
After-Service Blocking in Tandem Queues

Tim Rens de Boer1, René Bekker2, and Rob D. van der Mei1,2

1 Stochastics, Centrum Wiskunde & Informatica, Science Park 123, 1098XG
Amsterdam

2 Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1105,
1081 HV Amsterdam

Abstract. Tandem queues with zero buffers find many applications in
systems where jobs are processed via a predefined number of sequential
processing steps. From an analytic point of view, the analysis of such sys-
tems is highly complicated, caused by the phenomenon of after-service
blocking (ASB). ASB occurs when a completed job occupies a server while
waiting for the next phase. This challenge is addressed by introducing
and comparing heuristics to quantify the impact of ASB on the perfor-
mance of the tandem queue. Our proposed heuristics offer significant
advantages over existing methods, delivering more insightful and accu-
rate performance estimations. This allows for faster evaluations and their
use in optimization, making it ideal for real-time decision making and
capacity allocation. This research presents a valuable tool for queueing
system designers and managers to make informed decisions regarding ca-
pacity allocation, resource management, and service level optimization,
particularly in scenarios with limited budgets.

Keywords: Tandem Queues · After-Service Blocking · Queueing Theory
· Heuristics · Queue Performance Optimization Strategies.

1 Introduction

Tandem queues with zero buffers are frequently employed to model and ana-
lyze the performance of real-world systems across various application domains,
particularly in cases where tasks must be processed sequentially through mul-
tiple stages. These systems are often represented by M/M/c/c queues. Typi-
cal applications include areas such as healthcare [6], manufacturing [22], and
telecommunications [20]. These realistic situations often have no (or limited)
buffer space, meaning that jobs or patients cannot wait, or only a few are able
to wait. Inefficiencies in queueing systems with finite buffers often arise from
the limited buffer capacity, particularly due to the phenomenon known as after-
service blocking (ASB) [1], in which a server becomes blocked while waiting for
available downstream capacity.

An example of ASB can be observed in healthcare systems, where a patient
remains in the Emergency Department or a hospital due to a lack of beds avail-
able in a downstream care facility, such as a nursing home [5]. This situation not

2 T.R. de Boer et al.

only incurs higher costs due to more expensive acute care, but also contributes
to system-wide congestion, reducing overall patient throughput, and potentially
exacerbating patient conditions due to delayed care [12]. More generally, ASB
occurs when jobs, after completing service, are directed to another queue but are
forced to remain at their current server due to capacity constraints. This results
in the server being occupied by completed jobs, preventing it from serving new
ones [9]. This scenario not only impedes the efficiency of the server, but can
also lead to cascading delays, as subsequent jobs are held up by those that are
blocked. As a result, costs can increase, especially when the next stage of service
is more appropriate and cost-effective.

Motivated by this, our aim in this paper is to approximate the impact of ASB
on the throughput in tandem queues. Previous research has indicated that it is
possible to approximate the effects of ASB in specific scenarios [6], or through
machine learning techniques [8]. However, given the anticipated increase in the
demand for healthcare and the limited availability of healthcare professionals,
there is a pressing need for an approximate method that can handle a wide
range of scenarios. This is especially critical in scenarios where the demand is
close to the maximum capacity that the servers can manage and where budget
constraints necessitate optimal allocation of capacity.

The contribution of this paper is two-fold. First, we introduce a heuristic that
provides more precise estimates compared to existing methods in approximating
the effects of ASB in tandem queues with zero buffers across a wide range of
scenarios. The approximations provide insight in how ASB is affected by the
system parameters. As a byproduct of developing the heuristic, we also present
continuous extensions of M/M/c/c+k performance formulas for non-integer val-
ues of c. Second, our heuristic allows for fast evaluations of system performance,
making it an ideal tool for optimization contexts. Unlike simulation-based perfor-
mance evaluations, which are often more computationally intensive, the heuristic
significantly accelerates the optimization process. We demonstrate this using a
capacity allocation setting.

The organisation of the paper is as follows. Section 2 provides a detailed descrip-
tion of the model. Section 3 reviews the related literature. Section 4 discusses
the approximations employed in this research and indicates how these approxi-
mations can be applied to optimization problems. Section 5 shows the results of
the approximation, as well as the optimization. Finally, Section 6 presents the
conclusion and discussion.

2 Model description

We consider a tandem of n zero-buffer multi-server nodes, as illustrated in Figure
1. Arrivals to the first node occur according to a Poisson process with rate λ.
The service times are exponentially distributed, whereas the service rates are

Heuristics for After-Service Blocking in Tandem Queues 3

denoted by (µ1, µ2, . . . , µn). The number of servers at each node is given by the
vector (c1, c2, . . . , cn). We denote the buffer size at node i by ki, but the buffer
size is set to zero in all experiments. Jobs that arrive at the first node when all
servers are busy (and the buffer is full) are rejected. Upon completing the service
at node i, the job moves to the next node i+1. If node i+1 lacks available server
space, the job must wait in the current node i, thus blocking other jobs from
entering service. We denote by Pi the probability that all servers are busy (and
the buffer is full) at node i, for i = 1, . . . , n. Note that P1 is also the fraction of
jobs denied access to the first node. The ASB mechanism is visualized in Figure
2. In this figure, we can see that a new job, say job A, arrives at the first queue,
enters service, is blocked after completing service, and is finally unblocked and
can start service at the second node. This job can only move to the second
node if server capacity is available. The jobs are served and unblocked on a
First-Come-First-Served (FCFS) basis.

