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Abstract

In this work we propose a novel method to ensure important entropy inequalities are satisfied semi-discretely
when constructing reduced order models (ROMs) on nonlinear reduced manifolds. We are in particular inter-
ested in ROMs of systems of nonlinear hyperbolic conservation laws. The so-called entropy stability property
endows the semi-discrete ROMs with physically admissible behaviour. The method generalizes earlier results
on entropy-stable ROMs constructed on linear spaces. The ROM works by evaluating the projected system
on a well-chosen approximation of the state that ensures entropy stability. To ensure accuracy of the ROM
after this approximation we locally enrich the tangent space of the reduced manifold with important quan-
tities. Using numerical experiments on some well-known equations (the inviscid Burgers equation, shallow
water equations and compressible Euler equations) we show the improved structure-preserving properties
of our ROM compared to standard approaches and that our approximations have minimal impact on the
accuracy of the ROM. We additionally generalize the recently proposed polynomial reduced manifolds to
rational polynomial manifolds and show that this leads to an increase in accuracy for our experiments.

Keywords: Entropy stability, Manifold Galerkin method, Reduced order models, Rational quadratic
manifolds, Nonlinear conservation laws

1. Introduction

Conservation laws are nearly universally present in any branch of physics and engineering e.g. fluid
dynamics, structural mechanics, plasma physics and climate sciences; they express the conservation of some
physical quantity of interest. Often such conservation laws are described by hyperbolic equations or systems
thereof [34]. Physicists and engineers are increasingly reaching to simulation tools for approximate solutions.
With the increase in computational power of recent decades, very large-scale problems have indeed been
solved to a satisfactory accuracy. Nonetheless, some applications of major engineering interest like those of
a multi-query (e.g. design optimization [108], uncertainty quantification [35]) or real-time nature (e.g. model
predictive control [90], digital twin technology [55]) remain out of question for many large scale systems.
A way around these computational issues has been offered by reduced order models (ROMs), which are
low-dimensional surrogates of high-fidelity models of interest, often referred to as full order models (FOM)
in the ROM community. ROMs rely on the offline-online decomposition paradigm [76] for their efficiency,
they are trained in an expensive offline phase and subsequently evaluated at very low computational cost
in new situations in the online phase. Particularly, the low dimensionality of the ROM allows for fast and
cheap evaluation of its solution.
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A popular class of ROMs are projection-based ROMs (pROMs) [11, 108], which have traditionally been
constructed by projecting equations of interest on well-chosen linear subspaces. These subspaces are often
found in a data-driven manner using the proper orthogonal decomposition (POD) [61, 113] or greedy methods
[100] and the projections are carried out using a Galerkin [109, 73, 107, 69, 68, 10] or Petrov-Galerkin
[24, 51, 23] approach. However, the success of applications of linear subspace-based pROMs has been
limited in the field of hyperbolic equations. This is a result of an almost inherently slow decay of the so-
called Kolmogorov n-width (KnW) of the solution manifolds Mu (i.e. the set of all solution trajectories for
a range of parameters and initial conditions of interest) of these systems1:

dr(Mu) = inf
V⊂X ;dim(V)=r

sup
u∈Mu

inf
v∈V

||u− v||X , (1)

which measures the worst error that can be incurred when optimally approximating Mu with an optimally
chosen r-dimensional linear subspace. The KnW decay of many hyperbolic systems is slow because their
solution trajectories are often not contained in low-dimensional linear subspaces due to characteristically
having moving features as part of their solution. This has been shown analytically for some systems [99, 32,
49, 86, 6] and empirically for many others. In recent years a range of possible solutions have been proposed,
falling in roughly four categories. First, there have been adaptive approaches that use linear subspaces that
are changed during the online phase to be better suited to new conditions [98, 96, 93, 56, 22, 39, 124, 45];
second, domain decomposition approaches that localize ROM construction in time, space or parameter space
[123, 30, 97, 63, 14, 1, 51, 33]; third, Lagrangian, registration and/or optimal transport based approaches
that track moving features improving linear data compressibility [91, 48, 64, 103, 88, 116, 38, 104, 89, 71,
122, 13, 87]; fourth, constructing ROMs on nonlinear spaces (manifolds). Since it is not dependent on
user-defined localization or adaptation strategies and due to its high expressiveness we will be interested
in the latter category. In model reduction on manifolds the linear reduced spaces of classical ROMs are
replaced by nonlinear spaces. Given sufficient expressiveness the nonlinear reduced spaces can potentially
approximate the solution manifolds of hyperbolic systems. These manifolds are typically constructed from
data. In [105, 106, 79, 18, 121, 31, 72, 37] autoencoder neural networks are used to construct manifold ROMs.
Another popular nonlinear manifold construction approach are polynomial manifolds [47, 17, 111, 8, 66].
Finally, there has been an increasing interest in a more physics-based approach, where ROMs are constructed
on the invariant manifolds of physical systems [5, 20, 92, 21].

Although, to the authors’ knowledge, there have not been any studies of manifold ROMs on large scale
under-resolved and shock-dominated cases within fluid dynamical applications, it has long been known that
their linear counterparts can suffer from stability issues for such problems [109, 73, 41, 7, 2, 69, 68, 10].
It is quite reasonable to assume this will also be the case for manifold ROMs. A promising approach to
stabilization of such simulations is the concept of entropy stability [118, 82], which has been widely used in the
context of obtaining stable FOMs. A numerical method is entropy stable if it dissipates a convex functional
associated to a conservation law, referred to as entropy, given suitable boundary conditions. Entropy stability
endows numerical methods with physically admissible behaviour, which for fluid dynamical applications
manifests itself in satisfaction of the second law of thermodynamics. Furthermore, it generalizes the L2-
stability properties of linear hyperbolic systems to fully nonlinear systems [118]. Additionally, stability in
Lp spaces can be shown formally [115, 44, 74].

However, in the projection step to construct pROMs an entropy-stable numerical method generally
loses its stability property. In recent years, some work has been carried out in the ROM community to
preserve the entropy stability property. In Figure 1 several possible approaches have been visualized. In
[27] the ROM is evaluated at a corrected state that ensures entropy stability is maintained (also known as
‘entropy projection’). Inspired by the approach taken in the classical finite element work in [62], [69] writes
the conservation laws in symmetric form using an alternative set of variables and projects the continuous
equations leading to correct entropy estimates. In [94] the Hilbert spaces in which the projections are
carried out are defined according to physical arguments. We also note the works in [68, 10, 107]. All these

1(X , || · ||X ) denoting a Banach space of interest containing analytical PDE or approximate simulation solutions
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Figure 1: Flowchart of possible entropy stable ROM approaches, our method is indicated in red, u are the conserved
variables and η are the alternate variables used in [69]. FOM: full order model, ROM: reduced order model.

approaches suffer a major drawback – they are built on linear reduced spaces. As a result, relatively high-
dimensional reduced spaces are required to model many physical systems of interest, which comes at the
cost of computational efficiency of the ROM.

Our main contribution is to generalize these entropy-stable approaches to nonlinear reduced spaces. This
allows for lower-dimensional reduced spaces and thus potentially more efficient ROMs. In particular, we
will be interested in generalizing the work in [27]. This approach is colored red in Figure 1. Our main
argument for not choosing [69, 94] stems from the argument given e.g. in [25], namely that formulations
in alternative variables are not consistent with the famous Lax-Wendroff theorem [77] and can thus yield
wrong shock solutions. To our knowledge, our method is the first manifold ROM that is provably entropy
stable. At the same time, we note that preservation of other mathematical structures on reduced manifolds
has been successfully achieved in the past: symplectic [111, 18, 16]; metriplectic [80]; conservative [78]. A
great overview of recent structure-preserving model reduction contributions in general is given in [52].

A second contribution of this work is the development of a novel generalization of polynomial manifolds
[8, 17] to rational polynomial manifolds. While these polynomial manifolds have shown successes in certain
applications, in our experience they are not sufficiently accurate for shock-dominated problems. Rational
polynomials are better at capturing discontinuities, as we will show in this work.

This article is organized as follows. In section 2 we introduce the theory of nonlinear hyperbolic conser-
vation laws and entropy analysis, we introduce a baseline entropy stable FOM [44], and an entropy-stable
linear ROM as proposed in [27]. In section 3 we introduce our main contribution, the novel entropy stable
nonlinear manifold ROM. In section 4 we discuss our second contribution, being rational polynomial mani-
folds. In section 5 we show the effectiveness of our approach using several numerical experiments that are
based on a range of well-known conservation laws from fluid dynamics. We conclude our work in section 6.

2. Preliminaries: Entropy inequality for conservation laws, entropy-stable FOM, linear ROM

2.1. Introducing the entropy inequality

We give a short introduction to the concept of entropy, some related concepts used in its analysis and its
role in the theory of nonlinear conservation laws. We consider conservation laws in one spatial dimension
that can be written as partial differential equations (PDE) of the form:

∂u

∂t
+
∂f(u)

∂x
= 0, (2)

where Ω is a spatial domain and [0, T ] is a temporal domain with T > 0. Furthermore u : Ω× (0, T ] → R
n is

the solution function, f : Rn → Rn is the nonlinear flux function, n ∈ N is the number of conserved quantities
and x ∈ Ω and t ∈ [0, T ] are the spatial coordinate and time, respectively. To facilitate conservation
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statements and minimize the role of boundary conditions we will focus on periodic spatial domains Ω =
T([a, b]) with b > a and b, a ∈ R in this research, here T is the torus. The equations are complemented by
a set of initial conditions u0 : Ω → Rn so that u0(x) = u(x, 0). The conservation law (2) is referred to as
hyperbolic when the Jacobian matrix ∂f

∂u is diagonalizable with real eigenvalues for all physically relevant u
[82]. In many cases, the solutions of physically relevant hyperbolic conservation laws also satisfy additional
conservation laws of the form:

∂s(u)

∂t
+
∂F(u)

∂x
= 0, (3)

where the function s : Rn → R is called the entropy function which is defined to be convex2 and F : Rn → R

is called the entropy flux. In particular, such an additional conservation law exists if the compatibility
relation:

η(u)T
∂f

∂u
=
∂F

∂u

T

, (4)

is satisfied. Here, η : Rn → Rn, u 7→ ∂s
∂u (u) is the gradient of the entropy function s with respect to u.

This mapping is injective due to the convexity of s and hence can be inverted. A pair (s,F) satisfying the
compatibility relation (4) is called an entropy pair of (2).

