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We develop the theory of hypothesis testing based on the
e-value, a notion of evidence that, unlike the p-value, al-
lows for effortlessly combining results from several studies
in the common scenario where the decision to perform a
new study may depend on previous outcomes. Tests based
on e-values are safe, i.e. they preserve Type-I error guaran-
tees, under such optional continuation. We define growth-
rate optimality (GRO) as an analogue of power in an op-
tional continuation context, and we show how to construct
GRO e-variables for general testing problems with compos-
ite null and alternative, emphasizing models with nuisance
parameters. GRO e-values take the form of Bayes factors
with special priors. We illustrate the theory using several
classic examples including a one-sample safe t -test and the
2 × 2 contingency table. Sharing Fisherian, Neymanian and
Jeffreys-Bayesian interpretations, e-values may provide a
methodology acceptable to adherents of all three schools.
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1 | INTRODUCTION AND OVERVIEW

We wish to test the veracity of a null hypothesis H0, often in contrast with some alternative hypothesis H1, where
both H0 and H1 represent sets of distributions on some given sample space. Our theory is based on e-test statistics.
These are simply nonnegative random variables that satisfy the inequality:

for all P ∈ H0: EP [E ] ≤ 1. (1)

We refer to e-test statistics as e-variables, and to the value they take on a given sample as the e-value, emphasizing
that they are to be viewed as an alternative to, and in many cases an improvement of, the classical p-value. Note that
large e-values correspond to evidence against the null: for given e-variable E and 0 ≤ α ≤ 1, we define the threshold
test corresponding to E with significance level α , as the test that rejects H0 iff E ≥ 1/α . We will see, in a sense to be
made more precise, that this test is safe under optional continuation with respect to Type-I error.

Motivation
p-values and standard null hypothesis testing have come under intense scrutiny in recent years (??). e-variables and
safe tests offer several advantages. Most importantly, in contrast to p-values, e-variables behave excellently under
optional continuation, the highly common practice in which the decision to perform additional tests partly depends on
the outcome of previous tests. They thus seem particularly promising when used in meta-analysis (? provides a first
such ‘ALL-IN’ meta-analysis; see also (?)). A second reason is their enhanced interpretability: they have a very concrete
(monetary) interpretation as ‘evidence against the null’ which remains valid even if one dismisses concepts such as
‘significance’ altogether, as recently advocated by ?. A third is their flexibility: as we show in this paper, e-variables
can be based on Bayesian prior knowledge, on earlier data, but also on minimax performance considerations, in all
cases preserving frequentist Type I error guarantees.

Overall Contribution and Contents
Although the concept is much older (Section 7), the interest in e-values and the related test martingales has exploded
over the last four years (??????). In this paper, we further develop the theory of e-values, by providing general op-
timality criteria and show how to design e-variables that satisfy them. We do this on the basis of four ever more
general versions of a single novel theorem, Theorem 1. In its first incarnation, in Section 2, Theorem 1 already tells us
that one can design nontrivial, useful e-variables for a wide class of testing problems with composite null and alterna-
tive. This first instance relies on using a priorW1 on the alternative H1. The ensuing e-variables, while guaranteeing
frequentist Type-I error control, will have a GRO (growth-rate optimality) property under W1. This GRO e-variable
will be a Bayes factor with a special prior on the null. More general versions of the theorem allow us to construct
e-variables when no prior on H1 is available. These satisfy either a direct worst-case optimality criterion (GROW) or
a relative one (REGROW). In our example applications we restrict ourselves to classical testing scenarios such as 1-
dimensional exponential families, the 2×2 contingency table, and the t -test. Importantly, the latter two have nuisance
parameters and the GRO approach provides a generic methodology for dealing with them. For the t -test setting, GRO
e-variables turn out to be Bayes factors based on the right Haar prior, as known from objective Bayes analyses (?). For
the 2 × 2-setting, GRO e-values do not correspond to standard Bayes factors.

We then, in Section 5 and 6, investigate optional continuation, stopping and GRO in more detail, and we assess
how competitive the e-variableswe designed are compared to classicalmethods in terms of the amount of data needed
before a certain desired power or growth rate can be reached. The final three sections put our work in context. We
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provide a historical overview of e-value related work in Section 7, critically discuss GRO in Section 8, and then, in
Section 9, taking a step back, we come to the inescapable conclusion that e-variables unify and correct ideas from
the three main paradigms of testing: Fisherian, Neyman-Pearsonian and Jeffreysian. But first, in the remainder of
this introduction, we explain the three main interpretations of e-variables (Section 1.1), we briefly introduce our main
theorem (Section 1.2) and, in Section 1.3, we explain the main advantage of e-variables over p-values in terms of
optional continuation. We claim no technical novelty for this part, which mainly restates and reinterprets existing
results1. We defer to the appendices all longer proofs and details that would distract from the main story.

1.1 | The three main interpretations of e-variables

1. First Interpretation: Gambling
The first and foremost interpretation of e-variables is in terms ofmoney, or, more precisely, Kelly (?) gambling. Imagine
a ticket (contract, gamble, investment) that one can buy for 1$, and that, after realisation of the data, pays E $; onemay
buy several and positive fractional amounts of tickets. (1) says that, if the null hypothesis is true, then one expects
not to gain any money by buying such tickets: for any r ∈ Ò+, upon buying r tickets one expects to end up with
rE[E ] ≤ r $. Therefore, if the observed value of E is large, say 20 = 1/0.05, one would have gained a lot of money
after all, indicating that something might be wrong about the null.

2. Second Interpretation: Conservative p-Value, Type I Error Probability
Recall that a (strict) p-value is a random variable p such that for all 0 ≤ α ≤ 1, all P0 ∈ H0,

P0 (p ≤ α ) = α . (2)

A conservative p-value is a random variable for which (2) holds with ‘=’ replaced by ‘≤’. There is a close connection
between (small) p- and (large) e-values:

Proposition 1 For any given e-variable E , define p[e] := 1/E . Then p[e] is a conservative p-value. As a consequence, for
every e-variable E , any 0 ≤ α ≤ 1, the corresponding threshold-based test has Type-I error guarantee α , i.e. for all P ∈ H0,

P (E ≥ 1/α ) ≤ α . (3)

Proof (of Proposition 1)Markov’s inequality gives P (E ≥ 1/α ) ≤ αEP [E ] ≤ α .

While reciprocals of e-variables thus give a special type of conservative p-values, reciprocals of standard p-values
satisfying (2) are by no means e-variables; if E is an e-variable and p is a standard p-value, and they are calculated on
the same data, then we will usually observe p ≪ 1/E so with e-values we need more extreme data in order to reject
the null (see Section 6 for a nuanced analysis and Section 7 for more on e-p conversions).

Combining 1. and 2.: Optional Continuation
Proposition 2 below shows that multiplying e-variables E (1) , E (2) , . . . for tests based on respective independent sam-
ples Y(1) , Y(2) , . . . (with each Y(j ) being the batch of outcomes for the j -th test), gives rise to new e-variables, even if
the decision whether or not to perform the test resulting in E (j ) was based on the value of earlier test outcomes
E (j −1) , E (j −2) , . . . As a result (Corollary 1), the Type I-Error Guarantee (3) remains valid even under this ‘optional

1Since the first version of the present paper appeared on arXiv, various subsets of these results have been widely discussed in various recent papers, but we
still re-state them here to keep the paper self-contained.
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continuation’ of testing. Just as importantly, in contrast to p-values, e-variables satisfy an ‘optional continuation prin-
ciple’: whether an observed e-value is valid or not does not depend on whether or not you would have performed an
additional study and gathered additional evidence in situations that did not occur.

An indication that something like this might be true is immediate from our gambling interpretation: if we start
by investing $1 in E (1) and, after observing E (1) , reinvest all our new capital $E (1) into E (2) , then after observing
E (2) our new capital will obviously be $E (1) · E (2) , and so on. If, under the null, we do not expect to gain any money
for any of the individual gambles E (j ) , then, intuitively, we should not expect to gain any money under whichever
strategy we employ for deciding whether or not to reinvest (just as you would not expect to gain any money in a
casino irrespective of your rule for re-investing and/or stopping and going home).

3. Third Interpretation: Bayes Factors
For convenience, from now on we write the models H0 and H1 as H0 = {Pθ : θ ∈ Θ0} ; H1 = {Pθ : θ ∈ Θ1}, where
Θ0,Θ1 ⊂ Θ, and {Pθ : θ ∈ Θ} represents a general family of distributions or random processes, defined relative to
some given sample space and σ-algebra or filtration. Y = Y N = (Y1, . . . ,YN ) , a vector of N outcomes, represents our
data. N may be a fixed sample size n but can also be a random stopping time. We assume that, under every Pθ with
θ ∈ Θ, Y has a probability density pθ relative to some fixed underlying measure µ. In the Bayes factor approach to
testing, one associates both Hj with a priorWj , which is simply a probability distribution on Θj , and a Bayes marginal
probability distribution PWj

, with density (or mass) function given by

pWj
(Y) :=

∫
Θj

pθ (Y) dWj (θ ) . (4)

The Bayes factor is then given as:

BF := pW1
(Y)

pW0
(Y) . (5)

Whenever H0 = {P0} is simple, i.e., a singleton, then the Bayes factor is also a (sharp, i.e. with expectation exactly 1)
e-variable, since we must then have thatW0 is degenerate, putting all mass on 0, and pW0

= p0, and then for all P ∈ H0,
i.e. for P0, we have, assuming P0 has strictly positive density,

EP [BF] =
∫

p0 (y ) ·
pW1

(y )
p0 (y )

dµ (y ) = 1. (6)

For such e-variables that are really simple-H0-based Bayes factors, Proposition 1 reduces to the well-known universal
bound for likelihood ratios (?). When H0 is itself composite, most Bayes factors BF = pW1/pW0 will not be e-variables
any more, since for BF to be an e-variable we require (6) to hold for all Pθ , θ ∈ Θ0, whereas in general it only holds for
P = PW0 . Nevertheless, Theorem 1 (in its first, simplest version in Section 2) implies that, under weak conditions, for
every priorW1 on Θ1 there always exists a corresponding priorW0 on Θ0, for which BF = pW1/pW0 is an e-variable
after all. More generally, in all our examples e-variables invariably take on a Bayesian form, though sometimes with
highly unusual (e.g. degenerate) priors.

1.2 | This Paper: Beyond Simple Nulls, Beyond Available Priors

In this paper, we focus on general, composite H0. The only assumption on H0 is the existence of densities as above —
we make this assumption because it allows for a completely general characterisation of GRO (‘growth-rate optimal’)
e-variables as in Theorem 1. Still, useful e-variables for nonparametric settings without densities do exist (??).
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Theorem 1 in its first form in Section 2 tells us how to choose an e-variable that is optimal in the GRO sense if a
priorW1 on H1 is given. Roughly speaking, GRO means that the e-variable tends to grow fast under H1 as more data
come in, thereby generating substantial evidence against H0. The generalisations of Section 3–4, extend the GRO
idea to e-variables when no such prior is available. Section 3 deals with a basic maximin optimality approach, which
is appropriate if there is a single parameter of interest, a minimum relevant effect size, and no nuisance parameter.
Section 4 describes relative maximin optimal e-variables, appropriate if there is no minimal effect size and/or nuisance
parameters are present. This culminates in the fully general version of Theorem1 in Section 4.3which is also applicable
to hypotheses with nuisance parameters that satisfy a group invariance, such as in the t -test. To show that the e-
variable we propose for the t -test is indeed optimal we need a special case of an additional result, Theorem 4.2 of
the paper (?), which, for convenience, we restate. But before embarking on these results, we explain the benefits of
e-variable based tests in detail.

1.3 | Optional Continuation

We defined e-variables for a single experiment. We now discuss sequential experimentation and how e-values can
be combined to accumulate evidence against the null. To this end, let us imagine a sequence of random variables
Y(1) ,Y(2) , . . . representing the outcomes of experiments/studies. We will not (except for illustration purposes later
on) make use of any internal structure of the Y(j ) , which in particular may come to us as batches of varying lengths.

Definition 1 Let H0 be a collection of distributions for a sample space equipped with filtration (F(m) )m . We say that
E (m) is a F(m−1) -conditional e-variable (relative to null hypothesis H0) if it is a nonnegative random variable that is F(m) -
measurable and for all P ∈ H0: EP [E (m) | F(m−1) ] ≤ 1 a.s.. If, for each m , E (m) is an F(m−1) -conditional e-variable, we
will call {E (m) }m a conditional e-variable collection relative to (F(m) )m .

In standard cases, F(m) represent all that is known to us at time m (that is, after having observed the m-th study).
Then it is simply σ (Y(m) ) , with Y(m) = (Y(1) , . . . ,Y(m) ) the sequence of outcomes of previous studies, and we could
then rewrite the expectation elementarily as EP [E (m) | Y(m−1) ]. More generally though, F(m) is allowed to be a
coarser filtration as well: as long as for all m , E (m) is F(m) -measurable, we can safely engage in optional continuation
in the sense of Corollary 1 below, as explained in Section 5. On the other hand, F(m) could also be finer, including
nonstochastic side information such as ‘there is money to do an additional study’ or covariates; we briefly describe
such extensions, as well as subtleties that may arise, in Appendix B.1.

Intuitively, F(m−1) -conditional e-valuesmeasure the conditional evidence in roundm (representing them-th study)
against H0, and hence their running product measures the total evidence (such a running product would then be a test
super-martingale (?), i.e. a nonnegative super-martingale with starting value ≤ 1, under every element of the null). We
may turn this running product into one quantity by adding a stopping rule. The following result, both parts of which
are a direct implication of Doob’s optional stopping theorem (?) states that, irrespective of the stopping rule/time, we
obtain a fair measure of evidence.

Proposition 2 1. Let {E (m) }m be a collection of conditional e-variables relative to filtration (F(m) )m . Then the running
product (E (m) )m with E (m) := ∏m

j=1 E (j ) is a test super-martingale w.r.t. each P ∈ H0.
2. Any process (E (m) )m that is a test super-martingale w.r.t. each P ∈ H0 is also an e-process (?) w.r.t. each P ∈ H0,

which by definition means that for any stopping time τ (not necessarily finite), the stopped value E (τ ) is a (standard
non-conditional) e-value for H0.

Proposition 2 says that, no matter when we stop collecting batches of data, the resulting product is an e-variable and
therefore a test based on it preserves Type-I error guarantees by Proposition 1. We note that, after the first version
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of the present paper appeared on arxiv, it was found that for some composite H0 there exist useful e-processes that
are not test-martingales (?); we cannot build these as products of the conditional e-variables that our main theorem,
presented in the next section, generates. On the other hand, as a referee suggested, in our optional continuation
context the use of conditional e-variables as basic building blocks may also have advantages over general e-processes
(for example, it is easier to switch (?) to a different type of e-variable from one study to the next); sorting this out in
detail remains a question for future work.

Just-in-Time Conditional e-variables: Optional Continuation
As we can see from Proposition 2, the stopped running product E (τ ) of a sequence of conditional e-variables only
evaluates each member variable E (m) after m rounds, and only on the data Y(1) , . . . ,Y(m) that actually happened.
It is therefore perfectly fine (for the Type-I error safety guaranteed by combining Propositions 2 and 1) for us to
construct E (m) on demand just before roundm , as a function of all available information so far (including possibly both
stochastically modeled and arbitrary variables), as long as we ensure the conditional safety property in Definition 1.
This simple observation gives us tremendous flexibility for testing, much in contrast to traditional p-values where the
sampling plan needs to be fixed up front. In particular, it allows optional continuation: the practice of deciding after an
initial series of experiments whether to output the current accumulated evidence, or perform yet more experiments.

Proposition 2 already indicates that we can safely engage in such optional continuation, assuming that we stop
performing studies at some stopping time τ relative to the filtration (F(m) ) (m) . The following proposition expresses
that we have Type-I error safety under optional continuation in an even stronger filtration-independent sense:

Corollary 1 (of Proposition 2): “Ville-Robbins”

For all P ∈ H0, all 0 < α ≤ 1: P
(
there exists m such that E (m) ≥ 1

α

)
≤ α . (7)

Proof Proposition 2 expresses that E (1) , E (2) , . . . is a super-martingale with starting value ≤ 1. Ville’s inequality (?)
(also known as Ville-Robbins or Ville-Robbins-Wald inequality) then implies (7).

For use later on, we formally define a threshold test based on non-negative process (E (m) )m to be the random function
that, when input m and level α , outputs reject if E (m) ≥ 1/α and outputs accept otherwise (in this general definition,
E (m) can but does not need to be defined as a product of conditional e-variables). We say that a threshold test is
safe under optional continuation with respect to Type I error if (7) holds. Thus, no matter when the data collecting
and combination process is stopped, the Type-I error probability is preserved. We relate optional continuation to the
more common notion of ‘optional stopping’ and discuss filtration-related subtleties in Section 5.

Whereas Ville-Robbins stresses that we may greedily ‘keep combining studies until we can reject or resources
run out’, it is just as important that our e-values keep providing valid Type-I error guarantees if the continuation rule
is externally imposed or unknowable.

Example 1 Consider the simple scenario with a single underlying data streamY1,Y2, . . .withYi i.i.d. according to both
H0 and H1. Assume for simplicity simple H0 = {P0} so that Bayes factors provide e-variables. For arbitrary priorW
on Θ1, define en,W (Y n ) = pW (Y n )/p0 (Y n ) to be the Bayes factor as in (5) with priorW for Θ1 applied to dataY n .

