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Abstract

Resonate-and-Fire (RF) neurons are an interesting complementary model for in-
tegrator neurons in spiking neural networks (SNNs). Due to their resonating
membrane dynamics they can extract frequency patterns within the time domain.
While established RF variants suffer from intrinsic shortcomings, the recently
proposed balanced resonate-and-fire (BRF) neuron marked a significant method-
ological advance in terms of task performance, spiking and parameter efficiency,
as well as, general stability and robustness, demonstrated for recurrent SNNs in
various sequence learning tasks. One of the most intriguing result, however, was an
immense improvement in training convergence speed and smoothness, overcoming
the typical convergence dilemma in backprop-based SNN training. This paper aims
at providing further intuitions about how and why these convergence advantages
emerge. We show that BRF neurons, in contrast to well-established ALIF neurons,
span a very clean and smooth—almost convex—error landscape. Furthermore,
empirical results reveal that the convergence benefits are predominantly coupled
with a divergence boundary-aware optimization, a major component of the BRF
formulation that addresses the numerical stability of the time-discrete resonator
approximation. These results are supported by a formal investigation of the mem-
brane dynamics indicating that the gradient is transferred back through time without
loss of magnitude.

1 Introduction

Spiking neural networks (SNNs), with their biological plausibility and potential energy efficiency
compared to conventional artificial neural networks (ANNs), have gained significant interest in recent
years (Pfeiffer and Pfeil, 2018). Furthermore, recent methodological advancements in recurrent SNNs
(RSNNs) modeling rich and complex synaptic relations with external recurrencies, show potential for
effective time-series learning (Bellec et al., 2018; Yin et al., 2021; Fang et al., 2021). The spiking
neuron model most prominently used for large-scale SNNs is the adaptive leaky integrate-and-fire
(ALIF) neuron that models spiking of neurons based on the synaptic signals that integrate into the
membrane potential with current leakage and an adaptive threshold (Bellec et al., 2018). Despite
their simple and energy efficient nature, SNNs with ALIF neurons suffer from the convergence
dilemma as well as limited memory capacity. The convergence dilemma highlights the slow and
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unstable convergence of the SNNs to learn essential representations of the data. It stems from the use
of backpropagation through time (BPTT) algorithm (Werbos, 1990) or its variant that updates the
parameters based on the error signal propagated over the whole sequence, which potentially leads
to the exploding or vanishing gradient problem (Kag and Saligrama, 2021). Combined with the
limited memory capacity to associate recent and past events, it remains a challenge to control the
flow of information and for the SNNs to learn effectively. Recent advancements in spiking neuron
models have addressed the aspect of memory capacity by implementing ALIF neurons with trainable
time-constants (Yin et al., 2021; Fang et al., 2021), and gated LIFs (Yao et al., 2022), as well as
with a two-compartment model (LSTM-LIF; Zhang et al., 2023) for short- and long-term memories.
Nonetheless, the convergence dilemma persists for the adaptive neurons, requiring many epochs for
the RSNNs to converge properly (Yin et al., 2021; Fang et al., 2021; Zhang et al., 2023).

An interesting spiking neuron model is the resonate-and-fire (RF) neuron (Izhikevich, 2001), which is
one of the most simple and efficient resonator models, but was less noticed in practical terms so far. It
shows oscillatory membrane dynamics that extract frequencies in the time-domain and propagates this
information to interconnected neurons through periodic spikes, enabling more efficient representation
of information than conventional integrator models (Izhikevich, 2001). It can furthermore control
information flow, implicitly indicating a flexible and potentially high memory capacity. However,
intrinsic limitations, such as fluctuating gradients, excessive spiking, and absence of a tailored reset
mechanism have hindered effective learning in RF networks. The recently proposed balanced RF
(BRF) neuron alleviates these limitations and exhibits high task performance for time-series learning
with considerable spike and parameter efficiency (Higuchi et al., 2024). More notably, it displays
remarkably stable and fast convergence during optimization, overcoming the convergence dilemma.
We aim to gain an intuition and further understand the reasons underlying the emergence of such
convergence advantage.

In this study, the comparison of the RF neuron with and without the divergence boundary showed
that the former is essential for the convergence of the BRF network. The smooth and near-convex
error landscape of the BRF network suggests higher generalization capacity compared to vanilla RF
or conventional ALIF neurons, empirically clarifying the reason underlying the stable convergence.
Furthermore, the combination of the near-identity membrane state matrix and the divergence boundary
that ensures spectral radius unity or below were found to be the key contributors for this phenomenon.

