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Abstract
Dynamic algorithms operate on inputs undergoing updates, e.g., insertions or deletions of edges or vertices.

After processing each update, the algorithm has to answer queries regarding the current state of the input data.
We study dynamic algorithms in the model of algorithms with predictions (also known as learning-augmented
algorithms). We assume the algorithm is given imperfect predictions regarding future updates, and we ask how
such predictions can be used to improve the running time. In other words, we study the complexity of dynamic
problems parameterized by the prediction accuracy. This can be seen as a model interpolating between classic
online dynamic algorithms – which know nothing about future updates – and offline dynamic algorithms with
the whole update sequence known upfront, which is similar to having perfect predictions. Our results give
smooth tradeoffs between these two extreme settings.

Our first group of results is about partially dynamic problems with edge updates. We give algorithms
for incremental and decremental transitive closure and approximate APSP that take as an additional input
a predicted sequence of updates (edge insertions, or edge deletions, respectively). They preprocess it in
Õ(n(3+ω)/2) time, and then handle updates in Õ(1) worst-case time and queries in Õ(η2) worst-case time.
Here η is an error measure that can be bounded by the maximum difference between the predicted and actual
insertion (deletion) time of an edge, i.e., by the ℓ∞-error of the predictions.

The second group of results concerns fully dynamic problems with vertex updates, where the algorithm has
access to a predicted sequence of the next n updates. We show how to solve fully dynamic triangle detection,
maximum matching, single-source reachability, and more, in O(nω−1 + nηi) worst-case update time. Here ηi

denotes how much earlier the i-th update occurs than predicted.
Our last result is a reduction that transforms a worst-case incremental algorithm without predictions into a

fully dynamic algorithm which is given a predicted deletion time for each element at the time of its insertion.
As a consequence we can, e.g., maintain fully dynamic exact APSP with such predictions in Õ(n2) worst-case
vertex insertion time and Õ(n2(1 + ηi)) worst-case vertex deletion time (for the prediction error ηi defined as
above).

Our algorithms from the first two groups, given sufficiently accurate predictions, achieve running times that
go below known lower bounds for classic (without predictions) dynamic algorithms under the OMv Hypothesis.
Moreover, our dependence on the prediction errors (so-called smoothness) is conditionally optimal, under
plausible fine-grained complexity assumptions, at least in certain parameter regimes.

1 Introduction.
Dynamic algorithms maintain a solution to a computational problem – e.g., single source distances in a graph –
for an input that undergoes a sequence of updates – e.g., edge insertions or deletions. The goal is to process such
updates as efficiently as possible, at least faster than recomputing the solution from scratch. This is however not
always plausible, as evidenced by numerous fine-grained conditional lower bounds, see, e.g., [53, 2, 31].

The recent line of research on learning-augmented algorithms provides many examples of how performance of
classic algorithms can be provably improved using imperfect predictions, generated, e.g., by machine-learning models
(see surveys by Mitzenmacher and Vassilvitskii [49, 50]). Among others, predictions allow us to improve competitive
ratios of online algorithms (e.g., [47, 57]), running times of static algorithms (e.g., [22, 17]), approximation ratios
of polynomial-time approximation algorithms (e.g., [26, 28, 52]). Often these improvements go beyond what is
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provably possible for classic algorithms (e.g., [47, 26] and many others). In this work we ask the following natural
question:

How could we use predictions to improve dynamic algorithms?

We make two choices to narrow down this question. First, we focus on predictions about future input data. This is
akin to many previous results on learning-augmented online algorithms (e.g., [47, 8]), and in contrast with settings
where the predictions are about the output (e.g., [4, 22, 26]). Second, we focus on improving the running time,
which is the most studied performance measure for dynamic algorithms.

Online and Offline Dynamic Problems, and Conditional Lower Bounds. Dynamic problems are most
often studied in their online variants, i.e., future updates are not known to the algorithm, and it has to perform
them one by one. On the other hand, offline dynamic algorithms (see, e.g, [25, 62, 37, 14, 55, 18]) are given a
sequence of updates upfront. Note that the offline model is equivalent to our proposed model with predictions in
the case that predictions are perfectly accurate. That is, we study an interpolation between offline and online
dynamic algorithms, and ask how an algorithm’s performance degrades with increasing inaccuracies of predictions.
This interpolation question makes sense only for dynamic problems whose offline variants admit faster algorithms
than their corresponding online variants do. Ideally, we would like to be able to say that predictions – even
imperfect ones – allow certain dynamic problems to be solved faster than what is provably plausible without such
predictions in the classic online model. In other words, we aim for running times going below known conditional
lower bounds.

There are many reductions showing hardness of dynamic problems under popular fine-grained complexity
assumptions about static problems, such as 3SUM, APSP, or CNF-SAT (see, e.g., [2]). However, all these reductions
share what is from our perspective a limitation: they are not adaptive, they are capable of producing the whole
input sequence at once. Hence, they already imply hardness for offline variants of dynamic problems, and thus
they cannot provide tight conditional lower bounds for those dynamic problems whose offline variants happen to
be strictly easier than corresponding online variants. It is an interesting open problem to find a reduction – from a
natural static problem to a natural online dynamic problem – that does not have this limitation [1].

To our best knowledge, the only known tool in fine-grained complexity that is capable of distinguishing between
online and offline variants of dynamic problems is the Online Matrix-Vector Multiplication (OMv) Hypothesis [31],
a conditional assumption about an online problem itself. Therefore, in this work we focus (mostly) on problems
with known tight OMv lower bounds. These lower bounds often show that recomputing from scratch is basically
the best we can hope for (without predictions).

Warm-up: OMv with Predictions. Before we delve into graph problems, let us start with a simple sanity
check and verify that the cubic time barrier for OMv can be broken using predictions. If it was not the case, our
project would be hopeless because then problems with known OMv lower bounds would remain hard even with
predictions.

Recall that in the OMv problem we are first given Boolean matrix M ∈ {0, 1}n×n, and then we need to answer
n queries of the form: Given vector vi ∈ {0, 1}n, what is the Boolean product Mv? We have to answer queries one
by one, in an online fashion: we have to output Mvi before we get to learn what vi+1 is. OMv is conjectured to
require cubic time, up to subpolynomial factors [31]. We propose the following variant of OMv with predictions:

Online matrix-vector multiplication (OMv) with predictions
Input offline: matrix M ∈ {0, 1}n×n;

predicted vectors v̂1, v̂2, . . . , v̂n ∈ {0, 1}n.
Input online: vectors v1, v2, . . . , vn ∈ {0, 1}n.
Output: matrix-vector products Mv1, Mv2, . . . , Mvn ∈ {0, 1}n over Boolean semiring.

We show a simple algorithm whose running time depends on the ℓ1-error of the predictions, which is one of the
standard error measures for learning-augmented algorithms (see, e.g., [47, 4]).

Observation 1.1. OMv with predictions can be solved in total time O(nω + n
∑

i ||vi − v̂i||1). More precisely,
preprocessing runs in O(nω) time, and i-th query requires O(n||vi − v̂i||1) time.

Proof. In the preprocessing phase, compute M · [v̂1, v̂2, . . . , v̂n] over integers, in time O(nω). Then, after receiving
each vector vi, compute (over integers) Mvi = Mv̂i + M(vi − v̂i). The first term, Mv̂i can be retrieved in O(n)
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time because it is the i-th column of the matrix computed during the preprocessing. The second term, M(vi − v̂i)
can be computed in time O(n||vi − v̂i||1), because ||vi − v̂i||1 equals the number of non-zeros of vi − v̂i. Indeed,
||vi − v̂i||1 = ||v̂i − vi||0, because vi and v̂i contain only zeros and ones.

Note that ||vi− v̂i||1 ⩽ n, and hence
∑

i ||vi− v̂i||1 ⩽ n2, so even with arbitrarily bad predictions our algorithm
never needs more than cubic time, i.e., it is robust in the learning-augmented terminology. On the other hand, for
perfect predictions (i.e.,

∑
i ||vi − v̂i||1 = 0) we achieve the running time of the best offline algorithm, i.e., we are

consistent. In Section 1.2 we discuss these concepts further.
Moreover, the running time of this algorithm matches two conditional lower bounds. First, the dependence on

the total prediction error η =
∑

i ||vi− v̂i||1 cannot be improved from nη to nη0.99 under the OMv hypothesis; this
is because OMv reduces to OMv with predictions, with η = O(n2), by providing arbitrary (e.g., all-zero) vectors
as predictions. Second, the nω term cannot be improved under the assumption that Boolean matrix multiplication
is not easier than the general matrix multiplication, because even with perfect predictions (i.e., η = 0), solving
OMv with predictions entails computing a Boolean matrix product. These arguments, however, do not rule out
the possibility of, e.g., an O(nω + η3/2) time algorithm, which would be a meaningful improvement over the above
algorithm. We find it an interesting open problem to provide a fine-grained conditional lower bound, matching the
running time of Observation 1.1, that holds already restricted to instances with η = Θ(nα) for arbitrary fixed
α ∈ (0, 2).

Finally, note that going below the cubic time barrier for OMv, even with accurate predictions, requires fast
matrix multiplication. Hence, it is not a surprise that our graph algorithms discussed below – that go beyond
known OMv-based lower bounds – use algebraic algorithms for matrix multiplication.

1.1 Our Results. Our main results can be categorized into three groups that differ in the considered settings,
types of predictions and measures of prediction errors. We discuss the groups one by one. Table 1 provides a
summary.

Partially Dynamic Graph Problems. Our first group of results is about partially dynamic problems
with edge updates. These are problems on graphs undergoing edge insertions (incremental variant), and graphs
undergoing edge deletions (decremental variant), but not both types of updates at the same time (this would
be a fully dynamic variant, which we address later). While in general it is not the case that incremental and
decremental variants must be equivalent, it turns out that all our results give the same bounds for both variants.

Our partially dynamic (incremental and decremental) algorithms take as an additional input a predicted
sequence of updates (edge insertions or edge deletions, respectively). To illustrate our setting, we provide as an
example a detailed definition of the incremental transitive closure problem, also known as all-pairs reachability, in
directed graphs.

Incremental transitive closure with predictions
Input offline: predicted sequence of edge insertions ê1, ê2, . . . , êm ∈ E.
Input online: sequence of interleaved updates and queries, i.e.,

– edge insertions e1, e2, . . . , em ∈ E, and
– reachability queries (s1, t1), (s2, t2), . . . , (sq, tq) ∈ V × V .

Output: for each query (si, ti),
– YES if there is a path from si to ti in the graph at the current moment,
– NO otherwise.