Suppose we perform an initial study on sample Y(1) := Y N (1) := (Y1, . . . ,YN (1) ) and we equip Θ1 with priorW(1) .
We can use as our e-variable E (1) the Bayes factor E (1) := eN (1) ,W(1) (Y(1) ) . Suppose this leads to a first e-value
E (1) = 18 — promising enough for us to invest our resources into a subsequent study. We decide to gather N (2)

data points leading to data Y(2) = (YN (1) +1, . . . ,YN (1) +N (2) ) . For this second data batch, we will use an e-variable
E (2) := eN (2) ,W(2) (Y(2) ) for a new priorW(2) . Crucially, we are allowed to choose both N (2) andW(2) as a function of



Grünwald, De Heide and Koolen 7

past data Y(1) : clearly, because the underlying data stream was assumed i.i.d., EP0 [E (2) | Y(1) ] ≤ 1 irrespective of our
choice (here we use (6)), and this allows us to use Proposition 2. If we want to stick to the Bayesian paradigm, we can
chooseW(2) :=W(1) ( · | Y(1) ) , as the Bayes posterior for θ1 based on data Y(1) and priorW(1) . Bayes’ theorem shows
that multiplying E (2) := E (1) · E (2) (which gives a new e-variable by Proposition 2), satisfies

E (2) = E (1) · E (2) =
pW(1) (Y(1) ) · pW(1) ( · |Y(1) ) (Y(2) )

p0 (Y(1) ) · p0 (Y(2) )
=

pW(1) (Y1, . . . ,YN (2) )
p0 (Y1, . . . ,YN (2) )

, (8)

which is exactly what one would get by Bayesian updating. This illustrates that, for simple H0, combining e-variables
by multiplication can be done consistently with Bayesian updating.

The Local Perspective
It might also be the case that it is not us who get the additional funding to obtain extra data, but rather some research
group at a different location. If the question is, say, whether a medication works, the null hypothesis would still be
H0 = {P0} but, if it works, its effectiveness might be slightly different due to slight differences in population. In
that case, the research group might decide to use a different test statistic E ′

(2) which is again a Bayes factor, but
now with an alternative priorW on θ1 (for example, the original priorW(1) might be re-used rather than replaced by
W(1) ( · | Y(1) )) — one might call this the local perspective. Even though not standard Bayesian, E (1) · E ′

(2) still gives a
valid e-variable, and Type-I error guarantees are preserved — and the same will hold even if the new research group
would use an entirely different prior on Θ1. And, after the second batch of data Y(2) , one might consider obtaining
even more samples, each time using a differentW(j ) , that is always allowed to depend on the past in arbitrary ways.

Finally, it is important to note that, when combining studies, we do require all the data batches Y(1) ,Y(2) , . . . to
refer to separate data: obviously it is not allowed to ‘borrow’ some data from Y(1) and reuse it as part of Y(2) . E-values
based partly on the same data can still be validly combined (e.g. by averaging (?)) but not by multiplication as we do
here.

2 | THE GRO e-VARIABLE

Mathematical Preliminaries
In this and the coming sectionswe present ourmain result, Theorem1. We first list all requiredmathematical notations
and definitions. We invariably assume that some family {Pθ : θ ∈ Θ} of probability distributions for Y has been
fixed and all Pθ with θ ∈ Θ have densities relative to some underlying measure µ. When we write ‘p is a (sub-)
probability density’, wemean it is a (sub-) probability density relative to µ, i.e. p ≥ 0 and

∫
p (Y)dµ = 1 for a density and∫

p (Y)dµ ≤ 1 for a sub-density. In the latter case we call the measure P with density p a sub-probability distribution.
We use D (Q ∥P ) to denote the Kullback-Leibler (KL) Divergence between distributions Q and P (?). We allow P (but
notQ ) to be a sub-probability distribution, withD (Q ∥P ) = EY∼Q [ln q (Y)/p (Y) ]. We say that random variablesU ∗ and
U ◦ are essentially equal if, for all θ ∈ Θ, Pθ (U ∗ = U ◦ ) = 1. We say that U ∗ essentially uniquely satisfies property prop
if all other random variables satisfying property prop are essentially equal to U ∗. When we write ‘P has full support’,
we mean that its density p satisfies p (Y) > 0 µ-almost everywhere. We assume some suitable σ-algebra including
all singleton sets on Θ has been defined, and for Θ′ ⊂ Θ we let W(Θ′ ) be the set of all probability distributions (i.e.,
‘proper priors’) on Θ′ with this σ-algebra. Notably, W(Θ′ ) includes, for each θ ∈ Θ′, the degenerate distributionW

which puts all mass on θ. We say thatW essentially uniquely satisfies property prop among W(Θ′ ) if for all other
distributionsW ′ ∈ W(Θ′ ) that satisfy prop and all θ ∈ Θ, we have Pθ (pW = p ′W ) = 1, where pW and p ′W are as in (4).
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E(Θ0 ) is defined as the set of all e-variables that can be defined on Y forΘ0, i.e. all random variables satisfying (1). We
frequently use the fact that if Θ0 = {0} is a singleton so that H0 is simple, then the class of e-variables corresponds
exactly to the set of likelihood ratios relative to p0:

E({0}) =
{
q (Y)
p0 (Y)

: q is a sub-probability density for Y
}
. (9)

To see this, note that for every e-variableE = e (Y) we can define q (Y) := e (Y) ·p0 (Y) and then
∫
qdµ =

∫
p0 (Y)e (Y)dµ ≤

1; conversely every sub-density q defines an e-variable by setting E = q (Y)/p0 (Y) which gives EP0 [E ] ≤ 1.
Our main theorem (proof in Appendix A.1) implies that nontrivial e-variables exist without any further conditions:

Theorem 1 SupposeQ is a probability distributionwith full support andwith density q , and assume infW0∈W(Θ0 ) D (Q ∥PW0 ) <
∞. Then there exists a (potentially sub-) distribution P ∗

0 with density p∗0 such that

E ∗ := q (Y)
p∗0 (Y)

(10)

is an e-variable. Moreover, E ∗ satisfies, essentially uniquely,

sup
E ∈E (Θ0 )

EY∼Q [logE ] = EY∼Q [logE ∗ ] = inf
W0∈W(Θ0 )

D (Q ∥PW0 ) = D (Q ∥P ∗
0 ) . (11)

If the minimum is achieved by someW ∗
0 , i.e. D (Q ∥P ∗

0 ) = D (Q ∥PW ∗
0
) , then P ∗

0 = PW ∗
0
.

The full support condition is natural and discussed further in Appendix A.3. Following Barron and ? (see also (?)), we
call P ∗

0 the Reverse Information Projection (RIPr) of Q on P(Θ0 ) = {PW0 :W0 ∈ W(Θ0 ) }. In all examples in this paper,
we have P ∗

0 = PW ∗
0
: the minimum is achieved and its density integrates to 1 (one can construct special H0 for which

p∗0 integrates to strictly less than 1 (?), but we do not know whether this happens for any practically relevant H0). The
following corollary (see Appendix A.1 for details) is useful in applications:

Corollary 2 E ∗ is the only e-variable of Bayes factor/likelihood ratio form with q in the numerator. That is, for allW0 ∈
W(Θ0 ) : if PW0 is not essentially equal to P ∗

0 then q (Y)/pW0 (Y) is not an e-variable. In particular this implies: (a) if
P ∗
0 = PW ∗

0
, then W ∗

0 achieves minW0∈W(Θ0 ) D (Q ∥PW0 ) essentially uniquely; and (b) if we have found an e-variable of
form q (Y)/pW0 (Y) thenW0 must be essentially equal toW ∗

0 .

Theorem 1 leaves open the question of how to calculateW ∗
0 , if it exists. In the examples we encounter below, we

can either show that W ∗
0 is degenerate, putting all its mass on a single distribution Pθ∗

0
, and θ∗0 can be determined

analytically, or, as in the t-test example, we can analytically find it by other means. ‘Easy’ W ∗
0 occur in surprisingly

many other situations as well (see e.g. (??)), but by no means always (?). More generally, even if W ∗
0 is not easy to

determine analytically, as long as Y is finite then, using Carathéodory’s theorem we can still show thatW ∗
0 must exist

and has finite support. By strict convexity of KL divergence in its second argument it can therefore in principle be
found by numerical methods, but more research is needed to see existing methods are fast enough in practice. If
Y is infinite, one can still try to approximateW ∗

0 numerically but it may be hard to determine the accuracy of such
approximations.

2.1 | The GRO criterion whenH1 is simple

We now focus on the case with a given alternative H1 = {Pθ : θ ∈ Θ1}, and for now assume Θ1 = {θ1} is a singleton.
Applying Theorem 1 above with Q = Pθ1 , we call the resulting E ∗ (or any essentially equal version of it) the θ1-GRO
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e-variable, GRO standing for growth-rate optimal. We define the growth rate achievable with θ1 as

GRO(θ1 ) := sup
E ∈E (Θ0 )

EY∼Pθ1
[logE ] = D (Pθ1 ∥P

∗
0 ), (12)

with the equality following from Theorem 1 (we omit Θ0 in the notations since, in contrast to Θ1 or θ1, Θ0 will always
be clear from context). In general, there exist many nontrivial e-variables for a given H0. The θ1-GRO e-variable is
a special one that is optimal in a natural sense for the given H1: whereas in the Neyman-Pearson paradigm, one
measures the quality of a test at a given significance level α by its power, i.e. the probability of correct decision under
θ1, we will measure it by the expected capital growth rate under θ1. This is different from power, yet there are close
connections to which we return in Section 9.

To explain, we return to the monetary interpretation of e-values. The definition of e-variable ensures that we
expect them to stay under 1 (one does not gain money) under any P ∈ H0. Analogously, one would like them to be
constructed such that they can be expected to grow large as fast as possible (one gets rich, gets evidence against
H0) under H1. Assuming for now that H1 = {Pθ1 } is simple, this suggests to define the optimal e-variable E ∗ as
the one that maximises EPθ1 [f (E

∗ ) ] for some function that is increasing in E ∗. At first sight it may seem natural
to pick f the identity, but this can lead to adoption of an e-variable E ∗ such that Pθ1 (E

∗ = 0) > 0. This choice,
however, does not go together well with preserving evidence (capital) under optional continuation: if E ∗

(1) is 0 with
positive probability, then it may happen that the evidence E (m) =

∏m
j=1 E (j ) obtained so far remains 0, no matter how

large E (j ) for j ≥ 1 — akin to losing all one’s money in the first round at a roulette table. A similar objection applies
to any polynomial f , but it does not apply to the logarithm, which is also the asymptotically optimal choice for f if
samples are independent: by Kolmogorov’s strong law of large numbers, any sequence of e-variables E (1) , E (2) , . . .

based on independent Y(1) ,Y(2) , . . . with supj ∈Î EY(j )∼Pθ1
[ (logE (j ) )2 ]/(j /log2 (j + 1) ) < ∞ (in particular this holds

if the variances are uniformly bounded), will a.s. satisfy (1/m ) ∑m
j=1

(
logE (j )

)
− (1/m ) ∑m

j=1 EY(j )∼Pθ1
[logE (j ) ] → 0.

Thus, E (m) := ∏m
j=1 E (j ) will grow exponentially fast if all EY(j )∼Pθ1

[logE (j ) ] > 0, with maximal growth rate attained
if the E (j ) are chosen to maximize EY(j )∼Pθ1

[logE (j ) ] — a quantity which, for log taken to the base 2, is known as the
doubling rate (??). This provides a powerful reason for choosing the logarithm; see also the extensive exposition by ?.
We return to GRO’s motivation in Section 8.

Example 2 [2 × 2 Contingency Tables] Let Yn = {0, 1}n and let X = {a, b } represent two categories. We start with a
multinomial model G on Z = X × Y, extended to n outcomes by independence. We want to test whether theYi are
dependent on the Xi . To this end, we condition every distribution in G on a fixed, given, X n = xwith x = (x1, . . . , xn ) ,
and we let H1 be the set of (or a subset of the) conditional distributions on Z that thus result. We thus assume the
design of Xn to be set in advance, but N1, the number of ones, to be random; alternative choices are possible and
would lead to a different analysis. Conditioned on X n = x, the likelihood of an individual sequence y | x becomes:

pµ1|a ,µ1|b (y | x) = µ
na1
1|a (1 − µ1|a )na0 · µnb1

1|b (1 − µ1|b )nb0 , (13)

where n j i is the number of times outcome i was observed to fall in category j and µ1|j is the probability of observing
a 1 given category j . These densities define the full model {Pµ1|a ,µ1|b : (µ1|a , µ1|b ) ∈ Θ} with Θ = [0, 1]2. H0, the
null model, simply has (X1, . . . ,Xn ) and Y = (Y1, . . . ,Yn ) independent, with Yi , . . . ,Yn i.i.d. Ber(µ ) distributed, µ ∈
Θ0 := [0, 1], i.e. pµ (y | x) = pµ (y) = µn1 (1 − µ )n−n1 with n1 = na1 + nb1. We defer description of the test of the full
alternative {Pθ : θ ∈ Θ1} with Θ1 = (0, 1)2 against H0 to Section 4.1. For now, we assume a simple H1 = {Pθ1 } for
a specific θ1 = (µ1|a , µ1|b ) with µ1|a , µ1|b . ? shows that the RIPr for Pθ1 , achieving the infimum in (11) is given by
P ∗
0 = PW ∗

0
whereW ∗

0 is the degenerate prior that puts all its mass on the single point µ◦ = (naµ1|a + nbµ1|b )/(na + nb ) .



10 Grünwald, De Heide and Koolen

Thus, the θ1-GRO e-variable has an intuitive form here, being given by

E ∗ =
pµ1|a ,µ1|b (Y | x)

pµ◦ (Y | x) . (14)

The fact that the RIPr is achieved by a point prior is quite specific to contingency tables. We also note that, while the
expectation of E ∗ is bounded by 1 under all Pµ ∈ H0, its actual distribution function varies with Pµ . This is in contrast
to the t-test example, in which the GRO E ∗ turns out to have the same distribution under all distributions in the null.

2.2 | GRO when prior onH1 is available

We now take a Bayesian stance regarding H1 and, conditioned on H1, are prepared to represent our uncertainty by
prior distributionW1 on Θ1. The marginal distribution of Y is then PW1 (Y) . Applying Theorem 1 with PW1 as Q then
leads to the “W1-GRO e-variable” — it would be optimal in the GRO sense under priorW1. This e-variable is a Bayes
factor, but gives only a quasi-Bayesian notion of evidence since any priorW1 on H1 that we wish to adopt forces us
to adopt a particular corresponding priorW ∗

0 ∈ H0. One may perhaps consider this a small price to pay for creating a
Bayes factor that, by its Type-I error safety under optional continuation, should be acceptable to frequentists as well.
Moreover it is often recognised that priors on Θ0 and Θ1 should somehow be ‘matched’ to each other (?); we may
view the RIPr construction as providing a reasonable (from a frequentist stance) matching.

Example 3 [Gaussian Location with Gaussian prior (z-test)] Now consider H1 according to which the Yi are i.i.d.
∼ N (µ, 1) for some µ ∈ Θ1 = Ò, so that pµ (Y) = pµ (Y1, . . . ,Yn ) ∝ exp(−∑n

i=1 (Yi − µ )2/2) . We let H0 = {P0}. We
perform a Bayes factor test using E := pW (Y)/p0 (Y) where we take the priorW to have Gaussian density w (µ ) ∝
exp(−µ2/2) . By (6) we know that E is not just a Bayes factor but also an e-variable. By straightforward calculation:

− 1

2
log(n + 1) + 1

2
(n + 1) · µ̆2n ,

where µ̆n = (∑i=1Yi )/(n + 1) is the Bayes MAP estimator, which only differs from the ML estimator by O (1/n2 ) :
µ̆n − µ̂n = µ̂n/(n (n + 1) ) . If we were to reject Θ0 when E ≥ 20 (giving, by Proposition 1 a Type-I error guarantee of
0.05), we would thus reject if

|µ̆n | ≥
√

5.99 + log(n + 1)
n + 1

, i.e. |µ̂n | ⪰
√
(log n )/n, (15)

where we used 2 log 20 ≈ 5.99. Contrast this with the standard two-sided Neyman-Pearson (NP) test, which would
reject (with α = 0.05) if |µ̂n | ≥ 1.96/

√
n , or the one-sided test which would reject if µ̂n ≥ 1.645/

√
n or the e-value

based tests of the next section: the standard Bayesian test is significantly more conservative, requiring more data to
conclude rejection. In Section 6 we investigate this further.

3 | THE GROW e-VARIABLE

We now show how to construct good e-variables if H1 is composite and no prior on Θ1 is available. We focus on
variations of worst-case (maximin) growth optimality, but this is certainly not the only criterion that might be useful
or valuable; see the discussion in Section 8. In the case of simple H1 = {Pθ1 }, we aimed for e-variables that could be
expected to grow as fast as possible under Pθ1 . Analogously, we would now like them to be constructed such that
they can be expected to grow large as fast as possible (one gets rich, gets evidence against H0) under all P1 ∈ H1.
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PW ∗
0

P ∗
W1

P
(
Θ1

)
P

(
Θ

(
δ
) )

P
(
Θ0

)

F IGURE 1 Joint Information Projection (JIPr). Θ0,Θ1 represent non-overlapping models, W(Θ′ ) is the set of all
priors over Θ′, and P(Θ′ ) = {PW :W ∈ W(Θ′ ) }. Theorem 1 implies that the GROW e-variable between Θ0 and Θ1

is given by pW ∗
1
/pW ∗

0
, the Bayes factor between the two Bayes marginals that minimise KL divergence D (PW1 ∥PW0 ) ,

assuming the minima are achieved.