It is well-known that solutions u to (2) can develop discontinuities in finite time for smooth u0 [40, 82, 81].
When this occurs the solution u is said to contain a shock or contact discontinuity depending on the behaviour
of the discontinuity [82]. In this case both formulation (2) and the manipulations to obtain (3) are no longer
valid. We must therefore consider (2) in a weak sense to retain a notion of solutions. This weak form of the
conservation law is obtained by integrating against a space of smooth test functions v : Ω × [0,∞) → Rn

with compact support i.e. v ∈ C∞
0 (Ω × [0,∞)) and transferring all derivatives to these test functions to

obtain:
∫ ∞

0

∫

Ω

u ·
∂v

∂t
+ f(u) ·

∂v

∂x
dxdt+

∫

Ω

u0 · v(x, 0)dx = 0, (5)

on periodic Ω. Note that this expression is valid even for discontinuous u and that any smooth u satisfying
the strong form (2) also satisfies this weak form (5) [34, 40]. However, weakening the notion of a solution
like this comes at the cost that it does not necessarily yield unique solutions (examples of such cases may
be found in [40, 81, 34, 82]). Out of all weak solutions, i.e. solutions to (5), those of physical interest are
the ones satisfying:

∂s(u)

∂t
+
∂F(u)

∂x
≤ 0, (6)

in the sense of distributions, with equality for smooth u following (3) and inequality for solutions containing
shocks. This inequality arises from considering limits of regularized conservation laws, more details can be
found in [82]. For scalar conservation laws Kruzkov [74] established that weak solutions satisfying (6) are
unique, but for systems uniqueness is not yet completely established [12]. We can define the total entropy
functional as:

S[u] :=

∫

Ω

s(u)dx. (7)

Defining appropriate sequences of test functions and taking limits [83, 34], it can be shown that the estimate:

dS[u]

dt
≤ 0, (8)

follows from (6) on periodic Ω. This inequality will be the main interest of this paper.

2A function g : Rn → R is convex if its Hessian, ∂2g

∂u2 (u), is positive definite for all u.
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2.2. Entropy stable spatial discretization (FOM)

We will discretize the conservation law (2) with a finite volume method (FVM) based on flux-differencing
[82]. To introduce the general and frequently recurring structure of our entropy stability proof we will provide
some detail on the full order model (FOM) discretization. The FVM discretization will be constructed such
that discrete analogues to (8) hold. Other discretization methods that similarly mimic (8) are also possible,
for example the split-form discontinuous Galerkin (DG) methods described in [46], the summation-by-parts
schemes in [101] and the higher-order methods of [44, 42]. We choose the FVM to keep the exposition
simple, but note that our entropy-stable ROM framework should work with other entropy-stable FOM
discretizations as well.

The scheme is formulated as:

∆xi
dui

dt
+ f i+1/2 − f i−1/2 = 0, i ∈ {0, ..., N − 1}, (9)

on a grid of N grid cells so that i ∈ {0, ..., N − 1}. Here, ui : [0,∞) → Rn is the numerical solution vector
in the i-th grid cell, ∆xi := xi+1/2 − xi−1/2 is the cell size of the i-th cell with xi±1/2 denoting respectively
the x values of the right (+) and left (−) cell boundary and f i+1/2 := fh(ui+1,ui) is the numerical flux on
the right cell boundary of the i-th cell with fh : Rn × Rn → Rn being a two-point numerical flux function
[117] approximating the flux function f on a cell boundary based on two neighbouring numerical solution
values, similarly f i−1/2 approximates f on the left boundary. We also define the total number of unknowns
as Nh := n · N . Periodic boundary conditions are enforced by setting uN := u0 and u−1 := uN−1. In
the schemes we are considering the numerical flux function is constructed from entropy-conservative flux
functions [118, 117, 119]. These are flux functions that assure discrete analogues of (3) and (8) are satisfied
with equality. This makes them suitable starting points from which to construct flux functions that have
appropriate entropy-dissipative properties. We follow Tadmor’s framework [117] of entropy-conservative
fluxes, which are defined as follows:

Definition 1 (Entropy-conservative numerical flux). An entropy-conservative two-point numerical flux f∗
h :

Rn × Rn → Rn is a numerical two-point flux satisfying:

1. consistency: f∗
h(u,u) = f(u);

2. symmetry: f∗
h(ul,ur) = f

∗
h(ur,ul);

3. entropy conservation: (η(ul)− η(ur))
Tf∗

h(ul,ur) = ψ(ul)− ψ(ur).

The entropy-dissipative fluxes fh : Rn×Rn×RNh → Rn are now constructed from entropy-conservative
fluxes f∗

h by adding (possibly solution dependent) entropy dissipation operators like:

f i+1/2 := fh(ui+1,ui,uh) = f
∗
h(ui+1,ui)−Di+1/2(uh)∆ηi+1/2 (10)

withDi+1/2 : RNh → Sn+ so thatDi+1/2(uh) is symmetric positive semi-definite (SPSD) for any uh(t) ∈ RNh

(Sn+ and Sn++ are the convex sets of symmetric positive definite and symmetric positive semi-definite n× n
matrices, respectively). Here, uh : [0,∞) → RNh is the numerical solution vector on the whole grid to be
defined in what follows (this is required for higher order reconstructions like in e.g. [44]). Additionally, we
have defined ∆ηi+1/2 := η(ui+1) − η(ui). We will refrain from denoting explicitly the dependence on uh

in the third argument of fh and simply write fh(ui+1,ui) for (10).
For the purpose of model reduction in section 3 we rewrite discretization (9) with flux (10) in a matrix-

vector formulation. We will introduce the following notations: volume-based quantities which live on cell
centers and interface-based quantities which live on cell interfaces. The numerical solution vector is a
volume-based quantity given by:

uh(t) := [u10(t)..., u
k
i (t), u

k
i+1(t), ..., u

n
i (t), ...]

T ∈ R
Nh ,
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where uki (t) ∈ R is the approximation of the k-th conserved variable (the variable conserved by the k-th
equation in (2)) in the i-th cell evaluated at time t. The numerical flux vector is an interface-based quantity,
overloading the notation for the numerical flux function, it is given by:

fh(uh) := [f1
1/2, ..., f

1
N−1/2, f

2
1/2, ...f

k
i−1/2, f

k
i+1/2, ..., f

n
i+1/2, ..., f

n
N−1/2]

T ∈ R
Nh ,

where fk
i+1/2 is the numerical flux of the k-th conservation equation evaluated at interface i + 1/2 between

cells i+1 and i. Periodic boundary conditions are built into the flux vector by evaluating fk
N−1/2(u0,uN−1)

for all k ∈ {1, ..., n}.
To perform finite-difference operations as in (9) for volume-based and interface-based quantities, respec-

tively, the following matrices are defined:

∆̄v =











1 0 0 −1
−1 1 0 0

0
. . .

. . . 0
0 0 −1 1











∈ R
N×N , ∆̄i =











−1 1 0 0

0
. . .

. . . 0
0 0 −1 1
1 0 0 −1











∈ R
N×N .

We note the skew-adjointness relation
∆̄v = −∆̄T

i , (11)

and that both have zero row and column sum. These properties will be used in proving entropy stability of
the scheme. For systems we define ∆v := I ⊗ ∆̄v and ∆i := I ⊗ ∆̄i with I being the n× n identity matrix
and ⊗ the Kronecker product. Clearly, ∆v and ∆i satisfy a similar skew-adjointness property (11). We will
also introduce the FVM mass matrices Ω̄h = diag(∆xi) with i = 0, 1, ..., N − 1 and Ωh := I ⊗ Ω̄h. With
these operators we can write a compact form of the discretization (9) as follows:

Ωh
duh

dt
+∆vfh(uh) = 0. (12)

To emphasize the role played by the dissipation operator Di+1/2 in obtaining entropy-stable spatial dis-
cretizations we will decompose ∆vfh(uh) in an entropy-conserving part and an entropy-dissipating part,
resulting in:

Ωh
duh

dt
+∆vf

∗
h(uh) = ∆vDh(uh)∆iηh, (13)

here, f∗
h(uh) is a vector of entropy conservative numerical fluxes, Dh(uh) ∈ S

Nh

+ is an SPSD matrix contain-
ing the terms associated to the dissipation operators Di+1/2 and ηh is a vector containing the grid values
of the entropy variables ordered similarly as uh.

Having introduced an entropy-dissipative numerical flux, we evaluate the discrete analogue to the con-
tinuous total entropy functional (7) which should be suitably dissipated by the entropy stable discretization
(13) or conserved in the case of no dissipation. The discrete total entropy functional will be defined as:

Sh[uh] := 1T Ω̄hsh, (14)

where 1 is a vector of ones and the local entropy is defined as:

sh(uh(t)) := [s(u0(t)), ..., s(ui(t)), ..., s(uN−1(t))]
T ∈ R

N ,

which is a volume-based quantity. The time evolution of Sh is given by

dSh[uh]

dt
= 1T Ω̄h

dsh
dt

=
∑

i

∆xiη(ui)
T dui

dt
= ηT

hΩh
duh

dt
.

We also define the entropy flux potential vector as:

ψh(uh(t)) := [ψ(u0(t)), ..., ψ(ui(t)), ..., ψ(uN−1(t))]
T ∈ R

N ,

6



which is a volume-based quantity, like the local entropy vector. To analyse the entropy evolution we can
substitute the spatial discretization (13) in the previous expression to obtain:

dSh[uh]

dt
= ηT

hΩh
duh

dt

= −ηT
h∆vf

∗
h(uh) + η

T
h∆vDh(uh)∆iηh

= (∆iηh)
Tf∗

h(uh)− η
T
h∆

T
i Dh(uh)∆iηh

= 1T ∆̄iψh − ηTh∆
T
i Dh(uh)∆iηh

= 0− ηT
h∆

T
i Dh(uh)∆iηh

≤ 0, (15)

where we used the skew-adjointness property (11), the entropy conservation condition of the numerical flux,
positive-definiteness of the dissipation operator Dh(uh) (and thus of ∆T

i Dh(uh)∆i) and the zero column
sum of ∆̄i. Clearly, in case no entropy dissipation is added in the numerical flux (10), equation (15) reduces
to

dSh[uh]

dt
= 0.

We note that the inequality (15) allows for formal Lp-stability statements [115, 34, 44].

