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Abstract. Inverse problems are ubiquitous in science and engineering. Many of these
are naturally formulated as a PDE-constrained optimization problem. These non-linear,
large-scale, constrained optimization problems know many challenges, of which the inherent
non-linearity of the problem is an important one. In this paper we focus on a relaxed
formulation of the PDE-constrained optimization problem and provide an in-depth analysis
of it. Starting from an infinite-dimensional formulation of the inverse problem with discrete
data, we propose a general framework for the analysis and discretisation of such problems.
The relaxed formulation of the PDE-constrained optimization problem is shown to reduce
to a weighted non-linear least-squares problem. The weight matrix turns out to be the
Gram matrix of solutions of the PDE, and in some cases be estimated directly from the
measurements. The latter observation points to a potential way to unify recently proposed
data-driven reduced-order models for inverse problems with PDE-constrained optimization.
We provide a number of representative case studies and numerical examples to illustrate our
findings.

1. Introduction

Inverse problems are ubiquitous in science and engineering and can often be expressed as
a PDE-constrained optimization problem, where one aims to identify the parameters of a
PDE give partial measurements of its solution. We built on the work presented in [14] where
the PDE-constrained problem is posed as a joint parameter-state estimation problem which
enforces the PDE-constraints only approximately. Effectively, this lifts the search space from
the parameter alone to a much larger joint parameter-state space. It has been observed that
this can mitigate the non-linearity of the optimization problem to some extent [14, 5]. This
relaxation approach is just one of many that aim to address the non-linearity and constitutes
a line of research that is particularly prominent in exploration seismology and other wave-
based inverse problems (see e.g., [10, 15, 11, 12] and references therein). The focus of this
work, however, is the analysis of the relaxation described in [14].

Concretely, the inverse problem is formulated as estimating coefficients c from given data
by solving

(1) min
c,u1,...,un

1
2

n∑
i,j=1

|Piuj − dij|2 + ρ
2
∥L(c)uj − Pj∥2V,
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where L(c) : U → V = U∗ denotes the partial differential operator with coefficient c, Pi ∈ V
denotes the linear sampling operator which also acts as the source terms, and dij = Piǔj
represents the observed data corresponding to the underlying true state ǔj = L(č)−1Pj

for the true parameter č, and ρ > 0 is a penalty parameter. We denote the adjoints as
L∗ : U → V. Furthermore, both L and L∗ have a well-defined inverse, denoted by L−1,L−∗.
The Riesz map is denoted as R : V → U.

1.1. Contributions. It has been shown empirically that this reformulation can improve
the optimization landscape, making the iterative process less sensitive to initialization, and
hence leading to more robust inversion results [14]. We innovate upon this previous work in
the following three directions:

First, we treat the optimization problem (1) in the continuous setting and thereby provide
a common framework for analysis and numerical implementation of a wide range of inverse
problems based on the weak form of the PDE. Considering a finite number of measurements,
we present a Representer Theorem (see Theorem 1) which shows that the estimated state
lives in a finite-dimensional subspace of U. This leads to a re-formulation of the traditional
reduced approach for PDE-constrained optimization with an objective function equipped
with a parameter-dependent residual weight. In particular, it simplifies to

min
c
J(c) := 1

2

n∑
i=1

∥ei(c)∥2(I+ρ−1G(c))−1 ,

where ei(c) ∈ Rn denotes the ith data-residual whose j-th element is given by eij(c) =
PiL(c)−1Pj − dij, and G(c) ∈ Rn×n is a positive semi-definite matrix with elements Gij(c) =

Pi (L∗(c)RL(c))−1Pj, 1 ≤ i, j ≤ n.
Second, based on the Representer Theorem, we analyze the two limiting cases, and provide

an interpretation of the finite-dimensional residuals ei ∈ Rn in terms of the underlying
function spaces U and V. In particular, we show that the relaxed formulation (1) embodies
a rich interplay between

• the finite-dimensional data-residual ei(c) ∈ Rn,
• the solution-residual L(c)−1Pi − ǔi ∈ U,
• the PDE-residual Pi − L(c)ǔi ∈ V.

Under some simplifying assumptions, we show the following limiting behaviour of J :

ρ→ ∞: J(c) measures the norm of the solution-residual projected on to a finite-dimensional
subspace Pn = span{RPi}ni=1 ⊂ U.

ρ→ 0: J(c) measures the norm of the PDE-residual, projected on to a finite-dimensional
subspace Wn = span{R−1L(c)−∗Pi}ni=1 ⊂ V.

For a finite ρ > 0, the objective function interpolates between these two limiting situations.
This is schematically depicted in Figure 1. One might argue that it is more natural to use
the PDE-residual because it can typically be parameterised to be affine in the coefficient
c for many common inverse problems, such as the Calderón problem [13], full-waveform
inversion [14] and inverse scattering [4]. Precisely, in the ρ→ 0 case, under certain conditions,
we can prove that the optimization problem is convex with respect to c (see Corollary 2),
while the original objective function (when ρ → ∞) is known to be highly non-convex, for
all the examples mentioned above.

As a third contribution, we show through a series of case studies how the matrix G(č)
corresponding to the true coefficient can be estimated from the measured data dij directly
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solution residual PDE residual

(L(c)−1 − L(č)−1)Pi (L(č)− L(c)) ǔi

∥ei(c)∥2 ∥ei(c)∥G(c)−1

The limit of ρ→ ∞ The limit of ρ→ 0

L(c)

projected length over Pn

L(c)

projected length over Wn

Figure 1. The two limiting cases of the residual between simu-
lated (PiL(c)−1Pj) and measured (dij = PiL(č)−1Pj) data. When
ρ → ∞, we measure the ℓ2 norm of the data-residual (eij(c) =
Pi (L(c)−1 − L(č)−1)Pj), which corresponds to the projected length of the
solution-residual (L(c)−1 − L(č)−1)Pi on Pn. When ρ → 0, we measure the
G(c)−1-weighted data residual, which corresponds to the projected length of
the PDE-residual (L(c)− L(č)) ǔi on Wn.

if the underlying space U is chosen appropriately. It turns out that this construction is
closely related to recent progress on data-driven reduced order models pioneered by [1, 2, 3].
Thus, this work goes towards bridging the gap between PDE-constrained optimization and
data-driven reduced-order models and opens up an avenue for efficient implementation of
the relaxed formulation.

1.2. Outline. The remainder of this paper is organized as follows: Section 2 introduces the
proposed approach, detailing its formulation and integration with PDE-constraints. In Sec-
tion 3, we present a series of case studies in which we apply the framework to a number of
benchmark problems. Finally, Section 4 concludes the paper with a summary of the findings
and discussions on future research directions.

2. Theory

In this section we present our main results. First, we pose the inverse problem as uncon-
strained optimization over an extended search space consisting of both the parameter c and
the states {ui}ni=1, followed by an equivalent reformulation in terms of the parameter c and
auxiliary source terms {qi}ni=1. Then, we present a Representer Theorem which expresses the
solution of the optimization problem over states or sources as a finite linear combination of
basis functions. Using this representation, we then reduce the PDE-constrained optimization
problem to an unconstrained optimization problem over the parameters only. In particular,
we show that this formulation is equivalent to a conventional reduced formulation with a
coefficient-dependent weight on the residuals.

