
A Quantum Speed-Up

for Approximating the Top Eigenvectors of a Matrix

Yanlin Chen˚ András Gilyén§ Ronald de Wolf¶

Abstract

Finding a good approximation of the top eigenvector of a given dˆd matrix A is a basic and
important computational problem, with many applications. We give two different quantum algo-
rithms that, given query access to the entries of a Hermitian matrix A and assuming a constant
eigenvalue gap, output a classical description of a good approximation of the top eigenvector:
one algorithm with time complexity Õpd1.75q and one with time complexity d1.5`op1q (the first
algorithm has a slightly better dependence on the ℓ2-error of the approximating vector than the
second, and uses different techniques of independent interest). Both of our quantum algorithms
provide a polynomial speed-up over the best-possible classical algorithm, which needs Ωpd2q

queries to entries of A, and hence Ωpd2q time. We extend this to a quantum algorithm that out-
puts a classical description of the subspace spanned by the top-q eigenvectors in time qd1.5`op1q.
We also prove a nearly-optimal lower bound of Ω̃pd1.5q on the quantum query complexity of
approximating the top eigenvector.

Our quantum algorithms run a version of the classical power method that is robust to certain
benign kinds of errors, where we implement each matrix-vector multiplication with small and
well-behaved error on a quantum computer, in different ways for the two algorithms. Our first
algorithm estimates the matrix-vector product one entry at a time, using a new “Gaussian
phase estimation” procedure. Our second algorithm uses block-encoding techniques to compute
the matrix-vector product as a quantum state, from which we obtain a classical description
by a new time-efficient unbiased pure-state tomography procedure. This procedure uses an
essentially optimal number O

`

d logpdq{ε2
˘

of “conditional sample states”; if we have a state-
preparation unitary available rather than just copies of the state, then this ε-dependence can
be improved further quadratically. Our procedure comes with improved statistical properties
and faster runtime compared to earlier pure-state tomography algorithms. We also develop
an almost optimal time-efficient process-tomography algorithm for reflections around bounded-
rank subspaces, providing the basis for our top-eigensubspace estimation algorithm, and in turn
providing a pure-state tomography algorithm that only requires a reflection about the state
rather than a state preparation unitary as input.
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1 Introduction

Arguably the most important property of a diagonalizable dˆd matrix A is its largest eigenvalue λ1,
with an associated eigenvector v1. This top eigenvector v1 can be thought of as the most important
“direction” in which the matrix A operates. The ability to efficiently find v1 is an important
tool in many applications, for instance in the PageRank algorithm of Google’s search engine, as
a starting point for principal component analysis (for clustering or dimensionality-reduction), for
Fisher discriminant analysis, or in continuous optimization problems where sometimes the best
thing to do is to move the current point in the direction of the top eigenvector of an associated
matrix [Jol02, KV09].

One way to find the top eigenvector of A is to diagonalize the whole matrix. Theoretically
this takes matrix multiplication time: Opdωq where ω P r2, 2.37 . . .q is the still-unknown matrix
multiplication exponent [WXXZ24, ADW`24]. In practice Gaussian elimination (which takes time
Opd3q) is typically faster, unless d is enormous. Diagonalization gives us not only the top eigenvector
but a complete orthonormal set of d eigenvectors. However, this is doing too much if we only care
about finding the top eigenvector, or the top-q eigenvectors for some q ! d, and better methods
exist in this case (see e.g. [Par87] for a whole book about this).

1.1 The power method for approximating a top eigenvector

A quite efficient method for (approximately) finding the top eigenvector is the iterative “power
method”. This uses simple matrix-vector multiplications instead of any kind of matrix decompo-
sitions, and works as follows. We start with a random unit vector w0 (say with i.i.d. Gaussian
entries). This is a linear combination

řd
i“1 αivi of the d unit eigenvectors v1, . . . , vd of the Her-

mitian matrix A, with coefficients of magnitude typically around 1{
?
d. Then we apply A to this

vector some K times, computing w1 “ Aw0, w2 “ Aw1, etc., up to wK “ AKw0. This has the effect
of multiplying each coefficient αi with the powered eigenvalue λKi . If there is some “gap” between
the first two eigenvalues (say |λ1| ´ |λ2| ě γ ą 0, or |λ1{λ2| ą 1), then the relative weight of the
coefficient of v1 will start to dominate all the other coefficients even already for small K, and the
renormalization of the final vector wK “ AKw0 will be close to v1, up to global phase. Specifically,
if A has bounded operator norm and eigenvalue gap γ, then K “ O

`

logpdq{γ
˘

iterations suffice to
approximate v1 up to 1{polypdq ℓ2-error (see e.g. [GL13, Section 8.2.1] for details).

The cost of this algorithm is dominated by the K matrix-vector multiplications, each of which
costs Õ

`

d2
˘

time classically (or Õpmq time if A is sparse, with only m nonzero entries given in some
easily-accessible way like lists of nonzero entries for each row and column). Hence if the eigenvalue
gap γ is not too small, say constant or at least 1{polylogpdq, then the power method takes Õpd2q

time to approximate a top eigenvector.1 Unsurprisingly, as we show later in this paper, Ωpd2q

queries to the entries of A are also necessary for classical algorithms for this.

1The Õp¨q notation suppresses polylog factors in d, ε, δ: ÕpT q “ O
`

Tpolylogpd{pεδqq
˘

.
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1.2 Our results: quantum algorithms

Our main results in this paper are faster quantum algorithms for (approximately) finding the top
eigenvector of a Hermitian matrix A, and nearly matching lower bounds.2

Quantum noisy power method. On a high level we just run the power method to find a good
approximation for v1, with classical representations of w0 and all intermediate vectors, but we
perform each matrix-vector multiplication approximately using a quantum computer.3

We give two different quantum algorithms for approximate matrix-vector multiplication. Our
first algorithm uses that each entry of the vector Aw is an inner product between a row of A and
the column-vector w. Because such an inner product is the sum of d numbers, we may hope to
approximate it well via some version of amplitude estimation or quantum counting, using roughly?
d time per entry and d1.5 time for all d entries of Aw together. This approach is easier said

than done, because basic quantum-counting subroutines produce small errors in the approximation
of each entry, and those errors might add up to a large ℓ2-error in the d-dimensional vector Aw
as a whole. To mitigate this issue we develop a “Gaussian phase estimation” procedure that can
estimate one entry of Aw with a complexity that is similar to standard phase estimation, but
with well-behaved sub-Gaussian error. These well-behaved errors in individual entries typically
still add up to a large ℓ2-error for the vector Aw as a whole. However, with very high probability
the error remains small in one or a few fixed directions—including the direction of the unknown
top eigenvector. To speed up the computation of each entry, we split the rows into “small” and
“large” entries, and handle them separately. This divide-and-conquer approach uses Õ

`

d1.75
˘

time
in total for the d entries of Aw (Theorem 4.5). This is asymptotically worse than our second
algorithm (described below), but we still feel it merits inclusion in this paper because it uses an
intuitive entry-by-entry approach, it has a slightly better dependence on the precision than our
second algorithm, and most importantly our new technique of Gaussian phase estimation may find
applications elsewhere.

Our second algorithm is faster and more “holistic”. It does not approximate the matrix-vector
product Aw entry-by-entry. Instead it implements a block-encoding of the matrix A, uses that
to (approximately) produce Aw as a logpdq-qubit state, and then applies a subtle tomography
procedure to obtain a classical estimate of the vector Aw with small ℓ2-error.4 When used in our
version of the power method, this classical vector is then stored in a QRAM-data structure (see
below) that makes it easy to prepare Aw as a quantum state in the next iteration, which applies A
again. Our new tomography procedure incorporates ideas from [KP20] and [vACGN23]; it matches
the latter’s essentially optimal query complexity, but improves upon both their time complexities.
Doing tomography at the end of each iteration of the power method is somewhat expensive, but

2If the matrix A is non-Hermitian, then we could instead use the Hermitian matrix A1
“

«

0 A

A: 0

ff

for finding

the largest (left or right) singular value of A, replacing the eigenvalue gap with the singular value gap of A.
3Exact matrix-vector multiplication takes Ωpd2q quantum queries to entries of A (and hence does not give speed-

up). This is easy to see by taking A P t0, 1{du
dˆd and w “ p 1?

d
, . . . , 1?

d
q
T , because then d1.5Aw gives the number of

nonzero entries in A. It is well-known that Ωpd2q quantum queries are needed to count this number exactly.
4In fact our second algorithm first implements a block-encoding of the rank-1 projector Π “ v1v

:

1 using Õ
`

1{γ
˘

applications of an approximate block-encoding of the matrix A (by applying QSVT [GSLW19, Theorem 31]), and
then applies our state tomography algorithm to obtain a classical estimate of the vector Πw, which is proportional
to v1. This increases the spectral gap from γ to Θp1q and hence further improves our γ-dependency.
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still leaves us with a time complexity of only d1.5`op1q (Corollary 4.11 with q “ 1 and sparsity set to
s “ d), which turns out to be a near-optimal quantum speed-up over classical, as our lower bounds
(discussed below) imply.