We call e-variables satisfying this property GROW: growth-rate optimal in worst-case. We now discuss the simplest,
‘raw’ form of this criterion — in some settings a modification of this criterion, REGROW, which we discuss in the
next section, is more suitable. GROW tells us to pick, among all e-variables relative to H0, the E ∗ that achieves the
worst-case optimal expected capital growth rate

GROW(Θ1 ) := sup
E :E ∈E (Θ0 )

inf
θ∈Θ1

EPθ [logE ] . (16)

Theorem 1, First Generalisation Suppose all Pθ , Pθ′ with θ, θ′ ∈ Θ1 satisfy D (Pθ ∥Pθ′ ) < ∞, and have full support. If
infW1∈W1,W0∈W(Θ0 ) D (PW1 ∥PW0 ) = infW0∈W(Θ0 ) D (PW ∗

1
∥PW0 ) < ∞, (i.e. the minimum on the left over W1 is achieved by

W ∗
1 ) then then there exists an e-variable

E ∗ :=
pW ∗

1
(Y)

p∗0 (Y)
, (17)

where p∗0 is the density of P
∗
0 , a (potentially sub-) distribution satisfying infW0∈W(Θ0 ) D (PW ∗

1
∥PW0 ) = D (PW ∗

1
∥P ∗

0 ) , and E ∗

achieves (16), satisfying, essentially uniquely: infθ∈Θ1
EY∼Pθ [logE

∗ ] = supE ∈E (Θ0 ) infθ∈Θ1
EY∼Pθ [logE ] = D (PW ∗

1
∥P ∗

0 ) . If
further D (PW ∗

1
∥P ∗

0 ) = D (PW ∗
1
∥PW ∗

0
) for someW ∗

0 ∈ W(Θ0 ) , then P ∗
0 = PW ∗

0
.

The earlier version of Theorem 1 is the special case we get if we set Θ1 = {θ1} a singleton and Q := Pθ1 . This
generalized version expresses that the GROW e-variable is once again a Bayes factor — a special one in fact, between
the components of the joint information projection (PW ∗

1
, P ∗

0 ) (?); see Figure 1. As to computingW ∗
1 in practice, the

same remarks apply as we already made (underneath Corollary 2) regarding computingW ∗
0 .

3.1 | One-parameter models with minimum relevant effect size

Let Θ be a connected subset of Ò indexing a 1-parameter parametric model {Pθ : θ ∈ Θ} with θ indicating the size of
some effect. If, as is standard practice in e.g. medical statistics, we have a minimum clinically relevant effect size δ+

and a status quo δ− < δ+ in mind, we want to test

Θ0 = {θ ∈ Θ : θ ≤ δ− } vs. Θ1 = {θ ∈ Θ : θ ≥ δ+} . (18)

In standard cases, often δ− = 0 and Θ0 := {0}.



12 Grünwald, De Heide and Koolen

Proposition 3 Suppose there exists a 1-dimensional statisticT = t (Y) such that the family of densities {pθ : θ ∈ Θ} has a
monotone likelihood ratio inT . Then for all δ− < δ+ with δ−, δ+ ∈ Θ, the GROW e-variable relative to Θ1 and Θ0 as in (18),
is given by E ∗ = pδ+ (Y)/pδ− (Y) : it setsW ∗

1 andW ∗
0 to be degenerate priors, putting all mass on δ+ and δ− , respectively.

We now illustrate Proposition 3 for 1-dimensional exponential families, but stress that it can be applied to some other
families (e.g. location families or the t-test setting in Section 4.3) as well.

Example 4 [GROW for 1-dimensional exponential families] Let {Pθ | θ ∈ Θ} represent a 1-parameter exponential
family for sample space Y, given in its mean-value parameterisation, where Θ is a connected subset of (and possibly
equal to) the full mean-value parameter space. Let δ− < δ+ with δ−, δ+ both in Θ. Both H0 = {Pθ : θ ∈ Θ0} and
H1 = {Pθ : θ ∈ Θ1} withΘ0,Θ1 as in (18) are extended to outcomes inY = (Y1, . . . ,Yn ) by independence. LetT = t (Y)
be the sufficient statistic of the exponential family under consideration, i.e. EY∼Pθ [t (Y) ] = θ. It is well-known that
the monotone likelihood property holds in the statistic T . It thus follows from Proposition 3 above that the GROW
e-variable relative to Θ1 and Θ0 can be calculated as a likelihood ratio E ∗ = pδ+ (Y)/pδ− (Y) between two point
hypotheses, even though Θ1 and/or Θ0 may be composite. Comparison of the ensuing test to the Neyman-Pearson
and Bayes factor tests are given in Section 6.

4 | THE REGROW e-VARIABLE: GENERAL COMPOSITE H1 CASE

Theorem 1, Further Generalisation Let f (θ ) be a function that is bounded on Θ1; we abbreviate f (W ) := Eθ∼W [f (θ ) ].
Suppose all Pθ , Pθ′ with θ, θ′ ∈ Θ1 satisfyD (Pθ ∥Pθ′ ) < ∞, and have full support. If infW1∈W(Θ1 ) ,W0∈W(Θ0 ) (D (PW1 ∥PW0 ) −
f (W1 ) ) = infW0∈W(Θ0 ) D (PW ∗

1
∥PW0 ) − f (W ∗

1 ) < ∞ then there exists an e-variable E f given by

E f :=
pW ∗

1
(Y)

p∗0 (Y)
(19)

where p∗0 is the density of P
∗
0 , a (potentially sub-) distribution such that infW0∈W(Θ0 ) D (PW ∗

1
∥PW0 ) = D (PW ∗

1
∥P ∗

0 ) , and E
f

satisfies, essentially uniquely:

inf
θ∈Θ1

( EY∼Pθ [logE
f ] − f (θ ) ) = sup

E ∈E (Θ0 )
inf
θ∈Θ1

( EY∼Pθ [logE ] − f (θ ) ) = D (PW ∗
1
∥P ∗

0 ) − f (W ∗
1 ) . (20)

If further D (PW ∗
1
∥P ∗

0 ) = D (PW ∗
1
∥PW ∗

0
) for someW ∗

0 ∈ W(Θ0 ) , then P ∗
0 = PW ∗

0
.

We call E f the REGROW (standing for relative growth in the worst-case) e-variable relative to offset f . The previ-
ous version of Theorem 1 is the special case with f constant. The offset f will be useful when Θ0 and Θ1 are nested
and no effect size can be stated in advance (Section 4.1) and/or when nuisance parameters are present (Section 4.2
and 4.3). All these cases can be handled essentially the same way (and we may in fact think of the case of nested
models as a situation in which all parameters in Θ0 are viewed as nuisance): we first consider a modified problem in
which Θ1 is reduced to a singleton. That is, we imagine that some oracle tells us “if H1 is the case, then the data
are sampled from this specific θ∗1”. We then consider the corresponding GRO(θ∗1 ) = GROW({θ∗1 }) and view this as
the desirable but unobtainable expected growth rate — the one we could have obtained if we had known θ∗1 . We
may now aim for the e-variable such that, no matter what θ∗1 turns out to be, our expected growth is close to the
optimum we could have obtained had we known θ∗1 . Thus, we want to be worst-case growth optimal relative to
f (θ1 ) := GRO(θ1 ) = EPθ1 [logE

∗
θ1
] = infW0∈W(Θ0 ) D (Pθ1 ∥PW0 ) (where we write E ∗

θ1
for the GRO e-variable for testing

{θ1} vs. Θ0 and the second equality follows by (12)). Plugging in this f and taking negatives on both sides, (20) now
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becomes:

sup
θ1∈Θ1

EY∼Pθ1
[
logE ∗

θ1
− logE f

]
= inf

E ∈E (Θ0 )
sup
θ1∈Θ1

EY∼Pθ1 [logE
∗
θ1

− logE ] =

Eθ1∼W ∗
1

[
inf

W0∈W(Θ0 )
D (Pθ1 ∥PW0 )

]
− D (PW ∗

1
∥P ∗

0 ), (21)

an expression that is always nonnegative, since, by definition ofE ∗
θ1
, for any e-variableE , EY∼Pθ1 [logE

∗
θ1
] ≥ EY∼Pθ1 [logE ].

This shows that E f can be thought of as a minimax pseudo-regret e-variable, regret being the loss of expected capital
growth under H1 due to not knowing the underlying θ1 in advance.

4.1 | CompositeH1, no effect size known

Suppose we are interested in detecting whether there is any deviation at all from the null. There is no pre-stated
effect size, and Θ0 ⊂ Θ1 = Θ are nested, or more generally, for all θ1 ∈ Θ1, infθ0∈Θ0

D (Pθ1 ∥Pθ0 ) = 0. In this case,
GROW(Θ1 ) = 0 and the GROW e-variable that achieves it is equal to E ∗ = 1, which will never give any evidence
against H0, so clearly, the raw GROW approach is not useful. Instead, in this setting, the REGROW approach is a
sensible generalisation of successful existing approaches. We first establish this for simple nulls:

Simple Nulls
If Θ0 = {0} is simple, we have infW0 D (Pθ1 ∥PW0 ) = D (Pθ1 ∥P0 ) and D (PW ∗

1
∥PW ∗

0
) = D (PW ∗

1
∥P0 ) , and terms in (21)

involving − log p0 (Y) cancel. Further using the 1-to-1 mapping (9) between probability densities and e-variables for
the case of point 0’s to rewrite (21) and using E f = pW ∗

1
(Y)/p0 (Y) , (21) simplifies to:

sup
θ∈Θ1

EY∼Pθ

[
− log

pW ∗
1
(Y)

pθ (Y)

]
= inf

q
sup
θ∈Θ1

EY∼Pθ

[
− log q (Y)

pθ (Y)

]
= sup

W1∈W(Θ1 )
Eθ∼W1

[
D (Pθ ∥PW1 )

]
, (22)

where the infimum is over all sub-probability densities q over Y. (22) is just the redundancy-capacity theorem (?)
of information theory, and it has a data-compression interpretation. In a nutshell, for any e-variable of the form
pW1 (Y)/p0 (Y) , the log evidence log pW1 (Y)/p0 (Y) is thought of as a difference between the code length needed to
code the data using two lossless codes, one with lengths − log pW1 , associated with H1, and one with lengths − log p0,
associated with H0. (22) expresses that when choosingW1 = W ∗

1 , one associates H1 with the code that minimises
worst-case redundancy (the additional expected number of bits needed compared to an encoder that knows θ∗1 ). This
is in accordance with the MDL (Minimum Description Length) Principle, in which code length difference between the
same two codes is used to measure evidence (??).

Example 5 [Exponential Families with a point null: Jeffreys’ Prior onΘ1] Tomake this more concrete, let {Pθ : θ ∈ Θ}
represent a d -dimensional exponential family given in either the mean or the canonical parameterisation. We restrict
the parameter set to Θ1 that is a compact subset of the interior of Θ and let Θ0 be a singleton subset in the interior
of Θ1. By standard properties of exponential families, the finite KL condition of Theorem 1 applies and the problem
reduces to finding the priorW ∗

1 on Θ1 that satisfies (22). (?) showed that, for large n , this prior converges in an L1-
sense to Jeffreys’ prior (‘least favourable under entropy loss’) , which is the main reason for adopting it in MDL model
selection. They also showed that (22) and hence (21) is of size (d/2) log n + O (1) . Thus, for point nulls and suitably
truncated parameter spaces, this approach is consistent with the MDL Principle and with objective Bayes approaches
based on Jeffreys prior.
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µ1|a

µ 1
|b

0

δ+

1

γ

1

F IGURE 2 The 2 × 2 model. The diagonal represents the null, the decreasing line the set of parameters with
nuisance parameter γ = 1/4 and the blue increasing line is Θ1,δ+ for δ+ = 1/3.

Example 6 [2× 2 Tables, Continued] If Θ0 is not a singleton then the simplification of (21) to (22) is not possible, and
numerical simulation can be used to determine (21) and the priors appearing therein. Consider for example the 2 × 2

model, but now with unrestricted Θ1 = (0, 1)2. This does satisfy the regularity conditions needed for Theorem 1 to
be applicable (see Appendix A.3), but it has Θ1 2-dimensional and Θ0 1-dimensional. We saw in the previous example
that for 1-vs. 0-dimensional exponential family models, (21) would take on value (1/2) log n + O (1) , which suggests
that it is the same here, for 2- vs. 1-dimensional. This is confirmed by numerical simulations (?).

4.2 | CompositeH1, nuisance parameters present

We now consider the common situation of models that can be parameterised by Θ = { (δ, γ ) : δ ∈ ∆, γ ∈ Γ} where δ

is a single parameter of interest (for simplicity taken to be a scalar) and γ represents a nuisance parameter (scalar or
vector). As in Section 3.1, we want to test whether δ ≥ δ+ or δ ≤ δ− for some δ− < δ+. We thus let

Θ0 = { (δ, γ ) : δ ≤ δ−, γ ∈ Γ}, vs. Θ1 = { (δ, γ ) : δ ≥ δ+, γ ∈ Γ} . (23)

We will first consider the simplified problem in which we test Θ0,δ− := { (δ−, γ ) : γ ∈ Γ} vs. Θ1,δ+ := { (δ+, γ ) : γ ∈ Γ},
and later extend to (23). This simplified problem can be handled via a REGROW e-variable just like in the previous
subsection, with now θ = (δ+, γ ) : we take f ( (δ+, γ ) ) = GRO( (δ+, γ ) ) and apply Theorem 1 as in (21). This gives an e-
variable E ∗

δ+ := pW ∗
1
(Y)/p∗0 (Y) withW

∗
1 a prior on { (δ+, γ ) : γ ∈ Γ}. Using this REGROW rather than GROWapproach

reflects a particular interpretation of what it means for a parameter γ to be nuisance: we have no idea of what the
true γ might be and are therefore prepared to incur the same expected loss of growth for not knowing γ, irrespective
of what γ is. Solving this problem for all δ+ ≥ δ− gives us a collection of e-variables E≥δ− := {E ∗

δ
: δ ≥ δ− }. Now

suppose there exists another e-variable E ∗ such that

sup
E ∈E≥δ−

inf
θ∈Θ1

EPθ [logE ] = inf
θ∈Θ1

EPθ [logE
∗ ] (24)

That is, we pick the worst-case optimal e-variable among E≥δ− , thereby applying GROW on a meta-level as it were,
after restricting ourselves to e-variables that are themselves REGROW for fixed δ and unknown γ. This E ∗ is then our
choice for solving the original problem (23).

Example 7 [2× 2 Tables, Continued] We can reparameterise {Pµ1|a ,µ1|b : (µ1|a , µ1|b ) ∈ [0, 1]2} as Θ = { (δ, γ ) : δ ∈ ∆,
γ ∈ [0, 1] } using γ = (naµ1|a +nbµ1|b )/(na +nb ) as a nuisance parameter: the marginal probability of observing a 1. For
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δ we can take, for example, δ = µ1|b − µ1|a to be our notion of effect size, the substantive difference, with ∆ = [−1, 1].
Another popular choice, like substantive difference considered by ?? is δ = log( (µ1|b/(1 − µ1|b ) ) · (1 − µ1|a )/µ1|a ) , i.e.
the log-odds ratio, but for simplicity we stick to the substantive difference here. We take a Θ1 and Θ0 relative to some
effect size δ+ and δ− as in (23) above, where for simplicity we will take δ− = 0 and ∆ = [0, 1] and also na = nb so that
γ = (µ1|a + µ1|b )/2. The situation is depicted in Figure 2, where we took, as an example, Θ1 and Θ0 defined relative to
δ+ = 1/3 and δ− = 0.

Now, assume first that the true value of γ were given in advance. Wewould then be dealing with a one-parameter
exponential family model represented by a straight decreasing line in Figure 2; the Figure illustrates this for γ = 2/3.
We would then be in the situation of Section 3.1, Example 4, and find, for any δ+, that GRO( (δ+, γ ) ) =
infW0∈W(Θ0 ) D (Pδ+,γ ∥PW0 ) = D (Pδ+,γ ∥P0,γ ) where the latter equality was already stated as (14) in Example 2.

Now we look at unknown γ. As suggested above, we first set δ := δ+ and test Θ1,δ vs. Θ1,0 (the increasing lines in
Figure 2), taking the REGROW e-variable relative to f ( (δ, γ ) ) = GRO( (δ, γ ) ) = D (Pδ,γ ∥P0,γ ) . Then the minimumW ∗

1

on Θ1,δ andW ∗
0 (withW ∗

1 putting mass 1 on δ and spreading its mass over γ, and P ∗
0 = PW ∗

0
) as in (21) are achieved

and have finite support, and the finite KL condition of the theorem applies (Appendix A.3). This solves the problem
for testing Θ1,δ vs. Θ1,0 for δ = δ+; by varying δ we get a collection of e-variables E≥0 containing an E ∗

δ
for each fixed

δ ≥ 0. We then pick the E ∗ among E≥0 satisfying (24), which turns out equal to E ∗
δ+ : it has a point mass on δ+ again.

Discussion
In our examples, we have used (and will keep using in the next section) the REGROW approach to first eliminate
nuisance parameters, if they are present, followed by a GROW approach for the parameters of interest.(??) find that
this gives intuitive e-variables that perform well in practical applications, not just directly in the GRO sense but also in
terms of secondary measures such as a power analysis (Section 6) or as the basis of anytime-valid confidence intervals
(?). Still, it may not always be the best way to go. For example, a REGROWapproach for the parameter of interest when
a minimum effect size is given may sometimes be sensible as well. Let us consider this a bit further for (for simplicity)
the case with a minimum effect size δ+ but without nuisance parameters, as in Example 4. REGROW would amount
here to using E ∗

W1
= pW1 (Y)/pδ− (Y) with some priorW1 spread out on the set Θ1 = {δ : δ ≥ δ+}. Then we would

get EPδ [logE ∗
W1

] < GROW(Θ1 ) for δ close to δ+ ;EPδ [logE ∗
W1

] ≫ GROW(Θ1 ) for δ ≫ δ+ so we would win if we
are ‘lucky’ and it turns out that δ ≫ δ+. However, in practice we often deal with small sample sizes, and δ ’s that
may very well be very close to δ+. Then (as our experiments done for the papers above indicate) the difference in ‘<’
above is non-negligible, and the GROW approach seems safer, since for the GROW e-variable we automatically have
EPδ [logE ∗

W1
] ≥ GROW(Θ1 ) for all δ ∈ Θ1.

