
Dynamic algorithms for k-center on graphs∗

Emilio Cruciani† Sebastian Forster† Gramoz Goranci‡ Yasamin Nazari§

Antonis Skarlatos†

Abstract
In this paper we give the first efficient algorithms for the k-center problem on dynamic graphs undergoing

edge updates. In this problem, the goal is to partition the input into k sets by choosing k centers such that
the maximum distance from any data point to its closest center is minimized. It is known that it is NP-hard
to get a better than 2 approximation for this problem.

While in many applications the input may naturally be modeled as a graph, all prior works on k-center
problem in dynamic settings are on point sets in arbitrary metric spaces. In this paper, we give a deterministic
decremental (2 + ϵ)-approximation algorithm and a randomized incremental (4 + ϵ)-approximation algorithm,
both with amortized update time kno(1) for weighted graphs. Moreover, we show a reduction that leads to a
fully dynamic (2 + ϵ)-approximation algorithm for the k-center problem, with worst-case update time that is
within a factor k of the state-of-the-art upper bound for maintaining (1+ϵ)-approximate single-source distances
in graphs. Matching this bound is a natural goalpost because the approximate distances of each vertex to its
center can be used to maintain a (2+ϵ)-approximation of the graph diameter and the fastest known algorithms
for such a diameter approximation also rely on maintaining approximate single-source distances.

1 Introduction
Clustering is a key concept in data analysis that involves organizing ‘similar’ data into groups. One of the most
fundamental and well-studied objectives is the k-center objective. Specifically, given a metric space with n points
and a positive integer k ≤ n, the goal of the k-center problem is to select k points, referred to as centers, such
that the maximum distance of any point in the metric space to its closest center is minimized. It is known that
k-center is NP-hard to approximate within a factor of (2 − ϵ) for any ϵ > 0 [35]. Due to its popularity, k-center
has been considered under several algorithmic frameworks, including approximation algorithms [35, 25, 34, 39,
22], parameterized complexity [23, 5], massive parallel computation (MPC) model [15, 8, 9], and beyond worst-
case analysis [4], among others. This problem also serves as a testbed for developing fundamental algorithmic
definitions and paradigms, which are then often applied to solving other variants of clustering objectives.

Clustering in the dynamic setting has received increasing attention in recent years. This line of work was
initiated by Charikar et al. [17] who considered the problem of minimizing cluster diameters under the insertions
of new points in an underlying metric space. Under both point insertions and deletions, the k-center problem
was considered by Chan et al. [16], who achieved a (2 + ϵ)-approximation in O(k2ϵ−1 log∆) amortized update
time, where ∆ is the aspect ratio of the metric space. Later on, the amortized update time was improved to
O(kϵ−1poly log(n,∆)) by Bateni et al. [6]. This is almost optimal considering that even in the static setting, any
algorithm for k-clustering problems (including k-center, k-median, and k-means) on point sets in arbitrary metric
spaces that achieves any non-trivial approximation, must make at least Ω(nk) distance queries, and in turn must
take Ω(nk) time [6]. These results spurred several follow-up works that studied other point sets-based clustering
objectives such as k-means [20, 30], k-median [28], facility location [26, 29, 27, 12], and sum-of-radii [33] in the
dynamic setting.

An important case of k-center clustering is when the input metric is induced by a graph G on n vertices and
m edges. Naturally, any k-center algorithm that works with points in arbitrary metric spaces, can be applied on
top of the graphical metric obtained by computing all-pairs shortest paths in G. However, the latter leads to slow

∗Supported by the Austrian Science Fund (FWF): P 32863-N. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 947702).

†Department of Computer Science, University of Salzburg, Austria.
‡Faculty of Computer Science, University of Vienna, Vienna, Austria.
§Department of Computer Science, VU Amsterdam. This research was partially conducted when the author was a postdoc at

University of Salzburg.

Copyright © 2024
Copyright for this paper is retained by authors3441

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



running times, especially since it could make a sparse graph G very dense. In the static setting, Thorup [43] gave
a faster algorithm for the k-center problem in the graph setting, achieving a (2 + ϵ)-approximation in Õ(mϵ−1)
time, where Õ hides polylogarithmic factors in n and in the maximum edge-weight of the graph. This result was
recently revisited by the work of Eppstein et al. [21] and even more recently by Abboud et al. [1] who gave a
refined and simpler algorithm for k-center on graphs.

We note that graph clustering has also received attention in the machine learning community, albeit for the
closely related objective of k-means [40]. They observe the computational challenges involving graphs (see also [2,
Section 2.3]) and specifically the output sensitivity due to distance changes caused by edge updates.

Motivated by these developments, we study the fundamental problem of dynamic k-center on graphs. In
comparison to the model with dynamic point sets in arbitrary metric spaces, we remark that the model with
dynamic graphs is more challenging since (i) there is no guarantee of having oracle access to all-pairs shortest
paths distances, and (ii) a single edge update may have a global effect on the underlying graph metric, forcing
a large number of vertex pairs to change their shortest path distance. This is also why we cannot use other
black-box approaches such as a distance oracle of the metric completion of the graph.

To that end, we ask the natural question of to what extent one can leverage the structure of graphical k-center
in the context of obtaining faster algorithms for dynamic k-center on graphs:

Are there efficient algorithms for k-center on graphs undergoing edge updates?

1.1 Our Contribution In this paper, we answer the question in the affirmative. Our first contribution is a
fully dynamic k-center algorithm that follows from prior work using a surprisingly simple trick.

Theorem 1.1. Given a weighted undirected graph G = (V,E,w) subject to edge updates, an integer parameter
k ≥ 1, and a positive constant parameter ϵ ≤ 1/2, there are two fully dynamic algorithms for the k-center problem
on graphs, that maintain a (2 + ϵ)-approximation with the following guarantees (based on the current value of the
matrix multiplication exponent):

1. Deterministic algorithm with O(kn1.529ϵ−2) worst-case update time, if G has uniform weights;
2. Randomized algorithm, against an adaptive adversary, with O(kn1.823ϵ−2) worst-case update time, if G has

general weights.
Both algorithms have preprocessing time O(n2.373ϵ−2 log ϵ−1).

Note that our update time bounds match up to an Õ(k) factor, those of the state-of-the-art fully-dynamic
single-source distance approximation algorithms with multiplicative error (1 + ϵ) [14, 13]. Matching this bound
is a natural goalpost for dynamic k-center algorithms maintaining the (1 + ϵ)-approximate distance of each
vertex to its closest center, because such distance approximations are sufficient to return a (2 + ϵ)-approximation
for graph diameter when k = 1 and the fastest known approach for this is to use a dynamic single-source
distance approximation algorithm. Our algorithms—and to the best of our knowledge all related dynamic k-center
algorithms on general metrics—do have this desirable property of maintaining the (1 + ϵ)-approximate distance
of each vertex to its closest center. Moreover, the previous result is a reduction to the problem of maintaining
k-source approximate shortest paths in a fully dynamic setting; hence any improvement on the shortest paths
algorithms directly improves the running time of our algorithms as well.

The above suggests that in order to achieve faster running times, we need to consider partially dynamic
algorithms for the k-center problem on graphs, where edge updates are restricted to only edge insertions or edge
deletions. In particular, the insertions-only algorithms (also known as the incremental setting) in the context
of clustering are particularly well-motivated from a practical viewpoint. For example, real-world graphs such as
co-authorship networks are incremental since the fact that two scientists co-authoring a research paper (almost)
never changes over time. Our main result regarding the incremental setting is the following.

Theorem 1.2. Given a weighted undirected graph G = (V,E,w) subject to edge insertions, an integer parameter
k ≥ 1, and a positive constant parameter ϵ < 1, there is a randomized incremental (4+ϵ)-approximation algorithm
for the k-center problem on graphs. The algorithm is correct w.h.p. and has kno(1) amortized update time over a
sequence of Θ(m) updates.

To complete the picture of partially dynamic algorithms, we also study the k-center problem on graphs
undergoing edge deletions only, known as the decremental setting. Here, we obtain an algorithm that achieves a
tight (2 + ϵ) approximation ratio.

Copyright © 2024
Copyright for this paper is retained by authors3442

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Theorem 1.3. Given a weighted undirected graph G = (V,E,w) subject to edge deletions, an integer parameter
k ≥ 1, and a positive constant parameter ϵ < 1, there is a deterministic decremental (2 + ϵ)-approximation
algorithm for the k-center problem on graphs, with kno(1) amortized update time over a sequence of Θ(m) updates.

We note that the no(1) factors in the running time are also due to using partially dynamic approximate
single-source shortest paths (SSSP) algorithms, which is inherent in our bounds based on similar reasoning as in
the fully dynamic setting.

Outline. In Section 2, we give an overview of our algorithm and also discuss the main challenges we face
in dynamic graphs, as opposed to point sets. In Section 4, we review a well-known reduction that relates the
k-center problem to finding a maximal independent set on a graph. This reduction is fundamental to our partially
dynamic algorithms. Section 5 presents our primary technical contribution, showcasing the incremental algorithm
of Theorem 1.2. Section 6 completes the partially dynamic picture by providing the decremental algorithm of
Theorem 1.3. In Section 7, we explore the fully-dynamic setting, in which we use a different type of algorithm
to prove Theorem 1.1. Unlike the reduction presented in Section 4, our approach here is based on the greedy
algorithm of Gonzalez [25]. In addition to the set of centers, we can also answer other natural queries, such as
the corresponding center for each vertex. We briefly discuss this in Appendix A.

2 Technical Overview
In this section, we give a high-level overview of our algorithms and discuss several technical challenges that we
need to handle for dynamically maintaining k-center on graphs rather than on point sets.

Reduction to k-bounded maximal independent set on threshold graphs. We start by reviewing a
known reduction from 2-approximate k-center to k-bounded maximal independent set (MIS) [34]. This reduction
is also the basis of some of the fully dynamic k-center algorithms on point sets in arbitrary metric spaces [6, 16].
The idea for obtaining a 2-approximation is to guess the optimal value R∗ of the k-center instance via a binary
search, and return any maximal distance-2R∗ independent set M . It can be shown that M must be of size at
most k. Recall that M is a maximal subset of vertices such that no two vertices u, v ∈ M are within distance
2R∗ of each other. The vertices of M then correspond to the centers of the k-center instance.

For utilizing this idea in the dynamic setting, rather than guessing the value of R∗, we maintain the MIS on
each r-threshold graph Gr, for every distance range r ≤ (1+ϵ)i, where i ∈ [0, log1+ϵ(nW )] and W is the maximum
edge-weight of the graph. Here, by r-threshold graph we mean a graph such that there is an edge between two
vertices if and only if they are within distance r. This general framework has been used in the dynamic k-center
algorithms on point sets [6, 16]. Actually, they maintain a relaxation of the MIS, called a k-bounded MIS. The
observation is that it is sufficient to either return an MIS of size at most k on each r-threshold graph Gr, or to
simply report that there is an independent set of size at least k + 1 as a witness that the distance range r is not
the correct guess.

Technical challenges in graphs vs point sets. As discussed before there are several important technical
differences between the graph and point sets settings. The first difference is that, unlike the point sets settings,
in graphs we do not have direct access to distances. Thus, we also need to maintain the appropriate distances
simultaneously while the dynamic MIS is modified on the r-threshold graphs. For this, we would like to combine
a dynamic MIS maintenance algorithm with partially dynamic (approximate) shortest paths algorithms. At a
high-level, our goal is to maintain a k-bounded MIS M dynamically on each r-threshold graph Gr and at the
same time maintain a dynamic (approximate) SSSP algorithm from a super-source which is connected to all the
vertices in the dynamic set M . Hence the efficiency of the algorithm will depend on the number of times the set
M is modified over all the updates. Equivalently, the efficiency will depend on the number of times the SSSP
algorithm is restarted.

