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Abstract

The acquisition of knowledge and skills does not occur in isolation but learning experiences

amalgamate within and across domains. The process through which learning can accelerate

over time is referred to as learning-to-learn or meta-learning. While meta-learning can be

implemented in recurrent neural networks, these networks tend to be trained with architec-

tures that are not easily interpretable or mappable to the brain and with learning rules that

are biologically implausible. Specifically, these rules have often employed backpropagation-

through-time, which relies on information that is unavailable at synapses that are undergo-

ing plasticity in the brain. Previous studies that exclusively used local information for their

weight updates had a limited capacity to integrate information over long timespans and

could not easily learn-to-learn. Here, we propose a novel gated memory network named

RECOLLECT, which can flexibly retain or forget information by means of a single memory

gate and is trained with a biologically plausible trial-and-error-learning that requires only

local information. We demonstrate that RECOLLECT successfully learns to represent task-

relevant information over increasingly long memory delays in a pro-/anti-saccade task, and

that it learns to flush its memory at the end of a trial. Moreover, we show that RECOLLECT

can learn-to-learn an effective policy on a reversal bandit task. Finally, we show that the

solutions acquired by RECOLLECT resemble how animals learn similar tasks.

Introduction

A hallmark of human intelligence is the capacity to accumulate knowledge across learning

experiences. This capacity not only accelerates learning within one domain, but can also facili-

tate learning in related domains, a phenomenon referred to as learning-to-learn [1,2]. Stan-

dard neural network models lack this ability and quickly and catastrophically forget previously
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acquired knowledge when they are trained on a new task [3,4]. This is particularly problematic

in the case of reversal learning [5], where stimuli are initially associated with a certain reward

probability, e.g. stimulus A with a 75% chance of reward and stimulus B with a 25% chance of

reward. When the stimulus-reward associations are reversed, i.e. stimulus A is now rewarded

with 25% probability and stimulus B with 75% probability, the network has to fully change its

weight structure to adjust to the new reward probabilities. To overcome this limitation,

researchers have developed meta-learning models that acquire a set of weights over the course

of several similar tasks that facilitate generalisation to novel tasks if they bear similarities to

previously learned tasks.

Meta-learning can be achieved using various approaches [6–8]. An approach that is plausi-

ble from a biological perspective uses recurrent neural networks that are trained with rein-

forcement learning [9,10]. These networks are trained on a distribution of tasks and learn to

rely on information about previous stimuli, actions and rewards to represent the appropriate

task context. Subsequently, they can carry out new tasks even if the weights of the network are

fixed, provided meta-learning was successful. In this framework, the network learns to accu-

mulate information about the new task in its working memory by observing the reward struc-

ture. A previous study by Wang et al. [9] suggested that learning-to-learn could rely on

interactions between the prefrontal cortex, the basal ganglia and the thalamus for the build-up

of working memory representations that support learning-to-learn. Task switching can hap-

pen within one or a few trials by adapting the activity pattern in working memory as opposed

to going through the elaborate process of retraining the network connectivity.

Even though the behaviour of these meta-learning models is similar to that of animals, the

architectures and learning rules have limited biological plausibility for at least two reasons.

Firstly, some of the previous studies on meta-learning relied on complex units, such as the

long short-term memory (LSTM) unit [11]. The LSTM unit has three multiplicative gates that

control its activity, which is unnecessary for some tasks [12,13], can be difficult to interpret

and may not be found in biological neurons. Simplifications of LSTM units have been pro-

posed, such as the gated recurrent unit (GRU), which has two gates [14], and more recently,

the light-gated recurrent unit (Light-GRU) with a single gate [12]. Models with these simpler

units have yielded good or even superior performance on some tasks compared to architec-

tures with LSTM units [12,14].

Secondly, previous models were trained with non-biological learning rules, such as back-

propagation-through-time (BPTT). Updates in BPTT rely on information that is not available

locally at synapses (i.e. it is non-local in time [15]). An example of an algorithm that is biologi-

cally plausible is AuGMEnT, because synapses trained with this learning rule have access to

the necessary information [16]. AUGMEnT includes units with persistent activity for working

memory and uses synaptic traces, local signals that are stored within synapses to influence

plasticity (information about AuGMEnT can be found in Methods). These traces determine

which synapses should be strengthened and which ones should be weakened and help to solve

a spatial and a temporal credit assignment problem. The spatial credit assignment problem is

related to identifying the synapses in the network that are responsible for the outcome of an

action. AuGMEnT solves the spatial credit assignment problem with an attentional feedback

signal originating from the selected action that highlights the synapses that are responsible for

it and are therefore eligible for plasticity. The temporal credit assignment problem is to iden-

tify actions that are associated with rewards that only come after a delay and that may be con-

tingent on later actions. AuGMEnT solves the temporal credit-assignment problem by

computing a reward-prediction error and by including memory units, which can maintain

information about previous sensory inputs. However, AuGMEnT lacks mechanisms for for-

getting and the memory therefore needs to be reset after each trial. The inability to integrate
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information across trials hinders its ability to learn-to-learn. A related biologically inspired

learning rule is e-prop [17], which also approximates BPTT by using synaptic traces.

In this study, we propose RECOLLECT, a learning rule based on Light-GRUs that modifies

synapses based exclusively on information that is both local in space and time, making it bio-

logically plausible. RECOLLECT adapts the synaptic tags and traces from AuGMEnT [16] to

implement a learning rule that closely approximates BPTT but that can also forget information

that is no longer relevant and solves the spatial credit-assignment signal for deeper networks.

We show that RECOLLECT can flexibly use its working memory to perform a pro-/anti-sac-

cade task and that it learns-to-learn on a reversal bandit task. Finally, we illustrate similarities

between the training of networks with RECOLLECT and how animals acquire these tasks.

Results

Architecture

Feedforward processing. Our aim is to develop a biologically plausible architecture that

can learn to memorise and forget. Specifically, we strived for a brain-like architecture and a

learning rule in which all the information necessary for a weight change is available locally, at

the synapse.

The novel model is called “REinforCement learning of wOrking memory with bioLogically

pLausible rECurrent uniTs”—RECOLLECT (Fig 1). RECOLLECT draws inspiration from two

models: the light-gated recurrent unit (Light-GRU [12]) and AuGMEnT ([16]; see ‘AuGMEnT

model’ in Methods). The network’s goal is to learn action-values (known as Q-values [18]),

which correspond to the amount of reward that is predicted for a particular action when exe-

cuted in a particular state of the world. If the outcome deviates from the reward-prediction, a

neuromodulatory signal that encodes the global reward-prediction error (RPE) gates synaptic

plasticity to change the Q-value, in accordance with experimental findings [19–22]. RECOL-

LECT uses a variant of Light-GRU units to learn tasks that require memorisation and for-

getting, so that the network can integrate feedback from the environment across trials and

determine if it is time to switch to another stimulus-response mapping.

The Light-GRU [12] is a recurrent network that combines incoming sensory information

with a memory of the state of the environment of the previous timestep. The maintenance of

information in working memory is regulated by a learnable ‘gate’ that determines the influence

of the memory and new sensory inputs. This ability enables the network to maintain memories

when needed, but also to erase them and focus on new input when memories lose relevance or

when the environment changes. Light-GRU units might correspond to a circuit with several

neurons in the brain, for example, the neurons of the so-called direct and indirect pathways,

which form a loop from cortex to basal ganglia, thalamus and then back to cortex (see

Discussion).