The decremental variant is very similar; the difference is that the predicted sequence tells the algorithm in
which order the edges are supposed to be deleted, not inserted, and that the online update operations are edge
deletions, not edge insertions. In the incremental setting, it is natural to assume we start with an empty graph.
However, in the decremental setting (also for classic algorithms without predictions), the initial graph has to
be given upfront. In our setting with predicted sequence of updates, the initial graph can be considered to be
given implicitly by the set of all edges appearing in the sequence. On the other hand, we can also think of an
equivalent input format in which we are first given the initial graph G = (V, E) where each edge e ∈ E comes with
an additional label t̂(e) ∈ [m] describing the predicted position of this edge in the sequence of deletions.

The second problem that we consider in this setting is the (1 + ϵ)-approximate all-pairs shortest paths (APSP)
problem in unweighted directed graphs. The problem definition is similar to the above transitive closure definition
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– the only difference is that each query (si, ti) has to output a number in range [d(si, ti), (1 + ϵ) · d(si, ti)], where
d(si, ti) denotes the length of a shortest path from si to ti at the current moment.

The query times of our algorithms for these problems depend on prediction error η that has a somewhat
technical definition. We discuss this in detail in Sections 2.1 and 3. For now let us only say that η can be upper
bounded by the largest absolute difference between the predicted and actual insertion (deletion) time of an edge –
i.e., the ℓ∞ error of the predictions – which we denote by η∞

def= maxe∈E |t(e)− t̂(e)|, where t(e) denotes the actual
update time of an edge (i.e., t(ei)

def= i), and t̂(e) denotes the predicted update time of an edge (i.e., t̂(êj
def= j). We

discuss the choice of this error measure in Section 1.2.
Our partially dynamic algorithms with predictions are specified in Theorem 1.1.

Theorem 1.1. (Full details in Theorems 3.1 and 3.2) Each of the following dynamic graph problems:

• incremental transitive closure,
• decremental transitive closure,
• incremental (1 + ϵ)-approximate unweighted all-pairs shortest paths,
• decremental (1 + ϵ)-approximate unweighted all-pairs shortest paths

with a predicted sequence of edge updates can be solved by a deterministic algorithm with Õ(n(3+ω)/2) preprocessing
time, Õ(1) worst-case edge update time, and Õ(η2) query time, for prediction error η ⩽ η∞.

Without predictions, both these problems (transitive closure and approximate APSP) in both partially dynamic
variants (incremental and decremental) can be solved by algorithms with O(n3) total update time and O(1)
query time [34, 35, 56, 20, 21, 9, 58, 41, 10], and under the OMv hypothesis this running time is tight (up to
subpolynomial factors) even if one allows up to O(n1−ε) query time [31]. In other words, classic algorithms
without predictions face the cubic time barrier for these problems, and we show it can be bypassed with sufficiently
accurate predictions.

We also show that the dependence of the running time in Theorem 1.1 on the prediction error η∞ cannot be
improved to strictly subquadratic under the OMv hypothesis.

Theorem 1.2. Unless the OMv Hypothesis fails, there is no algorithm for incremental (decremental) transitive
closure with predictions with arbitrary polynomial prepocessing time, worst-case O(n1−ε) edge insertion (deletion)
time, and O(η2−ε

∞ ) query time, for any ε > 0. This already holds with respect to amortized time bounds per
operation.

Finally, we note that the algorithms of Theorem 1.1 are not robust – for large enough prediction errors they
can be slower than the best known classic algorithm – but they can be made robust, at least in the amortized-time
sense, using the black-box approach described in Section 1.2.

Fully Dynamic Graph Problems with Predicted Vertex Updates. Here we consider fully dynamic
variants of various graph problems on directed graphs with vertex updates: triangle detection, single source
reachability, strong connectivity, cycle detection, maximum matching, number of vertex disjoint st-paths. For
online vertex updates, there is no dynamic algorithm with O(n2−ϵ) update time for any constant ϵ > 0, conditional
on the OMv hypothesis [31]. All these problems (except triangle detection) can also be naively recomputed from
scratch in Õ(n2) time [12, 19]. Thus no polynomial improvement over the trivial approach is possible for these
online dynamic problems. For offline vertex updates, there is no dynamic algorithm with O(nω−1−ϵ) update time,
conditional on the triangle detection hypothesis [2]. On the upper bound side, this is matched by [62, 13] with
O(nω−1) update time. Our Theorem 1.3 provides a smooth trade-off between the online and offline model.

We use ηi to denote the prediction error of the i-th performed update. The prediction is a sequence of vertex
updates. It can happen that an update occurs earlier than initially predicted, i.e. an update is moved several
positions ahead in the sequence. When the data structure performs the i-th update, ηi is how many positions this
update occurs too early. If this i-th update was not predicted at all (i.e. it doesn’t even occur in the predicted
sequence), we define ηi =∞.

Theorem 1.3. (Full details in Theorem 5.1) Fully dynamic triangle detection, single source reachability,
strong connectivity, directed cycle detection, maximum matching size, number of vertex disjoint st-paths, with Θ(n)
vertex updates and predictions can be solved in O(nω + n

∑
i min{ηi, n}) total time. More precisely, we have O(nω)

preprocessing time and the i-th update takes O(nω−1 + n ·min{ηi, n}) time.
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We remark that one can interpret our total time complexity as scaling with the ℓ1-norm of the error. For
η′

i := min{ηi, n}, η′ ∈ Nn we have total time O(nω + n∥η′∥1) for n updates.
This result is obtained via reductions by [60, 61, 13], which reduce these dynamic graph problems to dynamic

matrix inverse. In dynamic matrix inverse, we are given a dynamic n×n matrix M and must maintain information
about M−1. The case of vertex updates on graph reduces to row and column updates to M (i.e. updates can
replace one row and column of M at a time). The offline model with only column updates was studied previously
in [62, 13] and for entry updates in [38]. The online model with row and column updates was studied in [60]. We
construct a dynamic matrix inverse algorithm with predictions in Section 4 which then implies Theorem 1.3 via
reductions from [60, 61].

Fully Dynamic Graph Problems with Predicted Deletion Times. The last setting that we study is also
a fully dynamic one but with a weaker prediction requirement than above. First, only deletions are predicted; the
algorithm needs no prior knowledge of insertions. Second, deletions are predicted only at the time of corresponding
insertions. In other words, compared to a classic fully dynamic setting, the only difference is that each insertion
comes with an additional number predicting when the currently inserted item (e.g., vertex or edge) is going to be
deleted.

This model is inspired by a recent result by [54] in which they assume an offline sequence of predicted deletions
– i.e. deletion times have no error – but in our case we can handle deletion errors. We first extend their techniques
to give the following result:

Theorem 1.4. Consider a sequence of T updates and suppose we are given an incremental dynamic algorithm
with worst-case update time Γ. Assume also that at any point in time we have a prediction on the order of deletions
of current items, such that for the i inserted item the error ηi indicates the number of elements predicted to be
earlier than i-th item that actually arrive later (ηi = 0 if the prediction is correct or the element arrives later).
Then we have a fully-dynamic algorithm with the following guarantees:

• An insertion update is performed in O(Γ log2 T ) worst-cast time.

• The deletion of the i-th element can be performed in O((1 + ηi) · Γ log2 T ) worst-case time.

We can use this reduction, combined with an incremental APSP algorithm observed by [63] to get the following:

Theorem 1.5. Given a weighted and directed graph undergoing online vertex insertions and predicted vertex
deletions, we can maintain exact weighted all-pairs shortest paths with the following guarantees:

• An insertion update can be performed O(n2 log2 n) worst-cast time.

• A deletion of the i-th inserted vertex vi can be performed in O(n2(ηi log2 n + 1)) worst-case time, where error
ηi ∈ [0, n] indicates how many vertices were predicted to be deleted before vi that are actually deleted after vi.

This can be compared to a recent fully dynamic worst-case exact APSP bound of Õ(n2.5) by [48] improving
upon a long line of work on sub-cubic update times for APSP [63, 3, 29, 16]. We note that n2.5 seems to be a
natural barrier inherent to current algorithmic approaches for this problem, but there is no known conditional
lower bound formalizing this intuition.

1.2 Further Discussion.
Consistency, Robustness, and Smoothness. Typically, algorithms with predictions are designed with

three goals in mind: (1) consistency, that is a near-optimal (or at least better than worst-case) performance when
predictions are accurate; (2) robustness, that is retaining worst-case guarantees of classic algorithms even when
predictions are adversarial; and (3) smoothness, that is a graceful degradation of algorithm’s performance with
increasing prediction error, providing an interpolation between the former two extremes. Let us discuss how these
goals translate to our model of dynamic algorithms with predictions.

In this context, consistency alone is just equivalent to having an offline algorithm that is faster than the fastest
known (or, even better, fastest conditionally possible) online algorithm.

Robustness can often be dealt with by black-box best-of-both-worlds types of arguments. It sometimes becomes
an issues in contexts where the performance measure of choice is the competitive ratio, but it is rarely an issue when
we optimize the running time. For static algorithms, one can just simulate two algorithms – one with predictions,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3538

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Table 1: Summary of our results. Each column describes one group of results, built around one technique or data
structure.

Theorem 1.1 Theorem 1.3 Theorem 1.4

Setting:
partially dynamic fully dynamic fully dynamic
(incremental or decremental) (insertions and deletions) (insertions and deletions)

Type of updates:
edge updates vertex updates vertex updates

Predictions:
sequence of all updates sequence of next n updates deletion times
(insertions or deletions) (given during insertions)

Running time:
preprocessing: Õ(n(3+ω)/2) preprocessing: O(nω) no preprocessing
update: Õ(1) update: insertion: Õ(n2)
query: Õ(η2

∞) O(nω−1 + n · min{ηi, n}) deletion: Õ(ηin
2)

Error measure:
ℓ∞ ℓ1 ℓ1

Applications to graph problems:
transitive closure triangle detection exact APSP
(1 + ϵ)-approximate APSP single-source reachability

strong connectivity
directed cycle detection
maximum matching size
#vertex-disjoint st-paths

Main technical tool:
All-Pairs Bottleneck Paths dynamic matrix inverse reduction to incremental

and another one with best known worst-case guarantees – step by step, in parallel, and stop whenever one of
these algorithms stops. This approach incurs only a factor-of-two multiplicative slowdown (which is negligible for
asymptotic complexity) compared to the faster algorithm, on a per-instance basis. For dynamic algorithms, we
need a more careful approach: Whenever the currently faster algorithm finishes processing a request, stop and
return its answer; when a new request comes, resume the simulation from where it stopped, letting the slower
algorithm possibly catch up. This way we can retain amortized running time guarantees of the better of the two
algorithms, on a per-instance basis. We remark that it seems challenging to have a similar black-box tool for
worst-case per request guarantees.