4.3 | Theorem 1 in Full: Application to Bayesian and Sequential t -test

If we try to apply Theorem 1 as above to the t -test, a prototypical nuisance setting, we run into the issue that the
minimum KL is not achieved. This problem can be solved by extending the theorem further, allowing for densities on
a coarsening of Y. This is any random variable V that can be written as a function of Y, i.e. V = g (Y) for some function
g ; we retrieve the previous version of Theorem 1 if we take g the identity and V = Y. We now present Theorem 1
in full generality, allowing for such coarsening and additionally for considering the best e-variable on a modified H1,
consisting of any convex set of Bayes marginal distributions with priors on Θ1. This is needed for accommodating the
t -test. It also allows us to incorporate robust Bayesian settings (??), but we will not further pursue those here. In the
theorem we use the following notation: for (sub-) distribution P for Y, P [V] denotes the marginal (sub-) distribution
of P for V, and p ′ denotes its density.
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Theorem 1, Full Generality Let f (θ ) be a function that is bounded on Θ1. Suppose all Pθ , Pθ′ with θ, θ′ ∈ Θ1 satisfy
D (Pθ ∥Pθ′ ) < ∞, and have full support. Let W1 ⊆ W(Θ1 ) be convex. If for some coarsening V of Y we have:

inf
W1∈W1

inf
W0∈W(Θ0 )

(
D (PW1 ∥PW0 ) − f (W1 )

)
=

min
W1∈W1

inf
W0∈W(Θ0 )

(
D (P [V]

W1
∥P [V]

W0
) − f (W1 )

)
= inf

W0∈W0 (Θ0 )
D (P [V]

W ∗
1
∥P [V]

W0
) − f (W ∗

1 ) < ∞, (25)

then there exists an e-variable

E f :=
p ′
W ∗

1
(V)

p∗
′

0 (V)
, (26)

p∗
′

0 being the density ofP ∗[V]
0 , a (potentially sub-) distribution forV that satisfies infW0∈W(Θ0 ) D (PW ∗

1
∥PW0 ) = D (P [V]

W ∗
1
∥P ∗[V]

0 ) .

E f satisfies, essentially uniquely:

inf
W ∈W1

( EY∼PW [logE f ] − f (W ) ) = sup
E ∈E (Θ0 )

inf
W ∈W1

( EY∼PW [logE ] − f (W ) ) = D (P [V]
W ∗

1
∥P ∗[V]

0 ) − f (W ∗
1 ) . (27)

If further D (P [V]
W ∗

1
∥P ∗[V]

0 ) = D (P [V]
W ∗

1
∥P [V]

W ∗
0
) for someW ∗

0 ∈ W(Θ0 ) , then P
∗[V]
0 = P

[V]
W ∗

0
.

The previous version of Theorem 1 is the special case obtained by setting W1 = W(Θ1 ) , Y = V and using linear-
ity of expectation. We call E f as in (27) the REGROW e-variable relative to offset f and set of priors W1. If f is
constant (no offset), we call it W1-GROW, noting that it gives worst-case optimal growth rate under all priors in W1.

The t -test Setting

We return to the setting with a nuisance parameter with notation as in Section 4.2. ? proposed a Bayesian version of
the t -test; see also (?). We start with the models H0 and H1 for data Y = (Y1, . . . ,Yn ) given as H0 = {P0,σ (Y) | σ ∈ Γ};
H1 = {Pδ,σ (Y) | (δ,σ ) ∈ Θ1}, where ∆ = Ò, Γ = Ò+, Θ1 := ∆ × Γ and Θ0 = { (0,σ ) : σ ∈ Γ}, and Pδ,σ has density (with
y = 1

n

∑n
i=1 yi )

pδ,σ (y ) =
1

(2πσ2 )n/2
· exp

(
− n

2

[(
y

σ
− δ

)2
+

(
1
n

∑n
i=1 (yi − y )2

σ2

)])
,

Jeffreys proposed to equip H1 with a Cauchy priorW c [δ ] on the effect size δ , and both H1 and H0 with the scale-
invariant prior measure with density wH (σ ) ∝ 1/σ on the variance. The same formula with the same prior on σ but
other priors on δ was suggested by ? with a non-Bayesian, martingale interpretation. Below we will see that, even
though wH (σ ) is improper (whereas the priors appearing in Theorem 1 are invariably proper), the resulting Bayes
factor E ∗ is an e-variable. We then present Theorem 2 which shows that, for priorsW [δ ] with more than 2 moments,
E ∗ in fact even is W1-GROW with W1 the set of all product priors on δ × σ with marginalW [δ ] on δ , i.e. it has a
worst-case optimal growth rate property relative to all distributions in H1 compatible with W [δ ]. Thus, a form of
GROW-optimality holds for most priorsW [δ ] one might want to use, including standard choices (such as a standard
normal) or the point prior we will suggest further below — but we do not know if it holds for the moment-less Cauchy
proposed by Jeffreys.
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Almost Bayesian Case: prior on δ available
For any proper prior distributionW [δ ] on δ and any proper prior distributionW [σ ] on σ , we define pW [δ ],W [σ ] (y ) =∫
δ∈∆

∫
σ∈Γ pδ,σ (y ) dW [δ ] dW [σ ], as the Bayes marginal density under the product priorW [δ ] ×W [σ ].

For convenience later on we set the sample space to be Yn = (Ò\ {0}) ×Òn−1, assuming beforehand that the first
outcome will not be 0. Now we define V := (V1, . . . ,Vn ) withVi = Yi /|Y1 |. We have that Y determines V, and (V,Y1 )
determines Y = (Y1,Y2, . . . ,Yn ) . The distributions in H0 ∪ H1 can thus alternatively be thought of as distributions on
the pair (V,Y1 ) . V is “Y with the scale divided out”: as is well-known (??) and easily shown (Appendix B.3), under all
P ∈ H0, i.e. all P0,σ with σ > 0, V has the same distribution P0 [V] with density p ′0. In the same way, one shows that
under all PW [δ ],σ with σ > 0, V has the same pdf p ′

W [δ ] (which therefore does not depend on the prior on σ). We now
get that, with

E ∗ :=
p ′
W [δ ] (V)
p ′0 (V)

, (28)

we must have EV∼P [E ∗ ] = 1 for all P ∈ H0, hence it is an e variable. Remarkably, this ‘scale-free’ e-variable coincides
with the Bayes factor one gets if one uses, for σ , the prior wH (σ ) = 1/σ suggested by Jeffreys, and treats σ and δ as
independent. That is (?, page 273) (a full derivation is in Appendix B.3), we have∫

σ
pW [δ ],σ (Y)wH (σ ) dσ∫
σ
p0,σ (Y)wH (σ ) dσ

=
p ′
W [δ ] (V)
p ′0 (V)

= E ∗ . (29)

Despite its improperness,wH induces a valid e-variable when used in the Bayes factor. The equivalence of this Bayes
factor to E ∗ simply means that it manages to ignore the ‘nuisance’ part of the model and models the likelihood of the
scale-free V instead. The reason this is possible is that wH coincides with the right-Haar prior for this problem (??),
about which we will say more below. Amazingly, it turns out that the e-variable (29) has a GROW property (among
all e-variables for data Y, not just the coarsened V) under the weak condition that the prior W [δ ] has a (2 + ϵ )th
moment. This follows from a special case of Theorem 4.2. of (?) (for the case thatW [δ ] puts all its mass on a single δ )
and Corollary 8.3. (for generalW [δ ]. For convenience we re-state this special case here. Let, for priorsW [δ ],W [σ ],
P
[V]
W [δ ],W [σ ] be the marginal distribution with density p ′

W [δ ],W [σ ] . We have:

Theorem 2 [Special case of Theorem4.2./Corollary 8.3. of ?] LetW [δ ] be a distribution on δ such thatEδ∼W [δ ] [ |δ |2+ϵ ] <
∞ for some ϵ > 0 (in particular this includes all degenerate priors with mass 1 on a single δ ). Let W[Γ] be the set of
all probability distributionsW [σ ] on the variance σ . Let W1 be the set of all product distributions on δ × σ such that,
for eachW ′ ∈ W1, δ and σ are independent and its marginal on δ , i.e.W ′ [δ ], coincides withW [δ ]. We have:

inf
W ∈W1

inf
W [σ ]∈W[Γ]

D (PW ∥P0,W [σ ] ) = inf
W [σ ],W ′ [σ ]∈W(Γ)

D (PW [δ ],W [σ ] ∥P0,W ′ [σ ] ) = D (P [V]
W [δ ] ∥P

[V]
0 ) . (30)

The theorem allows us to use Theorem 1 as above with constant f (δ,σ ) = 0 (note that W1 is convex) to conclude
that E ∗ as in (28) is equal to E f as in (27): the Bayes factor based on the right Haar prior, is not just an e-variable, but
is even GROW relative to the set of all priors on δ × σ that are compatible withW [δ ].

REGROW-GROW safe t -test with minimum effect sizes
Suppose we want to testΘ1 vs. Θ0 as in (23) with fixed effect sizes δ+ and δ− and with σ2 in the role of γ. We proceed
exactly as we did underneath (23): we first consider the test { (δ+,σ2 ) : σ2 > 0} vs. { (δ−,σ2 ) : σ2 > 0} for the
fixed given δ+ using the REGROW criterion with f ( (δ,σ ) ) = GRO(δ,σ ) . We have (?, Section 4.3) that f (δ+,σ ) =
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(n/2) log(1 + δ+2 ) is constant on σ . Therefore we can use Theorem 1 in its most general form above in combination
with Theorem 2 (applied with point priorW [δ ] on δ+) to conclude that (both the GROWand) the REGROW e-variable
are given by E ∗

δ+ := p ′
δ+ (V)/p

′
δ− (V) . Since Proposition 3 is applicable to sets of distributions defined on V rather than

Y (details in Appendix B.3), we find that, with E≥δ+ := {E ∗
δ
: δ ≥ δ− } that supE ∈E≥δ+ infσ>0,δ≥δ+ EY∼Pδ,σ [logE ] =

infσ>0,δ≥δ+ EY∼Pδ,σ [logE
∗
δ+ ] so E ∗

δ+ may be thought of as first applying REGROW, to get rid of the nuisance parameter,
and then applying GROW — just like in the 2 × 2 Example 7.

Extension to General Group Invariant Bayes Factors
In a series of papers (???), Berger and collaborators developed a theory of Bayes factors for H0 = {P0,γ : γ ∈ Γ} and
H1 = {Pδ,γ : δ ∈ ∆, γ ∈ Γ} with a nuisance parameter (vector) γ that appears in both models and that satisfies a group
invariance; the Bayesian t -test is the special case with γ = σ, Γ = Ò+ and with the scalar multiplication group and δ an
‘effect size’. Other examples include regression based on mixtures of g -priors (?), testing a Weibull vs. the log-normal
and many more (?). The reasoning of the first part of this section straightforwardly generalises to all such cases: the
Bayes factor based on using the right Haar measure on γ in both models gives rise to an e-variable. Theorem 4.2.
of ? shows that, if the underlying group satisfies a condition called amenability (which holds, e.g., for scaling as in
the t-test, but also for e.g. rotations and affine transformations as in parametric linear regression models), then the
resulting Bayes factor is GROW relative to a suitably defined set W1. Theorem 2 above is the very special case of
their result when instantiated with γ instantiated to the variance in the t-test (scaling). Although its proof is quite
different, the general result may be viewed as the ‘e-variant’ of the classical Hunt-Stein theorem (?, Section 8.5), with
‘power’ in that theorem replaced by ‘GROW’. (?, Proposition 4.4) then implies that in all such cases, this GROW Bayes
factor is in fact also REGROW. Remarkably therefore, with parameters representing group transformations, unlike e.g.
for the 2 × 2 case, GROW and REGROW e-variables generally coincide.

5 | (RE)GRO(W), OPTIONAL CONTINUATION AND STOPPING

We now address two related questions:

1. We focused on Type-I error safety under optional continuation (OC). Can we also get safety under optional
stopping (OS), and what is the difference?

2. The GRO-criteria were chosen to optimise expected capital (logarithmic) growth ‘locally’, within a study. Howwell
do GRO-criteria go together with OC over several studies?

To make the questions concrete, we consider a specific set-up with data streamYj ,1,Yj ,2, . . . corresponding to the j -th
study to be performed. In the first study we observe batch of outcomes Y(1) = (Y1,1, . . . ,Y1,N (1) ) ; in the second study
(if it is performed at all) Y(2) = (Y2,1, . . . ,Y2,N (2) ) ; and so on. For further simplicity we will assume that allYj ,i are i.i.d.
The set-up slightly differs from Example 3 in which the second study’s data was part of the same stream as the first;
at the expense of additional notation, everything that follows can be formalized in that setting as well.

The conditional e-variables determining our test martingale are now determined by a sequence of stopping times
N (1) ,N (2) , . . .. The first stopping time N (1) is defined as a stopping time on the first sequence Y1,1,Y1,2, . . . relative
to filtration (σ (Y n

1 ) )n and defines a stopped σ-algebra F(1) := σ (Y N (1)
1 ) = σ (Y(1) ) . N (2) is defined on the second

sequenceY2,1,Y2,2, . . ., but it is also allowed to depend on previous dataY(1) , i.e it is a stopping time relative to filtration
(σ (Y(1) ,Y

n
2 ) )n , and defines a stopped σ-algebra F(2) := σ (Y(1) ,Y(2) ) . In general, N (m) is defined relative to filtration

σ (Y(1) , . . . ,Y(m−1) ,Y
n
m )n , and defines a stopped σ-algebra F(m) := σ (Y(1) , . . . ,Y(m) ) . We let N(m) be the collection

of all stopping times for the m-th study, i.e. relative to σ (Y(1) , . . . ,Y(m−1) ,Ym,1, . . . ,Ym,n )n . The sequence of stopped
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σ-algebras thus defines a new filtration (F(m) )m , which we call the filtration at the study level, since F(m) denotes all
information available after m studies or trials have been completed — it is the filtration referred to in Proposition 2
(for the t-test we need to extend this set-up a little, see Example 8).

OC vs. OS
In the optional continuation setting, we assume that, after having observed and analyzedm −1 studies, we either stop,
or continue to the next study. In the latter case we need to specify a stopping time N (m) ∈ N(m) and a conditional
e-variable E (m) ∈ E (m) where E (m) is the set of all F(m−1) -conditional e-variables. For example, in the setting of
Example 1, with a simple null H0 = {P0} and composite alternative H1 = {Pθ : θ ∈ Θ1} and N (m) ∈ N(m) an
arbitrary stopping time for the m-th study, eN (m) ,W (Ym,1, . . . ,Ym,N (m) ) := pW (Ym,1, . . . ,Ym,N (m) )/p0 (Ym,1, . . . ,Ym,N (m) )
is an e-variable for every ‘prior’ distribution W on Θ1 (here we generalize the notation of Example 1 to allow for
data-dependent stopping times). In this setting the analyst can freely choose (or somebody else can impose) any
N (m) and anyW and use the corresponding e-variable eN (m) ,W ; all such e-variables are contained in the set E (m) . As
explained in Example 1, this includes the choice to setW(m) := W(1) (re-use the original prior) and the choice to set
W(m) :=W(1) ( · | Y(m−1) ) , i.e. use the Bayes posterior based on the previous studies.

We can now interpret our various GRO criteria as each providing a prescription to choose specific elements of
EN (m) , for all stopping timesN (m) that are constant given the outcomes of previous studiesY(m−1) , i.e. that are F(m−1) -
measurable. To see this, note that each GRO criterion in combination withH0 andH1 defines, for each n , an e-variable
S [n ] for a single sequence Y1, . . . ,Yn . In all cases, this can be written as S [n ] = s [n ] (Y n ) for some function s [n ] ; the
function s [n ] is what is really specified; we call s [1] , s [2] , . . . an e-specification. If N (m) := nm , we can thus simply set
E (m) := s [nm ] (Ym,1, . . . ,Ym,nm ) . We call this the plug-in method for constructing E (m) from specification s [1] , s [2] , . . .

(such specification may correspond to one of our GRO criteria, but in general it could be arrived at in different ways as
well) . The running product of E (m) thus constructed provides, via Proposition 2, a test martingale at the study level.

In contrast, optional stopping scenarios usually concern only a single data-level process Y1,Y2, . . ., without any
super-structure in terms of subsequent studies. The scenario is completely determined by a sequence of conditional
e-variables S1, S2, . . ., i.e., applying Definition 1 at the data level, such that for all n ∈ Î, for all P ∈ H0: EP [Sn |
Fn−1 ] ≤ 1 a.s., with Fn = σ (Y n ) . Their running product S [1] , S [2] , . . . (with S [n ] =

∏n
i=1 Si ) then forms a test martin-

gale. Recall from Corollary 1 in Section 1.3 that for any nonnegative random process E (1) , E (2) , . . . at the study level
(adapted to (F(m) )m ) we say that the corresponding threshold test is safe under OC (with respect to Type-I error) if
the Ville-Robbins inequality (7) holds. Extending this definition in the natural way, we say, for a data-level process of
nonnegative random variables S [1] , S [2] , . . ., i.e. with S [j ] adapted to Fj , that the corresponding threshold test is safe
under OS (with respect to Type-I error) if again the Ville-Robbins inequality holds (with E (n ) := S [n ] ).

