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A B S T R A C T

This work presents a novel framework for numerically simulating the depressurization of tanks and pipelines
containing carbon dioxide (CO2). The framework focuses on efficient solution strategies for the coupled system
of fluid flow equations and thermodynamic constraints. A key contribution lies in proposing a new set of
equations for phase equilibrium calculations which simplifies the traditional vapour–liquid equilibrium (VLE)
calculations for two-phase CO2 mixtures. The first major novelty resides in the reduction of the conventional
four-equation VLE system to a single equation, enabling efficient solution using a non-linear solver. This
significantly reduces computational cost compared to traditional methods. Furthermore, a second novelty is
introduced by deriving an ordinary differential equation (ODE) directly from the UV-Flash equation. This ODE
can be integrated alongside the governing fluid flow equations, offering a computationally efficient approach
for simulating depressurization processes.
1. Introduction

Carbon capture and storage (CCS) is a promising feasible alternative
for mitigating greenhouse gas emissions. In CCS, CO2 needs to be
transported and conditioned from its capture location to a storage
facility. This process is normally accomplished via pipelines and ships.
For short distances and small volumes, transporting CO2 in gaseous
or liquid form via ships can be cost-effective, but pipeline transport
in a dense liquid-like state is a more economical and scalable option
for large volumes and long distances [1]. The CO2 is then re-injected
through a well into the target storage location such as an aquifer or a
depleted gas reservoir. The transport of CO2 along pipelines and wells,
including multiphase flow transport and its associated transients, is the
focus of the current study.

During regular pipeline operation, changes in pressure and temper-
ature along the pipeline can lead to multiphase flow behaviour, such
as gas–liquid (two-phase flow) or gas–liquid–solid (three-phase flow).
Similarly, during pipeline depressurization, CO2 will exhibit two-phase
behaviour with rapid cooling along the saturation line. Predicting the
lowest and highest temperatures during such an operation is crucial to
design, control, and optimize the pipeline and manage its integrity [2].

∗ Corresponding author at: Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
E-mail address: pardeep@cwi.nl (P. Kumar).

For this purpose and many other applications, simulation tools offer an
attractive alternative for predicting the performance of a given system
under varying conditions.

Two-phase flow of CO2 is governed by the Navier–Stokes equa-
tions. A comprehensive overview of various two-phase flow models is
available in [3]. For an in-depth exploration of the models utilized in
simulating CO2 transport and experimental data, we recommend the
review paper by Munkejord et al. [4] and the references therein. In
pipeline applications, cross-sectional averaging is employed to simplify
the Navier–Stokes equations and derive a one-dimensional two-fluid
model [5]. However, this averaging procedure can render the model
ill-posed, leading to discontinuous dependency of the solution on initial
data and unbounded growth rates for the smallest wavelengths [3,6].
In this paper, we circumvent this issue by considering the uncondition-
ally hyperbolic Homogeneous Equilibrium Model (HEM) [7], which is
suited for well-mixed two-phase flow systems in which the different
phases travel at approximately the same velocity. It has been used
in CO2 simulation studies in for example [2,8,9]. Additionally, it has
found application in simulating heat exchangers and nuclear reac-
tors [10]. A comprehensive treatment of HEM is provided in the review
articles by Stewart and Wendroff [3] and Menikoff and Plohr [11].
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While HEM offers simplicity, it is acknowledged for its limitations
n handling strong non-equilibrium effects, such as those arising from

droplets in gas flow. These effects, albeit correctable with additional
erms, pose challenges to the model’s accuracy. To effectively capture
ignificant non-equilibrium effects, particularly of kinetic nature, more
omplex two-fluid models are warranted, accounting for the momen-
um of each phase [12]. Despite their computational expense, these
odels offer enhanced accuracy. However, our present investigation

onfines itself to HEM due to its simplicity.
Even though the HEM is a hyperbolic model, the fact that CO2 is

 non-ideal gas complicates the simulation of two-phase CO2 trans-
ort problems: in addition to the flow equations, one needs to solve
n algebraic system of equations that describes the thermodynamic

vapour–liquid equilibrium (VLE). As the evolution of density and inter-
nal energy is available through the fluid flow conservation equations,
it is natural to solve the equilibrium problem in UV space [13] (where
U denotes the internal energy, and V the inverse of the density). A few
papers considering this so-called ‘‘UV flash’’ are available in literature,
see e.g. [14–16], and the review of Smejkal et al. [13]. These UV equi-
ibrium calculations consist of solving a system of non-linear algebraic
quations. For a pure component fluid, this amounts to solving a system
f four algebraic equations [17], in each grid cell along the pipeline.
he resulting coupled system of fluid flow and thermodynamics can be
ather expensive to solve, especially when complex equations of state
ike Span–Wagner [18] are involved (which we will use in this work).

In order to reduce the computational expense of solving a coupled
ystem of dynamic flow equations with non-linear algebraic equations,

Fang et al. [19] proposed a lookup table approach, earlier applied by
Lorenzo et al. [20] in water–steam fast transient simulations. How-
ever, lookup tables can sometimes lack thermodynamic consistency,
articularly near the critical point. In this work, we introduce two new
pproaches to efficiently solve the HEM model with a UV flash, ensur-
ng accuracy across the various operating regimes. In the first approach,
e reduce the four algebraic equations to a single equation by using

aturation relations. Saurel et al. [21] had also developed a similar
approach for two-phase fluids using stiffened gas EOS. To address
the single-phase limit, they introduce a small volume fraction of the
other phase, applicable only near saturation boundary (e.g. metastable
states). We extend their approach by presenting a framework that
handles both single-phase and two-phase regime with a more complex
EOS. This reduces the computational expense significantly, even though
it still requires a non-linear equation solver. In the second approach,
we derive an ordinary differential equation from the reduced represen-
tation and thereby eliminate the need of a non-linear solver, further
reducing the computational expenses. To assess the new approaches,
we utilize the forward Euler method for time integration [22].

We evaluate these algorithms by simulating the depressurization of
a pipe filled with CO2. To gain fundamental insights into the role of the
VLE on the algorithms, we initially test them on the depressurization
of a tank filled with CO2. This is a simplified problem that shares
several physical characteristics with pipeline depressurization. In this
context, a relevant work is that of Sirianni et al. [23], who introduced
an explicit conservative-primitive solver for general thermodynamic
variables. However, their derivation relies on the choice of a specific
time-integration method (forward Euler in their case). In contrast, our
pproach differs by focusing on discretizing the equations in space,

leading to the derivation of an evolution equation for the temperature
hat is still continuous in time. In addition, the work by Sirianni et al.
s limited to single-phase scenarios, whereas our methodology covers
he case of two-phase systems as well.

The organization of this paper is as follows. In Section 2, we
start by recapitulating the fluid model (HEM) and the constitutive
relations from thermodynamics. In Section 3, we derive a new algebraic
quation, followed by a new evolution equation for the temperature.
n Section 4, we present spatial and temporal discretization schemes.
n Section 5, we present results for two problems, namely the tank

depressurization and the pipeline depressurization. Finally conclusions
are summarized in Section 6.
2 
2. Governing equations

2.1. Fluid flow in a pipeline

The Navier–Stokes (NS) equations govern the dynamics of fluid
low. For fully-dispersed two-phase fluid flow, the NS equations can
e averaged and written in terms of mixture quantities, resulting in the

Homogeneous Equilibrium Model (HEM). For flow through a horizontal
pipe, the HEM (without wall friction) takes the following form [7]:

𝜕𝑡 + 𝜕𝑥 ( ) = ( ), (1)

where  (𝑥, 𝑡) is the vector of conserved variables,  ( ) the flux vector
nd ( ) the source term, which have the following form:
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(2)

The model is supplemented with the constraint 𝛼𝑔 + 𝛼𝑙 = 1, where
𝑔(𝑥, 𝑡) and 𝛼𝑙(𝑥, 𝑡) are the gas and liquid volume fraction, respectively.
he mixture density and energy are defined as 𝜌 ∶= 𝛼𝑔𝜌𝑔 + 𝛼𝑙𝜌𝑙 and
𝐸 ∶= 𝛼𝑔𝜌𝑔𝐸𝑔 + 𝛼𝑙𝜌𝑙𝐸𝑙, where

𝐸𝑘 = 𝑒𝑘 +
1
2
𝑢2. (3)

Here, 𝜌𝑘, 𝑒𝑘, 𝐸𝑘 are the density, specific internal energy, and specific
energy (kinetic + internal) of each phase. The mixture specific internal
energy 𝑒 follows as 𝑒 = (𝛼𝑔𝜌𝑔𝑒𝑔 +𝛼𝑙𝜌𝑙𝑒𝑙)∕𝜌. The two phases are assumed
to have the same velocity 𝑢 and equilibrium thermodynamic pressure
𝑝.