Smoothness is perhaps the least well defined of the three terms. Intuitively, we want the algorithms to tolerate
as big prediction errors as possible without compromising on performance too much. For dynamic algorithms
with predictions, some level of smoothness can always be achieved trivially. Assuming the best offline algorithm is
polynomially faster than the best online algorithm – which is anyway required to claim consistency – one can
always rerun the offline algorithm from scratch after encountering each difference between the predicted and the
actual input sequence, and therefore tolerate some polynomial number of errors. We achieve better smoothness
than this baseline benchmark by (1) incorporating error measures that distinguish between small errors and
large errors, (2) getting better dependence on them, and (3) sometimes even showing that this dependence is
conditionally optimal.

Predictions, Prediction Errors, and Learnability. We note that the predictions that we use, and error
measures that quantify predictions accuracy, are standard in the learning-augmented literature. Predictions of the
entire input sequence (theorem 1.1) are used, e.g., for scheduling problems [8], predicting only a certain window of
input sequence (theorem 1.3) is required for learning-augmented weighted caching [36], and predictions of the
time of the next operation concerning the current item (theorem 1.4) is the by-now-standard setup for unweighted
caching [47].
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The most ubiquitous way of measuring how for the prediction is from the truth is the ℓ1-distance (e.g.,
[47, 22, 4], and many more), but for certain problems (e.g., flow time minimization with uncertain processing
times [5, 6]) the ℓ∞-error of predictions is a more natural (and sometimes even necessary) choice.

Our prediction errors can be illustrated with an example of road networks: Every day the same roads get
congested during rush hour, so one can try to predict the updates in a dynamic road network. However, such
predictions will not be perfect, because the exact order in which roads become congested may differ from day to
day.

Since all our predictions are essentially permutations, the question of when such predictions can be efficiently
learned is addressed by standard tools in the literature [30, 39].

1.3 Related Work. Over the past couple of years the field of learning-augmented algorithms blossomed
enormously, and it is implausible to list here all relevant contributions. We refer the interested reader to survey
articles by Mitzenmacher and Vassilvitskii [49, 50] and a website with a list of papers maintained by Lindermayr
and Megow [44]. There are numerous works on using predictions for improving competitive ratios of online
problems (e.g., [47, 57, 8, 4, 7], and many, many more) and running times of static problems (e.g., [22, 17]).
Dynamic algorithms can be seen as a certain kind of data structures, and there are already several examples of
learning-augmented data structures (see, e.g., [40, 27, 43]), but they focus primarily on index data structures, such
as binary search trees, and hence they are not directly related to our work.

A concept related to offline dynamic graph algorithms is that of a graph timeline, as defined by [42], in which
a sequence of graphs G1, . . . , GT is given upfront and any two subsequent graphs differ by only one edge being
added or removed. [37] studies in this model several types of undirected connectivity queries over a time range,
asking, e.g., if a path exists in at least one graph in a given interval.

Finally, there is a separate line of work on temporal graphs (see for instance the survey [33]), also related to
the offline model, in which each edge is labelled with (a collection of) time intervals indicating when it is available.
Often the goal in this line of work is understanding certain dynamics on networks (like information diffusion or
convergence to certain properties), which is different from our computation efficiency objectives in the dynamic
settings.

Concurrent Work. In the concurrent and independent work, Liu and Srinivas [45] consider the same
predicted-deletions model as in our Theorem 1.4. Their result is also based on a reduction from the fully-dynamic
setting to the incremental setting. However, unlike our work, their algorithm does not directly rely on a similar
reduction by [54], whereas we use analysis of [54] as a black-box. We note that [45] present many other applications
(e.g. all-pairs max-flow/min-cut approximation, or uniform sparsest cut) in the predicted-deletions model that can
also be derived from Theorem 1.4. On the technical side, they also show how to handle the case where number of
updates T is not known upfront, which we do not consider.

In another independent work, Henzinger, Saha, Seybold, and Ye [32] initiate a systematic study of the
time complexity of dynamic graph algorithms with predictions. While their focus is on conditional fine-grained
lower bounds, they also provide some algorithms. In particular, their combinatorial (i.e., not using fast matrix
multiplication) algorithms for transitive closure, approximate APSP, and triangle detection have bounds similar to
our Theorems 1.1 and 1.3 but with worse preprocessing times. They also consider prediction models with error
measures very different from ours.

1.4 Notation. We write O(nω) for the time complexity of multiplying two n× n matrices, where the current
best bound is ω < 2.372 [24]. For the matrix product of rectangular matrices, we write MM(a, b, c) for the time
complexity of multiplying a× b and b× c matrices. We write I for the identity matrix.

All the graphs considered in this paper are directed.

2 Technical Overview.
In this section we briefly explain the main ideas behind our results.

2.1 Partially Dynamic Algorithms (Section 3). Our algorithms for partially dynamic problems – transitive
closure, approximate APSP, exact SSSP – use a connection between these problems and the all-pairs bottleneck
paths (APBP) problem. The latter is a variant of the all-pairs shortest paths (APSP) problem in which, instead of
minimizing the sum of edge weights, we minimize the maximum edge weight along a path. As opposed to APSP,
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which is conjectured to require cubic time [59, 65], APBP can be solved in strongly subcubic time [64], and the
best known APBP algorithm runs in O(n(3+ω)/2) ⩽ O(n2.687) time [23].

Transitive Closure. First, let us explain the connection of partially dynamic transitive closure with APBP.
If we use edge insertion times as edge weights, and solve APBP, we obtain a matrix B such that

B[u, v] = min
{

max
e∈P
{insertion time of e}

∣∣ P ∈ uv-paths
}

.

Hence, B[u, v] ⩽ k if and only if there is a path from u to v in the graph after the first k insertions. This
observation itself is sufficient to solve incremental1 transitive closure in the offline setting (in other words, with
perfect predictions) faster than the OMv-based cubic time lower bound for the online setting.

Let us now explain how we handle prediction errors. After each edge insertion, we keep track of the longest
prefix of the predicted sequence of updates that contains only the already inserted edges. Let us denote the length
of this prefix by p. We also maintain the set of “out-of-order” edges Eerr that have been already inserted but are
not contained in that prefix. Upon receiving a reachability query (u, v) we construct an auxiliary graph H on
at most 2|Eerr|+ 2 nodes: the endpoints of edges in Eerr and nodes u and v. For every pair of nodes x, y ∈ H,
we add an edge (x, y) to H if (x, y) ∈ Eerr or if B[x, y] ⩽ p. It is easy to see that there is a path from u to v in
H if and only if there is a path from u to v in the original graph. Constructing H and finding a uv-path takes
time O(|Eerr|2), and we show that the number of out-of-order edges |Eerr| can be bounded by the ℓ∞-error of the
predictions. The same approach can be adapted to the decremental setting.

Approximate APSP. With an O(ϵ−1 log n) overhead, in addition to answering queries on whether there
is a path from u to v, we are also able to report the length of a shortest path within up to 1 + ϵ multiplicative
approximation error. Instead of the single matrix B, for every d ∈ {(1 + ϵ)0, (1 + ϵ)1, . . . , (1 + ϵ)log1+ϵ(n)}, we
compute matrix B(d) of bottleneck paths with up to d hops. Each such matrix can be computed in O(n(3+ω)/2 log d)
time by repeatedly squaring the input weight matrix using (min, max)-product [23]. Note that B(d)[u, v] ⩽ k if
and only if there is a path from u to v of length at most d in the graph after the first k insertions. Now, we can
equip the auxiliary graph H with edge weights corresponding to (1 + ϵ)-approximate distances in the original
graph, and answer the queries by running the Dijkstra algorithm in H.

2.2 Fully Dynamic Matrix Inverse with Predictions (Section 4). By using standard reductions from
dynamic graph problems to dynamic matrix inverse (see, e.g., [60, 61, 13]), Theorem 5.1 reduces to maintaining
the matrix inverse of some matrix M undergoing rank-1 updates, i.e. updates where we are given two vectors u, v
and then set M←M + uv⊤. For these reductions, it suffices to return v⊤M−1 after each update.

From Rank-1 to Entry Updates. In general, without predictions, rank-1 updates are strictly harder than
entry updates (i.e. updates that change only a single entry of the matrix M at a time). Rank-1 updates require
Ω(n2) update time [31], whereas entry updates can be handled in O(n1.406) update time [13]. However, in the
prediction setting, one can actually reduce dynamic matrix inverse with rank-1 updates to dynamic matrix inverse
with entry updates, i.e. we can reduce updates for general dense u and v to the special case where u and v are
sparse. (Entry updates are just the special case where u, v have one non-zero entry each.)

Let (u(1), v(1)), . . . , (u(n), v(n)) be the next n predicted rank-1 updates. Then we can describe the rank-1
updates as follows. Let U and V be the n × n matrices obtained by stacking the vectors (u(t))t=1,...,n and
(v(t))t=1,...,n next to each other. Let D be a diagonal matrix that is initially all zero, and consider the matrix
formula:

f(M, U, V⊤, D) = V⊤(M + UDV⊤)−1.(2.1)

Here, switching the diagonal entries of D one-by-one from 0 to 1 corresponds to adding u(t)(v(t))⊤ to M and then
inverting the result. Thus, the task of maintaining the inverse of M subject to rank-1 updates, while returning
(v(t))⊤M−1 after each update, can be reduced to the task of returning the t-th row of f(A, U, V⊤, D) subject to
entry updates to D. In [11], v.d.Brand has shown that any dynamic matrix formula that can be written using the
basic matrix operations (addition, subtraction, multiplication and inversion), such as formula f in (2.1), reduces
to dynamic matrix inverse again (Lemma 4.1), while supporting the same kind of updates and queries. Thus, we
must maintain the inverse of a certain matrix that is subject to entry updates while supporting queries to its rows,

1Or decremental! In the offline variant they are equivalent.
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because the input to our formula f only receives entry updates and we only require rows of f . Since we only need
to consider entry updates, that means we can now focus only on the special case where we receive rank-1 updates
where both u and v are sparse with only one non-zero entry each. Only if we receive an update that was not
predicted at all, do we need to perform a rank-1 update with dense vectors.