2.3. The entropy-stable linear ROM of Chan [27]

The main aim of this work is to propose reduced order models (ROMs) that are a nonlinear generalization
of the entropy stable ROM of Chan [27]. To highlight key conceptual differences between the ROM in [27] and
ours, and to introduce the ROM methodology, we will briefly discuss the elements of Chan’s ROM leading to
its entropy stability. Classical reduced order models including [27] make the assumption that the evolution of
uh(t) can be accurately approximated with elements from a linear space V ⊂ RNh where dim(V) := r ≪ Nh

so that V can be referred to as low-dimensional [73, 107, 69, 68, 10, 24, 51, 23]. Classically, the subspace V
is constructed using a truncated proper orthogonal decomposition (POD) based on snapshot data collected
in a matrix X ∈ RNh×ns with ns ∈ N the number of snapshots [109, 73]. The construction of the ROM in
[27] starts by defining the approximation uh ≈ ur := Φa with a ∈ Rr being generalized coordinates in V
relative to the basis Φ. Here, we assume Φ is orthogonal in the Ωh-weighted inner product, i.e. φTi Ωhφj = δij
with φi the i-th column of Φ and δij the Kronecker delta function. Then, the approximation is substituted
in (13) introducing a semi-discrete residual which is set orthogonal to V by solving the Galerkin projected
system:

da

dt
+ΦT∆vf

∗
r(a) = ΦT∆vDr(a)∆iηr(a), (16)

with f∗
r(a) := f∗

h(Φa), Dr(a) := Dh(Φa) and ηr(a) := ηh(Φa). Equation (16) defines a (linear) POD-
Galerkin ROM [73, 107, 69, 68, 10].

Similar to the FOM case, see equation (14), we can evaluate the evolution of the ROM total entropy.
The reduced total entropy functional is defined as:

Sr[a] := Sh[Φa] = 1T Ω̄hsr(a), (17)

with sr(a) := sh(Φa). The evolution of the reduced total entropy is:

dSr[a]

dt
= 1T Ω̄h

dsr
dt

=
∑

i

∆xiη(Φia)
TΦi

da

dt
= ηT

r ΩhΦ
da

dt
,

with Φi ∈ Rn×r the rows of Φ approximating values in cell i. The entropy evolution of (16) is:

dSr[a]

dt
= ηT

r ΩhΦ
da

dt

= −ηT
r ΩhΦΦ

T∆vf
∗
r(a) + η

T
r ΩhΦΦ

T∆vDr(a)∆iηr

= −η̃T
r ∆vf

∗
r(a) + η̃

T
r ∆vDr(a)∆iηr,

7



where, since ΦΦTΩh defines an Ωh-orthogonal projection operator [4], η̃r := ΦΦTΩhηr are the so-called
projected entropy variables. It is unclear whether this expression is bounded. To solve this, Chan [27]
proposes a technique used earlier in DG finite element literature [95, 26, 28]. Namely, the discretization is
not evaluated at Φa but at the entropy projected state:

ũr := u(ΦΦTΩhηr) = u(η̃r),

where we have defined u : RNh → RNh ,ηh 7→ uh for notational convenience. Recall that the mapping u is
indeed available since η is injective. In this case we have:

dSr[a]

dt
= −η̃T

r ∆vf
∗
h(u(η̃r)) + η̃

T
r ∆vDh(ũr)∆iη̃r

= (∆iη̃r)
Tf∗

h(u(η̃r))− η̃
T
r ∆

T
i Dh(ũr)∆iη̃r

= 1T ∆̄iψ̃r − η̃
T
r ∆

T
i Dh(ũr)∆iη̃r

= 0− η̃T
r ∆

T
i Dh(ũr)∆iη̃r

≤ 0, (18)

so that we re-obtain an entropy estimate that mimics the FOM estimate (15). Here, ψ̃r is the entropy flux
potential vector evaluated at the entropy projected state. A key difference with the DG literature [95, 26, 28]
is that in the ROM case the basis Φ is only constructed to resolve solutions present in the snapshot matrix
X , whereas in DG the trial basis is able to approximate a larger subspace of the relevant PDE function
spaces. As a result, the DG trial basis can resolve the entropy variables well, but this may not be the case
for the reduced basis Φ. To address this issue, [27] builds the basis Φ from a set of augmented snapshots
given (with some abuse of notation) by:

X̃ = [X,η(X)],

so that the projection of the entropy variables on the basis Φ is close to the identity. As we will explain
in section 3.3, for our proposed nonlinear manifold ROMs, such a construction is not sufficient, and a new
tangent space enrichment technique will be proposed to ensure the accuracy of the entropy projection.

3. An entropy-stable nonlinear manifold Galerkin ROM

The solution manifolds of many hyperbolic conservation laws (2) have slow Kolmogorov n-width decay (1).
Hence, approximations using linear subspaces as in [27] may require very large reduced space dimensions
r before they become accurate. This comes at the cost of their efficiency. For this reason ROMs built
on nonlinear spaces endowed (at least locally) with a manifold structure have become a topic of interest
[105, 106, 79, 111, 18, 19, 9, 8, 121, 31, 72, 37, 47, 66]. To address the shortcomings of the linear subspaces
employed in [27] we will generalize this method to nonlinear reduced spaces, while keeping the entropy-
stability property. We will be interested specifically in nonlinear subsets of RNh endowed with some inner
product, instead of any abstract space. Therefore we will not be very rigorous about our use of the word
manifold, following predominantly the treatise of [79] and standard multivariable calculus interpretations.
For a rigorous treatment we suggest consulting the recent preprint [19]. We will give a brief description of
nonlinear manifold ROMs and then propose our generalization of [27].

3.1. Manifold Galerkin model reduction

In constructing ROMs on nonlinear manifolds we make the assumption that for any t ∈ [0, T ] there
are points ur(t) on a low-dimensional submanifold M ⊂ RNh that accurately approximate uh(t). Here,
we denote r := dim(M) and the low-dimensionality of M implies that r ≪ Nh. We will refer to the
submanifold M as the reduced manifold. Instead of the classical affine reduced space parameterization seen
in the previous section we will use nonlinear manifold parameterizations given as:

uh(t) ≈ ur(t) := ϕ(a(t)) ∈ M, (19)
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where:
ϕ : Rr → R

Nh , (20)

is assumed to be a smooth nonlinear injective function - at least when restricted to some subset A ⊆ Rr

of interest where the ROM will be well-defined. This means that ϕ(Rr) = M with a Jacobian J : Rr →
RNh×r, a 7→ ∂ϕ

∂a (a) of full rank for any a ∈ A ⊆ Rr, where a : [0, T ] → Rr are generalized coordinates on the
manifold M. The function ϕ may be obtained in many ways: some examples are quadratic approximations
[8, 111, 17, 47, 66] or neural networks [105, 106, 79, 72, 121, 37, 9, 31]. We will propose a new method based
on rational polynomials in section 4. In this section, we develop an entropy-stable ROM which is agnostic
of the choice for ϕ.

To construct a ROM we substitute (19) into the FOM discretization (13) so that after applying the chain
rule we find the residual:

r

(

da

dt
,a

)

:= J
da

dt
+Ω−1

h ∆vf
∗
r(a)− Ω−1

h ∆vDr(a)∆iηr(a),

where we define f∗
r(a) := f

∗
h(ϕ(a)), Dr(a) := Dh(ϕ(a)) and ηr(a) := ηh(ϕ(a)). The ROM is defined by

minimizing this residual in the Ωh-norm for da
dt given some a, this results in the ROM:

(JTΩhJ)
da

dt
+ JT∆vf

∗
r(a) = J

T∆vDr(a)∆iηr(a),

which is indeed well-defined for a ∈ A ⊆ Rr since the Jacobian J is assumed to be of full-rank on the subsetA,
making the mass matrix (JTΩhJ) invertible [4]. In this nonlinear case the ROM is given by the coefficients
of an orthogonal projection of the FOM on the tangent space of M defined by Tur

M := span(J(a)) with
a such that ur = ϕ(a). This orthogonal projection is carried out using the Ωh-weighted Moore-Penrose
pseudoinverse J† := (JTΩhJ)

−1JTΩh. Constructing a ROM by projecting the FOM on the tangent space
instead of the reduced manifold itself will result in key differences in our approach compared to the linear
case outlined in [27]: in contrast to the linear case where J = Φ, Tur

M and M are no longer the same
space. We introduce J+ = J†Ω−1

h = (JTΩhJ)
−1JT and write the ROM in compact form:

da

dt
+ J+∆vf

∗
r(a) = J

+∆vDr(a)∆iηr(a). (21)

Remark 1. The choice of inner-product spaces for ROMs of hyperbolic systems has recently come into
question [94]. Indeed when n > 1 the norm ||Jα||Ωh

for α ∈ Rr is dimensionally inconsistent in general. It
is shown in [94, 69] that dimensionally consistent inner products that are more appropriate in some sense can
improve robustness of the ROMs. For our approach however it will be important that the ROM is calculated
with the same inner product as used to calculate dSh

dt . Therefore, we will only deal with nondimensionalized
conservation laws. Alternatively, our results can also be applied at an equation-by-equation basis at the cost
of potentially introducing a larger number of generalized coordinates.

Remark 2. A popular approach to construct nonlinear manifold ROMs is the least squares Petrov-Galerkin
(LSPG) method [106, 79]. Using this method a fully discrete residual is minimized. We have chosen not to use
this method because we want to use the structure of our entropy stable FOM discretization in constructing
entropy stable ROMs. The fully discrete residual minimization approach of LSPG makes it more difficult
to apply this structure.

3.2. An entropy stable nonlinear manifold Galerkin ROM

The reduced total entropy functional of the nonlinear manifold ROM is now defined similarly to the
linear case (equation (17)) as:

Sr[a] := Sh[ϕ(a)] = 1T Ω̄hsr(a),
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with sr(a) := sh(ϕ(a)). The reduced total entropy evolution is given by:

dSr[a]

dt
= 1T Ω̄h

dsr
dt

=
∑

i

∆xiη(ϕi(a))
TJ i

da

dt
= ηT

r ΩhJ
da

dt
, (22)

where ϕi : R
r → Rn is the ROM approximation of the conserved variables in the i-th cell and J i ∈ Rn×r

is the Jacobian matrix of ϕi evaluated at a. Using (21), the entropy evolution of the nonlinear manifold
Galerkin ROM is:

dSr[a]

dt
= ηT

r ΩhJ
da

dt

= −ηT
r ΩhJJ

+∆vf
∗
r(a) + η

T
r ΩhJJ

+∆vDr(a)∆iηr(a)

= −η̃T
r ∆vf

∗
r(a) + η̃

T
r ∆vDr(a)∆iηr(a), (23)

where the projected entropy variables are defined as η̃r = (ΩhJJ
+)Tηr = JJ†ηr, where JJ

† is an Ωh-
orthogonal projection on Tur

M. It follows from (23) that the reduced total entropy evolution satisfies an
equation that is quite similar to the total entropy evolution of the FOM. However, instead of the actual
entropy variables ηr evaluated at the point ur on the reduced manifold M, the inner product is taken with
the projected entropy variables η̃r. We would like to use the entropy conservation condition at this point
to show that the inner product in (23) is zero, but this does not hold because η(ur) 6= η̃r in general. To
solve this, we can instead use the invertibility of the entropy variables to find for what state ũr ∈ RNh we
do have η(ũr) = η̃r. If we evaluate our flux at this state instead we can invoke the entropy conservation
condition of the numerical flux to complete the proof of entropy conservation (or stability). This is exactly
what is done in the linear setting in [27] and leads to our main novelty.