To close the system of fluid flow Eqs. (1), the pressure 𝑝( ) must
be specified using an equation of state (EOS), as will be detailed in
Section 2.3. In addition, initial and boundary conditions are needed
to complete the problem specification, these will be described in later
sections.

The HEM model, when discretized with a finite volume method,
eads to the following semi-discrete form for the 𝑖th finite volume:
d𝑈𝑖
d𝑡

= − 1
▵ 𝑥

(̂𝑖+ 1
2
− ̂𝑖− 1

2
), 𝑖 = 1 …𝑁 , (4)

where 𝑈𝑖(𝑡) ∈ R3 ≈  (𝑥𝑖, 𝑡), ▵ 𝑥 is the grid spacing, ̂𝑖± 1
2

represent
numerical fluxes and 𝑁 is the number of finite volumes. We use
the Harten–Lax–van Leer-Contact(HLLC) scheme (see Appendix B) to
compute the numerical fluxes, ̂𝑖± 1

2
. Eq. (4) can be written in the

general form
d𝑈 (𝑡)
d𝑡

= 𝑓 (𝑈 (𝑡)), (5)

where

𝑈 (𝑡) = [𝑈1(𝑡),… , 𝑈𝑖(𝑡),… , 𝑈𝑁 (𝑡)]𝑇 , 𝑈𝑖 = [𝜌𝑖, (𝜌𝑢)𝑖, (𝜌𝐸)𝑖]𝑇 ,
and we have assumed that an expression of the form 𝑝(𝑈 ) is given by
hermodynamics relations. This will be revisited in Section 2.3.

2.2. Tank model

As a simplification of the pipeline depressurization problem, we first
onsider the depressurization of a tank, previously studied for example
n [8,24]. We can roughly think of it as a pipe discretized with a

single cell. The governing equations for mass and internal energy can
be written as:

d𝜌
d𝑡

= − 𝑚̇(𝜌, 𝑇 )
𝑣

,

d(𝜌𝑒) 𝑄̇(𝑇 ) − 𝑚̇(𝜌, 𝑇 )ℎ(𝜌, 𝑇 ) (6)
d𝑡
=

𝑣
,
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Fig. 1. Saturation curve/space for CO2 in 𝑝 − 𝑇 and 𝜌 − 𝑒 co-ordinates.
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where 𝑚̇ is the mass flow rate and 𝑄̇ is the heat transfer rate, which for
he tank problem are given by

𝑄̇(𝑇 ) = 𝜂 𝐴(𝑇amb − 𝑇 ),

̇ (𝜌, 𝑇 ) = 𝐾𝑣
√

𝜌(𝑝(𝜌, 𝑇 ) − 𝑝amb).

Here, 𝑝, 𝑇 , 𝜌, 𝑒 and ℎ denote the pressure, temperature, density, internal
nergy and enthalpy of CO2 in the tank; 𝑣 is the volume of the tank; 𝜂

the heat transfer coefficient between tank and ambient; 𝐴 is the surface
rea of the tank; 𝐾𝑣 the flow coefficient of the valve. The subscript
amb’ denotes the ambient conditions outside the tank. Similar to the
luid flow Eqs. (1), the governing equations can be expressed in the
orm:
d𝑈
d𝑡

= 𝑓 (𝑈 ), (7)

where 𝑈 = [𝜌, 𝜌𝑒]𝑇 and

𝑓 (𝑈 ) = 1
𝑣

[

−𝑚̇(𝜌, 𝑇 )
𝑄̇(𝑇 ) − 𝑚̇(𝜌, 𝑇 )ℎ(𝜌, 𝑇 )

]

. (8)

The system requires closure with thermodynamic relations that es-
ablish the connection between 𝑝, 𝑇 and ℎ and the conserved variables
and 𝜌𝑒, which will now be described.

2.3. Thermodynamics and standard UV-flash overview

For simple (e.g. ideal) gases, closed-form expressions for 𝑝 are
ometimes available, such as 𝑝 = 𝑝(𝜌, 𝑒) or 𝑝 = 𝑝(𝜌, 𝑇 ) relations. For

more complicated fluids like CO2, we need to use a real gas equation of
state (EOS). The Span–Wagner EOS [18] is generally considered to be a
ery accurate description for pure CO2 and will be employed here. We

consider the formulation of the EOS specified in terms of the Helmholtz
free energy (𝜌, 𝑇 ), where  = 𝑒 − 𝑇 𝑠 and 𝑠 is the specific entropy.
All thermodynamic properties can be computed through derivatives of
(𝜌, 𝑇 ), for example:

𝑝(𝜌, 𝑇 ) = 𝜌2
(

𝜕
𝜕 𝜌

)

𝑇
, (9)

𝑒(𝜌, 𝑇 ) =  − 𝑇
( 𝜕
𝜕 𝑇

)

𝜌
, (10)

𝑠(𝜌, 𝑇 ) = −
( 𝜕
𝜕 𝑇

)

𝜌
, (11)

ℎ(𝜌, 𝑇 ) =  + 𝜌
(

𝜕
𝜕 𝜌

)

𝑇
− 𝑇

( 𝜕
𝜕 𝑇

)

𝜌
. (12)

Given such an EOS, and two known thermodynamic quantities, one can
solve for any of the other quantities.

Fig. 1(a)–(b) show the saturation region generated using the Span–
Wagner EOS. Note that the saturation region is a curve in 𝑝 − 𝑇 space

hereas it corresponds to an area in 𝜌−𝑒 space. A point ((𝑇 , 𝑝) or (𝑒, 𝜌))
s in the two-phase conditions if it lies on the saturation curve in 𝑝− 𝑇

space and inside the saturation area in 𝜌 − 𝑒 space, otherwise it is in
 v

3 
single phase. If the system is in single phase conditions, and for example
= 𝜌̃ and 𝑒 = 𝑒 are given, we can solve

𝑒(𝜌̃, 𝑇 ) = 𝑒, (13)

to determine the temperature 𝑇 . If the system is in two phase condi-
tions, we need to solve a system of algebraic equations representing
the vapour–liquid equilibrium to compute the various thermodynamic
quantities. In literature this is also known as a flash problem [25]. For
a single component system like pure CO2, the two-phase system is in
thermodynamic equilibrium when the pressure, temperature and Gibbs
free energy (𝐺 = ℎ − 𝑇 𝑠) of both phases are equal. Depending upon
which inputs are given, different types of flash routines are available1.
Since we can compute 𝜌 and 𝑒 from the conservative variables 𝑈 at each
time step of a transient simulation, the UV flash2 is a natural choice in
ur case. Given 𝜌̃ and 𝑒, the UV flash can be formulated as a system of

four equations for the four unknowns 𝛼𝑔 , 𝜌𝑔 , 𝜌𝑙 and 𝑇 as follows:
𝛼𝑔𝜌𝑔 + (1 − 𝛼𝑔)𝜌𝑙 = 𝜌̃,

𝑔𝜌𝑔𝑒(𝜌𝑔 , 𝑇 ) + (1 − 𝛼𝑔)𝜌𝑙𝑒(𝜌𝑙 , 𝑇 ) = 𝜌̃ ̃𝑒,
𝑝
(

𝜌𝑔 , 𝑇
)

= 𝑝
(

𝜌𝑙 , 𝑇
)

,

𝐺
(

𝜌𝑔 , 𝑇
)

= 𝐺
(

𝜌𝑙 , 𝑇
)

.

(14)

We need to know in advance if the fluid is in single-phase or two-phase
conditions in order to determine whether Eq. (13) or system (14) has
to be solved. Discrimination between the single-phase and two-phase
regime is done as follows. For a given temperature 𝑇 , we compute the
saturation vapour and liquid densities, 𝜌𝑔 , 𝜌𝑙. If 𝜌𝑔 < 𝜌 < 𝜌𝑙, then the
fluid is two-phase, otherwise it is single phase.

3. New vapour–liquid equilibrium equations

3.1. Reduced algebraic vapour–liquid equilibrium equation

The system of Eqs. (14) can be simplified in the case of a pure
omponent. Consider a pure component in two-phase flow conditions
ith a given mixture density, 𝜌̃ and mixture internal energy, 𝑒. Once we

specify the temperature, all other thermodynamic quantities, e.g. 𝑝, 𝜌𝑔 ,
𝑙, 𝑒𝑔 and 𝑒𝑙, can be determined through the saturation relations [18].

This enables us to parameterize the various thermodynamic quantities
as a function of only temperature; in other words:

𝑝 = 𝑝(𝑇 ), (15)

1 PH flash for known pressure and enthalpy, PS flash for known pressure
nd entropy etc. Please refer to [25] for a detailed overview of various types
f flashes.

2 U stands for internal energy, and V for specific volume; this is in
ontrast to our notation where 𝑈 denotes conserved variables and 𝑉 primitive
ariables.
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Table 1
Uncertainty in Span–Wagner saturation correlations, from [18].