2.1. Preliminaries. For the remainder of the paper we consider the weak form of the PDE

(2) Ac(u, ϕ) = P(ϕ), ∀ϕ ∈ U,
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where Ac : U×U → C is a sesquilinear form (i.e., linear in the first argument and anti-linear
in the second argument) with parameters c ∈ C and P ∈ U∗ is an antilinear operator. These
slightly unconventional definitions are chosen to treat the case where U is a complex Hilbert
space. We furthermore introduce the linear Riesz map R : U∗ → U which allows us to
represent any P ∈ U∗ by a corresponding p ∈ U, i.e., p = RP , such that

P(u) = ⟨RP , u⟩U, ⟨p, u⟩U =
(
R−1p

)
(u),

where ⟨·, ·⟩U denotes the inner product in U, which is also defined to be linear in the first
argument and anti-linear in the second. Note that this definition of the Riesz map for
complex-valued replaces the definition presented in the Introduction.

Throughout, we assume that the weak formulation is well-posed uniformly for all c ∈ C and
that the Riesz representations {pi}ni=1 of the functionals {Pi}ni=1 are linearly independent.
Given solutions {ui}ni=1 corresponding to source terms {Pi}ni=1, we consider measurements

dij = Pi(uj), i, j = 1, . . . , n .

The goal is to estimate the parameters c from these measurements. The classical approach
to doing so is by solving a PDE-constrained optimisation problem:

(3) min
c∈C

1
2

n∑
i,j=1

∣∣Pi(uj)− dij
∣∣2 s.t. Ac(uj, ϕ) = Pj(ϕ), ∀ϕ ∈ U.

Even though this notation suggests that we assume full-array data (i.e., each source also acts
as a receiver) we can easily modify this by including a binary weight sij in the double sum
to select only those source-receiver combinations that are actually measured. For ease of
notation we leave it out for most derivations and will make specific remarks for those results
that generalize to the case of incomplete data.

This optimization problem often suffers from very non-convex misfit landscapes that are
challenging for gradient-based optimization algorithms. Some of the difficulties come from
the “hard” equality constraint Ac(uj, ϕ) = Pj(ϕ), ∀ϕ ∈ U. Motivated by the challenges,
we instead consider a relaxation of this problem by using a “soft” constraint, as proposed
by [14].

2.2. Constraint-relaxation. An alternative to the constrained optimization problem (3)
is the following:

(4) min
c∈C,q∈Un

1
2

n∑
i,j=1

∣∣Pi(uj)− dij
∣∣2 + ρ

2

n∑
j=1

∥qj∥2U s.t. Ac(uj, ϕ) =
(
Pj +R−1qj

)
(ϕ), ∀ϕ ∈ U,

where q = (q1, q2, . . . , qn) represent auxiliary source terms, and ρ > 0 is a trade-off parameter.
Rather than enforcing that each uj has to be exactly the PDE solution for a fixed parameter
c with the source term Pj, we allow the source term to “deviate” from Pj by a quantity
determined by qj, and then penalize the size of qj through

ρ
2
∥qj∥U.

The introduced extra degree of freedom, i.e., an enlarged model capacity, can help match
the data more easily. It is also a relaxation from the original “hard” PDE constraint as (4)
will reduce to the traditional approach (3) in the limit of ρ → ∞. In this sense, this
formulation fits in the context of model extension, pioneered by [10, 15, 12, 11]. It has been
shown that enlarging the search space can make the optimization problem have a better
optimization landscape, and thus make it less sensitive to initialisation of the parameter
c when using gradient-based optimization algorithms. However, it is computationally not
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feasible to explicitly optimise over the enlarged space C × Un. To address this, we show
in Corollary 1 that this extended formulation is equivalent to minimizing a weighted residual
over C only through the application of the Representer Theorem (see Theorem 1).

Before moving forward to the theory, we first equivalently reformulate (4) as

min
c∈C,q∈Un

1
2

n∑
i,j=1

∣∣Pi(vj)− eij
∣∣2 + ρ

2

n∑
j=1

∥qj∥2U,(5)

s.t. Ac(uj, ϕ) = Pj(ϕ) ∀ϕ ∈ U,

Ac(vj, ϕ) = R−1qj(ϕ) ∀ϕ ∈ U,

where the term

(6) eij = dij − Pi(uj)

depends on c implicitly through uj. We will use (5) for the following derivations.

2.3. A representer theorem. When the parameter c is fixed, both (4) and (5) are reduced
to an inner problem, which is quadratic with respect to q. Next, we show that its solution has
a finite-dimensional representation. To facilitate the discussion, we split the inner problems
for {qj}nj=1 in (5) in n independent quadratic subproblems and introduce

(7) Jj(qj) =
1
2

n∑
i=1

∣∣Pi(vj)− eij
∣∣2 + ρ

2
∥qj∥2U,

where vj depends on qj ∈ U through the weak form of the PDE:

Ac(vj, ϕ) = ⟨qj, ϕ⟩U ∀ϕ ∈ U.

Note that, since c is fixed, eij is fixed as defined above.

Theorem 1 (A Representer Theorem). The functional defined in (7) admits minimizers of
the form

(8) qj =
n∑

k=1

αjkwk,

where wk ∈ U satisfies an adjoint equation

(9) Ac(ϕ,wk) = Pk(ϕ),

and the complex-valued coefficients {αjk}nk=1 are solutions to the following linear system∑
k

gikαjk + ραji = eij, i = 1, . . . , n,

with gik = ⟨wi, wk⟩U.

Proof. Noting that

Pi(vj) = Ac(vj, wi) = ⟨qj, wi⟩U = ⟨wi, qj⟩U,
we can rewrite (7) as

Jj(qj) =
1
2

n∑
i=1

|⟨wi, qj⟩U − eij|2 + ρ
2
∥qj∥2U.

We can now directly apply Lemma 3 (see Appendix) to find the desired result. □
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Remark 1. As we apply the representer theorem separately to each source index, j, the
statement in Theorem 1 extends to the case of incomplete array data by only including the
relevant receivers for each source.

2.4. A reduced formulation. With the above-stated result, we can now derive a reduced
formulation of (5) that depends on the parameter c only.

Corollary 1 (Variable metric reduced formulation). The relaxed problem (5) in (c, q) ∈
C× Un can be formulated equivalently in reduced form as

min
c∈C

J(c),

with

(10) J(c) = 1
2

n∑
j=1

∥ej(c)∥2(I+ρ−1G(c))−1 = 1
2
trace

[
E(c)∗(I + ρ−1G(c))−1E(c)

]
,

with ej(c) = [e1j(c), . . . , enj(c)]
⊤, and the matrix G ∈ Cn×n as defined in Theorem 1.

Proof. Using the result from Theorem 1, we have that, at the optimizer,

⟨wi, qj⟩U =
n∑

k=1

gikαjk,

∥qj∥2U =
n∑

k=1

n∑
l=1

αjkαjlgk,l.

Then
Jj(qj) =

1
2
∥Gαj − ej∥22 +

ρ
2
α∗

jGαj.

Using that (G+ ρI)αj = ej and the Woodbury matrix identity, we immediately find

Jj(qj) =
1
2
e∗j(I + ρ−1G)−1ej,

after simplification, which yields (10). □

Remark 2. In the case of incomplete array data, the Gram matrix would generally depend on
j, containing only the inner-products of the adjoint solutions for the corresponding receivers.

2.5. Limiting cases. Here, we analyse the limiting behaviour of the objective defined in (10)
for ρ→ 0 and ρ→ ∞, which sheds light on the interpolative nature for a finite ρ > 0.

Lemma 1. For ρ→ ∞ we can express the objective as

J(c) = 1
2
trace [E(c)∗E(c)] +O(ρ−1).