Matrix Inverse with Predictions. Dynamic matrix inverse in the offline model where all updates are given
ahead of time was solved in O(nω) total time by Sankowski and Mucha [62], and later generalized by v.d.Brand,
Nanongkai and Saranurak [13] to only require the sequence of column indices of all future updates but not the
actual entries of the new columns. These previous data structures are offline, i.e. require correct predictions about
the entire update sequence ahead of time and cannot support updates that differ from the prediction received
during initialization. Building on their techniques, we construct a dynamic algorithm with predictions that is
robust against inaccurate predictions.

Let M be the dynamic input matrix. We write M(i) for a variant of M that is updated only every 2i iterations.
So M(0) is always identical to M and M(i) is identical to M every 2i iterations.

We maintain these matrices for i = 0, 1, . . . , log n in the following implicit form. That is, only the matrices
L(i), (R(i))⊤ ∈ Fn×2i are stored in memory where

(M(i))−1 = (M(i+1))−1(I + L(i)R(i)).

The matrix (M(log n))−1 is also stored explicitly in memory. Note that maintaining (M(log n))−1 takes O(nω−1)
amortized time, as we recompute this inverse in O(nω) time every 2log n = n updates.

Via the Woodbury matrix identity, one can show (Lemma 4.4) that the matrices L(i) and R(i) are of the form:

R(i) = (V(i))⊤(M(i+1))−1, L(i) = U(i)(I + U(i)R(i))−1,

where U(i), V(i) are given by the at most 2i vectors u, v of the past at most 2i updates of the form uv⊤ by which
M(i) and M(i+1) differ. (These vectors will have one non-zero entry each, since we reduced to entry updates.) Here
R(i) is composed of some (at most 2i many) rows of (M(i))−1, because we have entry updates, and thus we can
assume each v to be a standard unit vector. Therefore, we can compute L(i) and R(i) in O((Ti + MM(n, 2i, 2i))/2i)
amortized time, where Ti is the time required to obtain the at most 2i rows of (M(i+1))−1. If our predictions are
correct, then when we previously computed L(i+1), R(i+1), we could have also precomputed the required rows
of (M(i+1))−1 in O(MM(n, 2i+1, 2i+1)) time, which is subsumed by the time required to compute L(i+1), R(i+1).
Thus for correct predictions, we can assume Ti = n2i. This leads to O(

∑
i MM(n, 2i, 2i)/2i) = O(nω−1) amortized

time per update2.
A similar idea of maintaining O(log n) copies of matrix M that are updated every 2i iterations was also used

in [62, 13] but they did not handle incorrect predictions efficiently.
Now, observe what happens in our dynamic algorithm if a prediction is incorrect, i.e. we perform an update

in a column that was originally predicted to occur some η iterations into the future. In that case the required
rows of (M(i+1))−1 might not be precomputed. However, the rows are precomputed in (M(j))−1 for every
j ≤ min{log η, log n}. We can wlog assume that the rows are precomputed in (M(log n))−1 because the entire
inverse is computed from scratch every n iterations. Thus the missing row must only be computed in (M(ℓ))−1 for
ℓ = 0, 1, . . . , min{log η, log n}. So we obtain an additional O(

∑min{log η,log n}
ℓ=0 n2ℓ) = O(n min{η, n}) cost for each

update that occurs η iterations earlier than initially predicted.
At last, consider what happens if we perform an update that was not predicted at all, i.e., we receive two

vectors u, v for a rank-1 update. Since the update was not predicted, the previous reduction does not hold and the
vectors remain dense. If v is dense, computing the respective row of R(i) is not just copying a row of (M(i+1))−1

but rather it requires computing a vector-matrix product. Computing this product is done recursively, i.e.,

v⊤(M(i))−1 = v⊤(M(i+1))−1(I + L(i+1)R(i+1)) = v⊤(M(log n))−1
log(n)−1∏

j=i+1
(I + L(j)R(j)),

which takes O(n2) operations. Note that for i = 0, this actually computes v⊤(M(j))−1 for all j = 0, 1, . . . , log n at
once within O(n2) time.

2We focus here in the outline on amortized complexity, but this can be made worst-case (see Section 4).
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2.3 Fully Dynamic Algorithms with Predicted Deletion Times (Section 6). We also consider the fully
dynamic model in which predictions give no information about insertions whatsoever but the relative ordering of
deletions is predicted – by specifying for each item, at the time of its insertions, the position of its future deletion.
Our algorithm is based on a result by Peng and Rubinstein [54]3 that gives a reduction from a fully dynamic
semi-online data structure, in which the order of deletions is given exactly, to an insert-only online data structure.
In particular, assuming that the insert-only data structure has worst-case update time Γ, their semi-online data
structure has update time O(Γ log T ) for a sequence of T updates. We extend this reduction to the case where
this order of deletions is not known exactly but it is predicted with some errors. The error for the i-th element is
denoted by ηi, indicating that there are ηi deletions that were predicted to happen before the deletion of element i
but will arrive after its deletion. This error incurs an additional worst-case update time overhead of roughly
O(ηiΓ).

At a high-level, the idea of Peng and Rubinstein [54] is that if the current list of the already performed
insertions happens to be in the reverse order of deletion times, then a deletion can be performed in time O(Γ)
by simply rewinding the computation of the most recently performed insertion. Moreover, at any point in time,
one can rewind some recent insertions and then re-insert these elements in a different order, to better prepare
for future deletions. Since re-ordering the elements at each update would be expensive, they get an amortized
bound by maintaining a sequence of buckets that keep partial reverse orderings. The amortized bound follows
by ensuring that a set of O(2j) elements are re-ordered in every 2j updates for each j = 0, . . . , ⌈log T ⌉. In our
case, when the deletion of the i-th element arrives ηi positions earlier than predicted, we rewind the computation
of the last ηi + 1 insertions, until we get to delete the correct element, in time O(ηiΓ), and then re-insert the ηi

unnecessarily deleted elements.

3 Partially Dynamic Algorithms.
In this section we prove our upper bounds (Theorem 1.1) and lower bounds (Theorem 1.2) for partially dynamic
graph problems with predictions.

First, let us introduce two closely related concepts – all-pairs bottleneck paths and (min, max)-product – that
we heavily use throughout the section. In the all-pairs bottleneck paths (APBP) problem, we are given a directed
graph G = (V, E) with edge weights w : E → N, and we have to compute a matrix B ∈ NV ×V with

B[u, v] def= min
{

max
e∈P

w(e)
∣∣ P ∈ uv-paths

}
.

APBP can be solved in O(n(3+ω)/2) ⩽ O(n2.687) time [23]. The (min, max)-product of two n× n matrices A, B is
defined as (A UB)[i, j] def= mink max{A[i, k], B[k, j]}. It can also be computed in O(n(3+ω)/2) time [23]. Now, let
us explain the relation between the two. Consider a directed graph G = (V, E) with edge weights w : E → Z, and
let W denote the corresponding weight matrix, i.e., W [u, v] = w(u, v) if (u, v) ∈ E, W [u, v] = +∞ if (u, v) < E,
and W [u, u] = −∞. Observe that, for d ∈ Z+, the (min, max)-product of d copies of W gives all-pairs bottleneck
paths with up to d hops:

(W UW U · · · UW︸                     ︷︷                     ︸
d times

)[u, v] = min
{

max
e∈P

w(e)
∣∣ P ∈ uv-paths, |P| ⩽ d

}
.

Such a product can be computed by the binary exponentiation in O(n(3+ω)/2 log d) time. For d = n, we get exactly
APBP, and the extra log n factor can be avoided [64].

3.1 Upper Bounds. Now we proceed to describe our partially dynamic algorithm for (1 + ϵ)-approximate
APSP with predictions. Since transitive closure is a strictly easier problem, Theorem 1.1 will follow. We begin with
the incremental variant. Recall that ê1, ê2, . . . , êm denotes the predicted sequence of updates, and e1, e2, . . . , em

the actual one.

Theorem 3.1. Incremental (1+ϵ)-approximate all-pairs shortest paths in unweighted directed graphs with predicted
sequence of edge updates can be solved by a deterministic algorithm with O(n(3+ω)/2 log2 n) preprocessing time and
O(log n) worst-case edge insertion time. Each query that is asked between the i-th and (i + 1)-th insertion requires

3A reduction similar to [54], but with only an amortized update time guarantee, was also given by [15].
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O(η̄2
i log log n) = O(η2

∞ log log n) time, where η̄i is the current number of edges in the graph that are not contained
in the longest prefix of the predicted sequence that has already been inserted, i.e.,

η̄i
def= i−max

{
j | {ê1, ê2, . . . , êj} ⊆ {e1, e2, . . . , ei}

}
.

Before proving the theorem, let us explain how the above measure of prediction error η̄i can be upper bounded
by the more standard ℓ∞-error, denoted by η∞. Let Π ∈ Sm denote the permutation of predicted insertions
corresponding to the actual sequence of insertions, i.e., e1, e2, . . . , em = êΠ(1), êΠ(2), . . . , êΠ(m). With this notation,
we have η̄i = i−max

{
j | {1, 2, . . . , j} ⊆ {Π(1), Π(2), . . . , Π(i)}. Our goal is to show that η̄i ⩽ η∞

def= maxj |j−Π(j)|,
for every i ∈ [m]. Fix i ∈ [m], and let k = Π−1(i − η̄i + 1). Note that, by definition of η̄i, it holds that
i− η̄i + 1 < {Π(1), Π(2), . . . , Π(i)}. In other words, k ⩾ i + 1. Then, η∞ ⩾ k −Π(k) ⩾ i + 1− (i− η̄i + 1) = η̄i, as
desired.

Proof. [Proof of Theorem 3.1] Upon receiving the predicted sequence of edge insertions, the algorithm creates
a weighted directed graph with edge set E = {ê1, ê2, . . . , êm} and edge weights w : E → Z equal to predicted
insertion times, i.e., w

(
êi

)
= i for every i ∈ [m]. Then, for every d ∈ {(1 + ϵ)0, (1 + ϵ)1, . . . , (1 + ϵ)log1+ϵ(n)}, the

algorithm computes matrix B(d) of bottleneck paths with up to ⌈d⌉ hops. Observe that B(d)[u, v] ⩽ k if and only if
there is a path from u to v of length at most d using only edges from {ê1, ê2, . . . , êk}. Computing all B(d)’s takes
O(n(3+ω)/2 log2 n) time in total.

On top of that, the algorithm creates a dictionary data structure (e.g., a balanced BST) that will allow
translating edges given as pairs of nodes to their indices in the predicted sequence of insertions, and another BST
that will maintain the set S of indices of already inserted edges (initially, S = ∅. This ends the preprocessing
phase.

