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Abstract. Closure problems are omnipresent when simulating multiscale systems, where some
quantities and processes cannot be fully prescribed despite their effects on the simulation’s ac-

curacy. Recently, scientific machine learning approaches have been proposed as a way to tackle

the closure problem, combining traditional (physics-based) modeling with data-driven (machine-
learned) techniques, typically through enriching differential equations with neural networks. This

paper reviews the different reduced model forms, distinguished by the degree to which they in-

clude known physics, and the different objectives of a priori and a posteriori learning. The
importance of adhering to physical laws (such as symmetries and conservation laws) in choosing

the reduced model form and choosing the learning method is discussed. The effect of spatial and

temporal discretization and recent trends toward discretization-invariant models are reviewed.
In addition, we make the connections between closure problems and several other research disci-

plines: inverse problems, Mori-Zwanzig theory, and multi-fidelity methods. In conclusion, much

progress has been made with scientific machine learning approaches for solving closure problems,
but many challenges remain. In particular, the generalizability and interpretability of learned

models is a major issue that needs to be addressed further.
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1. Introduction and background

Closure problems are everywhere. They arise when a mathematical-physical model that de-
scribes certain quantities of interest is created, which depends on quantities that are not of prime
interest but whose effect cannot be neglected. A prominent example is in numerical weather pre-
diction, where the aim is to predict tomorrow’s weather given the physical laws that govern fluid
flows and today’s conditions. In principle, these physical laws describe all relevant physics, but
in practice certain processes like cloud formation take place on such small spatial and temporal
scales that resolving (simulating) them on a computer is impossible, even though their effect on
the weather is crucial [1].

The weather prediction problem is an example of a multiscale problem in which the quantities of
interest are associated with large scales, but depend on quantities associated with small scales. If
these small scales are not resolved, the large-scale equations are unclosed. In this article, we focus
on multiscale problems that lead to a closure problem, and in particular we consider multiscale
problems that involve a continuum of scales (fluid flows being an important example). There is no
clear separation of scales, and the closure model is needed everywhere in the domain to supplement
the large-scale model (Type “B” problems in the terminology of E [2]).

Closure models appear under different names in different domains [3]. The term “closure” is
most common in the fluid dynamics community, designating the turbulence closure problem—
closure models are known as subgrid or subgrid-scale (SGS) models. In kinetic equations and
radiation transport, the term “moment closure” is used [4, 5, 6]. In numerical weather prediction
and climate science, the problem is known as “parameterization”, and finding accurate and stable
parameterizations is considered a key challenge [1, 7]. In general circulation models (including
atmospheric and oceanic models), the same terminology is used [8, 9]. In the reservoir simulation
community, the closure problem is commonly referred to as “homogenization” or “upscaling” [10].
In materials science, molecular dynamics, and computational biology, the term “coarse graining”
is used [11, 12].

Finding a closure model for multiscale problems is difficult and often more an art than a science.
As mentioned, part of the model description is often known from physical laws (such as conservation
laws), and only the effect of the small scales on the large scales needs to be approximated. The
mapping associated with this approximation is typically strongly nonlinear—therefore, machine

1

ar
X

iv
:2

40
3.

02
91

3v
2 

 [
m

at
h.

N
A

] 
 1

2 
Se

p 
20

24



2 B. SANDERSE, P. STINIS, R. MAULIK, AND S. E. AHMED

learning methods form a promising avenue, given their strong approximation properties. Conse-
quently, a hybrid approach to the closure problem has become a popular research field, involving
a combination of a physics-based model describing the large scales and a machine-learning based
model to approximate the effect of the small scales. Such approaches fall within the realm of what
is now known as scientific machine learning. Because the physics-based model typically consists
of differential equations, this hybrid approach in practice means a mixture of differential equa-
tions with neural networks. This leads to many new and interesting research questions regarding
stability, consistency, and convergence, which have only started to be addressed recently.

Consequently, the aim of this review is to give an overview of recent scientific machine learning
approaches to the closure problem and the open challenges faced by the community. To do so,
we give a somewhat abstract view on the closure problem, which is useful because it provides a
generic description that fits several application domains. A second aim of this review is to make the
connection to adjacent research disciplines clear; for example, the inverse problem community, the
Mori-Zwanzig community, etc. We realize that our notation and the cited literature are somewhat
geared toward fluid flow applications (and large eddy simulations [LESs] in particular), but we have
tried to make it general enough to address a broad audience. We also note that many excellent
review articles have appeared on the topic of machine learning, partial differential equations and/or
fluid mechanics, for example [13, 3, 14, 15, 16]. In this review, we therefore assume that the reader
is familiar with basic concepts of machine learning and differential equations.

The outline of this paper is as follows. Section 2 and Section 3 describe the fundamentals of
closure modeling, splitting the closure problem into two parts: the reduced model form (what
to learn), and the choice for the objective function (how to learn it). Together with Section 4
(embedding physics constraints) and Section 5 (spatial and temporal discretization aspects), these
sections describe the methodological framework in which many existing closure model approaches
fit. Sections 6, 7 and 8 each give a different perspective on the closure problem from the viewpoint
of inverse problems, from the viewpoint of Mori-Zwanzig theory, and from the viewpoint of multi-
fidelity and multiscale methods. Section 9 concludes with directions for future research.

2. Reduced model forms

2.1. Model reduction. We will consider partial differential equations (PDEs) of the form

(1) F (u;µ) = 0,

where F is the PDE operator (containing temporal and spatial derivatives), u(x, t) is the solution,
and µ represents physical parameters or parameterized initial or boundary conditions. Equation
(1) will be referred to as the full model. In practice, this full model is solved by discretizing in space
and time. The resulting discretized model will be referred to as the high-fidelity model, assuming
a sufficient resolution is maintained to capture the relevant spatial and temporal scales..

The degrees of freedom or spectral content of the solution u(x, t) can be reduced, e.g., through
filtering, averaging, projection, or truncation. The reduction operator A leads to a reduced field
ū(x, t):

(2) ū := A(u).

A is often a linear operator, but this is not necessary. We assume in this review that the main
interest is the computation of an accurate approximation to ū, not in computing an accurate
approximation to u. We also assume that a small number of simulations of (1) can be performed,
leading to reference data for both the solution field and the reduced field. Note that a further
reduction is sometimes made, i.e., in certain applications where one is only interested in a quantity
of interest Q(ū) that is of lower dimension than ū itself. Two straightforward but important
relations in the context of model reduction are F̄ (u;µ) := A(F (u;µ)) = 0 1 and F (ū;µ) ̸= 0. In
other words, the reduction operator A and the PDE operator F do not necessarily commute.

The reduction operator A can be local in space and time, but also nonlocal (e.g., to account for
memory effects). A prominent example of a reduction operator is a filter with a kernel K [17]:

(3) ū(x, t) =

∫
u(ξ, t)K(x, ξ)dξ,

1assuming A is linear
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where the kernel is often of the convolution type, so K(x, ξ) = K(x − ξ). Another example of a
reduction operator is an expansion in an orthogonal basis ϕi(x) truncated to a finite dimension:

(4) ū(x, t) =

N∑
i=1

ai(t)ϕi(x),

which is commonly employed in the Reduced-Order Model (ROM) community [18, 3].
The main problem is that ū is in general not a solution to PDE (1). The common approach

to predict ū is to formulate a parameterized reduced model G (typically a PDE, but this is not
necessary) with parameters θ, which describes an approximation v̄ ≈ ū that does not explicitly
depend on u:

(5) Gθ(v̄;µ) = 0 .

This model G should be computationally much faster to solve than the original PDE (1), while
retaining most of the accuracy of the quantity of interest (QoI). We switched notation from ū(x, t)
to v̄(x, t) because solving (5) will in general not yield the reduced field ū, since ū requires knowledge
of the full solution u, as defined by (2). In addition, v̄(x, t) could possibly include additional
degrees of freedom, such as latent variables, that aid in approximating the evolution of ū. The
vector θ contains parameters or parameterized functions (e.g., neural networks, polynomials, etc.)
that need to be learned or discovered, depending on the hypotheses and Ansatz presumed in the
problem formulation.

The main challenge lies in deriving an expression for G (including the specification of all nec-
essary parameters), thus placing us in the setting of model discovery [19, 20, 21, 22, 23] (even
though the term model discovery is often used in the context of discovering the PDE for u instead
of for ū). This means that the governing equations are not fully known, and techniques such as
physics-informed neural networks (PINNs) [24] and neural finite element methods [25] cannot be
easily applied because these assume that the PDE is known (it enters in the loss function). For
a review of the development of these methods, see for example [15, 26, 27, 28]. However, because
PINNs can also be used to solve inverse problems, they might be effective in detecting closure
models if the closure model is framed as an inverse problem—see sections 4.1 and 6.1.

The difficulty of deriving an expression for G is not only due to its inverse-problem nature, but
also stems from the fact that the dynamics described by the full model F is often nonlinear and
chaotic. This means that the full model F would typically be solved with a statistical approach,
and a similar strategy can be expected for the reduced model—see Sections 6.4 and 7. Nevertheless,
many reduced models used to date are still deterministic.

2.2. Closure problem. Equation (5) describes a very generic class of models for v̄. A natural
approach is to find G such that it approximates the reduced model F̄ , i.e., G ≈ F̄ . Applying the
reduction operation to (1) yields:

(6) F̄ (u;µ) := A(F (u;µ)) = 0 → F (ū;µ) +C(u, ū;µ) = 0

where

(7) C(u, ū;µ) = F̄ (u;µ)− F (ū;µ).

This equation shows that one cannot simply solve the original PDE for the reduced field, because
the reduction step and the PDE operator do not commute. Generally, the equation for F̄ in-
volves u and is therefore unclosed. The common expression for G follows from approximating the
commutator error C by a model mθ(ū;µ) that depends only on ū:

(8) mθ(ū;µ) ≈ C(u, ū;µ),

so that

(9) Gθ(v̄;µ) = F (v̄;µ) +mθ(v̄;µ) .

