3 The dual SDP: Brauer states when q = 0

In this section, we are going to solve the following optimisation problem:

p∗(n, d) = max
ρ,p

p s.t. ρe = p · Π∅ + (1− p) · Π
TrΠ

∀e ∈ E, ρ ⪰ 0. (7.178)

Similarly to Section 7.A.2, the Slater’s condition holds for our SDP: take λ = (n), and set
p = 1

1+TrΠ
and ρ = ελ

Tr ελ
is a normalised projector onto the symmetric subspace of n qudits.

Therefore, we get the following dual SDP:

p∗(n, d) = min
(he)e,Z

−
∑

e∈E

〈
he,

Π

TrΠ

〉
s.t.

∑

e∈E

〈
he,Π∅ − Π

TrΠ

〉
= 1, H + Z = 0, Z ⪰ 0.

(7.179)
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This SDP has orthogonal symmetry and Sn of the complete graph Kn, therefore similarly to
Section 7.A.2, we can assume that he = αIe + βWe + γFe for every e ∈ E. In the end, this
leads to the following simplification of Eq. (7.179):

p∗(n, d) = min
x∈R

1

d · |E|λmax

(∑

e∈E

We − x · Fe
)
+
x

d
. (7.180)

But the spectrum of the Hamiltonian
∑

e∈E We−x ·Fe can be easily obtained, see Section 7.2.3.
Therefore we can simplify Eq. (7.180) to

p∗(n, d) = min
x∈R

max
(λ,µ)∈Ωn,d

1

d · |E|

(
cont(µ)− cont(λ) +

(n− |λ|)(d− 1)

2

)
+
x

d

(
1− cont(µ)

|E|

)
.

(7.181)

7.A.4 The dual SDP: Brauer states with fixed p

In this section, we are going to solve the following optimisation problem:

q(p, n, d) = max
ρ,q

q

s.t. ρe = p · Π∅ + q · Π

TrΠ
+ (1− p− q) · Π

TrΠ
, ∀e ∈ E

ρ ⪰ 0.

(7.182)

Slater’s condition holds for our SDP as in Section 7.A.2. Therefore the dual SDP of Eq. (7.178)
is

q(p, n, d) = min
(he)e,Z

−
∑

e∈E

〈
he, p · Π∅ + (1− p) · Π

TrΠ

〉

s.t.
∑

e∈E

〈
he,

Π

TrΠ
− Π

TrΠ

〉
= 1, H + Z = 0, Z ⪰ 0.

(7.183)

Similarly to Section 7.A.3, we can assume that he = αIe + βWe + γFe for every e ∈ E. This
leads to the following simplification of Eq. (7.183):

q(p, n, d) = min
x∈R

1

|E|λmax

(∑

e∈E

x
We

d
− Fe

2

)
+

1

2
− p · x. (7.184)

But the spectrum of the Hamiltonian
∑

e∈E x
We

d
− Fe

2
can be easily obtained, see Section 7.2.3.

Therefore we can simplify Eq. (7.183) to

q(p, n, d) = min
x∈R

max
(λ,µ)∈Ωn,d

x

d · |E|

(
cont(µ)− cont(λ) +

(n− |λ|)(d− 1)

2

)
+

+
1

2

(
1− cont(µ)

|E|

)
− p · x. (7.185)

7.A.5 PPT criterion for Brauer states

The two-parameter (p, q) family of Brauer states, given by Eq. (7.18) as a sum of orthogonal
projectors, is positive semidefinite if and only if p ⩾ 0, q ⩾ 0 and p + q ⩽ 1. This family of
states can be alternatively parametrised as:

p′ · W
d

+ q′ · F
d
+ (1− p′ − q′) · I

d2
. (7.186)
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The parameters (p, q) of Eq. (7.18) and (p′, q′) of Eq. (7.186) are related via
{
p′ = p− 2(1−p−q)

d(d+1)−2

q′ = −q
d−1

+ d(1−p−q)
d(d+1)−2

and

{
p = p′(d2−1)+q′(d−1)+1

d2

q = −p′(d−1)+q′(d2−1)−d+1
2d

,
(7.187)

such that Eq. (7.186) is positive semidefinite if and only if the following holds




p′(d2 − 1) + q′(d− 1) + 1 ⩾ 0

−p′ − q′(d+ 1) + 1 ⩾ 0

2− d+ d2 + p′(d2 + d− 2)− q′(d3 − 3d+ 2) ⩽ 2d2.

(7.188)

A bipartite state satisfies the PPT criterion (or simply is PPT) if its partial transpose is
positive semidefinite. Consequently, the set of PPT states contains the set of separable states.
In the context of the two-parameter family of Brauer states, the PPT criterion is equivalent
to the separability [VW01; PJPY24]. The partial transpose of a Brauer state of the form
Eq. (7.186) becomes

p′ · F
d
+ q′ · W

d
+ (1− p′ − q′) · I

d2
, (7.189)

i.e. it is just the change of variable: (p′, q′) 7→ (q′, p′). A Brauer state’s separability (or equiva-
lently PPT) is determined by the intersection of the region defined by:





q′(d2 − 1) + p′(d− 1) + 1 ⩾ 0

−q′ − p′(d+ 1) + 1 ⩾ 0

2− d+ d2 + q′(d2 + d− 2)− p′(d3 − 3d+ 2) ⩽ 2d2,

(7.190)

and Eq. (7.188).Alternatively, using the relations Eq. (7.187) a Brauer state for any fixed d ⩾ 2
is separable if and only if {

0 ⩽ q ⩽ 1
2

0 ⩽ p ⩽ 1
d
.

