
Fast 2-Approximate All-Pairs Shortest Paths

Michal Dory
∗

Sebastian Forster
†

Yael Kirkpatrick
‡

Yasamin Nazari
§

Virginia Vassilevska Williams
¶

Tijn de Vos
†

Abstract

In this paper, we revisit the classic approximate All-Pairs Shortest Paths (APSP) problem in undirected graphs. For

unweighted graphs, we provide an algorithm for 2-approximate APSP in 𝑂̃ (𝑛2.5−𝑟 + 𝑛𝜔 (𝑟 ) ) time, for any 𝑟 ∈ [0, 1]. This is

𝑂 (𝑛2.032) time, using known bounds for rectangular matrix multiplication 𝑛𝜔 (𝑟 ) [Le Gall, Urrutia, SODA 2018]. Our result

improves on the 𝑂̃ (𝑛2.25) bound of [Roditty, STOC 2023], and on the 𝑂̃ (𝑚
√
𝑛 + 𝑛2) bound of [Baswana, Kavitha, SICOMP

2010] for graphs with𝑚 ≥ 𝑛1.532
edges.

For weighted graphs, we obtain (2 + 𝜖)-approximate APSP in 𝑂̃ (𝑛3−𝑟 +𝑛𝜔 (𝑟 ) ) time, for any 𝑟 ∈ [0, 1]. This is 𝑂 (𝑛2.214)
time using known bounds for 𝜔 (𝑟 ). It improves on the state of the art bound of 𝑂 (𝑛2.25) by [Kavitha, Algorithmica 2012].

Our techniques further lead to improved bounds in a wide range of density for weighted graphs. In particular, for the

sparse regime we construct a distance oracle in 𝑂̃ (𝑚𝑛2/3) time that supports 2-approximate queries in constant time. For

sparse graphs, the preprocessing time of the algorithm matches conditional lower bounds [Patrascu, Roditty, Thorup, FOCS

2012; Abboud, Bringmann, Fischer, STOC 2023]. To the best of our knowledge, this is the first 2-approximate distance

oracle that has subquadratic preprocessing time in sparse graphs.

We also obtain new bounds in the near additive regime for unweighted graphs. We give faster algorithms for (1 + 𝜖, 𝑘)-
approximate APSP, for 𝑘 = 2, 4, 6, 8.

We obtain these results by incorporating fast rectangular matrix multiplications into various combinatorial algorithms

that carefully balance out distance computation on layers of sparse graphs preserving certain distance information.
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1 Introduction
The All-Pairs Shortest Paths (APSP) problem is one of the most fundamental problems in graph algorithms. In this problem,

the goal is to compute the distances between all pairs of vertices in a graph. It is well-known that APSP can be solved in

𝑂 (𝑛3) time in directed weighted graphs with 𝑛 vertices using the Floyd-Warshall algorithm (see [CLRS94]), or in 𝑂̃ (𝑚𝑛)
time using Dijkstra’s algorithm, where𝑚 is the number of edges in the graph (see also [Tho99, Pet04, PR05]). A slightly

subcubic algorithm for APSP with running time 𝑛3/2Ω (log𝑛)1/2
was given by Williams [Wil14]. A natural hypothesis in

graph algorithms (see [RZ11, Vas18]) is that 𝑛3−𝑜 (1)
time is required to solve APSP in weighted graphs; this is known as the

APSP hypothesis. Subcubic equivalences
1

between the APSP problem and many other problems such as finding a negative

weight triangle or finding the radius of the graph [Vas15, WW18, AGW23] significantly strengthened the belief in the

APSP hypothesis.

All the above algorithms solve the problem in weighted, directed graphs. If the graphs are unweighted and undirected,

APSP can be solved faster, in 𝑂̃ (𝑛𝜔 ) time, using fast matrix multiplication [Sei95, GM97], where 𝜔 < 2.372 is the exponent

of square matrix multiplication [CW87, Wil12, Gal14, AW21, DWZ23]. For weighted, directed graphs with bounded weights,

Zwick showed an algorithm that takes𝑂 (𝑛2.529) time [Zwi02, GU18]
2
. In 𝑂̃ ((𝑛𝜔/𝜖) · log𝑊 ) time it is also possible to obtain

a (1 + 𝜖)-approximation for APSP in weighted directed graphs [Zwi98], where𝑊 is the maximum edge weight and the

weights are scaled such that the smallest non-zero weight is 1.

However, the above complexities can be high for large graphs, and it is desirable to have faster algorithms. While it may

be difficult to get faster algorithms for exact APSP, a natural question is whether we can get faster approximation algorithms

for APSP. We say that an algorithm gives an (𝛼, 𝛽)-approximation for APSP if for any pair of vertices 𝑢, 𝑣 it returns an

estimate 𝛿 (𝑢, 𝑣) of the distance between 𝑢 and 𝑣 such that 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣) ≤ 𝛼 · 𝑑 (𝑢, 𝑣) + 𝛽 , where 𝑑 (𝑢, 𝑣) is the distance

between 𝑢 and 𝑣 . If 𝛽 = 0, we get a purely multiplicative approximation that we refer to as 𝛼-approximation, 𝛼 is sometimes

called the stretch of the algorithm. If 𝛼 = 1, we get a purely additive approximation, and call it a +𝛽-approximation.

Dor, Halperin, and Zwick [DHZ00] showed that obtaining a (2 − 𝜖)-approximation for APSP is at least as hard as

Boolean matrix multiplication. This implies that we cannot get algorithms with running time below 𝑂 (𝑛𝜔 ) for approximate

APSP with approximation ratios below 2, as it would lead to algorithms for matrix multiplication with the same running

time. Their reduction holds even in the case that the graphs are unweighted and undirected. In the directed case the

same result holds for any approximation. This makes the special case of a 2-approximation in undirected graphs a very

interesting special case, as this is the first approximation ratio where we can beat the 𝑂 (𝑛𝜔 ) bound. Since in directed

graphs any approximation for APSP requires Ω(𝑛𝜔 ) time, we will focus from now on undirected graphs.

2-Approximate APSP. While 2-approximation algorithms for APSP have been extensively studied [ACIM99, DHZ00,

CZ01, BK10, Kav12, DKRW
+
22, Dür23, Rod23] (see Table 1 for a summary), it is still unclear what the best running

time is that can be obtained for this problem. This question is also open even in the simpler case of unweighted and

undirected graphs. The study of 2-approximate APSP was treated by the seminal work of Aingworth, Chekuri, Indyk,

and Motwani [ACIM99] that showed an additive +2-approximation algorithm for APSP that takes 𝑂̃ (𝑛2.5) time. Their

algorithm works in undirected unweighted graphs. While the running time of the algorithm is above 𝑂 (𝑛𝜔 ), it is a simple

combinatorial algorithm, where we use the widespread informal terminology that an algorithm is combinatorial if it does

not use fast matrix multiplication techniques. The running time was later improved by Dor, Halperin, and Zwick that

showed a +2-approximation algorithm in 𝑂̃ (min{𝑛3/2𝑚1/2, 𝑛7/3}) time [DHZ00]. This algorithm is still the fastest known

combinatorial algorithm for a +2-approximation. Very recent results show that using fast matrix multiplication techniques,

one can get faster algorithms for a +2-approximation, leading to an 𝑂 (𝑛2.260) running time [DKRW
+
22, Dür23]. All the

above mentioned algorithms give an additive +2-approximation in unweighted undirected graphs, which also implies a

multiplicative 2-approximation. This holds since for pairs 𝑢, 𝑣 where 𝑑 (𝑢, 𝑣) = 1 we can learn the exact distance in 𝑂 (𝑚)
time, and once 𝑑 (𝑢, 𝑣) ≥ 2, an additive +2-approximation is also a multiplicative 2-approximation. However, if our goal is

to obtain a multiplicative approximation, it may be possible to get a faster algorithm.

Algorithms for multiplicative 2-approximate APSP are studied in [CZ01, BK10, Kav12, Rod23]. In particular, Cohen and

Zwick [CZ01] showed that a 2-approximation for APSP can be computed in 𝑂̃ (𝑛3/2𝑚1/2) time also in weighted graphs. A

faster algorithm with running time of 𝑂̃ (𝑚
√
𝑛 + 𝑛2) was shown by Baswana and Kavitha [BK10], this algorithm also works

in weighted graphs. While in dense graphs the running time is 𝑂̃ (𝑛2.5), this algorithm is more efficient in sparse graphs. In

1
Two problems are subcubically equivalent if one problem can be solved in time 𝑂 (𝑛3−𝜖 ) for some 𝜖 > 0 if and only if the other can be solved in time

𝑂 (𝑛3−𝛿 ) for some 𝛿 > 0.

2
The running time of this algorithm depends on the exponent of rectangular matrix multiplication, and becomes 𝑂 (𝑛2.529 ) with the rectangular

matrix multiplication algorithm from [GU18].
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particular, for graphs with𝑂 (𝑛3/2) edges, the running time becomes 𝑂̃ (𝑛2). A faster algorithm for denser graphs was shown

by Kavitha that showed a (2 + 𝜖)-approximation for weighted APSP in 𝑂̃ (𝑛2.25) time [Kav12].
3

This algorithm exploits fast

matrix multiplication techniques. Very recently, Roditty showed a combinatorial algorithm for 2-approximate APSP in

unweighted undirected graphs in 𝑂̃ (𝑛2.25) time [Rod23]. To conclude, currently the fastest 2-approximation algorithms

take 𝑂̃ (min{𝑚
√
𝑛 +𝑛2, 𝑛2.25}) time, and it is still unclear what is the best running time that can be obtained for the problem.

In particular, the following question is still open.

Question 1. Can we get a 2-approximation for APSP in 𝑂̃ (𝑛2) time?

It is worth mentioning that a slightly higher approximation of (2, 1) can be obtained in 𝑂̃ (𝑛2) time in unweighted

undirected graphs [BK10, BK07, Som16, Knu17]. In weighted undirected graphs, a multiplicative 3-approximation can be

obtained in 𝑂̃ (𝑛2) time [CZ01, BK10]. Furthermore, [BK10] also gives a (2,𝑊𝑢,𝑣)-approximation for weighted undirected

graphs in 𝑂̃ (𝑛2) time, where𝑊𝑢,𝑣 is the maximum weight of an edge in the shortest path between 𝑢 and 𝑣 . In other words,

for any pair of vertices 𝑢, 𝑣 the algorithm returns an estimate 𝛿 (𝑢, 𝑣) ≤ 2𝑑 (𝑢, 𝑣) +𝑊𝑢,𝑣 .

Distance Oracles. Note that Ω(𝑛2) is a natural barrier for APSP, as just writing the output of the problem takes Ω(𝑛2)
time. However, Ω(𝑛2) time or space may be too expensive for large graphs, and if we do not need to write the output

explicitly, we may be able to obtain algorithms with subquadratic time or space. This has motivated the study of distance

oracles, which are compact data structures that allow fast query of (possibly approximate) distances between any pair of

vertices. The study of near-optimal approximate distance oracles was initiated by the seminal work of Thorup and Zwick

[TZ05] that showed that for any integer 𝑘 ≥ 2, a distance oracle of size 𝑂 (𝑘𝑛1+1/𝑘 ) can be constructed in 𝑂 (𝑘𝑚𝑛1/𝑘 ) time,

such that for any pair of vertices we can obtain a (2𝑘 − 1)-approximation of the distance between them in query time 𝑂 (𝑘).
As an important special case, it gives 3-approximate distance oracles of size 𝑂 (𝑛3/2) in 𝑂 (𝑚

√
𝑛) time. The construction

is for weighted undirected graphs. Note that the distance oracle uses subquadratic space, and the construction time is

subquadratic for sparse graphs. As shown later these distance oracles can be built also in 𝑂̃ (min{𝑘𝑚𝑛1/𝑘 , 𝑛2}) time [BK10].

The construction time was further improved in [Wul12], where the query time and size were further improved in [Wul13,

Che14, Che15].

Distance oracles of size 𝑂̃ (𝑛5/3) that provide a (2, 1)-approximation in unweighted undirected graphs are studied in

[BGS09, PR14, Som16, Knu17]. This tradeoff between stretch and space is optimal assuming the hardness of set intersection

[PR14, PRT12]. The fastest of them run in min{𝑂̃ (𝑛2,𝑚𝑛2/3)} time [BGS09, Som16, Knu17].
4

Recently, slightly subquadratic algorithms with nearly 2-approximations were given for undirected unweighted

graphs. In particular, a distance oracle with stretch (2(1 + 𝜖), 5) and slightly subquadratic running time is given by Akav

and Roditty [AR20]. In a follow-up work, Chechik and Zhang constructed a (2, 3)-approximate distance oracle of size

𝑂̃ (𝑛5/3) in 𝑂̃ (𝑚 + 𝑛1.987) time. They also study other trade-offs between the stretch and running time, and in particular

show that (2 + 𝜖, 𝑐 (𝜖))-approximate distance oracle of size 𝑂̃ (𝑛5/3) can be constructed in 𝑂̃ (𝑚 + 𝑛5/3+𝜖 ) time, where 𝑐 (𝜖)
is a constant depending exponentially on 1/𝜖 . The preprocessing time of this distance oracle nearly matches a recent

conditional lower bound by Abboud, Bringmann, and Fischer [ABF23], who showed that𝑚5/3−𝑜 (1)
time is required for a

(2 + 𝑜 (1))-approximation, conditional on the 3-SUM conjecture. While there are subquadratic constructions of distance

oracles with nearly 2-approximations, all existing algorithms for 2-approximations take at least Ω(𝑛2) time [DHZ00, CZ01,

BK10, Kav12], which raises the following question.

Question 2. Can we construct a 2-approximate distance oracle in subquadratic time?

1.1 Our Results Throughout we write 𝑛𝜔 (𝑟 ) for the time for multiplying an 𝑛 × 𝑛𝑟 matrix by an 𝑛𝑟 × 𝑛 matrix (see

Section 2). Rectangular matrix multiplication is an active research field, with the bounds on 𝜔 (𝑟 ) being improved in recent

years [Gal23, GU18, Gal12]. We provide how the recent work by Vassilevska Williams, Xu, Xu, and Zhou [WXXZ23] affects

our running times in Appendix A. For the rest of this paper, we use [GU18], the last published paper on the topic, for the

sake of replicability. We balance the terms using [Bra].

Unweighted 2-Approximate APSP. Our first contribution is a faster algorithm for 2-approximate APSP in unweighted

undirected graphs.
5

3
In the introduction we assume that 1/𝜖 = 𝑛𝑜 (1) for simplicity of presentation. Similarly, when we discuss weighted graphs, we assume polynomial

weights.

4
The running time of 𝑂̃ (𝑚𝑛2/3 ) is implicit in [BGS09].

5
All our randomized algorithms are always correct; the randomness only affects the running time.
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Theorem 1.1. There exists a randomized algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸), computes 2-

approximate APSP. With high probability, the algorithm takes 𝑂̃ (𝑛2.5−𝑟 + 𝑛𝜔 (𝑟 ) ) time, for any 𝑟 ∈ [0, 1]. Using known upper

bounds for rectangular matrix multiplication, this is 𝑂 (𝑛2.032) time.

Our running time improves over the previous best running time of 𝑂̃ (min{𝑚
√
𝑛 + 𝑛2, 𝑛2.25}) [BK10, Kav12, Rod23] as

long as 𝑚 ≥ 𝑛1.532
, and gets closer to an 𝑂 (𝑛2) running time. In particular, if we have a rectangular matrix multiplication

bound of 𝜔 (0.5) = 2, then we obtain a 𝑂̃ (𝑛2) time algorithm. Currently, we know 𝜔 (0.5) < 2.043 [WXXZ23] – a very

recent improvement on [GU18]: 𝜔 (0.5) < 2.044183.

While the fastest version of our algorithm exploits fast rectangular matrix multiplication, our approach also leads

to an alternative simple combinatorial 2-approximation algorithm in 𝑂̃ (𝑛2.25) time, matching the very recent result by

Roditty [Rod23]. See Section 3.2 for the details.

Algorithms for Unweighted APSP

Reference Time Approx.

[ACIM99] 𝑛2.5 +2
[DHZ00] 𝑛7/3 +2

[DKRW
+
22] 𝑛2.287 +2

[Dür23] 𝑛2.260 +2
[Rod23] 𝑛2.25

2

This work 𝑛2.032
2

Algorithms for Weighted APSP

Reference Time Approx.

[CZ01] 𝑛3/2𝑚1/2
2

[BK10] 𝑚
√
𝑛 + 𝑛2

2

[Kav12] 𝑛2.25
2 + 𝜖

This work 𝑛2.214
2 + 𝜖

This work 𝑚𝑛2/3
2

Table 1: Algorithms for 2-Approximate APSP. The last result in the right table is a 2-approximate distance oracle.

Weighted 2-Approximate APSP. For weighted undirected graphs we show the following.

Theorem 1.2. There exists a randomized algorithm that, given an undirected graph 𝐺 = (𝑉 , 𝐸) with non-negative

integer weights bounded by 𝑊 , computes (2 + 𝜖)-approximate APSP. With high probability the algorithm takes 𝑂 (𝑛3−𝑟 +
𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) time, for any 𝑟 ∈ [0, 1]. Using known upper bounds for rectangular matrix multiplication, this is

𝑂 (𝑛2.214 (1/𝜖)𝑂 (1) log𝑊 ) time.