Fig. 1. Visual representation of a tandem of n M/M/c/c queues

3 Literature

In this section, we consider previous studies that address ASB in tandem queues.
The exact analysis of ASB in tandem systems turns out to be hardly available
in the literature. An exception is Akyildiz and von Brand [1]. They show that
exact solutions are possible, but only for a small number of scenarios, such as
two-node single-server systems and closed networks. However, the computation
time of these exact solutions increases dramatically when more servers are con-
sidered or when the system size increases, as this directly affects the state space.
Other papers [1–3, 11, 13, 17] focusing on exact analyses encountered similar chal-
lenges, involving the extensive computation time required and the limited set of
scenarios in which they are applicable. This underscores the need for more effi-
cient approximation methods.

Next, we discuss various approximation methods from the existing literature.
Koizumi et al. [15] introduced a simple approximation, which adjusts the service
time of queue i by incorporating the estimated waiting time to access queue
i + 1. Bretthauer et al. [6], motivated by bed-blocking problems in healthcare

4 T.R. de Boer et al.

Fig. 2. Visual representation of ASB for job A in a two-queue tandem model

settings, improved the heuristic of Koizumi et al. by developing an approxima-
tion for throughput rates in tandem queues. Their approach extends the work
of [15] by adjusting not only the service rate, but also the number of servers
and the flow rate. However, their study does not address issues such as how the
calculations of the heuristic are adapted to accommodate non-integer modified
numbers of server, and is limited to tandem queues with a load smaller than one.

Dallery and Frein [7] introduced a decomposition method customized for single-
server tandem queues. Their method entails dissecting the tandem network into
individual subsystems, with buffers positioned between a pair of servers. Their
approach is not applicable to networks with multiple servers. Similarly, Van Vu-
uren et al. [23] introduced a decomposition method for tandem server pools and
buffers. Their iterative method approximates throughput and sojourn time for
various buffer sizes under the assumption that the system is never starved. This
assumption implies that there is always a new arrival at the first queue, ensur-
ing that any available service capacity is immediately utilized. The assumption
that the system is never starved renders this approach impractical for realistic
scenarios.

Osorio and Bierlaire [18] presented a heuristic that distinguishes between ar-
rival, service, blocking, and unblocking rates. This method approximates the
blocking probabilities for different networks, but its application is limited to
specific networks and assumes immediate resolution of deadlocks. A deadlock
occurs when jobs are blocked directly or indirectly by themselves. Alternatively,
Dieleman et al. [8] used neural networks (NN) to predict throughput for stable
tandem queues. Their research shows that NNs informed by queueing-theoretic

Heuristics for After-Service Blocking in Tandem Queues 5

knowledge outperform those based solely on input parameters, although the
complexity of NNs complicates the interpretation of their methods.

Apart from approximating the effect of ASB, there are also other papers consid-
ering ASB in queueing networks. The impact of ASB on open queueing networks
and the modeling of deadlocks within these systems has been explored by Palmer
et al. [19]. This study focuses on the time until a deadlock occurs, noting that
once a system is in a deadlock state, it remains so without external intervention.
El-Taha and Wolff [9] developed a simulation model to analyze the effects of
ASB in healthcare care, to understand the capacity requirements in such set-
tings, highlighting the complexity of ASB.

From the literature, we observe that most ASB-related studies focus on approxi-
mating the ASB effect, but they are typically limited in the number of scenarios
in which the approximations provide an accurate estimation. This paper ad-
dresses a research gap by introducing a new heuristic for rapidly quantifying the
impact of ASB on the performance of tandem queues. This heuristic is required
to accommodate a wider range of tandem queues. Moreover, the heuristic should
be both explainable and transparent to illustrate how different parameters in-
teract.

4 Methodology

In this section, we discuss the methodology employed to address ASB in tan-
dem queues. Section 4.1 presents four approximation techniques: two established
methods from the literature and two newly developed approaches. In Section 4.2,
we apply these methods within an optimization framework, focusing on optimiz-
ing capacity allocation.

4.1 Approximations

This section presents a detailed analysis of the four approximation techniques.
The key idea of each method is to decompose the network into a series of indi-
vidual queues, where the impact of ASB is incorporated by a modified service
capacity in terms of service rate and number of servers. The strengths of such
approximations is that they are fast, whereas they also provide insight in how
subsequent queues affect each others behavior. It should be noted that although
the buffer size is zero (ki = 0) for all nodes in our scenarios, the approxima-
tions are formulated without imposing this restriction on ki to enhance their
generalizability.

M/M/c/c + k based approximation (Loss)
The first approximation is the most straightforward and is based on the M/M/c/c+
k queue, i.e., the classical Poisson-driven finite-buffer c-server queue with expo-
nential service times. We refer to the M/M/c/c + k approximation as ‘Loss’

6 T.R. de Boer et al.

throughout the remainder of this paper. For such a queue, arriving jobs finding
c + k jobs present are lost. For this approximation, the fraction of lost jobs is
approximated by only considering the first queue. This implies that additional
blocking that occurs when jobs are delayed at a server due to congestion in down-
stream queues is not taken into account. Consequently, the blocking probability
derived from this approximation represents a lower bound since ASB will in-
crease the blocking probability. Let a = λ

µ denote the offered load and let ρ = λ
cµ

be the load per server. The stationary blocking probability, denoted as πc+k,
follows directly from the steady-state distribution of the number of customers
in the system (cf. [16])

πc+k(λ, µ, c, k) =
ρc+kcc

Γ (c+ 1)
π0. (1)

The above is a reformulation of the well-known steady-state probabilities, as
presented in Appendix 6, where c is no longer required to be integer. This ex-
pression is essential to improve the speed of calculations as well as for the other
heuristics where the number of servers may be non-integer. The probability of
an empty system, π0, is given by:

π0 =


[
ea Γ (c,a)

Γ (c) + ac

Γ (c+1) (k + 1)
]−1

, if ρ = 1,[
ea Γ (c,a)

Γ (c) + ac

Γ (c+1)
1−ρk+1

1−ρ

]−1

, otherwise,
(2)

with Γ (c+1) and Γ (c, a) the Gamma function and the upper incomplete Gamma
function, respectively, see also Appendix 6. The first approximation of the block-
ing probability is then given by πc1(λ, µ1, c1, k1).