When an edge (u, v) is inserted, the algorithm first finds its index in the predicted sequence of insertions, i.e.,
j such that êj = (u, v), and then simply adds j to S. This takes O(log n) time.

To handle a query (u, v) the algorithm proceeds as follows. Let i = |S| be the number of insertions so far.
The algorithm first finds the largest prefix of the predicted sequence of insertions that has been already inserted,
i.e., the largest j such that {1, 2, . . . , j} ⊆ S. This is simply the smallest positive integer not in S minus one, and
it can be found in O(log n) time assuming the BST maintains sizes and value ranges of its subtrees. Then, the
algorithm uses the BST to list “out-of-order” edges Eerr that have been already inserted but are not contained in
that prefix – these correspond to elements of S larger than j. In other words, the current edge set of the graph is
exactly {ê1, ê2, . . . , êj} ∪ Eerr. Note that |Eerr| = i− j = η̄i, and Eerr can be constructed in O(η̄i log n) time.

Next, the algorithm creates a directed weighted auxiliary graph H. The nodes of H are endpoints of edges in
the list Eerr and nodes u and v, that is at most 2η̄i + 2 nodes in total. The edges of H are of two kinds. First,
there are all the edges from Eerr, each with weight 1. Second, for every pair of nodes x, y ∈ H, the algorithm
selects the smallest d such that B(d)[x, y] ⩽ j, and, if such d exists, it adds to H edge (x, y) with weight d. This
second type of auxiliary edges represents paths using only edges from {ê1, ê2, . . . , êj}, and their weights are upper
bounds of the path lengths within up to (1 + ϵ) multiplicative approximation error. It takes O(η̄2

i log log n) time to
construct H.

Finally, the algorithm finds a (weighted) shortest path from u to v in H, which takes O(η̄2
i ) time, using the

Dijkstra algorithm. Let us justify that the (weighted) length of this path dH(u, v) is a correct (1+ϵ)-approximation of
the (unweighted) shortest path length in the original graph dG(u, v), i.e., that dH(u, v) ∈ [dG(u, v), (1+ϵ) ·dG(u, v)].
Clearly, dG(u, v) ⩽ dH(u, v). For the remaining direction, fix a path of length dG(u, v) in the original graph. This
path can be split into segments, each being either a single out-of-order edge or a subpath composed only of edges
from {ê1, ê2, . . . , êj}. Every such segment is represented by an edge in H and the weight of this edge is at most
(1 + ϵ) times larger than the length of the segment. Hence, dH(u, v) ⩽ (1 + ϵ) · dG(u, v).

Now we discuss the decremental variant, which is very similar. The main difference is that we will be looking
at suffixes of the predicted sequence of deletions that were not yet deleted.

Theorem 3.2. There is a deterministic decremental algorithm for (1 + ϵ)-approximate all-pairs shortest paths in
unweighted directed graphs with predicted sequence of edge deletions with O(n(3+ω)/2 log2 n) preprocessing time and
O(log n) worst-case edge deletion time. Each query that is asked between the i-th and (i + 1)-st deletion requires
O(¯̄η2

i log log n) = O(η2
∞ log log n) time, where ¯̄ηi is the current number of edges in the graph that are not contained
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in the longest suffix of the predicted sequence that has not yet been deleted, i.e.,

¯̄ηi
def= min

{
j | {êj , êj+1, . . . , êm} ∩ {e1, e2, . . . , ei} = ∅

}
− i− 1.

Proof. The algorithm closely mimics the incremental algorithm given in the proof of Theorem 3.1. We highlight
the differences.

In the preprocessing phase the algorithm also computes hop-bounded bottleneck paths B(d)’s for O(log n)
exponentially growing hop bounds d, but the difference is that now the edge weight of edge êi is w(ê)i = −i. It
follows that B(d)[u, v] ⩽ −k if and only if there is a path from u to v of length at most d using only edges from
{êk, êk+1, . . . , êm}.

Set S still contains indices of edges present in the graph. That is, initially S = [m], and deleting an edge boils
down to removing its index from S.

To handle a query, the algorithm represents the current edge set of the graph {êj , êj+1, . . . , êm} ∪ Eerr, for j
as small as possible. Note that |Eerr| = ¯̄ηi. The auxiliary graph H again contains u, v, and endpoints of Eerr. For
(x, y) < Eerr, the weight of (x, y) in H is the smallest d such that B(d)[x, y] ⩽ −j, if such d exists and otherwise
edge (x, y) is not included in H. As before, dH(u, v) ∈ [dG(u, v), (1 + ϵ) · dG(u, v)].

Observe that, as before, ¯̄ηi ≤ η∞.

3.2 Lower Bounds. In this section we show that the dependence of the running time of our partially dynamic
algorithms on the prediction error η∞ is (conditionally) optimal, at least in certain parameter regimes.

Theorem 3.3. Unless the OMv Hypothesis fails, there is no algorithm for incremental (decremental) transitive
closure with predictions with arbitrary polynomial prepocessing time, worst-case O(n1−ε) edge insertion (deletion)
time, and O(η2−ε

∞ ) query time, for any ε > 0. This already holds with respect to amortized time bounds per
operation.

Proof. Henzinger et al. [31] proved that the OMv hypothesis implies that the following OuMv problem also cannot
be solved in O(n3−ε) time, for any ε > 0, even after arbitrary polynomial preprocessing time. In the OuMv
problem we are first given Boolean matrix M ∈ {0, 1}n×n, and then we need to answer online n queries of the
form: Given two Boolean vectors ui, vi ∈ {0, 1}n, what is the Boolean product uMv?

We show how to reduce an instance of OuMv to an instance of incremental (decremental) transitive closure
with predictions, on a graph with O(n) nodes, with a request sequence containing O(n2) updates and O(n) queries,
and with the maximum prediction error η∞ = O(n). The reduction itself runs in O(n2) time. Therefore, under
the OMv hypothesis, it cannot hold simultaneously that the preprocessing time is polynomial in n, the update
time is truly sublinear in n, and the query time is truly subquadratic in η∞.

We first focus on the incremental variant of the problem. We will think of the reduction as an algorithm
solving the OuMv problem and having black-box access to an algorithm for incremental transitive closure with
predictions. (We note that our reduction is modelled after a similar one in [31, Lemma 4.7 in the arXiv version],
however we need to insert edges on two sides of the graph in order to reduce the number of queries and get a
meaningful bound.)

Upon receiving matrix M ∈ {0, 1}n×n, the reduction creates a graph composed of four layers of n nodes each,
and generates a predicted sequence of edge insertions. Let the vertex set be V = {a1, . . . , an} ∪ {b1, . . . , bn} ∪
{c1, . . . , cn}∪{d1, . . . , dn}, and let EM denote the following set of edges between b-nodes and c-nodes, corresponding
to matrix M ,

EM = {(bi, cj) | (i, j) ∈ [n]× [n], M [i, j] = 1}.

The predicted sequence of edge insertions starts with all the edges from EM , in an arbitrary fixed order, followed
by

(a1, b1), (c1, d1), (a1, b2), (c2, d1), . . . , (a1, bn), (cn, d1),
(a2, b1), (c1, d2), (a2, b2), (c2, d2), . . . , (a2, bn), (cn, d2),
. . . ,

(an, b1), (c1, dn), (an, b2), (c2, dn), . . . , (an, bn), (cn, dn).
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The reduction gives this sequence to the algorithm to preprocess it, and then it inserts edges EM , in the same
order as in the sequence. This concludes the preprocessing phase, and the reduction starts accepting queries.

Upon receiving a pair of vectors ui, vi ∈ {0, 1}n×n, the reduction first inserts edges from ai to b-nodes that
correspond to ones in ui, and from c-nodes that correspond to ones in vi to di, i.e.,

{(ai, bj) | j ∈ [n], ui[j] = 1} ∪ {(cj , di) | j ∈ [n], vi[j] = 1}.

At this point, the graph contains a path from ai to di if and only if uMv = 1, so the reduction asks reachability
query (ai, di) and returns the answer. Finally, the reduction inserts remaining edges from ai to b-nodes and from
c-nodes to di, i.e.,

{(ai, bj) | j ∈ [n], ui[j] = 0} ∪ {(cj , di) | j ∈ [n], vi[j] = 0},

and it is ready to accept the next query.
Note that, both the predicted and actual insertion time for edge (ai, bj) are within the range [|Em|+ 2n(i−

1), |Em|+ 2ni], so the prediction error for such edge is at most 2n. The same is true for edges of the form (cj , di),
and the predicted insertion times for edges between b-nodes and c-nodes have no error. Hence, the maximum
prediction error is η∞ ⩽ 2n, as desired.

The construction proving hardness of the decremental variant of the problem is very similar. The difference is
that we start with two full bipartite cliques – one between a-nodes and b-nodes, the other between c-nodes and
d-nodes – and edges EM between b-nodes and c-nodes. Then, in i-th OMv query, we first remove edges going from
ai and to di corresponding to zeros in ui and vi, respectively; after that we ask the reachability query (ai, di), and
finally we remove the remaining edges adjacent to ai and di, which correspond to ones in ui and vi.

4 Dynamic Matrix Inverse with Predictions.
In this section we prove Theorem 4.1 which is our main algebraic data structure. In Section 5 we use this result
together with standard reductions from [60, 61, 13] to obtain the graph applications stated in Theorem 5.1.

Theorem 4.1. There exists a data structure with the following operations.

• Initialize Initialize on given M ∈ Fn×n and a queue of n rank-1 updates. Complexity O(nω).

• AppendUpdate Append a rank-1 update (given via two vectors u, v) at the end of the queue in O(n)
worst-case update time.

• PerformUpdate(η) Performs the update (i.e. M ←M + uv⊤) stored at the η-th position in the queue,
and removes it from the queue. The data structure returns the rank and determinant of M. If the matrix is
invertible, it also returns the vector v⊤M′−1 (where v is the vector of the performed rank-1 update and M′ is
the matrix M from before the update). The worst-case update time is O(nω−1 + min{nη, n2}).

The queue must have at least n updates at all times. The data structure is randomized and its output is correct
with high probability.

Note that here η describes precisely the prediction error as described in the introduction, i.e. the parameter η
describes how much earlier an update occurs than predicted. If all updates occur exactly in the sequence as
predicted, we always have η = 1. If an update occurs η iterations too early, then it is stored at the η-th position in
the queue.

Remark 4.1. If the matrix is promised to stay invertible throughout all updates, the data structure of Theorem 4.1
can be deterministic.