(7.191)
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Abstract

Mixed Schur–Weyl duality in quantum information. In this thesis, we explore the
interplay between representation theory and quantum information. We focus on mixed Schur–
Weyl duality, which is a generalisation of Schur–Weyl duality that considers the action of
U⊗n⊗ Ū⊗m on the space (Cd)⊗n+m. This setting naturally arises in quantum information tasks
involving unitary-equivariant channels, such as port-based teleportation, quantum majority
vote, and universal transposition of unitary operators.

A key contribution of this thesis is explicit derivation of action of the generators of the
partially transposed permutation matrix algebra in the Gelfand–Tsetlin basis. This algebra is
the commutant of the mixed unitary action described above. We also provide constructions of
primitive and primitive central idempotents for this algebra.

As another key result of this thesis, we develop efficient quantum circuits for the mixed
quantum Schur transform, a novel primitive in quantum information. The key ingredient of
our construction is new efficient quantum circuits for the dual Clebsch–Gordan transform of
the unitary group.

A significant application of our findings is the construction of efficient quantum algorithms
for port-based teleportation, a variant of quantum teleportation that eliminates the need for
corrective operations. Efficient constructions of port-based teleportation protocols were not
known before our work. This highlights the importance of the mathematical tools developed
in this thesis, which can deal with mixed Schur–Weyl duality in quantum information tasks.

We also explore the use of mixed Schur–Weyl duality for symmetry reduction of semidefinite
optimisation problems with unitary equivariance symmetry. By exploiting these symmetries,
we show how to reduce certain semidefinite programs to linear programs of significantly smaller
size.

Finally, we also study some aspects of monogamy of entanglement. Specifically, we study
the extendibility of quantum states possessing unitary, mixed unitary, or orthogonal symmetry
on the complete graph. This involves studying constraints on bipartite entanglement of a global
state when its two-party marginals are identical and belong to a specific symmetry class. We
obtain analytically the exact maximum values for projections onto the maximally entangled
state and the antisymmetric state for each of the three symmetry classes.

This thesis establishes a solid mathematical foundation for mixed Schur–Weyl duality and
demonstrates its usefulness in quantum information and computing. We expect that our tools
and algorithms will also help addressing other problems in other areas of quantum information
processing, such as quantum communication, quantum cryptography, and quantum simulation.
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Samenvatting

Gemengde Schur–Weyl-dualiteit in quantuminformatie. In dit proefschrift onderzoeken
we de wisselwerking tussen representatietheorie en quantuminformatie. We richten ons op
gemengde Schur–Weyl-dualiteit, een generalisatie van Schur–Weyl-dualiteit die de werking van
U⊗n⊗ Ū⊗m op de ruimte (Cd)⊗n+m beschouwt. Deze context komt op natuurlijke wijze voor bij
quantuminformatietaken die gebruikmaken van unitaire-equivariante kanalen, zoals port-based
teleportatie, quantummeerderheidsstemming en universele transpositie van unitaire operatoren.

Een belangrijke bijdrage van dit proefschrift is de expliciete afleiding van de werking van
de generatoren van de gedeeltelijk getransponeerde permutatiematrix-algebra in de Gelfand–
Tsetlin-basis. Deze algebra is de commutant van de hierboven beschreven gemengde unitaire
werking. We geven ook constructies van primitieve en primitieve centrale idempotenten voor
deze algebra.

Als een andere belangrijke bijdrage van dit proefschrift ontwikkelen we efficiënte quantum-
circuits voor de gemengde quantum-Schur-transformatie, een nieuw primitief in quantuminfor-
matie. Het kernonderdeel van onze constructie bestaat uit nieuwe efficiënte quantumcircuits
voor de duale Clebsch–Gordan-transformatie van de unitaire groep.

Een belangrijke toepassing van onze bevindingen is de constructie van efficiënte quantumal-
goritmen voor port-based teleportatie, een variant van quantumteleportatie die geen correctieve
operaties vereist. Voor ons werk waren efficiënte constructies van port-based teleportatiepro-
tocollen niet bekend. Dit onderstreept het belang van de wiskundige technieken die in dit
proefschrift zijn ontwikkeld en die gemengde Schur–Weyl-dualiteit kunnen toepassen in quan-
tuminformatietaken.

We onderzoeken ook het gebruik van de gemengde Schur–Weyl-dualiteit voor symmetrische
reductie van semidefiniete optimalisatieproblemen met unitaire equivariantie-symmetrie. Door
gebruik te maken van deze symmetrieën laten we zien hoe bepaalde semidefiniete programma’s
kunnen worden gereduceerd tot lineaire programma’s van aanzienlijk kleinere omvang.

Tot slot bestuderen we enkele aspecten van de monogamie van quantumverstrengeling. Spec-
ifiek onderzoeken we de extensie van quantumtoestanden met unitaire, gemengde unitaire of
orthogonale symmetrie op de volledige graaf. Dit omvat het bestuderen van beperkingen op
bipartiete verstrengeling van een globale toestand wanneer de twee-partijen marginalen identiek
zijn en tot een specifieke symmetrieklasse behoren. We laten analytisch de exacte maximale
waarden voor projecties op de maximaal verstrengelde toestand en de antisymmetrische toes-
tand voor elk van de drie symmetrieklassen zien.

Dit proefschrift biedt een solide wiskundige basis voor gemengde Schur–Weyl-dualiteit en
toont de bruikbaarheid ervan aan in quantuminformatie en quantumcomputing. We verwachten
dat onze technieken en algoritmen zullen bijdragen aan het aanpakken van andere problemen
in andere gebieden van quantuminformatie, zoals quantumcommunicatie, quantumcryptografie
en quantumsimulatie.
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