The heuristic by Bretthauer et al. [6] (BR)
We use the heuristic proposed in [6], from now on referred to as ‘BR’, as a bench-
mark because it is closely aligned with our method and is tested on scenarios
that are particularly relevant. BR introduces a flow rate F1,2, which represents
the flow from queue 1 to queue 2. Since no jobs are lost after queue 1, the flow
rate is equal for each pair of subsequent queues i and i + 1, and is denoted by
F . The flow rate is calculated using:

F = Fi,i+1 = F1,2 = λ · (1− P1). (3)

In addition to the flow rate, the heuristic modifies the number of servers, denoted
by c∗i , and the service rate, denoted by µ∗

i , to account for the blocking effects of
subsequent queues. The modified number of servers captures how many of the
servers are not blocked due to ASB and the modified service rate can be used to
capture an extra time a server is blocked due to ASB. Specifically, the expected
number of customers waiting for service at a stage with c servers, service rate µ
and flow rate F , is approximated using the M/M/c queue, cf. [14] for the case

Heuristics for After-Service Blocking in Tandem Queues 7

of any c,

L(F, µ, c) =

(
F
µ

)c

Fµ

Γ (c)(cµ− F)2

e
F
µ Γ (c, F

µ)

Γ (c)
+

(
F
µ

)c

cµ

Γ (c+ 1)(cµ− F)

−1

. (4)

Observe that when F ≥ cµ the M/M/c queue becomes unstable, such that the
expected number of jobs waiting for service explodes and L(F, µ, c) grows with-
out bound.

The modified number of servers at station i is then calculated by the number of
servers that are not blocked:

c∗i = [ci − Li+1]
+, (5)

and the modified service rate is determined by

µ∗
i =

[
c∗i
ci

1

µi
+

ci − c∗i
ci

1

ci+1µi+1

]−1

. (6)

The rationale behind this adaptation is that blocked jobs must wait for the
service completion at the next node before they can be unblocked (see [6] for a
more elaborate discussion). The heuristic BR can be found in Algorithm 1.

Algorithm 1 Heuristic Algorithm by Bretthauer et al.

1: Initialize m = 0, P 0
1 = 0, µ0

i = µi, c
0
i = ci for i = 1, . . . , n

2: while |Pm
1 − Pm−1

1 | ≥ δ do
3: m = m+ 1
4: Calculate the flow rate Fm = λ(1− Pm−1

1)
5: for i = 1, . . . , n do
6: Calculate the modified number of servers cmi using equation (5)
7: Calculate the modified service rate µm

i using equation (6).
8: end for
9: Update the blocking probability Pm

1 = πi(F
m, µm

1 , cm1)
10: end while

The modified service rate heuristic (MS)
One primary limitation of BR lies in its dependence on calculations derived from
M/M/c formulas. For example, these formulas are only valid when the system
workload remains below 1, that is, when ρ < 1. As a result, BR cannot provide
accurate approximations in scenarios where the arrival rate leads to a workload
larger than or equal to 1. This constraint significantly narrows the range of sce-
narios in which the heuristic can be applied effectively, limiting its usefulness in
higher workload situations. Furthermore, we also observed a significant decrease
in the performance of the heuristic in [6] when the number of servers becomes
prohibitively small.

8 T.R. de Boer et al.

We address the limitations by focusing on a different adaption of the service rate,
while we do not change the number of servers. To this end, we first notice that
while nodes {2, 3, ..., n} concern queues without buffer, jobs cannot be directly
denied access to the system as these jobs wait at another node. We incorporate
the ASB impact by including the waiting time in a suitable finite-buffer multi-
server system. This differs from [6], which uses the expected number of waiting
jobs. The adaptations are further explained below.

The service rate is modified to reflect the effect of ASB, as jobs remain longer
at the nodes. The modified service rate is determined using the sojourn time,
where we define the expected sojourn time as:

E[Si] =
1

µi
+ E[Bi+1], (7)

where E[Bi+1] is the expected time being blocked by the next queue. This is
straightforward for the last queue, yielding E[Sn] = 1/µn. For the other queues,
the time blocked by the next queue is determined by modeling queue i + 1 as
an M/M/c/c+ k queue where a fraction of the servers of queue i are used as a
buffer for queue i+1. This is done since the servers at node i function as a buffer
for node i+ 1, due to the ASB effect. We approximate the time blocked by the
expected waiting time of an M/M/c/c + k model with the altered parameters.
The arrival rate is the original arrival rate λ and the service rate is the modified
service rate µ∗

i+1. The number of servers remains ci+1, and the number of buffer
spaces is the number of buffer spaces at queue i + 1 plus the average number

of servers at queue i that do not serve a job, yielding ki+1 +
[
ci − λ(1−P1)

µi

]+
.