4.1 Reducing Rank-1 Updates to Column Updates. We reduce the general rank-1 updates as described
in Theorem 4.1 to column updates which are easier to analyze. Here by column update, we mean an update that
changes only one column at a time. Such a reduction is not possible in the general setting without predictions.
Rank-1 updates without predictions require Ω(n2) update time under the OMv hypothesis, but column updates
can be performed in O(n1.529) time [13]. However, since we are in the offline/prediction settings we can reduce the
rank-1 updates to column updates.
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The idea is as follows: Given a set of n predicted rank-1 updates (ui, vi)i=1,...,n, we can construct U, V by
stacking the vectors next to each other. Then performing the rank-1 updates to some matrix M could be phrased
as follows: Let D be an initially all-0 matrix and consider M′ := (M + UDV⊤). By flipping the diagonal entries
of D from 0 to 1, the matrix M′ is precisely the matrix M after receiving the rank-1 updates. In particular, if the
first k diagonal entries of D are 1, we have M′ = M +

∑k
i=1 uiv

⊤
i . Thus a rank-1 update to M can be seen as a

single entry update to D.
Further, it was shown that maintaining the value of any matrix formula f(M1, . . . , Mk) that consists only

of basic matrix operations (addition, subtraction, multiplication, inversion) can be reduced to a single matrix
inversion. That is, we can reduce the data structure task of maintaining the value of the formula

f(M, U, V⊤, D) = (M + UDV⊤)−1

subject to entry updates to D, to a data structure that maintains the inverse of some matrix subject to entry
updates (and column updates are just a generalization of entry updates.).

Only if a rank-1 update was not predicted does an entry update to D not suffice and we must perform an
actual rank-1 update to M.

The following reduction is implicit from the following lemma by v.d.Brand [11].

Lemma 4.1. ([11]) Given a matrix formula f(A1, . . . , Ak) consisting of p ≥ k − 1 matrix operations, there
exists a block matrix B where some blocks are precisely A1, . . . , Ak and the inverse B−1 contains a block that
is f(A1, . . . , Ak). When each Ai is at most size n× n, then N is of size at most O(pn)×O(pn). The proof is
constructive and constructing N takes time O((pn)2).

This reduction from predicted rank-1 updates to column updates motivates the following Lemma 4.2, which
can be interpreted as a restriction of Theorem 4.1 to column updates.

Lemma 4.2. There exists a data structure with the following operations.

• Initialize Initialize on given M ∈ Fn×n and a queue of n rank-1 updates in O(nω) time.

• AppendUpdate Append a rank-1 update (given via two vectors u, v) at the end of the queue in O(n)
worst-case update time.

• PerformUpdate(η, isQuery) Performs the update (i.e. M←M + uv⊤) stored at the η-th position in the
queue, and removes it from the queue. The data structure returns the determinant of M, and v⊤M−1 where
v is the vector of the performed rank-1 update.
(We can decide to only perform a query, i.e. return these values but do not change M.) Worst-case update
time is O(nω−1 + min{nη, n2}) if v was a standard unit-vector, otherwise it is O(n2).

The queue must have at least n updates at all times. The data structure returns “fail” for the first time M becomes
singular. The data structure can no longer handle any updates after that point.

4.2 Column Updates with Predictions. In this subsection, we prove Lemma 4.2. The main intermediate
result is the following Lemma 4.3. At the end of this subsection we prove that Lemma 4.3 implies Lemma 4.2.

Lemma 4.3. There is a data structure with the following operations:

• Initialize Initialize on given M ∈ Fn×n and non-empty sets F0, . . . , Flog n ⊂ [n] where |Fi| ≤ c · 2i+1 for
c ≥ 1 and Fi ⊂ Fi+1 in O(nω) time. These sets are predictions for the future column updates. Set Fi contains
the predicted column indices for the next 2i column updates.

• QueryAndUpdate For u, v ∈ Fn return v⊤M−1. Optionally, we can decide to set M←M + uv⊤.
If v is some standard unit vector ej and j ∈ Fi for some i, then this takes O(cnω−1 + n2i) time. Otherwise
it takes O(cnω−1 + n2) time.
If this is the t-th update, then for all ℓ where 2ℓ divides t the data structure must also receive new prediction
sets F1, . . . , Fℓ such that Fi ⊂ Fi+1 for all i = 0, . . . , log n and |Fi| ⊂ c · 2i+1.
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The matrix M must stay invertible throughout all updates.

We briefly discuss why Lemma 4.3 will imply update complexities as stated in Lemma 4.2.
The sets (Fi)i=0,...,log n are the sets of possible column indices where we predict the future 2i columns updates

to be. For instance, if we are promised a sequence of n column updates with j1, . . . , jn being their column indices
(i.e. when given a queue of updates as in Lemma 4.2), then we can pick Fi = {j1, . . . , j2i} for i = 0, . . . , log n.
However, note that we do not need such a precise prediction for our data structure to work. It is enough if we
have some O(2i)-sized prediction for the future 2i updates.4

Assuming we have the promised sequence of n column updates, but some column update happens η iterations
too early (i.e. η as in PerformUpdate in Theorem 4.1), then we can find that column index in some Fk for
k ⩽ min{1+ log η, log n}. Thus such an update takes time O(nω−1 +n2k) = O(nω−1 +min{nη, n2}) by Lemma 4.3.
Note that w.l.o.g. Flog n = [n], so for any column update, we can always assume η ⩽ n. However, if an update is
not a column update (i.e. if we perform a general rank-1 update), the update complexity will be O(n2) according
to Lemma 4.3.

The proof of Lemma 4.3 relies on the following implicit representation of a matrix inverse.

Lemma 4.4. Given M ∈ Fn×n and a rank-k update U, V ∈ Fn×k we have

(M + UV⊤)−1 = M−1(I + LR),

where R = V⊤M−1, L = U(I + UR)−1.

Proof. The Woodbury identity [66] states that

(M + UV⊤)−1 = M−1 −M−1U(I + V⊤M−1U)−1V⊤M−1,

which implies

(M + UV⊤)−1 = M−1(I−U(I + V⊤M−1U)−1V⊤M−1)
= M−1(I− LR).

Proof. [Proof of Lemma 4.3]
We start by describing a data structure with amortized time complexity and will later extend it to worst-case

time.
Let M(i) initially be the matrix M, but then we update M(i) ←M only every 2i calls to QueryAndUpdate.

So we always have M(0) = M, but M(i) might be that status of M some 2i calls to QueryAndUpdate ago.
Throughout all updates, we represent the inverses of these matrices in the following implicit form

(M(i))−1 = (M(i+1))−1(I + L(i)R(i))(4.2)

where L(i), R(i) ∈ Fn×2i . We do this for i = 0, . . . , log n.
Initialization. We compute M−1 and store this matrix as M(log n). Then set L(i) = R(i) = 0 for all i.
Update. Assume we receive the t-th call to QueryAndUpdate where ℓ is the largest integer such that 2ℓ

divides t. We start describing the calculations performed by our data structure. Afterward we will analyze the
complexity.

First, we compute v⊤(M(0))−1 where v is one of the vectors describing the rank-1 update given by the current
call to QueryAndUpdate, as we must return this result. Further, the data structure performs the following
operations to update its internal representation of the inverse.

To maintain invariant (4.2) we must update M(i) for all i ⩽ ℓ. Note that M(ℓ+1) was last updated 2ℓ calls to
QueryAndUpdate ago, so the difference between M(ℓ) and M(ℓ+1) are only the past 2ℓ updates. By Lemma 4.4,
we can choose L(ℓ) and R(ℓ) as follows:

4This will later be crucial to maintain the rank of M, because the reduction from dynamic matrix rank to dynamic matrix inverse
performs adaptive updates that cannot be accurately predicted.
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Let V be the n × 2ℓ matrix, where the columns are given by the vectors v of the past 2ℓ calls to
QueryAndUpdate. Then set R(ℓ) = V ⊤(M(ℓ+1))−1.

Let U be the n × 2ℓ matrix, where the columns are given by the vectors u of the past 2ℓ calls to
QueryAndUpdate. (Though all u for which we only performed a query but no update, we will set the
corresponding column in U to 0 instead.) Then set L(ℓ) = U(I + UR)−1.

Thus by Lemma 4.4 we have

(M(ℓ))−1 = (M(ℓ+1))−1(I + L(ℓ)R(ℓ)).

For i < ℓ, we set L(i) = R(i) = 0 because M(i) = M(ℓ). In summary, we still satisfy (4.2).
Complexity. For now, let us assume that we only have column updates, i.e. we only change one column of

M. In that case we can assume v is a standard unit vector because we are adding uv⊤ = ue⊤
j to M to reflect

adding u to the j-th column of M for some j.
Then computing V⊤(M(ℓ))−1 is equivalent to picking 2ℓ rows of (M(ℓ))−1. Let’s assume we can obtain all these

rows within some time Tℓ. Computing R(ℓ) now takes O(MM(n, 2ℓ, 2ℓ)) time. So maintaining the representation
(4.2) for this specific ℓ takes O((Tℓ + MM(n, 2ℓ, 2ℓ))/2ℓ) amortized time.

Now assume we have perfect predictions, i.e. we whenever we update any M(i), we know precisely which future
2i rows will be required of (M(i))−1. Then we could precompute these 2i rows whenever we update M(i). In that
case, Ti = O(n2i) since we just need to read the precomputed rows from memory.

With this motivation, we always precompute the rows of (M(ℓ))−1 with row index in Fℓ whenever we update
the representation (4.2). This costs an additional O(c MM(n, 2ℓ, 2ℓ)) that amortizes over the next 2ℓ updates.
(Note that computing rows of (M(ℓ))−1 requires the same rows of (M(ℓ+1))−1 but by Fℓ ⊂ Fℓ+1 these rows of
(M(ℓ+1))−1 have been precomputed already.)

In summary, if all updates occur as predicted, i.e. all future 2i updates affect only the columns with index in
Fi for all i = 0, . . . , log n, then the amortized update time would just be

O
( log n∑

i=0
c MM(n, 2i, 2i)/2i)

)
= O(c MM(n, 2log n, 2log n)/2log n) = O(cnω−1).

Now assume there is some error in our prediction, i.e. the column index j of an updated column is not in
Fi for some i. That is an issue since we need the j-th row of (M(i))−1 but that row was not precomputed. To
compute this row, we must spend O(n2i) time (by dimension of L(i), R(i)) and must also compute the j-th row of
(M(i+1))−1. Thus by recursion, we spend O(n2k) time, where k > i is the smallest integer such that Fk contains
j5, because then that row of (M(k))−1 was precomputed during a previous update. Thus our update time increases
by an additive O(n2k).