RECOLLECT consists of an input layer, a memory layer with GRUs and an output layer. As

in Light-GRU [12], the memory layer contains three types of units: candidate memory cells

(Cj), gating units (kj) and memory cells (Mj), which might be part of the same cortical column

or part of a loop involving the cortex, basal ganglia and thalamus. Incoming sensory informa-

tion (xi(t)) is processed by the candidate memory cells and available to update the activity of

the memory cell:

CjðtÞ ¼ sð
X

i
WC

ij xiðtÞ þ bCj Þ: ð1Þ

Here, Cj represents the activity of the candidate memory units, WC
ij denotes the synaptic

weights between sensory unit i and candidate memory unit j, bCj the bias and σ(�) is the
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sigmoidal activation function used to constrain the output between 0 and 1 (see Eq M1 in the

Methods):

The gating units kj determine the degree to which the memories are maintained or over-

written by new sensory input. The activity of the gating units kj depends on the input through

weights Wk
ij:

kjðtÞ ¼ sð
X

i
Wk

ijxiðtÞ þ bkj Þ: ð2Þ

The gating units determine the updating of the activity of memory units Mj as follows:

MjðtÞ ¼ kjðtÞ�Mjðt � 1Þ þ ð1 � kÞjðtÞÞ�CjðtÞ; ð3Þ

where� refers to element-wise multiplication. If gating units are active, the candidate memory

cells do not have much influence on the memory unit and the previous memory Mj(t−1) is

Fig 1. RECOLLECT architecture. Gating units (red circles, kj) balance between memory and updating by novel information from candidate memory

cells (green circles, Cj). Memory units (gray circles, Mj) activate output units that estimate the Q-values of actions (blue circles). Synaptic tags (yellow

hexagons) and traces (purple circles) store information that is necessary for the synaptic updates. Traces measure the influence of a connection on the

activity of the memory unit and tags the influence of a connection on the selected Q-value unit (see Fig 2A for a more detailed explanation). Dashed grey

lines, feedback connections from output units to memory units (WFB
kj ).

https://doi.org/10.1371/journal.pone.0316453.g001
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retained. In contrast, if the gating units are only weakly active, the memory units make a large

step in the direction of the activity level Cj of the candidate memory cells. We therefore refer to

this gate as a memory gate. The process by which RECOLLECT uses memory gates to balance

memorisation and forgetting is depicted in Fig 2B.

One important difference between the Light-GRU units in RECOLLECT and those origi-

nally formulated by [12] is the exclusion of recurrent weights that allow previous memory

states to affect the updating of the gate and candidate memory (Eqs 1 and 2). As we discuss in

the next section (‘learning rule’), this allowed us to derive an exact alternative for BPTT, rather

than an approximation thereof. Another advantage was the additional simplicity provided to

the model. Other differences include a different activation function (sigmoid, rather than recti-

fied linear units) and the exclusion of batch normalisation.

The activity of the memory units is propagated to the output units:

qkðtÞ ¼ sð
X

j
Wq

jkMjðtÞ þ bqkÞ: ð4Þ

The output units estimate the Q-value qk, the expected (discounted) reward of each action k
that can be taken by the network. Once these values have been computed, an epsilon-greedy

strategy selects the winning action s, where the action with the highest Q-value is chosen with

probability 1-ε, and a random action is selected with probability ε.

Finally, there are feedback connections extending (WFB
sj ) from the output units back to the

memory units. As we will discuss in the next section, these feedback connections influence

plasticity of connections from input units to gating- and candidate memory units.

Learning rule. Reinforcement learning. RECOLLECT defines a learning rule for the Light-

GRUs that is based on synaptic tags and traces and relies exclusively on information local to

the synapse. This rule is equivalent to BPTT when the model does not use recurrent connec-

tions (as in the model described in the previous section). In this section, we explain the equa-

tions that determine learning in RECOLLECT.

As is common in models of reinforcement learning that use Q-learning, RECOLLECT

selects an action s, and it may or may not receive a reward. If this reward differs from the

expected reward based on the Q-value of the chosen action, this discrepancy gives rise to a

reward prediction error (RPE) δ:

dðtÞ ¼ rðtÞ þ gqsðtÞ � qaðt � 1Þ: ð5Þ

The SARSA temporal difference learning rule compares the predicted outcome of the previ-

ous action qa(t-1) to the sum of the observed reward r(t) and the discounted Q-value of the

winning unit qs(t). The reward discount factor γ, which ranges between 0 and 1, controls the

discounting of future rewards, which are considered less valuable than immediate rewards. A

negative RPE indicates that the outcome was worse than anticipated, whereas a positive RPE

signals that a higher reward was received than was estimated at the previous time step. The

RPE is presented to the network in the form of a global neuromodulator, hence it is a signal

that is accessible for all synapses in the network.

Tags and traces. When synapses are exposed to the neuromodulator that reflects the RPE,

plasticity can occur. As in AuGMEnT [16], plasticity is regulated using tags and traces. It is

important to distinguish between the role of these components. Tags are formed on all synap-

ses that contributed towards action selection and they register how much a synapse contrib-

uted to the selected action [18,23]. Tags also form on the synapses from the input layer to the

memory layer, based on feedback connections from the selected action to the memory layer.

After their formation, the tags interact with the global neuromodulator that provides informa-

tion about the RPE. Consequently, only those synapses that were tagged will become plastic.
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Fig 2. The process of learning and remembering in RECOLLECT. A) Formation of synaptic tags and traces. The activation of

input units during feedforward processing creates synaptic traces (purple circles) on the connections to gating and candidate

memory units. Upon action selection, relevant synapses contributing to the selected actions are tagged (yellow hexagons) by

feedback connections. The RPE is released in the form of a global neuromodulator (green hexagons) when the expected reward

based on the Q-value of the selected action is different from the actual reward that is received. The tagged synapses are either
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Because the plasticity rule for feedback connections from the output units to the memory

units is the same as that of feedforward connections from the memory units to the output

units, these connections become proportional in strength as learning progresses.

Unlike tags, the synaptic traces are only maintained on connections from input units to the

candidate memory units and gating units. The synaptic traces measure the influence of a syn-

apse on the activity level of a memory unit, taking the history of memory activity into account.

Specifically, if input unit i contributed to the activation of a memory unit j, then the traceij
keeps track of how much of this input is still visible in the memory activity, even if this input

occurred in the past.

The tags and traces ensure that all the information that is required for network updates is

locally available (see Fig 2A for a schematic illustration of the learning rule). The following

equations define the updates for the tags, traces and weights for each of the units in

RECOLLECT.

For the output units, the tags are formed in the presence of both presynaptic activity (Mj)

and postsynaptic activity after an action s is selected. The Tagqjk only increases if the output unit

k is selected, i.e. if k = s, in which case the presynaptic activity Mj of memory unit j is added to

the tag:

TagqjsðtÞ ¼ lgTag
q
jsðt � 1Þ þMjðtÞ ð6Þ

TagqjkðtÞ ¼ lgTag
q
jkðt � 1Þ; k 6¼ s ð7Þ

Once a tag is formed, it decays according to two hyper-parameters: the tag decay rate (λ)

and the aforementioned reward discount factor (γ; this parameter is identical to the one used

for calculating the RPE in Eq 5). As a result, synapses contributing to previous actions can still

be affected by network updates in subsequent timesteps, but to a smaller extent as time pro-

gresses. This aspect of the learning scheme corresponds to the temporal difference TD(λ) algo-

rithm [24].

Weight update for output units. The weight update DWq
jk depends on the tag, the RPE δ and

the learning rate (β):

DWq
jk ¼ bdðtÞTag

q
jkðtÞ: ð8Þ

Weight update for candidate memory units. The update of the synapses Wc
ij from the sensory

inputs to the candidate memory cells, providing new input to the memory units, also depend

on the degree to which these input cells contributed to Q-value qs of the selected action s.
Their influence is indirect, through the memory unit j. Plasticity therefore depends on (i) how

much memory unit j contributed to the Q-value of the selected action and (ii) the contribution

of this synapse on the memory unit j’s activity level on the current and previous time steps.

The first of these components is reflected by the feedback connection from the selected

action, since feedforward and feedback connections between memory and output units are

proportional in strength.

potentiated or depressed depending on the sign of the RPE. If the reward is higher or lower than expected, the tagged connections

are potentiated or depressed, respectively. B) RECOLLECT flexibly remembers or forgets across multiple time steps, each with a

feedforward and feedback phase (as shown in A). Memory units increase their activity when new sensory information is acquired.

This activity can be sustained over a memory delay if the gating units (small red circles) are active (dark red colour). When a

relevant sensory stimulus is shown at the beginning of the trial it can therefore be memorized. Signals that demarcate the end of a

trial can decrease the activity of gating units, causing forgetting (light red colour). Dashed lines indicate feedback connections from

output units to memory units.

https://doi.org/10.1371/journal.pone.0316453.g002
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The second component is provided by a synaptic trace. Namely, RECOLLECT (as in Aug-

MEnT [16]) uses a ‘trace’ to keep track of the synapse’s influence on the activity level of mem-

ory unit j. We will first describe the properties of the trace before explaining how it combines

with the feedback signal from the selected action to create the tag, which together with the

RPE determines the synaptic changes.