Combining the above, the modified service rate for queue i is determined by

µ∗
i =


[

1
µi

+Wq

(
λ, µ∗

i+1, ci+1, ki+1 +
[
ci − λ(1−P1)

µi

]+)]−1

, for i = 1, . . . , n− 1,

µn, for i = n,

(8)
with Wq(λ, µ, c, k) the expected waiting time in the M/M/c/c + k queue with
arrival rate λ, service rate µ, c servers and buffer size k, see Appendix 6.

Next, we determine the probability that node 1 is fully occupied, thus block-
ing newly arriving jobs and denying them access to the system. The probability
is based on the M/M/c/c + k queue, with the service rate corresponding to a
modified service rate. The probability of queue 1 being fully occupied is then
computed as follows:

P1 = πc1+k1
(λ, µ∗

1, c1, k1). (9)

This yields the ‘modified service rate’ heuristic, shortened to ‘MS’, as presented
in Algorithm 2.

Heuristics for After-Service Blocking in Tandem Queues 9

Algorithm 2 The modified service rate heuristic

1: Initialize m = 0, µm
i = µi, P

m
1 = 1.0 for i = 1, . . . , n

2: while |Pm
1 − Pm−1

1 | ≥ δ do
3: m = m+ 1
4: Pm

1 = πc1+k1(λ, µ
m
1 , c1, k1)

5: for i = 1 to n do
6: Update the modified service rate using equation (8)
7: end for
8: end while

The modified service rate and number of servers heuristic (MS&C)
Recall that a key limitation of the heuristic in [6] is its inability to handle sys-
tems with a load exceeding one, primarily due to its reliance on the M/M/c
model. We propose a modified heuristic that also relies on adapting the service
rate and the number of servers, named the modified service rate and number of
servers heuristic (‘MS&C’). However, instead of relying on the M/M/c model, we
use the M/M/c/c+ k variant, which is stable for any finite load. Moreover, our
adjustments enhance the accuracy of the heuristic. The specific modifications
are detailed below.

We modify the service rate, µ∗
i , by conditioning on whether a job experiences

blockage. If a job is not blocked, which occurs with probability 1−Pi+1, the job
proceeds with its expected service time of 1

µi
. However, if a job is blocked, with

probability Pi+1, it must wait until all previously blocked jobs, which is equal
to ci − c∗i , are unblocked. The expected unblocking time for these jobs is given
by 1/(c∗i+1µ

∗
i+1). Since there is no blocking at node n, we have µ∗

n = µn. This
leads to the following recursive relation:

µ∗
i =


[
(1− Pi+1)

1
µi

+ Pi+1(ci − c∗i)
1

c∗i+1µ
∗
i+1

]−1

, for i = 1, . . . , n− 1,

µn, for i = n.
(10)

We adopt a straightforward modification for the number of servers. The un-
derlying intuition is that only a portion of the servers are actively serving jobs,
while the remaining servers are occupied by blocked jobs. The fraction of blocked
servers is represented by Pi+1. Consequently, the modified number of servers is
denoted by:

c∗i =

{
ci(1− Pi+1), for i = 1, . . . , n− 1,

cn, for i = n.
(11)

The probability that queue i is fully occupied is again estimated using the
M/M/c/c + k system, as shown in Equation (1). It is important to note that
while the first queue experiences an arrival rate of λ, subsequent queues receive
only a fraction of these arrivals, λ(1 − P1). The blocking probabilities for the

10 T.R. de Boer et al.

queues are then computed as follows:

Pi =

{
πc∗1+k1(λ, µ

∗
1, c

∗
1, k1), for i = 1,

πc∗i +ki(F, µ
∗
i , c

∗
i , ki), for i = 2, . . . , n.

(12)

Here, F is the number of jobs that complete service at queue 1 and is calculated,
similar to [6], by F = λ(1− P1).

For computational purposes, we have chosen to update the blocking probability
using averaging with decreasing weights, such that the blocking probabilities are
updated as

Pm
i =

{
Pm−1
i

m−1
m + πc∗i +ki

(F, µ∗
i , c

∗
i , ki)

1
m , if i > 1,

Pm−1
1

m−1
m + πc∗1+k1

(λ, µ∗
1, c

∗
1, k1)

1
m , if i = 1.

(13)

Combining the above yields Algorithm 3 as a second new heuristic.

Algorithm 3 The modified service rate and number of servers heuristic

1: Initialize m = 1, µm
i = µi, c

m
i = ci for i = 1, . . . , n

2: Pm
1 = πc1+k1(λ, µ

m
1 , cm1 , k1), F

m = λ(1− Pm
1)

3: Pm
i = πci+ki(F

m, µm
i , cmi , ki) for i = 2, . . . , n

4: while |Pm
1 − Pm−1

1 | ≥ δ do
5: m = m+ 1
6: for i = n, . . . , 1 do
7: Update the modified service rate using equation (10)
8: Update the modified number of servers using equation (11)
9: Update the blocking probability of queue i using equation (13).
10: end for
11: Update Fm = λ(1− Pm

1)
12: end while

4.2 Optimization

There is a vast increase in the number of scenarios for capacity allocation as
the number of queues grows. Therefore, a fast performance evaluation is crucial
when optimizing the capacity over the different nodes. Previously, these evalu-
ations had to be done by simulation or a flawed approximation. The heuristics
in Section 4.1 enable us to speed up these evaluations, reducing the time of an
evaluation from minutes to seconds. For optimization, various methods can be
employed, such as (i) grid search [10], (ii) Evolutionary Algorithm [4], and (iii)
marginal allocation [21]. This section illustrates the optimization method that
combines our heuristic with grid search in the case of budget-constrained server
allocation.