In both point sets and graph settings, we need to bound the recourse, where by recourse we mean the number
of times a new center is introduced by the algorithm. However, we argue that a stronger recourse guarantee
is needed for graphs. Recall that another important difference between these two settings is that in the point
sets setting adding or removing points has a more local impact, whereas in a graph an update may impact the
distances between many vertices. In other words, in the graph setting an edge update may distort the metric
itself. This difference in graphs also requires our algorithm to have an overall recourse guarantee, as opposed to
an amortized one that suffices for the point sets settings. Thus an amortized recourse of Õ(k) per update is not
enough, and we need the stronger guarantee that the recourse is Õ(k) over all updates. More concretely, this total

Copyright © 2024
Copyright for this paper is retained by authors3443

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



bound on recourse will let us argue that in total we need to re-initialize a dynamic (1 + ϵ)-SSSP algorithm Õ(k)
times from each center, and an amortized guarantee would not be enough for getting our desired update bound.
We will see that maintaining this stronger recourse guarantee is more challenging in incremental settings than in
decremental settings.

Note that this type of recourse guarantee has been studied in metric spaces under the name consistent
clustering [38, 24, 37]. However, we would like to emphasize that the known sublinear bounds on the total
recourse in the point sets setting do not carry over to the graph setting.

Decremental k-center on graphs. We can obtain a decremental (2+ϵ)-approximation algorithm for the k-
center problem on graphs, by maintaining a decremental (1+ϵ)-SSSP algorithm from each added center in each of
the O(log nW ) r-threshold graphs. Bounding the recourse in the decremental setting is relatively straightforward
based on the following observation. Whenever a new center forms a cluster due to a distance increase in a given
r-threshold graph, it stays disjoint of other clusters throughout the algorithm and thus it stays a valid center.
Furthermore, as soon as we get more than k centers, we move to the next distance range and so, the recourse is
upper bounded by k on each r-threshold graph and by O(k log nW ) overall. Hence the (1 + ϵ)-SSSP algorithm
is restarted at most O(k log nW ) times in total. This combined with the time needed for maintaining partially
dynamic (1 + ϵ)-approximate SSSP leads to our desired kno(1) amortized update time.

Incremental low recourse ruling sets. Bounding the recourse in the incremental setting is more
challenging compared to the decremental setting, for the following reason. After an edge insertion in the input
graph, a center c1 of a cluster may come within distance r of an existing center c2 of another cluster. In turn,
this means that the two vertices c1 and c2 become neighbors in the r-threshold graph Gr. We cannot simply
merge the corresponding clusters in some way and still maintain a 2-approximation, as some vertices in such a
merged cluster would go beyond the desired distance range after each update. Hence we need a new technical
idea to keep the recourse low. The idea is to maintain a small (i.e., of size Õ(k)) dominating set S on G such that,
at a high-level, maintaining a maximal independent set on S will give us an approximate maximal independent
set on G. More formally, by maintaining a k-bounded MIS M on the dominating set S, we can show that M is
also a k-bounded (2, 2)-ruling set1 in G. That is, a subset of vertices of M of size at most k such that: (i) the
distance between any pair of vertices in M is at least 2, and (ii) for each vertex u ∈ V there exists a vertex in M
within distance 2. Introducing this small dominating set allows us to maintain a dynamic k-bounded maximal
independent set M on the smaller subgraph S more efficiently, at the cost of losing a factor 2 in the approximation
due to the fact that M is only a (2, 2)-ruling set on G. For maintaining such a dominating set, we use a recursive
algorithm that maintains a union of hitting sets on a sequence of sparsified subgraphs of G. The hitting sets are
obtained by a standard sampling procedure on the subgraphs corresponding to each recursive call. Informally,
the sampling rate of the hitting sets is tuned depending on the densities of these subgraphs and the recursion
continues until the remaining set of low degree vertices is sufficiently small. Since we have an incremental graph,
the set of low degree vertices defined based on a specific degree threshold that are not covered by the hitting sets
shrinks over time. This together with an observation regarding the degrees and the sampling, allows us to bound
the recursion depth by O(log n).

Challenges of working with the r-threshold graphs. The high-level idea described above will give us an
algorithm for maintaining a k-bounded (2, 2)-ruling set on an incremental graph in Õ(k) amortized update time
with an overall recourse of Õ(k). Similar to the decremental algorithm, our goal is to maintain such a ruling set
on all threshold graphs. This, combined with an incremental (1 + ϵ)-SSSP algorithm, will lead to an incremental
(4 + ϵ)-approximation algorithm for the k-center problem on graphs. The main remaining challenge is that an
edge insertion into the input graph G could lead to many edge insertions in the r-threshold graph. In turn, the
density of the r-threshold graphs could be n2 ≥ m. To overcome this challenge, we do not explicitly store the
r-threshold graphs, but again utilize a small dominating set for each r-threshold graph to ensure that only relevant
insertions, i.e., those that cause a conflict, are processed and passed to the shortest paths algorithms. Overall,
by bounding the number of centers added and the number of edges processed, we ensure that Õ(k) incremental
(1 + ϵ)-SSSP algorithms are re-initialized in total, and this leads to an amortized update time of kno(1).

1While our k-center algorithms work for weighted graphs, the ruling set subroutines always perform on unweighted graphs regardless
on the input to the k-center problem.

Copyright © 2024
Copyright for this paper is retained by authors3444

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3 Preliminaries
Graphs. Consider a weighted undirected graph G = (V,E,w). We denote by n = |V | the number of vertices,

by m = |E| the number of edges, and by W the maximum weight of an edge. Without loss of generality (WLOG),
we assume that the minimum edge weight is equal to 1. Moreover, we assume that W is bounded by a polynomial
in n (i.e., W = O(poly(n))).

For any two vertices u, v ∈ V , the distance dG(u, v) between u and v is the length of a shortest path from u
to v in G. For a fixed subset of vertices S ⊆ V and a vertex v ∈ V , the distance dG(v, S) between v and S is
equal to minu∈S dG(v, u), namely the distance from v to its closest vertex in S. For a vertex v ∈ V , we denote
by NG(v) the set of neighbors of v in G. A subgraph H of a graph G is a graph whose vertex set and edge set
are subsets of the vertex set and edge set of G respectively. An edge-subgraph of G is a graph whose vertex set
is the same as the vertex set of G and whose edge set is a subset of the edge set of G. For a subset of vertices
S ⊆ V , the induced subgraph G[S] is the graph with vertex set S, whose edge set consists of all edges in E that
have both endpoints in S. We also say that G[S] is the subgraph induced by S. For a graph H, we denote by
V (H) the vertex set of H, and by E(H) the edge set of H.

Consider now an unweighted undirected graph G = (V,E). A distance-α independent set M is a subset of
vertices such that the distance between any two vertices in M is strictly more than α. An independent set (IS) is
a distance-1 independent set. An (α, β)-ruling set is a subset of vertices M ⊆ V such that the distance between
any two vertices in M is at least α, and the distance between any vertex in V and its closest vertex in M is at
most β. A maximal independent set (MIS) is a (2, 1)-ruling set.

Dynamic setting. In the dynamic setting, the input graph G is subject to edge updates. Namely, edges
can be inserted into G (edge insertions) and/or edges can be removed from G (edge deletions).

A fully dynamic algorithm is able to process both types of edge updates (i.e., edge insertions and edge
deletions), while a partially dynamic algorithm is able to process only one type of edge updates (i.e., either edge
insertions or edge deletions). In particular, an incremental algorithm can process only edge insertions and a
decremental algorithm can process only edge deletions.

In our incremental algorithms, we assume that the updates are performed by an oblivious adversary who fixes
the sequence of updates before the algorithm starts. Namely, the adversary cannot adapt the updates based on
the choices of the algorithm during the execution. This is as opposed to an adaptive adversary, that instead we
consider in the decremental and fully-dynamic settings.

In the incremental setting, let M be an independent set in G. Then for an edge insertion (u, v) in G, we say
that the edge (u, v) causes a conflict in G when both of its endpoints u and v belong to M before the update.

We say that a dynamic algorithm has amortized update time u(n,m) if its total time spent for processing any
sequence of ℓ updates is bounded by ℓ · u(n,m).

k-center on graphs. We formally define the k-center problem as follows:

Definition 3.1. (k-center on graph) Given a weighted undirected graph G = (V,E,w) and an integer k ≥ 1,
the goal is to output a subset of vertices S ⊆ V of size at most k, such that the value maxv∈V dG(v, S) is minimized.

Consider a k-center instance (G = (V,E,w), k), which is the pair of the given input graph G and the integer
k. For each choice of S ⊆ V , we define the radius r := maxv∈V dG(v, S). The vertices of S are also called centers.
For a fixed S with radius r, we define a cluster for every c ∈ S containing all vertices within distance r from the
center c. We denote by R∗ := min|S|≤k maxv∈V dG(v, S) the optimal radius of the given instance, and by S∗ any
subset with radius R∗ (i.e., R∗ = maxv∈V dG(v, S

∗)). For completeness we also discuss how we may be interested
in answering other type of queries in Appendix A. In the dynamic setting, the input graph of the k-center instance
is subject to edge updates.

Partially dynamic shortest paths algorithms. Through the paper, we heavily make use of the existing
partially dynamic (1+ϵ)-approximate single-source shortest paths (SSSP) algorithms. In the decremental setting,
we can use a deterministic algorithm.

Theorem 3.1. (Decremental (1 + ϵ)-SSSP, [11]) Given a graph G = (V,E) subject to edge deletions, a source
s ∈ V , and a constant ϵ ∈ (0, 1), there is a deterministic algorithm that maintains (1 + ϵ)-approximate shortest
paths from s in total update time m1+o(1).

In the incremental setting, we can use the following randomized partially dynamic algorithm.

Copyright © 2024
Copyright for this paper is retained by authors3445

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Theorem 3.2. (Incremental (1 + ϵ)-SSSP, [32, 18, 36]) Given a graph G = (V,E) subject to edge insertions,
a source s ∈ V , and a constant ϵ ∈ (0, 1), there is a randomized algorithm (against an oblivious adversary) that
maintains (1 + ϵ)-approximate shortest paths from s in total update time m1+o(1).

The incremental algorithm is not explicitly stated but follows from similar algorithms as the decremental settings
such as [32, 18, 36]. In Appendix C, we give a brief sketch of how one can adapt these results to the incremental
setting, but the details of this algorithm are beyond the scope of this paper.

4 Reduction from 2-approximate k-center to k-bounded ruling set
It is well-know that the k-center problem can be reduced to the problem of finding an MIS on a graph. This
reduction was first given by Hochbaum and Schmoys [34], in order to get a 2-approximation algorithm, and also
it has been used by [16, 6] for the fully dynamic k-center problem on point sets in arbitrary metric spaces. In
particular, it is sufficient to solve a weaker version of the MIS problem, where we only need to return an MIS of
size at most k, or report that there is an independent set of size at least k + 1. Formally, we define this problem
based on an (α, β)-ruling-set, as follows. A similar definition was also given in [6] for the MIS. Recall that an MIS
is a (2, 1)-ruling set.

Definition 4.1. (k-bounded (α, β)-ruling set problem) Given an unweighted undirected graph G = (V,E),
an integer k ≥ 1, and parameters α, β such that β ≥ α − 1 ≥ 0, the k-bounded (α, β)-ruling set problem asks to
either return an (α, β)-ruling set of size at most k, or to report that there is a distance-(α− 1) independent set of
size at least k + 1.