Now let us focus on the case where v is not a standard unit vector, i.e. we perform a general rank-1 update
instead of a column update. In that case, computing v⊤(M(i))−1 takes O(n2i) time plus the time to compute
v⊤(M(i+1))−1. This leads to at most O(n2) time for v⊤(M(log n))−1.

Note that we must also return v⊤(M(0))−1 after each update. This is subsumed by the O(n2k) and O(n2)
cost above, depending on whether v is a standard unit vector or not.

Worst-Case. The worst-case bounds are obtained via a standard technique. The idea is as follows. When
constructing (M(ℓ))−1 (i.e.(L(ℓ), R(ℓ)), we spread the calculations over next 2ℓ−1 calls to QueryAndUpdate. Thus
updating (4.2) for a specific ℓ introduces only O(MM(n, 2ℓ, 2ℓ)/2ℓ) worst-case cost per call to QueryAndUpdate.

Note that this modification requires us to modify the recursion of (4.2) a bit. (M(ℓ))−1 is not immediately
accessible as we spread its calculation over several updates. So (M(ℓ−1))−1 cannot access (M(ℓ))−1 yet. So instead,
it will access the old variant of (M(ℓ))−1 (the one we are currently replacing). This means that R(ℓ−1), L(ℓ−1)

must be larger by a factor of two (2ℓ columns instead of 2ℓ−1) because the old version of (M(ℓ))−1 represents the
matrix M some 2ℓ updates ago.

This old version of (M(ℓ))−1 is accessible when we refresh (M(ℓ−1))−1 because its computation was spread
over 2ℓ−1 updates.

5This parameter k can be seen as the error in our prediction, i.e. if an update happens η iterations too early, then we will have
j ∈ Fk for k < 1 + log η.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3549

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



The same is done recursively. For any i < ℓ, where ℓ is the largest integer that divides t (during the t-th
update), we set

(M(i))−1 = (M′(i+1))−1(I + L(i)R(i)),
where M′(i+1) is either the old version of M(i+1), or the current version of it, if it has finished its calculation.

Since the dimensions of the L, R matrices increases only by a constant factor, the time complexity also
increases by only a constant factor, but it is now worst-case.

We can now prove Lemma 4.2 via Lemma 4.3. We restate Lemma 4.2:

Lemma 4.2. There exists a data structure with the following operations.

• Initialize Initialize on given M ∈ Fn×n and a queue of n rank-1 updates in O(nω) time.

• AppendUpdate Append a rank-1 update (given via two vectors u, v) at the end of the queue in O(n)
worst-case update time.

• PerformUpdate(η, isQuery) Performs the update (i.e. M←M + uv⊤) stored at the η-th position in the
queue, and removes it from the queue. The data structure returns the determinant of M, and v⊤M−1 where
v is the vector of the performed rank-1 update.
(We can decide to only perform a query, i.e. return these values but do not change M.) Worst-case update
time is O(nω−1 + min{nη, n2}) if v was a standard unit-vector, otherwise it is O(n2).

The queue must have at least n updates at all times. The data structure returns “fail” for the first time M becomes
singular. The data structure can no longer handle any updates after that point.

Proof. [Proof of Lemma 4.2] Let us quickly recap some terminology. If v of the rank-1 update is a standard unit
vector, then the rank-1 update is a “column update” i.e. it changes only one column. We now define “the column
index of the update”, i.e. we assign some index to each update: If the update is a column update, we select the
index of the affected column. If the update is not a column update, we just assign 1 as the column index. Thus
“the column index of the update” is well-defined regardless of whether the update is a column or general rank-1
update.

Maintaining sets Fi. We have a queue of updates Q. This queue implies the sequence of sets F1, . . . , Flog n

required by the data structure from Lemma 4.3. That is, at initialization (and every 2i updates) Fi contains the
column-indices of the next 2i updates for each i = 0, . . . , log n.

Initialization. We are given the initial matrix M and a queue of updates Q. This queue implies the
sequence of sets F1, . . . , Flog n required by the data structure from Lemma 4.3. We initialize Lemma 4.3 on M and
(Fi)i=0,...,log n.

AppendUpdate. We are given a new update to append to the queue. We store this future update in Q.
Update. We are given a queue position η and must perform the update stored at the η-th position in the

queue. If the update was a column update, then the column index of the update will be stored in some Fi for
i ⩽ min{1 + log η, log n}. Thus the update takes O(nω−1 + min{nη, n2}) operations. If this update is not a column
update, then by Lemma 4.3 it takes O(n2) operations. The data structure of Lemma 4.3 returns v⊤M−1.

Determinant. We have det(M + uv⊤) = det(M) · (1 + v⊤M−1u). Here v⊤M−1 is given to us after each
update, so we can maintain the determinant with an extra O(n) overhead per update, which is subsumed by the
cost of an update to Lemma 4.3. We must compute det(M) during initialization which takes O(nω) operation,
which is also subsumed by the initialization cost of Lemma 4.3.

4.3 Putting Everything Together. We now prove Theorem 4.1 using Lemma 4.2 and the reduction from
predicted rank-1 to column updates that we outlined in Section 4.2.

Proof. [Proof of Theorem 4.1] Theorem 4.1 is almost the same as Lemma 4.2, except that

• The update time O(nω−1 + min{nη, n2}) of Lemma 4.2 and Theorem 4.1 matches only for column updates.
Rank-1 updates are slower in Lemma 4.2 with O(n2) update time.

• Theorem 4.1 works on singular matrices and can maintain the rank.

We here describe how to extend Lemma 4.2 to obtain Theorem 4.1.
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Rank-1 Update Complexity. We here describe how to reduce predicted rank-1 updates to column
updates. Using this reduction, any predicted rank-1 update can be performed via a column update, we obtain
O(nω−1 + min{nη, n2}) update time for predicted rank-1 updates.

We can phrase the future rank-1 updates to M as follows: Consider the formula V′⊤(M + UDV⊤)−1. Here
U, V, V′ are the vectors u, v of the n future rank-1 updates, but V′ contains one extra all-0 column, and D is a
diagonal matrix. Initially D is all-0, and then one by one we set the diagonal entries to 1 to perform the queued
rank 1 updates. Using Lemma 4.1, there is a matrix B that can be used to maintain the value of this formula.
Since the formula consists of 5 operations (1 addition, 3 products and 1 inversion), the matrix B from Lemma 4.1
is of size O(n)×O(n) so there will be only a constant complexity blow-up.

Any predicted rank-1 update requires us to just change one entry of B (i.e. the one entry of the block
corresponding to D) so it can be performed via a column update to B in O(nω−1 + min{nη, n2}) time via
Theorem 4.1. A rank-1 update not already stored in U, V takes O(n2) time (by Lemma 4.3) because we perform
a typical rank-1 update to M (and thus a rank-1 update to B). After every update, we output one row of
V′⊤(M + UDV⊤)−1 which is contained in one row of B−1 (and we know which row of B that is, by Lemma 4.1
being constructive). In case of an update not stored in V (and thus also not stored in V′), we set the extra 0
column of V′ to the vector v of the rank-1 update. This, too, takes O(n2) time.

We restart this dynamic algorithm every n/2 updates, thus U, V will contain all updates that according to
the queue should happen within the next n/2 iterations. This takes O(nω−1) amortized time per update and can
be made worst-case via standard techniques. By doing these restarts, any updates at position η ⩽ n/2 within the
queue are stored in U, V and thus have update time O(nω−1 + nη). For updates at position η > n/2, they might
not be stored in U, V and thus are performed in O(n2) time.

In summary, we have O(nω−1 + min{nη, n2}) update time when performing an update stored at the η-th
position within the queue.

Rank. Sankowski [61] showed the following lemma:

Lemma 4.5. ([61]) Given M ∈ Fn×n, let

N :=

M X
Y I

I Ik

 ∈ F3n×3n

where X, Y are n × n matrices where each entry is a uniformly at random sampled number from F. Matrix Ik

is the partial identity where only the first k diagonal entries are 1 and the remaining entries are 0. Then with
probability at least 1− O(n/|F|) we have that N is full rank if and only if rank(M) ≥ n− k. Further, if k = 0,
then the top-left n× n block of N−1 is precisely M−1.

We can reduce maintaining the rank of M to maintaining the determinant of N (as defined in Lemma 4.5): Initially,
compute the rank of M and let k = n − rank(M). Then run the our data structure on N. With each update
to M, the rank can change by at most 1. If we observe that the rank decreases (because the determinant of N
becomes 0), we unroll the last update, increase k, and then perform the original update again. Alternatively, if the
determinant did not become 0, we check if the rank increased by decreasing k by 1 (i.e. one extra update to N)
and check if the determinant becomes 0 (if so, revert this update again). Note that thus for each update to M,
we will perform up to 2 updates to N. Further, if we look some t updates to M into the future, then the rank
can change at most by t, so we have a range of size O(t) where the future updates to Ik will occur. So while we
do not know the exact location of the future updates, we can still construct the sets (Fi)0≤i≤log n as required by
Lemma 4.3: For any 0 ≤ i ≤ log n, let Fi be the column indices of the next 2i updates to M and additionally the
2 · 2i column indices 2n + k + j for −2i ≤ j ≤ 2i representing the range within which we may change the Ik block
of N.

The failure probability of Lemma 4.5 is O(n/|F|). For most of our use-cases, we will have |F| = poly(n).
However, if |F| is not polynomial size, we can make the failure probability some small n−c for any arbitrary
constant c > 0 by instead using some field extension F′ of polynomial size.

5 Fully Dynamic Graph Algorithms with Predictions.
In this section we prove Theorem 1.3. We restate the result here in a more detailed way, i.e., we define the different
operations of the data structure and how the predictions are given to it:
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Theorem 5.1. There exists a fully dynamic algorithm that solves the following problems under vertex updates with
predictions: triangle detection, single-source reachability, strong connectivity, directed cycle detection, maximum
matching size, number of vertex disjoint st-paths. The operations of the data structure are as follows

• Initialize Initialize on the graph and a queue of n predicted vertex updates in O(nω) time.

• AppendUpdate Append a vertex update at the end of the queue in O(n) worst-case time.

• PerformUpdate(η) Performs the update stored at the t-th position in the queue, and removes it from the
queue. The worst-case update time is O(nω−1 + n min{η, n}).

The queue must have at least n updates at all times.

Remark 5.1. While we state the queue to need at least n updates, any smaller Ω(n) also works by repeating each
update O(1) times.