Proof. This follows directly from (10) by expressing (I + ρ−1G)−1 =
∑∞

k=0(−ρ)−kGk which
is valid for ρ > ∥G∥, i.e., ρ is larger than the largest eigenvalue of G. □

Lemma 2. We can write the objective for ρ→ 0 as

J(c) = ρ
2
trace

[
E(c)∗G(c)−1E(c)

]
+O(ρ2).

Proof. Since we assumed that {pi}ni=1 are linearly independent, so are {wi}ni=1 and G is
invertible. We can then express (I + ρ−1G)−1 = ρG−1(I + ρG−1)−1 = ρG−1

∑∞
k=0(−ρ)kG−k,

which is valid for ∥G−1∥ < 1/ρ, i.e., ρ should be smaller than the smallest eigenvalue of the
matrix G. The desired result follows immediately. □
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Based on these limiting cases, we define the following

J∞(c) = lim
ρ→∞

J(c) = 1
2
trace [E(c)∗E(c)](11)

J0(c) = lim
ρ→0

ρ−1J(c) = 1
2
trace

[
E(c)∗G(c)−1E(c)

]
.(12)

Remark 3. The asymptotic analysis also holds for the case of incomplete array data, albeit
that the resulting expressions are slightly less compact.

2.6. Noiseless data. We can furthermore interpret these limiting cases in terms of projec-
tions of certain infinite-dimensional residuals on finite-dimensional subspaces. We assume
noisless data dij = Pi(ǔj) with ǔj the (weak) solution corresponding to Pj for the true
coeffienct č, 1 ≤ i, j ≤ n.

Theorem 2. When the Riesz representers {pi}ni=1 are orthonormal and the measurements
are noiseless, the functional J∞ defined in (11) can be equivalently expressed in terms of an
orthogonal projection of the solution-residual ui(c)− ǔi ∈ U on Pn = span{pi}ni=1 as

J∞(c) = 1
2

n∑
j=1

∥ΠPn(uj(c)− ǔj)∥2U,

where ΠPn is the orthogonal projection on Pn, uj(c) is the weak solution corresponding to
coefficient c, and ǔj is the true state corresponding to the true coefficient č.

Proof. Since we assumed {pi}ni=1 to be orthonormal, the projection of the solution residual
uj(c)− ǔj over Pn is given by

ΠPn(uj(c)− ǔj) =
n∑

i=1

⟨uj(c)− ǔj, pi⟩U pi.

Taking the norm we obtain

1
2

n∑
j=1

∥ΠPn(uj(c)− ǔj)∥2U =
n∑

j=1

∥∥∥∥∥
n∑

i=1

eij(c)pi

∥∥∥∥∥
2

U

=
n∑

j,i,i′=1

eij(c)⟨pi, pi′⟩U ei′j(c),

with eij(c) = dij − ⟨pi, uj⟩U as defined before (see Equation (6)). Using orthonormality of
{pi}ni=1 again we get the desired result. □

In Theorem 2 below, we assume that {pi}ni=1 forms an orthonormal basis. If this is not the
case, J∞ still measures the ∥ · ∥U norm of the projected solution residual, but it represents a
weighted rather than an orthogonal projection.

Theorem 3. For noiseless measurements, the functional J0(c) can be equivalently expressed
in terms of an orthogonal projection of the PDE-residual Ej(c) = Ac(ǔj, ·) − Ač(ǔj, ·) ∈ V,
j = 1, . . . , n, on Wn = span{wj}nj=1 as

J0(c) =
1
2

n∑
j=1

∥ΠWnREj(c)∥2U,

with ǔj denoting the true state corresponding to the true coefficient č, and wj the adjoint
state defined in (9) with the current coefficient c.
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Proof. Consider the Riesz presentation of the PDE-residual sj(c) := REj(c) ∈ U, for any
j = 1, . . . , n. Its orthogonal projection on Wn = span{wi}ni=1 ⊂ U is given by

ΠWnsj(c) =
n∑

i=1

αijwi ,

where αj = G−1rj, αj = [α1j, . . . , αnj]
⊤, rj = [r1j, . . . , rnj]

⊤ with rij = ⟨sj(c), wi⟩U =
⟨REj(c), wi⟩U = Ej(c)wi and the matrix G with entries gij = ⟨wi, wj⟩U. First note that, since
Ač(ǔj, wi) = Ac(uj, wi) = Pj(wi),

rij = Ac(ǔj, wi)−Ač(ǔj, wi) = Ac(ǔj, wi)−Ac(uj, wi) = ⟨pi, ǔj⟩ − ⟨pi, uj⟩ = eij,

with eij = dij − Pi(uj) as defined in (6). Taking the norm it follows that

∥ΠWnsj(c)∥2U = α∗
jGαj = ∥ej∥2G−1 ,

where ej = [e1j, . . . , eij, . . . , enj]
⊤. □

Remark 4. The results in Theorems 2 and 3 are the analogue of the relations sketched in
Figure 1.

Remark 5. Theorems 2 and 3 can be extended to incomplete array data by allowing a
different orthogonal projector for each source index j.

2.7. Towards a convex formulation. So far, the Riesz representations {pi}ni=1 followed
from the definition of {Pi}ni=1 and U. Alternatively, we can start from {pi}ni=1 and consider
a finite-dimensional space U = Pn = span{pi}ni=1. That is, the underlying solution space are
precisely spanned by the Riesz representations of the source/measurement operators. In this
setup, the objective J0 then simplifies significantly, as is shown in the following Corollary.

Corollary 2. Suppose U = span{pi}ni=1, where {pi}ni=1 are real-valued, sufficiently regular
and linearly independent functions. Then it holds thats

(13) J0(c) =
1
2
trace

[(
M − A(c)M−1D

)∗
M−1

(
M − A(c)M−1D

)]
,

with Mij = ⟨pi, pj⟩U and A(c)ij = Ac(pj, pi).

Proof. Following the Galerkin approach, for each j, we let

uj =
n∑

k=1

Ukj pk,

where the coefficients Ukj ∈ C are solved from
n∑

k=1

Ac(pk, pi)Ukj = ⟨pj, pi⟩U for i = 1, 2, . . . , n.

The n-by-n matrix U has the kj-entry Ukj, 1 ≤ k, j ≤ n.
Note that this assumes that the functions {pi}ni=1 are sufficiently regular to be considered as

the test functions inAc(pk, pi). Similarly, assume the adjoint equation solution corresponding
to the j-th source term is

∑n
k=1Wkjpk, 1 ≤ j ≤ n. Then coefficients for the adjoint wavefields,

Wkj, 1 ≤ k, j ≤ n, which gives rise to the matrix W , are solved from
n∑

k=1

Ac(pi, pk)Wkj = ⟨pj, pi⟩U for i = 1, 2, . . . , n.
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Then the data residual matrix E(c) and the Gram matrix G(c) have their ij-th entries to be

eij = dij −

〈
pi,

n∑
k=1

Ukjpk

〉
U

= dij −
n∑

k=1

⟨pi, pk⟩UUkj,

and

gij =

〈
n∑

k=1

Wkipk ,

n∑
ℓ=1

Wℓjpℓ

〉
U

=
∑
k,ℓ

WkiWℓj⟨pk, pℓ⟩U.

We introduce two more n-by-n matrices M and A with entries mij = ⟨pi, pj⟩U, a(c)ij =

Ac(pj, pi). Note that, by our assumptions, both matrices are invertible. Moreover, M is
Hermitian, i.e., M =M∗, where M∗ denotes the Hermitian transpose of M . We now find

E(c) = D −MU(c) = D −MA(c)−1M,

G(c) = W (c)
∗
MW (c) =MA(c)−1MA(c)−∗M .