The model mθ is known as the closure model. Expression (9) is the basic equation for the reduced
model, which expresses that the closure model approximates a commutator error that acts as an
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additive correction to the full model. If additional knowledge of F is available, e.g., when F is of
the form

(10) F (u;µ) =
∂u

∂t
+ f(u;µ),

the expression for G reads 2:

(11) Gθ(v̄;µ) =
∂v̄

∂t
+ f(v̄;µ) +mθ(v̄;µ) .

In practice, this form is as important as equation (9) because in many physical problems, F is
of the form (10). In addition, in fluid flow and material science applications, f usually involves
the divergence of a stress tensor, and (11) is further specialized to Gθ(v̄;µ) =

∂v̄
∂t + f(v̄;µ) +∇ ·

m̂θ(v̄;µ). An example is given in Section 2.4.
In many scientific machine learning approaches, the term m is modeled by a neural network.

This is a logical choice, given that the mapping from ū to m(ū) is generally highly nonlinear.
The resulting PDE consists of “known physics”, f(v̄), plus “learned physics” (a neural network).
However, the stability of this PDE solution is not guaranteed and is a subject of significant research,
which will be further discussed in Section 3. In addition, approaches like reinforcement learning
provide an alternative perspective on learning m – see section 3.5.

2.3. Other reduced model forms. If one removes the condition that G should approximate F
and the focus is only on having v̄ ≈ ū, many other forms for G are possible, typically depending on
how much a priori knowledge of F is given. In addition, the degree of code access (e.g., whether the
source code is available, or only a compiled version) can determine the form chosen for G. These
non-closure forms are not the main focus of this paper but will be mentioned for completeness.
For example, if the exact form of F is not known or available and one only knows that the reduced
model should be of evolution form, one can learn the entire right-hand side (instead of only learning
an approximation to the commutator error):

(12) Gθ(v̄;µ) =
∂v̄

∂t
+me

θ(v̄;µ).

The symbol me is used to distinguish it from m because me generally does not approximate the
commutator error. Form (12) is very generic, and many equation-discovery methods for dynamical
systems fit in this form [20]. A recent example for turbulent flow simulation is [29], where the
approach is called “fully learned”—no known physics are used in choosing the form of the reduced
model, except that the problem is a dynamical system. Recent weather prediction models employ
a similar setup [30, 31]. If me

θ is represented by a neural network, this form is similar to neural
ODEs, and this will be discussed in Section 5.1.

If even less a priori knowledge is available, one can resort to so-called surrogate models,

(13) Gθ(v̄;µ) = v̄(x, t) +ms
θ(x, t;µ),

where ms
θ represents a linear or nonlinear function approximator, such as neural networks, neural

operators, polynomial expansions, Gaussian processes, dynamic mode decomposition, and proper
orthogonal decomposition, taking physical parameters and spatial and temporal coordinates as
input instead of the solution v̄. Examples of neural operators that fit in this class are the Deep
Operator Network (DeepONet) [32], Fourier Neural Operator (FNO) [33], Laplace Neural Operator
(LNO) [34], Graph Neural Operator (GNO) [35], and Convolutional Neural Operator (CNO) [36].

Next to the closure form (9), the generic evolution form (12), and the surrogate form (13),
many other reduced forms are possible. For example, equation (11) for the reduced variable can be
extended with equations for latent variables, which can be used to model the effect of memory (for
details, see Section 7). In the context of learning ODEs, this leads to so-called augmented neural
ODEs [37], which have been used in the context of closure models [38, 39]. In the context of the
equation-free methods [40], the learned effective dynamics (LED) framework has been proposed
for learning low-dimensional models that include memory [41]. Another example of a reduced form
is a stochastic differential equation with trainable terms [42, 43].

2assuming the reduction operator commutes with temporal differentiation
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2.4. Example from fluid dynamics: large eddy simulation. An important example of clo-
sure models appears in the simulation of turbulent flows with LES [17, 44]. In this case, the
incompressible Navier-Stokes equations form the high-fidelity model,

(14) F (u;µ) :=
∂u

∂t
+∇ · (u⊗ u)−∇ · (2νS(u)) +∇p,

where u is the velocity, p the pressure, and S(u) = 1
2 (∇u+ (∇u)T ) is the strain-rate tensor. The

term ∇· (u⊗u) represents non-linear convection (with u⊗u the dyadic product) and is the major
cause of the closure problem. It is often written in the advective form (u · ∇)u. The equation
is supplemented with the constraint ∇ · u = 0, but to keep the discussion concise, we omit this
constraint in what follows. The reduction operator is a convolutional filter, similar to (3), which
commutes with spatial and temporal differentiation so that the expression for the commutator
error reads

(15) C(u, ū) = F̄ (u;µ)− F (ū;µ) = ∇ · (u⊗ u− (ū⊗ ū)).

Because the commutator error is the divergence of a quantity, the aim is to construct an approxi-
mation m̂ such that

(16) C(u, ū) ≈ ∇ · m̂θ(ū;µ).

A classical model for m̂ is the Smagorinsky model,

(17) m̂θ(ū;µ) = −νt(θ)S(ū),

and the goal is to learn the Smagorinsky coefficient θ = CS , where νt(θ) = (θ∆)2|S̄| and ∆ denotes
the filter width [44]. The reduced model expression is in this case

(18) Gθ(v̄;µ) :=
∂v̄

∂t
+∇ · (v̄ ⊗ v̄)−∇ · (2νS(v̄)) +∇p̄−∇ · (νt(θ)S(v̄)).

Note that even though the Reynolds-averaged Navier-Stokes equations (RANS) have a similar
form, they feature a different reduction operator that leads to a much larger commutator error,
and it should not be confused with LES. In many scientific machine learning approaches, instead of
learning the single parameter CS , a neural network is trained to approximate m̂, or m̂ is expressed
in terms of a tensor basis with coefficients that need to be learned (more details in Section 4).

3. Objective function choice: a priori vs. a posteriori learning

Having introduced different approaches to construct a reduced model, it is clear that the result-
ing form involves a parameterized model with unknown parameters. This leads to the formulation
of an inverse problem, where one or more parameters are learned to meet certain requirements.
In this section, we continue with introducing three distinct methods for approaching the closure
problem in terms of the objective function that is being minimized.

3.1. Approach 1: A priori learning. The most common approach in closure modeling is to
find the parameters θ by minimizing an error metric that can be evaluated “offline”, i.e., without
solving the reduced model (5). This approach is known as a priori learning, “direct approach”
[45], or “offline mode” [46]. The optimization problem has the following form:

(19) θ∗ = argmin
θ

Jprio
θ (ū,u),

In this approach, a limited number of reference trajectories (solutions of u as a function of time
for different parameters µ) are obtained from (1), from which ū can be extracted by applying the
filter (3). The objective function typically involves the summation over a set of training data T
(in parameter space),

(20) Jprio
θ (ū,u) =

1

|T |
∑
i∈T

Lprio
θ (ū(x, t;µi),u(x, t;µi)),

where |T | measures the cardinality (“size”) of the training data set, and µi are the parameters
corresponding to the i-th training sample, e.g. a vector describing initial conditions. The summa-
tion can be easily extended to include a temporal aspect. The loss function Lprio can have many
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different forms. A common example is to minimize the squared commutator error (see closure
model form (9)):

(21) Lprio
θ (ū,u) = ∥mθ(ū;µ)−C(u, ū;µ)∥2,

where the true commutator error C is computed according to (7) given the collected data set of u
and its filtered value ū. Because in this case one learns an operator, this approach is sometimes
called operator fitting, or operator inference in the ROM community [47, 48] (note that this term
should not be confused with the neural operators mentioned in Section 2.3). An example of such
an operator is the commutator error in LES, equation (15). The general expression for the loss
function is

(22) Lprio
θ (ū,u) = ∥Gθ(ū;µ)− F̄ (u;µ))∥2 .

Figure 1 (left) shows how in a priori learning, solving the reduced model G = 0 is not required
in the optimization process; one only needs to evaluate the residual Gθ(ū;µ). Since F̄ = 0,
expression (22) effectively constitutes the residual of the approximate model G, evaluated using
the reference trajectory ū). This means that a priori learning amounts to residual minimization.
To evaluate the residual, the full state u is not required, but only the reduced state ū.
Note that keeping F̄ (u) in expression (22) is insightful. Consider, for example, F andG in the form
of equations (10) and (11)—the residual then reads Gθ(ū;µ)− F̄ (u;µ) = mθ(ū;µ)− (f̄(u;µ)−
f(ū;µ)), which shows that m models a commutator error.

A priori learning with operator fitting is a common approach in the closure modeling community,
and many examples are available: learning stress tensors (or divergence of stress tensor) in fluid
dynamics [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], learning a polymer stress tensor or the
potential function in molecular dynamics [62], learning closure terms by representing them using
a neural operator [63], and parameterization in climate models [64].

The crucial aspect of a priori learning is that evaluating the objective function (19) only requires
reference data u and ū, obtained as solution vector from solving the high-fidelity model. It involves
the accuracy of the operator, but not the accuracy of the solution v̄ that will be computed when
the learned operator is employed (which is known as the “online” mode [46], or the “a posteriori”
analysis). A common problem is that even with a highly accurate operator fit, the solution v̄
can drift from the true solution ū or becomes unstable. The issue is also known under the term
model-data inconsistency [65, 66], where the data used to train the closure models is not consistent
with the environment in which the model will be run, e.g., due to discretization effects.