Heuristics for After-Service Blocking in Tandem Queues 11

In the optimization problem, each server at node i has a cost of bi. The problem
is to determine a server allocation that minimizes the rejection probability at
the first node, P1(c1, . . . , cn), where the total cost should not exceed a budget
B. The mathematical formulation of the optimization problem is then given by:

min
(c1,...,cn)

P1(c1, . . . , cn)

S.t.

n∑
i=1

bici ≤ B

ci ∈ Z+ for i = 1, . . . , n.

The algorithm to approximate the optimal allocation of servers can be found in
Algorithm 4 and involves three main steps. First, in line 3 of the pseudocode,
all possible combinations of server allocations are generated, where a server allo-
cation is represented by (c1, c2, . . . , cn), with ci the number of servers allocated
to node i. Each combination must satisfy the budget constraint, ensuring that
the total cost does not exceed B, that is,

∑n
i=1 bici ≤ B. In line 4 we exclude

server allocations where the remaining budget allows for adding at least one more
server. To further limit the number of evaluations needed, we exclude server allo-
cations that are unlikely to be optimal as a result of large speed differences, that
is, µici

µ1c1
< 0.5 or µici

µ1c1
> 1.5. This step helps to eliminate suboptimal allocations.

For each of the remaining server allocations, we evaluate the blocking proba-
bility P1 using a heuristic. Finally, we compare the blocking probabilities for all
evaluated allocations and select the one with the lowest P1. This allocation is op-
timal according to the heuristic, as it minimizes the likelihood of job blocking at
the first node, thereby enhancing the overall performance of the queueing system.

Other optimization problems, such as the cost-minimizing server allocation, can
also be addressed using new heuristic evaluations. This is a similar optimization
problem, but instead of minimizing the blocking probability under a budget
constraint, we aim to minimize the total cost while adhering to a maximum
allowable blocking probability. This yields the following formulation:

min
(c1,...,cn)

n∑
i=1

cibi

S.t. P1(c1, . . . , cn) ≤ Pmax
1

ci ∈ Z+ for i = 1, . . . , n

The optimal server allocation for this problem can be determined using a method
similar to the algorithm described above.

12 T.R. de Boer et al.

Algorithm 4 Optimal budget constrained server allocation based on heuristic

1: Input: Budget B, cost of a server at node i as bi for i = 1, . . . , n
2: Output: Optimal server allocation (c#1 , . . . , c#n) with the lowest P1

3: Generate all possible server allocations (c1, . . . , cn) such that
∑n

i=1 bici ≤ B
4: Remove all server allocations where

∑n
i=1 bici < B −mini(bi)

5: Remove all server allocations where µici
µ1c1

< 0.5 or µici
µ1c1

> 1.5

6: Initialize (c#1 , . . . , c#n) = ∅ and P#
1 = ∞

7: for each server allocation (c1, . . . , cn) do
8: Evaluate P1 using a heuristic for allocation (c1, . . . , cn)
9: if P1 < P#

1 then
10: P#

1 = P1

11: (c#1 , . . . , c#n) = (c1, . . . , cn)
12: end if
13: end for
14: return (c#1 , . . . , c#n)

5 Results

In this section, we present an evaluation of the four approximation methods for
ASB within tandem queues. Our analysis focuses on identifying which approxi-
mation provides the most accurate representation of blocking probabilities when
jobs are held up by subsequent nodes. In Section 5.1, we compare these approx-
imations by evaluating their performance in various scenarios. In Section 5.2 we
provide preliminary results that demonstrate the application of our proposed
heuristic to the budget-constrained server allocation problem.

5.1 Accuracy approximations

The heuristics are tested on various scenarios of n nodes in tandem with n ∈
{2, . . . , 5}. The arrival process is Poisson with rate λ to the first node. Each node
i has a number of servers ci and a service rate µi. The aggregate service rate of
the queue with the smallest service capacity is mini{ciµi}. Our primary interest
is in scenarios where roughly λ ≈ mini{ciµi}, as these correspond to realistic
settings that are also challenging to approximate. The generated scenarios are
presented in Table 1. In this context, P1 is determined by simulation, denoted
P sim
1 , and the mean value of P1 is obtained by averaging across all scenarios of

the respective row in Table 1. The number of possible scenarios quickly increases
with more nodes; therefore, we have chosen to limit the number of parameter
settings when increasing the number of queues. This explains why the mean P1

decreases when moving from the n = 3 scenarios to the n = 4 scenarios, despite
an expected increase caused by the additional strain of after-service blocking
from an extra queue.

Each of the 23, 121 scenarios has a warm-up period of 50, 000 service completions.
The simulation ends when P1 has reached a stable average, which we have chosen

Heuristics for After-Service Blocking in Tandem Queues 13

Table 1. Overview of simulation scenarios

n ci µ1
ciµi
c1µ1

λ
min(ciµi)

scenarios Mean P sim
1 ,

(min; max)

2 {1, 5, 10, 20} 1.0 {0.7, 0.8, . . . , 1.3} {0.7, 0.8, . . . , 1.3} 784 0.29, (0.00; 0.63)

3 {1, 5, 10, 20} 1.0 {0.8, 0.9, . . . , 1.2} {0.8, 0.9, . . . , 1.2} 8000 0.29, (0.02; 0.63)

4 {5, 10, 20} 1.0 {0.9, 1.0, 1.1} {0.9, 1.0, 1.1} 6561 0.22, (0.07; 0.38)

5 {5, 20} 1.0 {0.9, 1.0, 1.1} {0.9, 1.0, 1.1} 7776 0.23, (0.07; 0.39)

such that the confidence interval (CI) of the blocking probability is less than
5% of the mean value of P1. If this condition is not met, then the simulation is
continued for another 10, 000 service completions, and repeated until the stability
condition is met. For the convergence of the heuristic algorithms, we take δ =
0.000001. The error of heuristic H is then given by

∆(H) = |P (H)
1 − P sim

1 |.