Temperature range (K) ▵ 𝑝 (%) ▵ 𝜌𝑙 (%) ▵ 𝜌𝑔 (%)

𝑇𝑡 ≤ 𝑇 ≤ 295 ±0.012 ±0.015 ±0.025
295 < 𝑇 ≤ 303 ±0.012 ±0.04 ±0.08
303 < 𝑇 ≤ 𝑇𝑐 ±0.012 ±1 ±1

𝜌𝑔 = 𝜌𝑔(𝑇 ), (16)

𝜌𝑙 = 𝜌𝑙(𝑇 ), (17)

𝑒𝑔 = 𝑒(𝜌𝑔(𝑇 ), 𝑇 ), (18)

𝑒𝑙 = 𝑒(𝜌𝑙(𝑇 ), 𝑇 ). (19)

These saturation relations implicitly contain the information encoded
y the pressure equilibrium and Gibbs free energy equilibrium, i.e.

the last two equations of (14). Thus, if saturation relations are known
xplicitly, one can directly apply them and avoid solving these two

equations numerically. Saurel et al. [21] also utilized a similar idea
o reduce the system of equations for two-phase fluids. Their approach
s limited to two-phase fluids and employs a simplified EOS (stiffened
as) based on pressure and temperature. To handle the single-phase
imit, they introduce a small volume fraction of the other phase, which
s only valid when a phase is close to boiling or condensation (for
xample at metastable states). Our work extends this idea by providing

a framework that handles both single-phase and two-phase regimes.
In addition, our Helmholtz energy-based EOS approach allows us to
directly address the UV flash problem; a fundamental but less explored
phase-split procedure that is important for pipe flow simulations. This
extension enhances the efficiency of two-phase flow simulations while
maintaining accuracy.

Saturation relations are normally provided as ancillary equations
for phase density and saturation pressure in terms of temperature,
e.g. Span–Wagner [18]. In principle, these saturation relations can
be constructed from the EOS to arbitrary accuracy using a procedure
outlined in Bell et al. [26], who used Chebyshev expansions to cre-
ate saturation relations. In this work, we use the saturation relations
of Span–Wagner [18]. Table 1 summarizes the uncertainties in the
aturation correlations linked to the Span–Wagner EOS.

Given the saturation relations, we can simplify system (14). Recall-
ing the definition of mixture density, we have

𝛼𝑔𝜌𝑔(𝑇 ) + (1 − 𝛼𝑔)𝜌𝑙(𝑇 ) = 𝜌̃ ⟹ 𝛼𝑔 =
𝜌𝑙(𝑇 ) − 𝜌̃

𝜌𝑙(𝑇 ) − 𝜌𝑔(𝑇 )
. (20)

Substituting the expression for 𝛼𝑔 into the mixture internal energy
quation,

𝛼𝑔𝜌𝑔(𝑇 )𝑒𝑔(𝑇 ) + (1 − 𝛼𝑔)𝜌𝑙(𝑇 )𝑒𝑙(𝑇 ) = 𝜌̃ ̃𝑒, (21)

we have
𝜌𝑙(𝑇 ) − 𝜌̃

𝜌𝑙(𝑇 ) − 𝜌𝑔(𝑇 )
𝜌𝑔(𝑇 )𝑒𝑔(𝑇 ) +

𝜌̃ − 𝜌𝑔(𝑇 )
𝜌𝑙(𝑇 ) − 𝜌𝑔(𝑇 )

𝜌𝑙(𝑇 )𝑒𝑙(𝑇 ) = 𝜌̃ ̃𝑒. (22)

Defining

𝜓𝑔(𝜌, 𝑇 ) ∶=
𝜌𝑙(𝑇 ) − 𝜌

𝜌𝑙(𝑇 ) − 𝜌𝑔(𝑇 )
𝜌𝑔(𝑇 )𝑒𝑔(𝑇 ), (23)

𝜓𝑙(𝜌, 𝑇 ) ∶=
𝜌 − 𝜌𝑔(𝑇 )

𝜌𝑙(𝑇 ) − 𝜌𝑔(𝑇 )
𝜌𝑙(𝑇 )𝑒𝑙(𝑇 ), (24)

Eq. (22) can be rewritten as

𝜓𝑔(𝜌̃, 𝑇 ) + 𝜓𝑙(𝜌̃, 𝑇 ) = 𝜌̃ ̃𝑒. (25)

For given 𝜌̃ and 𝑒, Eq. (25) can be solved for 𝑇 . In summary, by using
he saturation relations we have reduced the system of four Eqs. (14)
o a single equation, namely Eq. (25). This is our first step in reducing

the computational expense of the coupled problem of fluid flow and
thermodynamics.
4 
Eqs. (13) and (25) can be written in a succinct form as

𝜓(𝜌̃, 𝑇 ) = 𝜌̃ ̃𝑒, (26)

where 𝜓(𝜌̃, 𝑇 ) ∶=
⎧

⎪

⎨

⎪

⎩

𝜌̃𝑒(𝜌̃, 𝑇 ), if single phase,

𝜓𝑔(𝜌̃, 𝑇 ) + 𝜓𝑙(𝜌̃, 𝑇 ), if two phase.
(27)

We shall refer to Eq. (26) as Reduced-VLE-Algebraic, whereas Eqs. (13)
and (14) will be referred to as Full-VLE-Algebraic in the rest of this
ocument.

3.2. Reduced differential vapour–liquid equilibrium equation

Eq. (26) is a non-linear equation in terms of the temperature, 𝑇 .
The common approach is to use a non-linear solver such as Newton–

aphson to solve this equation (see, for instance, [2,8]). Here we
ropose an alternative approach which stems from the fact that the
hermodynamic equilibrium (flash) problem is solved in conjunction
ith the time-dependent fluid flow conservation equations (for pipe
r tank) as described in Sections 2.1 and 2.2. This means that the
emperature is a function of time, 𝑇 (𝑡), like the other quantities such
s 𝜌(𝑡), 𝑝(𝑡), etc.

Our key insight is that we can derive an ODE for the evolution of the
emperature by differentiating the reduced VLE, Eq. (26), with respect

to 𝑡. Assuming that 𝜓(𝜌, 𝑇 ) is differentiable in time, we get
(

𝜕 𝜓
𝜕 𝜌

)

𝑇

d𝜌
d𝑡

+
(

𝜕 𝜓
𝜕 𝑇

)

𝜌

d𝑇
d𝑡

=
d(𝜌𝑒)
d𝑡

, (28)

where the subscripts 𝑇 and 𝜌 indicate that a differential is evaluated at
constant 𝑇 or 𝜌, respectively. This equation can be rewritten into the
ollowing temperature evolution equation:

d𝑇
d𝑡

=
[

d(𝜌𝑒)
d𝑡

−
(

𝜕 𝜓
𝜕 𝜌

)

𝑇

d𝜌
d𝑡

]

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌
. (29)

We call this the Reduced-VLE-ODE approach. In this approach, the
emperature evolution in time is determined such that the thermodynamic
quilibrium equation for the internal energy is always satisfied, provided
hat it is satisfied by the initial conditions.

The time derivatives of mixture internal energy and density, d𝜌𝑒
d𝑡 and

d𝜌
d𝑡 respectively, are given by the fluid flow conservation equations for
the pipe (Eq. (5)) or tank (Eq. (6)).

The partial derivatives of 𝜓 in Eq. (29) are as follows.
Single Phase Case:

(

𝜕 𝜓
𝜕 𝜌

)

𝑇
= 𝜌

(

𝜕 𝑒
𝜕 𝜌

)

𝑇
+ 𝑒, (30)

(

𝜕 𝜓
𝜕 𝑇

)

𝜌
= 𝜌

( 𝜕 𝑒
𝜕 𝑇

)

𝜌
(31)

Two Phase Case:
(

𝜕 𝜓
𝜕 𝜌

)

𝑇
=
( 𝜕 𝜓𝑔
𝜕 𝜌

)

𝑇
, (32)

(

𝜕 𝜓
𝜕 𝑇

)

𝜌
=
( 𝜕 𝜓𝑔
𝜕 𝑇

)

𝜌
+
(

𝜕 𝜓𝑙
𝜕 𝑇

)

𝜌
. (33)

3.3. Summary of equations for VLE

We have so far discussed three ways of performing thermodynamic
calculations in single and two phase conditions. Table 2 summarizes
the various alternatives.

We started with the full VLE equations, system (14). For two-phase
conditions, we used the fact that the saturation line can be parame-
terized by the temperature, and reduced the system of equations to
a single equation, Eq. (26). The main advantage of this approach is
hat the flash problem in both single phase and two phase conditions

becomes a single equation with a single unknown quantity (namely
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Table 2
The three approaches for incorporating thermodynamic constraints as investigated in this work.