2 Balanced resonate-and-fire neurons

The BRF neuron (Higuchi et al., 2024) was proposed in two flavors: the Izhikevich variant following
the formulation in Izhikevich (2001) and the harmonic variant based on AlKhamissi et al. (2021).
While both variants are somewhat comparable, the Izhikevich variant behaved consistently more
stable and was in most of the cases more spike-efficient. Hence, we only focus on this variant here.

The oscillatory behavior of the membrane potential in an RF neuron is formulated via complex linear
first-order differential equations:

u̇ = (b+ i ω)u+ I (1)

with u ∈ C and I the injected current (Izhikevich, 2001), later replaced by x to denote net input to the
neuron. The angular frequency, represented by ω > 0, tells us how fast a neuron oscillates in terms
of radians per second. The dampening factor, denoted by b < 0, controls how quickly the neuron
returns to the resting state. The behavior of the RF neuron is shown in Figure 1 (left).

The Euler integration on Equation 1 with a time scale of δ gives:

u(t) = u(t− δ) + δ ((b+ i ω)u(t− δ) + x(t)) (2)

This time-discrete update equation approximates the membrane dynamics of the RF neuron. The
neuron’s output spike z(t) is now simply calculated by:

z(t) = Θ (Re(u(t))− ϑc) (3)

where ϑc defines the threshold of the neuron and Θ denote the Heaviside function. In the original
formulation, the membrane potential is reset by setting the real part to the resting state and the
imaginary part to 1 (Izhikevich, 2001). This, however, did not work well in a practical learning setup.
The BRF neuron extends the vanilla RF model in three aspects: (i) it adds a refractory period, (ii) it
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Figure 1: Left: RF neuron behavior when current injected. Divergence (above) and convergence
(below) shown with angular frequency of 10 and dampening of -0.3 and -1 (Higuchi et al., 2024).
Right: Parameter space of a single BRF neuron with δ = 0.01. Combinations of ω and b below the
divergence boundary leads to convergence.

adds a smooth reset, a reset mechanism tailored for the characteristics of RF neurons, (iii) it includes
a divergence boundary that helps to remain within parameter regime ensuring stable and converging
resonator dynamics.

2.1 Refractory period

The refractory period q(t) is coupled with the spiking behavior and it temporarily increases the
threshold to hinder frequent spiking:

ϑ(t) = ϑc + q(t) (4)
z(t) = Θ (Re(u(t))− ϑ(t)) (5)
q(t) = γq(t− δ) + z(t− δ) (6)

where the refractory period decays exponentially with time. The default refractory period constant is
γ = 0.9.

2.2 Smooth reset

The smooth reset alleviates another limitation of the basic RF model, the traditional reset mechanism,
that reduces the amplitude but disrupts the oscillation. The smooth reset temporarily increases the
dampening of the amplitude to decay faster after the neuron fires (Higuchi et al., 2024):

b(t) = bc − q(t) (7)

with bc the constant dampening factor. The smooth reset leads to a soft but sufficient decrease in the
amplitude without disrupting the oscillation with sharp and abrupt decays.

2.3 Divergence boundary

A further drawback that arises from the numerical approximation of the continuous resonator dynam-
ics, is the sensitivity to certain ω, bc combinations that leads to divergence behavior of the membrane
potential, observed in Figure 1 (left). Due to its ever-increasing amplitude even without incoming
signals, divergent RF neurons exhibit continuous spiking irrelevant to the task, increasing the load of
the model to filter relevant information.

To alleviate this divergence problem, it was suggested to control the parameters to be initialized and
remain below the divergence boundary—an analytically derived relationship between δ, bc, and ω
that ensures convergence:

p(ω) =
−1 +

√
1− (δ ω)2

δ
(8)
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Figure 1 (right) shows the parameter space of the BRF neuron, where any ω, b combination below
the boundary leads to a stable system. Combined with a trainable b-offset b′ > 0 to ensure flexibility,
where bc = p(ω) − b′ is constant throughout one sequence length, it leads to the final equation of
b(t):

b(t) = p(ω)− b′ − q(t) (9)
The key formulations of the BRF neuron are outlined in Algorithm 1. The algorithmic representation
uses time-discrete tensor operations, denoted with superscripts indicating the time index. Additionally,
the transition from time t to t+ 1 is interpreted as a time delay of δ. The BRF-RSNN was optimized
for the following sequence learning tasks: Sequential MNIST (S-MNIST), permuted S-MNIST
(Deng, 2012), ECG QT database (Laguna et al., 1997), and the Spiking Heidelberg dataset (SHD;
Cramer et al., 2020), shown in Figure 2. 5 runs of the best single-layered recurrent BRF model are
saved with leaky integrator output neurons using BPTT while applying the Adam (Kingma and Ba,
2014) optimizer (Higuchi et al., 2024).