We now present the main novelty of our work. We introduce a novel nonlinear manifold generalization
of the linear entropy projection of [27]. It is given by:

ũr = u(JJ†ηr) = u(η̃r), (24)

where the entropy variables ηr evaluated at the ROM state ur are projected onto the tangent space Tur
M

instead of the reduced space itself. We note that projecting the entropy variables on the tangent space
Tur

M is a rather natural operation as the entropy variables can be interpreted as the gradient vector field
of the entropy functional Sh and thus as tangent vectors of RNh . The vector ũr is the entropy projected
state of the ROM. Carrying out this entropy projection on the tangent space is necessary as the projected
entropy variables η̃r appearing in the reduced total entropy evolution equation also are projected on the
tangent space.

A potential issue of our proposed form (24) is that the difference between the projected entropy variables
η̃r and the original entropy variables ηr can be very large. Namely, in similar fashion to the naively
constructed linear spaces spanned by Φ described in subsection 2.3 and [27], for arbitrary ϕ the entropy
variables ηr may not be well-resolved by the columns of J(a) and thus by the Ωh-orthogonal projection in
(24). This will very likely cause problems with accuracy of the ROM and the mapping u might not even
be well-defined at η̃r. We will propose a novel method to assure the difference between ηr and η̃r remains
small in the following section.

First, we continue constructing an entropy stable nonlinear manifold ROM and perform a Galerkin
projection of the FOM at the entropy projected state ũr. Doing so we obtain the following ROM:

da

dt
+ J+∆vf

∗
h(ũr) = J

+∆vDh(ũr)∆iη̃r, (25)

where we used η̃r = ηh(u(η̃r)). Here, the Jacobian matrix is still evaluated at the reduced coordinate
a ∈ Rr such that ur = ϕ(a) i.e. the non-projected state. It can be seen that the reduced total entropy

10



Figure 2: A visualization of the ROM construction. The entropy variables ηr are projected on the tangent space TurM to
obtain η̃r . A new state uh (not necessarily on the reduced manifold) is found with entropy variables ηh such that η̃r = ηh.

We set ũr = uh and project −∆vfh(ũr) orthogonally on the tangent space to complete the ROM.

evolution is bounded for this ROM since:

dSr[a]

dt
= −η̃T

r ∆vf
∗
h(u(η̃r)) + η̃

T
r ∆vDh(ũr)∆iη̃r

= (∆iη̃r)
Tf∗

h(u(η̃r))− η̃
T
r ∆

T
i Dh(ũr)∆iη̃r

= 1T ∆̄iψ̃r − η̃
T
r ∆

T
i Dh(ũr)∆iη̃r

= 0− η̃T
r ∆

T
i Dh(ũr)∆iη̃r

≤ 0, (26)

where ψ̃r = ψh(ũr) is the entropy flux potential of the entropy projected state and we were allowed to
invoke the entropy conservation condition of the numerical fluxes. Clearly, we have:

dSr[a]

dt
= 0,

when no entropy dissipation is present. Note that this approach exactly recovers the linear approach of [27]
when J = Φ, making it a proper generalization. Thus, by changing the state at which the FOM is evaluated
and projected to the entropy projected state ũr, correct total entropy evolution estimates can be recovered.
We added a visualization of the ROM construction with an entropy projection in Figure 2.

Remark 3. To make relation (26) hold in a fully-discrete setting for Galerkin ROMs, entropy stable time
integration is necessary. This is not trivial as most methods to satisfy entropy inequalities exactly during
time integration require convexity of the entropy for existence results [102, 118, 70]. Although this is the case
for Sh, Sr is not necessarily convex in the generalized coordinates a unless ϕ(a) is affine i.e. ϕ(a) = Φa+u0

for some constant u0 ∈ RNh and Φ ∈ RNh×r. In this work, we focus on semi-discrete entropy stability and
leave fully discrete entropy-stable ROMs as a suggestion for future work. In numerical experiments we use
sufficiently small time steps to make entropy errors coming from the time integration negligible, for details
see subsection 5.2.
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Remark 4. The entropy conservative hyper-reduction method proposed in [27] does not generalize to non-
linear spaces as it relies on precomputation of compositions of linear operators. In the nonlinear case
precomputation is not possible due to the changing tangent space. An entropy conservative hyper-reduction
method suitable for nonlinear reduced spaces is also a suggestion for future work.

3.3. Tangent space enrichment

To arrive at the correct entropy estimate (26) we carried out the entropy projection (24). Though the
evolution of the entropy then satisfies a correct estimate, it is not clear whether the ROM solution itself
remains accurate. Particularly, the difference between the entropy projected state (24) and the original state
(19) can be very large. To see this we consider the entropy projection error:

εs := ||ur − ũr||Ωh
.

Assuming the mapping u from entropy variables to conservative variables is sufficiently smooth, using the
mean-value theorem we can bound this term as follows:

||ur − ũr||Ωh
= ||ur − u(JJ

†ηr)||Ωh

= ||ur −

[

ur −
∂u

∂η
(θ)(I − JJ†)ηr

]

||Ωh
θi ∈ [(ur)i, (ũr)i] ∀i

≤ ||
∂u

∂η
(θ)||Ωh

||(I − JJ†)ηr||Ωh

= ||

(

∂2s

∂u2

)−1

(θ)||Ωh
||(I − JJ†)ηr||Ωh

,

where we used the definition of the entropy variables in the last line and used the induced operator Ωh-norm
for the Hessian matrix of the entropy function. It can be seen that there are two contributions to this
bound. There is one based on the model, specifically on the Hessian of the entropy, and one given by the
projection error of ηr on the tangent space Tur

M. As long as the entropy is a convex function at the mean
value θ, the contribution of the model-based term is bounded by a term involving the inverse of the smallest
eigenvalue of the entropy Hessian. We have little influence over this term. Specifically, this term can be
large when the entropy is close to being non-convex. We do have control over the projection error. The
magnitude of this term is controlled by the choice of reduced space. For a general reduced space constructed
to contain solution snapshots this term can be very large, since the columns of the Jacobian J can be close to
orthogonal to ηr while the standard nonlinear manifold ROM (21) works fine. In the linear case, Chan [27]
solved this problem by enriching the snapshot data to construct Φ with snapshots of the entropy variables.
This lowered the projection error contribution to the bound on εs since J = Φ in this case. However, for
the general nonlinear case, J is not the same as the reduced space itself and we can no longer construct
our reduced space to also contain the entropy variables to keep the projection error low. Instead, we need a
different approach and therefore we propose a novel method to which we refer as tangent space enrichment.

The key idea of tangent space enrichment is to construct an r+ 1-dimensional manifold M̂ ⊂ R
Nh from

the original r-dimensional manifold M by a ‘lifting’ operation. Consequently, we use this new manifold for
the ROM instead. This lifting operation is defined so that the original manifold M is a subset of the lifted
manifold M̂, i.e. M ⊂ M̂. Most importantly however, for all points ur ∈ M ⊂ M̂ the lifting operation is
constructed such that ηr ∈ Tur

M̂. This means that the entropy variable projection error is precisely zero
at the points contained in the old manifold when projecting ηr on the tangent space of the new manifold.
This assures that the entropy projection is accurate for the points ur ∈ M ⊂ M̂ when using tangent space
enrichment.

We motivate this approach over a more straightforward generalization of Chan’s snapshots enrichment
[27] method by the following. Nonlinear reduced spaces are often constructed iteratively by minimizing some
loss function. A nonlinear version of Chan’s enrichment method would require, for a given a, fitting ϕ(a)
to a snapshot uh whilst the Jacobian J(a) has a low entropy projection error εs. The construction of M
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Figure 3: A visualization of tangent space enrichment. The dark purple curve is the original manifold M, the light purple
region is a section of the enriched manifold M∗. M∗ is constructed by lifting points from ϕ(a) along lines in the direction of

η(ϕ(a)).

would therefore require including terms based on J in the loss function. This can be very expensive and
generally will not exactly embed the entropy variables in the tangent space at the appropriate points. As
will be discussed, our method requires no extra effort in constructing ϕ and contrary to the straightforward
approach exactly enriches the tangent spaces with the correct entropy variables.

Our novel tangent space enrichment is defined by the following parameterization for M̂:

ϕ̂(a, α) = ϕ(a) + η(ϕ(a))α, (27)

here ϕ : Rr → RNh is the parameterization of the original manifold M, a ∈ Rr are the r reduced coordinates
associated to the original parameterization ϕ and α ∈ R is the r+1-th reduced coordinate associated to the
lifting operation. As in remark 1, here we see another reason for the importance of non-dimensionalization.
Namely, on dimensional grounds the expression (27) does not make sense if ϕ and η are not suitably
normalized.

The new parameterization can be interpreted as follows. Given any point ϕ(a) ∈ M we generate new
points ûr ∈ M̂ by lifting the new points from the point ϕ(a) in the direction of η(ϕ(a)) by a distance
||ϕ̂(a, α)−ϕ(a)|| = ||η(ϕ(a))|| · |α|. Note that at α = 0 we do not lift the point at all, resulting in a point
at ϕ(a); in other words, the original manifold M is the set ϕ̂(Rr, α = 0). The lifting operation is visualized
in Figure 3. The Jacobian matrix of the new parameterization (27), whose columns span the tangent space
Tûr

M̂ of the lifted manifold M̂ at the point ûr ∈ M̂, is given by:

Ĵ(a, α) =
[

∂ϕ̂
∂a

∂ϕ̂
∂α

]

(28)

=
[(

I + α ∂η
∂u (ϕ(a))

)

J(a) η(ϕ(a))
]

,

where I ∈ R
Nh×Nh is the identity matrix and ∂η

∂u (ϕ(a)) =
∂2sh

∂u2 (ϕ(a)) � 0 is a sparse SPSD 2n− 1-diagonal
matrix containing components of the Hessian of the local entropy value with respect to the solution on each
diagonal. Note that the derivative with respect to the r + 1-th tangent space enrichment coordinate α is
exactly η(ϕ(a)). Furthermore, on the old manifold M associated to α = 0 the matrix ∂ϕ̂

∂a is equal the
original Jacobian J(a). At the points ϕ̂(a, α = 0) = ϕ(a) we have thus exactly enriched the tangent space
with the entropy variables ηr = η(ϕ(a)) at those points. This is the direct result of the lifting operation.
This can be seen from the enriched parameterization (27). Lifting a point from ϕ(a) by changing α while
keeping a constant, moves a point in the direction tangent to η(ϕ(a)). As a consequence η(ϕ(a)) appears
as a tangent vector in the enriched Jacobian (28).