We remark that with standard scaling techniques the result generalizes to non-integer weights. Hence we state all our

weighted results only for integers.

To the best of our knowledge, this is the first improvement for weighted (2 + 𝜖)-approximate APSP since the work

of Kavitha [Kav12] that showed an algorithm with 𝑂̃ (𝑛2.25) running time, that also exploited fast matrix multiplication

techniques. We note that our algorithm and the algorithm of [Kav12] give a (2 + 𝜖)-approximation, and currently the

fastest algorithms that give a 2-approximation for weighted APSP take 𝑂̃ (min{𝑛𝜔 ,𝑚
√
𝑛 + 𝑛2}) time [Zwi02, BK10]. The

fastest combinatorial algorithm for the problem is the 𝑂̃ (𝑚
√
𝑛 + 𝑛2) time algorithm of Baswana and Kavitha [BK10]. This

algorithm takes 𝑂̃ (𝑛2.5) time in dense graphs, but it is faster for sparser graphs.

Our approach can also be combined with the approach of [BK10] to obtain faster algorithms for sparser graphs, giving

the following. See Table 2 for some specific choices for the value of𝑚.

Theorem 1.3. There exists a randomized algorithm that, given an undirected graph 𝐺 = (𝑉 , 𝐸) with non-negative, integer

weights bounded by𝑊 and a parameter 𝑟 ∈ [0, 1], computes (2 + 𝜖)-approximate APSP. With high probability, the algorithm

runs in 𝑂̃ (𝑚𝑛1−𝑟 + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) time.

In particular, our algorithm is faster than [BK10] for𝑚 ≥ 𝑛𝜔 (0.5)−0.5
. With the current value of 𝜔 (0.5) our algorithm is

faster for𝑚 ≥ 𝑛1.545
[GU18].

Weighted 2-Approximate Distance Oracle. The results mentioned above are fast for graphs that are relatively dense.

For sparser graphs we show a simple combinatorial algorithm that gives the following.

Theorem 1.4. There exists a combinatorial algorithm that, given a weighted graph 𝐺 = (𝑉 , 𝐸), constructs a distance oracle

that answers 2-approximate distance queries in constant time, and uses 𝑂̃ (𝑚𝑛2/3) space with preprocessing time 𝑂̃ (𝑚𝑛2/3).
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For sparse graphs (𝑚 = 𝑜 (𝑛4/3)), we have subquadratic running time and space. To the best of our knowledge this is

the first 2-approximate distance oracle with subquadratic construction time for sparse graphs. Moreover, when𝑚 = 𝑂 (𝑛)
our bounds match the conditional lower bound of Ω̃(𝑚5/3) preprocessing time for 2-approximations, conditional on the

set intersection conjecture [PRT12] or the 3-SUM conjecture [ABF23], where [PRT12] shows the stronger Ω̃(𝑚5/3) space

lower bound. Moreover, for any stretch strictly below 2, there is a Ω̃(𝑛2) lower bound (conditional on the set intersection

conjecture) [PR14]. In [PR14] they also show a polynomial time construction of a 2-approximate distance oracle for

weighted graphs of size 𝑂̃ (𝑛4/3𝑚1/3), which is subquadratic space for sparse graphs. The proof of Theorem 1.4 can be found

in Section 4.3.

We can also obtain a (2,𝑊𝑢,𝑣)-approximate distance oracle with a better construction time than our 2-approximate

construction. In particular, we can obtain a subquadratic preprocessing time of 𝑂̃ (𝑛𝑚2/3) when𝑚 ≤ 𝑛3/2
, see Appendix B

for full details. This result is also implied by an algorithm of Baswana, Goyal, and Sen [BGS09]. They focus on (2, 1)-distance

oracles for unweighted graphs using the same algorithm. We observe that 1) the same algorithm can lead to subquadratic

preprocessing time (in sparse graphs), and 2) this leads to a (2,𝑊𝑢,𝑣)-approximation for weighted graphs. We make these

observations explicit for a wider range of parameter settings and for completeness give an analysis in Appendix B.

𝑚 This work Previous results

𝑛1.0 𝑛1.667 𝑛2
[BK10]

𝑛1.1 𝑛1.767 𝑛2
[BK10]

𝑛1.2 𝑛1.867 𝑛2
[BK10]

𝑛1.3 𝑛1.967 𝑛2
[BK10]

𝑛1.4 𝑛2.009 𝑛2
[BK10]

𝑛1.5 𝑛2.032 𝑛2
[BK10]

𝑚 This work Previous results

𝑛1.6 𝑛2.062 𝑛2.1
[BK10]

𝑛1.7 𝑛2.097 𝑛2.2
[BK10]

𝑛1.8 𝑛2.134 𝑛2.25
[Kav12]

𝑛1.9 𝑛2.173 𝑛2.25
[Kav12]

𝑛2.0 𝑛2.214 𝑛2.25
[Kav12]

Table 2: Comparison of the novel running time bounds of our approximation algorithms for weighted graphs and prior

work, for 1/𝜖 = 𝑛𝑜 (1) . For sparser graphs (𝑚 ≤ 𝑛1.3
), we use our 2-approximate distance oracle (Theorem 1.4), and for

denser graphs (𝑚 ≥ 𝑛1.4
) we use our (2 + 𝜖)-approximate APSP (Theorem 1.3). Theorem 1.4 gives the fastest running

time when𝑚 ≤ 𝑛4/3
, and Theorem 1.3 gives the fastest running time when𝑚 ≥ 𝑛1.545

. For 𝑛1.334 < 𝑚 < 𝑛1.545
, we do not

improve on [BK10].

Near-Additive APSP. We also study algorithms that give a near-additive approximation in unweighted undirected

graphs. We show the following.

Theorem 1.5. There exists a deterministic algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸) and an even

integer 𝑘 ≥ 2, computes (1 + 𝜖, 𝑘)-approximate APSP with running time 𝑂̃

(
𝑛

2+(1−𝑟 ) 2

𝑘+2 + 𝑛𝜔 (𝑟 ) (1/𝜖)
)
, for any choice of

𝑟 ∈ [0, 1].

As an important special case, we get a (1 + 𝜖, 2)-approximation in 𝑂 (𝑛2.152) time when 1/𝜖 = 𝑛𝑜 (1) . While

the running time is higher compared to our multiplicative 2-approximation, it improves over previous additive or

near-additive approximation algorithms. As mentioned above, currently the fastest algorithm for a +2-approximation

takes 𝑂 (𝑛2.260) time [Dür23], and it exploits fast matrix multiplication. The fastest combinatorial +2-approximation

algorithm takes 𝑂̃ (min{𝑛3/2𝑚1/2, 𝑛7/3}) time [DHZ00]. If we consider near-additive approximation algorithms, Berman

and Kasiviswanathan showed a (1 + 𝜖, 2)-approximation in 𝑛2.24+𝑜 (1)
time based on fast matrix multiplication [BK07].

For 𝑘 → log𝑛, our running time goes to 𝑂̃ (𝑛2). In particular, when 1/𝜖 = 𝑛𝑜 (1) we obtain a (1 + 𝜖, 4)-approximation in

𝑂 (𝑛2.119) time, a (1+𝜖, 6)-approximation in𝑂 (𝑛2.098) time, and a (1+𝜖, 8)-approximation in𝑂 (𝑛2.084) time. The state of the

art for these approximations is𝑂 (𝑛2.2),𝑂 (𝑛2.125), and𝑂 (𝑛2.091) [DHZ00] respectively, using the purely additive algorithm by

Dor, Halperin, and Zwick [DHZ00] that gives a deterministic +𝑘-approximation for APSP in 𝑂̃ (min{𝑛2− 2

𝑘+2𝑚
2

𝑘+2 , 𝑛2+ 2

3𝑘−2 })
time, for even 𝑘 > 2. See also Table 3 in Section 3.3 for comparison of our results and prior work. We remark that the

algorithm of [DHZ00] becomes faster than ours once the additive term is at least 10. Our work shows that for smaller

additive terms, a (1 + 𝜖, 𝛽)-approximation can be obtained faster than a purely additive +𝛽-approximation. To the best of

our knowledge, previously such results were known only for the special case of 𝛽 = 2 [BK07].

We remark that except [BK07] previous algorithms for near-additive approximations [Coh00, Elk05, EGN22] had larger

additive terms compared to the ones we study here. In particular, Elkin, Gitlitz and Neiman [EGN22] showed an algorithm
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that computes a (1 + 𝜖, 𝛽)-approximation in 𝑂̃ (𝑚𝑛1/𝑘 + 𝑛2+1/(2𝑘−1) ) time, where 𝛽 = 𝑂 (𝑘/𝜖)𝑂 (𝑘 ) . While 𝛽 is a constant

when 𝜖 and 𝑘 are constants, it is larger compared to the constants we consider here.

Independent work Independently, Saha and Ye [SY23] achieved similar results. They also obtain 2-approximate APSP

for unweighted graphs in 𝑂 (𝑛2.032) time (Theorem 1.1), moreover they give a deterministic algorithm for this problem

in 𝑂 (𝑛2.073) time. In the (near) additive regime (Theorem 1.5), they both give faster running times and do not incur the

multiplicative (1 + 𝜖) error. They include additional results for additive approximations in weighted graphs, but do not

have our results for 2-approximate APSP on weighted graphs (Theorem 1.3 and Theorem 1.4).

1.2 Technical Overview

Unweighted 2-Approximate APSP We start by describing our 2-approximation algorithm for APSP in unweighted

undirected graphs running in 𝑂 (𝑛2.032) time. At a high-level, we divide all the shortest paths in the graph into 2 types: the

sparse paths and the dense paths. A path is sparse if the degrees of all vertices in the path are at most

√
𝑛, and it is dense

otherwise.

Dealing with sparse paths. In order to compute the distances between all pairs of vertices 𝑢, 𝑣 where the shortest path

between 𝑢 and 𝑣 is sparse we use the following approach. All the sparse paths are contained in a subgraph 𝐺 ′ = (𝑉 , 𝐸′)
of the input graph 𝐺 = (𝑉 , 𝐸) obtained by taking all edges adjacent to vertices of degree ≤

√
𝑛. Note that this graph has

only 𝑂 (𝑛3/2) edges. To estimate the distances, we run the algorithm of Baswana and Kavitha [BK10] on the graph 𝐺 ′, and

exploit the fact that this algorithm is efficient for sparse graphs. This gives a 2-approximation for the distances in the sparse

graph 𝐺 ′ in 𝑂̃ ( |𝐸′ |
√
𝑛 + 𝑛2) = 𝑂̃ (𝑛2) time.

Dealing with dense paths in 𝑶̃ (𝒏2.5) time. We are left with dense shortest paths, i.e. paths that have at least one vertex

with degree larger than

√
𝑛. As a warm-up, we start by describing a simple algorithm that obtains +2-approximations for

the lengths of all these paths in 𝑂̃ (𝑛2.5) time, following the classic algorithm of Aingworth, Chekuri, Indyk and Motwani

[ACIM99], and later we explain how we get a faster algorithm. We denote by 𝐻 the high-degree vertices that are vertices

with degree larger than

√
𝑛. We start by computing a hitting set 𝑆 , a small set of vertices such that each vertex in 𝐻 has a

neighbor in 𝑆 . It is easy to find a hitting set of size 𝑂̃ (
√
𝑛), for example by adding each vertex to the set with probability

𝑂̃ (1/
√
𝑛). Since each high-degree vertex has degree at least

√
𝑛, with high probability all high-degree vertices will have

neighbors in 𝑆 . The algorithm then proceeds as follows.

1. We compute distances from 𝑆 to all other vertices.

2. We set 𝛿 (𝑢, 𝑣) = min𝑎∈𝑆 {𝑑 (𝑢, 𝑎) + 𝑑 (𝑎, 𝑣)}.

If the shortest path between 𝑢 and 𝑣 is dense, then after Step 2 the value 𝛿 (𝑢, 𝑣) is a +2-approximation for 𝑑 (𝑢, 𝑣).
The reason is that there exists a high-degree vertex 𝑥 in the shortest 𝑢 − 𝑣 path, and 𝑥 has a neighbor 𝑎 ∈ 𝑆 . Then

𝑑 (𝑢, 𝑎) + 𝑑 (𝑎, 𝑣) ≤ 𝑑 (𝑢, 𝑥) + 𝑑 (𝑥, 𝑎) + 𝑑 (𝑎, 𝑥) + 𝑑 (𝑥, 𝑣) = 𝑑 (𝑢, 𝑣) + 2. See Figure 1 for illustration. Hence by computing

distances from 𝑆 to all other vertices, we can get an additive +2-approximation for all dense paths.

𝑢 𝑣𝑥

deg(𝑥) ≥ 𝑛

𝑎

Figure 1: Illustration of the stretch analysis.

The running time is 𝑂̃ (𝑛2.5). First, computing distances from all vertices in 𝑆 takes 𝑂 ( |𝑆 |𝑚) = 𝑂̃ (𝑛2.5) time since

|𝑆 | = 𝑂̃ (
√
𝑛),𝑚 = 𝑂 (𝑛2) and computing the distances from one vertex in 𝑆 takes 𝑂 (𝑚) time by computing a BFS tree.

Second, in Step 2, for each one of the 𝑛2
pairs of vertices we compute distances through all possible vertices in 𝑆 which

takes 𝑂̃ (𝑛2.5) time.
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Implementing Step 1 faster. Our goal is to implement the above approach faster. First, note that Step 1 takes 𝑂 ( |𝑆 |𝑚)
time. To obtain a faster algorithm, our goal is to run this step on a graph where 𝑂 ( |𝑆 |𝑚) = 𝑂̃ (𝑛2). To do so, we divide the

dense paths to 𝑂 (log𝑛) different levels. We say that a path is 2
𝑖
-dense if the maximum degree of a vertex in the path is

between [2𝑖 , 2𝑖+1]. Since 2
𝑖
-dense paths have a vertex with degree at least 2

𝑖
, we can find a hitting set 𝑆𝑖 of size 𝑂̃ (𝑛/2𝑖 )

such that each 2
𝑖
-dense path will have a neighbor in 𝑆𝑖 . Our goal is to repeat the above algorithm but on a sparser graph.

Let 𝐺𝑖 = (𝑉 , 𝐸𝑖 ) be a subgraph of 𝐺 that has all edges adjacent to vertices of degree at most 2
𝑖+1

. To deal with 2
𝑖
-dense

paths we work as follows.

1. We compute distances from 𝑆𝑖 to all other vertices in the graph 𝐺𝑖 .

2. We set 𝛿 (𝑢, 𝑣) = min𝑎∈𝑆𝑖 {𝛿 (𝑢, 𝑎) + 𝛿 (𝑎, 𝑣)}.

In Step 2, the distance estimates 𝛿 (𝑢, 𝑎), 𝛿 (𝑎, 𝑣) are the estimates computed in Step 1. By definition, all the vertices of

the 2
𝑖
-dense paths and their edges to their neighbors are included in the graph 𝐺𝑖 , so it is enough to compute distances in

this graph in order to obtain +2-approximation for the lengths of 2
𝑖
-dense paths. Since we worked on a sparser graph the

running time for computing the BFS trees in level 𝑖 is now 𝑂 ( |𝑆𝑖 | |𝐸𝑖 |) = 𝑂̃ ((𝑛/2𝑖 ) · 𝑛2
𝑖+1) = 𝑂̃ (𝑛2). Summing up over all

𝑂 (log𝑛) levels gives 𝑂̃ (𝑛2) running time for computing the BFS trees. After this step, we are guaranteed that if the shortest

path between 𝑢 and 𝑣 is 2
𝑖
-dense, then there is a vertex 𝑎 ∈ 𝑆𝑖 such that 𝛿 (𝑢, 𝑎) + 𝛿 (𝑎, 𝑣) ≤ 𝑑 (𝑢, 𝑣) + 2, where 𝛿 (𝑢, 𝑎), 𝛿 (𝑎, 𝑣)

are the distances computed from 𝑎 in 𝐺𝑖 .

Implementing Step 2 faster. By now we have computed all the relevant distances from the sets 𝑆𝑖 , there is a remaining

challenge. In order to estimate the distance of each pair 𝑢 and 𝑣 we need distance estimates going through all possible

vertices 𝑎 ∈ 𝑆𝑖 (Step 2), which takes 𝑂̃ (𝑛2.5) time for all pairs, as in the worst case |𝑆𝑖 | = 𝑂̃ (
√
𝑛). To implement this step

faster, we exploit fast matrix multiplication. Note that Step 2 is essentially equivalent to matrix multiplication when the

operations are minimum and plus, such multiplications are called distance products. While it is well-known that APSP can

be computed using matrix multiplication, usually it requires multiplication of square matrices which takes 𝑂̃ (𝑛𝜔 ) time. The

trick in our case is that since we only want to compute distances through a small set 𝑆𝑖 , we can use fast rectangular matrix

multiplication, as first exploited by Zwick [Zwi02]. Since |𝑆𝑖 | = 𝑂̃ (
√
𝑛) we only need to multiply matrices with dimensions

𝑛 × 𝑛0.5
and 𝑛0.5 × 𝑛, which can be done in just 𝑂 (𝑛2.045) time using the rectangular matrix multiplication algorithms by Le

Gall and Urrutia [GU18]. Fast matrix multiplication algorithms do not directly apply to distance products, however there is

a well-known reduction that shows that we can get (1 + 𝜖)-approximation for distance products in the same time [Zwi02],

see Section 2 for the details.