Sequentially Decomposable e-Specifications
In many (not all) cases, the GRO-specification s [1] , s [2] , . . . forms itself a test martingale relative to some filtration
(Gn )n : there exist a sequence of functions s1, s2, . . ., with si a function on Yi , such that, for all n , s [n ] (Y n ) = ∏n

i=1 Si

with Si := si (Y i ) and {Si }i is a conditional e-variable collection relative to filtration (Gn )n . We will say that such
an e-variable specification is sequentially decomposable, or seqdec for short, relative to filtration (Gn )n ; in all our
examples except the t-test (Example 8) we can take Gn = σ (Y n ) . Seqdec specifications have a direct link with the OS
setting, resulting in three remarkable properties: first, assuming still that data are i.i.d., any study-level test martingale
process we can construct via the plug-in method (see above) based on a seqdec specification also defines a sequence
of conditional e-variables and hence a test martingale at the corresponding concatenated data levelY ′

1 ,Y
′
2 , . . . where

Y ′
i
is arrived at by relabelingY1,1,Y1,2, . . . ,Y1,N (1) ,Y2,1,Y2,2, . . . ,Y2,N (2) ,Y3,1, . . . in order (so that e.g.Y

′
N (1) +N (2)

=Y2,N (2) ).
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F IGURE 3 Two ways of applying seqdec e-variable specifications to subsequent studies. We observe N (1) = 4

data points in the first study (represented by the top and bottom-most line), and N (2) = 5 data points in the second
(represented by the 2nd and 4th line above). Since the specification is seqdec, it provides a sequence of functions si
onY i , represented by the dots on the red-line. The plug-in application uses s [4] for the first batch and s [5] applied
to the second data batch, as depicted in the top two lines. The sequential application uses s [4] for the first and∏5

i=1 sN (1) +i for the second, as depicted on the bottom two lines. If the specification is not seqdec, then s [n ] does
not decompose into a product of si and in general only the plug-in application can be used.

This defines a concatenated data-level filtration (G′
t )t with G′

t = σ (Y ′
1 , . . . ,Y

′
t ) . The corresponding sequence of

conditional e-variables is then given by S ′
1, S

′
2, . . . where, for T(0) := 0, m ∈ Î, 1 ≤ i < N (m) , T(m) :=

∑m
j=1 N (j ) , we set

S ′
T(m) +i

:= si (Ym,1, . . . ,Ym,i ) . This means that besides engaging in optional continuation, we can also safely do optional
stopping at this concatenated-data level, since the Ville-Robbins inequality holds at this level by Corollary 1.

Second, we can use seqdec specifications to extend the plug-in method (which required constant stopping times
N (m) ) to prescribe conditional E-variables for stopping times N (m) that are not constant given Y(m−1) : for arbitrary
N (m) ∈ N(m) , we set E (m) :=

∏N (m)
i=1

si (Ym,1, . . . ,Ym,i ) . By construction, this reduces to the plug-in method whenever
N (m) is constant given Y(m−1) , so it is a proper extension, and it follows as a direct corollary of the fact that E (m) can
be rewritten as∏N (m)

i=1
S ′
T(m−1) +i

, i.e. a product of factors in a test martingale, that any E (m) constructed in this manner
for any seqdec specification is a F(m−1) -conditional e-variable.

Third, seqdec specifications allow for alternative ways to create study-level processes from e-specifications be-
yond the plug-in method used thus far. For example, we can set E (m) := ∏N (m)

i=1
sT(m−1) +i (Y

(m−1) ,Ym,1, . . . ,Ym,i ) for
arbitrary stopping times N (1) , . . . ,N (m) . Once again, this also defines a martingale at the concatenated data-level — it
is simply the martingale that arises if we view the m studies as one single, long sequence ofT(m) data points. We call
this the sequential application of the e-variable specification — see Figure 3.

Example 8 All GRO-type specifications based on a simple H0 = {P0} are likelihood ratios s [i ] = q (Y i )/p0 (Y i ) , and
hence will be seqdec and can thus be combined with optional stopping. In Example 1, choosingW(m) :=W(1) | Y(m−1)

to be the Bayesian posterior corresponds to the sequential application of theW(1) -GRO specification of Section 2.2;
usingW(m) :=W(1) corresponds to the plug-in application of theW(1) -GRO application. This illustrates that we may
think of our GRO criteria not as prescribing a single choice E (m) ∈ EN (m) , but rather as suggesting to choose E (m)

from a preferred subset E′
N (m)

of EN (m) ; the end-user may then pick any e-variable in E′
N (m)

. For example, in the
case of Example 1 with simple H0, we may further specify a set of distributions W1 | Y(m−1) on Θ1 that we deem
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‘reasonable’ given previous outcomes Y(m−1) , which may include the full Bayesian posterior, the originally used prior,
combinations of these, tempered posteriors and so on; and we may then suggest the set E′

N (m)
of all e-variables for

the m-th study based on a prior in W1 | Y(m−1) .
For the (RE)GRO(W)-specifications with composite null, one immediately verifies that those of Proposition 3 and

Example 4 also are seqdec, since they equal the likelihood ratio between the same two distributions Pδ+ and Pδ−

irrespective of n . The t-test GROW/REGROW e-variables for arbitrary prior W [δ ] on δ as in (28) are seqdec as
well, but to formalize this statement we have to extend the setting. In general, the seqdec definition makes sense
for every filtration (Gn )n with Gn = σ (V n ) where Vn = vn (Y n ) for some sequence of functions v1,v2, . . . defined
on Y1,Y2, . . . respectively. The previous definition is the special case with vn (Y n ) = Yn . In the t-test example we
can take Vn as in Section 4.3 such that vn (Y1, . . . ,Yn ) = Yn/|Y1 |. Let us illustrate how, with this coarser filtration,
we can still apply the plug-in method for non-constant stopping times N (m) . For this, we also have to coarsen the
filtrations relative to which the N (m) are defined : the set of allowed stopping times N(m) is now restricted to lie in
(F(m−1) ∪σ (Vm,1, . . . ,Vm,n ) )n withVj ,n = vj ,n (Yj ,1, . . . ,Yj ,n ) for some collection of functions (vj ,n )n (recall that before
they were members of (F(m−1) ∪ σ (Ym,1, . . . ,Ym,n ) )n ) . For the t -test example we set vj ,n (Yj ,1, . . . ,Yj ,n ) = Yj ,n/|Yj ,1 |.
The study-level filtrations F(1) := σ (Y(1) ), F(2) := σ (Y(1) ,Y(2) ), . . . remain unchanged and do not hide any information
in theY(j ) . In practice the restriction of N(m) will not be of much concern since ‘most’ stopping times are still allowed,
including the most aggressive stopping rule: stop the m-th study at the smallest n ′ such that ∏n′

i=1 si (Vm,i ) ≥ 1/α (m) ,
where α (m−1) is some threshold that is allowed to depend on Y(m−1) . We can also allow for the sequential (rather than
plug-in) application of the t-test e-variable specification so that effectivelywe view all studies as subsequent outcomes
of a single study, by restricting the filtrations in a slightly different way; we omit the details. We can even let the choice
between a sequential or plug-in choice for E (m) depend on past data, but this requires further generalizations of the
Fm and (vj ,n )n definitions that we shall not pursue here.

Summarizing, the practical setting we have in mind when we speak about OS and OC respectively is quite different:
OC concerns study-level martingales constructed by deciding, on the fly , after them−1-st study, whether to continue
to the m-th study and if so, what new F(m−1) -conditional e-variable to take from the set E (m) of possible e-variables
of use. OS is about data-level martingales with only a stop/continue choice. Nevertheless, the formal definitions
of (Type-I error) ‘safety under OS’ and ‘safety under OC’ only differ in that ‘study-level’ is replaced by ‘data-level’.
We may say that combining e-variables E (m) by multiplication is always Type-I error safe under OC. If the e-variable
prescription used to construct E (m) has the seqdec property, then the stopping times N (m) used in each study do not
need to be specified before the study starts and can even be externally imposed, so that we have Type-I error safety
not just under OC but also under OS within each individual study.

There is one final subtlety to consider: in the OS setting, with a single stream of data Y1,Y2, . . . and conditional
e-variables S1, S2, . . . and test martingale S [1] , S [2] , . . ., the Ville-Robbins inequality (7) implies that our Type-I error
bound α is guaranteed no matter when we stop — in particular, the actual stopping time does not have to be taken
relative to the filtration (Gn )n — we may even peek into the future to decide whether to stop now. This suggests
that our care in specifying the correct filtrations for the t-test was unnecessary — it seems we can use any stopping
rule we like! But this becomes incorrect once we move from OS at the data-level to OC at the study-level: if, in
the t-test setting with the plug-in construction of the e-variable E (m) for the m-th study, we were to set the N (m)

so that they are not stopping times relative to (F(m−1) ∪ σ (Vm,1, . . . ,Vm,n ) )n but only relative to the more refined
(F(m−1) ∪ σ (Ym,1, . . . ,Ym,n ) )n , we could end up creating fake conditional e-variables at the study-level, i.e. so that
EP0 [E (m) | F(m−1) ] > 1 for all m ((?, Appendix B) constructs such a random variable for the t-test). And then the
Ville-Robbins inequality may not hold any more at the study-level, and we loose the Type-I error guarantee under
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optional continuation.

Local vs. Global GRO
Nowconsider two data streams,Y1,1, . . . ,Y1,n1 andY2,1, . . . ,Y2,n2 of fixed lengths n1 and n2. Wemay alternativelymodel
these two streams as a single stream Y ′

1 , . . . ,Y
′
n1+n2 of length n1 + n2. If we use an e-variable specification with the

seqdec property to generate a study-level test martingale in the sequential way (i.e. not the plug-in way) described
above, we will get that, E (2) = E (1) · E (2) constructed for the first two data streams (with E (1) =

∏n1
i=1

si (Y i ) and
E (2) =

∏n2
i=1

sn1+i (Y
′n1+i )) coincides with E ′

(1) =
∏n1+n2

i=1
s [i ] (Y ′

i
) constructed for the single alternative stream. We

may thus say that the sequential application of seqdec e-specifications is always coherent: applying the specification
sequentially-‘locally’ (separately for both studies) or sequentially-globally (for the concatenated data viewed as one
study) gives the same result. For example, the BayesianW -GRO specification of Section 2.2, the GROW specification
of Proposition 3 and Example 4 and the GROW and REGROW specifications in the t-test example are all seqdec
and hence all have this coherence property when applied sequentially. Sometimes the sequential application of an E-
prescription is not feasible or desirable; for example, not all details of previous datamay be known. Wemay then prefer
the plug-in application of the E-prescription. Unfortunately, the seqdec property is not sufficient to get coherence
for the plug-in method: clearly, if we use the same priorW(1) as prior in the Bayesian Example 3 for the first and the
second study, this leads to different E (2) and E ′

(1) , the latter being equivalent to using the posterior of the first study
as prior in the second. A sufficient condition for a plug-in application to satisfy coherence after all is that it satisfies
both the seqdec property, and further that si , with Si = si (Y i ) as in the definition of seqdec, can be rewritten as
si (Y i ) = s ′ (Yi ) for a single function s ′, for all i . Then in fact the plug-in and the sequential application of the e-
prescription will coincide, and coherence is guaranteed. This happens in the subset of our examples in which s [i ] (Y i )
takes the form q (Y i )/p (Y i ) for the same p and q , for all i , as happens e.g. in Example 4.

An Open Question concerning GRO
In practice we may very well be in a situation in which OS at the data-level is desirable (see the next section for why
it would be), so we want to use a seqdec specification, yet the GRO criterion we are interested in does not give one
— Example 9 illustrates this for the 2 × 2 case. We may then try the following approach, which for simplicity we only
describe for the REGROW criterion: let E f

n be the REGROW e-variable (19) achieving (20) with f (θ ) = GRO(θ ) for
samples of size n . We try to find a sequence of e-variables E1, E2, . . . such that Ei is a σ (Y i−1 )-conditional e-variable
forYi and the product e-variable E [n ] := ∏n

i=1 Ei achieves (20) to within some fixed ϵ for all n larger than someminimal
n0, i.e.

inf
θ∈Θ1

( EY∼Pθ [logE
[n ] ] − GRO(θ ) ) ≥ inf

θ∈Θ1

( EY∼Pθ [logE
f
n ] − GRO(θ ) ) − ϵ. (31)

By construction, the sequence E [1] , E [2] , . . . is seqdec and allows for optional stopping, and if we can find E1, E2, . . .

such that ϵ is small for all n larger than or equal to the n0 corresponding to the smallest sample we’d ever be interested
in analyzing, we can say that the full process (and not just an instance at a fixed n) is ‘almost’ REGROW in the desired
sense.

Example 9 ? successfully use this idea for the 2 × 2 model. We illustrate this confining ourselves for simplicity to a
stream of paired data, i.e. X1 = a,X2 = b,X3 = a,X4 = b, . . .. First, we note that directly applying the idea above
will not work. To see this, consider the simple alternative Θ1 = { (µ1|a , µ1|b ) }. According to the composite null, theYi
are i.i.d. Bernoulli with parameter µ ∈ [0, 1], but the GROW(Θ1 ) = GRO( (µ1|a , µ1|b ) )- e-variable for such a H0 and
single data pointYi is the trivial E ≡ 1. Thus we would get all Ei equal to 1, and zero growth. However, if we analyze
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the data in batches of size 2, so set Y ′
1 = (Y1,Y2 ),Y ′

2 = (Y3,Y4 ) and take as E ′
i
= e(Y ′

i
) the (nontrivial) (µ1|a , µ1|b )-

GRO-e-variable for Y ′
i

= (Y2i−1,Y2i ) then E ′[n ] =
∏n

i=1 E
′
i
is the (µ1|a , µ1|b )-GRO-e-variable for all n : we have the

seqdec property and coherence, both for the sequential and for the plug-in method of applying the (µ1|a , µ1|b )-GRO-
prescription. Now in practice we want to consider a composite alternative — say we consider the full alternative
Θ1 = [0, 1]2. Then the REGROW prescription will not be seqdec - the priorW ∗

1 in (19) depends on the sample size n .
However it turns out that for a particular choice of priorW (? find it to be the beta-prior with parameters α = β = 0.18)
we have the following: if, for all i , we take E ′

i
theW | Y ′i−1-GRO e-variable,W | Y ′i−1 being the posterior based on

Y ′i−1, then we numerically find that E ′[n ] =
∏n

i=1 E
′
i
is, for all but the smallest n , very close to the REGROW e-variable

E f
n for that n , i.e. it achieves (31) for small ϵ.

The example raises an important question: under what conditions (on model, minimal batch sizes and the like) can we
create a seqdec specification that behaves optimally for our desired GRO criterion (as in Section 2.2 with W -GRO,
and in Example 4, with the GROW criterion) or almost optimally (as in the 2 × 2 example above with batch size 2, with
the REGROW criterion)?

6 | COMPETITIVENESS: GRO AND POWER

What sample size should we minimally plan for in a study so that we may expect a useful result? The answer depends
on whether one looks at e-values purely as measures of evidence, without an accept/reject decision attached, or
whether one considers such decisions after all. In the latter case, we can ask, more generally, how competitive e-
value based tests are, in terms of required sample size, compared to the standard fixed-sample size Neyman-Pearson
approach. We consider the cases without and with accept/reject decisions in turn.

e-Values as Evidence
e-values may be viewed simply as a measure of evidence, extending the evidential interpretation of likelihood ratios
(?). They are then certainly competitive in every sense: for simple H0 they coincide with likelihood ratios and Bayes
factors, and will give thus as much evidence as these notions do; for composite H0, GRO(W) e-variables are designed
to give as much expected log-evidence againstH0 as possible without violating the optional continuation requirement
— in practice in some cases giving a bit more, and in some cases a bit less evidence against the null than standard Bayes
factors (see ? for a practical example).

Now suppose we have a minimal effect size δ in mind, and we plan a study in which obtaining data is expensive.
What sample size should we plan for? One option is to pick a certain target growth L (essentially the logarithm of
?’s notion of “implied target”) and determine the sample size at which we expect to gain L. To illustrate, consider the
1-dimensional exponential family case of Example 4 with Θ0 = {0}. We know that, for a sample of size n , under all
θ1 ∈ Θ1 with Θ1 = {θ1 : θ1 ≥ δ }, we have GROW(Θ1 ) = nD (Pδ ∥P0 ) where D (Pδ ∥P0 ) is the KL divergence for 1
outcome. We then calculate nGROW as the smallest n such that nD (Pδ ∥P0 ) ≥ L, i.e. nGROW = ⌈L/D (Pδ ∥P0 ) ⌉. In the
Gaussian location model, D (Pδ ∥P0 ) = δ2/2, so n = ⌈2L/δ2 ⌉. We return to the question of choosing L below.

e-Values for Decisions
We can also use e-values in the traditional setting, in which a study ends with an accept/reject decision — with the
proviso that any decision is provisional, since there always is an option to continue and combine the results with a
new study. For better or worse, this is the paradigm that researchers often have to work in, and within this paradigm
they will inevitably be interested in the power for the experiment ahead. They will then plan for a certain sample
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F IGURE 4 Factor of additional data needed to obtain a power of 1 − β = 80% compared to a Neyman-Pearson
z -test, as a function of effect size (mean) for the Bayesian e-variable as in Example 3 with normal prior and the
GROW e-variable with minimum relevant effect size δ as in Example 4 under optional stopping, both in expectation
(τ0.8) and in worst-case (nmax (0.8)) (for very small and large δ , the normal prior we used for the Bayesian e-variable
may not be the prior of choice, but the results are representative for other priors one might use at δ ≈ 0.5).

size n to achieve such power, with a minimal relevant effect size δ in mind. As long as the e-variables themselves are
chosen according to a GRO criterion, such a use of power as a ‘secondary’ criterion used merely to determine sample
size is consistent with the GRO approach. In order for e-variables to be embraced by practitioners, we would hope
that the sample sizes required to achieve a certain desired power with GRO-e-variables would be competitive with
the standard approach based on Neyman-Pearson tests. We now study whether this is the case. For simplicity we
only consider the Gaussian location model of Example 3, where H0 is the standard normal N (0, 1) and H1 the set
{pµ : µ ∈ Θ} of normals with variance 1. All results readily generalise to 1-dimensional exponential families.