The trace measures the influence of an input unit on the activity of a candidate memory

cell. It is initialized at a value of 0:

TraceCijð0Þ ¼ 0 ð9Þ

The influence of the synapse WC
ij on the activity of memory unit j depends on the slope of

the activation function s0ðInpCj ðtÞÞ ðInp
C
j ðtÞ is defined in Eq 1) of the Cj unit at time t, the activ-

ity of the input unit xi, and on the activity of the memory gate kj, which together define the sec-

ond term in this equation:

TraceCijðtÞ ¼ kjðtÞTrace
C
ijðt � 1Þ þ ½1 � kjðtÞ�xiðtÞs

0ðInpCj ðtÞÞ: ð10Þ

The first term represents a trace of the influence of the synapse on the activity of memory

unit j on previous time steps TraceCijðt � 1Þ. The trace of previous influences quickly declines if

kj(t) is small, i.e. if the memory gate is open for new sensory input. If the gate activity is close

to 1, the memory is maintained and the same holds for the trace. Note that the trace can be

computed locally at the synapse and is used to update the tag at the same synapse.

We can now determine the influence of the trace on the tag, which measures the influence

of synapse on the current Q-value estimate qs, as follows:

TagCij ðtÞ ¼ lgTag
C
ij ðt � 1Þ þ TraceCijðtÞW

FB
sj : ð11Þ

Note that the second term includes WFB
sj , which equals the feedback that arrives at the mem-

ory unit j through the feedback connection from the winning output unit s. This attentional

feedback signal is proportional to the contribution of unit j to the Q-value of the selected

action. The first term implements TD(λ) in case λ is larger than 0, just as was described above

for the weights between the memory units and the output layer.

The TagCij interacts with globally released neuromodulator that signals the RPE δ to deter-

mine the weight update, as was also described above:

DWC
ij ¼ bdðtÞTag

C
ij ð12Þ

Hence, all signals necessary for this weight update are available locally at the synapse.

Weight update for gating units. We will now consider the plasticity of the connections of

the gating units, which are updated equivalently, using tags and traces. The trace is initialized

at time 0:

Tracekijð0Þ ¼ 0: ð13Þ

The contribution of the synapse Wk
ij to the activity of the memory unit j depends on the

slope of the activation function s0ðInpkj ðtÞÞ (with Inpkj ðtÞ as defined in Eq 2), the activity of the

input unit xi, as well as the difference between the activity of the memory unit at the previous

time step Mj(t-1) and the new input to the memory unit Cj, because the activity of the memory

gate is irrelevant if the activity of the candidate memory unit is equal to that of the memory

unit on the previous time step (as reflected in the second term in Eq 14 below). The first term

in the equation below represents the influence of the synapse on the activity of the memory
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unit on previous time steps, Tracekijðt � 1Þ:

TracekijðtÞ ¼ kjðtÞTrace
k
ijðt � 1Þ þ ½Mjðt � 1Þ � CjðtÞ�xiðtÞs

0ðInpkj ðtÞÞ: ð14Þ

The equations for the tag and the weight update are equivalent to those of the connections

to the candidate memory units (Eqs 11 and 12):

TagkijðtÞ ¼ lgTag
k
ijðt � 1Þ þ TracekijðtÞW

FB
sj : ð15Þ

DWk
ij ¼ bdðtÞTag

k
ij: ð16Þ

Biological plausibility

RECOLLECT uses only local information in its learning rule and has various other properties

that were inspired by neurobiology. For instance, the output units in RECOLLECT encode for

the Q-value of actions. Neurons coding for action values have been observed in several regions,

including the midbrain [22], basal ganglia [25,26] and frontal cortex [27–29].

Moreover, to shape plasticity RECOLLECT makes use of a global neuromodulatory signal

that conveys the RPE. Such prediction errors are believed to be generated by midbrain dopa-

mine neurons and support decision-making and learning [30]. Another relevant signal is the

sensory prediction error [31]. Eq 14 includes a comparison between the memory unit activity

and the current candidate memory unit [Mj(t−1)−Cj(t)], representing such a sensory predic-

tion error. Other biological features include the tags (also known as eligibility traces), which

are used to demarcate synapses that contribute to the winning unit [32,33]. The tag/tracing

mechanism is based on neurophysiological findings, such as the influence of neuromodulators

and feedback connections on plasticity (reviewed by [34]). The learning rule represents a form

of Hebbian plasticity [35] that depends on both presynaptic and postsynaptic activity, in com-

bination with the RPE.

In conclusion, RECOLLECT is a biologically inspired model that is equipped with a gated

memory that allows for selective forgetting and integration of information over longer time-

spans. In the Methods section we demonstrate that RECOLLECT closely approximates BPTT,

while exclusively using information that is locally available at the synapse.

RECOLLECT selectively gates relevant information into working memory

Our goal was to develop a model that can learn to memorise and forget using a local, biologi-

cally plausible learning rule. To investigate how RECOLLECT gates information into its work-

ing memory and how it sustains these memory representations over time, the model was

trained on the pro-/anti-saccade task from Gottlieb and Goldberg [36] (Fig 3A). This task was

previously used to train AuGMEnT [16], which also used a biologically plausible learning rule

but could not forget. Hence, the task is useful to illustrate differences between these models.

The task consists of 50% pro-saccade trials in which the model should make a saccadic eye

movement to a cued location after a memory delay and 50% anti-saccade trials in which the

eye movement must be made in the direction opposite to where the cue appeared.

The model could direct gaze to the centre of the screen or to a position on the left or the

right of the screen, by activating a corresponding unit in the output layer (Fig 3B). The task

started with an empty visual display, after which either a blue or green fixation marker

appeared in the centre of the screen (Fig 3A). A blue fixation marker signalled that a pro-sac-

cade would be required and a green fixation marker an anti-saccade. If gaze was not directed

to the centre position within 10 timesteps upon presentation of the central cue, the trial was

terminated without reward. Otherwise, the model received a reward of 0.2 arbitrary units and
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Fig 3. Structure of and performance of RECOLLECT on the pro-/anti-saccade task. A) Structure of the pro-/anti-saccade task. The fixation colour indicates

whether a pro-saccade (blue) or anti-saccade (green) to a cue on the left or right side of the fixation mark has to be performed after a memory delay. B)

Schematic representation of network architecture. The input layer in RECOLLECT receives information about the colour of the fixation marker (blue and

green squares) and the position of the cue (L = left, R = right). An optional fifth input unit encoded the case end-of-episode signal (E). The output layer encodes

the three actions that can be taken: Gaze directed to the left (L), centre (C) or right (R). C) Number of trials before convergence without an end of episode

signal (left) or when it is included in the input (right). Boxes represent the first and third quartiles, with the middle line indicating the median. The whiskers

range from the first quartile minus 1.5 times the interquartile range to the third quartile plus 1.5 the interquartile range. Outliers are indicated with diamonds.

https://doi.org/10.1371/journal.pone.0316453.g003
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was presented with a cue on either the left or the right side of the fixation marker during a sin-

gle timestep. Once the cue disappeared, a memory delay of 2 timesteps commenced. If gaze fix-

ation was broken before the end of this delay, the trial was aborted without additional reward.

If the model kept fixating, the central fixation marker disappeared and the model had to make

the appropriate saccade within 8 timesteps to receive a reward of 1.5 arbitrary units. There was

an inter-trial interval of one timestep before the next trial started.

Hence, correct performance depended on the saccade direction which was determined by a

non-linear combination of the colour of the fixation point and the cue location, which had to

be memorised, requiring the maintenance of information until the ‘go’ cue. To prevent inter-

ference, the model should forget the cue location before the memory epoch of the successive

trial.

There were two input units coding for the possible colours of the fixation marker (one-hot

encoding) and two input units for the left or right cue (Fig 3B). The network was trained for a

maximum of 1.000.000 trials or until convergence. Convergence was established if 1) the

model had reached criterion performance (85% correct trials) on the last 100 trials of the four

trial types (i.e. pro-saccade left, pro-saccade right, anti-saccade left and anti-saccade right),

and 2) when it could perfectly complete all four trial types with its weights fixed and without

exploration (i.e. learning was disabled).