Approach Single phase Two phase

Full-VLE-Algebraic

equation (14)

𝑒(𝜌̃, 𝑇 ) = 𝑒

Unknowns: 𝑇

𝛼𝑔𝜌𝑔 + (1 − 𝛼𝑔 )𝜌𝑙 = 𝜌̃

𝛼𝑔𝜌𝑔𝑒(𝜌𝑔 , 𝑇 ) + (1 − 𝛼𝑔 )𝜌𝑙𝑒(𝜌𝑙 , 𝑇 ) = 𝜌̃ ̃𝑒
𝑝
(

𝜌𝑔 , 𝑇 ) = 𝑝
(

𝜌𝑙 , 𝑇 )
𝐺
(

𝜌𝑔 , 𝑇 ) = 𝐺
(

𝜌𝑙 , 𝑇 )

Unknowns: [𝛼𝑔 , 𝜌𝑔 , 𝜌𝑙 , 𝑇 ]𝑇
Reduced-VLE-Algebraic

equation (26)

𝜓(𝜌̃, 𝑇 ) = 𝜌̃ ̃𝑒

Unknowns: 𝑇

𝜓𝑔 (𝜌̃, 𝑇 ) + 𝜓𝑙(𝜌̃, 𝑇 ) = 𝜌̃ ̃𝑒

Unknowns: 𝑇

Reduced-VLE-ODE

equation (29)

𝑑 𝑇
𝑑 𝑡 =

[

𝑑(𝜌𝑒)
𝑑 𝑡 −

(

𝜕 𝜓
𝜕 𝜌

)

𝑇

𝑑 𝜌
𝑑 𝑡

]

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌

where 𝜓(𝜌̃, 𝑇 ) = 𝜌̃𝑒(𝜌̃, 𝑇 )

Unknowns: 𝑇

𝑑 𝑇
𝑑 𝑡 =

[

𝑑(𝜌𝑒)
𝑑 𝑡 −

(

𝜕 𝜓
𝜕 𝜌

)

𝑇

𝑑 𝜌
𝑑 𝑡

]

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌

where 𝜓(𝜌̃, 𝑇 ) = 𝜓𝑔 (𝜌̃, 𝑇 ) + 𝜓𝑙(𝜌̃, 𝑇 )

Unknowns: 𝑇
s
s
(
i
a

temperature), which makes switching between single and two-phase
conditions easier. The main assumption and the associated error with
this approach lies in the accuracy of the applied saturation relations,
as discussed in Table 1.

By differentiating the flash problem and incorporating the time
derivatives of the mixture internal energy and density, we obtained
a new ODE for the evolution of the temperature, Eq. (29). The tem-
perature evolution equation can be used to perform time integration
of the coupled fluid flow - thermodynamics without requiring a non-
linear solver for the flash problem. The main assumption associated to
his approach is that the solution is sufficiently smooth (differentiable)
n time. Although the assumption of temporal smoothness could theo-

retically pose challenges when crossing the phase boundary or in case
of shocks, we did not encounter such issues in our simulations. This
is possibly due to the fact that we use a low-order method (Forward
Euler) to discretize the equations in time, which adds some numerical
diffusion. In addition, we remark that many numerical methods for
compressible flows that involve shock waves mostly focus on the spatial
treatment of discontinuities, and do not explicitly track discontinuities
in time or change the time integration method accordingly.

3.4. Coupling the ODE formulation to the tank and pipe equations

For the tank problem, the full system of coupled flow and thermo-
dynamics reads
d𝜌
d𝑡

= − 𝑚̇(𝜌, 𝑇 )
𝑣

, (34)

d𝑇
d𝑡

=
[

d(𝜌𝑒)
d𝑡

−
(

𝜕 𝜓
𝜕 𝜌

)

𝑇

d𝜌
d𝑡

]

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌
(35)

= 1
𝑣

(

𝑄̇(𝑇 ) − 𝑚̇(𝜌, 𝑇 )ℎ(𝜌, 𝑇 ) +
(

𝜕 𝜓
𝜕 𝜌

)

𝑇
𝑚̇(𝜌, 𝑇 )

)

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌
.

The original system of two evolution equations for the fluid with ther-
odynamic constraints has thus been reduced to only two evolution

equations. This ODE representation is computationally attractive when
combined with explicit ODE solvers, such as the forward Euler method,
o that the need to solve a nonlinear equation is entirely circumvented
both for the flow equations and the thermodynamics).

In a similar fashion, the ODE system for the pipe problem can be
erived. One important difference between the pipe and the tank is that
he fluid flow equations and thermodynamic constraint are now written
or each grid point 𝑖. Another difference is that the pipe equations
eature the time evolution of d(𝜌𝐸)

d𝑡 , whereas the tank features d(𝜌𝑒)
d𝑡 .

Therefore, we need to derive an equation for the evolution of the
internal energy.
5 
The time derivatives of conservative variables are available through
Eq. (5). Writing (5) for each conservative variable in a particular grid
point 𝑖, we get

d𝜌
d𝑡

= 𝑓1(𝑈 , 𝑇 ), (36)

d(𝜌𝑢)
d𝑡

= 𝑓2(𝑈 , 𝑇 ), (37)

d(𝜌𝐸)
d𝑡

= 𝑓3(𝑈 , 𝑇 ). (38)

where 𝑓1, 𝑓2, 𝑓3 are discretized flux divergence operators for mass, mo-
mentum and energy respectively. Compared to (5), we have added 𝑇 as
argument in 𝑓1, 𝑓2, 𝑓3, since the pressure follows from thermodynamics
relations of the form 𝑝(𝑈 , 𝑇 ), see Eq. (9). Using Eqs. (36) and (37), we
can get the evolution equation for the (specific) kinetic energy:
d(𝜌𝑢2∕2)

d𝑡
=

d((𝜌𝑢)2∕2𝜌)
d𝑡

= 𝑢
d(𝜌𝑢)
d𝑡

− 1
2
𝑢2

d𝜌
d𝑡

(39)

Now, using Eqs. (38) and (39), we can get an equation for the evolution
of the internal energy:
d𝜌𝑒
d𝑡

=
d(𝜌𝐸)
d𝑡

−
d(𝜌𝑢2∕2)

d𝑡
(40)

=
d(𝜌𝐸)
d𝑡

− 𝑢
d(𝜌𝑢)
d𝑡

+ 1
2
𝑢2

d𝜌
d𝑡
. (41)

This equation can be substituted in Eq. (29) to yield the evolution
equation for the temperature in grid point 𝑖:
d𝑇
d𝑡

=
(

d(𝜌𝐸)
d𝑡

− 𝑢
d(𝜌𝑢)
d𝑡

+ 1
2
𝑢2

d𝜌
d𝑡

−
(

𝜕 𝜓
𝜕 𝜌

)

𝑇

d𝜌
d𝑡

)

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌
. (42)

Using (36), (37) and (38) in (42), we have
d𝑇
d𝑡

=
(

𝑓3(𝑈 , 𝑇 ) − 𝑢𝑓2(𝑈 , 𝑇 ) + 1
2
𝑢2𝑓1(𝑈 , 𝑇 )

−
(

𝜕 𝜓
𝜕 𝜌

)

𝑇
𝑓1(𝑈 , 𝑇 )

)

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌
. (43)

The system of Eqs. (36), (37), (38) and (43) constitutes a complete
et of governing equations that can be used to advance the pipeline
imulation to the subsequent time level. The thermodynamic constraint
vapour–liquid equilibrium) is encoded into these equations, albeit
n a time-differentiated fashion. Upon time integration, errors can
ccumulate, which can cause errors in the satisfaction of Eq. (26).

To avoid this issue, we propose to solve instead the following set of
equations: Eqs. (36), (37), (26) and (43), written as

𝜌𝐸 = 𝜓(𝜌, 𝑇 ) + 1
2
𝜌𝑢2.

For the time-continuous system, these four equations are equivalent to
using the four Eqs. (36), (37), (38) and (43) as the energy conservation
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Eq. (38) can be derived from the temperature equation and the ther-
odynamic constraint. Upon discretizing in time with forward Euler,

this equivalence is lost and a first order temporal error is introduced in
the energy equation.

In summary, we have traded exact energy conservation with an in-
exact thermodynamic constraint for an exact thermodynamic constraint

ith inexact energy conservation. In Section 4.2, the associated energy
conservation error will be numerically investigated.

4. Time integration methods

In the previous section, three different approaches for simulating
fluid flows coupled with thermodynamic constraints were introduced.
In this section, we discuss the time integration methods applied for each
pproach.