Substituting this in the result of Lemma 2 we get the desired result. □

Remark 6. If Ac is affine in c, and the inner produce ⟨·, ·⟩U does not depend on c, then J0(c)
is quadratic in c, which is ideal for many gradient-based optimization algorithms. However,
this result does not imply that c is uniquely recoverable from the measurements, as this
additionally would require A(c1) = A(c2) ⇒ c1 = c2 ,∀ c1, c2 ∈ C. Moreover, we do not have
any guarantees that the minimizer will coincide with the true coefficient as this choice for U
may not yield a reasonable approximation of the underlying physics described by the PDE.

Remark 7. This result suggests a direct method for solving the inverse problem by setting
up a system of n2 (linear) equations of the form

A(c) =MD−1M,

for a suitable parameterisation of c. If Ac is affine in c, we only need to solve a linear system
with respect to c.

Remark 8. If Ac and ⟨·, ·⟩U are both affine in c, in particular, if ⟨pi, pj⟩U = Ac(pi, pj) which
implies that M = A(c), then J0(c) can still be convex under suitable conditions.

3. Case studies

In this section we present a few case studies. The choice of U plays a central role. The
two important aspects that we treat for each are i) well-posedness of the weak form for the
chosen space, and ii) how to compute the Grammian matrix G from the given measurements.

3.1. 1D Elliptic equation. We consider a 1D elliptic PDE

− (c(x)u′(x))
′
= f(x), x ∈ Ω,

with the boundary condition u|∂Ω = 0. The corresponding forward (PDE) operator is de-
noted by

L(c) : H1
0 (Ω) −→ H−1(Ω) .

Here, Ω ⊂ R is a bounded domain for the solution u, and u|∂Ω denotes its boundary. The
short-hand notation for the PDE is L(c)u = f ∈ H−1(Ω).
We further assume that the coefficient c(x) is bounded both from above and below, i.e.,

0 < a ≤ c(x) ≤ b <∞. Therefore, the PDE is uniformly elliptic.
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3.1.1. Weak formulation. We consider real-valued functions, so A is bilinear and P is a linear
operator:

A(u, ϕ) =

∫
Ω

ϕ(x)L(c)u(x)dx ,

P(u) =

∫
Ω

f(x)u(x)dx .

We let U = H1
0 (Ω) with a weighted H1(Ω)-inner product:

(14) ⟨u, v⟩U =

∫
Ω

v(x)L(c)u(x)dx =

∫
Ω

c(x)u′(x)v′(x)dx.

The operator P is well-defined with f ∈ H−1(Ω). We can view the Riesz map as R :
H−1(Ω) → H1

0 (Ω), defined through solving the PDE, − (c(x)u(x)′)′ = f(x), with homoge-
neous Dirichlet boundary conditions.

Let U be the space H1
0 (Ω) functions but equipped with the weighted inner product given

in (14), which induces the norm ∥ · ∥U =
√
⟨u, u⟩U. Note that this is an equivalent norm to

the standard H1 norm since a∥ · ∥H1 ≤ ∥ · ∥U ≤ a−1∥ · ∥H1 for some constant a > 0 given by
the Poincaré inequality.

3.1.2. Data-driven kernel. The Green’s function for L(c), denoted by G(c), is a continuous
symmetric positive definite kernel. Moreover, the Dirac delta function δ(x) ∈ H−1(Ω) since
Ω ⊆ R. We define Pi(u) = u(xi), which is equivalent to fi(x) = δ(x − xi) for xi ∈ Ω. We
denote by uj(x) the PDE solution with the source term fj, j = 1, . . . , n. In this case, our
measurements

dij = Pi(uj) = uj(xi), 1 ≤ i, j ≤ n.

We can verify that (H1
0 (Ω), ∥ · ∥U) is a reproducing kernel Hilbert space (RKHS) with

the reproducing kernel being G(c). Thus, vj = qj in (5), where vj is the PDE solution in
(H1

0 (Ω), ∥ · ∥U). In this example, the source operators are Dirac delta functions, belonging
to H−1(Ω), which is the dual space of H1

0 (Ω). As a result, for any fixed j = 1, . . . , n, we can
reformulate (7) as

min
q∈(H1

0 (Ω), ∥·∥U)

1
2

n∑
i=1

|q(xi)− eij|2 + ρ
2
∥q∥2U.

The optimal solution qj is

qj(x) =
n∑

k=1

αjkG(c)(x, xk) =
n∑

k=1

αjk uk(x),

where αj = (G(c) + ρI)−1ej. The ij-th entry of the kernel matrix G(c) is

gij = ⟨ui, uj⟩U =

∫
Ω

ui(x)L(c)G(c)(x, xj)dx = ui(xj) = dji .

Note that gij = gji, and the symmetry comes from the fact that ⟨u, v⟩U = ⟨v, u⟩U. That is,
we can obtain the Gram matrix G directly from the data.

Remark 9. In this example of the 1D elliptic equation, our method coincides with the Rep-
resenter Theorem in the theory of RKHS. However, the connection with RKHS is no longer
true for higher-dimensional elliptic equation examples since δ(x) is not in H−s for s ≤ d/2
where d is the dimension.
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3.2. 2D Elliptic equation. Consider the 2D diffusion equation on a compact domain Ω
with a variable coefficient

(15) −∇ · (c(x)∇u(x)) = f(x), x ∈ Ω

with the zero Dirichlet boundary condition on ∂Ω. We further assume that 0 < a ≤ c(x) ≤
b <∞, which implies that the PDE is uniformly elliptic and well-posed for the set of variable
coefficients that we are interested in.

3.2.1. Weak formulation. The weak formulation is to find u(x) ∈ U such that

(16) Ac(u, ϕ) = P(ϕ) ∀ϕ ∈ U,

with

Ac(u, v) =

∫
Ω

c(x)∇u(x) · ∇v(x) dx ,

P(u) =

∫
Ω

f(x)u(x) dx.

The weak formulation of the adjoint problem is to find w ∈ U such that

(17) Ac(ϕ,w) = Ac(w, ϕ) = P(ϕ) ∀ϕ ∈ U,

with Ac and P as before. Since the given elliptic operator is essentially self-adjoint, the
adjoint problem (17) is exactly the same as the forward problem (16).

3.2.2. Data-driven kernel. Similar to the 1D case, we can define the inner product ⟨u, v⟩U =
Ac(u, v) which is a weighted Ḣ1 inner product by the positive variable coefficient c(x). Then
the Hilbert space U is given by

U = {u | Ac(u, u) <∞, u|∂Ω = 0} ,

and its dual space is also defined accordingly. Then the weak forms (16) and (17) are
well-posed.

We consider a finite number of sources {fi}, i = 1, . . . , n, and define pi = Rfi ∈ U,
Pi(u) =

∫
Ω
fi udx, 1 ≤ i ≤ n. The function fi takes the form

fi(x) = exp (−20|x− xi|2), x ∈ R2 ,

where xi is the center of the Gaussian. We use n = 40 sources and their location are depicted
in Figure 2. The corresponding PDE solution with the source fi is denoted by ui. We first
note that wi = ui in (17) with P replaced by Pi since the PDE is self-adjoint. As a result,
the Gram matrix is given by
(18)

gij(k) = ⟨ui, uj⟩U =

∫
Ω

c(x)∇ui · ∇uj dx = Ac(ui, uj) = Pj(ui) = dji, ∀i, j = 1, . . . , n .