Algorithm 1: BRF Forward Pass
bt = p(ω)− b′ − qt−1 ▷ Dampening factor with smooth reset
ut = ut−1 + δ((bt + iω)ut−1 + xt) ▷ Membrane potential update
ϑt = ϑc + qt−1 ▷ Threshold with refractory period
zt = Θ(Re(ut)− ϑt) ▷ Spike outcome
qt = γqt−1 + zt ▷ Refractory period update

ϑc = 1, γ = 0.9, and p(ω) =
−1+

√
1−(δω)2

δ
(Re, Θ, p are applied component-wise.)

The single-layered BRF-RSNN showed higher test accuracy than the best performing deep ALIF-
RSNN for three datasets and was on par with one: 99 % compared to 98.7 % on S-MNIST, 95 %
compared to 94.3 % on PS-MNIST and 91.7 % compared to 90.4 % on SHD with up to seven times
less spikes than ALIF networks (Higuchi et al., 2024).

3 Convergence in BRF-RSNNs

The convergence results from Higuchi et al. (2024), shown in Figure 3, compare the BRF and ALIF
model that are both recurrent and single-layered. The BRF network consistently reaches 95 % test
accuracy within the first 10 epochs with significant stability compared to the ALIF model. For the
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et al. (2024).
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Figure 4: Top: S-MNIST RSNN convergence plot with RF neuon variants. RP: Refractory period;
SR: Smooth reset; DB: Divergence boundary. Bottom: S-MNIST (left) and PS-MNIST (right)
convergence comparison between (B)RF, standard (non-spiking) LSTM and ALIF model. RF model
for PS-MNIST omitted due to loss divergence. Batch size of 256 used for all simulations with 256
hidden units.

BRF networks, the learning rates ranged from 0.075 to 0.1, which is considerably large in the SNN
framework, but may have contributed to fast convergence. The BRF neurons did not fire at the
beginning of the training phase due to the Xavier-initialized linear weights. Thus, the large learning
rate led to fast learning of the weights, enabling the BRF neurons closest to the threshold to spike
first. Moreover, the double-Gaussian surrogate gradient function may have contributed as well, such
that there was gradient flow even for neurons far from firing (Yin et al., 2021).

We examined whether there is a difference in the convergence between basic RF-RSNN and the BRF-
RSNN, as well as the combination of the smooth reset, refarctory period and the divergence boundary.
All results discussed here are averaged over five runs. The convergence of the variants are compared
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in Figure 4 (top) for S-MNIST with the same hyperparameters and learning algorithm. Despite the
intrinsic limitations mentioned above and the high learning rate of 0.1, the basic RF neuron performed
well, presumably due to the stable gradient flow of the near-identity state transition matrix outlined
below. More notably, the figure shows a distinctive difference between the implementations with
divergence boundary and without, hinting at how the divergence boundary has a prominent impact on
the speed and stability of the BRF network.

Also note that the convergence of a BRF-RSNN is even significantly better than a non-spiking
recurrent ANN, namely, an LSTM reference model (Hochreiter and Schmidhuber, 1997), as shown
in Figure 4 (bottom).

3.1 Error landscape

To further understand the reason for such fast convergence of the BRF neuron, we computed the error
landscape of the S-MNIST dataset for the single-layered RF, BRF, and ALIF-RSNNs by means of
the following equation:

f(α, β) = L(θ∗ + αη + βξ) (10)

for α = {−1,−0.96 · · · , 0.96, 1} and β = {−1,−0.96 · · · , 0.96, 1} with the filter-wise normaliza-
tion method for randomly normal distributed direction vectors η und ξ (Li et al., 2018).

We applied the equation to the models saved after reaching approximately 50 % validation accuracy,
as the landscape would reflect the nature of the neurons during the major convergence phase. To
explore the affect of the BRF and ALIF units on the error, we considered only the input and recurrent
connections as θ∗ and left the remaining parameters constant. The respective surface plot as well as
the contour plots are shown in Figure 5.