Given the tangent space enrichment, the ROM is constructed in a similar fashion as in the previous
section, but using the enriched lifted manifold M̂. The r + 1-th tangent space enrichment coordinate α is
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simply treated as an additional reduced coordinate. The ROM thus takes the form:

d

dt

[

a

α

]

+ Ĵ
+
∆vf

∗
h(ˆ̃ur) = Ĵ

+
∆vDh(ˆ̃ur)∆i

ˆ̃ηr,

where:
ˆ̃ur = u(Ĵ Ĵ

†
η̂r),

and ˆ̃ηr = Ĵ Ĵ
†
η(ϕ̂(a, α)). Since the proof of entropy stability for our ROM is independent of the manifold

parameterization, this ROM is still entropy stable.

4. Rational polynomial manifolds

4.1. Background

In this article we are interested in systems that can exhibit strong spatial gradients that are moving in
time. Many existing data compression methods for reduced manifold construction are not well suited for
these types of systems. Linear data compression methods like proper orthogonal decomposition (POD) and
general reduced basis methods fail because the moving gradients imply that the data is often of very high
rank. This indicates that the data is not well represented in low-dimensional linear subspaces, which is the
fundamental assumption of linear approaches. Nonlinear data compression methods offer a potential solution
to this problem by instead compressing the highly nonlinear data on nonlinear reduced manifolds. In model
reduction different parameterizations have become popular, in particular the decoder part of autoencoder
neural networks [105, 106, 79, 72, 121, 37, 9, 31] and multivariate quadratic polynomials [8, 111, 17, 47, 66].
However, in the vicinity of strong gradients these nonlinear methods can suffer from oscillations [47]. These
oscillations may be difficult or impossible to remove. This is a problem for Galerkin projection-based ROMs
which can be sensitive to errors in the solution compression [23]. To accurately assess the performance
of our novel entropy stable manifold Galerkin ROM there is thus a need for nonlinear data compression
methods that are more capable of dealing with large and moving spatial gradients, particularly without
significant oscillations. Recently, neural networks with discontinuous activation functions have been proposed
[36], however training these networks can be cumbersome. Furthermore, registration based approaches
[116, 89] have been very effective, but have not yet been applied in the context of nonlinear manifold ROMs
similar to ours. In this research we will propose a novel reduced manifold parameterization method based
on rational polynomials, that is far less oscillatory around strong spatial gradients than the previously
mentioned methods (neural networks and quadratic approaches), but is still equally interpretable as the
recently proposed quadratic manifolds.

4.2. Pole-free rational quadratic manifolds

We now give a description of rational polynomial manifolds. A rational polynomial manifold is the
element-wise ratio of two polynomial manifolds:

ϕ(a) =

∑pnum

i=1 H i : a⊗i + uref
∑pden

i=1 G
i : a⊗i + 1

, (29)

here, Hi,Gi ∈ RNh×r×...×r are (i + 1)th-order tensors with the first axis of size Nh and i axes of length r,
a⊗i is the i-fold outer product such that for example (a⊗3)ijk = aiajak, H

i : a⊗i denotes summation of the
components of a⊗i and the components of slices along the first axis of H i, again as example

(

H3 : a⊗3
)

i
=

∑r−1
j,k,l=0

(

H3
)

ijkl
ajakal. Furthermore, we have uref ∈ RNh and we consider division of two vectors element-

wise. The constant vector in the denominator has been set to one without loss of generality. The expression
(29) generalizes polynomial manifolds [47, 8], in the sense that those are recovered by setting pden = 0. This
shows that rational polynomial manifold encapsulate a larger class of functions than polynomial manifolds.
By introducing a polynomial in the denominator and allowing it to rapidly and smoothly approach zero
for small changes in a we can obtain very fast and smooth increases in the function value of ϕ without
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oscillations. This gives us the opportunity to model steep gradients in the snapshot data which may be
present in the form of advected shocks. Since higher-order tensors can become quite expensive to deal with,
we restrict our attention to rational quadratic manifolds by setting pnum = pden = 2.

To compromise between efficiency and expressiveness we will take pnum = pden = 2. The i-th component
of the vector-valued function output ϕi(a) can then be written as:

ϕi(a) =
aTH2

ia+H1
ia+ (uref)i

aTG2
ia+G1

ia+ 1
, (30)

whereH2
i ,G

2
i ∈ R

r×r are the i-th slices along the first axes ofH2 and G2, respectively andH1
i ,G

1
i ∈ R

1×r

are the i-th rows of H1 and G1, respectively. Since the matrices are only used in quadratic forms, we can,
without loss of generality, assume H2

i ,G
2
i to be symmetric. An obvious concern with expressions of this

form is the occurrence of spurious poles, i.e. unwanted division by zero. We avoid this issue for the case
pnum = pden = 2 and all a ∈ Rr by constraining the quadratic form in the denominator to be positive
semi-definite and setting the linear term to zero:

G2
i � 0, G1

i = 0, ∀i ∈ {0, ..., Nh}.

It is easily seen that, in this case, the denominator is never less than 1. Consequently, spurious poles cannot
occur for any real a. Removing the linear term has not resulted in a significant loss in accuracy in our
numerical experiments. The full ϕ is then given as:

ϕ(a) =
H2 : [a⊗ a] +H1a+ uref

G : [a⊗ a] + 1
, Gi � 0 ∀i, (31)

since there is no linear term in the denominator we write G instead of G2. To construct manifold Galerkin
ROMs we will require the Jacobian matrix of this expression - see equations (21) and (28). The Jacobian
matrix is given by the following:

∂ϕ

∂a
=

2H2 · a+H1

(G : [a⊗ a] + 1)⊗ 1
−

[

H2 : [a⊗ a] +H1a+ uref

(G : [a⊗ a] + 1)
2 ⊗ 1

]

◦ (2G · a),

where the operation 2H2 ·a ∈ RNh×r indicates slice-wise matrix multiplication, i.e. for the i-th row it holds
that (2H2 · a)i = 2H2

ia, due to symmetry of H2
i ,Gi the order of axes is not relevant, division of matrices

is understood element-wise and ◦ is the Hadamard matrix multiplication operator.

4.3. Manifold construction

We will determine the coefficient tensors in (31) from data. Like for quadratic manifolds [8, 47], it
holds for rational quadratic manifolds that the coefficients in two different slices of the coefficient tensors
are independent, as can be seen in (30). Consequently, the coefficients can be determined purely from the
parametric and temporal behaviour of the data in the specific cell and solution variable associated to the
i-th component ϕi(a) of ϕ(a). The task of fitting a rational manifold thus reduces to fitting an expression
(30) to data for each cell and solution variable.

In the spirit of quadratic manifolds we will compress the snapshot data defined by:

X = [uh(t
0),uh(t

1), ...,uh(t
ns−1)] ∈ R

Nh×ns ,

where ns ∈ N is the number of snapshots, as the coefficients of their projection on the first r left singular
vectors of X given in Φ ∈ RNh×r. Following this we define A := (ΦTX)T ∈ Rns×r. We aim to find the
coefficients Gi,H

2
i ,H

1
i , (uref)i such that for all j = 0, ..., ns − 1 we have ϕi(aj) ≈ Xij , where aj is the j-th

row of A written as a column vector. Defining the i-th row of X as yi ∈ Rns , the optimization procedure
for the coefficients Gi,H

2
i ,H

1
i , (uref)i is formulated as:

Gi,H
2
i ,H

1
i , (uref)i = argmin

G∈Sr
+
,H∈Sr ,h∈Rr ,u∈R

∣

∣

∣

∣

∣

∣

∣

∣

yi −
(AH ◦A)1+Ah+ u

(AG ◦A)1+ 1

∣

∣

∣

∣

∣

∣

∣

∣

2

, (32)

15



though the sets Sr+ and Sr are convex subsets of Rr×r the objective function is non-convex due to the division
operation.

A popular approach is to linearize this nonlinear optimization problem [59, 3] by multiplying with the
denominator. This results in a convex semi-definite program which can be solved very efficiently with
e.g. interior point methods. However, the optimum value of this linearized problem is generally not the
same as the nonlinear problem (32). Iterative approaches that attempt to somehow refine the solution of
the linearized problem and that can potentially be supplemented with our semi-definite constraint exist
[59, 3, 53]. However, convergence to (local) minima of the nonlinear problem is generally not guaranteed,
nor is convergence in general [112, 60]. For this reason, we will stick to the fully nonlinear and expensive
optimization problem (32). Nonetheless, we believe that the linearized approach holds significant promise
and that it will be crucial for future work in order to scale the approach to larger meshes and datasets.
Finally, we will implement the semi-definite constraint in this fully nonlinear setting by optimizing for the
Cholesky decomposition of Gi = LiL

T
i [4]:

Li,H
2
i ,H

1
i , (uref)i = argmin

L∈Lr,H∈Sr ,h∈Rr,u∈R

∣

∣

∣

∣

∣

∣

∣

∣

yi −
(AH ◦A)1+Ah+ u

(AL ◦AL)1+ 1

∣

∣

∣

∣

∣

∣

∣

∣

2

, (33)

where Lr ⊂ Rr×r is the vector subspace of lower triangular r × r matrices. As initial guess we can either
use Li−1,H

2
i−1,H

1
i−1, (uref)i−1 if available and corresponding to the same solution variable, or otherwise

simply vectors or tensors consisting of “ones”. We will carry out the fitting procedure using the JAXFit
package [58] for GPU-accelerated nonlinear least squares solutions.