Conclusion. Using the ideas described we can get a (2 + 𝜖)-approximation in 𝑂 (𝑛2.045) time. To remove the 𝜖 term in the

stretch, we exploit the fact that in unweighted graphs we can get an additive + log𝑛-approximation in 𝑂̃ (𝑛2) time [DHZ00].

Note that for pairs of vertices at distance larger than log𝑛, an additive + log𝑛-approximation is already a multiplicative

2-approximation. Hence we can focus our attention on pairs of vertices at distance at most log𝑛 from each other. We show

that this allows us to turn any (2 + 𝜖)-approximation for unweighted graphs to a 2-approximation, as long as the algorithm

depends polynomially on 1/𝜖 (see Section 2.1 for the details).

Moreover, we can improve the running time to 𝑂 (𝑛2.032) by a better balancing of our two approaches, for dealing with

sparse and dense paths. In particular, in our discussion so far we defined sparse paths to be ones where the maximum

degree is at most

√
𝑛, which led to hitting sets of size 𝑂̃ (

√
𝑛). To obtain a faster algorithm we want to have a smaller hitting

set of size 𝑂 (𝑛𝑟 ) for an appropriate choice or 𝑟 , and then the sparse paths are paths where the maximum degree is at most

𝑂 (𝑛1−𝑟 ). With these parameters, computing distances in the sparse graph using [BK10] takes 𝑂̃ (𝑛2.5−𝑟 ) time, while dealing

with dense paths takes 𝑂̃ (𝑛𝜔 (𝑟 ) ) time. Balancing these two terms gives an 𝑂 (𝑛2.032) time algorithm. Full details appear in

Section 3.

We remark that we can also implement Step 1 using the (1 + 𝜖)-approximate multi-source shortest paths algorithm by

Elkin and Neiman [EN22] that is based on fast rectangular matrix multiplication. This allows computing (1+𝜖)-approximate

distances from 𝑂̃ (𝑛𝑟 ) sources in 𝑂̃ (𝑛𝜔 (𝑟 ) ) time, which leads to the same overall running time. If we do so we can have

only one set 𝑆 as in the original description of the algorithm. In our paper we implement Step 1 using the combinatorial

algorithm discussed above that takes 𝑂̃ (𝑛2) time, which shows that currently the bottleneck in the algorithm is Step 2, and

other parts of the algorithm can be computed in 𝑂̃ (𝑛2) time.

A combinatorial algorithm. Our approach also leads to a simple combinatorial 2-approximation algorithm that takes

𝑂̃ (𝑛2.25) time. To do so, we just change the threshold of sparse and dense paths. We say that a path is sparse if all the

vertices in the path have degree at most 𝑛3/4
, and it is dense otherwise. Computing 2-approximations for sparse paths will
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now take 𝑂̃ (𝑛2.25) time by [BK10]. In the dense case, since the dense paths now have a vertex of degree at least 𝑛3/4
, we

can construct a smaller hitting set 𝑆 of size 𝑂̃ (𝑛1/4), and then we can implement Steps 1 and 2 directly via a combinatorial

algorithm in 𝑂̃ (𝑛2.25) time (by the same approach described above but replacing the size of 𝑆 with 𝑂̃ (𝑛1/4)). See Section 3.2

for the details.

We remark that Roditty [Rod23] recently obtained the same result (a combinatorial 2-approximation in 𝑂̃ (𝑛2.25) time)

via a different approach. At a high-level, his approach is based on a detailed case analysis of the +4-approximation algorithm

of Dor, Halperin, and Zwick [DHZ00], showing that for close-by pairs a better approximation can be obtained.

Near-additive approximations. We can use the same approach also in order to obtain near-additive approximations.

Note that in the dense case, our algorithm actually computed a (1 + 𝜖, 2)-approximation, where the (1 + 𝜖) term comes from

using fast matrix multiplication. Hence, if on the sparse graph we run the +𝑘-additive approximation algorithm by Dor,

Halperin, and Zwick [DHZ00] instead of the multiplicative 2-approximation algorithm of Baswana and Kavitha [BK10], we

can get (1 + 𝜖, 𝑘)-approximations for all the distances. See Section 3.3 for the details.

Weighted 2-Approximate APSP The techniques above do not generalize well to the weighted setting. For weighted

graphs, we use a different approach, based on the set-up of bunches and clusters as introduced by Thorup and Zwick [TZ05].

For a parameter 𝑝 ∈ [ 1

𝑛
, 1] we sample each vertex with probability 𝑝 , and if sampled we add it to a set 𝑆 . With high

probability, we have |𝑆 | = 𝑂̃ (𝑝𝑛). Now, for each vertex 𝑢 ∈ 𝑉 , we define the pivot of 𝑢 to be the closest vertex

in 𝑆 to 𝑢, i.e., 𝑝 (𝑢) is an arbitrary vertex in the set {𝑣 ∈ 𝑆 : 𝑑 (𝑢, 𝑣) = 𝑑 (𝑢, 𝑆)}, and we define the bunch of 𝑢 by

𝐵(𝑢) := {𝑣 ∈ 𝑉 : 𝑑 (𝑢, 𝑣) < 𝑑 (𝑢, 𝑝 (𝑢))} ∪ {𝑝 (𝑢)}. For a vertex 𝑣 ∈ 𝑉 , we define the cluster of 𝑢 as the inverse bunch:

𝐶 (𝑣) := {𝑢 ∈ 𝑉 : 𝑣 ∈ 𝐵(𝑢)}. Thorup and Zwick [TZ05] show how to compute pivots, bunches, clusters, and distances

𝑑 (𝑢, 𝑣) for all 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝐵(𝑢) in time 𝑂̃ (𝑚
𝑝
). Moreover, in follow up work [TZ01] they show that with different techniques,

that is, a more involved construction of 𝑆 , we can have that both bunches and clusters are bounded by 𝑂̃ ( 1

𝑝
) with high

probability. The running time remains 𝑂̃ (𝑚
𝑝
).

Warm-up: 3-approximate APSP. To see how we use this to compute approximate shortest paths, we consider a pair of

vertices 𝑢, 𝑣 ∈ 𝑉 . If either 𝑣 ∈ 𝐵(𝑢) or 𝑢 ∈ 𝐵(𝑣), we have the exact distance, so assume this is not the case. In particular if

𝑣 ∉ 𝐵(𝑢), then 𝑑 (𝑢, 𝑝 (𝑢)) ≤ 𝑑 (𝑢, 𝑣). We compute shortest paths from 𝑆 to 𝑉 , in particular obtaining 𝑑 (𝑝 (𝑢), 𝑣). With this

additional information we get a 3-approximation almost directly [TZ05]:

𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑝 (𝑢), 𝑣) ≤ 𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑝 (𝑢), 𝑢) + 𝑑 (𝑢, 𝑣) ≤ 3𝑑 (𝑢, 𝑣),

where the first inequality holds by the triangle inequality.

2-approximate APSP. By a closer inspection, we can improve this analysis to a 2-approximation for each pair of vertices,

whose shortest path interacts in a particular way with the bunches. To be precise, let 𝑢, 𝑣 ∈ 𝑉 be a pair of vertices and let

𝜋 be a shortest path between them. Suppose it contains a vertex 𝑥 , such that 𝑥 ∉ 𝐵(𝑢) and 𝑥 ∉ 𝐵(𝑣), see the right case

in Figure 2. That means that 𝑑 (𝑢, 𝑝 (𝑢)) ≤ 𝑑 (𝑢, 𝑥) and 𝑑 (𝑣, 𝑝 (𝑣)) ≤ 𝑑 (𝑥, 𝑣), so at least one of the two is at most 𝑑 (𝑢, 𝑣)/2.

Without loss of generality, say that 𝑑 (𝑢, 𝑝 (𝑢)) ≤ 𝑑 (𝑢, 𝑣)/2. Hence, after computing shortest paths from 𝑆 , we can obtain a

2-approximation as follows: 𝑑 (𝑢, 𝑝 (𝑢)) +𝑑 (𝑝 (𝑢), 𝑣) ≤ 𝑑 (𝑢, 𝑝 (𝑢)) +𝑑 (𝑢, 𝑝 (𝑢)) +𝑑 (𝑢, 𝑣) ≤ 2𝑑 (𝑢, 𝑣), where the first inequality

holds by the triangle inequality.

It remains to give an algorithm that guarantees a 2-approximation for the case that for every vertex 𝑥 on the shortest

path 𝜋 we have 𝑥 ∈ 𝐵(𝑢) or 𝑥 ∈ 𝐵(𝑣), the left case in Figure 2. Note that this case also contains the special case that the

bunches overlap. We will refer to it as the ‘adjacent case’, since the two bunches 𝐵(𝑢) and 𝐵(𝑣) are adjacent in the sense

that they are connected by an edge. In previous work, this adjacent case is often a bottleneck in the running time, and

dealt with in various ways. As seen above, by not distinguishing it at all, we obtain a 3-approximation [TZ05]. By only

considering the cases where the bunches have at least one vertex in common, Baswana, Goyal, and Sen [BGS09] obtain a

(2, 1)-approximation. In Appendix B we generalize this result to (2,𝑊𝑢,𝑣)-approximate APSP in weighted graphs, where

𝑊𝑢,𝑣 is the maximum weight of an edge on a shortest 𝑢 − 𝑣 path. For a 2-approximation, Kavitha [Kav12] and Baswana and

Kavitha [BK10] each use a multilevel approach, the latter of which we detail later. More recently, in distributed [CDKL21,

DP22] and dynamic [DFNV22] 2-approximate APSP algorithms, the adjacent case is computed explicitly. To be precise,

they compute

𝛿adjacent (𝑢, 𝑣) = min{𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣) : {𝑢′, 𝑣 ′} ∈ 𝐸,𝑢′ ∈ 𝐵(𝑢), 𝑣 ′ ∈ 𝐵(𝑣)},
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Figure 2: Two different possible interactions between the shortest path between 𝑢 and 𝑣 , and the bunches of 𝑢 and 𝑣 .

which in the case that 𝜋 ⊆ 𝐵(𝑢) ∪𝐵(𝑣) returns the exact distance between 𝑢 and 𝑣 . Using these algorithms directly does not

lead to fast algorithms in our, centralized, setting, since they are tailored for their respective models. Our work is inspired

by this approach, and gives two novel ways to compute 𝛿adjacent (𝑢, 𝑣); one for sparse graphs and one for dense graphs.

Sparse case. Rather than fixing 𝑢, 𝑣 ∈ 𝑉 and trying to compute 𝛿adjacent (𝑢, 𝑣), we fix an edge {𝑢′, 𝑣 ′} ∈ 𝐸, and see for

which pairs 𝑢, 𝑣 ∈ 𝑉 this contributes to 𝛿adjacent (𝑢, 𝑣). More precisely, by definition of bunches and clusters we have

𝑢′ ∈ 𝐵(𝑢) ⇐⇒ 𝑢 ∈ 𝐶 (𝑢′), so we can compute 𝛿adjacent as follows: for all {𝑢′, 𝑣 ′} ∈ 𝐸, for all 𝑢 ∈ 𝐶 (𝑢′), and for all

𝑣 ∈ 𝐶 (𝑣 ′):

1. Initialize 𝛿adjacent (𝑢, 𝑣) ← 𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣) if no such entry exists.

2. Otherwise: 𝛿adjacent (𝑢, 𝑣) ← min{𝛿adjacent (𝑢, 𝑣), 𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣)}.

We note that Step 1 and 2 can both be done in constant time, so computing 𝛿adjacent takes time∑︁
{𝑢′,𝑣′ }∈𝐸

∑︁
𝑢∈𝐶 (𝑢′ )

∑︁
𝑣∈𝐶 (𝑣′ )

𝑂 (1) =
∑︁

{𝑢′,𝑣′ }∈𝐸
𝑂 ( |𝐶 (𝑢′) | · |𝐶 (𝑣 ′) |) =

∑︁
{𝑢′,𝑣′ }∈𝐸

𝑂̃ ( 1

𝑝2
),

where the last equality holds since clusters have size at most 𝑂̃ ( 1

𝑝
). This means it takes 𝑂̃ (𝑚

𝑝2
) time in total to compute

𝛿adjacent.

Together with the running time for computing bunches and clusters, 𝑂̃ (𝑚
𝑝
), and the running time for computing

shortest paths from 𝑆 , 𝑂̃ ( |𝑆 |𝑚) = 𝑂̃ (𝑝𝑛𝑚) using Dijkstra, we obtain 𝑂̃ (𝑚
𝑝2
+ 𝑝𝑛𝑚). For 𝑝 = 𝑛−1/3

, we obtain running time

𝑂̃ (𝑚𝑛2/3).
We note that for each pair of vertices 𝑢, 𝑣 ∈ 𝑉 , we still have to take the minimum between the estimate through the

pivot, 𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑝 (𝑢), 𝑣), and 𝛿adjacent (𝑢, 𝑣). Doing this explicitly would take 𝑛2
time. Instead, we provide a distance

oracle, and perform this minimum in constant time when the pair 𝑢, 𝑣 is queried.

Dense case. We adapt our algorithm in two ways for the dense case. We use a different approach to compute 𝛿adjacent,

and we compute shortest paths from the set of pivots 𝑆 differently.

First, we show how to compute 𝛿adjacent in 𝑂̃ ( 𝑛2

𝑝
) time. For each node 𝑢, we run Dijkstra twice on a graph with 𝑂̃ ( 𝑛

𝑝
)

edges, whose size comes from the fact that for each node the bunches have size 𝑂̃ ( 1

𝑝
). On the first graph we obtain estimates

from 𝑢 to 𝑣 ′ for every 𝑣 ′ that neighbors the bunch of 𝑢, i.e., ∃𝑢′ ∈ 𝐵(𝑢) such that {𝑢′, 𝑣 ′} ∈ 𝐸. And on the second graph we

obtain estimates 𝛿adjacent (𝑢, 𝑣) for all 𝑣 ∈ 𝑉 . For more details see Section 4.4.

Second, for computing shortest paths from 𝑆 , we can do something (much) more efficient than computing multiple

Dijkstra’s by using recent results on approximate multi-source shortest paths (MSSP). Elkin and Neiman [EN22] provide

efficient (1 + 𝜖)-MSSP results using rectangular matrix multiplication. For example, we can let the number of pivots be as

big as 𝑛0.8
, while the running time stays below 𝑂 (𝑛2.23). This means that the sizes of bunches drop dramatically to 𝑂̃ (𝑛0.2),

making the above very efficient. To be more precise, we need to balance the running time to compute 𝛿adjacent, 𝑂̃ ( 𝑛
2

𝑝
), with

the running time to compute shortest paths from 𝑆 , which has size 𝑂̃ (𝑝𝑛). If we use Dijkstra for the latter (for a graph with

𝑚 = 𝑛2), we need to balance
𝑛2

𝑝
and 𝑝𝑛3

, obtaining running time 𝑂̃ (𝑛2.5) for 𝑝 = 1/
√
𝑛.
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To see how this trade-off improves using [EN22], we denote 𝑝 = 𝑛𝑟−1
. Now we have |𝑆 | = 𝑂̃ (𝑝𝑛) = 𝑂̃ (𝑛𝑟 ), and we can

compute (1+𝜖)-approximate shortest paths from 𝑆 in 𝑂̃ (𝑛𝜔 (𝑟 ) ) time. We obtain total running time 𝑂̃ ( 𝑛2

𝑝
+𝑛𝜔 (𝑟 ) ) = 𝑂 (𝑛2.214),

using [GU18] for an upper bound on 𝜔 (𝑟 ).
We note that the (1 + 𝜖)-factor carries over to our stretch analysis, making it a (2 + 𝜖)-approximation, see Lemma 4.2.

A Density Sensitive Algorithm. Next, we describe how we can generalize the ideas from the dense case to a wider

density range. Our goal is to combine our approach from the dense case with the 2-approximate APSP algorithm of

Baswana and Kavitha [BK10]. Similar to the dense case, they create a set of pivots 𝑆 of size 𝑂̃ (𝑝𝑛). They compute shortest

paths from 𝑆 to 𝑉 using Dijkstra in 𝑂̃ (𝑝𝑛𝑚) time, and use this for an estimate through the pivot.

Baswana and Kavitha [BK10] do not consider the adjacent case explicitly, but consider 𝑂 (log𝑛) additional levels, each

with a gradually growing set of pivots 𝑆𝑖 . For each of those sets, they compute shortest paths in a sparser graph, where the

distances to some essential vertices equal the distances in the original graph. They show that on at least one of the levels, a

distance estimate through the pivot of that level gives a 2-approximation. For details we refer to Section 4.5.