That is, if {Pi} act as both the sources and the receivers, we can obtain the kernel matrix
G for the true coefficient through data measurements.
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Figure 2. The location of the Gaussian centers for the direct method on the
domain [0, 1]2.

3.2.3. Numerical example. Next, we use an example to illustrate the impact of ρ as well as
the choice of inner product ⟨·, ·⟩U in the optimization landscape of the objective function J
in (10) with respect to the coefficient c. Here, the domain Ω is a unit square [0, 1]2.
We consider a parameterized variable coefficient

c(x1, x2; θ) = | sinx1|2 + | sinx2|2 + (1 + 100 θ)| sin(10x1)|2 + | sin(10x2)|2 , [x1, x2]
⊤ ∈ Ω ,

where θ ∈ [0, 2], the range of possible parameter values and the ground truth is θ∗ = 0. Note
that c is linear with respect to the parameterization θ. Thus, the convexity of J with respect
to c is represented here by the convexity of J with respect to θ.
First, we assume a finite-dimensional space U = span{pi}ni=1. That is, the solution space

is a linear combination of the Riesz representation of the source terms {fi}. The sources
are located near the boundary of the domain. In this setup, we consider two different inner
products: a variable coefficient-independent one ⟨u, v⟩U =

∫
Ω
∇u · ∇v dx and a variable

coefficient-dependent inner product ⟨u, v⟩U =
∫
Ω
c(x)∇u · ∇v dx = Ac(u, v), for any u, v in

the Hilbert space U. For the former inner product, the Riesz map R = −∆−1, while for the
latter, R = (−∇ · (c(x)∇))−1, both having the zero Dirichlet boundary condition.
We remark that, for the variable coefficient-dependent case, the data-driven kernel for-

mula (18) still applies even though U here is an uncommon choice of finite-dimensional
solution space. We calculate the objective function J(c) defined in (10) for these two in-
ner products, and examine the optimization landscape with respect to different values of ρ.
Results are shown in Figure 3 for these two different inner products.

Note that this example satisfies the assumptions in Corollary 2, so the statements apply.
Based on Remark 6, when the inner product does not depend on c and ρ = 0, the objective
function is quadratic with respect to the c, which can be seen in Figure 3(A). On the
other hand, when ⟨·, ·⟩U = Ac(·, ·), J0 is linear in c as addressed in Remark 8 and illustrated
in Figure 3(B). Moreover, with the c-independent inner product, the classic PDE-constrained
optimization is known to be non-convex, corresponding to the case ρ = ∞ in Figure 3(A).
Interestingly, this is no longer true if we use the c(x)-dependent inner product, which yields
a convex objective function with respect to the coefficient c(x).
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(b) ⟨·, ·⟩U with c(x)-dependency

Figure 3. The optimization landscape for PDE-constrained optimization
based on the 2D inverse conductivity problem, for which the forward prob-
lem is the Poisson equation with a variable coefficient (15). The Hilbert space
U = span{pi}ni=1. In (B), the inner product is given by ⟨u, v⟩U =

∫
Ω
∇u ·∇v dx

while the inner product in (B) is given by ⟨u, v⟩U =
∫
Ω
c(x)∇u · ∇v dx.

Next, we repeat the example above except that the Hilbert space U is now spanned by 2D
first-order Lagrange elements over the entire domain [0, 1]2, a common choice in a low-order
finite-element method (FEM). Figure 4 shows the optimization landscapes corresponding
to various values of ρ ∈ [0,∞) and the two inner products. When ρ = ∞, the problem
reduces to the classic PDE-constrained optimization based on the 2D Poisson equation with
the squared L2 norm to measure the data misfit. Since the measured solution is nonlinear
in c, the resulting objective function is non-convex, as seen in Figure 4. As we gradually
reduce ρ from ∞ to 0, the optimization landscape varies and eventually becomes a linear
function for the c-dependent inner product, and a quadratic function for the c-independent
inner product, both are advantageous for finding the global minimum θ∗ = 0. The convex
landscapes at ρ = 0 align well with those in Figure 3 even though our theory, i.e., Corollary 2,
currently does not apply to this setup.

In both figures, we observe the gradual variance from the case ρ = 0 to the other limit
ρ = ∞. These plots show the interpolative nature of the proposed norm (10) for measur-
ing the data misfit and the effectiveness in improving the optimization landscape when we
incorporate the model and parameter properties into the objective function.

3.3. 1D Helmholtz equation. Our next example is the 1D Helmholtz equation

−u′′(x; k)− (k/c(x))2u(x; k) = f(x),

with boundary conditions

u(0; k) = 0,

u′(1; k)− ı (k/c(1))u(1; k) = 0.

We furthermore assume that 0 < a ≤ c(x) ≤ b <∞.
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(a) ⟨·, ·⟩U without c(x)-dependency
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(b) ⟨·, ·⟩U with c(x)-dependency

Figure 4. PDE-constrained optimization based on the 2D inverse conduc-
tivity problem, for which the forward problem is the Poisson equation with
variable coefficient (15). The Hilbert space U is spanned by 2D first-order
Lagrange elements over the domain [0, 1]2. In (A), the inner product is
given by ⟨u, v⟩U =

∫
Ω
∇u · ∇v dx. In (B), the inner product is given by

⟨u, v⟩U =
∫
Ω
c(x)∇u · ∇v dx.

3.3.1. Weak formulation. The weak formulation is to find u(· ; k) ∈ U such that

(19) Ac,k(u(· ; k), ϕ) = P(ϕ) ∀ϕ ∈ U,

with the bilinear form defined by

Ac,k(u, v) =

∫ 1

0

u′(x)v′(x)dx− k2
∫ 1

0

c(x)−2u(x)v(x)dx− ıkc(1)−1u(1)v(1),

P(ϕ) =

∫ 1

0

f(x)ϕ(x)dx.

The weak formulation of the adjoint problem is to find w(· ; k) ∈ U such that

(20) Ac,k(ϕ,w(· ; k)) = P(ϕ) ∀ϕ ∈ U,

with Ac,k and P as before.

We define the inner product as ⟨u, v⟩U =
∫ 1

0
u′(x)v′(x)dx and define the Hilbert space U

as

U = {u : [0, 1] → C | ∥u∥U <∞, u(0) = 0} .
We then define its dual in the usual way. The the weak forms (19) and (20) are well-posed
for f ∈ H−1 [6].

The measurements are defined correspondingly by

dij(k) = Pi(uj(· ; k)) =
∫ 1

0

fi(x)uj(x; k)dx,
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where i, j = 1, . . . , n, and uj(·; k) is the solution to (19) with the source term fj. Moreover,
we assume {fj}nj=1 are real-valued functions. Correspondingly, wj(·; k) is the solution to (20)
with the source term fj, j = 1, . . . , n.

3.3.2. Data-driven kernel. We first note that wi(x; k) = ui(x; k) based on the properties
of (19) and (20) (see Lemma 4), so the Grammian G(k) ∈ Cn×n (cf. Theorem 1) has elements

gij(k) = ⟨uj(·; k), ui(·; k)⟩U.
We then find the following expression for the Grammian in terms of the data dij(k) and the
values of bi(k) = ui(1; k) (see Lemma 6):

(21) gij(k) = ℜ
(
dij(k) +

k
2
d′ij(k)

)
+ ık2

2c(1)

(
b′i(k)bj(k)− bi(k)b

′
j(k)

)
,

where d′ij and b
′
i denote the derivatives of dij and bi with respect to k. Thus, we can compute

the Grammian from the measurements if we have access to the response of the sources at
x = 1 and can compute the derivatives of the measurements with respect to k.