5. Numerical experiments

To show that our entropy stable manifold Galerkin ROMs satisfy appropriate semi-discrete entropy
inequalities we will perform numerical experiments on a range of one-dimensional nonlinear conservation
laws. We will carry out the experiments using the rational quadratic manifolds proposed in section 4. We
will also compare the ability of the rational quadratic manifolds to compress convection dominated data
to that of linear POD-based methods and quadratic manifolds [8, 66, 47]. We do not compare against
neural network based approaches [106, 79, 9] since in our experience they struggle with approximating
discontinuities, and require careful hyperparameter tuning to give reasonable results. The underlying FOM
discretizations will be the existing TeCNO schemes of [44], so that we will only mention some aspects of
the discretizations but for details we will refer to [44]. We will start with the inviscid Burgers equation in
subsection 5.1, then we will treat the shallow water equations in subsection 5.2 and finally we will treat the
compressible Euler equations with ideal thermodynamics in subsection 5.3. We test different aspects of the
ROM with the different test cases, an overview of the different test purposes has been provided in Table 1.

Experiment Purpose

Inviscid Burgers Manifold accuracy
Shallow water Entropy conservation properties
Compressible Euler Impact of entropy projection and tangent space enrichment

Table 1: Overview of numerical experiments.

The experiments have been implemented using the JAX library [15] in Python, which allows for automatic
differentiation to compute Jacobian matrices and, where possible, accelerated computing using an Nvidia
A2000 laptop GPU.

5.1. Inviscid Burgers equation

We will use this experiment mainly to highlight our proposed rational quadratic manifolds when compared
to existing (‘standard’) Galerkin ROMs on different types of manifolds. We will already include the entropy
stable ROM (25) here, but the focus on the role of entropy stability will be in the next test cases.
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The inviscid Burgers equation is given by:

∂u

∂t
+

∂

∂x

(

u2

2

)

= 0, (34)

with conserved variable u : Ω× [0, T ] → R. As continuous and discrete entropy we take [82]:

S[u] =
1

2

∫

Ω

u2dx,

and

Sh[uh] =
1

2
||uh||

2
Ωh
.

The reduced entropy functional follows in a straightforward fashion from the discrete entropy functional.
Using these specific entropies we have for the entropy variables:

η(u) = u.

Consequently, the manifold parameterization with TSE is given in the particularly simple form:

ϕ∗(a, α) = (1 + α) · ϕ(a).

An entropy conservative flux is given by [44]:

fi+1/2 =
u2i+1 + ui+1ui + u2i

6
,

and we use a local Lax-Friedrichs-type of entropy dissipation operator [82]:

Di+1/2(uh) = max(|ui+1|, |ui|).

We will discretize (34) on a domain Ω = T([0, L]) of length L = 1 using a numerical grid consisting of 300
cells. Discretization in time will be done using the classical Runge-Kutta 4 (RK4) method [50] with a time
step of size ∆t = 0.001. We will integrate in time until T = 1. Solution snapshots are captured after every
5 timesteps resulting in ns = 201. We perform two tests: in the first, we compress the data to a reduced
dimension of r = 15 for all manifolds, and in the second we compress the data to a reduced dimension such
that the reconstruction errors (to be defined later) are of the same order as the rational quadratic manifold
with r = 15. The initial condition is a simple offset sine wave:

u0(x) = sin(2πx) + 1.

The KnW decay (1) for this system is very slow as is evident from the normalized singular values depicted
in Figure 4. Defining the relative information content (RIC) as in [76] we have RIC ≈ 99.5% for r = 15.

We will first compare the reconstruction accuracy of our proposed rational quadratic manifold to existing
quadratic manifold [8] and POD linear [109] manifold approaches for the solution data of the FOM with
r = 15. To do this we will save the matrix of generalized coordinates A = ΦTX ∈ R

r×ns associated to the
snapshots in X . Note that these coordinates form the reduced representation for all manifolds since all of the
tested manifolds are constructed from the POD compression of the data. In turn we will try to reconstruct
the snapshots in X from their reduced representations in A. We will construct the quadratic manifold as in
[8] with a manually determined regularization coefficient λ = 0.5 (α in (27) of [8]) and the rational manifold
using the fully nonlinear curve-fitting approach outlined in the previous section. In Figure 5 we display the
reconstruction in addition to the original data using an x − t plot. Furthermore, in Figure 6 we plot the
local error in space–time defined, with some abuse of notation, as:

εxt = ϕ(A) −X.
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Figure 6: Space–time errors εxt of the reconstructions.

tfit tonline εmax
xt

entropy stable rational quadratic (r = 15) 1851 s 7.01 s 3.36 · 10−3

rational quadratic (r = 15) 1851 s 6.74 s 3.36 · 10−3

POD linear (r = 15) 0.107 s 0.543 s 0.675
POD linear (r = 160) 0.107 s 0.622 s 2.61 · 10−3

quadratic (r = 15) 0.964 s 6.14 s 0.456
quadratic (r = 150) 122 s 121 s 4.70 · 10−3

Table 2: Accuracy and computational cost for fitting Burgers solution with different manifold parameterizations

It can be seen that for r = 15, the reconstruction accuracy of both the quadratic as POD linear manifold
is poor, whereas the reconstruction of the rational quadratic manifold is visually nearly identical to the data.
Indeed, the largest local error of the rational quadratic manifold is at most approximately 0.003 which is
two orders of magnitude lower than the largest errors of the quadratic and linear manifolds (approximately
0.4 and 0.6 respectively). The sources of error for the linear and quadratic manifolds are predominantly
oscillations around the moving shock discontinuity as can be seen in Figure 6. This shows the poor perfor-
mance of these methods for such problems. The rational quadratic manifold also oscillates around the shock,
but with a much smaller amplitude, indicating that it is better-suited for shock-dominated problems. The
accuracy of the rational quadratic manifold is much higher than the quadratic and POD linear manifolds.

We note that the increased accuracy comes at the cost of a slow fitting procedure. The precise fitting
times and maximum absolute space-time errors, εmax

xt := maxi,j |εxt|i,j , have been displayed in Table 2.
When we construct the POD linear manifold and quadratic manifold to an accuracy of εmax

xt ≈ 3 · 10−3

we see that we require approximately r = 160 and r = 150, respectively. The reconstructions are given in
Figure 7 and the largest space–time errors εxt are O(4 · 10−3). The changes in fitting time have also been
denoted in Table 2. A large increase can be observed for quadratic manifolds, while the linear POD stays
constant as the implementation calculates all ns singular vectors at once.

We continue to consider the ROM performance and accuracy in more detail. We compare the rational
quadratic manifold ROM in entropy stable (25) (ES-ROM) and generic (21) (RQ-ROM) form to a linear
manifold POD-Galerkin ROM (L-ROM) and a quadratic manifold Galerkin ROM (Q-ROM). We will make
one comparison of the ROMs using the previously obtained manifolds with r = 15 and another comparison
where r is chosen such that each manifold has approximately the same space–time reconstruction error
εmax
xt ≈ 3 · 10−3. The initial conditions for the simulations with r = 15 will be taken as the first column of
the matrix A = ΦTX and the entropy stable form of the rational quadratic ROM will have α = 0 at t = 0.
For the manifolds that have approximately the same accuracy we will take the first columns of the matrices
Ar = ΦT

r X ∈ Rr×ns with r = 160 and r = 150 for the linear and quadratic manifolds, respectively. Here,
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Figure 7: Reconstructions for εmax
xt ≈ 3 · 10−3 in space-time plots.

Φr ∈ RNh×r are the r first singular vectors of X . We plot the temporal evolution of the total error norm:

εu(t) := ||uh(t)− ur(t)||Ωh
,

and the ideal linear projection error (L-ideal):

εproj(t) := ||(I −Πrlin)uh(t)||Ωh
,

where Πrlin : RNh → V projects on the rlin-dimensional reduced space of the respective linear ROMs in
the different experiments. The ideal projection error forms a lower bound for the linear POD-Galerkin
ROM error. To measure computational performance we will track the runtimes of the online phases which
we denote tonline. The results for the simulations with constant r are shown in Figure 8 and the results
for approximately constant space–time error are given in Figure 9. We also show the spatial profile of the
solution at t = T as predicted by the different ROMs and different manifolds in Figure 10 for constant r and
Figure 11 for constant space–time error, respectively. The rational manifold ROMs clearly outperform the
others in case of constant r and the differences between the results of the rational manifolds themselves are
nearly zero. Steep increases in errors occur for all ROMs upon formation of the shock which indicates this
is indeed a difficult instant of the flow for the reduced manifolds to fit to the data. For the simulation with
manifolds with constant error the performance of the ROMs is more equal, with the linear and quadratic
ROMs only suffering of some oscillations in the spatial profile. The oscillations occur at moments when the
ideal projections error εproj is also oscillatory in time. The rational quadratic manifolds do not suffer from
oscillations. Because of the large reduced spaces required to obtain approximately the same reconstruction
errors as the rational manifolds, the linear and quadratic manifold ROMs have more expensive online phases
than when tested at constant r. This is especially notable for quadratic manifolds where computing the
Jacobian and its Moore-Penrose pseudoinverse contribute heavily to the increase in cost. At constant r the
quadratic manifold ROM and the rational manifold ROMs are nearly equally fast showing that the Jacobian
of the quadratic manifold parameterization and of the rational manifolds with and without enrichment are
nearly equally expensive to compute. From this experiment we conclude that at the cost of a slower fitting
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process rational quadratic manifolds can significantly outperform quadratic and linear POD manifolds in
terms of reconstruction accuracy for the same number reduced space dimensions.
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Figure 8: Total error evolution for the ROMs εu(t) and the
ideal linear projection error εproj(t) for reduced manifolds with

constant r = 15.
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Figure 9: Total error evolution for the ROMs εu(t) and the
ideal linear projection error εproj(t) for reduced manifolds with

approximately constant εmax
xt .
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Figure 10: Spatial profile ur(t) for the ROMs at t = T for
reduced manifolds with constant r = 15.
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5.2. Shallow water equations

This experiment will mainly focus on the entropy conservation and stability aspect of our proposed
ROM on rational manifolds. We show that our novel entropy stable ROM satisfies the reduced total entropy
estimate (26). To this end we will carry out experiments with the shallow water equations. We use the
shallow water equations due to their nontrivial entropy function, which will be defined later, as compared to
the Burgers equation. We will perform one experiment where discontinuities appear in the solution and one
where the solution remains smooth during the time interval of interest. In the smooth case we can run the
FOM and ROMs without entropy dissipation operators. As a result we can analyse the entropy conservation
properties of the ROM. In the discontinuous case we will analyse the behaviour of the reduced entropy as
compared to the FOM entropy.
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In the following we briefly introduce the shallow water equations and the entropy stable numerical scheme
used to obtain the FOM. The shallow water equations are given by:

∂

∂t

[

h
hu

]

+
∂

∂x

[

hu
hu2 + 1

2gh
2

]

= 0, (35)

with conserved variables h : Ω×[0, T ]→ R and hu : Ω×[0, T ]→ R representing the local water column height

and the momentum per unit mass, respectively. We collect the conserved variables in a vector u := [h, hu]T .
The constant g ∈ R+ is the positive real gravitational acceleration, we assume the equations are normalized
such that g = 3, which gave challenging test cases for our spatial domain size and initial conditions. As
continuous and discrete total entropy we take the common choice [43]:

S[u] =

∫

Ω

1

2

(

u22
u1

+ gu21

)

dx,

leading to:

Sh[uh] =
∑

i

∆xi
hiu

2
i + gh2i
2

,

from which the reduced total entropy follows. This choice leads to the following entropy variables:

η(u) =

[

gu1 −
1
2

(

u2

u1

)2

u2

u1

]

,

where u1 = h and u2 = hu, and inverse function:

u(η) =
2η1 + η22

2g

[

1
η2

]

.