We trained 20 networks with 4 input units, 7 memory units and 3 output units (Fig 3B) and

randomly initialised, fully-connected weights. All networks reached the convergence criterion,

indicating that RECOLLECT indeed successfully utilised its working memory. However, more

training was required before convergence than in the previous AuGMEnT model although the

network size was comparable (see Methods). Specifically, the median number of trials required

was 73,614 for RECOLLECT, but only 4,100 for AuGMEnT. We note, however, that there are

important differences between RECOLLECT and AuGMEnT. Memory units of AuGMEnT

are perfect integrators and their activity is reset at the end of every trial. In contrast, RECOL-

LECT needs to learn to maintain information during a trial by the appropriate setting of the

memory gates, and to later forget before the memory epoch of the successive trial. Hence,

RECOLLECT learns about the structure of the environment, how it is composed of trials, as

well as when and what to memorise. The comparison with AuGMEnT reveals that its versatile

gating mechanism requires additional training time.

We hypothesised that learning with RECOLLECT could accelerate if we would add an

explicit cue indicating the termination of a trial, since the network might learn to flush its

memory upon receiving this signal, improving the learning process. Indeed, the inclusion of

this end-of-trial signal reduced the median number of trials before convergence from 73,614

to 24,657 trials (Z = -2.99, p = 0.003, Wilcoxon signed-ranks test, for 20 randomly initialised

networks with and without reset signal) (Fig 3C).

To investigate how RECOLLECT solves the pro-/anti-saccade task, we examined the activ-

ity profile and tuning of the units. In this analysis, we first increased the memory delay to five

timesteps and the intertrial interval to three timesteps, using a curriculum (Materials &

Methods).

Units developed selectivity for the type of saccade (pro- or anti-saccade), the location of the

visual cue (left or right), and to combine these two types of information to select the appropri-

ate saccade. To investigate how this information can be combined across units to solve the

task, we plotted the activity of example units in one of the networks (Fig 4G) for the four trial

types (Fig 4A–4F). For instance, the gating unit illustrated in Fig 4A responded to left cues and

was slightly more active on pro-saccade trials. In general, gating units often showed high activ-

ity for a particular feature (e.g. the blue marker, cueing pro-saccades) to facilitate memory

while causing forgetting for the opposite feature (e.g. the green marker, cueing anti-saccades).
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Fig 4. The selectivity and activity of units in networks trained on the pro-/anti-saccade task. A-F) The activity of

example units on pro/anti-saccade trials with a left or right cue are shown in different colours. Pro-saccade trials with a

cue on the left (right) are shown in blue (yellow) and anti-saccade trials with a cue on the left (right) in green (red). The

black triangle indicates the time step when the end-of-trial signal was given. A) Example of a gating unit that was

sensitive for cues on the left side, with strong activity on pro-saccade trials. Note the weak activity during the end-of-
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Some units were selective for only one of the four trial types, such as the candidate memory

unit in Fig 4B, which was most active for anti-saccade trials with a cue on the right. Several

memory units developed selectivity for the required saccade direction, coding for the appro-

priate eye movement during the memory delay on both pro- and anti-saccadic trials. For

instance, the memory unit in Fig 4C displayed a selectivity for leftward eye movements. As

required by the task, the output unit with the highest Q-value was the one coding for the

required action. Small differences between the Q-values suffice for convergence, because the

network usually selects the action with the highest Q-value. The Q-values for the erroneous

actions should eventually evolve to zero if training would continue. Finally, several units coded

for the end-of-trial signal (Fig 4D–4F) so that the network flushed the memories to prevent

interference on subsequent trials.

Fig 4H–4J shows the percentage of units that exhibited significant selectivity for these fea-

tures and their interaction, across three initialisations of the network shown in Fig 4G. As can

be observed, most units–irrespective of unit type–were significantly selective for all task fea-

tures during cue presentation (Fig 4H). More variability could be seen during the memory

delay period (Fig 4I), but in general most units coded for saccade type, with a large number of

units also showing selectivity for the cue location, as well as the interaction between cue loca-

tion and saccade type. Diverging selectivity profiles between unit types primarily emerged dur-

ing the ‘go’ phase (Fig 4J), wherein gating units exhibited nearly no tuning to task features and

only a relatively small number of candidate memory units being selective for saccade type, cue

location and their interaction. However, nearly all output units and the majority of memory

units were selective for all task features during this phase.

Gottlieb and Goldberg [36] and Zhang and Barash [37,38] studied the selectivity of neurons

in the lateral intraparietal area (LIP) in monkeys during a pro/anti-saccade task. Gottlieb and

Goldberg [36] found that many neurons in a no-delay version of the task responded to one of

the cues and did not show selectivity upon saccade onset (Fig 5A), whereas a smaller number

of LIP neurons coded for the saccade direction. Zhang and Barash [38] used a memory delay,

and reported a subset of neurons representing the memory of the cue location by firing persis-

tently during the delay (Fig 5B). Yet other LIP neurons encoded the required motor response,

or a non-linear combination of the stimulus position and the required eye movement. Units of

networks trained with RECOLLECT expressed all these activity profiles (Fig 5C and 5D).

Other neurophysiological studies demonstrated that the duration of the persistent activity

depends on the length of the period that the stimulus needs to be remembered. When the

memory delay is extended the memory activity of LIP neurons persists longer [39] (Fig 6A).

To investigate whether RECOLLECT displays a similar behaviour, we trained a network with

varying memory delays (from one to five timesteps) (Fig 6B). The duration of persistent activ-

ity depended on the length of the delay, after which it declined upon the end-of-trial signal.

trial signal, which causes forgetting. B) A candidate memory unit that responded to right cues on anti-saccade trials. C)

A memory unit that prefers trials with leftward saccades. D-F) The output units estimated the Q-value of a leftward

saccade (D), fixation (E) and a rightward saccade (F). G) Architecture of RECOLLECT models trained on the pro-/

anti-saccade task with labels referring to the example units from one network plotted in panels E-J to illustrate how

RECOLLECT solves the pro-/anti-saccade task. H-J) Average percentage (+/- s.d.) of units selective for saccade type

(pro- or anti-saccade), cue location (left or right), and their interaction, across three initialisations of the network.

During cue presentation (H), nearly all units are selective for multiple features. During the delay (I), most units are

selective for saccade type and a majority is also selective for cue location and the interaction between these factors.

During the ‘go’ epoch (J), only few gating units exhibit selectivity. The selectivity of candidate memory units varies,

whereas most memory and output units are selective for both features and their interaction. Labels: ITI = intertrial

interval, W = waiting period until fixation is acquired, F = time of fixation, C = cue presentation, D = memory delay

period onset, G = go-signal, i.e. the disappearance of the fixation point.

https://doi.org/10.1371/journal.pone.0316453.g004
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We conclude that RECOLLECT can train networks on the pro/anti saccade-task. These net-

works learn to memorize and forget when necessary and use persistent activity to code for

memories in a similar manner as neurons in the brain.

RECOLLECT exhibits learning-to-learn on a reversal bandit task

We next investigated whether RECOLLECT can be used to train networks to learn-to-learn on

a reversal bandit task (see Fig 7A). This task has previously been used to assess meta-learning

(e.g. Wang et al. [9]) because its overarching reward structure can be learned and exploited.

On each trial during the task, the model chooses between two levers, of which one has a

high (75%) reward probability and the other has a low (25%) reward probability. The task con-

sisted of two contexts because the reward probabilities could reverse. Episodes consisted of

100 lever pulls and after every episode the reward probabilities were either reversed (reversal

bandit), or randomly reassigned (random reversal bandit). The network had to sample the

Fig 5. Comparison between neuronal data recorded in the parietal cortex of monkeys and RECOLLECT on the pro-/anti-saccade task. A) Example

neuron in area LIP in the parietal cortex of a monkey coding for a visual cue on the left (adapted from Gottlieb & Goldberg [36]). The left and right dashed lines

indicate cue and saccade onset, respectively. B) The activity of an example LIP memory cell for coding for cue location (adapted from Zhang & Barash [38]).