Power: planning for a Fixed n

For comparison, recall that a standard one-sided NP test at level α would reject if µ̂ ≥ zα /
√
n with zα the (1 − α )-

quantile of the standard normal with z0.05 = 1.645, z0.01 = 2.33. By standard calculation (see Appendix B.4), under an
alternative with mean ≥ δ , the sample size needed with this test to get power at least 1 − β satisfies nnp = Cnp/δ2

with Cnp = (zα + zβ )2; for α = 0.05, β = 0.2 we get Cnp ≈ 6.180. For the same Θ1 = {µ : µ ≥ δ }, we can also calculate
the sample size needed to get power 1 − β using the GROW e-variable of Example 4. If we use a fixed sample size n ,
we reject if log pδ (Y n )/p0 (Y n ) ≥ − logα . By a simple calculation, for α > 1/2, the smallest n at which we have power
at least 1 − β , is given by setting

ngrow-fixed = 2 · − logα
δ2

·
(
1 +

zβ

zα

)2
= cαnnp with cα =

2 · (− logα )
z 2α

. (32)

We have c0.05 ≈ 2.2; c0.01 ≈ 1.7 and cα very slowly converges to 1 in the limit α ↓ 0: up to a constant factor of about
two we need the same amount of data as in a classical approach, and the width of the induced confidence interval is
of the same order. We can therefore choose a GROW E ∗ that is qualitatively more similar to a standard NP test than
a standard Bayes factor approach. Using instead a standard Bayesian priorW1 on Θ1 with theW1-GRO e-variable has
the advantage of not needing to specify any δ in advance, but the number of samples to get power 1 − β is larger by
a logarithmic factor (Appendix B.4).
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The evidential target growth and the maximal power approach are not contradictory: for any particular choice of
α and β , there is a choice of L such that the planned-for sample sizes become the same function of δ (but of course
the L resulting from α = 0.05, β = 1 − 0.8 will be just as arbitrary as these choices were in the first place).

Power with Optional Stopping — a Tragedy of the Commons?
No matter the considerable advantages of being safe under optional continuation, the factor of about 2 of extra
data needed to get a desired power might scare away practitioners from adopting e-variables. The situation changes
completely once one adopts optional stopping. As we saw above, many testing problems allow us to use e-variables
that remain safe under optional stopping — and we can use the most aggressive stopping rule that stops as soon as
either En ≥ − logα (and we reject) or a pre-set maximum nmax is achieved (and we reject if Enmax ≥ − logα and
otherwise accept). A simple but quite accurate approximation of the resulting stopping time τ1 for i.i.d. data in the
GROW setting of Example 4, when setting nmax to∞ is given by using Wald’s equality in a manner first set out by ?; ?
give details. It gives for dataY1,Y2, . . . ∼ Pδ , that EPδ [τ1 ] ≈ (− logα )/D (Pδ ∥P0 ) with D (Pδ ∥P0 ) the KL divergence for
a single outcome. For the Gaussian location familyD (Pδ ∥P0 ) = δ2/2, and we get EPδ [τ1 ] ≈ 2(− logα )/δ2. Comparing
to (32), this gives that with nmax = ∞ (so that the power of our test is 1), the expected stopping time will be in fact
already smaller than the fixed stopping time we get with the Neyman-Pearson approach at power 1 − β set to 0.8. In
practice we will choose nmax (β ) to be the smallest number so that the overall procedure has power 1−β , resulting in a
stopping time τβ = min{τ1, nmax (β ) }. The expected stopping time is then really even smaller. Figure 4 demonstrates
this for the Gaussian location family. As the figure illustrates for the case β = 0.8, we have nmax (β ) = Cβ ,δ/δ2

and E[τβ ] = C ′
β ,δ

/δ2 for Cβ ,δ and C ′
β ,δ

that remain within constant bounds as δ varies. We can in fact heuristically
derive analytic expressions (integrals) for the limits Cβ ,0 and C ′

β ,0 for δ ↓ 0 by rescaling the log-likelihood process
(log pδ (X n )/p0 (X n ) )n to become compatible with a Brownian motion with drift, see Appendix B.4. These give, for
β = 0.2, Cβ ,0 = 8.5936 and C ′

β ,0 = 4.971 in accordance with Figure 4. We performed experiments with the publicly (on
CRAN) available R package (?) safestats that implements the e-value based z-test, logrank test (?), t -test (?) and the 2×2
contingency table test (?). Experiments within the latter three settings confirm the picture that arises from Figure 4:
with e-variables based on optional stopping one needs on average less data to achieve a certain desired power, but
one needs to prepare for more data in the worst-case. We tentatively conclude that if current standard null hypothesis
tests were replaced by e-value-based tests, and the standard practice to determine study sizes were replaced by the
one above, and the percentage of studies in which the alternative is true is not too small, the world would need on
average about the same or even a bit less data than it does now, to reach substantially more robust conclusions and
better meta-analyses. Yet — at least as long as scientists insist on power requirements — each individual study would
have to plan for substantially more data, giving researchers an incentive not to adapt these newmethods. We see this
Tragedy of the Commons as one of the biggest obstacles for uptake of e-variables in practical settings.

7 | EARLIER AND RELATED WORK

e-Variables, Test Martingales, Information Projections, General Novelty
As seen in Section 1.3, e-variables are the building blocks of test (super-) martingales, which go back to ?. E-variables
themselves have probably been originally introduced by Levin (of P vsNP fame) (?) (see also (?)) under the name test of
randomness, but Levin’s abstract context is quite different from ours. Independently discovered by ? (under the name
PBR (prediction-based ratio)) they were later analyzed by ? (calling them, with hindsight confusingly, Bayes factors); ??
(e-variables/values) and ? (bets/betting scores) — we originally called them S-values ourselves. The literature seems
to converge to e-variables and -values. Here the e may either stand for evidence or for expectation.
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Test martingales themselves have been thoroughly investigated by ??. They themselves underlie AV (anytime-
valid) p-values (?), AV tests (which we call ‘tests that are safe for optional stopping’) and AV confidence sequences.
The latter were recently developed in great generality by A. Ramdas and collaborators; see e.g. (??). Both AV tests
and confidence sequences have first been developed by H. Robbins and his students (???). Like we do for e-variables,
Ramdas et al. (and also e.g. ?) stress the promise of AV notions for a safer kind of statistics that is significantly more
robust than standard tests and confidence intervals.

Just like regular tests can be turned into confidence intervals by varying the null and ‘inverting’ the resulting tests,
AV confidence sequences can be created by starting with a collection of test martingales, one for each null, and then
varying the null (it is sometimes claimed that problematic aspects of null hypothesis testing are mostly due to the very
idea of a ‘null hypothesis’ or a significance level (??). Without wanting to take sides in this issue, we note that standard
confidence intervals are just as unsafe under optional continuation as standard Neyman-Pearson hypothesis tests).
The work on AV tests and confidence sequences is therefore very similar in spirit to ours, with our work stressing
analysis at the level of batches of data rather than individual data points, and with the AV work bringing out the
difference to Bayesian approaches more explicitly (AV 1 − α-confidence intervals are typically wider than Bayesian
1 − α-credible sets). In fact we do not claim any real novelty for the ‘safe’ or ‘AV’ setting per se: the real novelty of
this paper is in the four versions of Theorem 1. As far as we know, these results are new, with the exception of a
special case of the simplest version of Theorem 1 (Section 2): the case of discrete outcome spaces, simple H1 and
convex H0 was already formulated and proved by ?. Theorem 1 heavily builds on properties of standard- and reverse
and joint information projections about which there is a rich literature, key references being ????. Both the standard
and the reverse information projection are special cases of F -divergence projections, investigated in great detail in
both the information-theoretic community (a pioneering paper being (?)) and the mathematical finance community
(??); the robust optimization problems in the latter two papers, when instantiated to logarithmic utility, bear some
resemblance to our GROW criterion. While the details and the motivation are quite different, it would be of interest
to study the connections further.

Relation to Sequential Testing
Sequential testing (??), pioneered by ? and Barnard, is mathematically very similar to, but conceptually quite different
from, testing based on test martingales and (therefore) e-variables. Sequential tests are made for streams of data
Yi ,Y2, . . . as in Example 1 and Section 5 and are based on random processes (Si )i ∈Î such that, for each i , Si is a
conditional e-variable givenY1, . . . ,Yi−1 under H0, and 1/Si is a conditional e-variable givenY1, . . . ,Yi−1 under H1. Of
course, this two-sided e-variable property only holds in quite special cases — roughly under the same conditions as
Proposition 3 (monotone likelihood ratio), i.e. in our Example 4 and for the t -test with point prior on δ+, δ− . In such
a setting, the sequential test based on S1, S2, . . . with prespecified parameters α , β proceeds by calculating S1, S2, . . .

and stopping at τ∗, the smallest τ at which either Sτ ≥ (1 − β )/α (‘accept’) or Sτ ≤ (1 − α )/β (‘reject’). Wald showed
that this test has Type I error probability bounded by α and Type II error bounded by β . The reason one can stop
at a smaller threshold ((1 − β )/α rather than 1/α ) is that one has to stop at τ∗, Thus, the method does not allow for
optional stopping in our sense: conceptually, sequential tests were designed for special, pre-specified stopping times.
Still, much work in sequential testing can be re-cycled to obtain test martingales and e-values — but not always vice
versa since e-variables are often not ‘two-sided’.

Related Work on Relating p-values and e-variables
? and ? give a general formula for calibrators f (see also ? and ?? for early work in this direction). These are decreasing
functions f : [0, 1] → [0,∞] so that for any p-value p, E := f (p) is an e-variable. The choice of any such calibrator is
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essentially arbitrary, but, following ?, let us consider one that is especially simple: f (p ) = 1/√p − 1. For example, for
any calibrator f suggested for practice, rejection under the e-variable based test with significance level α = 0.05, so
that E ≥ 20, would then correspond to reject only if p ≤ f −1 (20) = 1/441 = 0.0023, requiring a substantial amount
of additional data for rejection under a given alternative. Note that the e-variables we developed for given models in
previous sections are more sensitive than such generic calibrators though. For example, consider the normal location
family of the previous section. With the calibrator above, we would reject if µ̂ ≥ z0.0023/

√
n ≈ 2.8/

√
n . The amount of

data to plan for to obtain power 80% would then be ≈ (2.8/1.65)2nnp ≈ 3.0nnp, whereas for the e-value based on the
normal likelihood ratio we would need ≈ 2.2nnp, and even significantly less under optional stopping.

8 | GRO: DISCUSSION AND OPEN PROBLEMS

In this paper we provided several motivations for our various GRO criteria as we introduced them, in Section 2–4.
Here we reflect on the strength of our arguments in sequence-of-studies settings when taking the running products
of the per-study GRO e-variables. Let us first consider a simple alternative Q as in Section 2.1, so that GROW and
REGROW criteria coincide with GRO. In an optional continuation (OC) context, the justification of GRO is strongest if
all study outcomes Y(1) ,Y(2) , . . . are independent and the variances of logE (m) under Q for the GRO e-variables E (m)

are not too large. As pointed out by a referee, if these variances are large, there could be prolonged periods of ‘draw-
downs’ — in the gambling interpretation, independence ensures, by the law of large numbers, that asymptotically
the GRO e-variables maximize our capital; but if there is high variance, there may be several studies in a row during
which the product of all e-values so far remains low, a fact well-known among economists. Moreover, i.i.d. data and
the seqdec property are required for another central justification of GRO in the optional stopping setting, namely
Breiman’s insight that the expected stopping time before one can reject is minimized by maximizing expectation of
the log capital (? explain this in detail). This issue may perhaps in some cases be resolved by instead of adopting
the ‘global’ GRO e-variable (among all e-variables for the null), taking an alternative e-variable that is GRO among a
subset of e-variables with sufficiently low variance under Q . Such low variance e-variables would presumably look
quite different from likelihood ratios and Bayes factors though, since for given Θ0, the only e-variable that can be
obtained by projecting on W(Θ0 ) is the unconstrained GRO e-variable: e-variables that are optimal in a non-GRO
sense cannot be obtained by projection, even if KL is replaced by another distance or divergence D ′: Corollary 2
implies that, withW ∗

0 = argminW ) ∈W(Θ0 ) D
′ (Q ; PW ) , we have that E ′ = q (Y)/pW ∗

0
(Y) does not give an E-variable

unlessW ∗
0 also minimizes the KL divergence, i.e. if E ′ is an E-variable at all, it must be GRO.

In case H1 is composite, then even if the Y(j ) are independent and the variances are low, there may be alterna-
tives to GROW and REGROW that are sometimes preferable. For example, if we are in an OS setting and we use our
tests as the basis for always-valid confidence intervals (see the previous section), we may want to aim for the condi-
tional e-variables that lead to the confidence intervals that shrink to 0 at the fastest possible rate, which for regular
1-dimensional parameters of interest is usually O ( (log log n )/n ) (?). These are not obtained by REGROW e-variables
(which, by extending the reasoning of Example 5, in parametric problems achieve a width of O ( (log n )/n )). The nar-
rower O ( (log log n )/n ) can be achieved by the switching strategies of ? or the stitching method used to design test
martingales by ?. A more precise understanding of whether such methods can also be re-understood as optimizing a
variation of GRO, and more generally what meta-GRO criteria are reasonable at all, and in what situations, is needed.
This includes the question of when any variation of GRO automatically provides seqdec, or close-to-seqdec specifica-
tions, allowing us to engage in OS (Example 9). Answering these questions is a major avenue for future research: it
ultimately determines how widely applicable GRO criteria really are.
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9 | COULD FISHER, JEFFREYS AND NEYMAN HAVE AGREED ON A CURREN-
CY FOR TESTING?

The three main approaches towards null hypothesis testing are Jeffreys’ Bayes factors, Fisher’s p-value-based testing
and the Neyman-Pearson method. In the paper Could Fisher, Jeffreys and Neyman Have Agreed on Testing?, ? noted
that, while these methodologies seem superficially highly contradictory, there exist methods that have a place within
all three. The developments in this paper lead to the conclusion that e-variable based testing — although it differs in
some technical respects from Berger’s proposals — is very much in the same spirit:

Concerning the Neyman-Pearson approach: e-variables lead to tests with Type-I error guarantees at any fixed
significance level α , which is also the first requirement of a Neyman-Pearson test — requiring safety under optional
continuation or optional stopping simply enforces the requirement to hold over a non-pre-specified sequence of
studies, which is a natural requirement in scientific applications. Since there is then no single study any more, the
concept of ‘power’ looses its centrality (and may be upgraded to requiring power one), and growth-rate optimality is
a natural quantitative refinement. The fact that a high growth-rate corresponds to a high value of EP1 [logE ] under
H1 whereas a high power corresponds to a high probability that P1 (logE ≥ − logα ) also shows that GRO and power
remain intimately connected in e-variable theory as well.

Concerning the Fisherian approach: here, p-values are interpreted as indicating amounts of evidence against the
null, and their definition does not need to refer to any specific alternative H1. Exactly the same holds for e-values: the
basic interpretation ‘a large e-value provides evidence against H0’ holds no matter how the e-variable is defined, as
long as it satisfies (1). If they are defined relative to H1 that is close to the actual process generating the data they will
grow fast and provide a lot of evidence, but the basic interpretation holds regardless. In contrast to evidence based
on standard p-values however, (a) e-based evidence has a concrete additional interpretation in terms of money (the
higher E , the more money one has gained in a game that is not favourable under the null); (b) it remains valid under
optional continuation, and (c) unlike the p-value, it is compatible with (provides the same evidence as) likelihood ratios
do in simple-vs.-simple testing — the one case where the use of likelihood ratio as evidence is standard.

Concerning the Bayesian approach: despite their monetary interpretation, all e-variables that we encountered can
also be written as Bayes factors, and Theorem 1 strongly suggests that this is a very general phenomenon. Subjective
prior knowledge can be accounted for using theW1-GRO e-variable (Section 2.2), whereas maximin optimal GROW
and REGROW e-variables sometimes correspond to ‘objective’ Bayes approaches based on Jeffreys’ and/or right-Haar
priors. Still, there seem to be two fundamental differences: first, in a standard Bayesian analysis, one would require
error guarantees and safety under OC under the prior instead of under all P ∈ H0, and second, one would insist on
using full, standard likelihoods — whereas e-variables may also be based on partial (?) or Dawid’s (?) prequential (?)
likelihoods rather than full likelihoods — which then however may be combined with priors (on H1) after all. Even
though we emphasise Type-I error safety throughout, because of this generic freedom in using priors on H1 the link
to Bayesian methods remains close.