It is worth highlighting our result about preparing the top eigenvector of A as a logpdq-qubit
quantum state |v1y, which we have “under the hood” in our second algorithm. This preparation
can (with high success probability and small ℓ2-error) be done in time roughly pd{γq1`op1q (Corol-
lary 4.12 with sparsity set to s “ d). This is optimal up to the op1q in the exponent; maybe
surprisingly, for constant gap preparing |v1y is not significantly more expensive than the easier
task of just approximating the top eigenvalue λ1, for which we prove an Ωpdq lower bound on the
required number of quantum queries to entries of A (Proposition 4.10 with sparsity set to s “ d).
Note that putting some form of quantum state tomography on top of the preparation of |v1y is not
enough to achieve the time complexity of our second algorithm, as it would result in a quantum
algorithm that produces a classical description of (an approximation of) v1 in time roughly d2

rather than roughly d1.5.
In both of our algorithms, the vector resulting in each iteration from our approximate matrix-

vector multiplication will have small errors compared to the perfect matrix-vector product. In the
basic power method we cannot tolerate small errors in adversarial directions: if w0 has roughly
1{

?
d overlap with the top eigenvector v1, and we compute Aw0 with ℓ2-error ą λ1{

?
d, then our

approximation to the vector Aw0 may have no overlap with v1 at all anymore! If this happens, if
we lose the initially-small overlap with the top eigenvector, then the power method fails to converge
to v1 even if all later matrix-vector multiplications are implemented perfectly. Fortunately, Hardt
and Price [HP14] have already shown that the power method is robust against errors in the matrix-
vector computations if they are sufficiently well-behaved (in particular, entrywise sub-Gaussian
errors with moderate variance suffice). Much of the technical effort in our quantum subroutines for
matrix-vector multiplication is to ensure that the errors in the resulting vector are indeed sufficiently
well-behaved not to break the noisy power method.5

Finding the top-q eigenvectors. Going beyond just the top eigenvector, the ability to find
the top-q eigenvectors (with q ! d) is crucial for many applications in machine learning and data
analysis, such as spectral clustering, principal component analysis, low-rank approximation of A,
and dimensionality reduction of d-dimensional data vectors w (e.g., projecting the data vectors
onto the span of the top-q eigenvectors of the covariance matrix A “ ErwwT s). In most cases it
suffices to (approximately) find the subspace spanned by the top-q eigenvectors of A rather than
the individual top-q eigenvectors v1, . . . , vq, which is fortunate because distinguishing v1, . . . , vq can
be quite expensive if the corresponding eigenvalues λ1, . . . , λq are close together.

The noisy power method can also (approximately) find the subspace spanned by the top-q
eigenvectors of A, assuming some known gap γ between the qth and pq`1qth eigenvalue. Using our

5For simplicity we assume here that γ (or some sufficiently good approximation of it) is known to our algorithm.
However, because we can efficiently approximate |λ1| (by [vAGGdW20, Lemma 50], one can estimate λ1 with additive
error γ{4 using Õpd1.5{γq time) and verify whether the output of our algorithm is approximately an eigenvector for
this eigenvalue by one approximate matrix-vector computation, we can actually try exponentially decreasing guesses
for γ until the algorithm returns an approximate top eigenvector.

It should be noted that our algorithm has polynomial dependence on the precision ε, namely linear in 1{ε, which
is worse than the logp1{εq dependence of the classical power method with perfect matrix-vector calculations. This is
the price we pay for our polynomial speed-up in terms of the dimension. For applications where the precision need
not be extremely small, our polynomial dependence on ε would be an acceptable price to pay.
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knowledge of the gap, we give an algorithm to approximate λq (Corollary 4.9). Knowing λq and this
gap (at least approximately), we then show how a block-encoding of A can be efficiently converted
using quantum singular-value transformation [GSLW19] into a block-encoding of the projector Π
that projects onto the subspace spanned by the top-q eigenvectors. In Section 4.4 we give a new
almost optimal process-tomography algorithm for recovering the projector Π, assuming only the
ability to apply (controlled) reflections 2Π ´ I about the rank-q subspace that we are trying to
recover (Theorem 4.6). This algorithm, applied to Π, gives us the subspace corresponding to the
top-q eigenvectors of A. For constant eigenvalue gap and desired precision, it uses time qd1.5`op1q.
In fact, what we above called our “second algorithm” for finding the top eigenvector is just the
special case q “ 1. In the case where A is s-sparse (meaning each row and column of A has ď s
nonzero entries) and we have sparse-query-access to it, the time complexity becomes q

?
sd1`op1q

(Corollary 4.11; this result implies the claim of the previous sentence by setting s “ d). If the
pairwise spacing between the first q eigenvalues is at least Ωp1{qq, then we can also (approximately)
find each of the eigenvectors v1, . . . , vq individually, at the expensive of polypqq more time.

As a byproduct of this algorithm we also obtain a qualitatively improved tomography procedure
that works assuming the ability to reflect around the state that we want to estimate, but does not
need the stronger assumption of being able to prepare that state.

Our computational model. The computational model for our quantum algorithms is that we
have query access to the entries of A, which can be, e.g., stored in quantum-accessible classical
memory (“quantum read-only memory”, a.k.a. QROM). The runtime of a quantum algorithm, or
of a classical algorithm with quantum subroutines, is measured by the total number of queries and
other elementary operations (one- and two-qubit gates, classical RAM-operations) on the worst-case
input.

Our algorithms also use Õpdq bits of quantum-accessible classical-writable memory (QRAM, also
sometimes called QCRAM) in order to store classical descriptions of the intermediate d-dimensional
approximating vectors. In analogy with classical RAM, a QRAM is a device that stores some m-bit
string z “ z0 . . . zm´1 and allows efficient access to the individual bits of z, also to several bits in
superposition: a “read” operation corresponds to the unitary Oz that maps |i, by Ñ |i, b‘ ziy, for
i P rms ´ 1 and b P t0, 1u. Note that the QRAM (and QROM) memory content itself is classical
throughout the algorithm: it is just a string z, not a superposition of such strings. A “write”
operation for the QRAM corresponds to changing a bit of z; this is a purely classical operation,
and cannot happen in superposition. If only “read” operations are allowed, this is also sometimes
called a QROM (“quantum read-only memory”), and typically classical input is assumed to be
given in this form for the type of algorithms we and many others consider. The intuition is that
read and write operations should be executable cheaply, for instance in time Oplogmq if we put
the m bits of z on the leaves of a depth-logm binary tree, and we treat an address i as a bit-by-bit
route from the root to the addressed leaf.

It should be noted that QRAM and QROM are controversial notions in some corners of quantum
computing. In the case of QROM one could circumvent the controversy by assuming that the entries
to our input matrix A are computed for us by a small circuit,6 but for our use of QRAM this is not
an option. The issue is not so much that a circuit for Oz for querying the m-bit string z uses roughly
m gates (because the same is true for classical RAM and is not really considered an issue there) but

6Such an efficient procedure will, however, have to rely on structure present in the data, and unfortunately does
not apply in general to problems where one aims to process some real-world data.
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that running such an operation fault-tolerantly on a superposition like
ř

i αi |i, 0y seems to induce
large overheads. Classical RAM is not considered a problematic notion because nowadays it is
implemented in very fast and practically error-free hardware without the need to do error-correction.
It is conceivable that in the distant future quantum hardware implementations will become so good
that one can similarly implement classical RAM on them with similar efficiency. Since one has to
allow quantum superposition anyway in order to do anything in quantum computing, we feel that
assuming QRAM is conceptually acceptable—especially for a theoretical computer science paper
such as this one—though it is clearly not something for the small and noisy quantum computers
we have today and in the near future.