In turbulence, the instability is often associated with the concept of backscatter: energy transfer
from the small scales back to the large scales [67]. For example, [58] reported unstable results and
applied clipping to limit backscatter. Beck et al. [55] performed a projection of their neural-network
closure model onto an eddy viscosity basis to enforce stability, and Kurz et al. [66] performed
“stability training” by adding noise to the training data. This approach of adding noise is common
in the machine learning communities, see for example [29] and [68]. Rasp et al. [46] proposed
coupled online learning in which the (offline-trained) machine learning model is further corrected
by nudging with a high-fidelity model that is run in parallel. Pawar and San used data assimilation
techniques to correct the trained model in an online environment [69]. Yuval et al. [70] address
the stability issue by employing random forests, which automatically respect energy conservation.
Charalampopoulos et al. [71] used imitation learning to stabilize their results. Guan et al. [67]
showed that increasing the size of the training set can give stable results. Jakhar et al. [72] used
a sparsity-promoting linear regression technique to construct interpretable closed-form equations.
A more general example of using a-prior closures on dynamical systems was presented in [73]
where it was observed that such techniques did not reproduce extreme events from the original
system. Pedersen et al. [74] proposed to add a term into the a priori loss function that measures
the mismatch between the true reduced model state and a prediction by another neural network
(called an emulator). By using this emulator instead of the actual reduced model, it is possible to
include the solution error into the loss function without needing to resort to a posteriori learning.
Similar ideas (i.e., using high-fidelity data to inform parameterizations in low-order models) are
also observed in other multiscale modeling applications such as for the mechanical analysis of
materials [75, 76].
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In summary, the main advantages of the a priori approach are the relative ease of training (no
differentiable solvers needed) and the prospect of generalization and interpretability, i.e., the pos-
sibility to reuse the learned operator when geometry, boundary conditions, or even the differential
equation itself changes. However, the main disadvantage is that the solution of the reduced model
is not part of the error metric, so that instability and drift can lead to inaccurate solutions. We
note that in the reduced order modeling literature, conditions have been derived under which non-
intrusive models recover the same models that would be obtained with intrusive projection-based
model reduction [48]. Similar techniques might be useful to derive conditions under which the
learned operators in a-priori learning can be reused.

Loss function Gθ(v̄,µ) = 0
v̄

θ

A-posteriori learning

F (u,µ) = 0
u

µ Reduction

Optimizer
θ

A-priori learning

Loss function

Optimizer

F (u,µ) = 0
uµ Reduction

ūū

Figure 1. A priori vs. a posteriori learning. Training data u and ū are obtained
from solving the high-fidelity model F . In blue: simulation of the high-fidelity
model, from which the ground truth ū is derived. In yellow: training. In a
posteriori learning, the loss function (24) includes evaluating the gradients of the
reduced model, while in a priori learning, only the residual must be evaluated
(equation (22)).

3.2. Approach 2: A posteriori learning. An alternative approach that addresses some of the
issues of a priori learning is to minimize an error metric that involves querying the model being
learned itself to compute v̄. This amounts to solving the following minimization problem

(23) θ∗ = argmin
θ

Jpost
θ (v̄, ū),

where Jpost is a suitable objective function, and v̄ satisfies the reduced model equation (5). If the
reduced model equation is a PDE, then this is effectively a PDE-constrained optimization problem
or an optimal control formulation, as will be detailed in Section 6.2. Compared to a priori learning,
the difference lies in the arguments: ū and v̄, instead of u and ū in (19). This approach is called a
posteriori learning because it involves solving the reduced model equation—see Figure 1 (right).

The objective function Jpost again involves summation of a loss function over a set of training
data. In addition to the possibility of residual minimization (22), a posteriori learning offers a
second possibility, namely solution error minimization:

(24) Lpost
θ (v̄, ū) =

{
∥Gθ(v̄;µ)− F̄ (u;µ))∥2, residual minimization,

∥v̄θ − ū∥2, solution error minimization.

These two loss functions can be used individually, but can also be combined into a single loss
function with a weighting factor. An example of residual minimization is again the commutator
loss ∥mθ(v̄;µ)−C(u, ū;µ)∥2, but now with G depending on v̄, not ū as in (22). An example of

solution error minimization is the integral loss
∫ T

0
∥v̄θ(·, t)− ū(·, t)∥2dt, which is sometimes known

as “trajectory fitting” [77, 78, 79]. We note that pure dependence on ū, and not on u, as suggested
in (23) is not always feasible, and the residual minimization in (24) is an example of this.

Again, compared to a priori learning (19), Lpost in (24) is also a function of v̄ (which depends
on θ), whereas Lprio was only a function of the reference data u and ū, which do not depend on θ.
This makes the optimization problem more difficult to solve, and differentiable solvers are typically
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needed. For example, in order to compute ∂J
∂θ , the Jacobian ∂v̄

∂θ is needed—this requires that the
code that solves Gθ = 0 is differentiable, or that an adjoint solver is available. In addition to a
posteriori learning, the approach is known under various other names, such as “solver-in-the-loop”
[80], “curriculum training” [81], “indirect approach” [45], “end-to-end learning”, “differentiable
physics”, and “online learning” [7].

The a posteriori learning framework is not limited to either residual or solution error mini-
mization; one could also combine these two errors into a hybrid loss function, or use quantities
of interest like energy instead of the solution itself. For example, List & Thuerey [80] propose a
loss function composed of several terms, and Beck & Kurz [82] employ the energy spectrum in the
loss function. Such hybrid methods have the potential to bridge the common discrepancy between
functional and structural approaches (see, e.g., [83]).

With G in closure model form (9), the residual minimization of the a posteriori formulation (24)
resembles the a priori formulation (22). In contrast to a priori learning, the a posteriori approach
aims to learn the term mθ(v̄;µ) such that the solution v̄ obtained when solving the reduced model
(24) is close to the reference trajectory ū.

A posteriori learning is a relatively recent technique in the closure modeling field, and less
literature has appeared in comparison to a priori learning3. Early examples of a posteriori training
of neural networks in PDEs (mainly fluid dynamics) are the direct field-inversion approach of
Duraisamy and collaborators [85] (in the context of RANS), and the Deep learning PDE Model
(DPM) of Sirignano et al. [86] (in the context of LES), which solves the adjoint equations to
compute the gradients of the loss function (also known as “sensitivities”). In [45], the DPM is
extended to train on mean statistics instead of the solution field itself, and efforts are made to
interpret the learned neural network closure, as well as its dependence on discretization and the
grid. Similarly, [80] learns the sub-grid-scale stress tensor, but uses automatic differentiation to
obtain gradients and proposes to use a loss function that contains several terms, reflecting errors
in the solution, in the stress tensor, and in the energy spectrum. In [87], several reduced model
forms are considered, ranging from neural ODEs (ResNets) to models that learn a single parameter
(the Smagorinsky coefficient); this was extended in [88] where a neural network model is used as
additive correction to the learned Smagorinsky model. In [89], a posteriori learning is used to learn
the stress tensor in quasi-geostrophic turbulence, which is a particularly challenging application
because it exhibits a strong energy transfer from small to large scales.

An ongoing theme in a posteriori learning is how many time steps are “unrolled” in evaluating
and back-propagating the loss function. Unrolling too few time steps gives only limited gains over
a priori learning, while unrolling too many time steps is computationally expensive, has the danger
of exploding or vanishing gradients, and can be unrealistic given that turbulent flows are chaotic,
meaning that initially close trajectories are expected to diverge [77, 90, 91]. One strategy is to
unroll predictions for a small number of the time steps and then only back-propagate to the last
time step; this is called the pushforward method [92]. Recently, a similar a posteriori learning
approach has appeared in the ROM literature, in which similar challenges are faced [93, 94].

In summary, the main advantage of the a posteriori approach (with solution error minimization)
is that one directly targets the accurate approximation of ū, which is typically the quantity one is
interested in. This has been shown to improve stability compared to a priori learning. In addition,
if the form of G does not involve F , like in the evolution form (10), access to F is not required, and
only reduced solution trajectories ū are needed. The approach implicitly corrects for spatial and/or
temporal discretization errors, which can be desirable but can also limit application to different
grids or time steps (further discussed in Section 5). The main disadvantage of the a posteriori
approach is its computational expense, and depending on the precise form of the reduced model, it
requires differentiable solvers (typically using adjoints or automatic differentiation) and a judicious
choice of the number of unrolled time steps in the loss function.

3.3. Approach 3: Reconstruction. A third approach, which can be used in both a priori or a
posteriori fashion, is the reconstruction of the full solution field u (given the reduced field ū) and
then applying the original model F . So, instead of trying to minimize the error in the reduced

3note that in PDE-constrained optimization this approach has been in use for much longer [84]
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solution (as given by (24)), the goal is to minimize the error in the reconstructed solution:

(25) θ∗ = argmin
θ

J r
θ(ū,u)

where the loss function typically involves a solution error

(26) J r
θ(ū,u) = ∥Rθ(ū)− u∥2,

or a residual error, e.g.,

(27) J r
θ(ū,u) = ∥F̄ (Rθ(ū))− F̄ (u)∥ = ∥∂ū

∂t
+ f̄(Rθ(ū))∥2,

and the goal is to find the parameters of the reconstruction operator Rθ. Once θ is determined,
one solves

(28) F̄ (Rθ(v̄);µ) = 0.

We call this approach reconstruction, although the term deconvolution is also commonly used [44,
95]. The main challenge is obviously to determine R, which is an inverse problem that is generally
ill-posed. In addition, the reconstruction operator is a non-local operator [96]. Classically, the
reconstruction operator has been determined using approaches like the iterative van Cittert method
[17]. Recently, machine learning alternatives have been proposed, in whichR is modeled by a neural
network [97, 98, 99, 100, 101]. Neural networks are promising because identifying the reconstruction
operator is an ill-posed problem that can benefit from data-driven approaches. These methods can
be considered an improvement over approximate deconvolution techniques because they do not
need the assumption of an invertible filter, but open challenges include how such data-driven
methods can generalize across physical regimes, numerical schemes, and discretizations.

With objective function (25), reconstruction is a special case of a priori learning. By replacing
ū with v̄ in (25) and (26), the approach can also be formulated in terms of a posteriori learning,
but this is not common in literature [97, 98, 99, 100]. Compared to formulation (23), there is less
guarantee that the solution v̄ will be close to ū. Additionally, the use of a posteriori reconstruction
operator learning is limiting because of dramatic increases in memory requirements to reconstruct
the full flow-field as an indirect route to computing subgrid stresses. We note that the objective
functions (26) and (27) are similar to those used when training autoencoders [102].