The errors of the heuristics can be found in Table 2 and Figure 3. Figure 3 shows
only the three best-performing heuristics to allow a clearer and more accurate
comparison of these approximations. As can be seen, MS&C performs the best
over all scenarios. This heuristic has both the smallest mean error and the small-
est maximum error. From Figure 3, we observe that MS&C is able to maintain
small errors, also when the number of queues, and thus the complexity of the
system, increases. The Loss approximation turns out to perform quite well. This
approximation naturally breaks down when the service rate imbalance between
queues increases, for instance, when the speed of other queues is significantly
lower than that of the first queue. Consequently, this approximation is not suit-
able for optimization as it is based on only the first queue and ignores the effect
of ASB. The effectiveness of BR notably lags behind that of the other heuristics.
As the benchmark of [6] is constructed for cases with ρ < 1, we split the scenarios
between ρ# < 1 and ρ# ≥ 1, with ρ# = mini=1,...,n{ λ

ciµi
}, see Figures 4 and 5.

The boxplots for ρ# < 1, in Figure 4, reveal that the new heuristics clearly out-
perform the Loss approximation and BR. Moreover, for ρ# ≥ 1 it also becomes
clear that MS&C overall has the best performance.

The impact of the load on the blocking probability, both for MS&C and the
simulation, is visualized in Figures 6 and 7, for a two- and three-node tandem
system, respectively. The parameters for the scenario of Figure 6 are c1 = 10,
c2 = 10, µ1 = 1.0, with µ2 equal to 1.0 and 0.8 for the left- and right-hand sides
of the figure, respectively. The parameters of Figure 7 are c1 = 10, c2 = 10,
c3 = 10, µ1 = 1.0, with µ2 and µ3 equal to 1.0 or 0.8 for the different scenarios.

14 T.R. de Boer et al.

Table 2. Mean error for different scenarios

n Loss BR MS MS&C

(min; max) (min; max) (min; max) (min; max)

2 0.03, (0.00; 0.16) 0.10, (0.00; 0.22) 0.02, (0.00; 0.15) 0.02, (0.00; 0.12)

3 0.04, (0.00; 0.30) 0.39, (0.00; 0.83) 0.03, (0.00; 0.31) 0.02, (0.00; 0.13)

4 0.04, (0.00; 0.15) 0.42, (0.02; 0.82) 0.03, (0.00; 0.15) 0.01, (0.00; 0.08)

5 0.04, (0.00; 0.18) 0.43, (0.02; 0.82) 0.03, (0.00; 0.18) 0.02, (0.00; 0.12)

n=2 n=3 n=4 n=5
Scenarios

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro
r V

al
ue
s

Grouped Boxplots of Different Scenarios and Errors
Loss
MS
MS&C

Fig. 3. Box plots of the errors of the three best performing approximations

The load varies due to λ ranging from 0 to 40. The results show that the impact
of the load is similar for both the heuristic and simulation. When queue 2, queue
3, or both become a bottleneck (that is, for µ2 = 0.8 and/or µ3 = 0.8), we see
that the error increases somewhat with the arrival rate, although the functional
impact of the load on the heuristic is similar to the simulation.

Runtime To illustrate the runtime efficiency of the heuristics, we tested four
simple scenarios, with n = 2, 3, 4 or 5. Each queue has the same number of
servers and service rate with ci = 10 and µi = 1.0, while fixing the arrival rate
at λ = 10.0. The resulting runtimes and iteration counts required for convergence
are presented in Table 3. As observed, all approximations significantly reduce

Heuristics for After-Service Blocking in Tandem Queues 15

n=2 n=3 n=4 n=5
Scenarios

0.0

0.2

0.4

0.6

0.8
Er
ro
r V

al
ue

s

Grouped Boxplots of Different Scenarios and Errors
BR
Loss
MS
MS&C

Fig. 4. Box plots of the errors of approximations for ρ# < 1.0

n=2 n=3 n=4 n=5
Scenarios

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro
r V

al
ue
s

Grouped Boxplots of Different Scenarios and Errors
Loss
MS
MS&C

Fig. 5. Box plots of the errors of the three best performing approximations for ρ# ≥ 1.0

runtime compared to the simulation approach for the same scenario. Among
the heuristics, MS achieves the shortest runtime, followed by MS&C, with both
providing a clear runtime advantage over the heuristic BR. The iteration counts
needed for convergence, also shown in Table 3, further support this result. While

16 T.R. de Boer et al.

Fig. 6. Comparison of the simulation and the heuristic for a system with two nodes
with a varying arrival rate

Fig. 7. Comparison of the simulation and the heuristic for a system with three nodes
with a varying arrival rate

Heuristics for After-Service Blocking in Tandem Queues 17

MS&C is not the fastest overall, it still offers a substantial runtime reduction,
making it a viable option for optimization, especially with respect to simulation
times.