We note, however, that in some situations we can actually avoid the use of QRAM altogether.
In particular, we can make our second algorithm QRAM-free if we have some way of preparing
the quantum state |wy corresponding to the intermediate approximating vectors (instead of using
a KP-tree stored in QRAM for state-preparation). Given such a state-preparation procedure, the
number of applications of the block-encoding UΠ in Theorem 4.6 remains the same. Accordingly, if
we only care about the number of queries to entries of the input matrix (instead of time complex-
ity), then we can get an Õpd1.5`op1qq-vs-Ωpd2q quantum-classical query-complexity separation for
approximating the top eigenvector without using any QRAM, because we can prepare |wy from its
classical description using a circuit of Õpdq gates that uses no QRAM and no queries to entries of
the input matrix. Also, our state-tomography procedure starting from “conditional samples” does
not need any QRAM by itself. Lastly, our result about preparing the top eigenvector of A as a
log d-qubit quantum state |v1y can be done without QRAM (see end of Section 4.5).

1.3 Our results: lower bounds

We also show that our second quantum algorithm for finding the top eigenvector is essentially
optimal, by proving an Ω̃pd1.5q quantum query lower bound for this task. We do this by analyzing
a hard instance A “ 1

duu
T ` N , which hides a vector u P t´1, 1ud using a d ˆ d matrix N with

i.i.d. Gaussian entries of mean 0 and standard deviation „ 1{
?
d. Note that the value uiuj{d has

magnitude 1{d, but is “hidden” in the entry Aij by adding noise to it of much larger magnitude
„ 1{

?
d. One can show that (with high probability) this matrix has a constant eigenvalue gap, and

its top eigenvector is close to u{
?
d.

First, this hard instance provides the above-mentioned unsurprising7 Ωpd2q query lower bound
for classical algorithms, as follows. To approximate the top eigenvector (and hence u), an algorithm
has to recover most of the d signs ui of u. Note that the entries of the ith row and column of A
are the only entries that depend on ui. If the algorithm makes T queries overall, then there is an
index i such that the algorithm makes at most 4T {d queries to entries in the ith row and column,
while still recovering ui with good probability. Slightly simplifying, one can think of each of those
entries as a sample from either the distribution Np1{d, 1{dq or the distribution Np´1{d, 1{dq, with
the sign of the mean corresponding to ui. It is well known that Ωpdq classical samples are necessary
to estimate the mean of the distribution to within ˘1{d and hence to distinguish between these
two distributions. This implies 4T {d “ Ωpdq, giving us the T “ Ωpd2q classical query lower bound

7A simpler way to see this lower bound is to consider the problem of distinguishing the all-0 matrix from a matrix
that has a 1 in one of the d2 positions and 0s elsewhere. This is just the d2-bit OR problem, for which we have an easy
and well-known Ωpd2q classical query bound. However, the quantum analogue of this approach only gives an Ωpdq

lower bound, since the quantum query complexity of d2-bit OR is Θpdq. Therefore we present a more complicated
argument for the classical lower bound whose quantum analogue does provide an essentially tight bound of Ω̃pd1.5q.
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for approximating the top eigenvector of A (Corollary 5.2).
Second, a similar but more technical argument works to obtain the Ω̃pd1.5q quantum query lower

bound (Corollary 5.4), as follows. A good algorithm recovers most ui-s with good probability. If it
makes T quantum queries overall, then there is an index i such that the algorithm has at most 4T {d
“query mass” on the entries of the ith row and column (in expectation over the distribution of A),
while still recovering ui with good probability. It then remains to show that distinguishing between
either the distribution Np1{d, 1{dq or the distribution Np´1{d, 1{dq, with the ability to query
multiple samples from that distribution in quantum superposition, requires Ω̃p

?
dq quantum queries.

This we prove by a rather technical modification of the adversary bound of Ambainis [Amb02,
Amb06], adjusted to inputs which are vectors of samples from a continuous distribution, using
expectations under a joint distribution µ on pairs of matrices (the two marginal distributions of
µ are our hard instance conditioned on ui “ 1 and ui “ ´1, respectively) of Hamming distance
roughly

?
d in the ith row and column.

1.4 Related work

Our algorithms produce classical descriptions of the top eigenvector(s). This is very different from
HHL-style [HHL09] algorithms that return the vectors in the form of a logpdq-qubit state whose
vector of amplitudes is (proportional to) the desired vector. Our approach contrasts for instance
with algorithms like quantum PCA [LMR14], which can efficiently find the top-q eigenvectors as
quantum states assuming the ability to prepare A as a mixed quantum state. It also contrasts with
the recent work of Seki and Yunoki [SY21], who show how to apply a given Hermitian matrix many
times to a given quantum state |ψy, giving rise to a quantum version of the power method that
outputs quantum states. The most closely related quantum algorithm we are aware of is producing
classical descriptions of eigenvectors in the special case where A is symmetric and diagonally-
dominant (SDD): Apers and de Wolf [AdW22, Claim 7.12] show how to approximately find the
top-q eigenvalues and eigenvectors of a dense SDD matrix A in time Õ

`

d1.5 ` qd
˘

, using their
quantum speed-up for Laplacian linear solving.8

There is a fair amount of work on finding the largest (or smallest) eigenvalue of a given Hamil-
tonian A, but the setting there is usually different and incomparable to ours: A is viewed as acting
on logpdq qubits, and classically specified as the sum of a small number of terms, each acting non-
trivially on only Op1q of the qubits (this is the canonical QMA-complete problem). There is also
work on finding the top eigenvalue of a given matrix in general (not necessarily a local Hamilto-
nian), for instance Lemma 50 of [vAGGdW20]; some of these works even involve a version of the
power method [NW23]. However, none of these methods readily generalizes to finding a classical
description of the top eigenvector itself.

A recent paper by Apers and Gribling [AG23, Theorem 5.1] also gives a quantum algorithm for
approximate matrix-vector multiplication. Their result is incomparable to ours: it uses a different
norm to measure the approximation, and it is geared towards the case of tall-and-skinny sparse
matrices A; if instead the matrix A is d ˆ d and dense (the regime we care about in this paper),
then their time complexity can be roughly d3.5, which is much worse than ours. Their application
area is also different from ours: it is to speed up interior-point methods for linear programs where
the number of constraints is much larger than the number of variables.

8One can actually reduce the general symmetric A to the case of an SDD matrix by defining A1
“ A ` cI for

sufficiently large c to make A1 SDD, and then renormalizing A1 to operator norm ď 1. The problem with this
reduction is that c could be as big as d and then the eigenvalue gap of the new matrix is much smaller than that of A.
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One of our main tools for our upper bounds is a novel, essentially unbiased tomography proce-
dure to estimate a d-dimensional pure state (“essentially unbiased” here means the error vector’s
expectation is exponentially close to 0) from Õpdq “conditional samples” of the state, see our Sec-
tion 3.2. There have already been quantum algorithms for essentially unbiased mean estimation
for d-dimensional random variables [CHJ22, SZ23], and one might hope to use these to recover our
tomography procedure in an easier way. However, their input models are somewhat different from
ours and it is not clear how to tweak their algorithms to recover an unbiased state-tomography pro-
cedure that works in our input model. In a nutshell, [CHJ22, SZ23] require an oracle that outputs
the random vectors in binary, i.e., with each coordinate explicitly written, while our algorithm only
requires an exponentially smaller quantum state whose amplitudes represent the vector of interest.

1.5 Future work

Here we mention some questions for future work. First, can we improve the d-dependence of
our second algorithm from d1.5`op1q to d1.5? Note that the op1q comes from Low’s Hamiltonian
simulation result [Low19]; in his context it is also still an open question whether the op1q can be
removed. Can we also improve our algorithm to use fewer or even no QRAM bits, while retaining
the current dependence on d, γ, ε?

Second, our upper bound of roughly qd1.5 for finding the subspace spanned by the top-q eigen-
vectors is essentially optimal for constant q, but it cannot be optimal for large q (i.e., q “ Ωpdq)
because diagonalization finds all d eigenvectors exactly in time roughly d2.37, which is less than
d2.5. We should try to improve our algorithm for large q.

Third, matrix-vector multiplication is a very basic and common operation in many algorithms.
So far there has not been much work on speeding this up quantumly, possibly because easy lower
bounds preclude quantum speed-up for exact matrix-vector multiplication (Footnote 3). Can we
find other applications of our polynomially faster approximate matrix-vector multiplication? One
such application is computing an approximate matrix-matrix product AB in time roughly d2.5, by
separately computing ABi for each of the d columns Bi of B. This would not beat the current-best
(but wholly impractical) matrix-multiplication techniques, which take time d2.37..., but it would
be a very different approach for going beyond the basic O

`

d3
˘

matrix-multiplication algorithm.
A related application is to matrix-product verification: we can decide whether AB is close to C
in Frobenius norm for given d ˆ d matrices A,B,C, in quantum time roughly d1.5, by combining
our approximate matrix-vector computation with Freivalds’s algorithm [Fre77]. This should be
compared with the quantum algorithm of Buhrman and Špalek [BŠ06] that tests if AB is equal

to C (over an arbitrary field) using Õ
´

d5{3
¯

time.