The reduction solves the k-bounded (α, β)-ruling set problem on the following type of graphs.

Definition 4.2. (r-threshold graph) Given a weighted graph G = (V,E,w) and a parameter r > 0, the
r-threshold graph Gr = (V,Er) is defined as the graph with vertex set V and edge set Er = {(u, v) ∈ V × V :
dG(u, v) ≤ r}.

In other words, the r-threshold graph Gr connects all pairs of vertices that are within distance r in G. Observe
that the r-threshold graph Gr is unweighted.

The next lemma is an adjustment of the reduction of Hochbaum and Schmoys [34] to Definition 4.1. The
proof is deferred to Appendix B.

Lemma 4.1. Consider a k-center instance (G = (V,E,w), k), and a positive constant parameter ϵ. Then by
running a k-bounded (2, β)-ruling set algorithm on the r-threshold graph Gr, for each r ∈ {(1 + ϵ)i | (1 + ϵ)i ≤
nW, i ∈ N}, we can find a 2β(1 + ϵ)-approximate solution for the k-center instance.

For the sake of efficiency, in the dynamic setting we do not handle r-threshold graphs, but rather an
approximation of them. For this reason, we generalize the previous lemma as follows.

Lemma 4.2. Consider a k-center instance (G = (V,E,w), k), constant positive parameters ϵ, ϵ′, r ≥ 0, and β ≥ 1.
Let r′ := (1+ ϵ′)r and consider the threshold graphs Gr and Gr′ . Suppose that there is an algorithm A such that,
given G, r, ϵ′, β,

• either reports that there is an independent set in Gr of size at least k + 1,
• or runs a k-bounded (2, β)-ruling set algorithm B on an edge-subgraph H of Gr′ with the following condition:

whenever B reports that there is an independent set in H of size at least k+1, then there is an independent
set in Gr of size at least k + 1.

Then, by running A with input G, r, ϵ′, β, for each r ∈ {(1+ϵ)i | (1+ϵ)i ≤ nW, i ∈ N}, we can find a 2β(1+ϵ)(1+ϵ′)-
approximate solution for the k-center instance.

As already stated, the previous lemma is a generalization of Lemma 4.1. In fact, observe that in the definition of
a k-bounded (2, β)-ruling set problem, we are allowed to report that there is an independent set of size at least
k + 1. Thus by setting H = Gr and ϵ′ = 0 in Lemma 4.2, we get Lemma 4.1 as a corollary.

Before proving Lemma 4.2, we state two auxiliary results that will be useful. Their proofs are deferred to
Appendix B.

Copyright © 2024
Copyright for this paper is retained by authors3446

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Lemma 4.3. Consider a k-center instance (G = (V,E,w), k) with optimal radius R∗. Then for each r ≥ 2R∗ and
for every β ≥ 1, it holds that every (2, β)-ruling set in the r-threshold graph Gr is of size at most k.

observation 4.1. Consider a k-center instance (G = (V,E,w), k) with optimal radius R∗, and let Gr be the
r-threshold graph where r = 2R∗. Then, there is no independent set in Gr of size at least k + 1.

We proceed now with the proof of Lemma 4.2.

Proof. [Proof of Lemma 4.2] Let r̂ be the smallest r ∈ {(1 + ϵ)i | (1 + ϵ)i ≤ nW, i ∈ N} such that algorithm A
returns a (2, β)-ruling set Mr of size at most k in an edge-subgraph H of Gr′ , where r′ = (1 + ϵ′)r. Also, let
r̂′ = (1 + ϵ′)r̂ and let S := Mr̂ be the solution we return for the k-center instance.

Since H is a subgraph of Gr̂′ , then for every edge (u, v) ∈ E(H), the distance between u and v in G is at
most r̂′. Hence, as Mr̂ is a (2, β)-ruling set in H, then every vertex is within distance βr̂′ from its closest center
in G. Thus, the returned solution S has radius at most βr̂′.

We show now that r̂ is at most 2(1 + ϵ) times larger than R∗. Based on Observation 4.1, for the fixed choice
of r = 2R∗, algorithm A always returns a (2, β)-ruling set Mr in H of size at most k. By definition of r̂, and since
the possible values of r are powers of (1 + ϵ), we have that r̂ ≤ 2(1 + ϵ)R∗. Therefore, the radius of the returned
solution S is at most 2β(1 + ϵ)(1 + ϵ′)R∗.

5 Incremental k-center on graphs
We start by recalling the concept of dominating set, which we will exploit throughout this section.

Definition 5.1. (Dominating set) Given a graph G = (V,E), a dominating set S ⊆ V on G is a subset of
vertices such that each vertex of G is either in S or has a neighbor in S.

In particular, we will make use of the following observation.

observation 5.1. Let G = (V,E) be a graph, let S be a dominating set on G, and let M be a (α, β)-ruling set
on G[S]. Then M is a (α, β + 1)-ruling set on G.

In this section, we first develop an incremental algorithm for the k-bounded (2, 2)-ruling set problem by finding
a small dominating set S and maintaining a k-bounded (2, 1)-ruling set in G[S]. The idea is to use the reduction
of Lemma 4.1 with this algorithm, to solve the incremental k-center problem. In the reduction though, notice
that we need to maintain an incremental k-bounded (2, 2)-ruling set algorithm on r-threshold graphs, which is
more challenging.

Subsequently, we relax our requirements and develop an efficient incremental k-bounded (2, 2)-ruling set
algorithm that works on approximate versions of r-threshold graphs. Thus, we apply Lemma 4.2 instead of
Lemma 4.1, at the cost of an extra (1 + ϵ) factor in the approximation ratio of the k-center.

5.1 Incremental k-bounded (2, 2)-ruling set algorithm We begin by describing how to detect a small
dominating set S on an incremental graph G, and maintain a k-bounded (2, 1)-ruling set on the subgraph induced
by S.

Theorem 5.1. Given a graph G = (V,E) subject to edge insertions, and an integer k ≥ 1, there is a randomized
incremental algorithm which

• either reports that there is an independent set in G of size at least k + 1, and this is correct w.h.p.,
• or finds a dominating set S of size Õ(k) on G and maintains a k-bounded (2, 1)-ruling set in G[S].

Notice that based on the definitions of dominating set and k-bounded (α, β)-ruling set problem (i.e.,
Definition 5.1 and Definition 4.1), the algorithm of Theorem 5.1 solves the incremental k-bounded (2, 2)-ruling set
problem in G. Before describing the algorithm we review two existing algorithms tools. First tool is the following
folklore hitting set claim (e.g., see [3], also widely used in decremental settings against an oblivious adversary).

Lemma 5.1. Given a graph G = (V,E) and a threshold γ ≥ 1, let S be the set obtained by sampling each vertex
independently with probability min(c ln(n)/γ, 1), for a constant c > 1. Then, with probability at least 1− n−(c−1),
every vertex of degree more than γ has at least one neighbor in S.

Copyright © 2024
Copyright for this paper is retained by authors3447

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



As noted, e.g., in [41], even though Lemma 5.1 refers to a static graph, it is easy to see that it holds for partially
dynamic graphs. Since we are assuming an oblivious adversary, the choice of the random set S is independent of
the graph. This and the fact that we have at most O(n2) versions of the graph in the incremental setting, let us
bound the overall probability via a straightforward union bound, and the failure probability is at most n−(c−3).

Second tool, is a fully dynamic k-bounded (2, 1)-ruling set algorithm with the following guarantees. This
algorithm is a trivial extension of any fully dynamic MIS algorithm that returns explicitly the MIS. For that
reason, we can either use the MIS algorithm of Behnezhad et al. [7], or the algorithm of Chechik and Zhang [19].

Theorem 5.2. Given a graph G = (V,E) subject to edge updates, there is a fully dynamic k-bounded (2, 1)-ruling
set algorithm with Õ(1) amortized update time.

Proof. The algorithm of Behnezhad et al. [7] maintains an MIS M under edge updates, in Õ(1) amortized update
time. Recall that an MIS is a (2, 1)-ruling set. Thus at any moment, if the size of M is at least k + 1, we report
that there is an independent set in G of size at least k + 1, otherwise we return the set M .

Overview of the algorithm. A pseudocode of the algorithm of Theorem 5.1 is provided in Algorithm 1.
The algorithm consists of two phases. Roughly speaking, the first phase either detects a dominating set S or
reports that there is an independent set in G of size at least k+1. The second phase starts when such a dominating
set S is detected and is only responsible for maintaining an incremental k-bounded (2, 1)-ruling set in G[S].

Algorithm 1 k-bounded (2, 2)-ruling set

// In the preprocessing i = 0, L0 = V , and k-Bounded-Ruling-Set() is called with no edge (note that Line 16
where the edge is actually used cannot be reached during the preprocessing)

// The index i and the sets Li, Si for every i are global

Procedure k-Bounded-Ruling-Set(u, v):
if |Li| > 4k then // first phase

if i = 0 or |Li| ≤ |Li−1|
2 then // recursive sampling

i← i+ 1
γi ← |Li−1|

2k − 1
Si ← sample vertices of Li−1 independently with prob. min(10 ln(n)/γi, 1) // Lemma 5.1
Li ← {x ∈ Li−1 : NG[Li−1](x) ∩ Si = ∅}
k-Bounded-Ruling-Set(u,v)

else
report there is an independent set in G of size at least k + 1 // Lemma 5.2

else // second phase
if B is not initialized then // B is dynamic k-bounded (2, 1)-ruling set algorithm (Theorem 5.2)

d← i
S ←

⋃d
j=1 Sj ∪ Ld // S is a dominating set (Lemma 5.4)

B.initialize(G[S])
else if u ∈ S and v ∈ S then
B.update(G[S], u, v)

Procedure Insert(u, v):
G← (V, E ∪ {u, v})
if u ∈ Li and ∃j ≤ i s.t. v ∈ Sj (resp., v ∈ Li and ∃j ≤ i s.t. u ∈ Sj) then

Li ← Li \ {u} (resp., Li ← Li \ {v})
k-Bounded-Ruling-Set(u, v)

In the first phase, the algorithm iteratively adds vertices to the dominating set by recursively sampling a
sequence of hitting sets. In each recursive call i ≥ 1, we set a threshold γi =

|Li−1|
2k − 1 and construct two sets Si

and Li. The set Si is obtained by sampling each vertex of Li−1 independently with probability min(c ln(n)/γi, 1),
for a sufficiently large constant c. Roughly speaking the set Si is the hitting set of the vertices with degree more
than γi in G[Li−1]. Moreover, the set Si is w.h.p. small in size due to the sampling procedure. The set Li is

Copyright © 2024
Copyright for this paper is retained by authors3448

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



constructed as the subset of vertices of Li−1 that do not belong to Si and do not have a neighbor in Si. Given
the property of the hitting set Si, the set Li contains w.h.p. only vertices with degree at most γi in G[Li−1]. The
recursion starts with L0 = V and it ends when |Li| ≤ 4k.

In the ith recursive call, if the size of Li is at most |Li−1|/2 then a new recursive call begins. This implies
that the depth of the recursion over all updates is bounded by O(log n). On the other hand, if the size of the set
Li is greater than |Li−1|/2, the recursion pauses and the algorithm reports that there is an independent set in G
of size at least k+1. In this case i may not be the final recursive call of the algorithm, because on future updates
the algorithm can possibly continue the recursion.

Whenever an edge (u, v) is inserted to G during the first phase, we update the set Li by removing from it
one of the endpoints if the other one is contained in Si. Observe that edge insertions will eventually shrink the
size of Li, forcing the recursion to continue.