Note that η, the position of an update in the queue, as in Theorem 5.1 matches the definition of η being an error
measure of the prediction. The queue can be seen as the predicted sequence of updates, and if all predictions are
correct, we always perform the first update in queue, i.e. η = 1. If the prediction is inaccurate and some update
occurs η iteration to early, then that update is stored not at the front of the queue, but at position η.

We now prove Theorem 5.1 via several reductions. Each subsection will present one reduction that solves one
of the graph problems stated in Theorem 5.1 by reducing it to Theorem 4.1.

5.1 Triangle Detection. Given graph G and its adjacency matrix A, the number of triangles in G is given
by

∑
v(A3)v,v/3, because (A3)v,v is the number of paths from v to v using 3 edges, i.e. the number of triangles

containing v.
After performing a vertex update to some v ∈ V , let A′ be the old adjacency matrix of G and A be the new

one. Then the number of triangles in G changes by (A3)v,v − (A′3)v,v. Thus we can maintain the number of
triangles by querying only 2 entries of A3 (one before and one after the update).

We can maintain A3 via a matrix inverse by
I A

I A
I A

I


−1

=


I −A A2 −A3

I −A A2

I −A
I


So we can solve triangle detection by running Theorem 4.1 on the 3n× 3n matrix above. Any vertex update to G
corresponds to updating one row and one column of A, so can be implemented via 3 · 2 = 6 rank-1 updates to the
matrix above.

5.2 Directed Cycle Detection.

Lemma 5.1. ([13]) Let G = (V, E) be a directed graph and A ∈ Fn×n s.t. each Au,v for (u, v) ∈ E is picked
independently and uniformly at random from F, and all other entries of A are 0. Then with probability at least
1− n/|F| we have det(I−A) = 1 if and only if G is acyclic.

We run Theorem 4.1 on matrix I−A as in Lemma 5.1. A vertex update to G corresponds to changing one row
and column of I−A so it can be performed with two rank-1 updates.

5.3 Single Source Reachability and Strong Connectivity.

Lemma 5.2. ([60]) Let G = (V, E) be a directed graphs and A ∈ Fn×n s.t. each Au,v for (u, v) ∈ E is picked
independently and uniformly at random from F, and all other entries of A are 0. Then for any s, t ∈ V with
probability at least 1− n/|F| we have (I−A)−1

s,t , 0 if and only if s can reach t.

We run Theorem 4.1 on matrix I−A as in Lemma 5.2. A vertex update to G corresponds to changing one row
and column of I−A so it can be performed with two rank-1 updates. To return the single-source reachability for
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some source vertex s, we read the s-th row of (I−A)−1. This can be obtained by using Theorem 4.1 to query
e⊤

s (I−A)−1.
To solve strong connectivity, not that a graph is strongly connected if and only if for any one vertex v, every

other vertex can reach v and v can reach every other vertex. Thus we can solve strong connectivity by running
two data structures for single source reachability.

5.4 Maximum Matching Size and Counting st-Paths.

Lemma 5.3. ([46]) Given graph G = (V, E) let A ∈ Fn×n be the randomized Tutte matrix. That is, for each
(u, v) ∈ E let Au,v = −Av,u be picked independently and uniformly at random from F. Then for |F| = Zp

(p = poly(n)) we have w.h.p. rank(A) = 2·maximum matching size.

We run Theorem 4.1 on the Tutte matrix A as in Lemma 5.3. A vertex update to G corresponds to changing one
row and column of A so it can be performed with two rank-1 updates.

Counting the number of vertex disjoint st-paths can be solved via standard reduction to maximum bipartite
matching size, see e.g. [51].

6 Fully Dynamic Algorithms with Predicted Deletion Times.
We consider the model in which insertions are arriving online but deletions are based on a predicted sequence,
which we refer to as semi-online with prediction setting. We can extend the reduction of [54] that gives a reduction
from a fully dynamic semi-online data structure, in which the sequence of deletions are offline, to an insert-only
data structure. In particular, assuming that the insert only data structure has worst-case update time Γ, the
semi-online data structure of [54] has update time O(Γ log T ) for a sequence of T updates. We observe that an
adaptation of their result can be used for the predicted deletion model.

We start by sketching their amortized semi-online to worst-case insert-only reduction and then explain how
this algorithm can be adapted to handle a deletion with error ηi. Specifically in the rest of this section we argue
that the following theorem holds6:

Theorem 6.1. Consider a sequence of T updates and suppose we are given an incremental dynamic algorithm
with worst-case update time Γ. Assume also that at any point in time we have a prediction on the order of deletions
of current items, such that for the i inserted item the error ηi indicates the number of elements predicted to be
earlier than i-th item that actually arrive later (ηi = 0 if the prediction is correct or the element arrives later).
Then we have a fully-dynamic algorithm with the following guarantees:

• An insertion update is performed in O(Γ log2 T ) worst-cast time.

• The deletion of the i-th element can be performed in O((1 + ηi) · Γ log2 T ) worst-case time.

The key idea of the reduction in [54] is to order the list of elements in the reverse of deletion at any time and
then perform each deletion by rewinding the computation (undo the insertion) in time O(Γ) for the first element
in this reversed list. Since re-ordering the elements at each update is expensive, they perform an amortization
that performs the re-ordering partially for a set of O(2j) elements in every 2j updates for each j = 0, . . . , ⌈log T ⌉.
In particular, they keep the elements in L = ⌈log T ⌉+ 1 buckets B0, B1, . . . , B⌈log T ⌉ such that Bj contains the
elements indexed in range [2j , 2j+1) in the reverse order of deletion, and hence B0 contains the next deletion to be
performed. At a high-level, for each j = 0, . . . , L, once in every 2j updates, the algorithm re-orders a set of O(2j)
elements (in B0 ∪ · · · ∪Bj , whose total size is a sum over geometric-sized buckets) and rewinds the computation on
these sets in time O(Γ · 2j). The algorithm ensures that B contains the first deletion that needs to be performed.
Hence for each j = 0, . . . , L we get an amortized update time of O(Γ). This amortization scheme is similar to the
one we use in Section 5, with the difference that here the reverse ordered deletions in buckets are utilized and
deletion is performed by a rewind (undo insertion) operation, which also takes O(Γ) time in the RAM model.

We get a similar reduction in the predicted deletion setting using the following adaptation: when the update
(deletion) of the i-th element e arrives η := ηi positions earlier than predicted, we rewind the computation over all

6Note that this claim holds for the problems in which the order in which elements are added does not impact the state of the
problem – which holds for almost all graph problems studied in the dynamic algorithms literature.
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the sequence of elements in these η positions until we get to the correct position of this element in time O(ηΓ)
and then re-insert the η − 1 deleted elements and update the lists as we would with any other insertion. In other
words, we can simply maintain the state of the algorithm of [54] by performing O(η) rewind operations and O(η)
re-insert operations, each of which takes O(ηΓ) time.

Note that if an element e arrives later than predicted in the sequence, we simply ignore the deletion e at the
predicted arrival time and process it the actual arrival time. This will result in the next elements in the sequence
being shifted earlier, and the cost will be incurred to the next elements in the sequence, so that when the element
arrives the ordering is corrected by those earlier elements. We can then run the algorithm of [54], and note that
the following invariants proven in [54] remain unchanged.

For any time t ∈ [T ], let κ(t) denote the largest integer such that t is a multiple of 2κ(t), let Et be the set of
elements after the t-th update and let Et,r be the set of r elements that are deleted first (if there are less than r
elements, we set Et,r = Et). Their algorithm maintains the following invariants:

Lemma 6.1. ([54]) After t updates the algorithm maintains:

• For each j = 0, . . . , κ(t) we have Et,2j+1 ⊆ B0 ∪ · · · ∪Bj;

• |B0 ∪ · · · ∪Bκ(t)+1| ⩽ O(2κ(t)).

Hence, after performing the O(ηΓ) rewinds and re-insertion we can use Lemma 6.1 to get the amortized update
time over T updates. At each time t ∈ [T ] we need to process the union of buckets B0 ∪ ..∪Bκ(t), and by summing
over the bucket sizes we have:

1
T

T∑
t=1

O(2κ(t)Γ + ηΓ) = O
(
( 1
T

L∑
κ(t)=0

2κ(t) · T

2κ(t) )Γ + ηLΓ
)

= O((η + 1)Γ log T )

This algorithm is then de-amortized to get a worst-case bound with an additional log factor. At a high-level,
the goal is to slowly perform the longer sequence of re-ordering and re-inserting operation over the updates. The
challenge is that the upcoming insertions interleave the scheduled re-orderings. To handle this they distribute and
preprocess the re-ordering tasks to O(log T ) threads that further divide the updates into smaller geometrically
decreasing sized epochs. We refer the readers to [54] for further details on the de-amortization details. They show
that we can perform each update (without error) in worst-case O(Γ log2 T ) time. Our adaptation adds O(η) rewind
operations that take O(ηΓ) time, and introduces additional O(η) insertions, which also take in total O(Γ log2 T )
time, and thus the worst-case time is O(Γ log2 T (η + 1)).

6.1 Application to All-Pairs Shortest Paths with Vertex Updates. We first observe that we can use
the reduction of [54], combined with an incremental APSP algorithm based on Floyd-Warshall, first observed
by Thorup [63], to get a fully dynamic semi-online APSP algorithm with O(n2 log2 n) worst-case update time.
Note that here we can bound T ≤ n since at any point we can restrict our attention to a set of at most n vertices
inserted.

Observation 6.1. ([63]) Given an edge-weighted directed graph undergoing online vertex insertions, there is a
deterministic algorithm that maintains exact all-pairs shortest paths in this graph with O(n2) worst-case update
time.

Corollary 6.1. ([54, 63]) Given an edge-weighted directed graph undergoing online vertex insertions and offline
(known) vertex deletions, there is a deterministic algorithm that maintains exact all-pairs shortest paths in this
graph with O(n2 log2 n) worst-case update time.

We can extend this to the setting in which the insertions are fully online, but the deletions are predicted, with
the error measure described using Theorem 1.4.

Theorem 6.2. Given a weighted and directed graph undergoing online vertex insertions and predicted vertex
deletions, we can maintain exact weighted all-pairs shortest paths with the following guarantees:

• An insertion update can be performed O(n2 log2 n) worst-cast time.
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• A deletion of the i-th inserted vertex vi can be performed in O(n2(ηi log2 n + 1)) worst-case time, where error
ηi ∈ [0, n] indicates how many vertices were predicted to be deleted before vi that are actually deleted after vi.
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