2 Preliminaries

Throughout the paper, d always denotes the dimension of the ambient space Rd or Cd, log without
a base means the binary logarithm, ln “ loge is the natural logarithm, and exppfq “ ef . We let rds

denote the set t1, . . . , du and rds ´ 1 denote the set t0, . . . , d ´ 1u. We denote by ∥v∥ the ℓ2-norm

of a vector, and by ∥v∥p its ℓp-norm. For A P Cdˆd1

, we define the spectral norm }A} “ max
vPCd1

∥Av∥
∥v∥ .
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For a set S, we define the indicator function 1S as

1Spxq “

#

1 if x P S,

0 otherwise.

The total variation distance between probability distributions P andQ is defined as dTV pP,Qq “

supA P pAq ´ QpAq, where the supremum is over events A. In particular, for discrete distributions
we have dTV pP,Qq “ 1

2

ř

x |P pxq ´ Qpxq|. We say that two random variables are δ-close to each
other if the total variation distance between their distributions is at most δ. For two distributions
P,Q over the same space, the relative entropy DKLpP }Qq (also called Kullback-Leibler divergence
or KL-divergence) from P to Q is defined as

DKLpP }Qq “

ż

ppxq ¨ ln
ppxq

qpxq
dx “ Ep

„

ln
ppxq

qpxq

ȷ

,

where ppxq, qpxq are the probability density functions (pdf) of P and Q, respectively. In case P is
not absolutely continuous with respect to Q we define DKLpP }Qq “ 8.

For us a projector is always a matrix Π which is idempotent (Π2 “ Π) and Hermitian (Π: “ Π).
This is sometimes called an “orthogonal projector” in the literature, but we drop the adjective
“orthogonal” in order to avoid confusion with orthogonality between a pair of projectors. For a
subspace S we denote the unique (orthogonal) projector to S by ΠS .

2.1 Computational model and quantum algorithms

Our computational model is a classical computer (a classical random-access machine) that can
invoke a quantum computer as a subroutine. The input is stored in quantum-readable read-only
memory (a QROM), whose bits (or more generally, entries, if one entry is a number with multiple
bits) can be queried.9 The classical computer can also write bits to a quantum-readable classical-
writable classical memory (a QRAM). Such a QRAM, storing some m-bit string w “ w0 . . . wm´1

admits quantum queries (a.k.a. quantum read operations), which correspond to the unitary Ow
that maps |i, by Ñ |i, b‘ wiy, where i P t0, . . . ,m ´ 1u and b P t0, 1u. As already mentioned in
the introduction, we think of one QRAM query as relatively “cheap”, in the same way that a
classical RAM query can be considered “cheap”: imagine the m bits as sitting on the leaves of a
logpmq-depth binary tree, then reading the bit at location i intuitively just means going down the
logpmq-length path from the root to the leaf indicated by i.

The classical computer can send a description of a quantum circuit to the quantum computer;
the quantum computer runs the circuit (which may include queries to the input bits stored in
QROM and to the bits stored by the computer itself in the QRAM), measures the full final state
in the computational basis, and returns the measurement outcome to the classical computer. In
this model, an algorithm has time complexity T if in total it uses at most T elementary classical
operations and quantum gates, quantum queries to the input bits stored in QROM, and quantum
queries to the QRAM. The query complexity of an algorithm only counts the number of queries
to the input stored in QROM. We call a (quantum) algorithm bounded-error if (for every possible
input) it returns a correct output with probability at least 2{3 (standard methods allow us to
change this 2{3 to any constant in p1{2, 1q by only changing the complexity by a constant factor).

9This is just the standard quantum query model. In fact, the QROM input assumption can be relaxed and it
suffices to have a black-box that computes the input bits on demand.
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We will represent real numbers in computer memory using a number of bits of precision that is
polylogarithmic in d{ε (i.e., Õp1q bits). This ensures that all numbers are represented throughout
our algorithms with negligible approximation error and we will ignore those errors later on for ease
of presentation. In this paper, we are mainly interested in approximating the top eigenvector of a
given matrix A. In the quantum case, we assume entries of A are stored in a QROM, which we can
access by means of queries to the oracle OA : |ijy |0y Ñ |ijy |Aijy. In the special case where A is
s-sparse, meaning that each of its rows and columns has at most s-nonzero entries, we additionally
assume we can also query the location of the ℓth nonzero entry in the jth column. This is called
“sparse-query-access to A”, and is a common assumption for quantum algorithms working on sparse
matrices (for instance in Hamiltonian simulation). This corresponds to storing the matrix A using
an “adjacency list”, i.e., the locations and values of the nonzero entries for each row and column
in, a QROM.

2.2 Quantum subroutines

In this section we describe a few known quantum algorithms that we invoke as subroutines.

Theorem 2.1 ([GSLW19, YLC14], fixed-point amplitude amplification). Let a, δ ą 0, U be a
unitary that maps |0y Ñ |ψy and RA, R|0y be quantum circuits that reflect through subspaces A and
(the span of) |0y respectively. Suppose }ΠA |ψy } ě a. There is a quantum algorithm that prepares

|ψ1y satisfying } |ψ1y ´
ΠA|ψy

}ΠA|ψy}
} ď δ using a total number of Oplogp1{δq{aq applications of U,U´1,

controlled RA, R|0y and additional single-qubit gates.

We also use the following theorem to help us find all marked items in a d-element search space
with high probability. The theorem was implicit in [Gro96, BBHT98]. For more details and for a
better d, δ-dependency, see [vAGN23, Section 3].

Theorem 2.2. Let f : rds Ñ t0, 1u be a function that marks a set of elements F “ tj P rds : fpjq “

1u, and δ P p0, 1q. Suppose we know an upper bound u on the size of F and we have a quantum
oracle Of such that Of : |jy |by Ñ |jy |b‘ fpjqy. Then there exists a quantum algorithm that finds
F with probability at least 1 ´ δ, using Op

?
du ¨ poly logpd{δqq time.

Theorem 2.3 (follows from Section 4 of [BHMT02], amplitude estimation). Let δ P p0, 1q. Given
a natural number M and access to an pn` 1q-qubit unitary U satisfying

U |0ny |0y “
?
a |ϕ0y |0y `

?
1 ´ a |ϕ1y |1y ,

where |ϕ0y and |ϕ1y are arbitrary n-qubit states and a P r0, 1s, there exists a quantum algorithm that
uses OpM logp1{δqq applications of U and U : and ÕpM logp1{δqq elementary gates, and outputs an
estimator λ such that, with probability ě 1 ´ δ,

|
?
a´ λ| ď

1

M
.

2.3 KP-tree and state-preparation

Here we introduce a variant of the QRAM data structure developed by Prakash and Kereni-
dis [Pra14, KP17] for efficient state-preparation. We call this data structure a “KP-tree” (or
KPv if we are storing the vector v) in order to credit Kerenidis and Prakash. The variant we use
is very similar to the one used in [CdW23].
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Definition 2.4 (KP-tree). Let v P Cd. We define a KP-tree KPv of v as follows:

• The root stores the scalar ∥v∥ and the size of the support t “ |supppvq| of v.

• KPv is a binary tree on Opt log dq vertices with depth rlog ds.

• The number of leaves is t; for each j P supppvq there is one corresponding leaf storing vj .

• Each edge of the tree is labeled by a bit; the bits on the edges of the path from the root to
the leaf corresponding to the jth entry of v form the binary description of j.

• Intermediate nodes store the square root of the sum of their children’s squared absolute values.

For ℓ ď rlog ds and j P r2ℓs ´ 1, we define KPvpℓ, jq as the scalar value stored in the jth node
in the ℓth layer, i.e., the node that we can reach from the root by the path according to the binary
representation of j. If there is no corresponding jth node in the ℓth layer (that is, we cannot reach
a node by the path according to the binary representation of j from the root), then KPvpℓ, jq is
defined as 0. Note that both the numbering of the layer and the numbering of nodes start from 0.
When v is the all-0 vector, the corresponding tree consists of a single root node with t “ 0.

If we have a classical vector v P Cd, we can build a KP-tree for v using Õpdq time and QRAM
bits. Given a KP-tree KPv, we can efficiently query entries of v and prepare the quantum state

ř

jPrds´1

vj
}v}

|jy:

Theorem 2.5 (Modified Theorem 2.12 of [CdW23]). Suppose we have a KP-tree KPv of v P Cd,
and we can apply a unitary OKPv that maps |ℓ, ky |0y Ñ |ℓ, ky |KPvpℓ, kqy. Then one can implement
a unitary Uv that maps |0y to |ψvy “

ř

jPrds´1

vj
}v}

|jy up to error ε by using Oplog dq applications of

OKPv , O
:

KPv
, and Õp1q additional elementary gates.