3.4. From offline to online learning. The a priori and a posteriori learning approaches from
Sections 3.1 and 3.2 are generally used in an offline setting, where the term “offline” is used here to
indicate that the high-fidelity model is not required in the learning phase. Once training data has
been generated by running the high-fidelity model at different parameter values, the high-fidelity
model is not needed anymore, and the reduced model can be learned (in a priori or a posteriori
fashion). In contrast, recent research is being directed at online learning, in which one includes
the high-fidelity model in the learning phase. For example, Rasp et al. [46] propose to run the
high-fidelity model in parallel with the training process so that it can nudge the reduced model
into the right direction and prevent instabilities. Eventually, the idea is that the trained model
becomes accurate and stable enough so that it can be run without this coupling. Another example
is the dynamic deep learning closure method [103], in which high-fidelity simulations are run in
parallel with the reduced model, but only on a small part of the simulation domain. The closure
model parameters are dynamically adjusted based on the difference between the high-fidelity model
and reduced model on this subdomain, and then used throughout the entire domain. With this
approach, no DNS training data needs to be stored, and there is no issue with extrapolation in
time or in parameters because the data used for learning the closure model is fit for a purpose.

We note that the concept of online learning is closely related to the setting in which reduced
model parameters (and state) are continuously updated through (observation) data that arrives
sequentially in time—we refer to this as data assimilation (see Section 6.3). An example is a
neural network-based closure model that is enhanced by using data assimilation techniques [69].
In addition, another related concept is that of active learning [104, 105], which is typically used to
indicate that the samples of the high-fidelity model are iteratively chosen, based for example on
the accuracy of the reduced model—see [106, 107].
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3.5. Reinforcement learning. The objective functions in Sections 3.1-3.3 fit within the frame-
work of supervised learning: the high-fidelity model provides labeled data, and the purpose of the
reduced model is to reproduce this accurately. Some limitations of the supervised approach are the
need for generating training data (expensive), the issue of defining the reduction operator and re-
duced training data (the reduction operator is, in practice, often implied by the discretization and
therefore not fully known—see Section 5), and the issue of stability, robustness, and the possible
need for differentiable programs (see Section 3.1). Reinforcement learning promises to circumvent
such issues [108, 109, 60, 110, 111]: it trains an agent while it is interacting with a dynamical
environment. This agent is typically a neural network and the environment is the reduced model,
and the agent acts to determine a policy (e.g., the Smagorinsky coefficient, see 2.4) such that a
certain reward (objective function) is optimized. For recent review papers, see [112, 16]. Some
listed advantages of the approach are that only statistics and no high-fidelity data are required, it
does not employ adjoints or differentiable solvers (but approximates gradients of the cost function
through sampling), and it works directly in the fully discrete reduced model to account for both
the closure model error as well as for discretization errors [109]. Compared to earlier sections, re-
inforcement learning shares most similarity with a posteriori learning. However, one should realize
that with a posteriori learning, training based on statistics is also possible, as well as accounting
for the discretization error, and gradients can be computed more accurately.

4. Physics-constrained learning

The reduced model forms for G discussed in Section 2 differed in the degree to which “known
physics” was included. Depending on the application, it is often possible to further inject physics
knowledge into the form of G or in the objective function. In general, the ability to respect
physical laws such as conservation and invariance are of key importance for the broad-spectrum
utilization of machine learning models for computational physics applications. The development
of data-driven models that adhere to such laws leads to improved interpretability and explainabil-
ity, generalization and robustness, and data efficiency [28, 113]. Therefore, there is a concerted
effort to develop algorithms that have constraints embedded in them to avoid violating physical
laws. Constraints can be embedded in such data-driven models in a “soft” manner where data
augmentations or weak penalties in loss functions are used to approximately satisfy constraints.
A popular example of such a model is a PINN, mentioned in Section 2, that penalizes deviations
from governing laws as a residual term in the model optimization [28, 27, 24]. These models are
typically easier to construct and can be readily applied to existing workflows. In contrast, “hard”
constraints require the construction of machine learning models that can satisfy constraints by
design. While these algorithms require greater turnaround time for construction, training, and
deployment, they can guarantee constraint satisfaction during interpolation as well as extrapola-
tion. Examples of model development that constrain a data-driven model by design to permitted
behavior include symmetry preservation in graph neural networks (such as for molecular dynamics
[62] and rotationally invariant flows [114]). Figure 2 shows an example of imposing mass con-
servation for a 2D incompressible flow as a soft constraint (in a PINN-like fashion), compared to
hard constraint (through the definition of streamfunction). Although the hard constraint approach
satisfies the divergence-free condition by construction (both during training and deployment), the
prediction of the streamfunction is a non-trivial task by itself. In the following sections, we explore
certain examples of soft and hard constraint-based machine learning with applications to closure
modeling.

4.1. Soft constraints. The easy application of soft constraints to machine learning models makes
their use attractive for several turbulence closure modeling strategies. In the scientific machine
learning community, PINNs [24] are probably the most popular approach for training neural net-
works using soft constraints, originally introduced by Lagaris et al. [115]. These constraints are
typically in the form of loss-function regularizations that comprise governing laws. Eivazi et al.,
[116], proposed the use of PINNs for solving the Reynolds-averaged Navier-Stokes equations. In
this study, the authors were able to bypass the use of specific model forms for the Reynolds stresses
by simply using a governing equation residual loss. A similar study is seen in [117], where sparse
experimental data is also assimilated in the process of training a PINN. Ref. [118] introduces a
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Mass conservation as a soft constraint

∂u
∂x

+ ∂v
∂y

= 0L = ∥ ∂u
∂x

+ ∂v
∂y

∥2

Mass conservation as a hard constraint

Figure 2. An example of imposing mass conservation for a 2D incompressible
flow as a soft constraint (left) and hard constraint (right). For the hard constraint,
the streamfunction ψ is learned instead of the velocity field; the velocity field
follows as u = ∇× ψ, which by construction satisfies ∇ · u = 0.

two-model formulation where PINN models are trained for low- and high-wavenumber informa-
tion to obtain more accurate predictions for two-dimensional turbulence. It was observed that a
dedicated architecture for high-wavenumber information aided in generalization, circumventing the
spectral bias problem [119]. In [61], a hybrid formulation is used where a closure is constructed with
enstrophy conservation enforced by a loss-term regularization and where rotational equivariance
is preserved by a group-equivariant convolutional neural network. The formulation is applied to
construct a closure for a two-dimensional turbulent flow. In [120], a loss-function augmentation is
used to restrict the evolution of a machine learning closed system to a low-dimensional phase space
to avoid a posteriori errors. This augmentation improved the quality of an a priori trained closure
without increased propagating error during a posteriori deployment. Finally, another approach to
satisfying a class of constraints weakly is through the use of data augmentation. Here, augmen-
tations to training datasets can be performed to implicitly inform the learning algorithm about
invariances or equivariances in the function approximation. For example in [121], data augmenta-
tion with Lie symmetries not only leads to the improved satisfaction of the same but also improves
sample complexity. Similar operations were also deployed in [122] for generating synthetic turbu-
lence snapshots. In [123], a similar data augmentation was performed for learning subgrid stress
tensors in two-dimensional turbulence with improved results compared to the standard dataset.

4.2. Hard constraints. Hard constraints are typically application specific, and we focus on tur-
bulence closure modeling. It is well known that subgrid stress tensors in LES, or Reynolds stress
tensors in RANS, obey certain laws such as aggregate dissipative behavior, symmetry, invariance,
etc. [124, 125]. Therefore, it is desirable to construct data-driven prediction techniques for these
quantities that adhere to these constraints during inference. The simplest efforts to constrain
predictions from data-driven closures have involved ad-hoc truncations that preserve numerical
stability in deployments. These typically occur via clipping to ensure guaranteed dissipation of the
subgrid stress [59, 55]. Other efforts include constrained predictions via projection of data-driven
predictions onto the so-called realizability triangle [126]. Another popular approach for construct-
ing data-driven approximations of such tensors are via tensor-basis neural networks (TBNNs)
[50, 51, 126, 127], which guarantee a Reynolds stress prediction as a linear expansion of strain and
rotation tensors following Pope’s generalized eddy viscosity hypothesis [128]. The stress tensor τ
- denoted by m̂θ(ū;µ) in (16) - is expressed as

(29) τ =

10∑
i=0

αiTi,

where the coefficients αi are functions of a set of scalar invariants λ1, . . . , λ5, which in turn depend
on the strain-rate tensor S and the rotation tensor R := 1

2 (∇u − (∇u)T ), and T is the tensor

integrity basis, also a function of S and R. For example, λ1 = tr(S2) and T1 = S. The functions
αi = fi(λ1, . . . , λ5;θ) are modelled as neural networks with parameters θ. In the large eddy
simulation context, similar symmetries may also be leveraged for constrained predictions from
neural network models [125, 129, 124, 130]. The important message is, that by choosing the form
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(29), one has directly encoded the Galilean, rotational, and reflectional invariances of the stress
tensor, independent of the neural network architecture or its parameters.

In several applications, property preservation can be posed as linear constraints. In such cases,
neural network architectures that guarantee satisfaction of these constraints have also been pro-
posed [131, 132]. These include the solution of an additional system of equations to project the
output of the neural network to a subspace that satisfies these equations. However, it must be
noted that this involves the inversion of a matrix that grows with the size of the output for each
forward pass of the neural network. Another approach pioneered in [39] introduces an additional
set of latent variables and specifies an explicit form of the closure (a combination of skew-symmetric
and dissipative terms) to guarantee energy conservation and stability of the closure; see also [71]
for related work. In reduced-order models, similar ideas have been used [133, 3, 134].

Finally, a popular approach to building closure models in data-limited scenarios is through
field inversion and machine learning [135], which allows for the PDE-constrained optimization
of defects in turbulence models using experimental or sparse sampling data. If the defects to
turbulence models are appropriately defined, constraints can be satisfied by design both during
the optimization as well as the deployment procedure [136]. A similar procedure may also be
followed via reinforcement learning for closure modeling [111, 108, 137] (see also Section 3.5),
which offers the advantage of sparse data requirements, although computational costs associated
with learning are significant in the absence of gradient information. We would like to emphasize
that hard and soft constraints are not mutually exclusive and that data-driven modeling approaches
can blend both concepts for balancing accuracy, constraint satisfaction, and ease of learning and
deployment. For example, in [138], hard constraints are used for tensor symmetries using TBNNs
and soft constraints are imposed for the smoothness of heat fluxes.