Table 3. Runtime and number of iterations for different methods

n Sim. M/M/c/c+ k BR MS MS&C

(sec; iter) (sec; iter) (sec; iter) (sec; iter) (sec; iter)

2 54.470 (-) 0.000 (-) 0.099 (767) 0.002 (9) 0.097 (369)

3 56.587 (-) 0.000 (-) 1.679 (8590) 0.003 (10) 0.136 (250)

4 78.707 (-) 0.000 (-) 1.780 (8600) 0.004 (12) 0.212 (231)

5 97.804 (-) 0.000 (-) 1.776 (8551) 0.005 (13) 0.245 (228)

5.2 Optimization

We illustrate the optimization based on a relatively small tandem system of three
queues. For such a system, we are able to evaluate the different server configu-
rations using simulation. For larger systems, this approach becomes impractical;
however, the heuristic remains feasible, as it significantly accelerates the eval-
uation process. Specifically, we chose the following parameters: λ = 10, µ1 =
2.0, µ2 = 1.0, µ3 = 0.5, each server having a cost of 1 (b1 = b2 = b3 = 1.0), and a
budget B ranging from 10 to 50. For example, B = 10 represents that there is a
budget for 10 servers in total. Table 4 shows the optimization results when the
evaluations are based on both the simulation and MS&C. The optimal allocation
according to the heuristic is close to that of the optimal allocation according to
the simulation; the blocking probabilities typically differ only by a few percent-
age points. Overall, the optimization results indicate that the simulation leads
to somewhat more server capacity further downstream of the tandem. Moreover,
c1µ1 ≥ c2µ2 ≥ c3µ3, which implies that it is desirable to have the largest service
capacity upstream.

6 Conclusion & discussion

This paper investigated the impact of ASB in tandem queues and introduced two
new heuristics to approximate its effects. The best performing heuristic is MS&C
and offers several advantages over the existing methods. First, it delivers more
accurate estimations compared to previous approaches. Second, it enables rapid
evaluations and adjustments, making it suitable for real-time decision-making
and capacity allocation. Finally, the heuristic is transparent, providing insight
in the impact of different parameters on system performance.

18 T.R. de Boer et al.

Table 4. Server allocations based on optimization using simulation and heuristic

B (c∗sim1 , c∗sim2 , c∗sim3) (c∗heur1 , c∗heur2 , c∗heur3) P ∗sim
1 P ∗heur

1 P ∗heur
1 − P ∗sim

1

10 (2,3,5) (2,4,4) 0.79 0.81 0.02

20 (4,6,10) (4,7,9) 0.55 0.57 0.02

30 (6,9,15) (7,9,14) 0.32 0.34 0.02

40 (8,12,20) (10,10,20) 0.11 0.14 0.03

50 (12,14,24) (12,14,24) 0.02 0.02 0.00

With the improved heuristic, there is clear potential for practical applications.
For instance, the heuristic can be easily applied in a Decision Support System
for real-world queueing systems such as manufacturing lines, telecommunica-
tions networks, and service industries. It enhances the ability to optimize server
allocations, thereby improving operational efficiency and without being reliant
on time-consuming simulations, or black-box prediction models. This makes it a
valuable tool for professionals who want to effectively balance cost and service
quality.

Future work While our heuristic shows promising performance, there are some
limitations. For example, the model assumes a specific structure of tandem
queues and may not be directly applicable to networks with more complex
topologies. Extending the heuristic to handle more complex queueing networks
is an interesting direction for future research. We envisage that the first exten-
sion should focus on feedforward networks. In networks with feedback loops,
the phenomenon of deadlocks will be crucial, which occur when blocked jobs
are directly or indirectly blocked by themselves. These deadlocks need to be
resolved, adding another layer of complexity to the system. Furthermore, the
heuristic relies on assumptions about the arrival (Poisson process) and service
processes (exponentially distributed), which may not hold in all real-world sce-
narios. Albeit the impact of the service time distribution is usually small for
systems with a considerable number of servers, it is of interest to determine how
the heuristic needs to be adapted to handle general arrival and service processes.

Apart from the approximation, future research could also focus on the optimiza-
tion part of this research. During experiments it seemed that the following rule
seems to hold for optimal allocations: c1µ1 ≥ c2µ2 ≥ . . . ≥ cnµn. This observa-
tion is as expected; upstream queues require more capacity due to the cumulative
effect of strain and stochasticity introduced by ASB in downstream queues. As
jobs progress through the system, any delays or blockages in later queues prop-
agate backward, increasing the workload and variability experienced by earlier
queues. This requires additional capacity in upstream queues to manage the com-
pounded effects of downstream inefficiencies. In contrast, downstream queues
require comparatively less capacity, since each subsequent queue only needs to

Heuristics for After-Service Blocking in Tandem Queues 19

handle the additional workload generated by the ASB of the preceding upstream
queues. Therefore, the capacity of the ith queue must be sufficient to process the
increased workload resulting from blockages in the n − i queues after it. This
could be further researched to determine whether this optimization process can
be sped up without the need for evaluations.

Appendix: Queues with fractional number of servers

Here we present the performance analysis for the M/M/c and M/M/c/c + k
systems in case c is not necessarily integer. The results rely on the Gamma
function, given by,

Γ (c) =

∫ ∞

0

tc−1e−tdt, (14)

and the upper incomplete Gamma function,

Γ (c, x) =

∫ ∞

x

tc−1e−tdt. (15)

M/M/c

The M/M/c queue is a queue with Poisson arrivals, with rate λ, and exponential
service times, with rate µ, and c servers. While not resembling our ASB situation
due to the fact that all jobs are accepted in this case, we can still use the
knowledge from these formulas in approximations. The steady-state probabilities
of the number of customers in the system are given by [16], with ρ = λ

µc ,

θi =


θ0

(cρ)i

i! , for 0 < i < c,

θ0
(cρ)icc−i

c! , for i ≥ c,[∑c−1
j=0

(cρ)j

j! + (cρ)c

c! · 1
1−ρ

]−1

, for i = 0.