The second phase begins when the size of Li is at most 4k, and at this moment the recursion ends. We denote
by d the index of the last recursive call in the first phase, and let S :=

⋃d
j=1 Sj ∪ Ld be the union of the hitting

sets of all recursive calls and of the set Ld. Notice that S can be constructed explicitly, during the first phase of
the algorithm. Also, in the updates following the second phase we never re-enter the first phase, and thus the
set S is not modified anymore. We show in the analysis, that even though the set S is random, it is always a
dominating set on G.

At the beginning of the second phase, the dynamic k-bounded (2, 1)-ruling set algorithm B of Theorem 5.2
is initialized on G[S]. Whenever an edge (u, v) is inserted to G during the second phase, the algorithm simply
forwards the update to B if u, v ∈ S, and does nothing otherwise.

Proof of Theorem 5.1. The analysis consists of three claims. First, we prove that whenever the algorithm
reports that there is an independent set in G of size at least k + 1, this is correct with high probability. Second,
we show that there are O(log n) recursive calls and that the size of S is Õ(k). Third, we prove that the set S
detected by the algorithm is indeed a dominating set on G.

Lemma 5.2. At any stage of the algorithm with i ≥ 1, if |Li| > |Li−1|
2 , then w.h.p. there is an independent set in

G of size at least k + 1.

Proof. The threshold γi is set to |Li−1|
2k −1, and Si is obtained by sampling each vertex of Li−1 independently with

probability min(c ln(n)/γi, 1), for a sufficiently large constant c. Then by Lemma 5.1, it holds that w.h.p. every
vertex in Li−1 of degree more than γi in the induced subgraph G[Li−1] has a neighbor in Si. Hence, w.h.p. every
vertex in Li is of degree at most γi in G[Li−1]. As G[Li] is a subgraph of G[Li−1], w.h.p. every vertex of G[Li] is
of degree at most γi in G[Li] as well.

Since w.h.p. the maximum degree in G[Li] is bounded by γi, for any T ⊆ Li such that |T | = k (note that
|Li| > 4k), it holds that w.h.p. the number of vertices which are either in T or have a neighbor in T is at most
k(γi + 1) ≤ |Li−1|

2 . By assumption we have that |Li| > |Li−1|
2 , and so T cannot be a maximal independent set.

So it holds that w.h.p. there is an independent set in G[Li] of size at least k + 1. In turn, as G[Li] is an induced
subgraph of G, it holds that w.h.p. there is an independent set in G of size at least k + 1 as well.

Lemma 5.3. Over the sequence of updates, there are d = O(log n) recursive calls. Moreover, the size of S is
w.h.p. O(k log2 n).

Proof. Regarding the first claim, at every recursive call i ≥ 1, it holds that |Li| ≤ |Li−1|
2 . Initially we have that

|L0| = n, and so, the depth of the recursion is d = O(log n).
Regarding the second claim, at each recursive call i ≥ 1, we sample each vertex of Li−1 independently with

probability min(c ln(n)/γi, 1), for a sufficiently large constant c. Recall that γi = |Li−1|
2k − 1 and note that the

sampling takes place only if |Li−1| > 4k. Then

E[|Si|] ≤ |Li−1| ·
c ln(n)

γi
= |Li−1| ·

c ln(n)
|Li−1|
2k − 1

= |Li−1| ·
2k · c ln(n)
|Li−1| − 2k

=
2k · c ln(n)

1− 2k/|Li−1|
< 4k · c ln(n).

Moreover note that |Ld| ≤ 4k. Therefore, by linearity of expectation it holds that E[|S|] = |Ld|+
∑d

i=1 E[|Si|] =
O(k log2 n). Finally, since |S| is a sum of independent Poisson trials, a standard application of a Chernoff’s bound
implies that |S| = O(k log2 n) with high probability.

Copyright © 2024
Copyright for this paper is retained by authors3449

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Lemma 5.4. The set S is a dominating set on G.

Proof. For a fixed vertex v ∈ V \ S, let i be the minimum index such that v /∈ Li. Note that such an index exists
since v ∈ V = L0 and so i ≥ 1. If v /∈ Li, then by definition of Li, vertex v must have a neighbor in Si. Therefore,
every vertex v ∈ V \ S has a neighbor in S.

Let A be a k-bounded (α, β)-ruling set in G[S]. If A reports that there is a distance-(α− 1) independent set
in G[S] of size at least k + 1, then A correctly reports that there is a distance-(α − 1) independent set in G as
well. This is because G[S] is an induced subgraph of G, and so, any distance-(α − 1) independent set in G[S] is
also a distance-(α− 1) independent set in G.

Otherwise, A returns an (α, β)-ruling set M of size at most k. Then for any vertex v ∈ S, we have that v
is of distance at most β from its closest vertex in M . Therefore, since every vertex v ∈ V \ S has at least one
neighbor in S, we have that every vertex of G is of distance at most β + 1 from its closest vertex in M . Thus,
the set M is an (α, β + 1)-ruling set in G of size at most k, and so the claim follows.

5.2 Incremental k-bounded (2, 2)-ruling set on Gr Our goal here is to extend Theorem 5.1 to r-threshold
graphs so that we can apply Lemma 4.1 and maintain an incremental k-center solution. At a high level, our
intention is to simulate the two phases of Algorithm 1 on an r-threshold graph Gr. Recall by Definition 4.2 that
for any pair of vertices u, v ∈ V × V , there is an edge in Gr if and only if the distance between u and v in G is at
most r. The main challenges in the incremental setting are the following ones.

• We cannot afford to explicitly maintain all the edges of Gr in the incremental setting, because it is very
expensive to run an incremental all-pairs shortest paths algorithm on G.

• A single edge insertion in the original graph G could introduce multiple edge insertions in the r-threshold
graph Gr.

Note that Algorithm 1 does not need access to all edges of Gr in order to process Gr. Thus, our aim is to
describe how to maintain all the necessary information that Algorithm 1 needs, so as to run with implicit input
the r-threshold graph Gr.

To extract the relevant information for the r-threshold graph Gr, we make use of the incremental (1+ϵ)-SSSP
algorithm of Theorem 3.2. We note that using partially dynamic exact SSSP algorithms for this step would be
too slow for our purposes, as even in unweighted graphs we would require Ω(mr) time and r could be very large
(i.e., as big as n). Consequently, rather than explicitly maintaining Gr, we maintain an edge-subgraph H of the
r′-threshold graph Gr′ , with r′ := (1+ ϵ)r. However, whenever the algorithm reports that there is an independent
set of size at least k + 1 in H, we guarantee that this is also true for the r-threshold graph Gr.

We exploit the fact that Algorithm 1 guarantees that the size of the dominating set is small. Hence, as only the
edges in the graph induced by the dominating set are needed, we argue based on Lemma 5.3 that during the whole
second phase of the algorithm we maintain Õ(k) incremental (1 + ϵ)-approximate SSSP instances. Furthermore
again by Lemma 5.3, we argue that during the whole first phase of the algorithm, we maintain Õ(1) incremental
(1+ ϵ)-approximate SSSP instances. As a result, in total we maintain only Õ(k) incremental (1+ ϵ)-approximate
SSSP instances over the course of the algorithm, and this is the main ingredient for the efficiency of the algorithm.

Theorem 5.3. Consider a graph G = (V,E,w) subject to edge insertions, an integer k ≥ 1, a positive parameters
r and a positive constant ϵ < 1. Let r′ := (1 + ϵ)r and consider the threshold graphs Gr and Gr′ . Then, there is
a randomized algorithm which:

• either reports that there is an independent set in Gr of size at least k + 1, and this is correct w.h.p.,
• or finds a dominating set S ⊆ V of size Õ(k) in an edge-subgraph H of Gr′ and runs a k-bounded (2, 1)-

ruling set algorithm B on H[S] with the following condition: whenever B reports that there is an independent
set in H of size at least k + 1, then there is an independent set in Gr of size at least k + 1.

The total update time of the algorithm is w.h.p. km1+o(1).

By definition of a dominating set (see Definition 5.1), the next corollary immediately follows.

Corollary 5.1. Consider the setting of Theorem 5.3. Then, there is a randomized algorithm which:
• either reports that there is an independent set in Gr of size at least k + 1, and this is correct w.h.p.,
• or runs a k-bounded (2, 2)-ruling set algorithm B on an edge-subgraph H of Gr′ with the following condition:

whenever B reports that there is an independent set in H of size at least k+1, then there is an independent
set in Gr of size at least k + 1.

Copyright © 2024
Copyright for this paper is retained by authors3450

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



The total update time of the algorithm is w.h.p. km1+o(1).

In the following, we describe the algorithm of Theorem 5.3, which is an adaptation of Algorithm 1 on
approximate threshold graphs.

Overview of the algorithm. A pseudocode of the algorithm is provided in Algorithm 2. We adapt
Algorithm 1 to process the r-threshold graph Gr implicitly.

Algorithm 2 k-bounded (2, 2)-ruling set on Gr

// In the preprocessing i = 0, L0 = V , and k-Bounded-Ruling-Set() is called with no edge
r′ ← (1 + ϵ)r
Procedure k-Bounded-Ruling-Set(u, v):

if |Li| < 4k then // first phase
if i = 0 or |Li| ≤ |Li−1|

2 then
i← i+ 1
γi ← |Li−1|

2k − 1
Si ← sample vertices of Li−1 independently with prob. min(10 ln(n)/γi, 1)

S(i) ←
⋃i

j=1 Sj

AS(i) .initialize(G,S(i)) // AS(i) is incremental approx. SSSP algorithm
// AS(i) provides approx. distance δS(i)(·)

Li ← {x ∈ V : δS(i)(x) > r′}
k-Bounded-Ruling-Set(u,v)

else
report there exists an IS in Gr of size at least k + 1

else // second phase
if B not initialized then // B is dynamic k-bounded (2, 1)-ruling set algorithm (Theorem 5.2)

d← i
S ←

⋃d
j=1 Sj

for s ∈ S do
As.initialize(G, s) // As is incremental approx. SSSP algorithm

H ← (S,ES) s.t. ES ← {(u, v) ∈ S × S : δu(v) ≤ r′}
B.initialize(H)

else
for s ∈ S do
As.insert(G, u, v)

while ∃ a, b ∈ S s.t. (a, b) /∈ ES and δa(b) ≤ r′ do
B.insert(H, a, b)

Procedure Insert(G, u, v):
AS(i) .insert(G, u, v)
if ∃x ∈ Li s.t. δS(i)(x) ≤ r′ then

Li ← Li \ x
k-Bounded-Ruling-Set(u,v)

Consider a recursive call i ≥ 1 of Algorithm 1 during the first phase. The sampling step for obtaining the set
Si does not need access to the edges of the input graph, but only to the vertices of the input graph. Thus, each
hitting set Si can be explicitly constructed. In turn, the union of the sampled sets S(i) = S1∪ · · · ∪Si is explicitly
constructed as well.

The next step of Algorithm 1 is to compute the size of Li, and decide how to proceed with the recursion
depending on the sizes of Li−1 and Li. A simulation of Algorithm 1 on Gr, would construct the set Li as the
set of vertices which are of distance more than r in G from the closest vertex in Si. Nevertheless, as we use an
approximate SSSP algorithm, we construct the set Li in a slightly different way as follows. In the beginning of
the recursive call, we set S = S(i) and Li = Li−1 \ Si. At this point, we maintain the incremental (1 + ϵ)-SSSP

Copyright © 2024
Copyright for this paper is retained by authors3451

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



algorithm of Theorem 3.2 with super-source S on G, providing distance estimates δS(·).2 Whenever the distance
estimate δS(v) of a vertex v ∈ V becomes smaller than (1 + ϵ)r, we remove v from Li and add the edge (a, v)
to H, where a is the corresponding vertex of S for the distance estimate δS(v). Therefore, we continue with the
recursion as in Algorithm 1 by constructing the set Li in this way, and in turn computing its size.