3.3.3. Numerical example. We consider a constant sound speed (c(x) ≡ c) and Piu = u(xi)
(i.e., fi(x) = δ(x− xi)). The solution in that case is given by the analytic formula

ui(x; k) =

{
(k/c)−1 sin((k/c)x)eı(k/c)xi x ≤ xi,

(k/c)−1 sin((k/c)xi)e
ı(k/c)x x > xi.

This allows us to compute the Grammian G in closed form and plot the objective functions
resulting from the different formulations:

J∞(c) = 1
2
trace (E(c)∗E(c)) ,(22)

Jρ(c) =
1
2
trace

(
E(c)∗

(
I + ρ−1G(c)

)−1
E(c)

)
,(23)

J̃ρ(c) =
1
2
trace

(
E(c)∗

(
I + ρ−1G̃

)−1

E(c)

)
.(24)

In this notation, the wavenumber k is implicit and fixed. The fundamental difference be-
tween (23) and (24) is that the former uses a parameter-dependent Grammian, which we
denote by G(c) in a slight abuse of notation, while the latter uses the data-driven Grammian

defined in (21), which here we denote by G̃.
In this experiment, we take measurements at xi = i/(n+ 1) for i = 1, . . . , n and generate

(noiseless) data for c = 1. The behavior of the three objectives for various values of (n, k, ρ)
is shown in Figures 5-7.

We highlight a few interesting observations. First, the optimization problem generally gets
more challenging (with more local minima) for larger k (higher frequencies). This is expected
and well-known behavior for inverse problems with the Helmholtz equation. Second, the
relaxed approach for small ρ makes the problem easier to solve (i.e., with fewer local minima,
which is advantageous for gradient-based optimization algorithms) when more measurements
are available (following Theorem 2). Third, the data-driven metric formulated in (24) is a
good alternative to the variable metric approach given in (23) in these examples. Note that
we do not need to differentiate the Grammian using the data-driven metric, but only the data
misfit E(c), which can be computed using the adjoint-state method. Therefore, using any
gradient-based optimization algorithms, such as steepest descent and nonlinear conjugate
gradient methods, the objective function (24) incurs the same computational cost compared
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Figure 5. Helmholtz example: different objective functions for n = 2; con-
ventional (dashed), variable metric (blue), data-drive metric (orange).

to the objective function (22). Finally, we note that for n = 10 we observe the convex
behavior suggested by section 2.7 as only in the limit of large n does the finite-dimensional
space yield a sufficiently accurate representation of the solution of the PDE.

3.4. Schrödinger equation. We consider the following Schrödinger equation

(25) −∇2u(x;λ) + c(x)u(x;λ)− λu(x;λ) = f(x), x ∈ Ω ⊂ Rd,

with homogeneous Dirichlet boundary conditions. The inverse problem of estimating the
scattering potential c(x) from measurements of u for various source term f(x) and different
values of λ is often studied in the context of inverse scattering [7, 9].

3.4.1. Weak formulation. To guarantee the well-posedness of the forward problem, it is nat-
ural to consider the function space U = H1

0 (Ω), so the forward problem well-posed for
fi ∈ H−1(Ω) [8].

We first define the bilinear form

Ac,λ(u, v) =

∫
Ω

∇u(x) · ∇v(x)dx+
∫
Ω

c(x)u(x)v(x)dx− λ

∫
Ω

u(x)v(x)dx,

P(u) =

∫
Ω

f(x)u(x)dx.

We consider n source functions {fi}ni=1 ⊂ U∗, whose Riesz representations are {pi}ni=1 ⊂ U.
The measurements are then denoted by

dij(λ) = Pi(uj(· ; λ)) = ⟨pi, uj(· ; λ)⟩U,
where ui(· ; λ) is the (weak) solution of the Schrödinger equation for frequency λ and source
term fi. Due to symmetry we immediately find dij(λ) = dji(λ), i, j = 1, . . . , n. We will
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Figure 6. Helmholtz example: different objective functions for n = 5; con-
ventional (dashed), variable metric (blue), data-drive metric (orange).

Figure 7. Helmholtz example: different objective functions for n = 10; con-
ventional (dashed), variable metric (blue), data-drive metric (orange).
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first consider this choice with a c(x)-weighted inner product to be able to derive a data-
driven Gram matrix G. Alternatively, we can also use the usual (unweighted) H1

0 (Ω) inner
product and consider a finite-dimensional subspace spanned by the Riesz representations
{pi}ni=1 ⊂ H1

0 (Ω) of fi ∈ H−1(Ω) to derive a direct inversion method according to Theorem 2.

3.4.2. Data-driven kernel. To derive an expression that relates the kernel to the measure-
ments, consider the weighted inner product:

⟨u, v⟩U =

∫
Ω

∇u(x) · ∇v(x)dx+
∫
Ω

c(x)u(x)v(x)dx.

Since the equation (25) is self-adjoint, we get wi = ui for i = 1, . . . , n, and hence the ij-th
entry of the Gram matrix is given by

gij(λ) = ⟨ui(· ; λ), uj(· ; λ)⟩U.
We will use the short-hand notation ui(λ) = ui(· ; λ). From the weak form, we find that

⟨ui(λ), uj(µ)⟩U − λ⟨ui(λ), uj(µ)⟩L2(Ω) = dij(µ),

⟨ui(λ), uj(µ)⟩U − µ⟨ui(λ), uj(µ)⟩L2(Ω) = dij(λ).

Using these two relations, we can rewrite the ij-th entry of the Gram matrix as

Gij(λ) = ⟨ui(λ), uj(λ)⟩U = lim
µ→λ

µdij(µ)− λdij(λ)

µ− λ
.

This simplifies to

gij(λ) = lim
h→0

(λ+ h)dij(λ+ h)− λdij(λ)

h
= dij(λ) + λd′ij(λ).

To calculate Gij(λ), we thus need to measure the derivative of the measurements with respect
to the hyperparameter λ as well, which can only be computed when we have measurements
with densely varying λ so that a divided difference approximation yields a reasonably good
result.

3.4.3. A direct method. To illustrate the effectiveness of the direct method in Remark 7,
we consider the c-independent inner product: ⟨u, v⟩U =

∫
Ω
∇u(x) · ∇v(x)dx and define

pi as the solution of −∇2pi = fi with the zero Dirichlet boundary conditions. That is,
pi is the Riesz representation of fi given this inner product. Moreover, we assume that
U = span{p1, . . . , pn}, and the domain Ω = [0, 1]2 ⊂ R2.

We can now apply the approach suggested by Corollary 2 and Remark 7. Expressing the

scattering potential c(x) in terms of a basis {ψk}n
′

k=1, i.e., c(x) =
∑n′

k=1 ckψk(x), we get the
following set of n2 linear equations for its coefficients {ck}n

′

k=1:

(26)
n′∑
k=1

hijk ck = −mij + λsij +
(
MD(λ)−1M

)
ij
, i, j = 1, 2, . . . , n,

with
hijk = ⟨ψkpi , pj⟩L2(Ω) , mij = ⟨pi , pj⟩U, sij = ⟨pi , pj⟩L2(Ω).

Note that if n2 ≫ n′, the linear system is severely over-determined. We may use a subset of
the n2 equations instead.