Note that if ∥v∥ ă 1, then we can similarly prepare the quantum state |vy “ |0y
ř

jPrds´1

vj |jy `

|1y |0y using Õp1q time and queries to KPv.

2.4 Block-encoding and Hamiltonian simulation

Block-encoding embeds a scaled version of a (possibly non-unitary) matrix A in the upper-left
corner of a bigger unitary matrix U .

Definition 2.6. Suppose that A is a 2w-dimensional matrix, α, ε ą 0, and a P N. We call an
pa` wq-qubit unitary U an pα, a, εq-block-encoding of A if

}A´ α x0a| b I2wqUp|0ay b I2wq} ď ε.

Theorem 2.7 ([LC19]). Suppose that U is an pα, a, ε{|2t|q-block-encoding of the Hamiltonian H.
Then we can implement an ε-precise Hamiltonian-simulation unitary V which is a p1, a`2, εq-block-
encoding of eitH , with Op|αt| ` logp1{εqq uses of controlled-U and its inverse, and with Opa|αt| `

a logp1{εqq additional elementary gates.
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Theorem 2.8 ([Low19, Theorem 2]). Let A be a dˆ d Hermitian matrix with operator norm ď 1,
and t ą 0. Suppose A has sparsity s and we have sparse-query-access to A. Then we can implement

a unitary U such that }U ´ exppiAtq} ď ε using Õ
´

t
?
spt

?
s{εqop1q

¯

time and queries.

If we do not have a sparse oracle or if A is dense, then the time complexity of the above theorem
simply becomes Õpp

?
dtq1`op1q{εop1qq by setting s “ d.

Theorem 2.9 ([GSLW19, Corollary 71]). Let ε P p0, 1{2q, A be a d ˆ d Hermitian matrix with
operator norm ď 1{2, and U “ exppiAq. Then we can implement a p2{π, 2, εq-block-encoding of A,
using Oplogp1{εqq applications of controlled-U , controlled-U inverse, Oplogp1{εqq time, and one
auxiliary qubit.

Combining the above two theorems, we have the following theorem.

Theorem 2.10. Let A be a d ˆ d Hermitian matrix with operator norm ď 1. Suppose A has
sparsity s and we have sparse-query-access to A. Then we can implement a unitary U which is a

p4{π, 2, εq-block-encoding of A with Õ
´?

sps{εqop1q
¯

time and queries.

Theorem 2.11 ([vACGN23], Lemma 6). Let U “
ř

x Ux b |xyxx| and V “
ř

x Vx b |xyxx| be
controlled (by the second register) state-preparation unitaries, where Ux : |0y |0bay Ñ |0y |ψxy `

|1y |ψ̃xy and Vx : |0y |0bay Ñ |0y |ϕxy ` |1y |ϕ̃xy are pa`1q-qubit state-preparation unitaries for some
(sub-normalized) a-qubit quantum states |ψxy , |ϕxy. Then pI b V :qpSWAP b I2a`1qpI b Uq is a
p1, a ` 2, 0q-block-encoding of the diagonal matrix diagptxψx|ϕxyuq, where the SWAP gate acts on
the first and second qubits.

2.5 Singular-value and singular-vector-perturbation bounds

We invoke some tight bounds on the perturbation of singular values and singular vectors of a
matrix. In the following we order the singular values of a matrix A in decreasing order, such that
i ă j ñ ςipAq ě ςjpAq.

Theorem 2.12 (Weyl’s singular value perturbation bound [Bha97, Corollary III.2.6, Problem
III.6.13]). Let A,B P Cnˆm be any matrices, then for all i P rns we have

|ςipAq ´ ςipBq| ď ∥A´B∥.

In order to state the following perturbation bound on the singular-value subspaces we define
ΠX
S to be the projector onto the subspace spanned by the left-singular vectors of X having singular

values in S.

Theorem 2.13 (Wedin-Davis-Kahan sinpθq theorem [Wed72]). Let A,B P Cnˆm be any matrices,
and α, δ ě 0, then10

∥pI ´ ΠA
ąαqΠB

ěα`δ∥ ď
∥A´B∥

δ
.

Lemma 2.14 (Operator norm equivalence to sinpθq between subspaces [Bha97, after Exercise
VII.1.11]). Let P,Q P Cnˆn be projectors with equal rank, then ∥P´Q∥ “ ∥P pI´Qq∥ “ ∥pI´P qQ∥.

10This bound is tight for any rank-r projectors A,B, when α “ 0 and δ “ 1 due to Lemma 2.14. Wedin’s paper
proves the statement for singular-vector subspaces that we use here, and the analogous statement for normal matrices
is proven in Bhatia’s book [Bha97, Theorem VII.3.1], which actually also implies Theorem 2.13 with a bit of work.
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2.6 Concentration inequalities

Repeated sampling is very important for our quantum tomography algorithms, and here we describe
some of the tail bounds we need.

Proposition 2.15 (Bennett-Bernstein Bound [BLM13, Theorem 2.9 & Eqn. 2.10]). Let Xpiq : i P

rns be independent random variables with finite variance such that, for each i, Xpiq ď b for some
b ą 0 almost surely (i.e., this event has probability measure 1). Let

S “

n
ÿ

i“1

Xpiq ´ ErXpiqs, v “

n
ÿ

i“1

ErpXpiqq2s,

then for any t ą 0,

PrrS ě ts ď exp

˜

´
v

b2
h

ˆ

bt

v

˙

¸

ď exp

˜

´
t2

2v ` 2
3bt

¸

,

where hpxq “ p1 ` xq lnp1 ` xq ´ x.

Proposition 2.16 (Chernoff-Hoeffding Bound [Che52], [Hoe63, Theorem 1], [BLM13, Section 2.6]).
Let 0 ďXď 1 be a bounded random variable and p :“ ErXs. Suppose we take n i.i.d. samples Xpiq

of X and denote the normalized outcome by s “ Xp1q`Xp2q`¨¨¨`Xpnq

n . Then we have for all ε ą 0

Prrs ě p` εs ď e´DKLpp`ε∥pqn ď exp

˜

´
ε2

2pp` εq
n

¸

, (1)

Prrs ď p´ εs ď e´DKLpp´ε∥pqn ď exp

˜

´
ε2

2p
n

¸

, (2)

where DKLpx ∥ pq “ x ln x
p ` p1 ´ xq ln

´

1´x
1´p

¯

is the Kullback–Leibler divergence between Bernoulli

random variables with mean x and p respectively.

Proof. The first inequality is [Hoe63, Theorem 1], while (2) follows from (1) by considering 1´Xpiq.

The rightmost inequalities come from the observation that @x, y ě 0: DKLpx ∥ yq ě
px´yq2

2maxtx,yu
.

Corollary 2.17 (Okamoto-Hoeffding Bound). Let X, s be as in Proposition 2.16, then we have

Prr
?
s ě

?
p` εqs ď exp

´

´2ε2n
¯

,

Prr
?
s ď

?
p´ εs ď exp

´

´ε2n
¯

.

Proof. This directly follows from (1)-(2) using the observation [Oka59] that

DKLpx ∥ pq ě 2
`?
x´

?
p

˘2
@ 0 ď p ď x ď 1,

DKLpx ∥ pq ě
`?
p´

?
x

˘2
@ 0 ď x ď p ď 1.
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2.7 Matrix concentration inequalities

We state some random matrix concentration results for tall matrices (i.e., matrices having more
rows than columns), but in our case we mostly apply them to flat matrices (having more columns
than rows), thus we effectively apply the statements to G:. We will use the following non-asymptotic
bounds.

Theorem 2.18 (Well-conditioned tall Gaussian matrices [Ver12, Theorem 5.39 & Footnote 25]).
There exist absolute constants11 c, C ě 1 such that the following holds for all N ě n: if G P CNˆn is
a random matrix whose matrix elements have i.i.d. real or complex standard normal distribution,12

then its smallest singular value ςminpGq and largest singular value ςmaxpGq satisfy, for all t ě 0

Prr
?
N ´ C

?
n´ t ă ςminpGq ď ςmaxpGq ă

?
N ` C

?
n` ts ą 1 ´ 2 expp´t2{p2cqq.