Moreover, since at every new recursive call the set S(i) is modified (i.e., we sample more vertices), at every
new recursive call we set S = S(i) and we restart the incremental (1 + ϵ)-SSSP algorithm with super-source S on
G.

As in Algorithm 1, the second phase begins when the size of Li is at most 4k, and at this moment the recursion
ends. We denote by d the index of the last recursive call in the first phase, and S is updated to S := S(d) ∪ Ld.
During the second phase, Algorithm 1 has to maintain an incremental k-bounded (2, 1)-ruling set algorithm on
Gr[S]. Instead, we maintain an incremental k-bounded (2, 1)-ruling set algorithm on a subgraph H[S] of Gr′ [S].
The subgraph H[S] is maintained explicitly, as follows. Let ES be the initially empty set consisting of the edges in
H[S]. For each vertex v ∈ S, we maintain the incremental (1+ϵ)-SSSP algorithm of Theorem 3.2 with source v on
G, providing distance estimates δv(·). Then for any two vertices u, v ∈ S, whenever we have that δu(v) ≤ (1+ ϵ)r
or δv(u) ≤ (1 + ϵ)r, the edge (u, v) is added to ES .

Thus during the second phase, we maintain the incremental k-bounded (2, 1)-ruling set algorithm B of
Theorem 5.2 on (S,ES). Whenever B reports that there is an independent set in (S,ES) of size at least k+1, we
report that there is an independent set in Gr of size at least k+1. In the analysis we argue that S is a dominating
set in H. Hence, this implies that B solves the incremental k-bounded (2, 2)-ruling set problem in H.

Edge insertions. Consider an edge insertion to G, and let i be the current recursive call of the algorithm
before the update arrives. While the algorithm is in the first phase, the update is passed to the incremental
(1+ ϵ)-SSSP algorithm with super-source S(i). If the algorithm is in the second phase after an insertion, then for
every vertex v ∈ S, the inserted edge is passed as an update to the incremental (1+ϵ)-SSSP algorithm with source
v. Notice that an edge insertion in the original graph G could introduce multiple updates to ES . Thus whenever
an edge (a, b) is added to ES , the edge (a, b) is passed as an update to the incremental k-bounded (2, 1)-ruling
set algorithm B.

Proof of Theorem 5.3. If we had access to exact distances and we removed a vertex v from Li whenever
its distance estimate is at most r, then the correctness would follow from the arguments of the previous section.
However, since for efficiency purposes we are utilizing approximate distances, the analysis has to be adapted. In
our case we remove a vertex v from Li whenever its approximate distance estimate is at most r′ = (1 + ϵ)r. The
next lemma is similar to Lemma 5.2 but now applied to the r-threshold graph Gr.

Lemma 5.5. At any stage of the algorithm with i ≥ 1, if |Li| > |Li−1|
2 , then w.h.p. there is an independent in Gr

of size at least k + 1.

Proof. The threshold γi is set to |Li−1|
2k − 1, and Si is obtained by sampling each vertex of Li−1 independently

with probability min(c ln(n)/γi, 1), for a sufficiently large constant c. Then by Lemma 5.1, it holds that w.h.p.
every vertex v in Li−1 of degree more than γi in the induced subgraph Gr[Li−1] has a neighbor in Si. This is
equivalent of saying that w.h.p. every vertex v of degree more than γi in Gr[Li−1] is within distance r from a
vertex of Si in G, that is, dG(v, Si) ≤ r. Then, by Theorem 3.2 we have that δS(v) ≤ (1+ ϵ)r, which means that v
has been removed from Li. In turn, this implies that w.h.p. every vertex in Li is of degree at most γi in Gr[Li−1].
As Gr[Li] is a subgraph of Gr[Li−1], w.h.p. every vertex of Gr[Li] is of degree at most γi in Gr[Li] as well.

Since w.h.p. the maximum degree in Gr[Li] is bounded by γi, the claim follows by applying the same process
of the second paragraph of Lemma 5.2 on Gr[Li].

Notice that after computing the size of Li, the recursion continues in the same way as in Algorithm 1. The
next lemma says that Lemma 5.3 holds in this algorithm as well. Recall that d is the recursive call after the first
phase has ended and just before the second phase begins (i.e., d is the final depth of the recursion).

Lemma 5.6. Over the sequence of updates, there are d = O(log n) recursive calls. Moreover, the size of S is
w.h.p. O(k log2 n).

2Namely, we introduce a fake root x and add an edge (x, v) of zero weight, for every v ∈ S. Then, we run the approximate SSSP
algorithm with source x on G.

Copyright © 2024
Copyright for this paper is retained by authors3452

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Remember that we want to use Algorithm 2 as a subroutine in the incremental k-center algorithm. By using
the next property of H, we argue that only an extra (1 + ϵ) factor shows up in the approximation ratio of the
k-center algorithm.

Lemma 5.7. The graph H is a subgraph of the r′-threshold graph Gr′ , where r′ = (1 + ϵ)r.

Proof. Let (u, v) ∈ E(H) be an edge of the graph H. Suppose that the edge has been added during the first
phase of the algorithm. Then, WLOG it must be the case that u ∈ S and δS(v) ≤ r′. Based on Theorem 3.2, the
distance estimate δS(·) does not underestimate the distances, and so we have that dG(u, v) ≤ δS(v) ≤ r′. Thus
by definition, the edge (u, v) is part of Gr′ as well.

Similarly, suppose that the edge has been added during the second phase of the algorithm. Then, WLOG it
must be the case that u, v ∈ S and δu(v) ≤ r′. Using a similar argument as before, we conclude that every edge
of H is part of Gr′ .

During the second phase, whenever the incremental k-bounded (2, 1)-ruling set algorithm B reports that there
is an independent set in H of size at least k + 1, we report that there is an independent set in Gr of size at least
k + 1. Since algorithm B is running on H[S], the following lemma states that in this case, there is definitely an
independent set in Gr (and not just with high probability) of size at least k + 1.

Lemma 5.8. Any independent set in H[S] is also an independent set in Gr[S].

Proof. Let M be an independent set in H[S], and suppose to the contrary that M is not an independent set in
Gr[S]. Then there must exist two vertices u, v ∈ S ∩M , such that the edge (u, v) belongs to Gr[S] but not to
H[S]. Since (u, v) belongs to Gr, the distance between u and v in G is at most r (i.e., dG(u, v) ≤ r). Also as u ∈ S,
in the algorithm we maintain the incremental (1 + ϵ)-SSSP algorithm with source u on G, and by Theorem 3.2 it
holds that δu(v) ≤ (1 + ϵ)dG(u, v) ≤ (1 + ϵ)r. Hence as v ∈ S, the algorithm must have added the edge (u, v) to
H, which contradicts the assumption that the edge (u, v) does not belong to H[S].

Lemma 5.9. The set S is a dominating set in H.

Proof. The claim follows by applying the proof of Lemma 5.4 on H.

Running Time. During the first phase, the incremental (1 + ϵ)-SSSP algorithm with super-source S(i) on
G, is restarted as many times as the number of the recursive calls. By Lemma 5.6, there are at most O(log n)
recursive calls in total, and by Theorem 3.2, the total update time of the incremental (1 + ϵ)-SSSP algorithm is
m1+o(1). Thus, the total update time charged for the first phase of the algorithm is m1+o(1).

During the second phase, for every vertex v ∈ S, we maintain an incremental (1 + ϵ)-SSSP algorithm of
Theorem 3.2 with source v on G. By Lemma 5.6, the size of S is w.h.p. Õ(k), and so the total update time for
maintaining the edge set ES is km1+o(1).

observation 5.2. Since G is subject to edge insertion, the edge set ES of H is non-descreasing.

The k-bounded (2, 1)-ruling set algorithm B of Theorem 5.2 is running on (S,ES) (i.e., the induced subgraph
H[S]). Also, as the edge set ES contains only edges between vertices in S, the maximum size of ES is w.h.p.
Õ(k2). Then based on Theorem 5.2 and Observation 5.2, the total update time charged for B is Õ(k2), which
(when amortized over the Ω(k2) total edge insertions to Es) amounts to an amortized update time of Õ(1). This
concludes the running time analysis of Theorem 5.3.

5.3 Incremental k-center on graphs: Putting it together At this point, we have developed all the
necessary tools in order to obtain our main theorem for the incremental k-center problem. The idea is to combine
the reduction of Lemma 4.2 with Algorithm 2 of Theorem 5.3.

Theorem 5.4. Given a weighted undirected graph G = (V,E,w) subject to edge insertions, an integer parameter
k ≥ 1, and a positive constant parameter ϵ < 1, there is a randomized incremental (4+ϵ)-approximation algorithm
for the k-center problem on graphs. The algorithm is correct w.h.p. and has kno(1) amortized update time over a
sequence of Θ(m) updates.

Copyright © 2024
Copyright for this paper is retained by authors3453

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Proof. Observe that algorithm A inside Lemma 4.2 with β = 2, has the same properties of the algorithm in
Corollary 5.1. Hence, let A be the Algorithm 2 of Corollary 5.1, and ϵ1 = ϵ

12 . Based on Lemma 4.2, by running
A with input G, r, ϵ1, for each r ∈ {(1 + ϵ1)

i | (1 + ϵ1)
i ≤ nW, i ∈ N}, we get an incremental 4(1 + ϵ1)(1 + ϵ1)-

approximation algorithm for the k-center problem. As ϵ < 1 and ϵ1 = ϵ
12 , the approximation ratio is (4 + ϵ).

Regarding the running time, by Corollary 5.1 the total update time of A is km1+o(1). Also, we run A for
at most O(log1+ϵ1(nW )) different values of r. Thus, the total update time of the algorithm remains km1+o(1).

6 Decremental k-center on graphs
In the decremental setting, the input graph of the k-center instance is subject to edge deletions. Based on
Lemma 4.1, in order to get a (2+ ϵ)-approximation decremental algorithm for the k-center problem, it is sufficient
to develop a decremental algorithm for the k-bounded (2, 1)-ruling set problem on r-threshold graphs. To maintain
the necessary information for r-threshold graphs, we use a decremental SSSP algorithm on G.

6.1 Decremental k-bounded (2, 1)-ruling set on Gr For the sake of efficiency, in order to maintain the
necessary information for r-threshold graphs, we make use of the approximate SSSP algorithm of Theorem 3.1.
Thus, we obtain instead the following theorem which is a slight relaxation of the decremental k-bounded (2, 1)-
ruling set problem on r-threshold graphs. This is still sufficient for the k-center problem, as Lemma 4.2 suggests.

Theorem 6.1. Consider a graph G = (V,E,w) subject to edge deletions, an integer k ≥ 1, and positive
parameters r, ϵ. Let r′ := (1 + ϵ)r and consider the threshold graphs Gr and Gr′ . Then, there is a deterministic
algorithm which:

• either reports that there is an independent set in Gr of size at least k + 1,
• or runs a k-bounded (2, 1)-ruling set algorithm B on an edge-subgraph H of Gr′ with the following condition:

whenever B reports that there is an independent set in H of size at least k+1, then there is an independent
set in Gr of size at least k + 1.

The total update time of the algorithm is km1+o(1).

Recall that in the definition of an (α, β)-ruling set, the first property is that the distance between any two
vertices in the (α, β)-ruling set is at least α. The crucial observation here is that under edge deletions, the distance
between any two vertices is non-decreasing. Hence the first property is preserved in the decremental setting, and
this is the major ingredient for the algorithm.