By computing shortest paths on the sparser graph, they avoid the expensive computation of shortest paths from 𝑆𝑖
to all of 𝑉 . Instead, for each level, they require 𝑂̃ (𝑚/𝑝) time to construct the sparser graph, and 𝑂̃ (𝑛2) time to compute

shortest paths from 𝑆𝑖 . Combining this with the first step, their algorithm takes 𝑂̃ (𝑝𝑛𝑚 +𝑚/𝑝 + 𝑛2) time. Setting 𝑝 = 1/
√
𝑛

balances the terms and gives 𝑂̃ (𝑚
√
𝑛 + 𝑛2) time.

We modify their algorithm in two ways. First of all, we remark that parameterizing the size of the (smallest) set of

pivots 𝑆 , by |𝑆 | = 𝑂̃ (𝑝𝑛) already gives us the following result, which allows us to get a better trade-off.

Theorem 1.6. There exists a randomized algorithm that, given an undirected graph with non-negative edge weights𝐺 = (𝑉 , 𝐸)
and parameters 𝑝 ∈ ( 1

𝑛
, 1], 𝜖 ≥ 0, computes (2 + 𝜖)-approximate APSP. With high probability, the algorithm takes

𝑂̃ (𝑛2 +𝑚/𝑝 +𝑇 (𝑂̃ (𝑝𝑛))) time, where 𝑇 (𝑠) is the time to compute (1 + 𝜖)-MSSP from 𝑠 sources.

Secondly, we use the fast MSSP algorithm of Elkin and Neiman [EN22] to compute the shortest paths from 𝑆 faster.

If we write 𝑝 = 𝑛𝑞−1
, for some 𝑟 ∈ [0, 1], then [EN22] gives 𝑇 (𝑝𝑛) = 𝑇 (𝑛𝑟 ) = 𝑂̃ (𝑚1+𝑜 (1) + 𝑛𝜔 (𝑟 ) ). The total running time

for 2-approximate APSP is then 𝑂̃ (𝑚𝑛1−𝑟 + 𝑛𝜔 (𝑟 ) ), for any 𝑟 ∈ [0, 1]. For𝑚 = 𝑛2
this recovers our result, Theorem 1.2, for

dense graphs. See Theorem 1.3 and Table 2 for our results for graphs with different densities.

1.3 Additional Related Work

Approximation between 2 and 3. In addition to the 2-approximate APSP algorithms mentioned above, approximate

APSP algorithms with approximations between 2 and 3 in weighted undirected graphs are studied in [CZ01, BK10,

Kav12, AR21]. In particular, [CZ01, BK10] studied algorithms with approximation 7/3, and [Kav12] studied an algorithm

with approximation 5/2. These results were generalized by Akav and Roditty [AR21] who showed an algorithm with

approximation 2 + 𝑘−2

𝑘
and running time 𝑂̃ (𝑚2/𝑘𝑛2−3/𝑘 + 𝑛2) for any 𝑘 ≥ 2.

Algorithms using fast matrix multiplication. Algorithms for fast rectangular matrix multiplication are studied in

[Cop82, LR83, Cop97, HP98, KZHP08, Gal12, GU18], and have found numerous applications in algorithms (see e.g. [Zwi02,

RS11, Yus09, YZ04, KRSV07, KSV06, SM10, WWWY14, BRSW
+
21, BN19, VFN22, BHGW

+
21, WX20, GR21]).

In the context of APSP, the state of the art algorithm by Zwick for computing APSP in directed graphs with bounds

weights is based on rectangular matrix multiplication [Zwi02]. In addition, Kavitha [Kav12] used fast rectangular

matrix multiplication as one of the ingredients in her (2 + 𝜖)-approximation algorithm for weighted APSP. Additive

+2-approximations for APSP based on fast matrix multiplication are studied in [DKRW
+
22, Dür23]. The latter algorithms

are based on Min-Plus product of rectangular bounded difference matrices. The (1 + 𝜖, 2)-approximation of Berman

and Kasiviswanathan [BK07] is also based on fast rectangular matrix multiplication. In addition, Elkin and Neiman

showed (1 + 𝜖)-approximation for multi-source shortest paths based on rectangular matrix multiplication [EN22]. For

the problem of computing shortest paths for 𝑆 × 𝑇 , for |𝑆 |, |𝑇 | = 𝑂 (𝑛0.5), Dalirrooyfard, Jin, Vassilevska Williams, and

Wein [DJWW22] provide a 2-approximation in 𝑂̃ (𝑚 + 𝑛 (1+𝜔 )/8) time for weighted graphs, by leveraging sparse rectangular

matrix multiplication. Dynamic algorithms for shortest paths and spanners based on rectangular matrix multiplication

are studied in [BN19, VFN22, BHGW
+
21], and an algorithm for approximating the diameter based on rectangular matrix

multiplication is studied in [BRSW
+
21].

1.4 Discussion In this work we showed fast algorithms for 2-approximate APSP, many intriguing questions remain open.

First, our algorithm for 2-approximate APSP in unweighted undirected graphs takes 𝑂 (𝑛2.032) time, and an interesting

direction for future work is to try to obtain an 𝑂 (𝑛2) time algorithm for this problem.
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Second, many of our algorithms are based on fast rectangular matrix multiplication, and it would be interesting

to develop also fast combinatorial algorithms for these problems. Currently the fastest combinatorial algorithm for 2-

approximate APSP in unweighted undirected graphs is the recent algorithm by [Rod23] that takes 𝑂̃ (𝑛2.25) time. For

weighted undirected graphs the fastest combinatorial 2-approximate APSP algorithm takes 𝑂̃ (𝑚
√
𝑛 + 𝑛2) time, which is

𝑂̃ (𝑛2.5) for dense graphs, where we show a non-combinatorial (2 + 𝜖)-approximation algorithm that takes 𝑂 (𝑛2.214) time.

Narrowing the gaps between the combinatorial and non-combinatorial algorithms, or proving conditional hardness results

for combinatorial algorithms is an interesting direction for future research. We remark that such a gap exists also for the

case of additive +2-approximations, where the fastest combinatorial algorithm takes 𝑂̃ (min{𝑛3/2𝑚1/2, 𝑛7/3}) time [DHZ00],

and the fastest non-combinatorial algorithm takes 𝑂 (𝑛2.260) time [Dür23].

2 Preliminaries
Throughout, we use 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. When writing log-factors, we round them to the closest integer. We use 𝑑𝐺 (𝑢, 𝑣)
for the distance between𝑢 and 𝑣 in𝐺 , where we omit𝐺 if it is clear from the context. We write 𝛿 (𝑢, 𝑣) for distance estimates

between 𝑢 and 𝑣 . We denote SSSP for the Single Source Shortest Path Problem, MSSP for the Multi Source Shortest Path

Problem, and APSP for the All Pairs Shortest Path Problem. SSSP takes the source as part of the input, and MSSP takes the

set of sources as part of the input. We say that an algorithm gives an (𝛼, 𝛽)-approximation for SSSP/MSSP/APSP if for any

pair of vertices 𝑢, 𝑣 it returns an estimate 𝛿 (𝑢, 𝑣) of the distance between 𝑢 and 𝑣 such that 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣) ≤ 𝛼 ·𝑑 (𝑢, 𝑣) + 𝛽 ,

where 𝑑 (𝑢, 𝑣) is the distance between 𝑢 and 𝑣 . If 𝛽 = 0, we get a purely multiplicative approximation that we refer to as

𝛼-approximation. If 𝛼 = 1, we get a purely additive approximation, and call it a +𝛽-approximation. If 𝛼 = 1 + 𝜖 , we refer to

it as a near-additive approximation.

All our randomized algorithms are always correct, and provide running time guarantees ‘with high probability’, which

means with probability 1 − 𝑛−𝑐 for any constant 𝑐 .

When we refer to the APSP problem, we are required to output all 𝑛2
distances. If we drop this requirement, and only

want to give a data structure subject to distance queries, we call it a distance oracle. For distance oracles, there are three

complexities to consider: preprocessing time, space, and query time. Both the preprocessing time and the required space

can be less than 𝑛2
. In our algorithms, we provide constant query time.

Rectangular Matrix Multiplication and Shortest Paths Let 𝐴 be an 𝑛1 × 𝑛2 matrix, and 𝐵 be an 𝑛2 × 𝑛3 matrix, then

we define the distance product, also called min-plus product, 𝐴★ 𝐵 by

(𝐴★ 𝐵)𝑖 𝑗 = min

1≤𝑘≤𝑛2

{𝐴𝑖𝑘 + 𝐵𝑘 𝑗 },

for 1 ≤ 𝑖 ≤ 𝑛1 and 1 ≤ 𝑗 ≤ 𝑛3.

Moreover we say a matrix 𝐴′ ∈ R𝑛1×𝑛2
is a (1 + 𝜖)-approximation of a matrix 𝐴 ∈ R𝑛1×𝑛2

if 𝐴𝑖 𝑗 ≤ 𝐴′𝑖 𝑗 ≤ (1 + 𝜖)𝐴𝑖 𝑗 , for

all 1 ≤ 𝑖 ≤ 𝑛1 and 1 ≤ 𝑗 ≤ 𝑛2.

Distance product form a semiring, i.e., a ring without guaranteed additive inverses. Although the results for fast matrix

multiplication hold for rings, it turns out they can be leveraged for distance products as well [AGM97]. In particular, we

have the following result for approximate distance products.

Theorem 2.1. ([Zwi02]) Let𝑊 be a positive integer, and 𝜖 > 0 be a parameter. Let 𝐴 be an 𝑛 × 𝑛𝑟 matrix and 𝐵 be an 𝑛𝑟 × 𝑛
matrix, whose entries are all in {0, 1, . . . ,𝑊 } ∪ {∞}. Then there is an algorithm that computes a (1 + 𝜖)-approximation to

𝐴★ 𝐵 in time 𝑂̃ (𝑛𝜔 (𝑟 )/𝜖 log𝑊 ).

Here 𝜔 (𝑟 ) denotes the time constant for rectangular matrix multiplication, i.e., the constant such that in 𝑛𝜔 (𝑟 ) time we

can multiply an 𝑛×𝑛𝑟 with an 𝑛𝑟 ×𝑛 matrix. This algorithm is a deterministic reduction to rectangular matrix multiplication,

for which the state of the art [GU18] is also deterministic. Note that [GU18] does not provide a closed form for 𝜔 (𝑟 ).
Throughout, we use the tool of van den Brand [Bra] to balance 𝜔 (𝑟 ) with other terms to obtain our numerical results.

Backurs, Roditty, Segal, Vassilevska Williams, and Wein [BRSW
+
21] leverage these results to obtain multi-source

approximate shortest paths from

√
𝑛 sources, given that the distances are short. Elkin and Neiman [EN22] show how to

exploit rectangular matrix multiplication to compute distances from an arbitrary set of sources 𝑆 .

Theorem 2.2. ([EN22]) There exists a deterministic algorithm that, given a parameter 𝜖 > 0, an undirected graph 𝐺 = (𝑉 , 𝐸)
with integer weights bounded by𝑊 and a set of sources 𝑆 of size |𝑆 | = 𝑂 (𝑛𝑟 ), computes (1 + 𝜖)-approximate distances for 𝑆 ×𝑉
in 𝑂̃ (𝑚1+𝑜 (1) + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) time.
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2.1 From 2 + 𝝐 to 2-Approximate APSP Dor, Halperin, and Zwick [DHZ00] provide a + log𝑛-approximate APSP for

unweighted graphs in 𝑂̃ (𝑛2) time. Using this result, we can reduce the problem of an unweighted 2-approximation to an

unweighted (2 + 𝜖)-approximation.

Lemma 2.1. Given an algorithm that computes (2 + 𝜖)-approximate APSP on unweighted graphs in 𝜏 (𝑛,𝑚) poly(1/𝜖) time,

we obtain an algorithm that computes 2-approximate APSP in 𝑂̃ (𝑛2 + 𝜏 (𝑛,𝑚)) time. The reduction is deterministic and

combinatorial.

Proof. Set 𝜖 = 1/log𝑛, and let 𝛿 (𝑢, 𝑣) denote the output of the (2 + 𝜖)-approximate APSP algorithm. Let 𝛿 ′ (𝑢, 𝑣) denote

the output of the + log𝑛 approximation of [DHZ00] (see also Theorem 3.5). We output
ˆ𝑑 (𝑢, 𝑣) = min{⌊𝛿 (𝑢, 𝑣)⌋, 𝛿 ′ (𝑢, 𝑣)}.

Clearly this takes 𝑂̃ (𝑛2 + 𝜏 (𝑛,𝑚)) time in total, so it remains to show that
ˆ𝑑 (·, ·) is a 2-approximation.

First of all we notice that since distances in an unweighted graph are integers, we have that 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣) implies

that 𝑑 (𝑢, 𝑣) ≤ ⌊𝛿 (𝑢, 𝑣)⌋. Since also 𝑑 (𝑢, 𝑣) ≤ 𝛿 ′ (𝑢, 𝑣), we can conclude 𝑑 (𝑢, 𝑣) ≤ ˆ𝑑 (𝑢, 𝑣).
To show that

ˆ𝑑 (𝑢, 𝑣) ≤ 2𝑑 (𝑢, 𝑣), we distinguish the cases 𝑑 (𝑢, 𝑣) < log𝑛 and 𝑑 (𝑢, 𝑣) ≥ log𝑛. If 𝑑 (𝑢, 𝑣) < log𝑛, then

from 𝛿 (𝑢, 𝑣) ≤ (2 + 𝜖)𝑑 (𝑢, 𝑣) we obtain

ˆ𝑑 (𝑢, 𝑣) ≤ ⌊𝛿 (𝑢, 𝑣)⌋ ≤ ⌊(2 + 𝜖)𝑑 (𝑢, 𝑣)⌋
= 2𝑑 (𝑢, 𝑣) + ⌊𝜖𝑑 (𝑢, 𝑣)⌋ = 2𝑑 (𝑢, 𝑣) + ⌊𝑑 (𝑢,𝑣)

log𝑛
⌋

≤ 2𝑑 (𝑢, 𝑣).

Now if 𝑑 (𝑢, 𝑣) ≥ log𝑛, we have that
ˆ𝑑 (𝑢, 𝑣) ≤ 𝛿 ′ (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑣) + log𝑛 ≤ 2𝑑 (𝑢, 𝑣).

3 Approximate APSP Algorithms for Unweighted Graphs
We obtain our three unweighted APSP results, 2-approximate (Theorem 1.1), combinatorial 2-approximate (Theorem 3.4),

and (1 + 𝜖, 𝑘)-approximate for even 𝑘 ≥ 2 (Theorem 1.5), through a more general framework. In this section, we develop

said framework, from which these theorems follow almost immediately.

The goal of our framework is to split the graph into two cases: a sparse graph and a dense graph. On the sparse graph,

we just run an existing approximate APSP algorithm that performs well on sparse graphs (denoted by Algorithm A in

Theorem 3.1 below). For the dense graph, we use more ingenuity. We further split it into poly log𝑛 density regimes, where

in each regime the bottleneck is to compute APSP through a known set 𝑆 , i.e., for each𝑢, 𝑣 to find a shortest path of the form

(𝑢, 𝑥, 𝑣) for some 𝑥 ∈ 𝑆 (this task is done by Algorithm B). If we solve this problem exactly, we obtain a +2-approximation.

If we solve it approximately, this carries over into the overall approximation factor. For example, if we solve it up to a

multiplicative factor (1+𝜖), we obtain total approximation (1+𝜖, 2(1+𝜖)) for the dense graph. For our approximations, we

only use algorithms B that are either exact or (1 + 𝜖)-approximate. The formal statement of the framework is as follows.

Theorem 3.1. Let A be an algorithm that computes (mult𝐴, add𝐴)-approximate APSP on unweighted graphs with running

time 𝜏𝐴 (𝑛,𝑚), and let B(𝑆) be an algorithm that computes (mult𝐵, add𝐵)-approximate all-pairs shortest paths on weighted

graphs, among the 𝑢 − 𝑣 paths of the form (𝑢, 𝑥, 𝑣) for some 𝑥 in a given set 𝑆 , with running time 𝜏𝐵 (𝑛, |𝑆 |). Then there exists

an algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸) and a parameter 𝑟 ∈ [0, 1], computes approximate

APSP with running time 𝜏𝐴 (𝑛, 𝑛2−𝑟 ) + 𝑂̃ (𝜏𝐵 (𝑛, 𝑂̃ (𝑛𝑟 ))), where for each pair of vertices we have either a (mult𝐴, add𝐴) or a

(mult𝐵, add𝐵 + 2mult𝐵) approximation.

Besides possibly Algorithm A and B, the procedure is deterministic and combinatorial.

Note that 𝜏𝐴 (𝑛, 𝑛2−𝑟 ), 𝜏𝐵 (𝑛, 𝑂̃ (𝑛𝑟 )) ≥ 𝑛2
as they both need 𝑛2

time to write their output.

In Section 3.1, Section 3.2, and Section 3.3, we obtain a 2-approximation, a combinatorial 2-approximation, and a

near-additive approximation respectively, by using different algorithms forA,B and balancing the parameter 𝑟 accordingly.