4.1. Algebraic approaches: DAE interpretation

We first consider the algebraic approaches Full-VLE-Algebraic and
educed-VLE-Algebraic. The combination of the semi-discrete pipe flow
qs. (4) (or tank Eqs. (6)) and thermodynamics (see Table 2) forms a
ystem of 3𝑁 (pipe) or 2 (tank) ODEs with 𝑁𝐹 algebraic constraints.
his constitutes a system of differential–algebraic equations (DAE). For
oth the pipe and the tank problem, we can write the DAE system in
he so-called semi-explicit form [27]:
d𝑈
d𝑡

= 𝑓 (𝑈 , 𝑉 ), (44)

0 = 𝑔(𝑈 , 𝑉 ). (45)

where 𝑈 and 𝑉 are the vectors of conservative and non-conservative
ariables, respectively. For Full-VLE-Algebraic, if 𝑁𝑇 𝑃 cells exhibit two-
hase conditions, then 𝑁𝐹 = 4𝑁𝑇 𝑃 + (𝑁 − 𝑁𝑇 𝑃 ) = 3𝑁𝑇 𝑃 + 𝑁 for

pipes. For the tank, 𝑁𝐹 = 1 for single-phase conditions and 𝑁𝐹 = 4 for
two-phase conditions. For Reduced-VLE-Algebraic, two-phase and single-
phase conditions both require a single algebraic equation, so 𝑁𝐹 = 𝑁
for the pipe and 𝑁𝐹 = 1 for the tank.

For the pipe flow equations,

𝑈 = [𝑈1,… , 𝑈𝑁 ]𝑇 , 𝑈𝑖 = [𝜌𝑖, (𝜌𝑢)𝑖, (𝜌𝐸)𝑖]𝑇 ,
𝑉 = [𝑉1,… , 𝑉𝑁 ]𝑇

where 𝑉𝑖 = [𝛼𝑔 ,𝑖, 𝜌𝑔 ,𝑖, 𝜌𝑙 ,𝑖, 𝑇𝑖]𝑇 for Full-VLE-Algebraic and 𝑉𝑖 = 𝑇𝑖 for
educed-VLE-Algebraic. Furthermore, 𝑓 represents the spatial discretiza-

ion of the fluid flow equations,

𝑓𝑖(𝑈 , 𝑉 ) ∶= − 1
▵ 𝑥

(̂𝑖+ 1
2
(𝑈𝑖+1, 𝑈𝑖, 𝑉𝑖+1, 𝑉𝑖) − ̂𝑖− 1

2
(𝑈𝑖, 𝑈𝑖−1, 𝑉𝑖, 𝑉𝑖−1)), (46)

and 𝑔 represents either the full or reduced VLE equation(s) for the 𝑖th
cell. For example, the first equation of (14) for Full-VLE-Algebraic for
grid cell 𝑖 in two-phase conditions reads:

𝑔𝑖,1 ∶= 𝛼𝑔 ,𝑖𝜌𝑔 ,𝑖 + (1 − 𝛼𝑔 ,𝑖)𝜌𝑙 ,𝑖 − 𝜌𝑖 = 0. (47)

For the tank equations,

𝑈 = [𝜌, 𝜌𝑒]𝑇 ,
and 𝑉 is the same as for the pipe and 𝑓 is defined as per Eq. (8).

To solve the DAE system (44) in time we use half-explicit forward
uler method [22], which constitutes an explicit update for the evolu-
ion Eq. (44), followed by a nonlinear equation solve for the constraint
45).

We first solve

𝑈𝑛+1 = 𝑈𝑛 + 𝛥𝑡𝑓 (𝑈𝑛, 𝑉 𝑛), (48)

for 𝑈𝑛+1, followed by solving the constraint equation

0 = 𝑔(𝑈𝑛+1, 𝑉 𝑛+1), (49)

for 𝑉 𝑛+1 with the Newton–Raphson with line search.
6 
4.2. ODE approach

The system of Eqs. (36), (37), and (43) for the pipe, and (34) and
(35) for the tank, collectively form a system of ODEs. Specifically, the
pipe system comprises 3𝑁 ODEs, while the tank system consists of 2
ODEs. Once the temperature 𝑇 and density 𝜌 are available, the internal
energy 𝑒 for both the pipe and the tank can be computed using (26). For
the pipe, the total energy 𝐸 is computed by incorporating the kinetic
nergy term, which will be detailed shortly.

For both the pipe and tank problems, the ODE system can be
expressed as follows:
𝑑 𝑈
𝑑 𝑡 = 𝑓 (𝑈 ), (50)

where 𝑈 and 𝑓 need to be defined specifically for the pipe and tank
problems, and are differing here from the definitions used in the DAE
approach. For the pipe flow equations they take the form,

𝑈 = [𝑈1,… , 𝑈𝑁 ]𝑇 , 𝑈𝑖 = [𝜌𝑖, (𝜌𝑢)𝑖, (𝑇 )𝑖]𝑇 ,

𝑖 =
𝜓(𝜌𝑖, 𝑇𝑖)

𝜌𝑖
+ 1

2
𝑢2𝑖

𝑓𝑖(𝑈 ) = − 1
𝛥𝑥

(̂𝑖+ 1
2
(𝑈𝑖+1, 𝑈𝑖) − ̂𝑖− 1

2
(𝑈𝑖, 𝑈𝑖−1)),

whereas for the tank equations they take the form,

𝑈 = [𝜌, 𝑇 ]𝑇 ,

(𝑈 ) = 1
𝑣

⎡

⎢

⎢

⎣

−𝑚̇(𝜌, 𝑇 )
(

𝑄̇(𝑇 ) − 𝑚̇(𝜌, 𝑇 )ℎ(𝜌, 𝑇 ) +
(

𝜕 𝜓
𝜕 𝜌

)

𝑇
𝑚̇(𝜌, 𝑇 )

)

∕
(

𝜕 𝜓
𝜕 𝑇

)

𝜌

⎤

⎥

⎥

⎦

.

We use forward Euler to integrate Eq. (50) in time.

𝑈𝑛+1 = 𝑈𝑛 + 𝛥𝑡𝑓 (𝑈𝑛). (51)

Since we are using a numerical integrator rather than directly solving
the algebraic constraints to compute the temperature in this approach,
the numerical integration error(order of (𝛥𝑡2) for forward euler) in
temperature will propagate as an error in the computed energy. We
will discuss this in the numerical experiments in Section 5. In addi-
ion, Eq. (29) contains the term 𝜕 𝜓

𝜕 𝑇 in the denominator. If this term
pproaches zero, it could cause numerical issues. However, we did not
ncounter this difficulty in the conducted numerical experiments.

Remark 1. For improved accuracy, we use automatic differentiation to
evaluate the partial derivatives 𝜕 𝜓

𝜕 𝜌 and 𝜕 𝜓
𝜕 𝑇 instead of finite differences.

4.3. Transition from single-phase to two-phase

The transition from single phase to two phase during time integra-
ion constitutes a discontinuity in the definition of the ODE (or DAE)
ystem. This discontinuity is typically characterized by what is referred
o in the literature as a switching function [27]. One approach to

detect the switching point is through the utilization of an event location
algorithm. In our case, the switching function returns a boolean value
indicating whether the system is in a two-phase state or not. Our
switching function is described as follows:

1. For a given temperature 𝑇 , we compute the saturation vapour
and liquid densities, 𝜌𝑔 and 𝜌𝑙.

2. We discretize time into discrete intervals using uniform time
steps 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖, denoted as {𝑡1, 𝑡2,… , 𝑡𝑖, 𝑡𝑖+1,… , 𝑡𝑁𝑡}. To
advance the solution from 𝑡𝑖 to 𝑡𝑖+1, we employ the forward
Euler method. Before progressing to the subsequent time level,
we verify if 𝜌𝑔 < 𝜌 < 𝜌𝑙. If this condition holds, the fluid is in
a two-phase state; otherwise, it is classified as single phase. It
is possible that phase transitions between two-phase and single-
phase states might occur between time steps due to solution
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Table 3
Tank simulation parameters.
𝑝0 (bar) 𝑇0 (K ) 𝑝amb (bar) 𝑇amb (K ) 𝜂 𝐴 (W/K) 𝐾𝑣 (m2) 𝑣 (m3) Simulation time (h)

100 300 10 293.15 1 5 ⋅ 10−7 𝜋 ⋅ 10−2 0.6
𝜀

t

p
s
w

i
c
d
V
r
s
a
d

n
d
r
a

updates. While this necessitates an iterative process to reconcile
temperature, pressure, and phase state at each time step, the
current study adopts a simplified approach by proceeding to
the next time step without explicitly addressing these complex-
ities. We note that, in principle, it is also possible to find the
intersection of the simulation path with the saturation boundary
by solving a nonlinear equation. Once the intersection point is
known, one can switch from single- to multi-phase equations (or
vice versa). This could avoid the use of small time steps but
comes at the cost of computing accurately the intersection point.

5. Numerical experiments

5.1. Tank depressurization

In this section, we conduct a depressurization simulation of a tank
ontaining CO2, as described by Eq. (6). The objective is to demon-

strate the performance of the two proposed approaches (Reduced-VLE-
Algebraic, Reduced-VLE-ODE) against Full-VLE-Algebraic on the test case
outlined by Hammer et al. [24]. Despite its apparent simplicity, this
ODE system (Eqs. (6)) serves as an effective test case for the thermody-
amic flash problem as it simulates the transition of the fluid from its
nitial liquid phase to a two-phase state (boiling of CO2), and finally,
o a completely gaseous phase.