Algorithm of Theorem 6.1. In the beginning, the algorithm executes a static (2, 1)-ruling set algorithm
B on Gr. One simple algorithm for this problem is to run k times the Dijkstra’s algorithm on G. In particular, at
each iteration we choose a vertex s which has not been covered yet, and we run Dijkstra’s algorithm on G with
source s. Then, every vertex v of distance at most r from s is set as covered, and the same process is repeated at
most k times. The running time of this algorithm is clearly Õ(mk).

Let M be the (2, 1)-ruling set in Gr returned by B. Then, we initialize a decremental approximate SSSP
algorithm A with super-source M on G, providing distance estimates δ(·).3 Specifically, we use the (1 + ϵ)-
approximate SSSP algorithm of Theorem 3.1. Also let H be a graph whose edge set contains all the edges
(u, v) ∈ V × V such that δ(v) ≤ r′, and u ∈ M is the corresponding vertex for the distance estimate δ(v). The
graph H can be explicitly constructed during the previous step.

Whenever there is an edge deletion in G, we pass this update to A. In turn, this update can possibly increase
the distance estimate δ(·) of some vertices. In particular, whenever the distance estimate δ(v) of a vertex v ∈ V
becomes greater than r′, we add v to M , and the algorithm A is restarted with super-source the modified set M .
Moreover, the graph H is recomputed from scratch as before.

At any moment, if the size of M has exceeded k, the algorithm reports that there is an independent set in
Gr of size at least k + 1, and we do not restart the algorithm A anymore.

Proof of Theorem 6.1. Initially the static algorithm produces a (2, 1)-ruling set M in Gr. At any moment,
if the size of M becomes at least k + 1, the algorithm reports that there is an independent set in Gr of size at
least k + 1. The next lemma shows the correctness of this step.

3Namely, we introduce a fake root x and add an edge (x, v) of zero weight, for every v ∈ M . Then, we run a decremental
approximate SSSP algorithm with source x on G.

Copyright © 2024
Copyright for this paper is retained by authors3454

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Lemma 6.1. If the size of M is at least k + 1, then there is an independent set in Gr of size at least k + 1.

Proof. Initially, M is a (2, 1)-ruling set in Gr, and by definition M is also an independent set in Gr. Thus, if the
size of M is at least k + 1 after the execution of the static algorithm, the set M remains an independent set in
Gr under edge deletions, and the claim holds.

Hence, we can assume that the size of M became at least k+1 after some edge deletions. We prove the claim
by contradiction. Suppose to the contrary that M is not an independent set in Gr after an edge deletion. In this
case, the algorithm must have added a vertex v to M which has a neighbor u ∈ M in Gr (i.e., dG(u, v) ≤ r).
Since u ∈M , in the algorithm we maintain the decremental (1+ ϵ)-SSSP algorithm with super-source M , and by
Theorem 3.1 it holds that δ(v) ≤ (1 + ϵ)dG(u, v) ≤ r′. But then, the algorithm does not add v to M which yields
a contradiction.

The second part of the algorithm maintains a decremental k-bounded (2, 1)-ruling set algorithm on an edge-
subgraph H of Gr′ . We prove this fact in the following lemma.

Lemma 6.2. The graph H is a subgraph of Gr′ . Moreover, the set M is always a (2, 1)-ruling set in H.

Proof. Let (u, v) ∈ E(H) be an edge in H. Then, WLOG it must be the case that u ∈ M and δ(v) ≤ r′.
Based on Theorem 3.1, the distance estimate δ(·) does not underestimate the distances, and so we have that
dG(u, v) ≤ δ(v) ≤ r′. Thus by definition, the edge (u, v) is part of Gr′ as well.

The algorithm adds a vertex v to M only if the distance estimate δ(v) becomes greater than r′, while an edge
is part of H only if the distance of the two endpoints is at most r′. This implies that the set M is an independent
set in H. Furthermore, whenever the distance estimate δ(v) of a vertex v ∈ V \M becomes greater than r′, the
set M and the graph H are recomputed. This implies that the distance estimate of any vertex v ∈ V \M is
at most r′. By construction of H, there must exist an edge (u, v), where u is the corresponding vertex of δ(v).
Hence, we can conclude that the set M is a (2, 1)-ruling set in H.

Running time. The running time of the simple static algorithm is Õ(mk). By Theorem 3.1, the total time
of the decremental approximate SSSP algorithm is m1+o(1). As the decremental approximate SSSP algorithm is
restarted at most k times, the total update time of the algorithm is km1+o(1). Finally, the time to detect whether
a distance estimate is greater than (1 + ϵ)r is incorporated in the update time of the decremental approximate
SSSP algorithm.

6.2 Decremental k-center on graphs: Putting it together We combine Theorem 6.1 with Lemma 4.2
to obtain the next theorem for the decremental k-center problem on graphs. A pseudocode of the algorithm of
Theorem 1.3 is provided in Algorithm 3.

Theorem 6.2. Given a weighted undirected graph G = (V,E,w) subject to edge deletions, an integer parameter
k ≥ 1, and a positive constant parameter ϵ < 1, there is a deterministic decremental (2 + ϵ)-approximation
algorithm for the k-center problem on graphs, with kno(1) amortized update time over a sequence of Θ(m) updates.

Proof. Observe that algorithm A inside Lemma 4.2 with β = 1, has the same properties of the algorithm in
Theorem 6.1. Hence, let A be the algorithm of Theorem 6.1, and ϵ1 = ϵ

6 . Based on Lemma 4.2, by running
A with input G, r, ϵ1, for each r ∈ {(1 + ϵ1)

i | (1 + ϵ1)
i ≤ nW, i ∈ N}, we get a deterministic decremental

2(1+ ϵ1)(1+ ϵ1)-approximation algorithm for the k-center problem. As ϵ < 1 and ϵ1 = ϵ
6 , the approximation ratio

is (2 + ϵ).
Regarding the running time, by Theorem 6.1 the total update time of A is km1+o(1). Also, we run A for at

most O(log1+ϵ1(nW )) different values of r. Thus, the total update time of the algorithm remains km1+o(1).

7 Fully-dynamic k-center on graphs
In this section we describe how to maintain a (2 + ϵ)-approximate solution to the k-center problem on fully-
dynamic graphs. We start by reviewing Gonzalez’s algorithm, a classical solution to the problem in the static
setting, and then describe how to adapt it to the fully-dynamic setting by using fully-dynamic approximate SSSP
algorithms.

Copyright © 2024
Copyright for this paper is retained by authors3455

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Algorithm 3 decremental (2 + ϵ)-approximation algorithm for k-center

Function MaximalDistrIS():
i← 0
while G \

⋃i
j=1 Cj ̸= ∅ and i ≤ k do

u← arbitrary vertex from G \
⋃i

j=1 Cj

i← i+ 1
ci ← u
Ci ← cluster with center ci and radius r

return i

Procedure FindRadius():
while MaximalDistrIS() > k do

r ← (1 + ϵ) · r

Procedure Preprocessing():
r ← 1 + ϵ
FindRadius()
M ← {c1, . . . , ci}
A.initialize(G,M) // A is decremental approx. SSSP algorithm with distance estimates δ(·)

Procedure Update(u, v):
G← (V,E \ (u, v))
A.delete(u, v)
while ∃x ∈ V s.t. δ(x) > r do

if i < k then
i← i+ 1
ci ← x
M ← {c1, . . . , ci}
Ci ← cluster with center ci and radius r

else
r ← (1 + ϵ) · r
FindRadius()

A.restart(G,M)

7.1 Gonzalez’s algorithm Gonzalez’s algorithm [25] is a well-known greedy algorithm for the k-center problem
on (possibly weighted and directed) graphs4. It works as follows:

1. pick as first center an arbitrary vertex c1 ∈ V and set C = {c1};
2. while |C| < k, pick the next center ci ∈ argmaxv∈V dG(C, v) and set C = C ∪ {ci};
3. return the set of centers C.

Theorem 7.1. Gonzalez’s algorithm computes a 2-approximation for the k-center problem on graphs and a
standard implementation runs in time O(k(m+ n log n)).

Definition 7.1. (α-approximate Gonzalez’s algorithm) For α ≥ 1, an α-approximate Gonzalez’s algo-
rithm is a relaxation of Gonzalez’s algorithm that picks the next center ci in step 2 above such that dG(C, ci) ≥
α−1 ·maxv∈V dG(C, v).

Theorem 7.2. ([1, Lemma 4.1]) For α ≥ 1, an α-approximate Gonzalez’s algorithm computes a 2α-
approximation for the k-center problem on graphs.

7.2 Fully-dynamic k-center via fully-dynamic (1 + ϵ)-SSSP Assuming that we have a fully-dynamic
(1+ϵ)-SSSP data structure, we show how to use this to get a fully-dynamic k-center data structure in Algorithm 4.

4The algorithm is also used for the k-center problem in metric spaces.

Copyright © 2024
Copyright for this paper is retained by authors3456

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Algorithm 4 Fully dynamic 2(1 + ϵ)-approximation k-center

Function SimulateGonzalez(D, s, k):
C = ∅
for i = 1, ..., k do

ci ← x ∈ argmaxv∈V δG′(s, v) // c1 ← arbitrary v ∈ V
// s is disconnected at i = 1; δG′(s, v) =∞, ∀v ∈ V ; ties broken arbitrarily

D.insert(s, ci)
C ← C ∪ {ci}

for i = 1, ..., k do
D.delete(s, ci)

return C

Function Preprocessing(G, k):
G′ ← (V ∪ {s}, E) // augment G with super source s
D ← Initialize(G′, s) // D is fully-dynamic (1 + ϵ)-SSSP, with approx. distance δG′(s, v)
C ← SimulateGonzalez(D, s, k)

Function Update(u, v):
D.update(u, v) // either insert or delete edge (u, v)
C ← SimulateGonzalez(D, s, k)

Theorem 7.3. Given a graph G = (V,E), a positive parameter ϵ ≤ 1/2, and a fully-dynamic data structure
that maintains (1 + ϵ)-approximate distances from a single source s ∈ V with worst-case update time T (n,m, ϵ),
Algorithm 4 maintains a 2(1+ 4ϵ)-approximate solution to fully-dynamic k-center in time O(k · (T (n,m, ϵ) +n)).

Proof. We prove that the procedure SimulateGonzalez in Algorithm 4 is a (1 + 4ϵ)-approximate Gonzalez’s
algorithm, hence the claim about the approximation follows by Theorem 7.2.

Note that the procedure runs on G′, which is a copy of G with an additional super-source vertex s which is
initially disconnected. Let us call D the data structure used to maintain the (1+ϵ)-approximate distances from s in
G′, e.g., the one given in Theorem 7.4 or in Theorem 7.5. Suppose to be at the i-th iteration of the procedure, i.e.,
the super-source s is connected to all vertices in C = {c1, ..., ci} in G′. Note that such additional edges imply that
dG′(s, v) = 1+dG(C, v), for every v ∈ V . Let δG′(s, v) be the approximate distance between s and v maintained by
D, which guarantees that dG′(s, v) ≤ δG′(s, v) ≤ (1 + ϵ)dG′(s, v). Let vmax ∈ argmaxv∈V dG(C, v) be one among
the furthest vertices from C. Let ci+1 be the next center selected by the algorithm, i.e., ci+1 ∈ argmaxv∈V δG′(s, v).
Therefore, it holds that

1 + dG(C, vmax) = dG′(s, vmax) ≤ δG′(s, vmax) ≤ δG′(s, ci+1)

≤ (1 + ϵ)dG′(C, ci+1) = (1 + ϵ)(1 + dG(C, ci+1)).