Next, we proceed by describing the algorithm satisfying Theorem 3.1, followed by a correctness proof and running

time analysis. Pseudo-code can be found in Algorithm 1. To desecribe the algrithm, we recall the notion of hitting sets. A

set 𝑆 is said to be a hitting set for the vertices that have at least one neighbor in 𝑆 . The following result provides a hitting

set 𝑆 for the vertices with degree at least 𝑠 . Such a set can easily be obtained by random sampling or with a deterministic

algorithm [ACIM99, DHZ00].

Lemma 3.1. ([DHZ00]) There exists a deterministic algorithm HittingSet(𝐺, 𝑠) that, given an undirected graph 𝐺 = (𝑉 , 𝐸)
and a parameter 1 ≤ 𝑠 ≤ 𝑛, computes a set 𝑆 ⊆ 𝑉 of size 𝑂 ( 𝑛

𝑠
log𝑛) such that all vertices of degree at least 𝑠 have at least one

neighbor in 𝑆 . The algorithm takes 𝑂 (𝑚 + 𝑛) time.
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Algorithm. Given the parameter 𝑟 ∈ [0, 1], we say a vertex is light if it has at most 𝑛1−𝑟
incident edges. We look at the

sparse graph, where each vertex keeps at most 𝑛1−𝑟
edges to its neighbors. On this graph we run Algorithm A. We show

that if for two vertices the shortest path only consists of light vertices, then this provides a (mult𝐴, add𝐴)-approximation.

We also run the following procedure, on the entire input graph. This part ensures that if the shortest path between two

vertices contains at least one dense vertex, we obtain a (mult𝐵, add𝐵 + 2)-approximation. We look at 𝑂 (log𝑛) levels. At

level 𝑖 , the goal is to get an approximation for a shortest path with maximum degree in [2𝑖 , 2𝑖+1]. We let 𝑖 be all the integer

values between (1 − 𝑟 ) log𝑛 and log𝑛. By abuse of notation, we write 𝑖 = (1 − 𝑟 ) log𝑛, (1 − 𝑟 ) log𝑛 + 1, . . . , log𝑛. At level 𝑖

we do the following.

1. Let 𝑆𝑖 ⊆ 𝑉 be defined by HittingSet(𝐺, 2𝑖 ). We set 𝐺𝑖 = (𝑉 , 𝐸𝑖 ) to be the graph with 𝐸𝑖 := {{𝑢, 𝑣} ∈ 𝐸 : deg(𝑢) ≤
2
𝑖+1

or deg(𝑣) ≤ 2
𝑖+1}.

2. We compute multi-source shortest paths from 𝑆𝑖 on 𝐺𝑖 , by running Dijkstra from each vertex in 𝑆𝑖 . We store these

results in the graph 𝐺 ′𝑖 := (𝑉 , 𝐸′𝑖 ). So 𝐸′𝑖 = 𝑆𝑖 ×𝑉 , and 𝑤𝐸′
𝑖
(𝑎, 𝑣) := 𝑑𝐺𝑖

(𝑎, 𝑣).

3. Now we want to compute shortest paths through 𝑆𝑖 on the graph induced by edges in step (2), hereto we call algorithm

B(𝐺 ′𝑖 , 𝑆𝑖 ).

Algorithm 1: Our algorithm to compute APSP using algorithms A and B
1 Let 𝐺 ′ = (𝑉 , 𝐸′), where 𝐸′ := {{𝑢, 𝑣} ∈ 𝐸 : deg(𝑢) ≤ 𝑛1−𝑟

or deg(𝑣) ≤ 𝑛1−𝑟 } ;

2 Let 𝛿𝐴 (·, ·) be the result of Algorithm A(𝐺 ′) ;

3 for 𝑖 = (1 − 𝑟 ) log𝑛, . . . , log𝑛 do
4 Let 𝐺𝑖 = (𝑉 , 𝐸𝑖 ), where 𝐸𝑖 := {{𝑢, 𝑣} ∈ 𝐸 : deg(𝑢) ≤ 2

𝑖+1
or deg(𝑣) ≤ 2

𝑖+1};
5 𝑆𝑖 := HittingSet(𝐺, 2𝑖 );
6 for 𝑎 ∈ 𝑆𝑖 do
7 Run Dijkstra from 𝑎 on 𝐺𝑖

8 end
9 Let 𝐺 ′𝑖 := (𝑉 , 𝐸′𝑖 ) be a weighted graph, where 𝐸′𝑖 = 𝑆𝑖 ×𝑉 , and 𝑤𝐸′

𝑖
(𝑎, 𝑣) := 𝑑𝐺𝑖

(𝑎, 𝑣) for 𝑎 ∈ 𝑆𝑖 , 𝑣 ∈ 𝑉 .;

10 Let 𝛿𝑖 (·, ·) be the result of Algorithm B(𝐺 ′𝑖 , 𝑆𝑖 );
11 end
12 𝛿𝐵 (𝑢, 𝑣) := min{𝛿𝑖 (𝑢, 𝑣) : (1 − 𝑟 ) log𝑛 ≤ 𝑖 ≤ log𝑛}, for 𝑢, 𝑣 ∈ 𝑉 .;

13 𝛿 (𝑢, 𝑣) := min{𝛿𝐴 (𝑢, 𝑣), 𝛿𝐵 (𝑢, 𝑣)}, for 𝑢, 𝑣 ∈ 𝑉 .;

14 return 𝛿 (·, ·)

Correctness. Given 𝑢, 𝑣 ∈ 𝑉 , we have to show that the returned approximation 𝛿 (𝑢, 𝑣) is a 2-approximation. We

distinguish two (non-disjoint) cases:

a) There exists a shortest path from 𝑢 to 𝑣 solely consisting of light vertices: vertices of degree at most 𝑛1−𝑟
. In this case,

we show we obtain a (mult𝐴, add𝐴)-approximation through 𝛿𝐴.

In this case, this shortest path is fully contained in the sparse graph, hence running algorithm A on it provides the

given approximation 𝛿𝐴.

b) There exists a shortest path from 𝑢 to 𝑣 containing at least one heavy vertex: a vertex with degree at least 𝑛1−𝑟
. In this

case, we show we obtain a (mult𝐵, add𝐵 + 2mult𝐵)-approximation through 𝛿𝐵 .

Let 𝑖 ∈ {(1 − 𝑟 ) log𝑛, (1 − 𝑟 ) log𝑛 + 1, . . . log𝑛} be the maximal index such that there exists a vertex 𝑥 on the shortest

path from 𝑢 to 𝑣 with degree in [2𝑖 , 2𝑖+1]. We show that 𝛿𝑖 provides the desired approximation. By definition of 𝑆𝑖 , 𝑥 has

at least one neighbor in 𝑆𝑖 , denote this neighbor by 𝑎, see Figure 3.

Now consider the distance from 𝑢 to 𝑣 in 𝐺𝑖 . Since 𝐺𝑖 contains the shortest path in 𝐺 , we have 𝑑𝐺𝑖
(𝑢, 𝑣) = 𝑑𝐺 (𝑢, 𝑣).

Further we know that 𝑑 (𝑢, 𝑎) + 𝑑 (𝑎, 𝑣) ≤ 𝑑𝐺𝑖
(𝑢, 𝑣) + 2, since 𝑎 is neighboring 𝑥 on the shortest path between 𝑢 and 𝑣 . In

particular, this means that min𝑎′∈𝑆𝑖 𝑑𝐺𝑖
(𝑢, 𝑎′) + 𝑑𝐺𝑖

(𝑎′, 𝑣) ≤ 𝑑𝐺𝑖
(𝑢, 𝑣) + 2 = 𝑑𝐺 (𝑢, 𝑣) + 2. So we can focus on computing

shortest paths through 𝑆𝑖 . In the second step of the algorithm, we have computed the (exact) distances 𝑆𝑖 : 𝑑𝐺𝑖
(𝑎′, 𝑦) for

all 𝑦 ∈ 𝑉 , in particular to 𝑢 and 𝑣 . To compute min𝑎′∈𝑆𝑖 𝑑𝐺𝑖
(𝑢, 𝑎′) + 𝑑𝐺𝑖

(𝑎′, 𝑣), we use Algorithm B(𝐺 ′𝑖 , 𝑆𝑖 ). which then

Copyright © 2024

Copyright for this paper is retained by authors
4741

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



𝑢 𝑣𝑥

2𝑖 ≤ deg(𝑥) ≤ 2𝑖+1

𝑎

Figure 3: Illustration of the stretch analysis.

provides an estimate 𝛿𝑖 (𝑢, 𝑣) for the distance from 𝑢 to 𝑣 through 𝑆𝑖 in 𝐺𝑖 . Hence, the approximation factors aggregate

as follows:

𝛿𝑖 (𝑢, 𝑣) ≤ mult𝐵 (𝑑𝐺𝑖
(𝑢, 𝑎) + 𝑑𝐺𝑖

(𝑎, 𝑣)) + add𝐵

≤ mult𝐵 (𝑑𝐺𝑖
(𝑢, 𝑥) + 1 + 𝑑𝐺𝑖

(𝑥, 𝑣) + 1) + add𝐵

= mult𝐵 · 𝑑𝐺𝑖
(𝑢, 𝑣) + 2 ·mult𝐵 + add𝐵

= mult𝐵 · 𝑑 (𝑢, 𝑣) + 2 ·mult𝐵 + add𝐵 .

If Algorithm A is correct with probability at least 1 − 𝑝𝐴, and Algorithm B is correct with probability at least 1 − 𝑝𝐵 ,

then our algorithm is correct with probability at least 1 − 𝑝𝐴 − 𝑝𝐵 · log𝑛. Note that in all applications below we have

𝑝𝐴 = 0 = 𝑝𝐵 , i.e., both algorithms are always correct.

Running time. We run algorithm A(𝐺 ′), where 𝐺 ′ has 𝑛 vertices and 𝑂 (𝑛2−𝑟 ) edges, hence this takes 𝜏𝐴 (𝑛, 𝑛2−𝑟 ) time.

Then, for each 𝑖 , we perform three steps. First, we compute a hitting set in 𝑂 (𝑚 + 𝑛) time. Second, we run Dijkstra from

|𝑆𝑖 | = 𝑂̃ ( 𝑛
2
𝑖 ) vertices on a graph with 𝑂 (𝑛2

𝑖+1) edges, taking 𝑂̃ (𝑛2) time. Third, we run algorithm B(𝐺 ′𝑖 , 𝑆𝑖 ), where we

know every shortest path goes through 𝑆𝑖 with |𝑆𝑖 | = 𝑂 ( 𝑛
2
𝑖 log𝑛) = 𝑂̃ (𝑛𝑟 ), hence taking 𝜏𝐵 (𝑛, 𝑂̃ (𝑛𝑟 )) time.

Any probabilistic guarantees on the running time of Algorithm A and B simply carry over.

3.1 2-Approximate APSP for Unweighted Graphs We employ the theorem of the previous section to obtain a

multiplicative 2-approximation. Hereto we use the following result of Baswana and Kavitha [BK10], which gives an efficient

algorithm for sparse graphs.
6

Theorem 3.2. ([BK10]) There exists a randomized, combinatorial algorithm that, given an undirected graph with non-negative

edge weights 𝐺 = (𝑉 , 𝐸), computes 2-approximate APSP. With high probability, the algorithm takes 𝑂̃ (𝑛2 +𝑚
√
𝑛) time.

The algorithm of Theorem 3.2 can be retrieved from our more general algorithm for weighted graphs in Section 4.

Theorem 3.3. There exists a randomized algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸), computes 2-

approximate APSP. With high probability, the algorithm takes 𝑂̃ (𝑛2.5−𝑟 + 𝑛𝜔 (𝑟 ) ) time, for any 𝑟 ∈ [0, 1]. Using known upper

bounds for rectangular matrix multiplication, this is 𝑂 (𝑛2.032) time.

Proof. By Lemma 2.1, it is sufficient to provide a (2 + 𝜖)-approximation, given that the running time only depends

polynomially on 1/𝜖 . We utilize Theorem 3.1 and for that we need to specify which algorithms to use for A and B, and

analyze the tradeoffs on the approximation and running time.

For algorithm A we use Theorem 3.2 ([BK10]) on a graph with 𝑛 vertices and 𝑛2−𝑟
edges, which results in a 2-

approximation in 𝑂̃ (𝑛2 + 𝑛5/2−𝑟 ) time w.h.p. Algorithm B has to provide shortest 𝑢 − 𝑣 paths, that are minimal among all

paths of the form 𝑢 − 𝑥 − 𝑣 , for 𝑥 in a given set 𝑆 . We use rectangular matrix multiplication for this: multiplying the 𝑉 × 𝑆
with the 𝑆 ×𝑉 edge weight matrices gives exactly the paths of length 2. We obtain (1 + 𝜖/2)-approximate shortest paths

through a set of 𝑂̃ (𝑛𝑟 ) vertices in time 𝑂̃ (𝑚1+𝑜 (1) + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) ) [Zwi02] (see also Theorem 2.1).

6
We note that [BK10] states their result with an expected running time. We can easily make this ‘with high probability’ as follows. We run the

algorithm log𝑛 time, stopping whenever we exceed the running time we aim for by more than a factor log𝑛. By a Chernoff bound, at least one of them

finishes within this time w.h.p.
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By Theorem 3.1, for each pair of vertices we either obtain a stretch of (2, 0), or a stretch of (1 + 𝜖/2, (1 + 𝜖/2) · 2). Note

that for any 𝑑 (𝑢, 𝑣) ≥ 2 we have (1 + 𝜖/2)𝑑 (𝑢, 𝑣) + (1 + 𝜖/2) · 2 ≤ (1 + 𝜖)𝑑 (𝑢, 𝑣) + 2, so we have a (1 + 𝜖, 2)-approximation,

hence a (2 + 𝜖)-approximation in total.

Also by Theorem 3.1, w.h.p. we obtain a running time of 𝑂̃ (𝑛2) + 𝑂̃ (𝑛2 + 𝑛5/2−𝑟 ) + 𝑂̃ (𝑚1+𝑜 (1) + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) )) =
𝑂̃ ((𝑛5/2−𝑟 + 𝑛𝜔 (𝑟 ) ) (1/𝜖)𝑂 (1) ) = 𝑂̃ (𝑛2.03184039 (1/𝜖)𝑂 (1) ) for 𝑟 = 0.46815961, where we use [Bra] to balance the terms.

3.2 2-Approximate Combinatorial APSP for Unweighted Graphs The algorithm of the previous section uses matrix

multiplication as a subroutine. In this section, we present a simple combinatorial algorithm for the same problem, matching

the very recent result by Roditty [Rod23].

Theorem 3.4. There exists a combinatorial algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸), computes

2-approximate APSP. With high probability, the algorithm takes 𝑂̃ (𝑛2.25) time.

Proof. Again, we use Theorem 3.1. For algorithmA we use Theorem 3.2 to obtain a 2-approximation in 𝑂̃ (𝑛2 +𝑛5/2−𝑟 ) time

w.h.p. Algorithm B has to provide shortest 𝑢 − 𝑣 paths, that are minimal among all paths of the form 𝑢 − 𝑥 − 𝑣 , for 𝑥 in a

given set 𝑆 . In particular, we can consider the graph (𝑉 , 𝑆 ×𝑉 ), which has 𝑛 · 𝑂̃ (𝑛𝑟 ) = 𝑂̃ (𝑛1+𝑟 ) edges. Running Dijkstra

from each node gives the (exact) result in 𝑂̃ (𝑛2+𝑟 ) time.

By Theorem 3.1, for each pair of vertices we either obtain a stretch of (2, 0), or a stretch of (0, 2), hence a (2, 0)-
approximation in total.

Also by Theorem 3.1, with high probability, we obtain a running time of 𝑂̃ (𝑛2.5−𝑟 + 𝑛2+𝑟 ) = 𝑂̃ (𝑛2.25), for 𝑟 = 0.25.

Since both Theorem 3.2 and Dijkstra are combinatorial, the final result is combinatorial.

3.3 (1+𝝐, 𝒌)-Approximate APSP for Unweighted Graphs As a third application of Theorem 3.1, we give an algorithm

for computing (1 + 𝜖, 𝑘)-approximate APSP for even 𝑘 ≥ 2. Hereto, we use the following result of Dor, Halperin, and

Zwick [DHZ00], which gives an efficient algorithm for sparse graphs.

Theorem 3.5. ([DHZ00]) i) There exists a deterministic algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸),
computes +2-approximate APSP in 𝑂̃ (min{𝑛3/2𝑚1/2, 𝑛7/3) time.

ii) There exists a deterministic algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸) and an even integer 𝑘 ≥ 4,

computes +𝑘-approximate APSP in 𝑂̃ (min{𝑛2− 2

𝑘+2𝑚
2

𝑘+2 , 𝑛2+ 2

3𝑘−2 }) time.

In particular, this gives a + log𝑛-approximation in 𝑂̃ (𝑛2) time. Also note that 𝑛3/2𝑚1/2 = 𝑛
2− 2

𝑘+2𝑚
2

𝑘+2 for 𝑘 = 2. So we can

also say that for even 𝑘 ≥ 2 there exists a +𝑘-approximate APSP algorithm that runs in 𝑛
2− 2

𝑘+2𝑚
2

𝑘+2 time.