Corollary 2.19. In the setting of Theorem 2.18, if N ě 16C2n, we have

Pr

„

1

4

?
N ă ςminpGq ď ςmaxpGq ă

7

4

?
N

ȷ

ą 1 ´ 2 expp´N{p8cqq.

Proof. Apply Theorem 2.18 with t “
?
N{2.

The following slightly tighter bound can be used for bounding the norm of individual columns
or rows of Gaussian random matrices.

Proposition 2.20. Let v be an n-dimensional random vector whose coordinates have i.i.d. real or
complex standard normal distribution, then Er∥v∥s ď

?
n and Prr∥v∥ ě

?
n` ts ď expp´ t2

2 q @t ě 0.

Proof. We have Er∥v∥s ď
a

Er∥v∥2s “
?
n by Jensen’s inequality. The function v ÞÑ ∥v∥ is 1-

Lipschitz due to the triangle inequality, and hence by the concentration of Lipschitz functions on
vectors with the canonical Gaussian measure (Proposition 2.18 & Equation (2.35) of [Led01]) we
have Prr∥v∥ ě

?
n` ts ď expp´t2{2q.13

Next, we invoke a concentration bound for the operator norm of a random matrix with inde-
pendent bounded rows.

Theorem 2.21 (Independent bounded rows [Ver12, Theorem 5.44 & Remark 5.49]). There exists
an absolute constant c1 ą 0 such that the following holds. Let G P CNˆn be a random matrix whose

11In the real case [DS01, Theorem II.13] gives c, C “ 1. While [Ver12, Footnote 25] asserts that the statement
can be adapted to the complex case, there are no specifics provided, and the proof of [Ver12, Corollary 5.35] is
borrowed from [DS01, Theorem II.13], where the adaptation of the statement to the complex case is presented as
an open question. It is tempting to try and adapt the proof of the real case using the observation that ςminpGq “

min∥u∥“1 max∥v∥“1 ℜ
@

u˚, Gv
D

together with the Slepian-Gordon lemma [Gor85, Theorem 1.4], however this approach
seems to irrecoverably fail due to a banal issue: while ∥|uy|vy ´ |u1

y|v1
y∥2 ď ∥u´ u1∥2 ` ∥v ´ v1∥2 holds for real unit

vectors, for complex unit vectors only the weaker ∥|uy|vy ´ |u1
y|v1

y∥2 ď 2∥u ´ u1∥2 ` 2∥v ´ v1∥2 holds in general.
Indeed, for any α P p0, 2πq consider the complex numbers u “ 1, v “ i exppiαq, u1

“ expp´iαq, v1
“ i, then we have

|uv ´ u1v1
|
2
{p|u´ u1

|
2

` |v ´ v1
|
2
q “ 1 ` cospαq.

12A complex standard normal random variable has independent real and imaginary parts each having centered
normal distribution with variance 1

2
.

13Actually, in the complex case the upper bound is even stronger: expp´t2q.
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rows Gi are independent, each having mean 0 and a covariance matrix14 with operator norm at
most S2, and almost surely ∥Gi∥2 ď B for all i P rN s. Then for every t ě 0, with probability at
least 1 ´ 2n expp´c1t2q one has

∥G∥ ď 2|S|
?
N ` tB. (3)

In case G is a real-symmetric Gaussian matrix, we have the following non-asymptotic bound.

Theorem 2.22 (Symmetric Gaussian matrix [BvH16, Corollary 3.9 with ε “ 0.25]). Let G P Rdˆd

be a symmetric matrix with Gij “ bij ¨ gij, where the random variables tgij : i ě ju are i.i.d.

„ Np0, 1q and the tbij : i ě ju are arbitrary real scalars. Denote bmax “ max
i

c

ř

j
b2ij and b˚

max “

max
ij

|bij |. Then for every t ě 0,

Pr

„

}G} ě 2.5 ¨ bmax `
7.5

lnp1.25q
b˚
max

?
ln d` t

ȷ

ď expp´t2{p4b˚2
maxqq.

2.8 Bounds on random variables with adaptive dependency structure

Here we present some useful bounds on random variables, where the dependency structure follows
some martingale-like structure.

The first bound gives an intuitive total variation distance bound for “adaptive” processes. The
main idea is to couple two adaptive random processes that are step-wise similar. We use the
following folklore [AS19, p. 1] observation:

Theorem 2.23 (Total variation distance and optimal coupling). Let X,Y be random variables.
Then dTV pX,Y q ď ε iff there exist ε-coupled random variables rX and rY (possibly dependent) with
the same distribution as X and Y , respectively, such that Prr rX‰ rY s ď ε.

Corollary 2.24. Let X be a random variable and A an event of the underlying probability space
such that PrrAs ą 0. Then for Y 1 “ X|A, the conditioned version of X (i.e., PrrY 1 P Ss “

PrrA&X PSs{ PrrAs for all measurable sets S), we have that dTV pX,Y 1q ď 1 ´ PrrAs.

Proof. Let Y be a random variable that is independent of A, but its distribution is identical to
that of Y 1, i.e., PrrY 1 P Ss “ PrrY P Ss “ PrrA&X P Ss{ PrrAs for all measurable sets S. In
Theorem 2.23 take rX :“ X, and rY :“ X on A and rY :“ Y on the complement of A; by construction
we have Prr rX‰ rY s ď 1 ´ PrrAs. Finally, observe that for all measurable sets S we have

PrrrY P Ss “ PrrA&X P Ss ` PrrĀ&Y P Ss “ PrrA&X P Ss ` PrrĀs ¨ PrrY P Ss

“

˜

1 `
PrrĀs

PrrAs

¸

PrrA&X P Ss “
PrrA&X P Ss

PrrAs
“ PrrX P S | As “ PrrY 1 P Ss.

Lemma 2.25 (Conditional total variation distance based bound). Let X “ pX1, X2q and X 1 “

pX 1
1, X

1
2q be two discrete random variables, and let X2x :“ X2|X1 “x, X 1

2x :“ X 1
2|X 1

1 “x. Suppose
that dTV pX1, X

1
1qďε1 and dTV pX2x, X

1
2xqďε2 for all x such that PrrX1 “ xs PrrX 1

1 “ xs ą 0, then
dTV pX,X 1qďε1 ` p1 ´ ε1qε2.

14If ψ P Cn is a mean-0 random vector and C “ Erψ:ψs is its covariance matrix, then the covariance matrix of the
complex conjugate random variable ψ˚ is ErψTψ˚

s “ C˚. On the other hand we have Covpℜpψqq ` Covpℑpψqq “
C`C˚

2
, and therefore ∥Covpℜpψqq ` Covpℑpψqq∥ ď ∥C∥. Thus we can apply [Ver12, Theorem 5.44 & Remark 5.49]

separately to the real and imaginary parts of the random vectors Gi, whence the extra (possibly sub-optimal) factor
of 2 in (3).
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Proof. Due to Theorem 2.23 we can find ε1-coupled random variables rX1, rX 1
1, and similarly ε2-

coupled rX2x, rX 1
2x for all x in the range of X1, X

1
1 respectively. We can assume without loss

of generality that rX1 and rX2x are mutually independent for all x in the range of X1, X
1
1 and

likewise are rX1 and rX2x. We then define rX “ p rX1, rX
2 rX1

q and rX 1 “ p rX 1
1,

rX 1

2 rX 1
1

q, so that clearly

PrrX “ px1, x2qs “ Prr rX “ px1, x2qs and PrrX 1 “ px1, x2qs “ Prr rX 1 “ px1, x2qs. On the other
hand due to the tight coupling of Theorem 2.23 we also get

dTV pX,X 1q ď Prr rX ‰ rX 1s

“ Prr rX1 ‰ rX 1
1s `

ÿ

x

Prr rX1 “ rX 1
1 “ x& rX2x ‰ rX 1

2xs

“ Prr rX1 ‰ rX 1
1s `

ÿ

x

Prr rX1 “ rX 1
1 “ xs Prr rX2x ‰ rX 1

2xs

ď ε1 `
ÿ

x

Prr rX1 “ rX 1
1 “ xsε2

“ ε1 ` p1 ´ ε1qε2.

The following is essentially a martingale property, which could be stated more generally, but
here we prove a simple version for completeness.

Lemma 2.26 (Martingale-like covariance sum). If X,Y, Z P Cd are vector-valued discrete random
variables such that ErZ|pX,Y qs “ 0 (i.e., ErZ|pX “ x, Y “ yqs “ 0 for all x, y), then CovpX`Zq “

CovpXq ` CovpZq.

Proof. It is easy to see that ErZs “ 0, and we can assume without loss of generality that ErXs “ 0.