5.1.1. Problem setup
The initial conditions and model coefficients are summarized in

Table 3. The initial conditions are defined in terms of pressure (𝑝)
and temperature (𝑇 ). To compute the initial density (𝜌) and internal
energy (𝑒), we solve the equation 𝑝0 = 𝑝(𝜌, 𝑇0) for 𝜌, where 𝑝0 and 𝑇0
denote the initial pressure and temperature in the tank, respectively.
Once 𝜌 is determined, 𝑒 is computed using Eq. (10). Additionally, it is
important to note that Hammer et al. utilized a test case that eventually
eads to three-phase (liquid/gas/solid) conditions as the simulation pro-
resses. However, as the framework outlined in this paper is currently
eveloped only for single and two-phase scenarios, we terminated the

simulation before it entered the three-phase regime.

5.1.2. Comparison with hammer
First, we establish the validity of our simulation results by compar-

ng them with those by Hammer et al. as shown in Fig. 2. All three
approaches demonstrate excellent agreement with those reported in
Hammer et al.

Fig. 3 illustrates the simulation trajectory in 𝑝− 𝑇 and 𝜌− 𝑒 spaces.
In the 𝜌 − 𝑒 space, points within the coloured region denote the two-
phase regime, while those outside indicate single-phase conditions.
nitially, a rapid pressure drop (from 100 bar to 57 bar) occurs until
he saturation curve is reached, marking the transition of liquid CO2
nto the two-phase region within approximately 26 s. Subsequently, the

pressure and temperature decrease along the saturation curve, reaching
a lowest temperature of 209.15K (−64 ◦C) at 𝑡 = 0.6h. At this point, CO2
transitions into a three-phase state and the simulation is terminated.
Notably, during the depressurization process much lower temperatures
are reached than those given by either the initial conditions or the
ambient conditions. This underscores the potential low temperature
risk associated with Joule-Thompson cooling of CO2 during a depres-
surization, especially during the transitions between single-phase and
two-phase states.
 t

7 
5.1.3. Convergence study
Next, we proceed to analyse the two errors that were introduced

with the Reduced-VLE-Algebraic and Reduced-VLE-ODE approaches: (i)
the approximation error from introducing the saturation relations to
replace the full flash problem, and (ii) possible constraint-drift er-
ror arising from differentiating the constraint in time. The first error
(‘approximation error’) is computed as:

𝜀𝑝,full-reduced(𝑡) =
|𝑝full-vle(𝑡) − 𝑝reduced-vle(𝑡)|

|𝑝full-vle(𝑡)|
, (52)

𝑇 ,full-reduced(𝑡) =
|𝑇full-vle(𝑡) − 𝑇reduced-vle(𝑡)|

|𝑇full-vle(𝑡)|
.

The second error (‘constraint error’) is computed as

𝜀𝑝,vle-ode(𝑡) =
|𝑝reduced-vle(𝑡) − 𝑝ode(𝑡)|

|𝑝reduced-vle(𝑡)|
, (53)

𝜀𝑇 ,vle-ode(𝑡) =
|𝑇reduced-vle(𝑡) − 𝑇ode(𝑡)|

|𝑇reduced-vle(𝑡)|
.

Fig. 4 shows the approximation errors (52) incurred when going
from the Full-VLE-Algebraic approach to the Reduced-VLE-Algebraic ap-
proach. For example, the uncertainty in the pressure in the saturation
relations is ±0.012% (see Table 1) and the maximum error throughout
the simulation stays well below this value (it is less than 0.01%).
Fig. 5 illustrates the constraint errors in pressure and temperature, as
defined by Eq. (53), introduced by transitioning from the Reduced-VLE-
Algebraic to the Reduced-VLE-ODE formulation for 𝛥𝑡 = 1 s. Notably, the
maximum errors are observed at 𝑡 ≈ 26 s, coinciding with the phase
transition point. At this critical juncture, the pressure error reaches
approximately 0.33%, while the temperature error remains around
0.048%. This underscores the necessity for a sufficiently small time step
to accurately capture the rapid transients occurring around the phase
ransition point (here, 𝑡 ≈ 26 s).

Figs. 6(a) and 6(b) depict the convergence analysis of our time
integration method under distinct simulation scenarios. In Fig. 6(a),
the simulation remains within a single-phase regime throughout its
entirety, and results are monitored at 𝑡 = 16 s. Conversely, in Fig. 6(b),
the simulation commences and persists in a two-phase state, with
results monitored at 𝑡 = 128 s. The errors in temperature are com-
uted as 𝜀𝑇 = (𝑇 − 𝑇ref)∕𝑇ref. For both approaches, the reference
olution is obtained by solving with the Full-VLE-Algebraic approach
ith 𝛥𝑡 = 1 × 10−4 s. The observed convergence behaviour closely aligns

with the expected outcomes for each method (first order convergence
corresponding to the first order forward Euler method). As the relative
temporal discretization error approaches the uncertainty limit of the
saturation relations (approximately 10−5, as detailed in Table 1), the
mpact of errors inherent to the saturation relations becomes signifi-
ant. Consequently, for sufficiently small 𝛥𝑡, the discretization error is
ominated by the inaccuracy of the saturation relations. In the Reduced-
LE-Algebraic approach, this effect is evident from the stagnation of the
elative error, where the error curve begins to flatten for 𝛥𝑡 ∼ 2 s. A
imilar trend is observed in the Reduced-VLE-ODE approach; however,
n anomaly is noted for 𝛥𝑡 = 1 s, where the relative error suddenly
rops due to fortuitous error cancellation.

5.1.4. Computational efficiency
In this subsection, we discuss the computational gains of our two

ew reduced approaches. Quantifying an exact speedup is challenging
ue to its dependence on the time step. However, Fig. 7 illustrates the
elative error in temperature plotted against CPU time for all three
pproaches. The reference solution for all approaches corresponds to
he solution computed using Full-VLE-Algebraic with 𝛥𝑡 = 1 × 10−4 s.
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Fig. 2. Comparison of tank depressurization results with Hammer et al. 𝛥𝑡 = 1 s.
Fig. 3. Simulation trajectory for the Hammer et al. test case, 𝛥𝑡 = 1 s.
Fig. 4. Approximation error from Full-VLE-Algebraic to Reduced-VLE-Algebraic, 𝛥𝑡 = 1 s.
i

a
i
b

Notably, the reduced approaches require about one order of magnitude
less CPU time compared to the Full-VLE-Algebraic approach; for ex-
ample, for an error of 3 × 10−4, the reduced approaches are about 8
times faster. However, it is important to note that once the relative
accuracy of the order of 10−3 is achieved, the performance gain in the
ODE approach is lost. This can be attributed to the crossing of satura-
tion boundary in the simulation which acts like a discontinuity, thus
negating the advantages of the ODE approach beyond this accuracy
threshold.

In conclusion, the reduced VLE approaches (both algebraic and
DE) demonstrate comparable performance, achieving significant

peedup for relative accuracy of the order of 10−3. This indicates
heir suitability for practical applications where reduced computational
verhead is necessary without significant loss of accuracy.
8 
5.2. Pipeline depressurization

In this section, we consider a more difficult test case: the depressur-
zation of a pipeline instead of a tank.

5.2.1. Problem setup
We follow again Hammer et al. [24], who describe the depressur-

ization of a pipe that results from opening the right end of a pressurized
pipe into the ambient. In Hammer et al. outflow boundary conditions
re specified at the right end of a pipe of length 𝐿 = 100 𝑚. However,
n our simulation, we avoid the use of outflow boundary conditions
y doubling the pipe length to 𝐿 = 200 𝑚 and modelling it as a

shock-tube problem. The rationale behind this is that the flow at the
outlet will be choked so that information will not propagate upstream.
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Fig. 5. Constraint error from Reduced-VLE-Algebraic to Reduced-VLE-ODE , 𝛥𝑡 = 1 s.
Fig. 6. Relative temperature error for tank depressurization simulations with 𝛥𝑡ref = 1 × 10−4 s.
Fig. 7. Relative error in temperature vs. CPU time for all approaches.
t

The shock-tube has as initial condition a membrane in the middle,
eparating it into a left (pressurized) and right (ambient) section. The
imulation is stopped before the fastest waves have reached the left
r right end of the pipe, so that the solution at both ends (𝑥 = 0 and
= 200 𝑚) of the pipe will correspond to the initial conditions. It is

oteworthy that the simulation configurations employed in Hammer
t al. (characterized by outflow boundary conditions) and the present
tudy (focusing on the shock-tube problem) are slightly different. Addi-
ionally, Hammer et al. utilizes the MUSTA scheme in conjunction with
 strong-stability-preserving Runge–Kutta method. These methodologi-
al differences have the potential to induce deviations in the observed
esults, as will be subsequently demonstrated.