Theorem 3.6. There exists a deterministic algorithm that, given an unweighted, undirected graph 𝐺 = (𝑉 , 𝐸) and an even

integer 𝑘 ≥ 2, computes (1 + 𝜖, 𝑘)-approximate APSP with running time 𝑂̃

(
𝑛

2+(1−𝑟 ) 2

𝑘+2 + 𝑛𝜔 (𝑟 ) (1/𝜖)
)
, for any choice of

𝑟 ∈ [0, 1].

Proof. Again, we use Theorem 3.1. For algorithm A, we use the result of Theorem 3.5 for sparse graphs. We apply it to a

graph with 𝑛 vertices and 𝑛2−𝑟
edges, which leads to the running time 𝑂̃ (𝑛2+(1−𝑟 ) 2

𝑘+2 ).
For algorithm B, we use (1 + 𝜖/2)-approximate rectangular matrix multiplication in time 𝑂̃ (𝑛𝜔 (𝑟 ) ) (1/𝜖)𝑂 (1) .
By Theorem 3.1, for each pair of vertices we either obtain a stretch of (0, 𝑘), or a stretch of (1 + 𝜖/2, (1 + 𝜖/2)2), Note

that for any 𝑑 (𝑢, 𝑣) ≥ 2 we have (1 + 𝜖/2)𝑑 (𝑢, 𝑣) + (1 + 𝜖/2) · 2 ≤ (1 + 𝜖)𝑑 (𝑢, 𝑣) + 2, so we have a (1 + 𝜖, 2)-approximation

hence a (1 + 𝜖, 𝑘)-approximation in total.

Also by Theorem 3.1, we obtain a running time of 𝑂̃ (𝑛2+(1−𝑟 ) 2

𝑘+2 + 𝑛𝜔 (𝑟 ) (1/𝜖)), for any choice of 𝑟 ∈ [0, 1] [Zwi02]

(see also Theorem 2.1).

Since both [DHZ00] and [Zwi02] are deterministic, the final result is deterministic.

To give optimal results, we pick 𝑘 as a function of 𝑟 . Since there is no closed form for (the state of the art of) 𝜔 (𝑟 ), we

balance it for specific 𝑘 using [Bra].

𝑘 = 2: we have 𝑂̃ (𝑛2+(1−𝑟 )/2 + 𝑛𝜔 (𝑟 ) (1/𝜖)) = 𝑂̃ (𝑛2.15195331/𝜖), for 𝑟 = 0.69609339.
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𝑘 = 4: we have 𝑂̃ (𝑛2+(1−𝑟 )/3 + 𝑛𝜔 (𝑟 ) (1/𝜖)) = 𝑂̃ (𝑛2.11900756/𝜖), for 𝑟 = 0.64297733.

𝑘 = 6: we have 𝑂̃ (𝑛2+(1−𝑟 )/4 + 𝑛𝜔 (𝑟 ) (1/𝜖)) = 𝑂̃ (𝑛2.0981921/𝜖), for 𝑟 = 0.60723159.

𝑘 = 8: we have 𝑂̃ (𝑛2+(1−𝑟 )/5 + 𝑛𝜔 (𝑟 ) (1/𝜖)) = 𝑂̃ (𝑛2.08383115/𝜖), for 𝑟 = 0.58084427.

𝑘 ≥ 10: The exponent will go to 2, as 𝑘 goes to log𝑛. However, for 𝑘 ≥ 10, we do not improve upon the results of Dor,

Halperin, and Zwick [DHZ00].

𝑘 This work Previous results (for𝑚 = 𝑛2
)

2 𝑛2.152 𝑛2.24+𝑜 (1)
[BK07]

4 𝑛2.119 𝑛2.2
[DHZ00]

6 𝑛2.098 𝑛2.125
[DHZ00]

8 𝑛2.084 𝑛2.091
[DHZ00]

Table 3: Comparison of our (1 + 𝜖, 𝑘)-approximation and prior work.

Discussion. For future work, a further possibility would be to use a +𝑘-approximation for Algorithm B in Theorem 3.1,

which in total gives a +(𝑘 + 2)-approximation. However, that requires an efficient +𝑘-approximation for MSSP, to the best

of our knowledge no such algorithm exists at this time. Note that the +𝑘 algorithm of [DHZ00] is APSP and does not give a

faster MSSP. Hence reducing +(𝑘 + 2) to +𝑘 with that algorithm is only slower.

4 Weighted (2 + 𝝐)-Approximate APSP
The techniques of the previous section do not generalize well to the weighted setting. In this section we present an

alternative approach for weighted graphs. First, we review some standard definitions and results on bunches and clusters

in Section 4.1. Then we continue with two different approaches to some subroutines to obtain efficient algorithms for

sparse and dense graphs, in Section 4.3 and Section 4.4 respectively. Finally, we show that we can generalize the latter

result to obtain faster algorithms in a wider density range in Section 4.5. Moreover, in Appendix B, we provide a faster

algorithm for a (2,𝑊 )-approximation. This can be seen as an adaptation of Section 4.3.

4.1 Bunches and Clusters We use the concepts bunches and clusters as defined by Thorup and Zwick [TZ05]. Given

a parameter 𝑝 ∈ [ 1

𝑛
, 1], called the cluster sampling rate, we define 𝑆 to be a set of sampled vertices, where each vertex

is part of 𝑆 with independent probability 𝑝 . The pivot 𝑝 (𝑣) of a vertex 𝑣 is defined as the closest vertex 𝑠 in 𝑆 , i.e.,

𝑝 (𝑣) := arg min𝑠∈𝑆 𝑑 (𝑠, 𝑣). With equal distances, we can break ties arbitrarily. Now we define the bunch 𝐵(𝑢) of 𝑢 by

𝐵(𝑢) := {𝑣 ∈ 𝑉 : 𝑑 (𝑢, 𝑣) < 𝑑 (𝑢, 𝑝 (𝑢)}. If the set 𝑆 is not clear from context, we write 𝐵(𝑢, 𝑆). Clusters are the inverse

bunches: 𝐶 (𝑣) := {𝑢 ∈ 𝑉 : 𝑑 (𝑢, 𝑣) < 𝑑 (𝑢, 𝑝 (𝑢)} = {𝑢 ∈ 𝑉 : 𝑣 ∈ 𝐵(𝑢)}. By our random choice of 𝑆 , we have with high

probability that |𝐵(𝑢) | ≤ 𝑂 ( log𝑛

𝑝
).

Thorup and Zwick [TZ05] showed how to compute this efficiently, in 𝑂̃ (𝑚
𝑝
) time. It is immediate that the total load of

the bunches and clusters is the same:

∑
𝑢∈𝑉 |𝐵(𝑢) | =

∑
𝑣∈𝑉 |𝐶 (𝑣) |. Hence the average size of each cluster is 𝑂̃ ( 1

𝑝
). However,

the maximal load over all clusters can still be big. In a later work, Thorup and Zwick [TZ01] showed that by refining the

set 𝑆 , we can bound the bunch and cluster sizes simultaneously.

Lemma 4.1. ([TZ01],[TZ05]) There exists an algorithmComputeBunches(𝐺, 𝑝) that, given a weighted graph𝐺 and a parameter

𝑝 ∈ [ 1

𝑛
, 1], computes

• a set of vertices 𝑆 ⊆ 𝑉 of size 𝑂̃ (𝑝𝑛);

• pivots 𝑝 (𝑢) ∈ 𝐴 such that 𝑑 (𝑢, 𝑝 (𝑢)) = 𝑑 (𝑢, 𝑆) for all 𝑢 ∈ 𝑉 ;

• the bunches and clusters with respect to 𝑆 ;

• distances 𝑑 (𝑢, 𝑣) for all 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝐵(𝑢) ∪ {𝑝 (𝑢)}.

With high probability, we have that both the bunches and clusters have size at most 𝑂̃ ( 1

𝑝
). The algorithm runs in time 𝑂̃ (𝑚

𝑝
).
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Figure 4: Two different possible interactions between the shortest path between 𝑢 and 𝑣 , and the bunches of 𝑢 and 𝑣 .

4.2 Structure of the Algorithm At a high-level, our algorithm is as follows. We compute a suitable set of centers

with bounded bunch and cluster size using Lemma 4.1. Then for each pair of vertices whose bunches are adjacent (we

depict this ‘adjacent case’ on the left in Figure 4) we store a distance estimate through the edge connecting them. This case

also includes the case that the bunches overlap or even when 𝑢 ∈ 𝐵(𝑣). In both cases there is still an edge connecting the

bunches, it is just contained within one of the bunches already. We show that we maintain the exact distance in the adjacent

case, and otherwise we give a 2-approximation by going through the pivot. We provide pseudo-code in Algorithm 2.

Algorithm 2: A (2 + 𝜖)-approximate APSP algorithm for unweighted graphs

Input: Unweighted graph 𝐺 = (𝑉 , 𝐸), parameter 𝑝 ∈ [ 1

𝑛
, 1]

1 ComputeBunches(𝐺, 𝑝);

2 Compute (1 + 𝜖/2)-approximate MSSP from 𝑆 , denoted by 𝛿𝑆 ;

3 Compute 𝛿adjacent (𝑢, 𝑣) = min{𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣) : {𝑢′, 𝑣 ′} ∈ 𝐸,𝑢′ ∈ 𝐵(𝑢), 𝑣 ′ ∈ 𝐵(𝑣)};
4 foreach 𝑢, 𝑣 ∈ 𝑉 do
5 𝛿 (𝑢, 𝑣) ← min{𝑑 (𝑢, 𝑝 (𝑢)) + 𝛿𝑆 (𝑝 (𝑢), 𝑣), 𝑑 (𝑣, 𝑝 (𝑣)) + 𝛿𝑆 (𝑝 (𝑣), 𝑢), 𝛿adjacent (𝑢, 𝑣)}
6 end
7 return 𝛿

Lemma 4.2. The distance estimate 𝛿 returned by Algorithm 2 satisfies 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣) ≤ (2 + 𝜖)𝑑 (𝑢, 𝑣) for every 𝑢, 𝑣 ∈ 𝑉 .

Proof. First, note that 𝛿𝑆 (𝑥,𝑦) ≥ 𝑑 (𝑥,𝑦) for any 𝑥,𝑦 ∈ 𝑉 , and all other distance estimates making up 𝛿 (𝑢, 𝑣) correspond to

actual paths in the graph, hence 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣). Next, let 𝜋 be the shortest path from 𝑢 to 𝑣 . We distinguish two cases.

Case 1. There exists 𝑥 ∈ 𝜋 such that 𝑥 ∉ (𝐵(𝑢) ∪ 𝐵(𝑣)) (the right case in Figure 4).

Since 𝑥 ∉ 𝐵(𝑢), we have 𝑑 (𝑢, 𝑥) ≥ 𝑑 (𝑢, 𝑝 (𝑢)), and since 𝑥 ∉ 𝐵(𝑣), we have 𝑑 (𝑥, 𝑣) ≥ 𝑑 (𝑣, 𝑝 (𝑣)). Because

𝑑 (𝑢, 𝑥) + 𝑑 (𝑥, 𝑣) = 𝑑 (𝑢, 𝑣), we have either 𝑑 (𝑢, 𝑥) ≤ 𝑑 (𝑢,𝑣)
2

or 𝑑 (𝑥, 𝑣) ≤ 𝑑 (𝑢,𝑣)
2

. Without loss of generality, assume

𝑑 (𝑢, 𝑥) ≤ 𝑑 (𝑢,𝑣)
2

. Then we have:

𝛿 (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑝 (𝑢)) + 𝛿𝑆 (𝑣, 𝑝 (𝑢))
≤ 𝑑 (𝑢, 𝑝 (𝑢)) + (1 + 𝜖/2)𝑑 (𝑣, 𝑝 (𝑢))
≤ 𝑑 (𝑢, 𝑝 (𝑢)) + (1 + 𝜖/2) (𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑢, 𝑣))
≤ (2 + 𝜖/2)𝑑 (𝑢, 𝑥) + (1 + 𝜖/2)𝑑 (𝑢, 𝑣)
≤ (2 + 𝜖)𝑑 (𝑢, 𝑣),

where the third inequality holds by the triangle inequality.

Case 2. There is no 𝑥 ∈ 𝜋 such that 𝑥 ∉ (𝐵(𝑢) ∪ 𝐵(𝑣)) (the left case in Figure 4).

In other words, 𝜋 ⊆ (𝐵(𝑢) ∪ 𝐵(𝑣)). This means there are vertices 𝑢′ ∈ 𝐵(𝑢) and 𝑣 ′ ∈ 𝐵(𝑣) such that {𝑢′, 𝑣 ′} is an edge on

the shortest path. Note that there is always at least one such edge, since 𝑢 ≠ 𝑣 and we allow 𝑢′ = 𝑢 and 𝑣 ′ = 𝑣 . Since

𝛿adjacent (𝑢, 𝑣) = min{𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣) : 𝑢′ ∈ 𝐵(𝑢) and 𝑣 ′ ∈ 𝐵(𝑣)},
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we get 𝛿 (𝑢, 𝑣) = 𝛿adjacent (𝑢, 𝑣) = 𝑑 (𝑢, 𝑣) in this case.

In the following two sections, we give two different approaches to execute Algorithm 2, giving efficient algorithms for

sparse and dense graphs respectively.

4.3 AnEfficientDistanceOracle for SparseGraphs In this section, we provide an efficient algorithm for 2-approximate

APSP in sparse graphs. We use the structure of the previous section and use combinatorial subroutines to obtain a

combinatorial algorithm. Note that as opposed to most of our other results (with an exception of Appendix B), this is a

distance oracle and not explicit APSP. For𝑚 = 𝑂̃ (𝑛), our bounds match the conditional lower bound of Ω̃(𝑚5/3) preprocessing

time for 2-approximations, conditional on the set intersection conjecture [PRT12] or the 3-SUM conjecture [ABF23], where

[PRT12] shows the stronger Ω̃(𝑚5/3) space lower bound.

Theorem 4.1. There exists a combinatorial algorithm that, given a weighted graph 𝐺 = (𝑉 , 𝐸), constructs a distance oracle

that answers 2-approximate distance queries in constant time, and uses 𝑂̃ (𝑚𝑛2/3) space with preprocessing time 𝑂̃ (𝑚𝑛2/3).

Proof. Algorithm details and running time. Let 𝑝 ∈ [ 1

𝑛
, 1] be a parameter to be set later. We use Algorithm 2, below we

specify certain steps and the running time of this algorithm.

• line 1 takes 𝑂̃ (𝑚
𝑝
) time by Lemma 4.1.

• For line 2, we use Dijkstra in 𝑂 (𝑚 |𝑆 |) time to obtain exact shortest paths (𝜖 = 0). By Lemma 4.1 we have that

|𝑆 | = 𝑂̃ (𝑝𝑛), hence this takes 𝑂̃ (𝑝𝑛𝑚) time.

• By definition of bunches and clusters we have 𝑢′ ∈ 𝐵(𝑢) ⇐⇒ 𝑢 ∈ 𝐶 (𝑢′), so we can compute line 3 as follows: for

all {𝑢′, 𝑣 ′} ∈ 𝐸, for all 𝑢 ∈ 𝐶 (𝑢′), and for all 𝑣 ∈ 𝐶 (𝑣 ′):

1. Initialize 𝛿adjacent (𝑢, 𝑣) ← 𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣) if no such entry exists.

2. Otherwise: 𝛿adjacent (𝑢, 𝑣) ← min{𝛿adjacent (𝑢, 𝑣), 𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣)}.

We note that Step 1 and 2 can both be done in constant time, so line 3 takes∑︁
{𝑢′,𝑣′ }∈𝐸

∑︁
𝑢∈𝐶 (𝑢′ )

∑︁
𝑣∈𝐶 (𝑣′ )

𝑂 (1) =
∑︁

{𝑢′,𝑣′ }∈𝐸
𝑂 ( |𝐶 (𝑢′) | · |𝐶 (𝑣 ′) |) =

∑︁
{𝑢′,𝑣′ }∈𝐸

𝑂̃ ( 1

𝑝2
),

where the last equality holds by Lemma 4.1. This means it takes 𝑂̃ (𝑚
𝑝2
) time in total.

• Instead of executing the for-loop of line 4, we execute line 5 in the query. This clearly takes constant time for a fixed

pair 𝑢, 𝑣 ∈ 𝑉 .

Together we obtain a running time of 𝑂̃ (𝑚
𝑝
+ 𝑝𝑛𝑚 + 𝑚

𝑝2
) = 𝑂̃ (𝑝𝑛𝑚 + 𝑚

𝑝2
). Balancing 𝑝𝑛𝑚 = 𝑚

𝑝2
gives 𝑝 = 𝑛−1/3

, so total

running time 𝑂̃ (𝑚𝑛2/3).
Correctness. This holds by Lemma 4.2. As detailed above, we have 𝜖 = 0, obtaining a 2-approximation.

Space. We need 𝑂 ( |𝑆 |𝑛) = 𝑂̃ (𝑝𝑛2) space for the distances from 𝑆 , and 𝑂̃ (𝑚
𝑝2
) space for the adjacent data structure. All

other space requirements are clearly smaller. Inserting 𝑝 = 𝑛−1/3
, we obtain total space requirement 𝑂̃ (𝑚𝑛2/3 + 𝑛5/3) =

𝑂̃ (𝑚𝑛2/3).