CovpX ` Zq “ Er|X ` ZyxX ` Z|s

“
ÿ

px,yq :
PrrpX,Y q“px,yqsą0

PrrpX,Y q “ px, yqsEr|x` Zyxx` Z| |pX,Y q “ px, yqs

“
ÿ

px,yq :
PrrpX,Y q“px,yqsą0

PrrpX,Y q “ px, yqs
`

|xyxx| ` Er|ZyxZ| |pX,Y q “ px, yqs
˘

“
ÿ

x

PrrX “ xs|xyxx| `
ÿ

px,yq :
PrrpX,Y q“px,yqsą0

PrrpX,Y q “ px, yqsEr|ZyxZ| |pX,Y q “ px, yqs

“ CovpXq ` CovpZq.

2.9 Gaussian, Sub-Gaussian, and discrete Gaussian distributions

A random variable X over R has Gaussian distribution with mean µ “ ErXs and variance
σ2 “VarpXq, denoted X „ Npµ, σ2q, if its probability density function is

ppxq “
1

?
2πσ2

exp
´

´
px´ µq2

2σ2

¯

, for x P R.

A well-known property of a Gaussian is that its tail decays rapidly, which can be quantified as:
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• If X „ Npµ, σ2q, then for any t ą 0, it holds that

PrrX ´ µ ą ts ď
1

?
2πt

expp´t2{p2σ2qq.

A random variable X over R is called τ -sub-Gaussian with parameter α ą 0, denoted in short by
X „ τ -subGpα2q, if its moment-generating function satisfies ErexpptXqs ď exppτq exppα2t2{2q for
all t P R. We list and prove a few useful properties of sub-Gaussian distributions below.

• The tails of X „ τ -subGpα2q are dominated by a Gaussian with parameter α, i.e.,

Prr|X| ą ts ď 2 exppτq expp´t2{p2α2qq @t ą 0. (4)

• If Xi „ τ -subGpα2
i q are independent, then for any a “ pa1, . . . , adqT P Rd, the weighted sum

ř

iPrds

aiXi is p
ř

iPrds τiq-sub-Gaussian with parameter α̃ “

d

d
ř

i“1
a2iα

2
i .

To prove (4), we first use Markov’s inequality to obtain that for all s ą 0

PrrX ě ts “ PrrexppsXq ě exppstqs ď ErexppsXqs{ exppstq ď exppτq exppα2s2{2 ´ stq.

Since the above inequality holds for every s ą 0, we have PrrX ě ts ď expp´t2{p2α2qq because
min
są0

pα2s2{2´stq “ ´t2{p2α2q. The same argument applied to ´X gives the bound on PrrX ď ´ts.

The second property can be easily derived using the independence of the Xi’s:

Erexppt
d

ÿ

i“1

aiXiqs “

d
ź

i“1

ErexpptaiXiqs ď

d
ź

i“1

exppτiq exppα2
i a

2
i t

2{2q “ expp

d
ÿ

i“1

τiq expp

d
ÿ

i“1

α2
i a

2
i t

2{2q.

Next, we explain what a discrete Gaussian is. For any s ą 0, we define the function ps : R Ñ R
as pspxq “ expp´πx2{s2q. When s “ 1, we simply write ppxq. For a countable set S we define
pspSq “

ř

aPS

pspaq; if pspSq ă 8, we define DS,s “ 1
pspSq

ps to be the discrete probability distribution

over S such that the probability of drawing x P S is proportional to pspxq. We call this the
discrete Gaussian distribution over S with parameter s. The following theorem states that such
distributions over Z are sub-Gaussian with parameter s:

Theorem 2.27 ([MP12, Lemma 2.8]). For any λ, ν ą 0 and τ P p0, 0.1s, if s ě λ
a

logp12{τq{π,15

then DλZ`ν,s is τ -sub-Gaussian with parameter s. Moreover, for every s ą 0, DλZ,s is 0-sub-
Gaussian with parameter s.

We also consider truncations of the above infinite discrete Gaussian distributions, and define

Dr´L,Rs

Z,s as DZXr´L,Rs,s. For every δ P p0, 1s, if L,R ě s
a

2 lnp1{δq, then by Corollary 2.24 we

have dTV pDZ,s,D
r´L,Rs

Z,s q ď 2δ, because the tail of DZ,s can be bounded by 2δ using (4) due to

15Here the lattice we consider is the one-dimensional lattice λZ, so the length of the shortest nonzero vector λ1pλZq

is just λ. Also, by using the equation between the smoothing parameter and the length of the shortest vector ([MR07,
Lemma 3.3]), we have ητ pλZq ď

a

logp2 ` 2{τq{π ¨ λ1pλZq ď λ
a

logp3{τq{π. Therefore, if s ě λ
a

logp3{τq{π, then
s ě ητ pλZq and hence DλZ`ν,s is logpp1`τq{p1´τqq-sub-Gaussian. By the fact logpp1`τq{p1´τqq ď 4τ and changing
τ Ñ τ{4, we get the theorem as stated here.
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Theorem 2.27. We also define Dmod N
Z,s as a modular version of the discrete Gaussian distribution

DZ,s, which has probability Dmod N
Z,s pkq “ DZ,spN ¨Z`kq for every k P t´tN{2u, . . . , 0, . . . , rN{2s´1u,

and probability 0 for all other k P Z. Again, by using Theorem 2.27 and (4), we have that for
every δ P p0, 1{2q, if N ě 2s

a

2 lnp1{δq, then dTV pDZ,s,Dmod N
Z,s q ď 2δ. Combining these we get

dTV pDmod N
Z,s ,Dr´L,Rs

Z,s q ď 4δ if N,L,R ě 2s
a

2 lnp1{δq. Finally, these arguments can also be applied
to DZ`c,s with large enough s.

Corollary 2.28. Let δ P p0, 1s. For any c ą 0 and τ P p0, 0.1s, if s ě
a

logp12{τq{π and N,L,R ě

10s
a

2 lnp2{δq, then DZ`c,s, D
r´L,Rs

Z`c,s , and Dmod N
Z`c,s are 4δ exppτq-close to each other in total variation

distance.

Using the discussion and corollary above, we can show the truncated discrete Gaussian state is
close to the modular discrete Gaussian state when N, s are both reasonably large.

Theorem 2.29. Let δ P p0, 0.1s, s ě 8
b

2 logp1δ q, N ě 16s
b

2 lnp1δ q even number, and t P r´N
8 ,

N
8 s.

Let f : R Ñ C be an arbitrary phase function such that |fpxq| “ 1 for every x P R and

|Gy “
1

?
G

ÿ

xPZ
fpx` tqpspx` tq |xy ,

|Gtry “
1

?
Gtr

ÿ

xPt´N
2
...,0,...,N

2
´1u

fpx` tqpspx` tq |xy ,

|Gmody “
1

?
Gmod

ÿ

xPZ
fpx` tqpspx` tq |px`

N

2
mod Nq ´

N

2
y ,

where G,Gmod, Gtr are normalizing factors. Then |Gtry , |Gmody , |Gy are 9δ-close to each other.16

Proof. Let rr˘ass denote the set t´ras . . . , 0, . . . , ras ´1u. We first show |Gtry is close to |Gy. Define

|ĄGtry “

b

Gtr
G |Gtry, which has ℓ2-norm

b

Gtr
G ď 1. We can see

} |ĄGtry ´ |Gy }2 “
1

G

ÿ

xPZzrr˘N
2

ss

p2spx` tq ď
1

G

ÿ

xPZztx:|x`t|ďN{4u

p2spx` tq ď δ2,

where the last equality holds because p2s “ ps{
?
2 and DZ`t,s{

?
2 is δ2-sub-Gaussian with parameter

s{
?

2 by Theorem 2.27 (note s{
?

2 ě 8
a

logp1{δq ě
a

logp12{δ2q{π) and because of the first
property of sub-Gaussians: Prr|x ` t| ą N{4s ď 2 exppδ2q expp´pN{4q2{p2 ¨ s2{2qq ď δ2. Note that

1 ě } |ĄGtry } ě } |Gy } ´ } |ĄGtry ´ |Gy } ě 1 ´ δ and hence } |ĄGtry ´ |Gtry } “ }p

b

Gtr
G ´ 1q |Gtry } ď δ.

Therefore, we obtain

} |Gtry ´ |Gy } ď } |ĄGtry ´ |Gtry } ` } |ĄGtry ´ |Gy } ď 2δ.