Dashed lines signify cue onset, the memory delay period, and go-time (disappearance of the fixation cue, prompting saccade onset). C) Candidate memory unit

in RECOLLECT coding for the left cue. D) Memory unit in RECOLLECT. Labels: I = intertrial interval, W = waiting period until fixation is acquired, F = time

of fixation, C = cue presentation, D = memory delay period, G = go, S = saccade onset. Note that the conditions are ordered in the same way in panels C and D

as the neurophysiological data in A and B, respectively.

https://doi.org/10.1371/journal.pone.0316453.g005
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levers to assess the context, i.e. determine which one yielded the higher reward and then har-

vest rewards by consistently pulling this lever until the end of an episode. The reversal bandit

is easier than the random reversal bandit because the network can exploit the predictable

reversal between successive episodes.

Successful meta-learning on this task implies that a trained model can quickly (i.e. within

one or just a few trials) switch to the new context at the start of a new episode by associating

each context with a memory state. The model should change strategy when the preferred lever

starts giving less reward, but the model needs to integrate information across several trials in

which reward is unexpectedly omitted, because the best choice is only rewarded on 75% of the

trials. The model could learn to use its working memory to represent the context by integrating

information about the reward probability of the levers, as opposed to the much slower solution

of relearning its weight structure upon every switch in the context. To facilitate meta-learning,

the network had access to the action that it took on the previous timestep and the reward it

received, which is informative about the current context. We also provided a signal that an epi-

sode had ended.

We trained RECOLLECT with 4 input units, 4 gating, candidate memory and memory

units each (5 for the random reversal bandit). The two output units represented the two lever

actions. We presented 20,000 episodes of 100 trials each (as in [9]). Once the training phase

was completed, learning and exploration were disabled and the model completed an additional

Fig 6. Sustained memory delay activity in the parietal cortex of monkeys and of RECOLLECT units on the pro-/anti-saccade task. A) Neurons in lateral

interparietal cortex (LIP) in the parietal cortex of macaque monkeys persistently fire for the length of the memory delay of the pro-/anti-saccade task [39]. B)

Memory units in RECOLLECT also exhibit persistent firing across increasingly long delays (1, 2, 3, 4 or 5 timesteps), which ceases when the memory epoch

ends. Labels: ITI = intertrial interval, W = waiting period until fixation is acquired, F = time of fixation, C = cue presentation, D = memory delay period, G = go

cue, which was cued by the disappearance of the central fixation point.

https://doi.org/10.1371/journal.pone.0316453.g006
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300 evaluation episodes. We evaluated performance as the number of choices of the low-

rewarding (i.e. suboptimal) lever on 20 random initialisations of the network. For comparison

with Wang et al. [9,40], we also provide a measure of cumulative regret. Regret occurs when

the action taken deviates from the optimal action (under hindsight) and a reward is not

obtained. Cumulative regret refers to the cumulative loss of these expected rewards over time

[41].

Fig 7. Structure of and performance of RECOLLECT on the reversal bandit task. A) Two-armed bandit reversal task. In the random version, we randomly

assigned reward probabilities to the two levers when a new episode started. B,C) Performance on example networks after training on the reversal bandit (B) and

random reversal bandit (C) at evaluation (99.8% and 97.2% optimal pulls, respectively). The networks were initialized with the same seeds. Orange and black

regions denote optimal and suboptimal choices, respectively. Trials are shown on the x-axis, with 100 trials per episode, and successive episodes on the y-axis.

D) Cumulative regret (± 95% confidence interval) on the reversal bandit task (blue) and the random version (orange). E) Histogram of the percentage optimal

pulls on evaluation trials of the reversal bandit and random reversal bandit for the same 20 random seeds. F) The number of suboptimal pulls (300,000 pulls in

total) in the non-random reversal bandit task is lower when an end of episode signal is included, cueing the model that the reward contingencies reverse.

https://doi.org/10.1371/journal.pone.0316453.g007
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Fig 7B and 7C illustrate the suboptimal pulls as black line segments during the evaluation

phase of two networks that were trained on the reversal and random reversal bandit tasks,

respectively. The example network trained on the reversal bandit task learned to select the cor-

rect lever upon episode reversals almost perfectly. Suboptimal pulls only occurred either at the

beginning of an episode or just before the end. There were more suboptimal arm pulls on the

random reversal task, which were concentrated at the beginning of episodes. While RECOL-

LECT tended to select the correct lever thereafter, there were also some episodes with errors at

other time points. We predicted that these occurrences might occur due to the absence of an

expected reward on several consecutive trials, thereby falsely suggesting a context switch. In

accordance with this view, the average reward received on the previous three trials was 0.74

when a correct response was made but only 0.23 when incorrect choices were made.

Networks trained on the reversal bandit task (see Fig 7E) achieved a median accuracy of

99.7%, with some networks reaching 100% optimal pulls. As expected, the accuracy on the ran-

dom reversal bandit was significantly lower at 94.9% (Wilcoxon Signed-Ranks test, z = -3.06, p
= .002). Hence, RECOLLECT exploited the regularity of the reversal bandit task, in which the

episodes always alternated and the network did not have the sample the new reward structure

when a new episode started. The performance of RECOLLECT on the random reversal bandit

(see Fig 7D) was only slightly below that of long-short term memory (LSTM)-based architec-

tures trained in the same learning-to-learn setting, with an average cumulative regret of 2.1 for

RECOLLECT (97.2% optimal pulls) versus 1.1 in Wang et al. ([40]; 98.5% optimal pulls). This

is remarkable, given the reduced computational complexity of RECOLLECT and its use of a

local, biologically plausible learning rule.

To investigate the effect of the end-of-episode signal, we trained 20 networks with and with-

out this signal on the non-random reversal bandit (Fig 7F). At evaluation, the median number

of suboptimal pulls of these networks was 99 (of a total of 300,000 pulls) in the presence of the

end-of-episode signal, which was significantly lower than the median number of 3,661 subop-

timal pulls without this signal (Wilcoxon signed-ranks test, Z = -3.47, p< .001). Hence, REC-

OLLECT capitalises on the end-of-episode signal to increase its performance.

We analysed a smaller network, with only two memory units, to gain insight into how it

solves the reversal bandit task. We plotted the average activity (± SEM) across episodes of net-

work units for left and right high-rewarding episodes before and after reversals for an example

network (Fig 8). We will first discuss activity in the absence of an end of episode signal (Fig

8A). Before the reversal, the activity of the Q-value unit coding for the highly rewarded action

was higher than that of the other Q-value unit. This pattern reversed slowly after the switch

(t = 0) until the unit for the now appropriate action was more active (around 4 trials after the

reversal). This strategy reflects the accumulation of evidence for a switch in context. Because

the correct lever is only rewarded 75% of the time and the incorrect lever yields a reward on

25% of the trials, a single rewarded or unrewarded lever pull does not give reliable information

about the context. Instead, RECOLLECT needs to integrate outcome information across a few

trials until it can determine that the context changed. Note that the Q-values exceed the reward

value the network can receive on a single trial. Instead, these values reflect the discounted

reward expectation across a number of trials given that a particular action is chosen.

The activity of Q-value units depended on the activity of memory and gating units, which

had comparable activity time courses. Interestingly, the activity of one of the gating units was

close to one until the reversal, which indicates that the memory was maintained (Fig 8A).

When the episode ended, the activity of the gating unit decreased, permitting an influence of

the candidate memory units and the reversal of activity of the gating and memory units.

The activities of the two candidate memory units indicated selectivity for the context (Fig

8A). Their activity decreased upon the absence of expected reward due to the change in
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context, followed by a slower recovery. Hence, the network learned to represent the task con-

text in its working memory by integrating information across chosen actions and obtained

rewards across a number of successive trials, in the absence of explicit reset signals.

The activity of the network that was trained with an end of episode signal was drastically

different (Fig 8B). The switch in the activity of Q-value units occurred within a single trial,

indicating that the network learned the significance of the end-of-episode signal and efficiently

changed its working memory to select the correct, alternative lever in the successive episode.