Table 4 details the initial conditions for the simulation, employing
gain CO2 as the working fluid. Fig. 8 shows the location of the left
nd right initial states with respect to the saturation curve. Initially,
he fluid is at rest(i.e. u = 0).
9 
All simulations employ CFL values of 1.0 for algebraic approaches
and 0.84 for the ODE approach. It is crucial to highlight that the
ODE approach exhibits instability beyond a CFL value of 0.84 for
this particular test case. Results are reported at 𝑡 = 0.2 s. Given
the discontinuous nature of initial conditions, an initial time-step of
1 × 10−12 s is used to initiate the simulation.

The time step 𝛥𝑡 used in the simulations is based on the fastest
ravelling waves

𝛥𝑡 = CFL 𝛥𝑥
max
𝑖
(|
|

𝑢𝑖 ± 𝑎𝑖||)
,

where 𝑎𝑖 represents the speed of sound, and subscript 𝑖 denotes the 𝑖th
cell. To compute the speed of sound, we employ the same expression as
used in Hammer et al. [24] (Eq. (51)) and Saurel et al. [21] (equation
5.20).
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Table 4
Pipeline simulation parameters based on Hammer et al. [24]. See also Fig. 8.

Simulation
time (s)

Length (m) Discontinuity
location

Left Right

𝑝 (bar) 𝑇 (K) 𝑝 (bar) 𝑇 (K)

0.2 200 Centre 100 300 30 300

Fig. 8. Initial conditions in 𝑝 − 𝑇 space.

5.2.2. comparison with hammer
First, we establish the validity and convergence of our solution. In

Fig. 9(a), we validate our results with those from Hammer et al. [2],
which shows the results only for the left half of the pipe. A notable
alignment is observed with Hammer et al. across all three approaches,
albeit with a slight deviation at the right boundary. Additionally, all
three approaches are nearly identical, overlapping significantly in the
presented results. The discrepancy compared to Hammer et al. at the
right boundary is expected as we use a different test case set-up,
as explained before: a shock-tube experiment instead of an outflow
boundary condition as used by Hammer et al.

Fig. 9(b) presents a comparison of all three approaches for the
entire length of the pipe. All approaches demonstrate good agreement,
with nearly overlapping outcomes. It is important to note that the
constraints are satisfied to machine precision in the algebraic methods.
In contrast, the ODE approach involves computing the temperature for
the subsequent time step via numerical integration, which introduces a
truncation error of the order (𝛥𝑡2) compared to the algebraic method.
This truncation error results in an energy drift error, as elaborated
in Section 5.2.5.

5.2.3. Convergence study
We now investigate the spatial and temporal convergence of the

new approaches. Spatial convergence is discussed in Appendix A. Here,
we focus on temporal convergence. Figs. 10(a) and 10(b) depict the
temporal convergence patterns observed in the Reduced-VLE-Algebraic
and Reduced-VLE-ODE methodologies, respectively, utilizing the 𝐿1-
orm for the error. The reference solution corresponds to the solution
omputed with a time step of 𝛥𝑡 = 5 × 10−5 s. The error in temperature
s calculated for each cell as 𝜀𝑇 = (𝑇 − 𝑇ref)∕𝑇ref. Notably, the temporal
onvergence of the Reduced-VLE-Algebraic approach exhibits a highly

favourable trend, demonstrating anticipated (first order) convergence
haracteristics whereas the Reduced-VLE-ODE approach displays a near-

first order convergence behaviour. The observed outcome aligns with
expectations, given that the Reduced-VLE-ODE approach relies on the
smoothness of the function 𝜓 in the thermodynamic phase-plane (𝜌−𝑇−
𝜓 space) which is a criterion that does not hold across phase transitions.

his is particularly evident in the right-hand side of the temperature
equation, which includes derivatives of 𝜓 . From a thermodynamic
standpoint, it is known that across phase boundaries, the derivatives

of internal energy exhibit discontinuities. b

10 
5.2.4. Computational efficiency
In this subsection, we discuss the computational efficiency of two

ew reduced methodologies. The Reduced-VLE-Algebraic and Reduced-
LE-ODE approaches exhibit comparable performance. Both methods
re significantly faster than the Full-VLE-Algebraic approach, being
pproximately 3–4 times faster. This is evidenced in Fig. 11, which

presents plots of relative pressure and temperature error versus CPU
time. The reference solution in this figure corresponds to the results
obtained using 12000 cells with the Full-VLE-Algebraic approach. When
the relative error is (10−4), the ODE approach begins to experience
erformance degradation due to smaller time steps needed near the
aturation boundary, i.e. where the evaporation wave and the contact
iscontinuity originate. We have encountered such phenomena during
pecial cases like pipeline shut-in or depressurization, where rapid
hase changes occur. For regular pipeline transportation simulations
uch effects are usually less frequent. In any case, an error of (10−4)
s generally within acceptable engineering limits, making the ODE
ethod a practical and efficient choice for both routine and dynamic

pplications.

5.2.5. Energy conservation error in Reduced-VLE-ODE
Our investigation into the higher error observed in the Reduced-

LE-ODE approach is further illustrated in Fig. 12(a) by presenting the
relative energy error 𝜀𝑡,𝜌𝐸 , which quantifies the total energy deviation
throughout the entire pipe at time 𝑡. The subscript 0 denotes the initial
tate of the pipe. The error is defined as:

𝜀𝑡,𝜌𝐸 =
∑𝑁
𝑖=1

(

𝜌𝑡,𝑖𝐸𝑡,𝑖 − 𝜌0,𝑖𝐸0,𝑖
)

∑𝑁
𝑖=1 𝜌0,𝑖𝐸0,𝑖

,

where 𝑁 represents the total number of cells, and 𝑖 denotes the cell
ndex. This expression compares the total energy at time 𝑡 to the
nitial energy state, offering a quantitative measure of the energy
iscrepancy between the current and initial states of the system. Both
he Reduced-VLE-Algebraic and Reduced-VLE-ODE approaches are eval-
ated based on this energy error metric. The Reduced-VLE-Algebraic
pproach inherently adheres to the energy conservation law, resulting
n energy errors at machine precision. In contrast, the Reduced-VLE-
DE approach bypasses direct use of the energy conservation equation.

nstead, temperature is updated using Eq. (43), which introduces an
error of order (𝛥𝑡2)in temperature computation. This updated temper-
ature is then used to calculate internal energy using the Span–Wagner
EOS [18], which consists of polynomial and exponential terms(with
negative exponents). Errors in combined quantities3 maintain their
original order through basic arithmetic operations, implying that errors
in internal energy are of the same order as those in density (𝜌) and
temperature (𝑇 ). Hence, in the total energy , we can expect an error
of the order of (𝛥𝑡2). After a simulation time equal to 𝑁 𝛥𝑡 (where

is the number of timesteps), an accumulation of these errors can
ead to an overall energy error of the order of (𝛥𝑡). This behaviour
s confirmed by Fig. 12(b), which demonstrates an increase in energy
rift with larger timesteps. For longer simulations, the ODE method

may experience drift due to energy growth errors. This error can be
onitored, and when it exceeds a user-defined tolerance, one could

educe the time step or temporarily switch to the algebraic method. It
s noteworthy that the energy conservation error in both our Reduced-
LE-Algebraic and Reduced-VLE-ODE approaches closely aligns with that
eported in Sirianni et al. [23]. The primary distinction between their

numerical scheme and ours lies in the spatial discretization: while they
utilize second-order spatial discretization, we employ only first-order
spatial discretization. Additionally, it is pertinent to highlight that their
work pertains to single-phase flow, whereas the emphasis of this paper
lies in the realm of two-phase flow. Furthermore, our approach is based

3 Combination implies performing an operation between two num-
ers/quantities e.g. addition, multiplication etc.
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Fig. 9. Pressure variation along pipe at 𝑡 = 0.2 s, with 𝑁 = 4800 cells.
Fig. 10. Temperature error: Results at 𝑡 = 0.2 s. 20 grid cells.
Fig. 11. Comparison of CPU time vs. error in all approaches.
on the time-continuous form of the temperature equation, which offers
more flexibility in employing different time integration methods. In
contrast, their approach first discretizes in time using the forward Euler
method.

We continue to describe the wave structure observed in the shock-
tube results within the framework of the classical Riemann prob-
lem, with a specific emphasis on phase transition phenomena in the
following subsection [11].

5.2.6. Wave structure
In this subsection, we discuss the wave structure observed in our

ipeline depressurization simulation. Fig. 13 presents comprehensive
results for test case 1 (Table 4) obtained using the Reduced-VLE-
Algebraic method. These findings align well with observations by Ham-
11 
mer et al. (2013) [2]. The solution exhibits a rich wave structure,
characterized by the presence of four distinct waves:

1. Leftward-propagating rarefaction wave: This wave is character-
ized by a smooth decrease in both pressure and temperature as
it propagates through the fluid.