The BRF network shows smooth near-convex structure without a sign of chaotic behavior compared to
the ALIF network with a rough error landscape. Such a flat landscape indicates better generalization
and is less prone to over-fitting, as the adjustment of the parameters results in slight changes to the
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error (Li et al., 2018). The wide basin may also explain the consistent results over multiple runs. On
another note, the basic RF network error landscape shows a rougher surface, more narrow basin and
higher generalization error than the BRF network, although more smooth and convex than the ALIF
counterpart. The convergence of the ALIF network is not stable, as the landscape shows a relatively
sharp valley, which highlights the difficulty in optimization, more prone to over-fitting and worse
generalization, as also observed in the generally higher test error compared to the BRF network.

3.2 Gradient flow analysis

It seems plausible that the favorable error landscape is a crucial aspect of the superior convergence
behavior of BRF neurons over ALIF but also vanilla RF neurons. In the following, we support these
empirical findings with a formal investigation of the gradient flow within the BRF model.

When splitting Equation 2 into two separate real-valued equations, we obtain:
ut = ut−1 + δ(but−1 − ωvt−1 + xt

r) (11)

vt = vt−1 + δ(ωut−1 + bvt−1) (12)
(13)

which we can express as a vector:

st =

[
ut

vt

]
(14)

In the following, we uncover the local state change dependency, that is, we derive the resonator state
st with respect to the previous state st−1. Note that u and v additionally influence themselves through
the explicit recurrent connections in the network, that is, the output of the resonator is part of the
input to the resonator in the next time step. For simplicity, we ignore these outer recurrencies.

We get:
∂st

∂st−1
=

[
∂ut

∂ut−1
∂ut

∂vt−1

∂vt

∂ut−1
∂vt

∂vt−1

]
(15)
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∂ut
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7



which results in:
∂st

∂st−1
=

[
1 + δb −δω
δω 1 + δb

]
(16)

Note that this matrix essentially transfers the gradient signal within the BRF neuron back in time and
thus primarily determines the gradient flow, as shown in Equation 16.

The first thing we notice is that with a sufficiently small δ, we approximately end up with:

∂st

∂st−1
≈

[
1 0
0 1

]
(17)

In this case, the gradient state transition matrix, which is multiplied with the back flowing gradient
at each time step, provides the characteristics of an identity matrix. This essentially means that the
gradient remains unchanged within the membrane circuit during BPTT. In practice, however, δ is
usually not too small (more like 0.01 or 0.1) and therefore the gradient flow is predominantly affected
by b and ω.

In order to get a deeper understanding of the characteristics of the matrix Equation 16, we investigate
its spectral radius, that is, the largest absolute eigenvalue. Recall that the spectral radius of a (square)
matrix determines the convergence property of its power series—and thus its scaling characteristics
when applied repeatedly— and converges (to 0) when the spectral radius is smaller than one and
diverges when it is larger than one.

The (complex) eigenvalues λ1, λ2 of the gradient transition matrix from Equation 16 are:

λ1,2 = δb± iδω + 1. (18)

Since |λ1| = |λ2| holds, we can simply continue with either of them—so we use λ1.

Let us now assume a spectral radius of unity—a condition in which the power series neither converges
nor diverges:

1 = |δb+ iδω + 1| (19)

Solving this equation for b we finally obtain:

b =
−1 +

√
1− (δ ω)2

δ
(20)

This is exactly the divergence boundary (cf. Equation 8) regulating the convergence/divergence
behavior of the resonator circuit. By restricting the parameter space of b, it further ensures the spectral
radius to remain ≤ 1, contributing immensely to the stability of the network. This result also explains
why the divergence boundary realised in the BRF neuron improves the error landscape to an extent as
shown in comparison to the RF neuron: when we choose b and ω close to the divergence boundary,
the magnitude of the gradient is basically preserved.

4 Conclusion

This paper investigated how and why the optimization of networks with BRF neurons leads to consid-
erably fast and smooth convergence. The empirical calculation of the error landscape demonstrated
that BRF networks exhibit a smooth, flat, and convex structure conductive for generalization and
straightforward optimization, contrary to the well-established ALIF networks which we show exhibits
a distinctively more chaotic and cluttered error landscape. Moreover, further simulation of varying RF
network implementations unraveled the relevance of the divergence boundary for superior stability
and convergence speed. The results are analytically grounded in the stable gradient flow within the
divergence boundary-aware resonating circuit, preserving the magnitude of the gradient over time.
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