In the example network, one of the memory units exhibited sharp decreases and increases

upon episode reversals for left and right episodes, respectively (orange in Fig 8B), driving the

change in the Q-values in the output layer. Both gating units exhibited steep declines in activity

in response to the end-of-trial signal. Finally, one of the candidate memory units (orange in

Fig 8B) was very active during right high-rewarding episodes, and less during left high-reward-

ing episodes. In summary, RECOLLECT rapidly switched between memory states in the pres-

ence of an end of episode signal, which improved the efficiency on the reversal bandit task.

Finally, we compared the behaviour of networks trained with RECOLLECT on the non-

random reversal bandit task to the choices made by rats trained on a similar task. Brunswik

[42] trained rats on serial-reversal task on a T-maze, with two arms that were baited with dif-

ferent rewards. On the first 24 trials, one arm was always rewarded and the other arm was

never rewarded. Rewards were reversed for the subsequent 16 trials. This was followed by sev-

eral reversal episodes of 8 trials each, until the rats completed a total of 8 episodes. During the

first episode the performance gradually increased (Fig 9A). The first reversal caused a sharp

increase in errors, which then declined, a pattern that repeated for every reversal afterwards.

Interestingly, the rats required fewer trials to accommodate the later switches, indicating that

the rats learned-to-learn this task.

We next analysed the appearance of switching behaviour for 48 networks trained with REC-

OLLECT (Fig 9B), baiting the highly rewarding lever on 100% of trials with a reward and the

other lever on 0% of the trials. Learning in RECOLLECT is slower than that of rats, and we

therefore plotted the number of errors in the first episode, the first reversal and the 175th, 200th

and 225th episodes with the subsequent reversals (episode 176, 201 and 226). This difference in

learning rate is presumably due to the fact that RECOLLECT is initialised tabula rasa at time

of training, unlike the rats. The evolution of behaviour in RECOLLECT, however, was similar

to that of the rats. Episodes started with many errors, after which the accuracy improved in

later episodes, similar to what was observed by Brunswik et al. [42].

In conclusion, RECOLLECT can successfully train networks on the reversal bandit task in a

way that is comparable to non-biologically plausible models. Moreover, the progression of

learning is qualitatively similar to the behaviour of rats in a reversal task.

Discussion

We developed a novel gated memory network that could memorise task-relevant information,

forget it when appropriate and learned-to-learn in a biologically plausible manner. The model

incorporated a version of the light-gated recurrent unit (Light-GRU [12]) and its learning rule

was based on AuGMEnT [16] that uses a combination of attentional feedback and neuromo-

dulators that code for the RPE. The result is a biologically plausible form of learning that is

Fig 8. The average of example units in the reversal bandit task. 8. (A) Example network trained in the absence of an end-of-episode signal. The activities of

the two Q-value units in the output layer reverse after the episode. The network has to gather evidence across trials in its memory units (second column) based

on the reward contingency that the context changed, because only 75% of the optimal choices are rewarded. The third and fourth columns show the activity of

the gating and candidate memory cells, respectively. The shading shows ± SEM. (B) The reversal of the state of the network is abrupt in the presence of the

end-of-episode signal, which changes the memory state of the network within one trial.

https://doi.org/10.1371/journal.pone.0316453.g008
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similar to backpropagation-through-time. In RECOLLECT, all information used to update the

network is locally available at the synapses of the network. Specifically, candidate memory, gat-

ing and memory units could be considered part of the same cortical column or loop through

subcortical structures and the attentional feedback signal as a locally available signal in that

column. Indeed, neurons in the different layers of the cortex play specific roles in representing

sensory input, attention and working memory [43]. Hence, RECOLLECT provides a biologi-

cally plausible learning rule for gated memory networks, which differentiates it from AuG-

MEnT, which required a reset of its memory after every trial.

The main advantage of the RECOLLECT architecture with memory gates is its flexibility.

Whereas its predecessor AuGMEnT remembers by default and cannot learn to forget [16],

RECOLLECT learns to strategically flush its memory when useful. The Light-GRU is one of

the simplest memory units with this property [12], making it a useful component of neuronally

plausible models to study the mechanisms underlying memory and forgetting compared to

larger and LSTM-based networks, which are more difficult to interpret [9]. We note, however,

that the precise mapping of the gating mechanisms onto the circuits underlying memory and

forgetting in the brain remains to be elucidated. Previous neuroscientific studies revealed

Fig 9. Performance in a reversal task of rats and of networks trained with RECOLLECT. (A) Learning decreases the number of errors that rats make on a

reversal bandit task (data from [42]). Y-axis, number of rats (total 48) making an error. (B) Networks trained with RECOLLECT. Each data point represents

the number of errors per trial in successive episodes, summed across 48 networks. We plotted the first 24 trials of the first episode, 16 trials after the first

reversal and 8 trials of subsequent episodes.

https://doi.org/10.1371/journal.pone.0316453.g009
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multiregional loops between the cortex, thalamus and striatum for working memory [44–47].

Recent evidence also points towards a role of the loop through the cerebellum in working mem-

ory [48–51]. These loops have also been implied in reversal learning [52,53]. More research is

needed to fully comprehend how these circuits effectuate working memory and forgetting. The

learning rule for the gating connections compared the memory and the new input (Eq 14). This

comparison plays a prominent role in theories of predictive coding [31], thereby establishing a

new link between theories of predictive coding and biologically plausible learning rules.

We tested RECOLLECT on a pro-/anti-saccade task, and found that the model flexibly

selects which information to remember during a delay. Moreover, RECOLLECT learned to

flush its memory at the end of a trial to prevent interference of the memories on subsequent

trials, representing an improvement over the AuGMEnT model. A comparison of units in net-

works trained with RECOLLECT to neurophysiological data revealed many similarities. Units

developed selectivity for the colour of the fixation marker and the position of the cue, as well

as persistent firing coding for the relevant features, just as been observed in the visual and pari-

etal cortex of monkeys [36,38,39]. Thus, RECOLLECT is not only biologically plausible given

its reliance on neuromodulators and attentional feedback signals, but networks trained with

RECOLLECT develop units that resemble neurons in the brains of animals that have learned

the same tasks.

We used a reversal bandit task to test whether RECOLLECT learned-to-learn. Networks

trained with RECOLLECT sampled the environment to gauge which of the two levers yielded

the highest reward, and it then consistently chose this lever until the end of the episode. More-

over, the model’s behaviour during learning was reminiscent of how rats learn the reversal

bandit task [42]. There was an initial increase in errors upon the start of a new episode that

decreased over the course of the episode. These errors declined more quickly as training pro-

gressed, indicating a similar progression of learning-to-learn in the model and in rats.

An interesting observation pertained to the role of the end-of-trial signal in the pro-/anti-

saccade task and the end-of-episode signal in the reversal bandit task. These signals enhanced

performance by providing a signal that it is time to update the memory state; thereby simplify-

ing the problem, because the network did not have to integrate information about the relation

between stimulus, response and reward to detect a reversal. Likewise, cells in the prefrontal

cortex have been shown to represent action sequence boundaries by increased firing rates fol-

lowing the end of the sequence [54]. We found that RECOLLECT networks took advantage of

cues signalling a reversal, by rapidly switching to the new strategy. The network also learned to

integrate information about the rewards across a number of trials, when the change in the

reward contingencies was not signalled explicitly. Hence, RECOLLECT parallels aspects of

animal learning such as the identification of sequence boundaries. The accumulation of evi-

dence across trials for a switch of context resembles the activity of neurons in the anterior cin-

gulate cortex of monkeys, which also accumulate evidence based on delivered rewards that the

context might have changed [55,56].

We here only tested RECOLLECT with a single layer with memory units. Future work

could expand RECOLLECT for more complex tasks with multiple memory layers for simple

and more complex features. Furthermore, while RECOLLECT consistently converged on the

pro-/anti-saccade task, learning was slower than with the previous AuGMEnT architecture

[16], which remembers by default. Similarly, RECOLLECT performed slightly less well on the

random reversal bandit than LSTM-based networks trained in the same learning-to-learn set-

ting. These differences are partially explained by the extra information that was given to the

previous models. For example, in the study on AuGMEnT [16] and in Wang et al. [9], the net-

work state was reset at the end of each trial. In a variant of AuGMEnT that had to learn to reset

its working memory itself, learning was slower than in standard AuGMEnT [57].
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RECOLLECT stands out because it learned the time structure of the task, what to remember

and when to forget it. The network took advantage of end-of-trial signals, but learning was

even possible when such a signal was not presented.