Noting that dG(C, vmax) ≥ 1 and since by assumption ϵ ∈ (0, 1/2], the previous equation implies

dG(C, ci+1) ≥
1 + dG(C, vmax)

1 + ϵ
− 1 =

dG(C, vmax)− ϵ

1 + ϵ
=

1− ϵ/dG(C, vmax)

1 + ϵ
dG(C, vmax)

≥ 1− ϵ

1 + ϵ
dG(C, vmax) ≥

1

1 + 4ϵ
max
v∈V

dG(C, v),

which concludes the approximation proof.

The update procedure requires that D is updated 2k+1 times, with a worst-case time of T (n,m, ϵ) per update,
and additionally look for the approximate furthest neighbor k times, each requiring time O(n), i.e., querying the
approximate distance δG(s, v), ∀v ∈ V .

In particular, for the fully-dynamic data structure we use the state-of-the-art algorithm for unweighted graphs
by [13].

Copyright © 2024
Copyright for this paper is retained by authors3457

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Theorem 7.4. ([13]) Given an unweighted undirected graph G = (V,E) and a single source s, and 0 < ϵ < 1,
there is a deterministic fully-dynamic data structure for maintaining (1 + ϵ)-distances from s with worst-case
update time of O(n1.529ϵ−2) for the current matrix multiplication exponent ω. The algorithm has preprocessing
time of O(nωϵ−2 log ϵ−1), where ω ≤ 2.373.

For weighted graphs the state-of-the-art algorithm is slower and it is given by [14].

Theorem 7.5. ([14]) Given a weighted and directed graph G = (V,E), a single source s ∈ V , and a positive
parameter ϵ < 1, there is a randomized fully-dynamic algorithm working against an adaptive adversary that
maintains (1+ϵ)-distances from s with worst-case update time of O(n1.823ϵ−2) for the current matrix multiplication
exponent ω. The algorithm has preprocessing time of O(nωϵ−2 log ϵ−1), where ω ≤ 2.373.

A combination of Theorem 7.3 with Theorems 7.4 and 7.5 gives the following result.

Theorem 7.6. Given a weighted undirected graph G = (V,E,w) subject to edge updates, an integer parameter
k ≥ 1, and a positive constant parameter ϵ ≤ 1/2, there are two fully dynamic algorithms for the k-center problem
on graphs, that maintain a (2 + ϵ)-approximation with the following guarantees (based on the current value of the
matrix multiplication exponent):

1. Deterministic algorithm with O(kn1.529ϵ−2) worst-case update time, if G has uniform weights;
2. Randomized algorithm, against an adaptive adversary, with O(kn1.823ϵ−2) worst-case update time, if G has

general weights.
Both algorithms have preprocessing time O(n2.373ϵ−2 log ϵ−1).

Appendix
A Dynamic k-center algorithms queries
The dynamic algorithms for k-center we give in this paper can simply and efficiently answer queries of the following
types:

1. Return a set S of at most k centers and the corresponding radius r.
2. Given a vertex v ∈ V , return the center c ∈ S of the cluster v belongs to.

The first type of queries simply returns the independent sets which have size ≤ k. The corresponding radius in
the first query and the second type of queries can be answered using the dynamic shortest path data structures
that we use. When maintaining distances from a super-source, the data structures let us keep the parent nodes
along shortest paths which can be used for finding the closest source. The partially dynamic algorithms that we
use are based on structures with no(1) layers, such that we have a parent along the shortest path on each of these
levels. Therefore without additional overhead we can keep track of the first parents along the path.

In our fully dynamic algorithm, we can keep track of the cluster center of each vertex by explicitly checking
for each vertex whether its distance to the “super-source” changes with each iteration of the simulated Gonzalez’s
algorithm; the additional O(kn) overhead is already accounted for in our update time.

B Reduction from 2-approximate k-center to k-bounded ruling set: Omitted proofs of Section 4
This section is devoted to the omitted proofs of Section 4.

Lemma 4.3. Consider a k-center instance (G = (V,E,w), k) with optimal radius R∗. Then for each r ≥ 2R∗ and
for every β ≥ 1, it holds that every (2, β)-ruling set in the r-threshold graph Gr is of size at most k.

Proof. Consider an optimal solution S∗ = {c∗1, . . . , c∗k′} of the k-center instance with k′ ≤ k, and let C∗
1 , . . . , C

∗
k′

be the corresponding clusters, each of radius R∗. Let M be an arbitrary (2, β)-ruling set in Gr, with r ≥ 2R∗.
We can assume WLOG that the set M is ordered. The proof is by induction on the number of vertices of M .
The goal is to prove that for any i ≤ k′, every vertex v ∈ C∗

i is a neighbor of the ith vertex of M in Gr. This
would imply then that |M | ≤ k′ ≤ k, as otherwise there would be two vertices in M which are neighbors in Gr,
violating the fact that M is a (2, β)-ruling set in Gr with β ≥ 1

As a base case, let v1 be the first vertex of M , and assume WLOG that v1 ∈ C∗
1 . Since all vertices in C∗

1 are
within distance R∗ from c∗1 in G, by triangle inequality it holds that dG(v1, u) ≤ 2R∗, for every vertex u ∈ C∗

1 .
Hence as r ≥ 2R∗, we have that every vertex u ∈ C∗

1 is a neighbor of v1 in Gr.

Copyright © 2024
Copyright for this paper is retained by authors3458

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Let vi ∈M be the ith vertex of M . Since M is a (2, β)-ruling set in Gr with β ≥ 1, vi cannot be a neighbor
of any other vertex that belongs to M . By inductive hypothesis, every vertex u ∈ C∗

1 ∪ · · · ∪C∗
i−1 has a neighbor

in M , and so vi cannot be part of C∗
1 ∪ · · · ∪C∗

i−1. As a result, we can assume WLOG that vi ∈ C∗
i . By following

the same approach as in the base case, we have that every vertex u ∈ C∗
i is a neighbor of vi in Gr, and so the

claim follows.

observation 4.1. Consider a k-center instance (G = (V,E,w), k) with optimal radius R∗, and let Gr be the
r-threshold graph where r = 2R∗. Then, there is no independent set in Gr of size at least k + 1.

Proof. Suppose to the contrary that there is an IS M in Gr of size at least k + 1, and let M ′ be an MIS on Gr

such that M ⊆M ′. Then clearly it holds that |M ′| ≥ k + 1. Also since β ≥ 1, we have that M ′ is a (2, β)-ruling
set in Gr of size at least k + 1. However based on Lemma 4.3, as r ≥ 2R∗ and β ≥ 1, the size of M ′ must be at
most k, and this yields a contradiction.

Lemma 4.1. Consider a k-center instance (G = (V,E,w), k), and a positive constant parameter ϵ. Then by
running a k-bounded (2, β)-ruling set algorithm on the r-threshold graph Gr, for each r ∈ {(1 + ϵ)i | (1 + ϵ)i ≤
nW, i ∈ N}, we can find a 2β(1 + ϵ)-approximate solution for the k-center instance.

Proof. Let r′ be the smallest r ∈ {(1+ϵ)i | (1+ϵ)i ≤ nW, i ∈ N} such that a k-bounded (2, β)-ruling set algorithm
running on Gr returns a (2, β)-ruling set Mr of size at most k. Let S = Mr′ be the solution we return for the
k-center instance.

Since Mr′ is a (2, β)-ruling set in Gr′ , then every vertex is within distance βr′ from its closest center in G.
Thus, the returned solution S has radius at most βr′. We show now that r′ is at most 2(1 + ϵ) times larger
than R∗. Based on Observation 4.1, for the fixed choice of r = 2R∗, any k-bounded (2, β)-ruling set algorithm A
running on the r-threshold graph Gr always returns a (2, β)-ruling set Mr of size at most k. By definition of r′,
and since the possible values of r are powers of (1+ ϵ), we have that r′ ≤ 2(1+ ϵ)R∗. Therefore, the radius of the
returned solution S is at most 2β(1 + ϵ)R∗.

C Incremental (1 + ϵ)-SSSP
Most of the existing work on partially dynamic (1 + ϵ)-SSSP [10, 32, 18, 36] is presented for the decremental
setting, but while not explicitly written, the techniques extend to the incremental setting as well with the same
running time. At a high-level these techniques first maintain a hopset (or similar objects like low-hop emulators)
of size Õ(m1+o(1)) and hopbound h = no(1), and maintain an h-hop limited (ES) Even-Schiloach tree [42].

The h-hop limited ES tree algorithm [10] allows us to maintain (1 + ϵ)-approximate single-source shortest
path up to h-hops (which finds the approximate shortest path using at most h hops) in Õ(mh) time.

To use this subroutine several works utilize a hopset [32, 18, 36]. A (β, ϵ)-hopset H ′ for G = (V,E) is a
set of weighted edges such that for all u, v ∈ V , we have that dG(u, v) ≤ d

(β)
G∪H′(u, v) ≤ (1 + ϵ)dG(u, v), where

d
(β)
G∪H′(u, v) refers to a shortest path that uses at most β hops.

Much of the technical difficulty in the decremental setting is due to the fact that we have to insert
hopset/emulator edges in a decremental data structure. The existing decremental structures use an algorithm
called monotone ES tree data structure [31] to handle this, however in the incremental setting a monotone ES
tree is not needed. In an incremental setting, an update may require to decrease the weight of an edge or remove
it from a hopset/emulator to keep the size small. Handling weight decreases is easy, as we can simply add a new
edge with the smaller weight and keep the previous edges in place and this will only impact the number of edges
by a logarithmic factor over the sequence of updates. The second issue of removing edges from a hopset/emulator,
will also not impact the over all performance of the algorithm for the following reason: In these data structure
we would only remove an auxiliary edge e ∈ E(H) if the weight w(t)(e) (which corresponds to the length of a
path in the original input graph G at time t), is reduced by more than a constant factor so that it is within a
factor of (1− ϵ′)w(t−1)(e). It is easy to see that in the incremental setting it will add a logarithmic factor in the
size if we keep all of these edges and simply add new parallel edges and thus keep the data structures completely
incremental.

Copyright © 2024
Copyright for this paper is retained by authors3459

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



References
[1] Amir Abboud et al. “On the Fine-Grained Complexity of Approximating k -Center in Sparse Graphs”. In:

2023 Symposium on Simplicity in Algorithms, SOSA 2023, Florence, Italy, January 23-25, 2023. SIAM,
2023, pp. 145–155. doi: 10.1137/1.9781611977585.ch14.

[2] Charu C. Aggarwal and Haixun Wang. “A Survey of Clustering Algorithms for Graph Data”. In: Managing
and Mining Graph Data. Ed. by Charu C. Aggarwal and Haixun Wang. Boston, MA: Springer US, 2010,
pp. 275–301. isbn: 978-1-4419-6045-0. doi: 10.1007/978-1-4419-6045-0_9.

[3] Donald Aingworth et al. “Fast Estimation of Diameter and Shortest Paths (Without Matrix Multipli-
cation)”. In: SIAM J. Comput. 28.4 (1999). Announced at SODA 1996, pp. 1167–1181. doi: 10.1137/
S0097539796303421.

[4] Maria-Florina Balcan, Nika Haghtalab, and Colin White. “k -center Clustering under Perturbation Re-
silience”. In: ACM Trans. Algorithms 16.2 (2020), 22:1–22:39. doi: 10.1145/3381424.

[5] Sayan Bandyapadhyay, Zachary Friggstad, and Ramin Mousavi. “Parameterized Approximation Algorithms
for K-center Clustering and Variants”. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022. AAAI Press, 2022, pp. 3895–3903.