The Dream
With the massive criticisms of p-values in recent years, there seems to be growing consensus that, in the context of
hypothesis testing, p-values should either not be used at all, or at least, with utter care (??). Yet otherwise, the disputes
among adherents of the three schools continue. For example, some highly accomplished statisticians reject the idea
of testing without a clear alternative outright; others say that such goodness-of-fit tests are an essential part of data
analysis. Some insist that significance testing (with binary decisions) should be abolished altogether (?), others (perhaps
slightly cynically) acknowledge that significance may be silly in principle, yet maintain that journals and conferences
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will always require a significance-style ‘bar’ in practice and that therefore such bars should be made as meaningful
as possible. Finally, within the Bayesian community, the Bayes factor is sometimes presented as a panacea for most
testing ills, while others warn against its use, protesting, for example, against claims that Bayes factors can ‘handle
optional stopping’ (?). Wouldn’t it be nice if all these accomplished but disagreeing people could continue to go their way,
yet would have a common language or ‘currency’ to express amounts of evidence, and would be able to combine their results
in a meaningful way? This is what e-variables can provide: consider three tests with the same null hypothesis H0,
based on samples Y(1) , Y(2) and Y(3) respectively. The results of a GROW e-variable test aimed to optimise power
on sample Y(1) for δ ≥ δ+, an e-variable test for sample Y(2) based on a Bayesian priorW1 on H1 and a Fisherian
e-variable test in which the alternative H1 is not explicitly formulated, can all be multiplied — and the result will be
meaningful, both in terms of monetary gain and in terms of error probability.
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A | THEOREM 1, COROLLARIES AND CONDITIONS

Here we prove Theorem 1 and its Corollary 2. We also, in Appendix A.3, discuss the required regularity conditions for
Theorem 1 and we prove that they are applicable in all our examples.

A.1 | Proof of Theorem 1, Simplest Version, and Corollary 2

The proof of the first version of Theorem 1 relies on quite technical results from ?, but if the minimum in (11) is
achieved by some priorW ∗

0 , and under the further condition that we can exchange differentiation and expectation,
then the partial and crucial result that (10) is an e-variable has a very simple proof, which we provide first as a ‘warm-
up’: evaluate the derivative f (α ) = (d/α )D (Q ∥ (1 − α )PW ∗

0
+αPθ ) at α = 0 for arbitrary θ ∈ Θ0 and note that it is ≥ 0

iff EY∼Q [pθ (Y)/pW ∗
0
(Y) ] = EY∼Pθ [q (Y)/pW ∗

0
(Y) ] ≤ 1. Differentiating again gives that f (α ) is convex, and the result

follows from convexity of P0 := {PW :W ∈ W(Θ0 ) }.
We proceed to give the complete and fully general proof. Note that P0 is convex, and (by assumption of the

theorem) every distribution in P0 as well as Q has a density relative to µ and infP ∈P0 D (Q ∥P ) < ∞. These three
givens allow us to use a range of results about the reverse information projection (RIPr) established in the Ph.D. thesis
(?) (additional proofs of (extensions of) all of Li’s results we need below can be found in the refereed paper ?).

First, the existence and uniqueness of a measure P ∗
0 (not necessarily a probability measure) with density p∗0 that

satisfies D (Q ∥P ∗
0 ) = infP ∈P0 D (Q ∥P ) (i.e. it is the RIPr), and furthermore has the property

for all p that are densities of some P ∈ P0: EY∼Q

[
p (Y)
p∗0 (Y)

]
≤ 1, (33)

follows directly from (?, Theorem 4.3). But by writing out the integral in the expectation explicitly we immediately see
that we can rewrite (33) as:

for all P ∈ P0: EY∼P

[
q (Y)
p∗0 (Y)

]
≤ 1.

Li’s Theorem 4.3 still allows for the possibility that
∫
p∗0 (y ) dµ (y ) > 1. To see that in fact this is impossible, i.e. p∗0

defines a (sub-) probability density, use Lemma 4.5 of ?. This shows that E ∗ = q (Y)/p∗0 (Y) is an e-variable, and (using
that P ∗

0 is the RIPr) the second and third equality of (11). The final line of the result (‘if . . . then P ∗
0 = PW ∗

0
’) follows

directly from Lemma 4.1 of ?.
It remains to show the first equality of (11) and essential uniqueness of E ∗. For the former, it is sufficient to show

that for all e-variables, i.e. all E ∈ E (Θ0 ) ,

EY∼Q [logE ] ≤ EQ
[
logE ∗] . (34)

To show this, fix any e-variable E = e (Y) in E(Θ0 ) . Now further fix ϵ > 0 and fix aW(ϵ) ∈ W(Θ0 ) with D (Q ∥PW(ϵ) ) ≤
infW0∈W(Θ0 ) D (Q ∥PW0 ) + ϵ. We must have, with q ′ (y ) := e (y )pW(ϵ) (y ) , that

∫
q ′ (y ) dµ = EY∼PW(ϵ)

[E ] ≤ 1, so q ′ is
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a sub-probability density, and by properness of the log scoring rule,

EQ [logE ] = EQ

[
log q ′ (Y)

pW(ϵ) (Y)

]
≤ EQ

[
log q (Y)

pW(ϵ) (Y)

]
= D (Q ∥PW(ϵ) ) ≤ inf

W0∈W(Θ0 )
D (Q ∥PW0 ) + ϵ.

Since we can take ϵ to be arbitrarily close to 0, (34) follows.
To show essential uniqueness of E ∗, let E be any e-variable with EQ [logE ] = EQ [logE ∗ ]. By linearity of ex-

pectation, E ′ = (1/2)E ∗ + (1/2)E is then also an e-variable, and by Jensen’s inequality applied to the logarithm we
must have EQ [logE ′ ] > EQ [logE ∗ ] unless Q (E = E ∗ ) = 1. Since we have already shown that for any e-variable E ′,
EQ [logE ′ ] ≤ EQ [logE ∗ ], it follows that Q (E , E ∗ ) = 0. But then, by our assumption that Q has full support, i.e.
q (Y) > 0 hold µ-almost everywhere, we must have that Pθ (E , E ∗ ) = 0 for all θ ∈ Θ, so E ∗ is essentially unique.

Proof of Corollary 2
LetW0 be as in the corollary statement. By definition of E ∗ as in Theorem 1, simplest version, and then using strict
convexity of the KL divergence in its second argument (?) and the fact that D (Q ∥P ) is minimised, over P ∈ {PW :
W ∈ W(Θ0 ) }, we have:

EQ
[
logE ∗] = D (Q ∥P ∗

0 ) < D (Q ∥PW0 ) = EQ
[
log q

pW0

]
so that, if q/pW0 were an e-variable, we would have a contradiction with the first equality in (11).

A.2 | Proof of full version of Theorem 1

The proof consists of two sub-parts, Part (a) relying on the simple version of the theorem presented in Section 2 and
proven above (henceforth called ‘the simple theorem’), and Part (b) relying on a nonstandard minimax/saddle-point
theorem from ? (GD from now on), itself relying heavily on an earlier result from ?.

Part (a). We first show that E f as in (26) is an e-variable. This follows by the simple theorem, with V in the role
of Y, Q in the theorem statement substituted by P

[V]
W ∗

1
and PW forW ∈ W(Θ0 ) replaced by P

[V]
W

and using that (25)

implies that infW0∈W0 (Θ0 ) D (P [V]
W ∗

1
∥P [V]

W0
) < ∞. Next, we show that if (27) holds for E f as in (26), then all e-variables

E for which it holds must be essentially equal to E f . To see this, suppose that E is another e-variable satisfying (27).
Then we have

inf
W ∈W1

( EY∼PW [logE ] − f (W ) ) = D (P [V]
W ∗

1
∥P ∗[V]

0 ) − f (W ∗
1 ) = EY∼PW ∗

1

[
logE f

]
− f (W ∗

1 )

as follows by writing out the definition of D ( · ∥ ·) . On the other hand, using the definition of inf, we must have

inf
W ∈W1

( EY∼PW [logE ] − f (W ) ) ≤ EY∼PW ∗
1
[logE ] − f (W ∗

1 ) .

The only way these two displays can be reconciled is if EY∼PW ∗
1
[logE ] ≥ EY∼PW ∗

1

[
logE f

]
. But since E f is the RIPr

of P [V]
W ∗

1
, we can use the simple theorem again, applied with PW ∗

1
in the role of Q and H1 = {PW ∗

1
}, to conclude that

E f must be essentially equal to E . The final line of the fully general Theorem 1 follows again by reduction to the
analogous statement of the simple theorem.



32 Grünwald, De Heide and Koolen

Finally, we will use the simple theorem to show the following one-sided version of (27):

inf
W ∈W1

( EY∼PW [logE f ] − f (W ) ) ≤ sup
E ∈E (Θ0 )

inf
W ∈W1

( EY∼PW [logE ] − f (W ) ) ≤ D (P [V]
W ∗

1
∥P ∗[V]

0 ) − f (W ∗
1 ) . (35)

The first inequality is trivial since E f ∈ E (Θ0 ) . The second follows if we can show that

sup
E ∈E (Θ0 )

inf
W ∈W1

EPW [logE − f (W ) ] ≤ inf
W ∈W1

inf
W0∈W0

( D (PW ∥PW0 ) − f (W1 ) ) (36)

and recognizing that by assumptions of the theorem, the right-hand side of (36) coincides with the right-hand side of
(35). To prove (36), note that by the simple version of the theorem we already have for each fixedW1 ∈ W1 that

inf
W0∈W0

D (PW1 ∥PW0 ) = sup
E ∈E (Θ0 )

EPW1
[logE ]

and this directly implies the inequality by adding −f (W1 ) to both sides and using a standard “inf sup ≥ sup inf” argu-
ment (the trivial side of the minimax theorem). The equality follows by assumption of the Theorem.

Part (b). Taking stock, we see that the only thing that is left to prove is (35) with the reversed inequalities. For
this, it suffices to show that

D (P [V]
W ∗

1
∥P ∗[V]

0 ) − f (W ∗
1 ) ≤ inf

W ∈W1

EPW [logE f − f (W ) ] . (37)

Since all distributions occurring in (37) are marginals on V, and E f can be written as a function of V, we will from now
on simply refer to the marginal densities on V corresponding to PW as pW (rather than p ′W as in the main text), and
we will omit the superscripts [V] from P ; thus we take as our basic outcome now V rather than Y.

We will show the stronger statement that (37) holds with equality, by using a minimax/saddle point result that
holds for general functions L : Θ1 × W1 → Ò ∪ {∞} such that L (Wn,Wu ) := Eθ∼Wn [L (θ,Wu ) ] is well-defined for
allWn ∈ W1 (the condition ‘well-defined’ is necessary since the expectation is over a function that may neither be
bounded from below nor from above; see for example Section 3.1 of GD for the (standard) definitions). These L are
interpreted as loss functions, with θ1 ∈ Θ1 denoting a state of nature and W1 an arbitrary convex set of distributions
on Θ1, eachW ∈ W1 being interpreted as an action. Following GD, we can associate a decision-theoretic entropy
H (Wn ) := infWu∈W L0 (Wn,Wu ) = L (Wn,Wn ) with any such L. The following result holds for all Θ1, W1 and L as
defined above but we will apply it to the instantiation of Θ1 and W1 in Theorem 1.

GD’s Theorem 6.3

Assume that (a) L is a proper scoring rule, i.e. for all Wn ∈ W1, H (Wn ) = L (Wn,Wn ) . Suppose that (b) W ∗
1 ∈ W1

is ‘maximum entropy’ i.e. supWn∈W1
H (Wn ) = H (W ∗

1 ) < ∞ and (c) the lower semi-continuity condition below holds.
Then (W ∗

1 ,W
∗
1 ) is a saddle-point relative to L, i.e.

H (W ∗
1 ) = L (W ∗

1 ,W
∗
1 ) = sup

W ∈W1

L (W ,W ∗
1 ) . (38)
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Lower Semicontinuity Condition (GD’s Condition 6.1)

Let (Wn ) be a sequence of distributions in W1 such that H (Wn ) is bounded below and such that (Wn ) converges
weakly to some distribution W ◦ on Θ1. Then L (W ◦,Wu ) is well-defined for all Wu ∈ W and for all W ′ ∈ W,
L (W ′,W ◦ ) ≤ lim infn→∞ L (W ′,Wn ) .

We now define the specific loss function to which we will apply the above theorem. W1 and Θ1 are defined as in
the statement of Theorem 1. (25) implies that D (PW ∗

1
∥P ∗

0 ) < ∞ for some P ∗
0 with density p∗0. Similarly, PW must have

some density pW under allW ∈ W1. We can therefore define, using these densities,

L (θ,Wu ) = EV∼Pθ

[
− log

pWu (V)
p∗0 (V)

− f (θ )
]

L (Wn,Wu ) = Eθ∼WnEV∼Pθ

[
− log

pWu (V)
p∗0 (V)

− f (θ )
]
.

Since Pθ has full support for all θ ∈ Θ1, PW ∗
1
has full support and so p∗0 (V) > 0 a.s. under PW ∗

1
and hence under all Pθ

with θ ∈ Θ1. Similarly pW (V) > 0 a.s. under all Pθ with θ ∈ Θ1. Thus, the quantity inside the expectation is almost
surely well-defined. To see that the expectations are themselves well-defined (using standard definitions, see again
Section 3.1 of GD), note that we can write

L (Wn,Wu ) = + EWnEPθ
[
− log

pWu
pWn

]
+
+ EWnEPθ

[
− log

pWn
p∗0

]
+
− EWnEPθ [f (θ ) ]+

− EWnEPθ
[
− log

pWu
pWn

]
−
− EWnEPθ

[
− log

pWn
p∗0

]
−
+ EWnEPθ [f (θ ) ]−

with [x ]+ := max{x , 0} and [x ]− = max{−x , 0}. The expectation would be undefined iff there is both a term equal to
∞ and a term equal to −∞ on the right. We will show that this is not the case. We assume f (θ ) bounded, and, under
our finite KL condition, D (PWn ∥PWu ) = EWnEPθ

[
− log pWu

pWn

]
+
− EWnEPθ

[
− log pWu

pWn

]
−
< ∞, so we only need to worry

about the terms involving p∗0. But these are also the positive and negative parts of a minus KL divergence, so the full
expectation is well-defined as a number in Ò ∪ {−∞}. The expectations are therefore welldefined and we can write

L (Wn,Wu ) = D (PWn ∥PWu ) − D (PWn ∥P ∗
0 ) − Eθ∼Wn [f (θ ) ] (39)

and analogously for L (θ,Wu ) .

Applying GD’s theorem to L

We apply GD’s theorem to the loss function L above withW ∗
1 as in the statement of the theorem. From (39) we see

that L (W ∗
1 ,W ) is minimised, over W1, byW =W ∗

1 and then finite, so that GD’s requirements (a) and (b) hold for loss
function L. We can now reason as follows. If the lower semicontinuity condition (c) also holds, then the theorem
applies and (38) implies, taking minus on both sides,

−L (W ∗
1 ,W

∗
1 ) = inf

W ∈W1

−L (W ,W ∗
1 ) .

which, rewriting the left-hand side using (39) and the right-hand side using definition of L, is in turn seen to be
equivalent to (37), and the desired result follows.
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It thus only remains to show that the lower semicontinuity condition holds. Using (39) we can write H (Wn ) =

−D (PWn ∥P ∗
0 ) + f (Wn ) for allWn ∈ W1. Take a sequence (Wn )n andW ◦ as in the condition. Then (PWn )n converges

weakly to PW ◦ (this is easy to see but see the proof of Lemma 9.2. of GD for an explicit proof). Since also f is bounded,
f (Wn ) converges to f (W ◦ ) . Also, for some K ∈ Ò, for all n , we have H (Wn ) ≥ K so for some K ′ ∈ Ò, by boundedness
of f , we have, for all n , D (PWn ∥P ∗

0 ) ≤ K ′ < ∞. By Posner’s (?) theorem, D (PW ∥P ∗
0 ) is lower semi-continuous in its

first argument. Posner only proves the result for P ∗
0 a probability measure; but it still holds even if P ∗

0 is a strict sub-
probability measure, since then p ′ (Y) = p∗0 (Y)/

∫
p∗0 (Y)dµ = 1 represents a distribution P ′ and the result follows by

applying Posner’s result to P ′ and noting that D (PW ∥P ∗
0 ) = D (PW ∥P ′ ) +C for some constant C not depending onW .

The lower-semicontinuity in the first argument implies D (PW ◦ ∥P ∗
0 ) ≤ lim infn→∞ D (PWn ∥P ∗

0 ) ≤ K ′ < ∞. Fol-
lowing an argument exactly parallel to the proof of well-definedness for L (Wn,Wu ) given above, it now follows that
L (W ◦,Wu ) is well-defined for allWu ∈ W1 as required. Next, using (39), we see that it is sufficient to show that for
allW ∈ W1:

D (PW ∥PW ◦ ) ≤ lim inf
n→∞

D (PW ∥PWn ) .

But this again follows directly from Posner’s theorem, which also says that KL divergence is lower semi-continuous in
its second argument.

A.3 | Remarks on and Checking of Conditions for Theorem 1

The Full Support and Finite KL Condition
Requiring full support in the simplest version of the theorem ensures that E ∗ is a.s. well-defined: without it, there
may be an outcome y such that for some θ ∈ Θ0, Pθ (y) > 0 whereas PW0 (y) = Q (y) = 0. Then E ∗ is undefined with
positive probability under this θ. The finite KL condition D (Pθ ∥Pθ′ ) < ∞ imposed in the generalised versions of the
theorem is just slightly stronger than the full support condition. It is required to make sure that all expectations in the
proof are well-defined.

For standard parametric models in standard parameterisations (e.g. all multivariate exponential families in their
mean-value parameterisation), both conditions will hold automatically as long as one excludes points at the boundary
of the parameter space, if those exist. For example, in the 2 × 2 setting without a pre-specified effect size we restrict
Θ1 to (0, 1)2, requiring the Bernoulli probabilities µ1|a and µ1|b to be non-degenerate. But, since the condition only
refers to Θ1, it is o.k. to set Θ0 = [0, 1] to include the boundary points in the null.