In the more general context of symmetry preservation for fluid flow forecasting, several novel
neural network algorithms have been proposed that can be repurposed for closure modeling. Wang
et al. [139] incorporate translational, scaling, and rotational equivariance of the Navier-Stokes
equations in the neural network design. In [140, 141], novel convolutional neural network architec-
tures that preserve frame invariance are used for fluid-flow predictions. Specifically, Pawar et al.
[141] use a novel architecture for improved subgrid stress modeling of two-dimensional large eddy
simulation. Guan et al. [61] used group convolutional neural networks and demonstrated that the
preservation of symmetries alleviated the need for much larger datasets.

Another approach to preserving desirable properties during regression tasks is via the use of non-
parametric methods like random forests. In [70], a random-forest regressor is used for predicting
subgrid stresses for climate models, with guaranteed satisfaction of symmetry preservation. This
is because random-forest predictions are obtained by averaging splits of data that come from the
convex hull of the training data set. As long as the generated training data sets guarantee a partic-
ular symmetry or structure, the prediction of the dependent variable will also satisfy this property
by design. Note that for complicated properties that emerge from complex interactions between
machine learning predictions and the numerical solver, such an approach may be incomplete.

5. Discretization aspects

The discussion in Sections 2 - 4 was mostly agnostic of the spatial and temporal discretization
methods needed to solve the true model (1) and approximate model (5). Spatial and temporal
discretizations give rise to additional levels of approximation, and we indicate by Fh the (fully
discrete) high-fidelity model, which satisfies

(30) Fh(u
n
h;µ) = 0,

where un
h ≈ u(x, tn). Similarly, Gh,θ denotes the (fully discrete) low-fidelity model, which satisfies

(31) Gh,θ(v̄
n
h ;µ) = 0,

and v̄n
h ≈ v̄(x, tn).

5.1. Spatial discretization and neural ODEs. In practice, the low-fidelity model is often con-
structed based on a high-fidelity model that is only spatially discretized, leaving time continuous.
An important example is when the high-fidelity model is in the form of equation (10), leading to

(32) Gh,θ(v̄h;µ) =
dv̄h

dt
+ fh(v̄h;µ) +mh,θ(v̄h;µ).
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In this case, the spatial discretization fh of the high-fidelity model can be reused but on a coarser
grid, and existing high-fidelity codes can simply be extended by adding a closure term. Instead of
a coarser grid, a low-order method can also be used, like in [142]. Furthermore, this notation also
covers the case where v̄h is being represented by the coefficients of an ROM, see, e.g., [143, 3].

In scientific machine learning, the common choice is to represent mh,θ by a neural network,
resulting in so-called neural (closure) ODE results [143, 77, 144, 145] (the concept has been denoted
as the Universal Differential Equation in [146]). Casting the closure problem as a neural ODE has
the benefit that one can formulate the neural network training as an optimal control problem, which
can be solved for example by using adjoint methods, as proposed in [144], and the parameters of the
network can be interpreted as the control variables. One difference is that in the classical optimal
control setting [147, 148] the control variables are time-dependent, whereas the neural network
parameters in [144] are time-independent. These are important differences, some of which are
addressed in [149]. A recent approach in which the closure model parameters change dynamically
over time is given in [103].

Using neural networks for closure modeling of form (32) is advantageous because time is contin-
uous, so the neural networks are expected to also work when different time integrators or different
time steps are used. However, the fact that one is dealing with a spatially discretized system
means that the neural network is linked to the particular discretization method and grid that were
present in the training data, and will not easily generalize to different grids or different discretiza-
tion methods. On the other hand, an advantage of learning discretized operators is that they can
correct for discretization errors [86].

As mentioned, the time-continuous nature of neural ODEs allows one to formulate the adjoint
equations associated with the optimization problem (24), see, e.g., [144], which can be solved
backward in time to yield the sensitivities (∂L∂θ ). Alternatively, one could formulate the time-
discrete equations and then determine sensitivities by backpropagating through the entire ODE
solver. Optimize-then-discretize or discretize-then-optimize is a topic that has been discussed in
the optimization literature—see textbooks like [84, 150]. Figure 3 shows a pictorial example of
both paradigms. Recent research suggests that there are some important benefits to discretize-
then-optimize [151, 77], like obtaining the exact gradient (of the time-approximate solution) instead
of the approximate gradient that is returned by adjoint methods.

Optimize-then-discretize (in time)

dv̄h
dt

+ fh(v̄h;µ)

v̄h(t)

dv̄h
dt

+ fh(v̄h;µ)

Gh,θ(v̄
n
h ;µ)

Discretize (in time)-then-optimize

mh,θ(v̄h;µ) me
h,θ(v̄h;µ)

v̄h(t)

Figure 3. Optimize-then-discretize vs. discretize-then-optimize approaches. In
orange: the optimization of a neural network to learn a time-continuous clo-
sure (left) or a time-discrete correction (right). In blue: the time integra-
tion/discretization step.

5.2. Temporal discretization and autoregressive methods. An example of a “discretize-
then-optimize” formulation is

(33) v̄n+1
h − v̄n

h +∆t
(
fh(v̄

n
h ;µ) +me

h,θ(v̄
n
h ;µ)

)
= 0,

which corresponds to (31) when the discretized evolution form is taken for Gh,θ. Although there
are several advantages of discrete methods (exact gradients, correction for discretization errors),
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one important disadvantage is that the closure model is not only linked to the spatial discretization
but also to the time step used during training.

Beyond the closure forms (9) and (11), fully discrete approaches are quite commonly used in
reduced models of the evolution form (12), in particular so-called autoregressive methods. Although
these fall strictly speaking beyond the concept of closure modeling, they deserve to be mentioned
given their recent success in weather prediction [30, 31] and in general in their use in predicting
chaotic dynamical systems [152, 41]. The main idea is to generalize the discrete version of (12),
e.g., v̄n+1

h = v̄n
h −∆tme(v̄n

h ;µ), to the form

(34) v̄n+1
h = Nθ(v̄

n
h , v̄

n−1
h , v̄n−2

h , . . . ;µ).

In other words, one learns an operator Nθ that uses past solution states to perform time stepping.
Even though the closure form (33) intuitively seems easier to learn because it involves only a
“correction” to the known physics, its mathematical form is less expressive, and it has been observed
that this limits the model performance [153]. In fact, (34) has a non-Markovian form, allowing it to
incorporate history, which has its foundations in the Mori-Zwanzig theory, as will be discussed in
Section 7. The loss function typically involves the error in the solution, like in Section 3.2, so this
is a type of a posteriori learning. Given that multiple past states are included, the computation
of the derivatives of the loss function through back-propagation will be more involved than for a
Markovian approach like (33). In addition, one would expect again that the learned operator is only
accurate for particular time steps. However, the impressive performance of weather predictions
[30, 31, 154] indicates that this is perhaps less of a concern for practical problems. An example
of an autoregressive method for LES is given in [155], where an FNO is employed. Autoregressive
methods have also been used in message-passing PDE solvers [156].

Another example where form (34) is employed, is in ‘model-free’ machine learning for forecasting
of chaotic systems [157, 152, 41]. In that case, v̄h typically consists of an internal hidden memory
state and an observable, which are evolved in time with a recurrent neural network [41]. The
foundation behind this approach lies in Takens’ theorem [158], which states that a dynamical
system can be identified from partial observations of the state, as long as sufficient history (delays)
of these partial observations is available. This is reminiscent of the Mori-Zwanzig formalism,
which offers a framework to reduce the dimension a dynamical system by including history effects.
However, Takens’ theorem instead aims at reconstructing the full state based on time-delayed
observations.

5.3. Learned discretizations. An approach that is related to the two previous sections entails
directly learning a (coarse) discretization scheme that implicitly includes the effect of the closure
term, such as the “learned interpolation” method [159]. So, instead of employing the spatial
discretization of the high-fidelity model on a coarse mesh and adding a correction term to it, cf. (32),
one learns a discretization scheme (an improved interpolation method based on neural networks)
for a coarse grid that effectively takes into account unresolved physics. This approach is rather
intrusive because it requires one to change an existing code at the level of the discretization, but
comes with the advantage that the learned interpolation (effective discretization stencil) is in some
sense interpretable. Interestingly, the implicit LES formulation [160] (which was developed long
before machine learning came into play) also falls within this category—it does not feature a closure
model, but relies on the fact that the discretization typically introduces additional dissipation
compared to the true physics, which mimics the additional dissipation that is usually provided by
the closure model.

A less intrusive approach is the “learned correction” approach [161, 153, 162], which is simpler
to implement and more flexible. After performing a time step with the coarse grid operator, the
solution is corrected with a learned term. This approach is in fact similar to the fully discrete
formulation (33) when the term ∆tme

h,θ is identified as a “learned correction”. In [29], a similar
approach is taken, but the known physics part expressed by fh is not included, so the neural
network has to learn the entire effect of both known physics and correction.

It should be noted that in many practical LES models, the filtering operation (3) is not explicitly
defined, but implied by the discretization [111]. The alternative, namely explicit filtering, has
the important advantage that it converges to the “true filtered” equations upon grid refinement
[163, 164]. However, because this is generally considered to be computationally too expensive, the
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implied filter approach is often preferred. The disadvantage, however, is that it is difficult to define
filtered reference data (needed to train neural networks) because the filter is not explicitly known.

5.4. Discretization invariance. All approaches that are spatially or temporally discrete suffer
to some extent from the issue that generalization to different grids, time steps, and discretiza-
tion methods is difficult. Neural operators like DeepONet and FNO are an important step in
the direction of methods that are grid-independent because they are mappings between (infinite-
dimensional) function spaces [33, 165, 32, 166]. In practice, training data for such operators still
involves discrete input and output data. Recently, a class of neural operators has been proposed
in which the discrete input-output representation and their continuous function space realizations
are equivalent [167].

6. Connections to inverse problems, PDE-constrained optimization, and
statistical methods

6.1. Inverse problem specification. The minimization problems (19), (23) and (25) from Sec-
tion 3 can be interpreted as inverse problems. They are similar in that some output quantity is
known based on the high-fidelity simulation (e.g., the exact reduced solution or the exact reduced
operator), and one can try to find a model that best approximates that output. The inverse-
problem nature implies that a unique solution typically does not exist and that solutions can be
sensitive to perturbations.