The basis function for the variable coefficient c(x), {ψk}, is set to be

ψk(x) = | sin(kx)|2, x ∈ R2 , k = 1, 2, . . . , 10 .
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(a) The true coefficient (b) Inversion with a = 1

(c) Inversion with a = 3 (d) Inversion with a = 10

Figure 8. A direct method (26) to reconstruct the variable coefficient for the
linear Schrödingr equation. (A): the true coefficient c(x); (B)-(D): the direct
reconstruction using the Gaussian sources of different parameters, ranging from
a = 1 (B), a = 3 (C) to a = 10 (D).

The reference coefficients {ck}10k=1 are randomly drawn. In Figure 8(A), we present the
groudtruth for reference. We set up the tests such that the source function fi is a Gaussian
centered at location xi with different width a > 0:

fi(x) = exp (−a|x− xi|2), x ∈ R2 , i = 1, . . . , 40 .

The location of the Gaussian centers {xi}40i=1 is fixed for all sets of basis; see Figure 2 for an
illustration. The basis functions {pi}40i=1 are the Riesz representation of fi in U with respect
to the Ḣ1 inner product.

In Figure 8(B), (C), and (D), we use 40 basis functions, but with the Gaussian parameter
a varying from 1, 3 to 10, respectively. Since n = 40 and m = 10, the problem is very
over-determined. We fix j = 1, and consider i = 1, . . . , 10 in (26). Thus, the linear system
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(a) (b) (c)

Figure 9. Left: ground-truth velocity; middle: initial velocity for Case 1;
right: initial velocity for Case 2.

to be solved is fully determined. The set of basis functions with the largest coverage yields
the best result (see Figure 8(B)), and the inversion worsens as the variance of the Gaussian
basis in defining the {fi} decreases. This is to be expected since the larger the variance of
the {fi} located on the boundary, the more overlap between their Riesz representations {pi}
and the variable coefficient c(x) defined on the interior of the domain.

3.5. Seismic inversion with 2D Helmholtz equation. Our final example is seismic
inversion constrained by the 2D Helmholtz equation on a half-space:

∇2u(x) + k2c(x)−2u(x) = f(x) , x ∈ Ω ⊂ R2

with absorbing boundary conditions. Given a sequence of sources {fi}i located on the upper
boundary of the domain, the inverse problem aims to recover the wave propagation speed c(x)
which represents the property of the subsurface material. In our tests, we use a rectangular
domain of size 3 × 11 km and collect data for 124 equally spaced sources / receivers across
the x-axis from 0.1km to 10km at the depth of 0.04 km in the z axis at a single frequency
(to be specified below). The true coefficient is show in Figure 9(a).

To test the robustness of the inversion process to initialization, we consider two experi-
mental setups with different initial guesses. In the first case, the initial velocity is a smoothed
version of the ground-truth velocity, while in the second case, the initial velocity is a linearly
increasing profile, see Figure 9 (b-c). For each experiment, we perform PDE-constrained op-
timization with the three objective functions in (22), (23) and (24), respectively. These three
objective functions correspond to the conventional least-squares method, the least-squares
method with a variable metric, and the least-squares method with the data-driven metric. In
both cases, the hyper-parameter ρ in the objective function with a variable metric (23) and
the one with a data-driven metric (24) are fixed to be 1 throughout. To solve the resulting
optimization problems we use L-BFGS and run to convergence.

We run the following experiments:

Experiment 1 Here, we set the frequency to be 4hz, the initial velocity as depicted in Figure 9(b).
The top row of Figure 10 shows the reconstructed velocities. The bottom row com-
pares the actual observed and simulated data at receivers from one source.

Experiment 2 Here, we set the frequency to be 6hz, the initial velocity as depicted in Figure 9(c).
The top row of Figure 11 shows the reconstructed velocities. The bottom row com-
pares the actual observed and simulated data at receivers from one selected source.
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Figure 10. The top row shows the reconstructed velocities. The bottom row
compares simulated and true data from one source. From left to right shows
the result using the objective function (22), (23), and (24), respectively. This
sets of result correspond to Case 1, i.e., the initial velocity is the middle panel
of Figure 9.

From the numerical results in Figures 10 and 11, we see that inversions using the objective
function with a variable metric (23) and the one with a data-driven metric (24) achieve better
data fitting. At the same time, the conventional method (22) shows an evident local minimum
trapping. Moreover, the reconstructed velocities under (23) and (24) have a better recovery
in the deeper part of the velocity (when z is large) with more low-wavenumber components
recovered. Even though the weightings in the objective functions apply to the data side,
they also consequently scale the velocity components during inversion. Although our theory
part in Section 2 is based on simple setups with assumptions, this set of tests sheds light on
the potential of variable-dependent metric and data-driven metric as an objective function
in mitigating local minima in PDE-constrained optimizations.

4. Conclusion and Discussions

We provided a unified framework for analyzing and discretizing certain PDE-constrained
optimization problems arising in inverse problems. Here, the inverse problem is to estimate a
spatially varying coefficient (i.e., the parameter) from a finite number of linear measurements
of the solution of the PDE (i.e., the state). In particular, we consider constraint relaxation
and show that the joint parameter-state estimation problem can be reduced to a variable-
metric formulation depending on the parameter alone. This allows us to have two limiting
cases, and we interpret these in terms of projections of certain infinite-dimensional residuals
onto finite-dimensional subspaces. One limit yields the conventional reduced approach, while
the other yields a residual that is affine with respect to the parameter if the PDE operator
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Figure 11. The top row shows the reconstructed velocities. The bottom row
compares simulated and true data from one source. From left to right shows
the result using the objective function (22), (23), and (24), respectively. This
sets of result correspond to Case 2, i.e., the initial velocity is the right panel
of Figure 9.

is affine with respect to the parameter. The latter is arguably more attractive for gradient-
based optimization methods. Under further assumptions, we can show that this limiting
case, in fact, yields a quadratic problem in terms of the parameter.

Moreover, the reduced formulation is the starting point for deriving a data-driven ap-
proach, where the variable metric is replaced by one estimated from the measurements. In a
few well-chosen case studies, we show how the framework can be applied and how the metric
can be computed from the available measurements. In some simple cases, we numerically
demonstrate that the data-driven relaxation indeed yields a convex optimization problem
with respect to the unknown coefficient. A more complex numerical example in 2D seis-
mic inversion showcases that the variable metric and data-drive metric can achieve a better
data-fit and qualitatively superior results to the conventional approach.

The proposed framework forms a natural starting point for implementing the relaxed
formulation using the finite element method. For practical implementation on large-scale
problems, the matrix defining the metric (either variable or data-driven) will need to be
approximated. Whether such approximations will retain the benefits of constraint relaxation
will need to be investigated further. Another practical issue we leave for future work is the
effect of noise on the data-driven metric. We furthermore expect that stronger statements
about the quadratic nature of the relaxed problem can be made in specific cases, and this
also is the subject of ongoing research.
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Appendix A. Auxiliary results

Lemma 3. Given a the functional J : U → R defined as

J(q) =
n∑

i=1

1
2
|⟨vi, q⟩U − bi|2 + ρ

2
∥q∥2U,
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where {vi}ni=1 are linearly independent, it admits minimizers of the form

q =
n∑

i=1

αivi,

where the coefficients α ∈ Cn are solved from

(G+ ρI)α = b,

with Gij = ⟨vi, vj⟩U.