An entropy conservative flux is given by [43, 44]:

f i+1/2 =

[

hi+1/2ui+1/2

hi+1/2 · u
2
i+1/2 +

1
2gh

2
i+1/2

]

,

where ai+1/2 = 1
2 (ai+1 + ai) indicates taking the average of neighbouring volume based quantities. As

entropy dissipation operator we take the diffusion operators of Roe type (see [44]) with the eigenvalues and
eigenvectors of the flux Jacobian evaluated at the arithmetic average of neighbouring values. We obtain
a second accurate entropy dissipation operator using the entropy stable total variation diminishing (TVD)
reconstruction based on the minmod limiter (see [44]).

We will discretize (35) for both experiments on a domain Ω = T([−L,L]) with L = 1 using a numerical
grid consisting of 300 cells. Discretization in time will be done using the RK4 method with a time step
of size ∆t = 0.0005. We will integrate the discontinuous experiment in time until T = 1 and the smooth
experiment until T = 0.5. Solution snapshots are captured every 5 timesteps resulting in ns = 401 and
ns = 201 for the discontinuous and smooth experiment, respectively. For the discontinuous case we will be
interested in a dam break problem, this means we will take as initial condition:

h0(x) =

{

1.5 |x| < 0.2,

1 |x| ≥ 0.2,
(hu)0(x) = 0.

The smooth case will consist of a quiescent water level with a small perturbation, so that the initial condition
is given by:

h0(x) = 1 + 0.1 · exp
(

−100 · x2
)

, (hu)0(x) = 0.

The reduced space dimension is taken at r = 15 for both experiments.
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Figure 12: x− t plot of solution approximation by the ROMs and FOM for the dam break problem.

Although it is important that entropy is appropriately conserved or dissipated, accuracy with respect to
the FOM is also required for an effective ROM. Hence, before we analyse the conservation properties of our
proposed ROM, we compare the FOM solution approximation quality of our entropy stable ROM and the
generic ROM. We will provide space–time plots of both the discontinuous and smooth experiments. The
discontinuous case is given in Figure 12 and the smooth case is given in Figure 13. Visually, both ROMs
closely resemble the FOM in both cases. Furthermore, it can be seen from the sharp color gradients that
the dam break problem develops shocks. To emphasize these are difficult cases for linear model reduction
approaches we also plot the normalized singular value decay in Figure 14 and Figure 15 for the dam break
and water height perturbation problems, respectively. For the dam beak problem the decay is very slow and
the water height perturbation decays moderately slow, indicating slow and moderately slow Kolmogorov
n-width decay (1).

We will analyse the entropy conservation and stability properties of the entropy stable (ES-ROM) and
generic (RQ-ROM) rational manifold ROMs. To this end, we define the entropy error:

εS(t) := |Sh[uh(t)]− Sr[a(t)]| ,

giving the absolute instantaneous deviation of the entropy of the ROM from the entropy of the FOM.
Similarly we will define the entropy conservation error:

εS0
(t) := |Sr[a(0)]− Sr[a(t)]| ,
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Figure 13: x− t plot of solution approximation by the ROMs and FOM for the water height perturbation problem.
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Figure 14: Normalized singular values of the shallow water
equations data for the dam break problem.
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Figure 15: Normalized singular values of the shallow water
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which measures the departure from the initial entropy and thus the error in exact conservation of the entropy
in time. Since our models are semi-discretely entropy stable we have to monitor the instantaneous time rate
of change of reduced total entropy (26) to verify that our proposed theoretical framework works. Hence, we
will analyse the contribution to the total entropy production (22) of two separate parts of the ROM (25),
namely the entropy conserving part:

(

dSr

dt

)

cons

:= −η̃Tr ∆vf
∗
h(u(η̃r)),

which should equal zero to machine precision, and the entropy dissipative part:
(

dSr

dt

)

diss

:= η̃T
r ∆vDh(ũr)∆iη̃r,

which should always be negative or zero. Similar quantities can be defined in an obvious manner for the
generic ROM without entropy projection. In the results given by Figure 17 and Figure 19 we have used
symmetric log plots which are linear around zero so that negative values can also be plotted. This allows
us to see when a ROM is unphysically producing entropy i.e.

(

dSr

dt

)

cons
,
(

dSr

dt

)

diss
> 0.
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Figure 16: The evolution of the reduced total entropy Sr of the entropy stable and generic ROM compared to the entropy
of the FOM and the evolution of the entropy error εS of the entropy stable and generic ROM for the dam break problem.

The results of the discontinuous dam break experiment are displayed in Figure 16 and Figure 17. The
results confirm that the proposed entropy stable framework works as expected. This is the case since the
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Figure 17: The entropy production
(

dSr

dt

)

cons
of the conservative part of the ROMs and the entropy production

(

dSr

dt

)

diss
of the dissipative part of the ROMs for the dam break problem.

entropy production of the conservative part is zero to machine precision for the entropy stable ROM while
the entropy dissipative part does not change sign and is indeed negative. The entropy production of the
conservative part of the generic ROM is orders of magnitude larger than that of the entropy stable ROM.
An important point is that large portions in time of the entropy production by the entropy conservative part
are positive (instead of zero). This indicates physically incorrect behaviour as entropy is being produced.
The contribution of the entropy dissipation operator from the generic ROM is erratic. Moreover, it is also
occasionally positive showing that this part of the ROM is also sometimes producing physically incorrect
results. The temporal evolution of the entropy error, εS , is also given in Figure 16. The temporal evolution is
approximately constant in time for the entropy stable ROM and εS is small. This indicates that the evolution
of the entropy behaves roughly the same as the FOM and is off mainly due to an error in representation
of the initial condition and of subsequent FOM solutions. The general behaviour of the entropy error of
the generic ROM is erratic and shows that the entropy of the generic ROM oscillates around the values
predicted by the FOM. This can also be seen in the temporal evolution of the reduced entropy as in the top
panel of Figure 16.

The results of the smooth experiment are shown in Figure 18 and Figure 19. As there is no entropy
dissipation present in the FOM or ROM the entropy should remain approximately constant (exact conser-
vation is difficult since RK4 is not an entropy conservative time-integrator [84, 85, 118]). For our entropy
stable ROM this is indeed the case as can be seen from the bottom panel of Figure 18, the entropy conser-
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Figure 18: The evolution of the reduced total entropy Sr of the entropy conserving and generic ROM compared to the
entropy of the FOM and the evolution of the entropy error εS0

of the entropy conserving and generic ROM for the water
height perturbation problem.

vation error, εS0
, does not exceed O(10−9). The entropy of our entropy stable ROM stays almost exactly

constant. The error in entropy with respect to the FOM is almost entirely dictated by the initial error
εS(0) = |Sh[uh(t)]− Sr[a(0)]|. The generic ROM does not conserve entropy and its entropy conservation
error behaves erratically. This manifests itself in clear deviations from the FOM entropy which can be
observed in the top panel of Figure 18. For completeness we also plot the entropy production of the con-
servative part of the spatial discretization of the ROM

(

dSr

dt

)

cons
in Figure 19. Again, it can be seen that

entropy is conserved up to machine precision by the spatial discretization of our entropy stable ROM where
this is not the case for the generic ROM. Additionally, the generic ROM produces entropy during several
intervals of the simulation and is therefore not physically correct. From both experiments, we conclude that
our novel entropy stable ROM ensures physically correct behaviour, whereas this cannot be assumed for the
generic manifold Galerkin ROM.

5.3. Compressible Euler equations

The focus of this experiment is on the effect of the entropy projection and tangent space enrichment on
the accuracy of the ROM. We will be interested in particular in the benefit of tangent space enrichment
in the reconstruction accuracy of the entropy projection. In addition, we will analyse the error that can
be incurred with respect to the FOM by the introduction of an entropy projection step in the ROM as
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we propose. A good case to study for this experiment are the compressible Euler equations. Due to their
nontrivial entropy functional and corresponding entropy variables it is not expected that without extra
measures, like TSE, the entropy projection will be accurate.

A short introduction to the compressible Euler equations now follows. The compressible Euler equations
are given by:

∂

∂t





ρ
ρu
E



+
∂

∂x





ρu
ρu2 + p
(E + p)u



 = 0, (36)

where ρ : Ω× [0, T ] → R is the density, ρu : Ω× [0, T ] → R is the momentum and E : Ω× [0, T ] → R is the

total energy. We gather these conserved variables in a vector u = [ρ, ρu,E]T . Furthermore, we assume the
equations are suitably normalized so that they are dimensionless. The pressure p : Rn → R is related to the
conserved variables through an equation of state, representing the thermodynamics at hand:

p(u) =

(

u3 −
1

2

u22
u1

)

(γ − 1), (37)

where γ ∈ R+ is the specific heat ratio, which we take at the standard choice γ = 1.4. The thermodynamic
quantities, i.e. pressure, density and total energy are necessarily nonnegative. Throughout the experiments
we will assume our FOM and ROMs respect this condition, assuring this condition mathematically may be
the subject of future work. The entropy functional of interest will be taken as:

S[u] =

∫

Ω

−u1σ

γ − 1
dx,

where σ : Rn → R is the specific entropy defined as a function of the conserved variables like:

σ(u) = ln

(

p

uγ1

)

,

where p is evaluated using (37). Different entropies are also possible, see for instance [54]. In turn, this gives
rise to the discrete total entropy functional:

Sh[uh] =
∑

i

∆xi
−ρiσi
γ − 1

.
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The associated entropy variables are given by:

η(u) =







γ−σ
γ−1 −

u2
2

2u1p

u2/p
−u1/p






,

and consequently the inverse of the entropy variables is:

u(η) = exp

(

γ

1− γ
−

[

η1 −
1

2

η22
η3

])







(−η3)
1

1−γ

−η2(−η3)
γ

1−γ

(

1
2η

2
2 −

η3

γ−1

)

· (−η3)
2γ−1

1−γ






.