4.4 (2 + 𝝐)-Approximate APSP for Dense Graphs In this section, we provide an efficient algorithm for (2 + 𝜖)-
approximate APSP for dense graphs. In this case, by dense we mean𝑚 = 𝑛2

. The algorithm of this section already improve

on the state of the art for a wider range of 𝑚, but we defer the case of 𝑚 = 𝑜 (𝑛2) to Section 4.5, where we obtain better

results for this regime.

Theorem 4.2. There exists a randomized algorithm that, given an undirected graph 𝐺 = (𝑉 , 𝐸) with non-negative

integer weights bounded by 𝑊 , computes (2 + 𝜖)-approximate APSP. With high probability the algorithm takes 𝑂 (𝑛3−𝑟 +
𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) time, for any 𝑟 ∈ [0, 1]. Using known upper bounds for rectangular matrix multiplication, this is

𝑂 (𝑛2.214 (1/𝜖)𝑂 (1) log𝑊 ) time.
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Proof. Again, we will use a parameter 𝑝 ∈ [ 1

𝑛
, 1]. For ease of notation, we let 𝑟 ∈ [0, 1] such that 𝑝 = 𝑛𝑟−1

. We use

Algorithm 2, below we specify certain steps and the running time of this algorithm. Algorithm details and running time.

• line 1 takes 𝑂̃ (𝑚
𝑝
) time by Lemma 4.1.

• For line 2, we use [EN22] this takes time 𝑂̃ (𝑚1+𝑜 (1) + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ).

• We execute line 3 as follows, in 𝑂̃ ( 𝑛2

𝑝
) time:

a) For all 𝑣 ′ ∈ 𝑉 , run Dijkstra on the graph 𝐺𝑣′ = (𝑉 , 𝐸𝑣′ ), where 𝐸𝑣′ consists of all edges incident to 𝑣 ′, and for

each vertex it contains edges connecting the vertex to the bunch. More formally, 𝐸𝑣′ := {{𝑣 ′, 𝑥} ∈ 𝐸 : 𝑥 ∈
𝑉 } ∪⋃

𝑥∈𝑉 {{𝑥,𝑦} : 𝑦 ∈ 𝐵(𝑥)}, with weights 𝑤𝐺𝑣′ (𝑣 ′, 𝑥) := 𝑤𝐺 (𝑣 ′, 𝑥) and 𝑤𝐺𝑣′ (𝑥,𝑦) := 𝑑𝐺 (𝑥,𝑦) respectively.

This second term has size 𝑂̃ ( 𝑛
𝑝
), since each bunch has size 𝑂̃ ( 1

𝑝
). Hence computing SSSP with Dijkstra takes

𝑂̃ ( 𝑛
𝑝
+ 𝑛) = 𝑂̃ ( 𝑛

𝑝
) time.

b) For all 𝑢 ∈ 𝑉 , run Dijkstra on the graph 𝐺 ′𝑢 := (𝑉 , 𝐸′𝑢), where 𝐸′𝑢 consists of the distances computed in

the previous step and again the edges between vertices and their bunch. More formally, 𝐸′𝑢 := ({𝑢} × 𝑉 ) ∪⋃
𝑥∈𝑉 {{𝑥,𝑦} : 𝑦 ∈ 𝐵(𝑥)}, with weights 𝑤𝐺 ′𝑢 (𝑢, 𝑣 ′) := 𝑑𝐺𝑣′ (𝑣 ′, 𝑢) and 𝑤𝐺 ′𝑢 (𝑥,𝑦) := 𝑑𝐺 (𝑥,𝑦) respectively. For

each 𝑢, the graph 𝐺 ′𝑢 has 𝑂̃ ( 𝑛
𝑝
) edges, hence computing shortest paths takes 𝑂̃ ( 𝑛

𝑝
) time using Dijkstra. Denote

the output of this step by 𝛿adjacent (𝑢, 𝑣).

Correctness. From Step a we obtain an edge {𝑢, 𝑣 ′} for each 𝑣 ′ ∈ 𝑉 such that there exists 𝑢′ ∈ 𝐵(𝑢) with {𝑢′, 𝑣 ′} ∈ 𝐸.

This edge has weight 𝑤 (𝑢, 𝑣 ′) = min𝑢′∈𝐵 (𝑢 ) 𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′). By Step b we combine this with the shortest path

from 𝑣 ′ to 𝑣 for 𝑣 ′ ∈ 𝐵(𝑣). So in total we get 𝛿adjacent (𝑢, 𝑣) = min{𝑑 (𝑢,𝑢′) +𝑤 (𝑢′, 𝑣 ′) + 𝑑 (𝑣 ′, 𝑣) : {𝑢′, 𝑣 ′} ∈ 𝐸,𝑢′ ∈
𝐵(𝑢), 𝑣 ′ ∈ 𝐵(𝑣)}.

• The for-loop of line 4 takes 𝑛2
time.

In total we have 𝑂̃ ( 𝑛2

𝑝
+ 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) = 𝑂̃ (𝑛3−𝑟 + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ). For 𝑟 = 0.7868671417236328, we get

𝑂̃ (𝑛2.21313612 (1/𝜖)𝑂 (1) log𝑊 ) = 𝑂 (𝑛2.214 (1/𝜖)𝑂 (1) log𝑊 ), using [Bra].

Correctness. By Lemma 4.2 we obtain (2 + 𝜖)-approximate APSP.

4.5 AParameterizedAPSPAlgorithm forWeightedGraphs This section generalizes the 2-approximation of Baswana

and Kavitha [BK10], such that there is a parameter in the running time controlling from how many sources we need to

compute shortest paths. We then use fast matrix multiplication results to compute MSSP [EN22] to do this part efficiently,

and balance the parameters. We follow the algorithms and proofs of [BK10], making adjustments where necessary.

We start by creating a hierarchy of 𝑘 = (1 − 𝑟 ) log𝑛 sets: 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ · · · ⊇ 𝑆𝑘 . We refer to this as an 𝑟 -hierarchy.

For notational purposes we also have a set 𝑆𝑘+1, which we define to be the empty set: 𝑆𝑘+1 = ∅. We create these by

starting with a hierarchy created by subsampling: we start with all vertices 𝑆0 := 𝑉 and each subsequent 𝑆 ′𝑖 ⊆ 𝑆 ′𝑖−1
is

created by selecting each element of 𝑆 ′𝑖−1
with probability

1

2
. Now |𝑆 ′

𝑘
| = 𝑂̃ (𝑛 · ( 1

2
) (1−𝑟 ) log𝑛) = 𝑂̃ (𝑛𝑟 ) w.h.p. This creates

𝑉 = 𝑆 ′
0
⊇ 𝑆 ′

1
⊇ · · · ⊇ 𝑆 ′

𝑘
. Now we use Lemma 4.1 to compute a set of pivots 𝑆 of size |𝑆 | = 𝑂̃ (𝑛𝑟 ), and we set 𝑆𝑖 = 𝑆 ′𝑖 ∪ 𝑆 . By

adding the set 𝑆 , we guarantee that the size of each cluster is bounded by at most 𝑂̃ (𝑛1−𝑟 ), by Lemma 4.1. We note that

w.h.p. |𝑆𝑖 | ≤ |𝑆 ′𝑖 | + |𝑆 | = 𝑂̃ ( 𝑛
2
𝑖 ) + 𝑂̃ (𝑛𝑟 ) = 𝑂̃ ( 𝑛

2
𝑖 ). In particular, the last set of sources 𝑆𝑘 as size |𝑆𝑘 | ≤ |𝑆 ′𝑘 | + |𝑆 | = 𝑂̃ (𝑛𝑟 ).

Using Lemma 4.1, it is easy to see that we can compute an 𝑟 -hierarchy in 𝑂̃ (𝑚𝑛1−𝑟 ) time w.h.p., including pivots, bunches

and clusters for each 𝑆𝑖 .

Later, we compute shortest paths from the last level 𝑆𝑘 , and show that either this gives a 2-approximation, or that

we can obtain a 2-approximation through the lower levels. The latter is done with Algorithm 3. Here, for each level, we

compute shortest paths from 𝑆𝑖 in a sparser graph, where the distances to some essential vertices equal the distances in the

original graph. This suffices for correctness: on at least one of the levels, a distance estimate through the pivot of that level

gives a 2-approximation, see Lemma 4.3.

Notation. We denote 𝑑 (𝑣, 𝐴) for the distance from a vertex 𝑣 ∈ 𝑉 to a set 𝐴 ⊆ 𝑉 , i.e., 𝑑 (𝑣, 𝐴) := min𝑢∈𝐴 𝑑 (𝑣,𝑢). Next,

we define 𝐸𝐴 (𝑣) as the set of edges with weight less than 𝑑 (𝑣, 𝐴), i.e., 𝐸𝐴 (𝑣) := {{𝑢, 𝑣} ∈ 𝐸 : 𝑤 (𝑢, 𝑣) ≤ 𝑑 (𝑣, 𝐴)}. And finally,

we define 𝐸𝐴 :=
∑

𝑣∈𝑉 𝐸𝐴 (𝑣). We recall that we use 𝐵(𝑢,𝐴) to denote the bunch of 𝑢 w.r.t. some set of pivots 𝐴.

Copyright © 2024

Copyright for this paper is retained by authors
4747

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Algorithm 3: A subroutine for computing APSP [BK10, Algorithm 8]

Input: An 𝑟 -hierarchy 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ · · · ⊇ 𝑆𝑘 ⊇ 𝑆𝑘+1 = ∅, for 𝑘 = (1 − 𝑟 ) log𝑛

1 foreach 𝑖 ∈ [0, 𝑘] and 𝑢 ∈ 𝑉 do
2 Compute pivot 𝑝𝑖 (𝑢) of 𝑢 w.r.t. 𝑆𝑖 ;

3 𝛿 (𝑢, 𝑝𝑖 (𝑢)) ← 𝑑 (𝑢, 𝑝𝑖 (𝑢))
4 end
5 foreach 𝑢 ∈ 𝑉 \ 𝑆𝑘 do
6 Compute 𝐵(𝑢, 𝑆𝑘 );
7 foreach 𝑥 ∈ 𝐵(𝑢, 𝑆𝑘 ) and 0 ≤ 𝑖 ≤ 𝑘 do
8 foreach neighbor 𝑦 of 𝑥 do
9 𝛿 (𝑝𝑖 (𝑢), 𝑦) ← min{𝛿 (𝑝𝑖 (𝑢), 𝑦), 𝛿 (𝑢, 𝑝𝑖 (𝑢)) + 𝛿 (𝑢, 𝑥) +𝑤 (𝑥,𝑦)}

10 end
11 end
12 end
13 foreach 𝑖 ∈ [0, 𝑘 − 1] and 𝑠 ∈ 𝑆𝑖 do
14 Run Dijkstra from 𝑠 on (𝑉 , 𝐸𝑆𝑖+1 ∪ {𝑠} ×𝑉 ), with 𝑤 (𝑠, 𝑣) = 𝛿 (𝑠, 𝑣), and update 𝛿 (𝑠, 𝑣) for all 𝑣 ∈ 𝑉 accordingly

15 end
16 return 𝛿

Independent of our choice of 𝑟 , this algorithm ensures a 2-approximation for certain vertices.

Lemma 4.3. [[BK10] Theorem 7.3] Let 𝑢, 𝑣 ∈ 𝑉 be any two vertices, and let 𝛿 be the output of Algorithm 3. If 𝑑 (𝑢, 𝑝𝑘 (𝑢)) +
𝑑 (𝑣, 𝑝𝑘 (𝑣)) > 𝑑 (𝑢, 𝑣), then

min

0≤𝑖≤𝑘
{𝛿 (𝑢, 𝑝𝑖 (𝑢)) + 𝛿 (𝑝𝑖 (𝑢), 𝑣), 𝛿 (𝑣, 𝑝𝑖 (𝑣)) + 𝛿 (𝑝𝑖 (𝑣), 𝑢)} ≤ 2𝑑 (𝑢, 𝑣).

This holds for any choice of 𝑟 ∈ [0, 1].

The running time however does depend on 𝑟 . By computing shortest paths on the sparser graph, we avoid the expensive

computation of shortest paths from 𝑆𝑖 to all of𝑉 . Instead, for each level, we require 𝑂̃ (𝑚𝑛1−𝑟 ) time to construct the sparser

graph, and 𝑂̃ (𝑛2) time to compute shortest paths from 𝑆𝑖 .

Lemma 4.4. [[BK10] Lemma 7.4] Given 𝑟 ∈ [0, 1], Algorithm 3 takes 𝑂̃ (𝑚𝑛1−𝑟 + 𝑛2) time w.h.p.

Next, we combine this subroutine with shortest paths from the last level to obtain a 2-approximation, see Algorithm 4.

This corresponds to Algorithm 9 of [BK10], where we parameterize the hierarchy.

Algorithm 4: A 2-approximate APSP algorithm

1 𝑘 ← (1 − 𝑟 ) log𝑛;

2 Compute an 𝑟 -hierarchy 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ · · · ⊇ 𝑆𝑘 ⊇ 𝑆𝑘+1 = ∅;
3 Run Algorithm 3 w.r.t. 𝑆0, 𝑆1, . . . , 𝑆𝑘 , 𝑆𝑘+1 = ∅;
4 Compute (1 + 𝜖/2)-approximate MSSP from 𝑆𝑘 in (𝑉 , 𝐸)
5 foreach 𝑢, 𝑣 ∈ 𝑉 do
6 if 𝑣 ∉ 𝐵(𝑢, 𝑆𝑘 ) and 𝑢 ∉ 𝐵(𝑣, 𝑆𝑘 ) then
7 𝛿 (𝑢, 𝑣) ← min0≤𝑖≤𝑘 {𝛿 (𝑢, 𝑝𝑖 (𝑢)) + 𝛿 (𝑝𝑖 (𝑢), 𝑣), 𝛿 (𝑣, 𝑝𝑖 (𝑣)) + 𝛿 (𝑝𝑖 (𝑣), 𝑢)}
8 end
9 end

10 return 𝛿

We show that independent of our choice for 𝑟 , this gives a 2-approximation. In case 𝜖 = 0, this is [BK10, Lemma 7.5],

we adapt this proof to allow for approximate shortest paths.

Lemma 4.5. Algorithm 4 computes (2 + 𝜖)-approximate APSP for any choice of 𝑟 ∈ [0, 1].

Proof. First of all, if 𝑢 ∈ 𝐵(𝑣, 𝑆𝑘 ) or 𝑣 ∈ 𝐵(𝑢, 𝑆𝑘 ) the exact distance is known by 𝛿 (𝑢, 𝑣). So for the rest of the proof we

assume otherwise. Now if 𝑑 (𝑢, 𝑝𝑘 (𝑢)) + 𝑑 (𝑣, 𝑝𝑘 (𝑣)) > 𝑑 (𝑢, 𝑣), then we obtain a 2-approximation by Lemma 4.3.
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We are left with the case that 𝑑 (𝑢, 𝑝𝑘 (𝑢)) +𝑑 (𝑣, 𝑝𝑘 (𝑣)) ≤ 𝑑 (𝑢, 𝑣). Without loss of generality, let 𝑑 (𝑢, 𝑝𝑘 (𝑢)) ≤ 𝑑 (𝑢, 𝑣)/2.

By Algorithm 3, we have 𝛿 (𝑢, 𝑝𝑘 (𝑢)) = 𝑑 (𝑢, 𝑝𝑘 (𝑢)). Furthermore, by line 4, we have 𝛿 (𝑝𝑘 (𝑢), 𝑣) ≤ (1 + 𝜖/2)𝑑 (𝑝𝑘 (𝑢), 𝑣). In

total we obtain by line 5 and the triangle inequality that

𝛿 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑝𝑘 (𝑢)) + 𝛿 (𝑝𝑘 (𝑢), 𝑣) ≤ 𝑑 (𝑢, 𝑝𝑘 (𝑢)) + (1 + 𝜖/2)𝑑 (𝑝𝑘 (𝑢), 𝑣)
≤ 𝑑 (𝑢, 𝑝𝑘 (𝑢)) + (1 + 𝜖/2)𝑑 (𝑢, 𝑝𝑘 (𝑢)) + (1 + 𝜖/2)𝑑 (𝑢, 𝑣) ≤ (2 + 𝜖)𝑑 (𝑢, 𝑣) .

Since all distance estimates 𝛿 (𝑢, 𝑣) correspond to paths in the graph, we trivially have 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣).

Next, we show how the running time depends on 𝑟 .

Lemma 4.6. For 𝑟 ∈ [0, 1], Algorithm 4 takes 𝑂̃ (𝑛2 + 𝑚𝑛1−𝑟 + 𝑇 (𝑂̃ (𝑛𝑟 )) time w.h.p., where 𝑇 (𝑠) is the time to compute

(1 + 𝜖)-approximate MSSP from 𝑠 sources in a graph with 𝑛 vertices and𝑚 edges.

Proof. We can compute an 𝑟 -hierarchy in 𝑂̃ (𝑚𝑛1−𝑟 ) time w.h.p. (follows directly from the definition and Lemma 4.1).