For example, the a posteriori learning problem can be formulated in terms of an inverse problem,
which typically features two components: a forward model,

(35) Gθ(v̄;µ) = 0,

and an observation equation,

(36) y = hθ(v̄) + ε,

where y denotes the observations and h denotes the observation operator. In inverse problem
terms, the art is to find the parameters θ given the observations and the forward model. In the
closure model framework outlined in Sections 2 and 3, the observations come from high-fidelity
simulations and the observation operator extracts the corresponding data from the reduced model.
For example:

observations of the state: y = ū, hθ(v̄) = v̄,(37)

observations of the closure term: y = C(u, ū;µ), hθ(v̄) = mθ(v̄;µ).(38)

The a priori learning problem has a similar form, with the important difference that the observation
equation (36) changes to y = hθ(ū)+ε, which can be solved independently from the forward model
(35) (see Figure 1).

The formulation above can aid in employing concepts from the inverse problem community, like
regularization, that address the ill-posedness of the learning problem [168, 169, 170]. For example,
a regularized inverse problem could read

(39) min
θ

∥y − hθ(v̄)∥2 + αT (θ),

with a regularization function T , e.g., T = ∥θ∥2, and a hyperparameter α. In addition, the
connection between machine learning in general and inverse problems has been the focus of many
efforts. For instance, derivative-free optimization of neural network parameters (i.e., without back-
propagation) has been achieved by means of a modified ensemble Kalman filter [171] and ensemble
Kalman inversion [172]. This can potentially mitigate the need for differentiable solvers in a
posterior learning. Data-driven parameterization studies (in the context of weather and climate
predictions) have benefited from the ensemble Kalman inversion (EKI) approach. Lopez-Gomez
et al. [173] posed the learning of SGS turbulence and convection as a regularized inverse problem
and used EKI and unscented Kalman inversion to solve it. In [174], EKI is used to re-train two
layers of a previously offline-trained neural network model for gravity wave forcing.
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6.2. PDE-constrained optimization. Because the minimization formulation of the inverse prob-
lem, equation (39), is constrained to the (generally) nonlinear forward model dynamics—which is
typically a PDE—it is a PDE-constrained optimization problem [84, 150]. This viewpoint, and
the realization that the dimension of the parameter space is typically very large, naturally leads
to the consideration of adjoint methods that compute the gradient ∂Jθ

∂θ of the objective function

Jθ = ∥y − hθ(v̄)∥2. Formulating the adjoint equations, discretizing them, and solving the opti-
mization problem is the DPM approach taken in [103], for example. Alternatively, one can first
discretize the PDE and use back-propagation (reverse-mode automatic differentiation) through the
entire PDE solver to get gradients of the cost function with respect to the parameters [80, 77] (see
Section 3.2).

6.3. Data assimilation. Another useful perspective is to view the closure problem from the angle
of data assimilation [175, 3]. In variational data assimilation, the formulation is similar to equations
(35) and (36) (but formulated for the discrete (finite-dimensional) system), with several main
differences: observations are not high-fidelity simulations but actual measurements; the parameters
are not neural network parameters but initial conditions; and the optimization problem is split
into sequential steps, corresponding to temporal windows for which the measurement data are
becoming available.

The data assimilation perspective is useful because it provides a natural approach to extend
the learning of closure models by high-fidelity data to include (streaming) measurement data. The
parameters of closure models can be seen as time-dependent quantities that are changing while
high-fidelity or measurement data arrives, in line with the online learning approaches of [46] and
[69], and the reinforcement learning approach explained in 3.5. The data assimilation perspective
and PDE-constrained optimization formulation naturally connect to the concept of optimal control.
In optimal control, one seeks (time-dependent) parameters that minimize an objective function,
subject to given dynamics.

6.4. Statistical approaches. The approaches in Sections 6.1, 6.2, and 6.3 are variational in
the sense that a minimization problem is solved. They provide a single-point estimate of the
closure term. This is the most common approach in the closure modeling community. A logical
alternative is to consider statistical approaches like Bayesian methods, which can naturally include
prior knowledge of the parameters. Bayesian methods treat the parameters of interest as random
variables and provide a full probabilistic description of the knowledge about the learned parameters.
Such methods have the advantage that they naturally come with an expression for the uncertainty
in the parameters. However, their computational expense (typically due to sampling the posterior)
is high. In the data assimilation community, the use of statistical methods instead of variational
methods is in fact also common [175]. Before the rise of scientific machine learning methods,
Bayesian methods have been applied to learn parameters of closure models, in particular of RANS
model coefficients [176, 52].

In the context of scientific machine learning, the parameters of interest in the Bayesian frame-
work can be either the neural network weights θ, as in Bayesian neural networks [177, 178], or the
model output itself (e.g., the closure term mθ). In [179], a Bayesian inference framework is devel-
oped to learn the distribution of neural network weights, with application to SGS parameterization
in the Lorenz 96 model. The statistics of the predicted parameterizations can be approximated by
sampling from the posterior distribution of the network parameters. A simpler way to estimate
the uncertainty in the model’s prediction is through deep ensemble methods [180], where an en-
semble is formed by training the same model multiple times with different initializations. Such
an approach was employed in [141, 181] to model the uncertainty in the learned closure model in
LES and ROM contexts. Alternatively, the ensemble can be created by varying the model choices
(e.g., neural network architectures), training data, the optimization algorithm, dropouts, etc. In
addition, machine learning models can be trained to directly predict statistical measures of the
closure terms (e.g., mean and variance). Then, the loss function may be written in terms of the
log-likelihood of the corresponding distribution. The combination of data assimilation and machine
learning in a Bayesian setting has been explored in the more general context of learning dynamics
[182]. In the closure modeling context, this has only being explored recently [183].
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7. Non-locality and the Mori-Zwanzig viewpoint

In general, because closure assumes that certain degrees of freedom will not be represented
explicitly (either due to necessity or efficiency), its representation can lead to non-local effects for
the large-scale or resolved degrees of freedom. As an example, in the case of closure for a time-
dependent problem due to a coarse spatial resolution, one may need to use neighboring (or even
further apart) spatio-temporal information about a resolved point when constructing its closure.
We review temporal and spatial non-local closures separately, while keeping in mind that they can
also appear simultaneously.

7.1. Non-locality in time. The Mori–Zwanzig (MZ) formalism is a general framework for treat-
ing temporal non-locality. It originated in non-equilibrium statistical mechanics as a way to con-
struct transport equations [184] and was later reformulated as a model reduction (closure) approach
[185, 186, 187] for systems of ordinary differential equations. It is based on the idea that instead
of constructing a reduced model directly at the level of the ordinary differential equations (which
are usually nonlinear and thus not easily amenable to projection approaches), one can construct a
linear PDE for each resolved degree of freedom.

For the sake of concreteness, let us assume like in Section 5.1 that we have performed only
spatial discretization for a time-dependent PDE and that we have obtained a system of ODEs

(40)
duh

dt
= rh(uh;µ),

where uh ≈ u(x, t) is the vector denoting the spatially discretized solution using resolution h,
resulting in M degrees of freedom. Also, let u0

h ≈ u(x, 0) be the vector denoting the discretization
of the initial condition. To avoid confusion for the reader, we note that due to the usual convention
of presentation of the MZ formalism, the dynamics of the high-fidelity model are written as in (40)

instead of the residual form duh

dt + fh(uh;µ) = 0, which we have used so far in the text. Thus,
rh(uh;µ) = −fh(uh;µ).

According to the MZ formalism, the M -dimensional system of ODEs (40) can be transformed
into a system of M linear PDEs, one for each spatial-discretization point [184]. Using semigroup
notation, the linear PDEs are given by

(41)
∂

∂t
etLu0

hk = LetLu0
hk for k = 1, . . . ,M,

where

(42) L =
∑
j∈M

rhj(u
0
h)

∂

∂u0
hj

is called the Liouville operator and etLu0
hk = uhk(t).

Suppose that the vector of initial conditions can be divided as u0
h = (ū0

h, ũ
0
h), where ū0

h is
the vector of the resolved (typically large-scale) variables and ũ0

h is the vector of the unresolved
(typically small-scale) variables. Let P be an orthogonal projection on the space of functions of
ū0
h and Q = I − P .
Equation (41) can be rewritten as

(43)
∂

∂t
etLu0

hk = etLPLu0
hk + etQLQLu0

hk +

∫ t

0

e(t−s)LPLesQLQLu0
hkds,

where we have used Dyson’s formula

(44) etL = etQL +

∫ t

0

e(t−s)LPLesQLds.

Equation (43) is the MZ identity. It decomposes the right-hand-side of the PDE system (41) into
three terms: (1) a term involving only the values of the resolved degrees of freedom at the current
time (usually called the “Markovian” term), (2) a term that evolves in the space orthogonal to the
resolved degrees of freedom (usually called the “noise” term), and (3) a term that accounts for the
history of the interaction between resolved and unresolved degrees of freedom (usually called the
“memory” term). The MZ formalism is based on an exact reformulation of the original system and
though almost never used in its full generality, it is a good starting point for approximations based
on mathematical, physical, and numerical considerations. Specifically, it is able to address cases
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with very short, moderate, or very long memories. A detailed presentation of the MZ formalism
and its relation to other formalisms developed for specific memory types can be found in [188].
Also, we must note that while we have presented the MZ formalism for the case of a system of
ODEs, the formalism has also been developed for systems of stochastic differential equations—see,
e.g., [189, 190, 191].

The MZ formalism, through various approximations, has been used to obtain reduced order
models and closures for a host of systems (see, e.g., [192, 193, 194, 195, 196, 197, 198, 199, 200]).
However, except for special cases, it is difficult to guarantee the stability of reduced order models.
A renormalized version of the MZ formalism has been introduced (inspired by renormalization
methods in physics), which has allowed the stabilization of such models [201, 202, 203, 204].