2. Evaporation wave: Marking the onset of boiling and the transi-
tion to two-phase CO2 flow, the evaporation wave is accompa-
nied by a further decrease in both pressure and temperature.

3. Contact discontinuity: Separating the two-phase and single-
phase gas regions of CO2, the pressure remains constant across
the contact discontinuity, while temperature exhibits a signifi-
cant rise. Unlike in single-phase flows, the velocity undergoes a
change across the contact discontinuity which is a characteristic
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Fig. 12. Energy conservation error. Results at 𝑡 = 0.2 s. 200 grid cells.
Fig. 13. Riemann problem solution for various quantities along the length of the pipe for test case 1 with 1000 cells. Results at 𝑡 = 0.2 s.
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feature of two-phase flow. This behaviour is also observed in the
work by Föll et al. [28] (Fig. 14 in their paper).

4. Rightward-moving shock wave: This wave induces compres-
sion that leads to increased internal energy, temperature, and
pressure.

Fig. 14 further visualizes these distinct waves in pressure-
temperature space at the end of the simulation (𝑡 = 0.2 s). The fluid ini-
tially transitions to a two-phase state via the rarefaction wave, followed
by a further decrease in pressure-temperature properties through the
evaporation wave. The contact discontinuity then separates the two-
phase mixture from the hot, high-pressure single-phase gas. Finally, the
shock wave reconnects the system to its initial state on the right end of

the pipe. b

12 
6. Conclusions

In this paper, we have proposed two new numerical methods for
simulating the depressurization of tanks and pipelines containing CO2.
This involves solving fluid flow equations alongside thermodynamic
equilibrium equations.

A common approach is to advance the fluid equations while coupled
ith the non-linear algebraic constraints imposed by thermodynamic
quilibrium. This approach, termed Full-VLE-Algebraic, is computation-
lly expensive. We propose two novel approaches by reformulating the
oupled system of equations, which we denote Reduced-VLE-Algebraic
nd Reduced-VLE-ODE . Firstly, the Reduced-VLE-Algebraic approach is
ased on the insight that the four-equation system expressing the
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Fig. 14. Pressure-temperature profile at 𝑡 = 0.2 s for test case 1 with 1000 cells.
n

w
A

thermodynamics constraint can be simplified to a one-equation con-
straint when using saturation relations in two-phase conditions. This
ccelerates the solution procedure at a slight loss of accuracy, which

depends on the accuracy with which the saturation relations have
been determined from the complete EOS. Secondly, the Reduced-VLE-
ODE approach is based on the insight that the one-equation constraint
can be differentiated in time to yield an evolution equation for the
temperature, which can be efficiently solved with explicit time in-
tegration methods, thus avoiding the need to employ a non-linear
equation solver. However, this method introduces a small error in
energy conservation. For simplicity, we have used the forward Euler
method for time integration in all tests.

For the tank depressurization case, the two proposed methods are
shown to be accurate and stable for different time-step sizes. The
Reduced-VLE-Algebraic and Reduced-VLE-ODE approaches exhibit com-
parable performance and we gain a significant speedup compared to
Full-VLE-Algebraic. The results are in excellent agreement with those
reported in the literature. We also apply these methods to pipeline
depressurization, where both Reduced-VLE-Algebraic and Reduced-VLE-
ODE again, exhibit significantly improved computational efficiency
compared to the traditional approach.

The pipeline depressurization case modelled as a Riemann problem,
hows how four different waves appear: rarefaction, shock, contact dis-

continuity, and evaporation wave. All three methods effectively capture
these intricate wave dynamics and results show excellent agreement
with the literature.

One potential path to improve accuracy could be the incorporation
f advanced time integration methods for systems with constraints

into the current Reduced-VLE-ODE framework. Extending the method-
ology beyond single-component fluids to encompass multi-component

ixtures presents another compelling direction for future work. This
ould necessitate addressing the complexities associated with multi-

omponent systems, such as intercomponent mass transfer and the
establishment of phase equilibria. Another promising avenue for future
esearch involves extending our approach to higher-dimensional sys-

tems. This extension seems feasible as the derivation of the temperature
quation for the semi-discrete equations is in principle not limited
o 1D. Successfully navigating these challenges would broaden the
pplicability of the methodologies and enable the investigation of a
ider range of fluid systems with enhanced accuracy and fidelity.
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Appendix A. Spatial convergence

We now assess the spatial convergence for the pipeline simulation.
The problem setup is discussed in Section 5.2.1. For this verification,

e employ a high-fidelity reference solution obtained using a Full-VLE-
lgebraic approach with a very fine mesh of 12,000 cells. Fig. A.15

illustrates the spatial convergence of our results with mesh refinement,
employing the 𝐿1 error norm in temperature. All three methodolo-
gies showed increased accuracy as the mesh is refined. Convergence
is achieved at a level between first and second order. Notably, the
plots corresponding to the Full-VLE-Algebraic and Reduced-VLE-Algebraic
approaches coincide, whereas the Reduced-VLE-ODE approach exhibits
slightly higher error.

Fig. A.15. Pipeline depressurization: Spatial convergence along the pipe at 𝑡 = 0.2 s.
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Appendix B. Spatial discretization of HEM model

To compute the numerical flux ̂𝑖+ 1
2
, the HLLC scheme, known as

the Harten–Lax–van Leer-Contact scheme, is employed as an approx-
imate Riemann solver [29]. This scheme utilizes the wave structure
nherent in the Riemann problem to estimate the flux at the interface
etween adjacent cells. In the context of single-phase flow, the Riemann
olution typically features three distinct waves: rarefaction, shock, and
ontact waves. However, in the case of two-phase flow, an additional
ave called the evaporation wave may be present. Leveraging the
ankine–Hugoniot condition, the HLLC scheme approximates the fluxes
ssociated with each of these waves. The intermediate region between
he rarefaction and shock waves is commonly referred to as the star-
egion. A comprehensive derivation of the HLLC scheme for Euler’s
quations is provided by Toro [29]. Below, we present the expressions

for the fluxes at the interface 𝑖 + 1
2 :

̂𝑖+1∕2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐹𝐿, if 0 ≤ 𝑆𝐿,

𝐹 ∗
𝐿, if 𝑆𝐿 ≤ 0 ≤ 𝑆∗,

𝐹 ∗
𝑅, if 𝑆∗ ≤ 0 ≤ 𝑆𝑅,

𝐹𝑅, if 0 ≥ 𝑆𝑅.

(B.1)

𝐹 ∗
𝐿 = 𝐹𝐿 + 𝑆𝐿(𝑈∗

𝐿 − 𝑈𝐿), (B.2)

𝐹 ∗
𝑅 = 𝐹𝑅 + 𝑆𝑅(𝑈∗

𝑅 − 𝑈𝑅), (B.3)

𝑆𝐿 = min(𝑢𝐿 − 𝑎𝐿, 𝑢𝑅 − 𝑎𝑅), (B.4)

𝑆𝑅 = max(𝑢𝐿 + 𝑎𝐿, 𝑢𝑅 + 𝑎𝑅), (B.5)

𝑆∗ =
𝑝𝑅 − 𝑝𝐿 + 𝜌𝐿𝑢𝐿(𝑆𝐿 − 𝑢𝐿) − 𝜌𝑅𝑢𝑅(𝑆𝑅 − 𝑢𝑅)

𝜌𝐿(𝑆𝐿 − 𝑢𝐿) − 𝜌𝑅(𝑆𝑅 − 𝑢𝑅)
, (B.6)

𝑈∗
𝐾 = 𝜌𝐾

(

𝑆𝐾 − 𝑢𝐾
𝑆𝐾 − 𝑆∗

)

⎡

⎢

⎢

⎢

⎢

⎣

1

𝑆∗

𝐸𝐾 + (𝑆∗ − 𝑢𝐾 )
[

𝑆∗ + 𝑝𝐾
𝜌𝐾 (𝑆𝐾−𝑢𝐾 )

]

⎤

⎥

⎥

⎥

⎥

⎦

. (B.7)

Here, 𝐾 = 𝐿(left state) or 𝐾 = 𝑅(right state), 𝑈𝐾 ≈  (𝑥𝐾 , 𝑡),
𝐾 =  (𝑈𝐾 ), 𝑎𝐾 is the speed of sound computed using the equation
f state [18]. 𝑆𝐿 and 𝑆𝑅 are the wave speeds of the left and right-
oing waves, respectively, and 𝑆∗ denotes the speed of the contact

wave. The accuracy of the HLLC method crucially depends on the
precision of the estimates of the wave speeds 𝑆𝐿 and 𝑆𝑅. In this context,
we have presented one method for estimating these wave speeds. For
a comprehensive discussion of wave speed estimation, we refer the
interested reader to Toro [29].

Data availability

No data was used for the research described in the article.
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