Algorithm 3 takes 𝑂̃ (𝑚𝑛1−𝑟 +𝑛2) time (Lemma 4.4). Next, in line 4, we need to compute MSSP from |𝑆𝑘 | = 𝑂̃ (𝑛𝑟 ), for which

we denote the running time as 𝑇 (𝑂̃ (𝑛𝑟 )). Finally, the for-loop of line 5 takes 𝑂 (𝑛2𝑘) = 𝑂̃ (𝑛2) time. Adding all running

times, we obtain 𝑂̃ (𝑛2 +𝑚𝑛1−𝑟 +𝑇 (𝑂̃ (𝑛𝑟 )) time w.h.p.

Together Lemma 4.5 and Lemma 4.6 give Theorem 1.6.

Theorem 4.3. There exists a randomized algorithm that, given an undirected graph with non-negative edge weights𝐺 = (𝑉 , 𝐸)
and parameters 𝑝 ∈ ( 1

𝑛
, 1], 𝜖 ≥ 0, computes (2 + 𝜖)-approximate APSP. With high probability, the algorithm takes

𝑂̃ (𝑛2 +𝑚/𝑝 +𝑇 (𝑂̃ (𝑝𝑛))) time, where 𝑇 (𝑠) is the time to compute (1 + 𝜖)-MSSP from 𝑠 sources.

(2 + 𝝐)-Approximate APSP for Weighted Graphs Baswana and Kavitha [BK10] proceed by setting 𝑟 = 1/2 (or

equivalently 𝑝 = 1/
√
𝑛). For the MSSP computations they use Dijkstra (hence 𝜖 = 0) in 𝑂̃ (𝑛1−𝑟𝑚) = 𝑂̃ (𝑚

√
𝑛) time, see also

Theorem 3.2. Instead, we keep 𝑟 as a parameter, and use fast matrix multiplication to obtain (1 + 𝜖)-approximate MSSP.

Theorem 4.4. There exists a randomized algorithm that, given an undirected graph 𝐺 = (𝑉 , 𝐸) with non-negative, integer

weights bounded by𝑊 and a parameter 𝑟 ∈ [0, 1], computes (2 + 𝜖)-approximate APSP. With high probability, the algorithm

runs in 𝑂̃ (𝑚𝑛1−𝑟 + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) time.

Proof. This follows directly from Theorem 1.6, combined with the (1 + 𝜖)-approximate MSSP algorithm of [EN22] (see

Theorem 2.2).

For dense graphs, i.e.,𝑚 = 𝑛2
, we can balance the terms using [Bra]. If we do so, we recover Theorem 1.2. Results for

other densities are obtained in a similar fashion, see Table 2 for the results.

Theorem 4.5. There exists a randomized algorithm that, given an undirected graph 𝐺 = (𝑉 , 𝐸) with non-negative

integer weights bounded by 𝑊 , computes (2 + 𝜖)-approximate APSP. With high probability the algorithm takes 𝑂 (𝑛3−𝑟 +
𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) time, for any 𝑟 ∈ [0, 1]. Using known upper bounds for rectangular matrix multiplication, this is

𝑂 (𝑛2.214 (1/𝜖)𝑂 (1) log𝑊 ) time.

Proof. For 𝑚 = 𝑛2
, w.h.p. the running time of Theorem 1.3 becomes 𝑂̃ (𝑛3−𝑟 + 𝑛𝜔 (𝑟 ) (1/𝜖)𝑂 (1) log𝑊 ) =

𝑂̃ (𝑛2.21313612 (1/𝜖)𝑂 (1) log𝑊 ) for 𝑟 = 0.78686388.
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A Utilizing Recent Improvements on Rectangular Matrix Multiplication
Rectangular matrix multiplication is an active research field, with the bounds on𝜔 (𝑟 ) being improved in recent years [Gal23,

GU18, Gal12]. Throughout this paper, we used [GU18], the last published paper on the topic, for the sake of replicability.

However, more recent, concurrent work by Vassilevska Williams, Xu, Xu, and Zhou [WXXZ23] gives better bounds. In this

section, we detail how this affects our running times.

Our result for 2-approximate APSP in unweighted graphs, Theorem 1.1, has running time 𝑂̃ (𝑛2.5−𝑟 + 𝑛𝜔 (𝑟 ) ) =

𝑂 (𝑛2.031062336), for 𝑟 = 0.4689376644.

Our results for (2 + 𝜖)-approximate APSP in weighted graphs, Theorem 1.3, are given in Table 4.

𝑚 Runnning time Using [WXXZ23] for 𝜔 (𝑟 ) with 𝑟

𝑛1.4 𝑛2.4−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.008199835
0.3918001650

𝑛1.5 𝑛2.5−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.031062336
0.4689376644

𝑛1.6 𝑛2.6−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.061029532
0.5389704676

𝑛1.7 𝑛2.7−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.095342149
0.6046578512

𝑛1.8 𝑛2.8−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.132619229
0.6673807708

𝑛1.9 𝑛2.9−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.171770761
0.7282292393

𝑛2.0 𝑛3−𝑟 + 𝑛𝜔 (𝑟 ) 𝑛2.212352011
0.7876479892

Table 4: Our (2 + 𝜖)-approximate APSP results (Theorem 1.3) using [WXXZ23], for 1/𝜖 = 𝑛𝑜 (1) . Theorem 1.3 gives the

fastest running time when𝑚 ≥ 𝑛1.544
. For𝑚 < 𝑛1.544

, we do not improve on [BK10].

Our results for near-additive APSP in unweighted graphs, Theorem 1.5, are given in Table 5.

𝑘 Runnning time Using [WXXZ23] for 𝜔 (𝑟 ) with 𝑟

2 𝑛2+(1−𝑟 )/2 + 𝑛𝜔 (𝑟 ) 𝑛2.151353127
0.6972937458

4 𝑛2+(1−𝑟 )/3 + 𝑛𝜔 (𝑟 ) 𝑛2.118511896
0.6444643104

6 𝑛2+(1−𝑟 )/4 + 𝑛𝜔 (𝑟 ) 𝑛2.097785917
0.6088563325

8 𝑛2+(1−𝑟 )/5 + 𝑛𝜔 (𝑟 ) 𝑛2.083460832
0.5826958380

Table 5: Our (1 + 𝜖, 𝑘)-approximate APSP results (Theorem 1.5) using [WXXZ23], for 1/𝜖 = 𝑛𝑜 (1) .

B (2,𝑾𝒖,𝒗)-Approximate APSP
In this section, we prove Theorem B.1, stated below, providing (2,𝑊𝑢,𝑣)-approximate shortest paths. This is a generalized

version of Baswana, Goyal, and Sen [BGS09], who provide (2, 1)-APSP in unweighted graphs in 𝑂̃ (𝑛𝑚2/3 + 𝑛2) time. We

make three improvements in our generalization: 1) the algorithm allows for weighted graphs, 2) it achieves subquadratic

time for 𝑚 ≤ 𝑛3/2
, since it is a distance oracle rather than explicit APSP, and 3) we achieve a faster running time for

𝑚 > 𝑛3/2
, by having a wider choice in parameters.

The structure of the algorithm is similar to Section 4.3. We show that for vertices whose bunches not overlap, the path

through the pivot is actually a (2,𝑊𝑢,𝑣)-approximation (even if the bunches are adjacent, top left case in Figure 5). Then for

bunches that do overlap (the bottom case in Figure 5), we create a data structure to store these distances.

We note that this result is mostly interesting in the regime where𝑚 = 𝑂 (𝑛3/2), where we obtain subquadratic time and

space. For denser graphs, we do not improve upon Baswana and Kavitha [BK10], who provide a (2,𝑊𝑢,𝑣)-approximation in

𝑂̃ (𝑛2) time and space.

Theorem B.1. Given a weighted graph 𝐺 , we can compute a distance oracle that returns (2,𝑊𝑢,𝑣)-approximate queries in

constant time, where𝑊𝑢,𝑣 is the maximum weight on a shortest path from 𝑢 to 𝑣 , with one of the following guarantees:

• preprocessing time 𝑂̃ (𝑛𝑚2/3) and uses space 𝑂̃ (𝑛𝑚2/3), when𝑚 ≤ 𝑛3/2
, and

• preprocessing time 𝑂̃ (𝑚𝑛1/2) and uses space 𝑂 (𝑛2), when𝑚 > 𝑛3/2
,

or it has (optimizing for space) running time 𝑂̃ (𝑚𝑛2/3) and 𝑂̃ (𝑛5/3) space.

Proof. Algorithm. Let 𝑝 ∈ [ 1

𝑛
, 1] be a parameter, to be chosen later.

PreProcessing(𝐺, 𝑝):
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Figure 5: Three different possible interactions between the shortest path between 𝑢 and 𝑣 , and the bunches of 𝑢 and 𝑣 .

1. Run ComputeBunches(𝐺, 𝑝)

2. Run Dijkstra for each vertex 𝑢 ∈ 𝐴 to compute all distances 𝑑 (𝑢, 𝑣) for 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉 .

3. For 𝑢 ∈ 𝑉 , for 𝑤 ∈ 𝐵(𝑢), for 𝑣 ∈ 𝐶 (𝑤):

(a) Initialize 𝛿overlap (𝑢, 𝑣) ← 𝑑 (𝑢,𝑤) + 𝑑 (𝑤, 𝑣) if no such entry exists.

(b) Otherwise: 𝛿overlap (𝑢, 𝑣) ← min{𝛿overlap (𝑢, 𝑣), 𝑑 (𝑢,𝑤) + 𝑑 (𝑤, 𝑣)}.

Query(𝑢, 𝑣):

Output 𝛿 (𝑢, 𝑣) to be the minimum of

(a) min{𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑣, 𝑝 (𝑢)), 𝑑 (𝑢, 𝑝 (𝑣)) + 𝑑 (𝑣, 𝑝 (𝑣))};

(b) 𝛿overlap (𝑢, 𝑣);

Correctness. We will show that 𝛿 (𝑢, 𝑣) gives a (2,𝑊𝑢,𝑣)-approximation of 𝑑 (𝑢, 𝑣). First, note that all distances making

up 𝛿 (𝑢, 𝑣) correspond to actual paths in the graph, hence 𝑑 (𝑢, 𝑣) ≤ 𝛿 (𝑢, 𝑣). Next, let 𝜋 be the shortest path from 𝑢 to 𝑣 . We

distinguish two cases.

Case 1. There exists 𝑤 ∈ 𝜋 such that 𝑤 ∈ 𝐵(𝑢) ∩ 𝐵(𝑣) (the bottom case in Figure 5).

We have that

𝛿overlap (𝑢, 𝑣) = min{𝑑 (𝑢, 𝑥) + 𝑑 (𝑥, 𝑣) : 𝑥 ∈ 𝐵(𝑢) and 𝑦 ∈ 𝐶 (𝑥)}
= min{𝑑 (𝑢, 𝑥) + 𝑑 (𝑥, 𝑣) : 𝑥 ∈ 𝐵(𝑢) and 𝑥 ∈ 𝐵(𝑦)}.

In particular, this includes 𝑥 = 𝑤 , and 𝑤 is on the shortest path, so by Query Step b, we have that 𝛿 (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑣).
Case 2. There is no 𝑤 ∈ 𝜋 such that 𝑤 ∈ 𝐵(𝑢) ∩ 𝐵(𝑣).
This means there is either a vertex 𝑤 ∈ 𝜋 such that 𝑤 ∉ 𝐵(𝑢) ∪ 𝐵(𝑣) (the top right case in Figure 5), or there is an

edge {𝑢′, 𝑣 ′} on 𝜋 such that 𝑢′ ∈ 𝐵(𝑢) \ 𝐵(𝑣) and 𝑣 ′ ∈ 𝐵(𝑣) \ 𝐵(𝑢) (the top right case in Figure 5). The first case gives a

2-approximation by the same reasoning as in the proof of Lemma 4.2, where we use exact shortest path, hence 𝜖 = 0.

Here we only consider the second case. Since 𝑣 ′ ∉ 𝐵(𝑢), we have 𝑑 (𝑢, 𝑣 ′) ≥ 𝑑 (𝑢, 𝑝 (𝑢)), and since 𝑢′ ∉ 𝐵(𝑣), we have
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𝑑 (𝑢′, 𝑣) ≥ 𝑑 (𝑣, 𝑝 (𝑣)). Combining this, we obtain 𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑣, 𝑝 (𝑣)) ≤ 𝑑 (𝑢, 𝑣) +𝑤 (𝑢′, 𝑣 ′). Without loss of generality,

assume that 𝑑 (𝑢, 𝑝 (𝑢)) ≤ 𝑑 (𝑢,𝑣)+𝑤 (𝑢′,𝑣′ )
2

. By Query Step a we have:

𝛿 (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑣, 𝑝 (𝑢))
≤ 𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑢, 𝑝 (𝑢)) + 𝑑 (𝑢, 𝑣)
≤ 2𝑑 (𝑢, 𝑣) +𝑤 (𝑢′, 𝑣 ′)
≤ 2𝑑 (𝑢, 𝑣) +𝑊𝑢,𝑣 .

Running time. Step 1 and 2 take 𝑂̃ (𝑚
𝑝
) and 𝑂̃ (𝑝𝑛𝑚) time respectively, see Lemma 4.1. For Step 3, notice that Step 3a

and 3b both take constant time. So Step 3 takes total time∑︁
𝑢∈𝑉

∑︁
𝑤∈𝐵 (𝑢 )

∑︁
𝑣∈𝐶 (𝑤 )

𝑂 (1) = 𝑂̃ ( 𝑛
𝑝2
),

since |𝐵(𝑢) | = 𝑂̃ ( 1

𝑝
) and |𝐶 (𝑤) | = 𝑂̃ ( 1

𝑝
), by Lemma 4.1. We obtain total time 𝑂̃ (𝑚

𝑝
+ 𝑝𝑛𝑚 + 𝑛

𝑝2
). We can balance this in

three different ways:

•
𝑚
𝑝
= 𝑝𝑛𝑚, which implies 𝑝 = 𝑛−1/2

and gives running time 𝑂̃ (𝑚𝑛1/2 + 𝑛2).

•
𝑚
𝑝
= 𝑛

𝑝2
, which implies 𝑝 = 𝑛

𝑚
and gives running time 𝑂̃ (𝑚2

𝑛
+ 𝑛2).

• 𝑝𝑛𝑚 = 𝑛
𝑝2

, which implies 𝑝 =𝑚−1/3
and gives running time 𝑂̃ (𝑚4/3 + 𝑛𝑚2/3).

Note that 𝑂̃ (𝑚𝑛1/2 + 𝑛2) is always smaller than 𝑂̃ (𝑚2

𝑛
+ 𝑛2) , since𝑚𝑛1/2 ≤ 𝑚2

𝑛
for𝑚 ≥ 𝑛3/2

and𝑚𝑛1/2 ≤ 𝑛2
for𝑚 ≤ 𝑛3/2

.

Further we see that 𝑂̃ (𝑚4/3+𝑛𝑚2/3) is smaller than 𝑂̃ (𝑚𝑛1/2+𝑛2) when𝑚 ≤ 𝑛3/2
, since then𝑚4/3 ≤ 𝑛2

and𝑚𝑛1/2 ≤ 𝑛2
.

Finally we notice that 𝑛𝑚2/3 ≥ 𝑚4/3
when𝑚 ≤ 𝑛3/2

, and that𝑚𝑛1/2 ≥ 𝑛2
for𝑚 ≥ 𝑛3/2

. So our running time simplifies

to

• 𝑂̃ (𝑛𝑚2/3), when𝑚 ≤ 𝑛3/2
, and

• 𝑂̃ (𝑚𝑛1/2), when𝑚 > 𝑛3/2
.

Query time. We note that we have computed 𝐵(𝑢) and 𝐵(𝑣), so checking if 𝑣 ∈ 𝐵(𝑢) or 𝑢 ∈ 𝐵(𝑣) can be done in

constant time. Further, we have also computed 𝑑 (𝑢, 𝑣) if 𝑣 ∈ 𝐵(𝑢). For Query Step a, notice that we computed distances

from 𝐴 to 𝑉 , and for Query Step b we have already computed the value 𝛿overlap (𝑢, 𝑣). So the whole query can be done in

constant time.

Space. We need 𝑂 ( |𝐴|𝑛) = 𝑂̃ (𝑝𝑛2) space for the distances from 𝐴, and 𝑂̃ ( 𝑛
𝑝2
) space for the overlap data structure.

All other space requirements are clearly smaller. Using 𝑝 = 𝑛−1/2
gives space 𝑂 (𝑛2), using 𝑝 = 𝑚−1/3

gives space

𝑂̃ (𝑛𝑚2/3 + 𝑛2𝑚−1/3) = 𝑂̃ (𝑛𝑚2/3).
To optimize the space usage, we set 𝑝𝑛2 = 𝑛

𝑝2
, so 𝑝 = 𝑛−1/3

, we obtain total space requirement 𝑂̃ (𝑛5/3) = 𝑂̃ (𝑚𝑛2/3).
This gives running time 𝑂̃ (𝑚𝑛1/3 +𝑚𝑛2/3 + 𝑛5/3) = 𝑂̃ (𝑚𝑛2/3).
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