Additional Condition: Existence ofW ∗
1

The requirement for composite H1 that aW ∗
1 exists achieving the minimum in (27) is strong in general, but it holds in

all our examples with composite H1: Example 4 (W ∗
1 is shown to be a point prior in the example), Example 5 (since

there we restrictΘ1 to be compact) and Example 6 and 7 (here verifying the condition requires some work, see below).
It also holds in the t -test setting underneath Theorem 2 with effect sizes δ+ and δ− (W ∗

1 reduces to a point prior on
δ+). By allowing e-variables to be functions of V that are themselves functions of Y (i.e. σ (Y)-measurable) as in the
latter example, we make the condition considerably weaker.

Applicability of Theorem 1 and existence of minimizingW ∗
1 andW ∗

0 in Example 6 and 7
We have H1 = {Pµ1|a ,µ1|b : (µ1|a , µ1|b ) ∈ Θ1} and H0 = {Pµ : µ ∈ Θ0}, Θ0 = [0, 1] with definitions as in Example 2. In
Example 6, we take Θ1 = (0, 1)2 and we can take Θ0 = [0, 1] or Θ0 = (0, 1) (the same minima will be achieved in both
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cases). In Example 7 we take Θ1 = { (µ1|a , µ1|a + δ ) : 0 < µ1,a < 1 − δ } and Θ0 = (0, 1) .
We only give the proof for Example 6; the proof for Example 7 is entirely analogous.
The requirement for applying Theorem 1 that Pθ , Pθ′ with θ, θ′ ∈ Θ1 satisfy D (Pθ ∥Pθ′ ) < ∞, and have full support

trivially holds by our exclusion of the boundary points in Θ1. The only remaining condition for applying Theorem 1
is the existence of a KL minimizing priorW ∗

1 . We will show the stronger result that there exists a pair of minimizing
priors (W ∗

1 ,W
∗
0 ) withW

∗
1 ∈ W(Θ1 ) andW ∗

0 ∈ W(Θ0 ) such that

inf
W1∈W(Θ1 ) ,W0∈W(Θ0 )

(D (PW1 ∥PW0 ) − f (W1 ) ) = D (PW ∗
1
∥PW ∗

0
) − f (W ∗

1 ) < ∞, (40)

with f (W ) = E(µ1|a ,µ1|b )∼W [f (µ1|a , µ1|b ) ] and f (µ1|a , µ1|b ) = D (Pµ1|a ,µ1|b ∥Pµ◦ ) with µ◦ as in (14). We do this by first, in
Part (a), showing that there exists such a pair withW ∗

1 ∈ [0, 1]2, i.e. with Θ1 extended to include its boundary points.
We then, in Part (b), show that the resultingW ∗

1 puts no mass on these boundary points, so that it also achieves the
minimum on W(Θ1 ) .

Part (a) The sets W([0, 1]2 ) and W(Θ0 ) are convex and compact in the weak topology; by Posner’s (?) theorem,
D (PW1 ∥PW0 ) is lower-semicontinuous in its second argument in the weak topology on {PW0 : W0 ∈ W(Θ0 ) } and
hence on W(Θ0 ) itself (see Section 9 of GD) and f (W ) is linear and bounded on W(Θ0 ) ; this shows that for eachW1,
the corresponding minimizingW ∗

0 is achieved; since D (PW1 ∥PW ∗
0
) ≤ D (PW1 ∥P1/2 ) < ∞ (with P1/2 ∈ H0 representing

Bernoulli(1/2)) and f is bounded, the finiteness in (40) is guaranteed as well. To see that the minimumW1 is achieved
as well, note that, again by Posner’s theorem, D (PW1 ∥PW0 ) is also lower-semicontinuous in its first argument in the
weak topology on {PW1 : W1 ∈ W([0, 1]2 ) }. The same argument as before now gives that the minimum W ∗

1 is
achieved.

Part (b) It now suffices to show that PW ∗
1
has full support, for this implies thatW ∗

1 assigns mass 1 on Θ1 = (0, 1)2

and then W ∗
0 must assign mass 1 on (0, 1) (otherwise the KL divergence in (40) would be infinite, and we already

established it is not). To show full support of PW ∗
1
, note that by symmetry considerations, we must have that, with our

choice of f ,

M := D (PW ∗
1
∥PW ∗

0
) − f (W ∗

1 ) = D (PW ◦
1
∥PW ◦

0
) − f (W ◦

1 ) (41)

for a prior W ◦
1 such that, for all y ∈ {0, 1}n , pW ◦

1
(y | x) = pW ∗

1
(y′ | x) with y′ is the modification of y with all 0s

and 1s interchanged, and similarly forW ◦
0 . Now if PW ∗

1
would not have full support, we have PW ∗

1
(Y1 = y1,Y2 = y2 |

X1 = a,X2 = b ) = 0 for some (y1, y2 ) ∈ {0, 1}2. Then PW ◦
1
(Y1 = ȳ1,Y2 = ȳ2 | X1 = a,X2 = b ) = 0 for ȳj = 1 − yj .

But infW0∈W(Θ0 ) D (PW ∗
1
∥PW0 ) − f (W ∗

1 ) as a function ofW ∗
1 is easily checked to be strictly convex on W(Θ1 ) , so by

(41) we must have that, forW ′ = (1/2)W ∗
1 + (1/2)W ◦

1 , it holds that infW0∈W(Θ0 ) D (PW ′ ∥PW0 ) + f (W ′ ) < M . But this
contradicts that M is the minimum. This shows that PW ∗

1
has full support.

Finiteness of Support in Example 6 and 7
We claimed that the supports of the priorsW ∗

1 andW ∗
0 in Example 7 (restrictedΘ1) are finite. In fact they are finite also

in Example 6 (unrestricted Θ1). We verify this forW ∗
1 , the case forW ∗

0 is analogous. Note that for given sample size
n , the probability distribution PW is completely determined by the probabilities assigned to the sufficient statistics
N1|a ,N1|b . This means that for each prior W ∈ W(Θ1 ) , the Bayes marginal PW can be identified with a vector
of Mn := (na + 1) · (nb + 1) real-valued components. Every such PW can also be written as a mixture of Pθ ’s for
θ = (µa |1, µb |1 ) ∈ Θ1, a convex set. By Carathéodory’s theorem we need at most Mn mixture components to describe
an arbitrary PW as a mixture of the Pθ ’s; this proves the claim.
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B | ADDITIONAL CLARIFICATIONS AND PROOFS

B.1 | Section 1.3

We discuss two extensions of the filtration to be used in Definition 1. For concreteness and simplicity we consider
the sequential set-up of Section 5 in which, for each study m , there is an underlying data streamYm,1,Ym .2, . . ..

Filtration: Conditional Distributions

In the 2×2 setting theΘ1 represent conditional distributions ofY | X . While neither Section 1.3 nor Section 5 formally
allowed for that setting, the extension is straightforward. We simply assume the underlying streams are of the form
(Xm,1,Ym,1 ), (Xm,2,Ym,2 ), . . . (with, in the 2 × 2 example, Xm,i ∈ {a, b }). The distributions in H1 are now extended
to define a random process of independent outcomes with the same conditional distribution for a single such stream
(X1,Y1 ), (X2,Y2 ), . . ., i.e. for all θ1 ∈ Θ1, we set pθ1 (y

n | xn ) = Pθ1 (Y
n = y n | X n = xn ) := ∏n

i=1 pθ1 (yi | xi ) . We then
only need to extend Definition 1 of conditional e-variables to deal with this extension. This is achieved by setting
F(m−1) in the definition to σ (Y(m−1) ,X(m) ) .

Filtration: Side Information

Now we consider how the set-up can be extended to deal with side-information that may be used e.g. after j studies
to decide whether to start a new, j + 1st study at all, and if so, what the sample size of that study will be. For this we
again need to extend H0 and H1 so that its elements define a conditional random process, with at the time that the
j -th study has just been observed, also the additional variables R(1) , . . . ,R(j ) observed. Even if there are underlying
streams of data Yj ,1,Yj ,2, . . . so that the Y(j ) have an internal structure, the R(j ) are not required to have such a
structure. To make all desired probabilities well-defined and at the same time make sure that the side-information is
really external, we impose a conditional independence on the underlying stream: under each P ∈ H0, for eachm, i ∈ Î,
the conditional distribution ofYm,i givenY i−1

m and R(m−1) is defined to be the same as the distribution under P ofYm,i
givenY i−1

m , which is already well-defined once H0 is specified. With this definition, we can set F(j ) = σ (Y(j ) ,R(j ) ) (or
F(j ) = σ (Y(j ) ,R(j ) ,X(j+1) ) if theHj already contain conditional distributions, or F(j ) = σ (U(j ) ,R(j ) ,X(j+1) ) withU(j ) a
coarsening ofY(j ) if required, such as in the t -test setting). Focusing on the simplest casewith F(j ) = σ (Y(j ) ,R(j ) ) , the
construction ensures that EP [E (j ) | Y(j −1) ,R(j −1) ] ≤ 1 (and hence we have safety under OC) in both cases discussed
in Section 5: we can either use the plug-in application of any e-variable specification, or, if the specification is seqdec,
we can also use the sequential application. Note that with this construction, the R(j ) are allowed to depend on
Y(1) , . . . ,Y(j ) in unspecified ways. This is unproblematic because (other than in the case with conditional distributions
and X(j+1) ) the E (j+1) cannot depend on R(j+1) . For example, based on what she sees in the Y(j ) , your boss may
decide to announce ‘we havemoney to do an additional study with 100 patients’, which can be encoded as a particular
outcome of R(j ) . This may then be used to decide to continue (i.e. set τ in Proposition 2 to be larger than j ) and set
N (j+1) to be 100.

B.2 | Section 3

Proof of Proposition 3

The monotone likelihood ratio property implies stochastic dominance (?), i.e. with P [T ] denoting the distribution of
the statistic T , we must have EPδ [T ] [f (T ) ] ≥ EPδ′ [f (T ) ] for δ ≥ δ ′ and every increasing function f . This implies
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that

D (Pδ+ ∥Pδ− ) = EY∼Pδ+
[
log pδ+ (Y)

pδ− (Y)

]
= inf

δ≥δ+
EY∼Pδ

[
log pδ+ (Y)

pδ− (Y)

]
. (42)

We also have, by the same stochastic dominance result, for δ ≤ δ− ,

EY∼Pδ

[
pδ+ (Y)
pδ− (Y)

]
≤ EY∼Pδ−

[
pδ+ (Y)
pδ− (Y)

]
= 1,

so that E ∗ = pδ+ (Y)/pδ− (Y) is an e-variable, which directly leads to the first inequality in the chain of (in)equalities
(43) below. The first equality follows by (42), the second because, since E ∗ is of form pδ+/pW0 , with W0 ∈ E (Θ0 )
(namely,W0 puts all mass on δ− ), it must, by Corollary 2, be the GRO-e-variable for testing between Θ′

1 = {δ+} and
Θ0. The final two inequalities are immediate:

sup
E ∈E (Θ0 )

inf
δ≥δ+

EY∼Pδ [logE ] ≥ inf
δ≥δ+

EY∼Pδ

[
log pδ+ (Y)

pδ− (Y)

]
= EY∼Pδ+

[
log pδ+ (Y)

pδ− (Y)

]
=

sup
E ∈E (Θ0 )

EY∼Pδ+ [logE ] ≥ inf
δ≥δ+

sup
E ∈E (Θ0 )

EY∼Pδ [logE ] ≥ sup
E ∈E (Θ0 )

inf
δ≥δ+

EY∼Pδ [logE ] . (43)

This chain of inequalities implying that all its parts are equal, the result follows.

B.3 | Section 4.3

Proof of (29)

(29) follows from (?, page 273) or as special case of Theorem 2.1. of ?, but the first proof leaves out details and the
second is very abstract, so for convenience we give a direct proof. For simplicity restrict to the case withW putting all
its mass on a particular δ . Fix arbitrary σ > 0 and n ≥ 2 and note thatV1 ∈ {−1, 1} and Pδ (V1 = 1) = Pδ,σ (Y1 > 0) (note
that p ′

W [δ ] (V1 ) is a probability mass function, whereas p ′
W [δ ] (Vi | V i−1 ) is defined as density relative to Lebesgue

measure for i > 1). We must then have:

Pδ (V1 = 1) · p ′δ (v2, . . . ,vn | V1 = 1) = Pδ (V1 = 1) ·
∫ ∞

0
pδ/|y1 |,σ/|y1 | (v

n | Y1 = y1 )pδ,σ (y1 | Y1 > 0)dy1

=

∫ ∞

0

n∏
i=2

(
1

√
2π

· |y1 |
σ

· e−
1
2

(
vi

σ/|y1 |
−δ

)2 )
·
(

1
√
2πσ2

e
− 1
2

(
y1
σ −δ

)2 )
dy1

=

∫ ∞

0

n∏
i=1

(
1

√
2π

· |y1 |
σ

· e−
1
2

(
vi

σ/|y1 |
−δ

)2 )
· 1

|y1 |
dy1

=

∫ ∞

0

n∏
i=1

(
1

√
2π

· 1
τ
· e−

1
2

(
vi
τ −δ

)2 )
· τ
σ

���� dy1dτ

���� dτ =

∫ ∞

0

n∏
i=1

(
1

√
2π

· 1
τ
· e−

1
2

(
vi
τ −δ

)2 )
· 1
τ
dτ

Here in the first equality we used that, givenY1 = y1, theVi are independent Gaussian, with variance σ/|y1 | and mean
δσ/|y1 | hence effect size δ/|y1 | and hence density pδ/|y1 |,σ/|y1 | . The second equality replaces the conditional density
of Y1 by the marginal (so that Pδ (V1 = 1) cancels) and exploits that y1 = v1 |y1 | , the third is a standard change-of-
variable from σ/|y1 | to τ using the Jacobian transformation and the fourth is immediate.

This shows the desired result ifV1 = 1. The case forV1 = −1 is analogous.
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Applicability of Proposition 3 to the t -test Setting
(Section 4.3 underneath Theorem 2) A simple calculation gives that p ′

δ+ (V)/p
′
δ− (V) can be re-expressed as a density

ratio of the t -statisticT = t (Y) , i.e. p ′
δ+ (V)/p

′
δ− (V) = p ′′

δ+ (t (Y) )/p
′
δ− (t (Y) ) , where p ′′

δ
is the density of a noncentral

t -distribution with ν := n − 1 degrees of freedom and noncentrality parameter µ =
√
nδ . But these densities are well-

known to form amonotone likelihood ratio family in theT statistic, so that we can apply Proposition 3 to {p ′′
δ
: δ ∈ ∆}.

B.4 | Section 6

Determining Sample Size for a Desired Power
Consider a 1-sided test for the normal location family with variance 1 which rejects if µ̂ ≥ f (n )/

√
n where µ̂ is the

MLE at sample size n and f is some increasing function of n . We want to find the smallest n at which we achieve
power 1 − β under mean δ , i.e. such that

Pδ (
√
n (µ̂ − δ ) ≥ f (n ) − δ

√
n ) ≥ 1 − β ,

where under Pδ , the Y1, . . . ,Yn are i.i.d. N (δ, 1) . This is the smallest n at which f (n ) − δ
√
n ≥ −zβ , i.e.

√
n ≥ (zβ +

f (n ) )/δ . The standard result for nnp now follows by taking f (n ) = zα . For the Bayesian test, to very good approxi-
mation, f (n ) =

√
6 + log n (Example 3). Since, nBayes, the smallest n for the Bayesian test must be larger than nnp, it

satisfies nBayes/nnp ≥ (zβ +
√
6 + log nBayes )2/(zβ + zα )2 ≥ (zβ +

√
6 + log nnp )2/(zβ + zα )2, giving a logarithmic factor

as claimed.

Brownian Motion
Fix a > 0 and, for a standard Brownian motion Xt = Bt + ct with drift c, define S = min{t > 0 : Xt ≥ a }. The
distribution of S is well-known (see e.g. (?)) and has density given by

fa,c (s ) =
a exp

(
− (a−cs )2

2s

)
√
2πs3

. (44)

Fix δ and let nt = t/δ2 and T = {δ2, 2δ2, 3δ2, . . .}. Consider, for t ∈ T, the discrete time process

Wt := log pδ (Y nt )
p0 (Y nt )

where pδ is the density ofY n under N (δ, 1) . Writing out the definition and re-arranging, we find that ifY1,Y2, . . . are
i.i.d. ∼ N (δ, 1) , then for all T′ ⊂ T the conditional distribution ofWt given {Wt : t ∈ T′ } (in particular, this includes
the marginal distribution ofWt if we take T′ empty) agrees with the conditional distribution of Xt = Bt + (1/2)t and
we can thus approximate the distribution of the first time whenWt exceeds − logα by the distribution with density
(44) with c = 1/2 and a = − logα — the distribution of the first hitting time of Bt will be shifted slightly to the left,
because when stoppingWt we are only checking the process at intervals of size δ2. Intuitively, as δ ↓ 0, we expect
the distribution functions to converge. To make this concrete, let qβ be the β -quantile of the distribution given by
f− logα ,1/2 (s ) . We want to calculate nmax (β ) , the smallest n such that Pδ (τ1 ≤ n ) > 1 − β , i.e. we want to find the
smallest n such that, with t ∗ = δ2n , we have Pδ (δ2τ1 > t ∗ ) < β . The correspondence betweenWt and Xt suggests
that in the limit for δ ↓ 0, t ∗ converges to qβ , giving that nmax (β ) ∼ Cβ ,0/δ2 with Cβ ,0 = qβ and EPδ [τβ ] ∼ C ′

β ,0/δ
2

with C ′
β ,0 =

∫ q (β )
0

t f (t )d t + βqβ .
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