We implemented a few modifications to the Light-GRU units [12]. The main change is that

we excluded recurrent weights from memory units to other memory and gating units. This

modification allowed the correspondence to BPTT (see Eqs 9–16) in a simpler model. Such

simplicity sometimes enhances performance [13,58] and RECOLLECT learned the tasks that

we studied here without these additional connections. Nevertheless, the RECOLLECT learning

rule is compatible with architectures in which these connections are present and future studies

could include them, because they might benefit learning of more complex tasks.

There are other learning rules and models that approximate backpropagation-through-

time (e.g. [17,59]. RECOLLECT uses the same approximation as AuGMEnT and also e-prop

[17], which has been used to train long-short term memory models in reinforcement learning

settings. There are a number of important differences between RECOLLECT and e-prop.

Firstly, RECOLLECT incorporates synaptic tags that implement the faster TD(λ) algorithm,

rather than the simpler TD(0) method [60]. Secondly, e-prop requires each unit to be con-

nected to an output unit to propagate the error signal. Hence e-prop cannot train the lower

layers of deeper networks, effectively limiting the approach to shallow networks. In contrast,

RECOLLECT can be extended to deeper networks, just like AuGMEnT [16] and BrainProp

[61], and hence to more complex tasks. Thirdly, RECOLLECT uses the Light-GRU unit, which

is much simpler than the long-short term memory units that were used by Bellec et al. [17].

There are also studies investigating learning-to-learn in spiking architectures [62–66], but we

note that these still rely on BPTT for training or are less straightforward to implement in the

brain because they use second-order gradients in the outer loop training process (i.e. the over-

arching learning problem where knowledge is accumulated over multiple learning experiences

rather than just in a single trial), rather than the more biologically plausible meta-reinforce-

ment learning method formalised by [9,10]. Finally, the previous ‘WorkMATe’ model [67]

also used the AuGMEnT learning rule in a model for working memory. The mechanisms for

memory and forgetting differ substantially between WorkMATe and RECOLLECT. Work-

MATe relies on complex gated memory stores for sensory stimuli, which are updated in an all-

or-nothing manner. A separate output module chooses whether new stimuli are encoded in

one of the memory store blocks or forgotten. Hence, stored stimuli override previous memory

content in WorkMATe, making memorizing and forgetting less flexible than in RECOLLECT.

In conclusion, RECOLLECT is a novel gated neural network that only uses information

that is available locally at the synapse to learn how to use its working memory flexibly and

learn-to-learn in a manner that is reminiscent to animal learning. It presents a biologically

plausible alternative to more traditional gated memory networks such as long-short term

memory. RECOLLECT thereby contributes to our understanding of how working memory,

forgetting and learning-to-learn are implemented by the brain.

Materials & methods

Architecture details

Activation function. A sigmoid activation function determined the activity of gating

units and candidate memory units:

s inputjðtÞ
� �

¼
1

ð1þ expð� ðr � inputjðtÞÞÞÞ
: ðM1Þ

where ρ represents the slope of the sigmoid. The value of ρ was set to 2 in all experiments.
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Learning rate. The learning rate is shown in Table 1. We noticed that rapid plasticity of

gating units decreased the stability of learning. We therefore set the learning rate of synapse

onto gating units at a lower value than those of other connections.

Network parameters. During the initialisation, all biases (i.e. for the gating units, candi-

date memory units and output units) were set to one. For the other parameters, a grid search

with a limited set of a priori chosen values was conducted for parameter optimisation. For this,

the standard learning rate for all units (β), the learning rate specific to the gating units (βgate)
and the tag decay rate (λ) were particularly important. Learning benefitted from lower values

for these hyper-parameters in the bandit paradigms (especially the random reversal bandit),

because of the more conservative updates in times of uncertainty and preventing premature

decisions for a lever before sufficient information has been gathered. Unless otherwise indi-

cated, the parameters used for the experiments were as follows:

Pro-/anti-saccade task. To facilitate comparison with Rombouts et al. [16], simulations

regarding performance (Fig 3) on the pro-/anti-saccade task were performed using an inter-

trial interval of 1 time step and a memory delay of 2 time steps. In further stimulations (except

for Fig 6) we used an intertrial interval of 3 and memory delay of 5 timesteps so that the neural

activations during memory delay and after the end of trial signal could be studied more closely.

A curriculum was used to achieve these longer memory delays. Specifically, we started with a

delay of 1 time step. After the model reached criterion performance (85% correct trials on the

previous 100 trials of each trial type), the memory delay was set to 2 time steps and then to 4

time steps until the final memory delay of 5 time steps was reached. Networks contained 7

Light-GRU units, and each of them was composed of a gating, candidate memory and memory

unit. However, for Fig 5C and 5D 12 Light-GRU units were included. AuGMEnT was trained

with 3 regular hidden units, 4 memory hidden units, and special input units which were either

following the input (N = 4, instantaneous input units) or responded to the on- and offset of sti-

muli (N = 8 transient input units [16]). The total number of trainable weights was 75 for AuG-

MEnT and 94 for RECOLLECT.

The no-delay variant of the pro-/anti-saccade task for Fig 3A was implemented by first

showing the fixation marker (F), followed by the cue without fixation marker (C). The disap-

pearance of the cue prompted the saccade (S).

Reversal bandit. In order to understand how RECOLLECT solves the reversal bandit, the

activation plots and neural data comparison figure were created with small networks with two

gating, candidate memory and memory cells (Table 1).

To analyse the average reward on the previous three trials across episodes for the data in Fig

7C, only averages were calculated from the fourth trial onwards to prevent any confounding

Table 1. RECOLLECT hyperparameters for each task (variant).

Pro-/anti-saccade

task

Reversal

bandit

Random reversal

bandit

Exploration rate (ε) 0.025 0.025 0.025

Number of input units (including end of trial/

episode signal)

5 4 4

Number of Light-GRU units 7 4 5

Number of output units 3 2 2

Learning rate (β) 0.1 0.01 0.005

Learning rate of gating units (βgate) 0.006 0.006 0.0005

Discount factor (γ) 0.9 0.9 0.9

Tag decay rate (λ) 0.4 0.2 0.1

https://doi.org/10.1371/journal.pone.0316453.t001
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with episode reversal effects. To avoid biasing the analysis, only episodes with a mixture of cor-

rect and incorrect responses were included.

Statistical analyses. Prior to statistical analysis, assumptions of normality were tested

using the Kolmogorov-Smirnov and Shapiro-Wilk tests. If these tests indicated significant

deviations from normality for at least one of the two distributions, a non-parametric test was

used and the median was reported instead of the mean.

We used a regression analysis to determine whether units showed significant selectivity to

features in the pro-/anti-saccade task (Fig 6A–6C). We fitted a linear regression model with

saccade type (pro-saccade or anti-saccade), cue location (left or right) and their interaction to

the activity of units in three networks during the cue, memory delay or ‘go’ phases of the task.

If an omnibus test for normality, Durbin-Watson or Jarque-Bera test, indicated significant het-

eroscedasticity, skewness or kurtosis (alpha of 0.05), a robust regression model was fitted using

Huber’s t function instead. We included a Bonferroni correction for multiple comparisons

and applied an alpha of 0.05.

The relation between backpropagation-through-time and RECOLLECT

In this section, we will demonstrate that backpropagation-through-time is implemented by

RECOLLECT with a combination of synaptic traces and tags.