Considering −η3 = ρ/p is generally exponentiated to some noninteger power we see the importance of
positivity of the thermodynamic variables. As in [44], we will use the entropy conserving numerical flux by
Ismail and Roe [65] for which we define the following variables:

z =





z1

z2

z3



 =

√

ρ

p





1
u
p



 ,

finally an entropy conservative flux is given by f i+1/2 =
[

F 1
i+1/2 F 2

i+1/2 F 3
i+1/2

]T
:

F 1
i+1/2 = z2i+1/2 · (z

3)lni+1/2,

F 2
i+1/2 =

z3i+1/2

z1i+1/2

+
z2i+1/2

z1i+1/2

F 1
i+1/2,

F 3
i+1/2 =

1

2

z2i+1/2

z1i+1/2

(

γ + 1

γ − 1

(z3)lni+1/2

(z1)lni+1/2

+ F 2
i+1/2

)

,

where aln denotes the logarithmic mean, which is defined as:

alni+1/2 :=
ai+1 − ai

ln ai+1 − ln ai
.

Computation of the logarithmic mean is generally not numerically stable when ai+1 ≈ ai, but a popular
algorithm which we will use to deal with this is also given in [65]. There is an abundance of alternative
entropy conservative numerical fluxes that can be used [101, 29, 57, 117, 75, 120] some of which also conserve
kinetic energy in the sense of Jameson [67]. As an entropy dissipation operator we take the Roe-type diffusion
operator [44] where the eigenvalues and vectors of the flux Jacobian are evaluated at the arithmetic average
of the neighbouring conserved variables. As with the shallow water equations, we obtain a second accurate
entropy dissipation operator using the entropy stable total variation diminishing (TVD) reconstruction based
on the minmod limiter [44].

For the experiment we will consider a periodic modification of the famous Sod’s shock tube [114], which
avoids the need to implement entropy stable boundary conditions. We will discretize (36) on a domain
Ω = T([0, L]) with L = 1 on a numerical grid of 250 cells. The number of cells is relatively small to facilitate
a relatively short manifold learning process. Integration of the ROM in time will be carried out using the
RK4 time integrator with a time step size ∆t = 0.0001. We will integrate in time until T = 0.5 (beyond the
typical time used for this experiment), resulting in interesting shock-rarefaction interactions. Again, we will
capture snapshots after every 5 timesteps so that we have ns = 1001. Our periodic modification of Sod’s
shock tube experiment has an initial condition given by:

ρ0(x) =

{

1 0.25 < x < 0.75

0.125 elsewhere
u0(x) = 0, p0(x) =

{

1 0.25 < x < 0.75

0.1 elsewhere
,
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Figure 20: Normalized singular values of the compressible Euler equations data for the modified Sod’s shock tube problem.

where the conserved variables (ρ, ρu,E) are calculated from these primitive variables using the equation of
state (37) and the definition of momentum. We take a reduced space dimension r = 15.

We will be primarily interested in the entropy projection and tangent space enrichment during this
experiment, but for completeness we also plot the ROM approximations to the FOM solution and the
singular values. The singular values are displayed in Figure 20 and the ROM approximations are shown
using x − t plots in Figure 21. A relatively slow decay of singular values can be observed in Figure 20,
hence linear model reduction methods are likely to not perform well for this problem. The FOM solution
is approximated well by our novel entropy stable manifold Galerkin ROM. The solution approximations of
the ROM as displayed in Figure 21 are nearly identical to the FOM.

We are interested in the accuracy of the entropy projection with and without tangent space enrichment.
Accordingly, we introduce a metric to measure this accuracy. Since we are not only interested in comparing
errors, but also to get an idea of the absolute size of the error we specifically introduce the relative entropy
projection error:

εΠ(t) :=
||ur(t)− u(ΠTMηr(t))||Ωh

||ur(t)||Ωh

,

measuring not only how far the entropy projection is from the identity mapping as with the entropy projection
error εs of subsection 3.3, but also the size of the error εs relative to the approximated value ur. We will
plot this value for two ROM simulations of the compressible Euler equations with an entropy projection,
where one has an enriched tangent space and the other not. The results are provided in Figure 22. The
entropy projection error with TSE can be seen to be a very small fraction of the norm ||ur(t)||Ωh

, indicating
minimal impact on the accuracy of the ROM given it is well-conditioned. In contrast, the ROM without
TSE instantly produces NaN values and could therefore not be included in Figure 22. To obtain a further
comparison we plot the spatial profiles of the projected entropy variables at two selected moments tp ∈ R+

in time, namely tp ∈ {0.1, 0.5}. To have a meaningful comparison, i.e. one where we are not projecting
NaN values to start with, we calculate the entropy variables from the stable ROM with enriched tangent
space. Furthermore, we use the the generalized coordinates ap = ΦTXp to compute the tangent space basis
for the ROM without TSE. The results are shown in Figure 23 and Figure 24. Very poor reconstruction
of entropy variables can be observed for the ROM without TSE, whereas with TSE the reconstruction is
accurate at both moments. From Figure 23 and Figure 24 the NaN values in Figure 22 can be explained by
the projection of the entropy variables taking unphysical values (positive η3). From this we conclude that
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Figure 21: x− t plot of solution approximation by the entropy stable ROM compared to the FOM for the modified Sod’s
shock tube problem.

tangent space enrichment or any other manner of assuring the accuracy of the entropy projection is vital
for a properly functioning ROM when using an entropy projection.

In applying the tangent space enrichment framework, we rely on the artificial TSE coordinate α staying
small (α ≪ 1) during simulations. If this is not the case we cannot assure that the reduced space can accu-
rately represent the solution nor that the local tangent space can accurately represent the FOM dynamical
system duh

dt at that point. The reason for this being that the enriched manifold parameterization ϕ̂ and its

Jacobian matrix Ĵ are no longer close to the original parameterization ϕ and Jacobian J which are accurate
by assumption. To verify this is indeed not the case we will monitor the value of α throughout a simulation
of the compressible Euler equations. The results are shown in Figure 25. We have also plotted the error
εu of the ROM with entropy projection and tangent space enrichment and of a generic manifold Galerkin
ROM for reference in Figure 26. It can be seen in Figure 25 that the value of α remains small around
O(10−5). Consequently, the original manifold parameterization ϕ and Jacobian J are well-approximated

by their enriched counterparts ϕ̂ and Ĵ . It can be seen in Figure 26 that this is, in fact, the case, as the
errors of the ROM differ by at most O(10−5) and evolve very similarly. Hence, we conclude that the entropy
projection step, introduced to obtain an entropy stable framework, is not detrimental to the accuracy of the
ROM, provided that an enriched tangent space is used.
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Figure 23: Entropy variable ηr and conserved variable ur approximation by entropy projection with and without TSE at
tp = 0.1.
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Figure 24: Entropy variable ηr and conserved variable ur approximation by entropy projection with and without TSE at
tp = 0.5.
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Figure 25: Value of the artificial TSE coordinate α throughout a simulation of the modified Sod’s shock tube experiment.
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Figure 26: Value of the ROM error εu throughout a simulation of the modified Sod’s shock tube experiment.

6. Conclusion

In this article we have proposed a method to construct nonlinear manifold Galerkin reduced order
models (ROMs) in such a way that the important total entropy functional of the ROM approximation is
appropriately conserved or dissipated. This is a crucial concept in obtaining stable and physically admissible
ROM solutions. In particular, we have focused on systems of one-dimensional nonlinear conservation laws.
Correct semi-discrete entropy estimates upon orthogonal projection were obtained for these systems by
evaluating the projected system not at the current state, but at its entropy projection. This was proposed
earlier for linear ROMs and extended in this work to nonlinear manifold ROMs.

The entropy projection of the state is obtained by transforming conservative variables to entropy variables,
consequently projecting these on the tangent space of the reduced manifold and finally transforming back
to conserved variables. To assure accuracy, it is important that the entropy projection is as close as possible
to the identity mapping. This is generally not the case for general nonlinear reduced spaces and hence
we have proposed the method of tangent space enrichment (TSE). With TSE the manifold is lifted along
an additional dimension parameterized by a new coordinate. This coordinate direction is constructed to
linearly extend in the direction of the local entropy variables, so that the tangent space spans the entropy
variable at least approximately given the absolute value of the TSE coordinate. Accordingly, the entropy
projection error will stay small.

We have tested our proposed framework on several nonlinear conservation laws from fluid dynamics. We
verified that the entropy estimates are satisfied (semi-discretely): the projection of entropy-conserving flux
differences produces no total entropy and the projection of entropy dissipative terms dissipates total entropy.
This is in contrast to the generic manifold Galerkin framework which leads to production of entropy in our
numerical experiments, which is physically incorrect. We have also shown that the introduction of the
artificial TSE coordinate is vital for the accuracy of the entropy projection and leads to minimal decreases
in accuracy.

We have also for the first time generalized the recently proposed quadratic manifolds to rational quadratic
manifolds. We have suggested a framework to find the coefficients of the rational quadratic manifolds based
on a nonlinear curve fitting approach. We have also formulated the rational quadratic polynomials such
that they do no not have real poles. This was achieved through semi-definite constraints, avoiding division
by zero for any point in the reduced space. Numerical experiments on the inviscid Burgers equation have
shown the increased performance of these rational quadratic manifold parameterizations as compared to
existing quadratic manifold parameterizations and linear methods.
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In future work, two challenges need to be tackled to make the approach computationally efficient: (i) we
need a faster way to fit the rational quadratic manifolds and (ii) we need an entropy-stable hyperreduction
approach. The former can possibly be achieved through linearization and iterative techniques combined
with better choices of generalized coordinates [110], whereas the latter could be achieved by adapting the
constrained optimization formulation that we proposed for energy-conserving systems in [73]. In addition,
the framework would benefit from extension with an entropy-stable time integration method and entropy-
stable treatment of boundary conditions.
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