Proof. First, for any ϵ > 0 and h ∈ U , consider

J(q+ ϵh)− J(q) = 1
2

n∑
i=1

[
2ϵℜ

(
(⟨vi, q⟩ − bi) ⟨h, vi⟩

)
+ ϵ2|⟨h, vi⟩|2

]
+ ρ

2

(
2ϵℜ⟨h, q⟩+ ϵ2∥h∥2U

)
,

where “ℜx” denotes the real part of the complex argument x.
Note that ignoring the O(ϵ2) terms does not give us the Fréchet derivative since the

resulting operator is not a linear operator over C. We address this by introducing q = qR+ıqI
with ı being the imaginary unit and qR and qI real-valued. Consider the Fréchet derivative
with respect to (qR, qI) evaluated at the direction (hR, hI):

DJ(qR,qI)(hR, hI) = ℜ

[〈
hR,

n∑
i=1

βivi + ρq

〉
+ ı

〈
hI ,

n∑
i=1

βivi + ρq

〉]
,

with βi = ⟨vi, q⟩ − bi. The optimality condition, DJ(qR,qI) = 0, is satisfied by letting q be of
the form

q =
n∑

i=1

αivi,

where the coefficients α = [α1, · · · , αn]
⊤ ∈ Cn can be determined by plugging this expression

for q back into J :
J(α) = 1

2
∥Gα− b∥22 +

ρ
2
α∗Gα,

with Gij = ⟨vi, vj⟩U. The corresponding normal equations are(
G2 + ρG

)
α = Gb,

which reduces to
(G+ ρI)α = b,

because G has full rank as a result of {vi}ni=1 being linearly independent. □

Lemma 4. Let
U = {u : [0, 1] → C | ∥u∥U <∞, u(0) = 0} ,

with ⟨u, v⟩U =
∫ 1

0
u′(x)v′(x)dx and define its dual in the usual way. Consider the weak

formulations for the forward and adjoint 1D Helmholtz equation

Ac,k(u(· ; k), ϕ) = P(ϕ) ∀ϕ ∈ U,

Ac,k(ϕ,w(· ; k)) = P(ϕ) ∀ϕ ∈ U,

with

Ac,k(u, v) =

∫ 1

0

u′(x)v′(x)dx− k2
∫ 1

0

c(x)−2u(x)v(x)dx− ıkc(1)−1u(1)v(1),



AN ANALYSIS OF CONSTRAINT-RELAXATION IN PDE-BASED INVERSE PROBLEMS 25

P(ϕ) =

∫ 1

0

f(x)ϕ(x)dx,

for real-valued f ∈ H−1. These weak formulations are well-posed [6] and we have the follow-
ing relation between their solutions

w(·, k) = u(·, k).

Proof. First note that the adjoint solution satisfies

Ac,k(ϕ,w(· ; k)) = P(ϕ) = P(ϕ) ∀ϕ ∈ U,

since f is real-valued. Note furthermore that

Ac,k(u, v) = Ac,k(v, u) ∀u, v ∈ U.

Thus the solution to the forward problem, u(·; k), satisfies

Ac,k(ϕ, u(·; k)) = P(ϕ) ∀ϕ ∈ U.

Introducing ψ = ϕ yields

Ac,k(ψ, u(·; k)) = P(ψ) = P(ψ) ∀ψ ∈ U.

Thus, u(·; k) satisfies the adjoint equation, implying that the solutions to the forward and

adjoint equations are related as w(·; k) = u(·; k) as stated. □

Lemma 5. Let dij = Pi(uj) with uj the solution of Ac,k(uj, ϕ) = Pj(ϕ), ∀ϕ ∈ U, as defined
in Lemma 4. Then we have

dij = dji.

Proof. We have dij = Pi(uj) = Ac,k(uj, wi) = Pj(wi) using the definition of the adjoint

equation. Using the fact that fi is real-valued we have Pj(wi) = Pj(wi). Using Lemma 4,
this yields Pj(wi) = Pj(ui) = dji, completing the proof. □

Lemma 6. Define
gij(k) = ⟨wi(·; k), wj(·; k)⟩U,

where wi(·; k) is a (weak) solution of the adjoint 1D Helmholtz equation, as defined in
Lemma 4. Furthermore, let dij(k) = Pi(uj(·; k)) and bi(k) = ui(1; k) with ui(·; k) a (weak)
solution of the 1D Helmholtz equation. Then we have

(27) gij(k) = ℜ
(
dij(k) +

k
2
d′ij(k)

)
+ ık2

2c(1)

(
b′i(k)bj(k)− bi(k)b

′
j(k)

)
,

where d′ij and b′i denote the derivatives of dij and bi with respect to k.

Proof. First note that we can express

gij(k) = ⟨uj(·; k), ui(·; k)⟩U,

because ui = wi (see Lemma 4). Introducing the sesquilinear formsM(u, v) =
∫ 1

0
c(x)−2u(x)v(x)dx

and B(u, v) = c(1)−1u(1)v(1) and use uj(·, ℓ) as test function in the weak form, we find

dij(ℓ) = ⟨ui(·; k), uj(·; ℓ)⟩U − k2M(ui(·; k), uj(·; ℓ))− ıkB(ui(·; k), uj(·; ℓ)).
Similarly,

dji(k) = ⟨ui(·; k), uj(·; ℓ)⟩U − ℓ2M(ui(·; k), uj(·; ℓ)) + ıℓB(ui(·; k), uj(·; ℓ)).
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Combining the relations for ℓ2dij(ℓ) and k
2dji(k) and using that dij = dji (see Lemma 5) we

find

⟨ui(·; k), uj(·; ℓ)⟩U =
ℓ2dij(ℓ)− k2dij(k)

(ℓ+ k)(ℓ− k)
+

ıkℓ

ℓ− k
B(ui(·; k), uj(·; ℓ)).

On the other hand, we can express gij(k) as

gij(k) = lim
ℓ→k

1
2
(⟨uj(·; k), ui(·; ℓ)⟩U + ⟨uj(·; ℓ), ui(·; k)⟩U) .

This yields

gij(k) = lim
ℓ→k

ℓ2ℜdij(ℓ)− k2ℜdij(k)
(ℓ+ k)(ℓ− k)

+
ıkℓ

2(ℓ− k)
(B(uj·; k), ui(·; ℓ))− B(uj(·; ℓ), ui(·; k))) .

We readily observe that the first term yields ℜ(dij(k)+ k
2
d′ij(k)). For the second term, observe

that we can express it as

ıkℓ

2(ℓ− k)
(B(uj(·; k)− uj(·; ℓ), ui(·; ℓ)) + B(uj(·; ℓ), ui(·; ℓ)− ui(·; k))) .

This yields

gij(k) = ℜ
(
dij(k) +

k

2
d′ij(k)

)
+
ık2

2

(
B
(
uj(·; k),

dui
dk

(·; k)
)
− B

(
duj
dk

(·; k), ui(·; k)
))

.

Introducing bi(k) = ui(1; k) and using the definition of B yields the desired result. □


	1. Introduction
	1.1. Contributions
	1.2. Outline

	2. Theory
	2.1. Preliminaries
	2.2. Constraint-relaxation
	2.3. A representer theorem
	2.4. A reduced formulation
	2.5. Limiting cases
	2.6. Noiseless data
	2.7. Towards a convex formulation

	3. Case studies
	3.1. 1D Elliptic equation
	3.2. 2D Elliptic equation
	3.3. 1D Helmholtz equation
	3.4. Schrödinger equation
	3.5. Seismic inversion with 2D Helmholtz equation

	4. Conclusion and Discussions
	Acknowledgements
	References
	Appendix A. Auxiliary results