Computing the gradient of Mj(t), kj(t) and Cj(t). The influence of the activity of memory

unit j, Mj(t), on the Q-value of the selected action s, qs(t), is (Fig 1):

@qsðtÞ
@MjðtÞ

¼WFB
sj ; ðM2Þ

which is proportional to the amount of attentional feedback flowing from the winning action s
to memory unit j [68]. We can now compute the influence of the memory gate kj(t) on qs(t)
based on Eq 3:

@qsðtÞ
@kjðtÞ

¼
@MjðtÞ
@kjðtÞ

@qsðtÞ
@MjðtÞ

¼ Mjðt � 1Þ � CjðtÞ
h i

WFB
sj : ðM3Þ

Furthermore, it follows from Eq 3 that the influence of Cj(t) on qs(t) depends on kj(t):

@qsðtÞ
@CjðtÞ

¼
@MjðtÞ
@CjðtÞ

@qsðtÞ
@MjðtÞ

¼ 1 � kjðtÞ
h i

WFB
sj : ðM4Þ

Computing the gradient of WC
ij using synaptic traces

We can now compute the instantaneous impact of connections WC
ij(t) on qs(t):

@qsðtÞ
@WðtÞ

¼
@CjðtÞ
@Wc

ijðtÞ
@qsðtÞ
@CjðtÞ

¼ xi tð Þs
0 InpCj ðtÞ
� �

1 � kjðtÞ
h i

WFB
sj ; ðM5Þ

where s0ðInpCj Þ is the derivative of the activation function. However, these connections have

also had impact on the memory state Mj(t) on all previous time steps according to Eq (1). For

example, connection WC
ij had an influence on Cj(t-1) which influenced Mj(t-1) and thereby

also Mj(t). Although the notation is a bit ugly, for convenience let us write for this influence of
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WC
ij on t-1 on qs(t):

@qsðtÞ
@WC

ij ðt � 1Þ
¼

@Cjðt � 1Þ

@WC
ij ðt � 1Þ

@Mjðt � 1Þ

@Cjðt � 1Þ

@MjðtÞ
@Mjðt � 1Þ

@qsðtÞ
@MjðtÞ

¼ xi t � 1ð Þs0 InpCj ðt � 1Þ
� �

1 � kjðt � 1Þ
h i

kj tð ÞW
FB
sj : ðM6Þ

We can also compute this term for t-2:

@qsðtÞ
@WC

ij ðt � 2Þ
¼
@Cjðt � 2Þ

@Wc
ijðt � 2Þ

@Mjðt � 2Þ

@Cjðt � 2Þ

@Mjðt � 1Þ

@Mjðt � 2Þ

@MjðtÞ
@Mjðt � 1Þ

@qsðtÞ
@MjðtÞ

¼ xi t � 2ð Þs0 InpCj ðt � 2Þ
� �

1 � kjðt � 2Þ
h i

kj t � 1ð Þkj tð ÞW
FB
sj ðM7Þ

and, in general, for t-i:

@qsðtÞ
@WC

ij ðt � iÞ
¼ xi t � ið Þs0 InpCj ðt � iÞ

� �
1 � kjðt � iÞ
h iYt

g¼t� iþ1
kjðgÞW

FB
sj : ðM8Þ

Although this gradient may look complex, it is actually straightforward to store the infor-

mation in a traceCij at the synapse and update it based on information that is locally available:

TraceCij ð0Þ ¼ 0; ðM9Þ

TraceCij ðtÞ ¼ kjðtÞTrace
C
ijðt � 1Þ þ ½1 � kjðtÞ�xiðtÞs

0ðInpCj ðtÞÞ: ðM10Þ

Importantly, this information can be made available locally at the synapse, assuming that

the gating unit kj is in the same cortical column as the memory unit Mj. Adding all the time

steps, the total influence of WC
ij on qs(t) becomes:

@qsðtÞ
@WC

ij

¼ TraceCijW
FB
sj : ðM11Þ

Computing the gradient of Wk
ij using synaptic traces. We can use Eq (5) to compute

the influence of the synapses Wk
ij that influence the memory gate kj(t) on qs(t). As before, we

start with the instantaneous impact of connections Wk
ij(t) on qs(t):

@qsðtÞ
@Wk

ijðtÞ
¼

@kjðtÞ
@Wk

ijðtÞ
@qsðtÞ
@kjðtÞ

¼ xi tð Þs
0 Inpkj ðtÞ
� �

Mjðt � 1Þ � CjðtÞ
h i

WFB
sj : ðM12Þ

Let us now consider the influence of this synapse at t-1 on the qs(t):

@qsðtÞ
@Wk

ijðt � 1Þ
¼

@kjðt � 1Þ

@Wk
ijðt � 1Þ

@Mjðt � 1Þ

@kjðt � 1Þ

@MjðtÞ
@Mjðt � 1Þ

@qsðtÞ
@MjðtÞ

¼ xi t � 1ð Þs0 Inpkj ðt � 1Þ
� �

Mjðt � 2Þ � Cjðt � 1Þ
h i

kj tð ÞW
FB
sj ; ðM13Þ
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and at t-2

@qsðtÞ
@Wk

ijðt � 2Þ
¼

@kjðt � 2Þ

@Wk
ijðt � 2Þ

@Mjðt � 2Þ

@kjðt � 2Þ

@Mjðt � 1Þ

@Mjðt � 2Þ

@MjðtÞ
@Mjðt � 1Þ

@qsðtÞ
@MjðtÞ

¼ xi t � 2ð Þs0 Inpkj ðt � 2Þ
� �

Mjðt � 3Þ � Cjðt � 2Þ
h i

kj t � 1ð Þ kj tð ÞW
FB
sj : ðM14Þ

In general, for t-i:

@qsðtÞ
@Wk

ijðt � iÞ
¼ xi t � ið Þs0 Inpkj ðt � iÞ

� �
Mjðt � i � 1Þ � Cjðt � iÞ
h iYt

g¼t� iþ1
kjðgÞW

FB
sj : ðM15Þ

This gradient can also be stored in the form of a tracekij at the synapse and updated based

on information that is locally available:

Tracekijð0Þ ¼ 0; ðM16Þ

TracekijðtÞ ¼ kjðtÞTrace
k
ijðt � 1Þ þ ½Mjðt � 1Þ � CjðtÞ�xiðtÞs

0ðInpkj ðtÞÞ: ðM17Þ

Again, this information is available at the synapse if we assume that the difference in activity

between Mj and Cj is computed in the same cortical column as kj, which is common in models

of predictive coding. When adding all the time steps, the total influence of Wk
ij on qs(t)

becomes:

@qsðtÞ
@Wk

ij

¼ TracekijW
FB
sj : ðM18Þ

Tags and traces. RECOLLECT distinguishes between traces and tags (see also [16]).

Whereas the traces represent the contribution of a synapse to the activity of the memory unit,

the tags represent the influence of the synapse on the Q-value of the chosen action. The tag

depends on the trace as well as on the amount of attentional feedback that arrives at the mem-

ory unit through the feedback connection from the chosen action (see Eqs 11 and 15).

The tags are used to implement the SARSA(λ) algorithm. If λ is larger than zero, the synap-

ses that contributed to previous actions are also updated, while taking the temporal discount

factor γ into account. This is an advantage of RECOLLECT and AuGMEnT [16] over e-prop

[17], which uses a similar approach to approximating backpropagation-through-time. The

resulting combination of tags and traces, can be shown to be equivalent to gradient descent

through backpropagation-through-time on the temporal difference error in the absence of

recurrent connections (see [16] for more detail), and to approximate backpropagation-

through-time when recurrent weights are included.

AuGMEnT architecture

This section explains the architecture of the AuGMEnT model (Rombouts et al., 2015) and

how it differs from RECOLLECT.

AuGMEnT trains networks with three layers: an input layer, an association layer and a Q-

value layer. The input layer consists of instantaneous units and transient units. The instanta-

neous units encode stimuli in the current timestep, and transient units signal changes in the

stimuli. On-units become active if a stimulus appears and off-units if it disappears. The associ-

ation layer also contains regular units and memory units, which exclusively receive informa-

tion from instantaneous units and transient units, respectively. The activity of regular units
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depends on the input received at the current timestep, whereas memory units maintain infor-

mation about stimuli presented during previous timesteps. Memory units of AuGMEnT lack a

gating mechanism to block new sensory information or remove previous memory content.

Consequently, memory content in AuGMEnT has to be erased at the end of a simulated trial

because the learning rule cannot learn to forget the information in memory from the previous

trial when a new trial starts. Both instantaneous and memory units project to Q-value units in

the output layer of AuGMEnT, just as in RECOLLECT (see Eq 4). The learning rule in AuG-

MEnT is similar to that of RECOLLECT (see section ‘learning rule’ of the Results).
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