(16)

The probability of waiting θi≥c is then given by:

θi≥c =

∞∑
i=c

θi. (17)

To improve the speed of the approximations, these calculations are rewritten,
using [14], such that the value c does not have to be integer. It is rewritten to:

θ0 =

[
ecρ

Γ (c)
Γ (c, cρ) +

(cρ)c

Γ (c+ 1)

1

(1− ρ)

]−1

(18)

and

θi≥c = 1− θi<c = 1− θ0
ecρ

Γ (c)
Γ (c, cρ) . (19)

20 T.R. de Boer et al.

M/M/c/c + k

The steady-state probabilities of the number of customers in the system in the
M/M/c/c+ k queue are given by, with a = λ

µ :

πi =


π0

ai

i! , for 0 < i < c,

π0
ai

ci−cc! , for c ≤ i ≤ c+ k,[∑c
j=0

aj

j! +
ac

c!

∑c+k
j=c+1

(
a
c

)j−c
]−1

for i = 0.

(20)

For the heuristics we also require the expected waiting time E[Wq] in the M/M/c/c+
k model. This is computed using

E[Wq] =
E[Lq]

λ · (1− πc+k)
, (21)

where the expected number of customers in the queue E[Lq] is given by

E[Lq] =

c+k∑
i=c

(i− c)πi. (22)

To handle cases where c is not required to be an integer, Equation (22) can
be rewritten as:

E[Lq] =

{
ccπ0(k+1)
Γ (c+1) , for ρ = 1,
π0

Γ (c+1) (cρ)
c[ρ−ρk+1

(1−ρ)2 − kρk+1

(1−ρ)], otherwise.
(23)

Moreover, π0 can be rewritten as (2) using a similar argument as for the M/M/c
queue.

References

1. Akyildiz, I.F., von Brand, H.: Exact solutions for networks of queues with blocking-
after-service. Theoretical Computer Science 125(1), 111–130 (1994)

2. Avi-Itzhak, B., Yadin, M.: A sequence of two servers with no intermediate queue.
Management Science 11(5), 553–564 (1965)

3. Baber, J.M.A.: Queues in series with blocking. Cardiff University (United King-
dom) (2008)

4. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1(1), 1–23 (1993)

5. Bamezai, A., Melnick, G., Nawathe, A.: The cost of an emergency department
visit and its relationship to emergency department volume. Annals of Emergency
Medicine 45(5), 483–490 (2005)

Heuristics for After-Service Blocking in Tandem Queues 21

6. Bretthauer, K.M., Heese, H.S., Pun, H., Coe, E.: Blocking in healthcare opera-
tions: A new heuristic and an application. Production and Operations Management
20(3), 375–391 (2011)

7. Dallery, Y., Frein, Y.: On decomposition methods for tandem queueing networks
with blocking. Operations Research 41(2), 386–399 (1993)

8. Dieleman, N., Berkhout, J., Heidergott, B.: A neural network approach to perfor-
mance analysis of tandem lines: The value of analytical knowledge. Computers &
Operations Research 152, 106124 (2023)

9. El-Darzi, E., Vasilakis, C., Chaussalet, T., Millard, P.: A simulation modelling
approach to evaluating length of stay, occupancy, emptiness and bed blocking in a
hospital geriatric department. Health Care Management Science 1, 143–149 (1998)

10. Ensor, K.B., Glynn, P.W.: Stochastic optimization via grid search. Lectures in
Applied Mathematics-American Mathematical Society 33, 89–100 (1997)

11. Gordon, W.J., Newell, G.F.: Cyclic queuing systems with restricted length queues.
Operations Research 15(2), 266–277 (1967)

12. Haraden, C., Resar, R.: Patient flow in hospitals: Understanding and controlling
it better. Frontiers of Health Services Management 20(4), 3 (2004)

13. Hunt, G.C.: Sequential arrays of waiting lines. Operations Research 4(6), 674–683
(1956)

14. Jagers, A., Van Doorn, E.A.: On the continued Erlang loss function. Operations
Research Letters 5(1), 43–46 (1986)

15. Koizumi, N., Kuno, E., Smith, T.E.: Modeling patient flows using a queuing net-
work with blocking. Health Care Management Science 8, 49–60 (2005)

16. Kulkarni, V.G.: Introduction to modeling and analysis of stochastic systems, vol. 1.
Springer (2011)

17. Latouche, G., Neuts, M.F.: Efficient algorithmic solutions to exponential tandem
queues with blocking. SIAM Journal on Algebraic Discrete Methods 1(1), 93–106
(1980)

18. Osorio, C., Bierlaire, M.: An analytic finite capacity queueing network model cap-
turing the propagation of congestion and blocking. European Journal of Opera-
tional Research 196(3), 996–1007 (2009)

19. Palmer, G.I., Harper, P.R., Knight, V.A.: Modelling deadlock in open restricted
queueing networks. European Journal of Operational Research 266(2), 609–621
(2018)

20. Pourbabai, B.: Tandem behavior of a telecommunication system with repeated
calls: II, a general case without buffers. European Journal of Operational Research
65(2), 247–258 (1993)

21. Rolfe, A.J.: A note on marginal allocation in multiple-server service systems. Man-
agement Science 17(9), 656–658 (1971)

22. Seo, D.W., Lee, H.: Stationary waiting times in m-node tandem queues with pro-
duction blocking. IEEE Transactions on Automatic Control 56(4), 958–961 (2011)

23. Van Vuuren, M., Adan, I.J., Resing-Sassen, S.A.: Performance analysis of multi-
server tandem queues with finite buffers and blocking. OR Spectrum 27, 315–338
(2005)