Finally, in recent years, data-driven approaches to MZ have also emerged. These approaches
use neural networks to develop frameworks that are inspired or can be mapped to MZ [205, 206,
207, 208, 209, 210, 211, 62, 212]. Also, there exist approaches that represent one or more parts
of the MZ formalism (i.e., Markovian term, memory, and/or noise). These range from the use of
effective machine-learned potentials [213, 214], to neural network representation of the memory
[215, 216, 217, 218, 219, 143, 220], to statistical-informed neural networks in order to simulate the
noise [221]. The success of the approaches highlights the need for significant amounts of training
data, the right choice of neural network architecture for the calculation of the various MZ terms,
as well as the expected issue of guaranteeing stability for the effective equations for the resolved
degrees of freedom.

7.2. Non-locality in space. Non-locality in space has been used to model phenomena that are
not amenable to modeling, e.g., with integer-order derivatives. Non-locality in space aims to
accommodate two types of issues: (1) rough solutions that may not be differentiable, and (2)
long-range spatial correlations at the scale where we represent a phenomenon. There are two main
approaches to account for non-locality in space—(1) the use of integral terms (of convolutional
type), e.g., like in peridynamics, and (2) the use of fractional order derivatives (see e.g. [222, 223,
224, 225, 226].

The use of closure exhibiting non-local spatial features is a topic of active research and includes
traditional (see e.g., [227, 228, 229] and machine-learning approaches. The machine-learning ap-
proaches range from techniques to estimate the various exponents appearing in the relations repre-
senting the non-local terms [230, 231], to using neural networks to represent the kernels appearing
in the non-local expressions [232, 233, 234], to the use of neural networks to represent the whole
non-local term [235, 71, 236, 67, 237, 238]. The approaches again highlight the need for accurate
training data, the right choice of neural network architecture, and the careful coupling with the
rest of the dynamics present in the model.

8. Multi-fidelity and multiscale viewpoints

8.1. Multi-fidelity. The process of closure modeling and surrogate modeling almost always in-
volves collecting curated datasets of input-output responses, either through high-fidelity simula-
tions or through experiments (one exception is PINN [24]). However, in practice, the incurred costs
of data collection can restrict the quantity and quality of simulations or experiments. Building
a model solely from a small high-fidelity dataset or a large low-fidelity dataset is not generally
adequate. Multi-fidelity modeling approaches aim to close this gap by leveraging both low- and
high-fidelity components to achieve levels of accuracy and efficiency that are not attainable other-
wise. The term “component” here refers to the fact that different fidelities might appear in terms
of collected data, model assumptions, physical complexity, numerical schemes, etc. For example,
Howard et al. [239] showed that a multi-fidelity DeepONet can be trained by combining low-fidelity
data with knowledge of physics (in terms of the governing PDE) as the high-fidelity portion.

Although the current review focuses on approaches that improve the estimation of the reduced
quantity ū (through closure modeling), we note that the vast majority of literature on multi-fidelity
modeling is instead focused on directly estimating the quantity of interest u. In other words, the
low-fidelity model provides ulow and the high-fidelity model gives uhigh, representing the low- and
high-fidelity approximations of the same quantity u. Then, frameworks are built such that the
majority of computations are delegated to low-fidelity models whose outputs can be corrected using
a small number of high-fidelity runs. Multi-fidelity modeling approaches have been particularly
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beneficial for outer-loop applications (e.g., uncertainty quantification and design optimization)—
for a survey of such methods, see [240]. Different studies have considered different variants for the
low-fidelity model and how it is embedded in the process of learning high-fidelity outputs. For
example, Conti et al. [241] developed a long short-term memory (LSTM) framework to combine
abundant low-fidelity data and limited high-fidelity data, where the low-fidelity data are generated
from either a pretrained ML model or using coarser spatial/temporal discretizations. The quantity
of interest in the multi-fidelity setting was, however, a low-dimensional vector (e.g., the drag and
lift coefficients), which was also the theme in the majority of multi-fidelity surrogate modeling
literature [242, 243]. Recently, convolutional neural networks (CNNs) and graph neural networks
(GNNs) have alleviated this limitation and allowed for dealing with flow field inputs/outputs
efficiently [244, 245, 246].

In [247], the full field prediction problem is addressed by projecting the low-fidelity solu-
tion onto a common subspace spanned by the leading proper orthogonal decomposition (POD)

modes in the form of ulow(x, t) =
∑N

i=1 alow,i(t)ϕi(x). The low-fidelity POD coefficients are then
passed through LSTM to learn their high-fidelity counterparts, giving a high-fidelity approximation

uhigh(x, t) =
∑N

i=1 ahigh,i(t)ϕi(x). Because POD-based approximations of u can be erroneous
(even with best-fit coefficients), Demo et al. [248] proposed a multi-fidelity modeling approach
to learn the projection (truncation) error in POD reconstruction of steady-state flow problems.
The leading POD coefficients are computed either using interpolation from pre-collected data or
through sensor measurements. Then, a DeepONet is used to estimate the difference between the
true field u and its reduced version ū. Geneva and Zabaras [249] proposed a multi-fidelity genera-
tive model that produces high-fidelity realizations of turbulent flows by conditioning an invertible
neural network on the corresponding low-fidelity predictions.

Particularly relevant to the scope of this review is the closure learning methodology in [91], where
Gθ(v̄;µ) = F (v̄;µ) is considered as the low-fidelity model for the reduced quantity (i.e., ignoring
the commutator error). Then, a multi-fidelity DeepONet is trained to learn the contribution
of the closure term in a predictor-corrector fashion. The authors combined this multi-fidelity
viewpoint with a posteriori learning to enhance the stability of the resulting predictions. The model
fusion approach in [250] can also be interpreted as a multi-fidelity learning approach, where the
predictions of the Galerkin-PODmodel are used to guide a deep neural network toward an improved
estimate of the leading POD coefficients. Sen et al. [251] considered a multi-fidelity modeling
approach to address the closure problem in multiscale systems with distinct meso- and macroscales.
They considered a shocked particulate flow where the mesoscale effects are incorporated into the
macroscale model in the form of a homogenized drag value. A low-fidelity surrogate model for
the drag is first developed by the modified Bayesian Kriging method using a set of low-fidelity
mesoscale simulations. A multi-fidelity learning framework is subsequently constructed to correct
the low-fidelity predictions needing only a few high-fidelity simulations.

It is worth noting that using a multi-fidelity learning approach over a single fidelity one should be
performed carefully. For example, [252] showed that including low-fidelity samples along with the
high-fidelity samples can lead to less accurate surrogates than just using the available high-fidelity
samples.

8.2. Multiscale. Any review of closure modeling would not be complete without referencing the
classical methods for reduction of systems exhibiting time-scale separation between variables that
are needed to fully describe the state of the system. A comprehensive review on various methods
to perform reduction for such systems can be found in [188], while more recent accounts are in
[253, 2]. The main classes of methods are invariant manifolds [254], averaging [255, 256, 257], and
white noise approximation [258]. We note that these methods can also be interpreted as limiting
cases of the more general MZ formalism (see, e.g., [188]).

In recent years, there have appeared data-driven variants of the approaches above for systems
exhibiting time-scale separation. The main topics of these approaches are the discovery of homog-
enized/effective equations for slow variables [259, 260], the discovery of collective variables that
promote time-scale separation [41, 261, 262, 263], as well as the estimation of closure terms to
account for the effect of fast variables on slow variables [264, 265, 266, 267, 262, 268, 260].
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9. Outlook

The field of turbulence closure with machine learning has advanced rapidly in recent years, but
major challenges remain [269]. Here we list a few of these, including directions for future research.

9.1. Interpretability and generalizability. The machine-learned closure models discussed in
this paper are generally represented by neural networks that do not have a clear sense of inter-
pretability. However, interpretability is a key requirement for machine-learned closure models to
find their way to engineering practice. Consequently, recent research efforts [270, 271, 272, 72] are
being directed on providing interpretable, closed-form expressions for the closure model, e.g., us-
ing techniques like sparse linear regression with a physics-informed library of candidate functions.
Besides physical interpretability, this approach also promises to require fewer training data and
have lower training costs [271].

Next to interpretability, generalizability is an important research area that is a prerequisite
for trained closure models to be adopted in various situations. Training a model for certain
parameters (e.g., Reynolds number), geometries, boundary conditions, and initial conditions and
using it beyond this parameter set could be seen as the “holy grail” in closure modeling research.
However, this is currently out of reach in its generality. Similarly, training a model with training
data that is associated to a certain grid, time step, and discretization scheme and reusing it under
different conditions is a difficult but central goal in closure modeling that is drawing a lot of
attention. A key issue for extrapolation in time is dealing with the chaotic nature of many physical
models. Learning chaotic dynamics with machine learning has been investigated for several years
[273, 274, 275, 276, 41, 277], but needs to further extend into the closure modeling community.

9.2. Reduced model forms and including known physics. It is generally acknowledged that
including known physics in data-driven methods is beneficial, reducing the amount of training data
required and improving generalizability. In the closure modeling context of this paper, one would
similarly argue that the closure form (11) is more physics-informed than the physics-agnostic form
(9) and therefore has more potential to generalize and to train. However, the evidence that supports
this claim is still rather thin (some examples are given in [77]), and some studies are pointing in
the reverse direction [153, 29, 127]. Restricting the reduced models to have a closure form or
a particular known symmetry was limiting their performance in these cases. Similarly, so-called
foundation models have been recently developed in the weather forecasting community that are
completely agnostic of the physics (although there is an implicit dependence on the physics through
the training data that is generated from physics-based solvers) [154]. These foundation models are
then fine-tuned for a specific task. It is still an open question whether such foundation models could
play a role in a closure model context, or whether they could even make the entire concept of closure
models redundant. Perhaps a ‘foundation closure model’ (associated to a certain PDE) could be
constructed, which is fine-tuned for a specific prediction task (boundary conditions, geometry,
parameters, etc.). However, for a PDE like the Navier-Stokes equations, this seems at present an
insurmountable task, given the effectively inexhaustible richness of possible flow configurations.
In contrast to the ‘top-down’ approach of foundation models, ‘bottom-up’ approaches like the
building-block model presented in [278] have been developed. These new approaches are still in
the early phase of development, and which approach will stand the test of time will likely depend
on a multitude of factors, including the availability of high-quality training data and access to
computational resources.