[6] MohammadHossein Bateni et al. “Optimal Fully Dynamic k -Center Clustering for Adaptive and Oblivious
Adversaries”. In: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023. SIAM, 2023, pp. 2677–2727. doi: 10.1137/1.9781611977554.ch101.

[7] Soheil Behnezhad et al. “Fully dynamic maximal independent set with polylogarithmic update time”. In:
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2019, pp. 382–
405.

[8] Suman K. Bera et al. “Fair k-Center Clustering in MapReduce and Streaming Settings”. In: WWW ’22: The
ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022. ACM, 2022, pp. 1414–1422.
doi: 10.1145/3485447.3512188.

[9] Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. “k-Center Clustering with Outliers in the MPC
and Streaming Model”. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2023,
St. Petersburg, FL, USA, May 15-19, 2023. IEEE, 2023, pp. 853–863.

[10] Aaron Bernstein. “Fully dynamic (2+ ε) approximate all-pairs shortest paths with fast query and close to
linear update time”. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE.
2009, pp. 693–702.

[11] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. “Deterministic Decremental
SSSP and Approximate Min-Cost Flow in Almost-Linear Time”. In: 62 Annual IEEE Symposium on
Foundatios of Computer Science (FOCS 2022). 2021.

[12] Sayan Bhattacharya, Silvio Lattanzi, and Nikos Parotsidis. “Efficient and Stable Fully Dynamic Facility
Location”. In: NeurIPS. 2022. url: http://papers.nips.cc/paper%5C_files/paper/2022/hash/
943d6dca1884955e645d8997ae2fa938-Abstract-Conference.html.

[13] Jan van den Brand, Sebastian Forster, and Yasamin Nazari. “Fast Deterministic Fully Dynamic Distance
Approximation”. In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).
2022, pp. 1011–1022. doi: 10.1109/FOCS54457.2022.00099.

[14] Jan van den Brand and Danupon Nanongkai. “Dynamic Approximate Shortest Paths and Beyond:
Subquadratic and Worst-Case Update Time”. In: FOCS. IEEE Computer Society, 2019, pp. 436–455.

[15] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. “Solving k-center Clustering (with Outliers)
in MapReduce and Streaming, almost as Accurately as Sequentially”. In: Proc. VLDB Endow. 12.7 (2019),
pp. 766–778. doi: 10.14778/3317315.3317319.

[16] TH Hubert Chan, Arnaud Guerqin, and Mauro Sozio. “Fully dynamic k-center clustering”. In: Proceedings
of the 2018 World Wide Web Conference. 2018, pp. 579–587.

Copyright © 2024
Copyright for this paper is retained by authors3460

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/1.9781611977585.ch14
https://doi.org/10.1007/978-1-4419-6045-0_9
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1145/3381424
https://doi.org/10.1137/1.9781611977554.ch101
https://doi.org/10.1145/3485447.3512188
http://papers.nips.cc/paper%5C_files/paper/2022/hash/943d6dca1884955e645d8997ae2fa938-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/943d6dca1884955e645d8997ae2fa938-Abstract-Conference.html
https://doi.org/10.1109/FOCS54457.2022.00099
https://doi.org/10.14778/3317315.3317319


[17] Moses Charikar et al. “Incremental Clustering and Dynamic Information Retrieval”. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997.
Ed. by Frank Thomson Leighton and Peter W. Shor. ACM, 1997, pp. 626–635. doi: 10.1145/258533.
258657.

[18] Shiri Chechik. “Near-optimal approximate decremental all pairs shortest paths”. In: 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2018, pp. 170–181.

[19] Shiri Chechik and Tianyi Zhang. “Fully dynamic maximal independent set in expected poly-log update
time”. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2019,
pp. 370–381.

[20] Vincent Cohen-Addad et al. “Fully Dynamic Consistent Facility Location”. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 2019, pp. 3250–3260. url: https : / /
proceedings.neurips.cc/paper/2019/hash/fface8385abbf94b4593a0ed53a0c70f-Abstract.html.

[21] David Eppstein, Sariel Har-Peled, and Anastasios Sidiropoulos. “Approximate greedy clustering and distance
selection for graph metrics”. In: Journal of Computational Geometry 11.1 (2020). doi: 10.20382/jocg.
v11i1a25.

[22] Tomás Feder and Daniel H. Greene. “Optimal Algorithms for Approximate Clustering”. In: Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. Ed. by
Janos Simon. ACM, 1988, pp. 434–444. doi: 10.1145/62212.62255.

[23] Andreas Emil Feldmann. “Fixed Parameter Approximations for k-Center Problems in Low Highway
Dimension Graphs”. In: 42nd International Colloquium on Automata, Languages, and Programming
(ICALP). Vol. 9135. Lecture Notes in Computer Science. Springer, 2015, pp. 588–600. doi: 10.1007/978-
3-662-47666-6\_47.

[24] Hendrik Fichtenberger et al. “Consistent k-Clustering for General Metrics”. In: Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, (SODA 2021). 2021, pp. 2660–2678. doi: 10.1137/1.
9781611976465.158.

[25] Teofilo F. Gonzalez. “Clustering to Minimize the Maximum Intercluster Distance”. In: Theor. Comput. Sci.
38 (1985), pp. 293–306. doi: 10.1016/0304-3975(85)90224-5.

[26] Gramoz Goranci, Monika Henzinger, and Dariusz Leniowski. “A Tree Structure For Dynamic Facility
Location”. In: 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland. Vol. 112. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 39:1–39:13. doi: 10.
4230/LIPIcs.ESA.2018.39.

[27] Gramoz Goranci et al. “Fully Dynamic k -Center Clustering in Low Dimensional Metrics”. In: Proceedings of
the Symposium on Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference, January
10-11, 2021. Ed. by Martin Farach-Colton and Sabine Storandt. SIAM, 2021, pp. 143–153.

[28] Xiangyu Guo et al. “Consistent k-Median: Simpler, Better and Robust”. In: The 24th International
Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event. Ed.
by Arindam Banerjee and Kenji Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR,
2021, pp. 1135–1143.

[29] Xiangyu Guo et al. “On the Facility Location Problem in Online and Dynamic Models”. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020,
August 17-19, 2020, Virtual Conference. Vol. 176. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 42:1–42:23. doi: 10.4230/LIPIcs.APPROX/RANDOM.2020.42.

[30] Monika Henzinger and Sagar Kale. “Fully-Dynamic Coresets”. In: 28th Annual European Symposium on
Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference). Ed. by Fabrizio Grandoni,
Grzegorz Herman, and Peter Sanders. Vol. 173. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 57:1–57:21. doi: 10.4230/LIPIcs.ESA.2020.57.

[31] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A Subquadratic-Time Algorithm for
Decremental Single-Source Shortest Paths”. In: Proc. of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, (SODA 2014). 2014, pp. 1053–1072. doi: 10.1137/1.9781611973402.79.

Copyright © 2024
Copyright for this paper is retained by authors3461

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1145/258533.258657
https://doi.org/10.1145/258533.258657
https://proceedings.neurips.cc/paper/2019/hash/fface8385abbf94b4593a0ed53a0c70f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fface8385abbf94b4593a0ed53a0c70f-Abstract.html
https://doi.org/10.20382/jocg.v11i1a25
https://doi.org/10.20382/jocg.v11i1a25
https://doi.org/10.1145/62212.62255
https://doi.org/10.1007/978-3-662-47666-6\_47
https://doi.org/10.1007/978-3-662-47666-6\_47
https://doi.org/10.1137/1.9781611976465.158
https://doi.org/10.1137/1.9781611976465.158
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.4230/LIPIcs.ESA.2018.39
https://doi.org/10.4230/LIPIcs.ESA.2018.39
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.42
https://doi.org/10.4230/LIPIcs.ESA.2020.57
https://doi.org/10.1137/1.9781611973402.79


[32] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Decremental Single-Source Shortest
Paths on Undirected Graphs in Near-Linear Total Update Time”. In: Journal of the ACM 65.6 (2018).
Announced at FOCS 2014, 36:1–36:40. doi: 10.1145/3218657.

[33] Monika Henzinger, Dariusz Leniowski, and Claire Mathieu. “Dynamic Clustering to Minimize the Sum of
Radii”. In: Algorithmica 82.11 (2020), pp. 3183–3194. doi: 10.1007/s00453-020-00721-7.

[34] Dorit S. Hochbaum and David B. Shmoys. “A unified approach to approximation algorithms for bottleneck
problems”. In: J. ACM 33.3 (1986), pp. 533–550. doi: 10.1145/5925.5933.

[35] Wen-Lian Hsu and George L. Nemhauser. “Easy and hard bottleneck location problems”. In: Discret. Appl.
Math. 1.3 (1979), pp. 209–215. doi: 10.1016/0166-218X(79)90044-1.

[36] Jakub Łącki and Yasamin Nazari. “Near-Optimal Decremental Hopsets with Applications”. In: 49th
International Colloquium on Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022.

[37] Jakub Łącki et al. “Fully Dynamic Consistent k-Center Clustering”. In: CoRR abs/2307.13747 (2023). arXiv:
2307.13747.

[38] Silvio Lattanzi and Sergei Vassilvitskii. “Consistent k-Clustering”. In: Proceedings of the 34th International
Conference on Machine Learning, (ICML 2017). 2017, pp. 1975–1984. url: http://proceedings.mlr.
press/v70/lattanzi17a.html.

[39] Jan Plesnik. “On the computational complexity of centers locating in a graph”. In: Aplikace matematiky
25.6 (1980), pp. 445–452.

[40] Matthew J. Rattigan, Marc E. Maier, and David D. Jensen. “Graph clustering with network structure
indices”. In: Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007),
Corvallis, Oregon, USA, June 20-24, 2007. Ed. by Zoubin Ghahramani. Vol. 227. ACM International
Conference Proceeding Series. ACM, 2007, pp. 783–790. doi: 10.1145/1273496.1273595.

[41] Liam Roditty and Uri Zwick. “Dynamic approximate all-pairs shortest paths in undirected graphs”. In:
SIAM Journal on Computing 41.3 (2012), pp. 670–683.

[42] Yossi Shiloach and Shimon Even. “An on-line edge-deletion problem”. In: Journal of the ACM (JACM) 28.1
(1981), pp. 1–4.

[43] Mikkel Thorup. “Quick k-Median, k-Center, and Facility Location for Sparse Graphs”. In: SIAM J. Comput.
34.2 (2004), pp. 405–432. doi: 10.1137/S0097539701388884.

Copyright © 2024
Copyright for this paper is retained by authors3462

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

90
.4

.1
73

.6
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1145/3218657
https://doi.org/10.1007/s00453-020-00721-7
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/0166-218X(79)90044-1
https://arxiv.org/abs/2307.13747
http://proceedings.mlr.press/v70/lattanzi17a.html
http://proceedings.mlr.press/v70/lattanzi17a.html
https://doi.org/10.1145/1273496.1273595
https://doi.org/10.1137/S0097539701388884

	Introduction
	Our Contribution

	Technical Overview
	Preliminaries
	Reduction from 2-approximate k-center to k-bounded ruling set
	Incremental k-center on graphs
	Incremental k-bounded (2, 2)-ruling set algorithm
	Incremental k-bounded (2, 2)-ruling set on Gr
	Incremental k-center on graphs: Putting it together

	Decremental k-center on graphs
	Decremental k-bounded (2, 1)-ruling set on Gr
	Decremental k-center on graphs: Putting it together

	Fully-dynamic k-center on graphs
	Gonzalez's algorithm
	Fully-dynamic k-center via fully-dynamic (1+)-SSSP

	Dynamic k-center algorithms queries
	Reduction from 2-approximate k-center to k-bounded ruling set: Omitted proofs of Section 4
	Incremental (1+)-SSSP
	References