9.3. Stability of hybrid models. Scientific machine learning for closure leads to hybrid models
that couple traditional solvers with neural networks. The often black-box nature of the neural
network component can hinder the study of stability properties of the hybrid model, and, even
worse, can amplify the risk of catastrophic instabilities. The problem of instabilities for coupled
models has long been known (see, e.g., [279] and references therein) and is not specific to the use
of neural network closures. For neural network-based closures, possible overfitting of the training
data can exacerbate the instability problem [161]. Approaches like a posteriori learning presented
in Section 3.2 that rely on training the neural network so that the hybrid model accurately predicts
a rolled-out trajectory of certain length have shown promise. However, thorough investigation of
the stability properties of such approaches is still an active research topic.
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9.4. Network architectures. Choosing the right network architecture and optimizing its param-
eters is often more of an art than a science. In this paper, little attention has been paid to the
different network architectures used in the context of closure modeling because new architectures
are appearing continuously and because it is still highly non-trivial which one to choose. Early
machine learning-based closure modeling efforts focused on simple neural network layouts (fully
connected multi-layer perceptrons) [49, 59], while later convolutional neural networks and autoen-
coders became popular approaches. Convolutional networks are useful for structured data and
mimic, to a certain extent, finite difference operators, which is why they work well in the context
of differential equations. Autoencoders are appropriate in the context of compression, for exam-
ple in reduced order models. More recently, graph neural nets [280, 156] have gained attention
because they work on unstructured data, and neural operators because of their grid independence
[63, 32, 33, 34, 35, 167]. Only a few studies investigate the effect of the network architecture and
the associated optimization process, e.g., [281].

9.5. Benchmarking, test cases, and datasets. Currently, many papers consider simplified
PDE problems as test cases, such as the Burgers’ equation, the Kuramoto-Sivashinsky equation,
the Lorenz ’96 equations, or the incompressible Navier-Stokes equations on periodic domains with
low Reynolds numbers. A number of efforts have been initiated to build structured datasets that
can be used to train machine learning methods [282, 283, 284, 285, 286, 287]. Because neural
network design and training often require a lot of experience and trial and error, well-defined
benchmarks, documented datasets, and relevant error metrics are of utmost importance. Extension
to more complex physics is still an open topic—in fluid flows, closure models for compressible flows
with shock waves, for irregular domains, for reactive flows, and for high Reynolds number flows
are a sparsely explored but important territory [136, 288]. Part of benchmarking also means a fair
assessment on whether large neural network models (and the associated training time and data
requirements) can outperform classical (PDE-based) solvers in terms of accuracy per operation
count or runtime. The choice of the reference solver that we compare against and try to beat is
also a critical aspect. Researchers might be tempted to compare a neural-PDE solver against a
classical PDE solver that is significantly more accurate and more expensive to justify the accuracy-
cost trade-off of the former. However, in many cases, one can find another low-fidelity PDE solver
that is as accurate as the neural-PDE solver but less-expensive. Thus, a fair comparison should
involve a Pareto front analysis that surveys all solvers that are at our disposal. In addition, many
data-driven methods (for closures or otherwise) are limited by errors resulting from distribution
shifting when deployed on test data that is significantly different from the training data. Learning
useful ‘invariant’ input features may assist with this but that is as yet a largely unsolved problem
in machine learning [289].
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[137] M. Kurz, P. Offenhäuser, A. Beck, Deep reinforcement learning for turbulence modeling in large eddy simu-
lations, International Journal of Heat and Fluid Flow 99 (2023) 109094.

[138] M. Fiore, L. Koloszar, C. Fare, M. A. Mendez, M. Duponcheel, Y. Bartosiewicz, Physics-constrained machine

learning for thermal turbulence modelling at low prandtl numbers, International Journal of Heat and Mass

Transfer 194 (2022) 122998.
[139] R. Wang, R. Walters, R. Yu, Incorporating Symmetry into Deep Dynamics Models for Improved Generalization

(Mar. 2021). arXiv:2002.03061, doi:10.48550/arXiv.2002.03061.
[140] B. Siddani, S. Balachandar, R. Fang, Rotational and reflectional equivariant convolutional neural network

for data-limited applications: Multiphase flow demonstration, Physics of Fluids 33 (10) (2021) 103323. doi:

10.1063/5.0066049.
[141] S. Pawar, O. San, A. Rasheed, P. Vedula, Frame invariant neural network closures for Kraichnan turbulence,

Physica A: Statistical Mechanics and its Applications 609 (2023) 128327. doi:10.1016/j.physa.2022.128327.

http://arxiv.org/abs/1908.04127
https://doi.org/10.48550/arXiv.1908.04127
https://doi.org/10.1017/S0022112085001987
https://doi.org/10.1063/1.4974093
https://doi.org/10.1016/j.engappai.2023.107483
https://doi.org/10.1016/j.engappai.2023.107483
http://arxiv.org/abs/physics/0605106
http://arxiv.org/abs/physics/0605106
https://doi.org/10.3842/SIGMA.2006.052
https://doi.org/10.1007/BF00271419
http://arxiv.org/abs/1906.06622
https://doi.org/10.48550/arXiv.1906.06622
https://doi.org/10.1002/fld.4684
https://doi.org/10.1002/fld.4684
https://doi.org/10.1017/jfm.2021.994
http://arxiv.org/abs/2002.03061
https://doi.org/10.48550/arXiv.2002.03061
https://doi.org/10.1063/5.0066049
https://doi.org/10.1063/5.0066049
https://doi.org/10.1016/j.physa.2022.128327


SCIENTIFIC MACHINE LEARNING FOR CLOSURE MODELS IN MULTISCALE PROBLEMS: A REVIEW 27

[142] S. Kang, E. M. Constantinescu, Learning Subgrid-Scale Models in Discontinuous Galerkin Methods with

Neural Ordinary Differential Equations for Compressible Navier–Stokes Equations (Oct. 2023). arXiv:2310.

18897, doi:10.48550/arXiv.2310.18897.
[143] A. Gupta, P. F. J. Lermusiaux, Neural closure models for dynamical systems, Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences 477 (2252) (2021) 20201004. doi:10.1098/rspa.2020.
1004.

[144] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural Ordinary Differential Equations,

arXiv:1806.07366 (Dec. 2019). arXiv:1806.07366.
[145] P. Kidger, On Neural Differential Equations (Feb. 2022). arXiv:2202.02435, doi:10.48550/arXiv.2202.02435.

[146] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan,

A. Edelman, Universal Differential Equations for Scientific Machine Learning (Nov. 2021). arXiv:2001.04385,
doi:10.48550/arXiv.2001.04385.

[147] L. Pontryagin, Mathematical Theory of Optimal Processes, 1st Edition, Routledge, 1986. doi:10.1201/

9780203749319.
[148] D. E. Kirk, Optimal Control Theory: An Introduction, Dover Publications, Mineola, N.Y, 2004.

[149] S. Massaroli, M. Poli, J. Park, A. Yamashita, H. Asama, Dissecting Neural ODEs, in: Advances in Neural

Information Processing Systems, Vol. 33, Curran Associates, Inc., 2020, pp. 3952–3963.
[150] M. D. Gunzburger, Perspectives in Flow Control and Optimization, Advances in Design and Control, Society

for Industrial and Applied Mathematics, Philadelphia, PA, 2003.

[151] D. Onken, L. Ruthotto, Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continu-
ous Normalizing Flows (Jul. 2020). arXiv:2005.13420, doi:10.48550/arXiv.2005.13420.

[152] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, P. Koumoutsakos, Backpropagation
algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotem-

poral dynamics, Neural Networks 126 (2020) 191–217. doi:10.1016/j.neunet.2020.02.016.

[153] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, S. Hoyer, Machine learning–accelerated com-
putational fluid dynamics, Proceedings of the National Academy of Sciences 118 (21) (2021) e2101784118.

doi:10.1073/pnas.2101784118.

[154] C. Bodnar, W. P. Bruinsma, A. Lucic, M. Stanley, J. Brandstetter, P. Garvan, M. Riechert, J. Weyn, H. Dong,
A. Vaughan, J. K. Gupta, K. Tambiratnam, A. Archibald, E. Heider, M. Welling, R. E. Turner, P. Perdikaris,

Aurora: A Foundation Model of the Atmosphere (May 2024). arXiv:2405.13063, doi:10.48550/arXiv.2405.

13063.
[155] Z. Li, W. Peng, Z. Yuan, J. Wang, Fourier neural operator approach to large eddy simulation of three-

dimensional turbulence, Theoretical and Applied Mechanics Letters 12 (6) (2022) 100389. doi:10.1016/j.

taml.2022.100389.
[156] J. Brandstetter, D. Worrall, M. Welling, Message Passing Neural PDE Solvers (Mar. 2023). arXiv:2202.03376,

doi:10.48550/arXiv.2202.03376.
[157] J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-Free Prediction of Large Spatiotemporally Chaotic

Systems from Data: A Reservoir Computing Approach, Physical Review Letters 120 (2) (2018) 024102.

doi:10.1103/PhysRevLett.120.024102.
[158] F. Takens, Detecting strange attractors in turbulence, in: D. Rand, L.-S. Young (Eds.), Dynamical Systems

and Turbulence, Warwick 1980, Vol. 898, Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, pp. 366–381.

doi:10.1007/BFb0091924.
[159] Y. Bar-Sinai, S. Hoyer, J. Hickey, M. P. Brenner, Learning data-driven discretizations for partial differential

equations, Proceedings of the National Academy of Sciences 116 (31) (2019) 15344–15349. doi:10.1073/pnas.

1814058116.
[160] F. F. Grinstein, L. G. Margolin, W. Rider (Eds.), Implicit Large Eddy Simulation: Computing Turbulent

Fluid Dynamics, first publ Edition, Cambridge Univ. Press, Cambridge, 2007.

[161] K. Um, R. Brand, Y. R. Fei, P. Holl, N. Thuerey, Solver-in-the-Loop: Learning from Differentiable Physics to
Interact with Iterative PDE-Solvers, in: Advances in Neural Information Processing Systems, Vol. 33, Curran

Associates, Inc., 2020, pp. 6111–6122.
[162] G. Dresdner, D. Kochkov, P. Norgaard, L. Zepeda-Núñez, J. A. Smith, M. P. Brenner, S. Hoyer, Learning to
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