To show |Gmody is close to |Gy, let us similarly define | ĆGmody “

b

Gmod
G |Gmody. We can see

} | ĆGmody ´ |Gy }2 ď
1

G

ÿ

xPrr˘N
2

ss

´

ÿ

yPZzt0u

pspx` t`Nyq

¯2
`

1

G

ÿ

xPZzrr˘N
2

ss

´

pspx` tq
¯2
.

16Equivalently, if t P r´5N{8,´3N{8s (and the constraints for N, s remain the same), then |Gy, |pGtr
q

1
y “

1?
Gtr

ř

xPrNs

fpx` tqpspx` tq |xy , |pGmod
q

1
y “ 1?

Gmod

ř

xPZ
fpx` tqpspx` tq |x mod Nqy are 9δ-close to each other.
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To upper bound the first term in the RHS above, we split the domain of x into three disjoint
parts: D1 “ tx P rr˘N

2 ss : |x ` t| ď N{4u, D2 “ tx P rr˘N
2 ss : N{2 ě |x ` t| ą N{4u, and

D3 “ tx P rr˘N
2 ss : |x` t| ą N{2u.

When x P D1, we can see
ř

yPZzt0u

pspx` t`Nyq ď pspx` tq ¨ 2
8
ř

y“1
δ2y “ pspx` tq ¨ 2δ2{p1 ´ δ2q,

because for every y P N Y t0u and x P D1 both

pspx` t` py ` 1qNq{pspx` t` yNq “ expp´
π

s2
¨Np2px` tq ` p2y ` 1qNqq ď δ2 (5)

and

pspx` t´ py ` 1qNq{pspx` t´ yNq “ expp´
π

s2
¨Np´2px` tq ` p2y ` 1qNqq ď δ2 (6)

hold (because expp´ π
s2

¨NpN ˘ 2px` tqq ď expp´ π
s2

¨ N
2

2 q ď δ2 for every x P D1).
When x P D2 we use a similar argument, the only difference is that Equations (5) and (6) now

hold for every y P N (excluding 0), so

ÿ

yPZzt0u

pspx` t`Nyq ď pspx` tq ¨ 2
8
ÿ

y“0

δ2y “ pspx` tq ¨ 2{p1 ´ δ2q.

When x P D3, we can see that either x`N or x´N is N{2-close to (but 3N{8-far from) ´t, and
without loss of generality and for simplicity we can assume |x ` N ´ p´tq| P r3N{8, N{2s. Then
using a similar argument as for the x P D2, we can show that for every x P D3,

ÿ

yPZzt0u

pspx` t`Nyq ď pspx`N ` tq ¨ 2{p1 ´ δ2q.

Since p2s “ ps{
?
2 and DZ`t,s{

?
2 is δ2-sub-Gaussian with parameter s{

?
2, we have

} | ĆGmody ´ |Gy }2 ď
1

G

ÿ

xPD1YD2YD3

´

ÿ

yPZzt0u

pspx` t`Nyq

¯2
`

1

G

ÿ

xPZzrr˘N
2

ss

´

pspx` tq
¯2

ď
1

G

´

p
2δ2

1 ´ δ2
q2

ÿ

xPD1

p s?
2
px` tq ` p

2

1 ´ δ2
q2

ÿ

xPD2

p s?
2
px` tq ` p

2

1 ´ δ2
q2

ÿ

xPD3

p s?
2
px`N ` tq ` δ2G

¯

ď
1

G

´ 4δ4

p1 ´ δ2q2
G`

8

p1 ´ δ2q2
pδ2Gq ` δ2G

¯

“
4δ4 ` 8δ2

1 ´ δ2
` δ2 ď 10δ2,

where the second equality holds because
ÿ

xPD2

ps{
?
2px` tq `

ÿ

xPD3

ps{
?
2px`N ` tq

ď
ÿ

xPZztx:|x`t|ďN{8u

ps{
?
2px` tq ď G ¨ 2 exppδ2q expp´pN{8q2{p2 ¨ s2{2qq ď δ2G.

Note that } | ĆGmody } P } |Gy } ˘ } | ĆGmody ´ |Gy } (implying } | ĆGmody } P p1 ˘
?

10δq) and hence

} | ĆGmody ´ |Gmody } “ }p

b

Gmod
G ´ 1q |Gmody } ď

?
10δ. As a result, we obtain } |Gmody ´ |Gy } ď

} | ĆGmody ´ |Gy } ` } | ĆGmody ´ |Gmody } ď 2
?

10δ ă 7δ. And by triangle inequality, we obtain
} |Gmody ´ |Gtry } ď } |Gmody ´ |Gy } ` } |Gy ´ |Gtry } ď 9δ.
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2.10 Fourier transform

The Fourier transform ĥ : R Ñ C of a function h : R Ñ C is defined as

ĥpωq “

ż 8

´8

hpxq expp´2πixωq dx.

The next facts follow easily from the above definition. If h is defined as hpωq “ gpω ` νq for some
function g and value ν, then we have

ĝpωq “ ĥpωq expp2πiνωq.

On the other hand, if hpxq “ gpxq expp2πixνq, then

ĥpωq “ ĝpω ´ νq.

Another important fact is that the Fourier transform of ps is s ¨ p1{s for all s ą 0. Also, the sum of
pspxq over C ¨ Z satisfies the Poisson summation formula [Reg09, Lemma 2.14]:

Theorem 2.30. For any scalar C ą 0 and any Schwartz function f : R Ñ C (i.e., f and each of
its derivatives go to 0 faster than every inverse polynomial as the absolute value of the argument
goes to infinity),

ÿ

jPC¨Z
fpjq “ C´1

ÿ

jPC´1¨Z

f̂pjq.

2.11 Area of hyperspherical cap

Let Bdprq denote the d-dimensional ball with radius r. The surface area of Bdprq is well-known

to be 2π
d
2

Γp d
2

q
rd´1 [Li11, p. 66], where Γ is the Gamma function. Let Ardpϕq be the surface area of

a hyperspherical cap in Bdprq with spherical angle ϕ. The area of this hyperspherical cap can be
calculated by integrating the surface area of a pd´ 1q-dimensional sphere with radius r sin θ [Li11,
p. 67]:

Ardpϕq “

ż ϕ

0
2Ar sin θd´1 pπ{2qrdθ “

2π
d´1
2

Γpd´1
2 q

rd´1 ¨

ż ϕ

0
sind´2 θdθ.

We abbreviate Adpϕq :“ A1
dpϕq for simplicity.

Following Ravsky’s computation in his reply to a question on StackExchange [Rav21], we now
use the area of the hyperspherical cap to upper bound the probability of the event that a uniformly
random vector u on Sd´1 only has a small overlap with another (fixed) unit vector v.

Theorem 2.31. Let d ě 3 be and integer, v P Rd be a unit vector, and a P r0, 1s. Then we have

Pr
u„Sd´1

“

|xv, uy| ă a
‰

ď
2

?
π

¨
Γpd2q

Γpd´1
2 q

¨ a.

Proof. Let ϕ P r0, π{2s such that cosϕ “ a. We can see that if |xv, uy| ě a, then u will be
in the hyperspherical cap (whose center is v) with spherical angle ϕ, and the probability that a
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uniformly-random u lands in that hyperspherical cap is Adpϕq

Adpπ{2q
. Therefore,

Pr
u„Sd´1

“

|xv, uy| ă a
‰

“
Adpπ{2q ´Adpϕq

Adpπ{2q
“

´ π
d
2

Γpd2q

¯´1
¨

´ 2π
d´1
2

Γpd´1
2 q

¯

ż π{2

ϕ
sin θd´2dθ

ď

´ π
d
2

Γpd2q

¯´1
¨

´ 2π
d´1
2

Γpd´1
2 q

¯

ż π{2

ϕ
sin θdθ “

2Γpd2q
?
πΓpd´1

2 q
¨ p´ cos

π

2
` cosϕq

“
2

?
π

¨
Γpd2q

Γpd´1
2 q

¨ a.

By using Legendre’s duplication formula Γpd2qΓpd´1
2 q “

?
π

2d´2 Γpd ´ 1q [Rud76, Chap. 8.21,
Eq. 102] and the fact Γpdq “ pd´ 1q!, we obtain

Γpd2q

Γpd´1
2 q

“

$

’

’

&

’

’

%

Γp d
2

q2

Γp d
2

qΓp d´1
2

q
“

2d´2pp d
2

´1q!q2
?
πpd´2q!

“ 2d´2
?
π

¨

´d´2

d´2
2

¯´1
, if d is even,

Γp d
2

qΓp d´1
2

q

Γp d´1
2

q2
“

?
πpd´2q!

2d´2p d´3
2

!q2
“

?
πpd´2q

2d´2 ¨

´d´3

d´3
2

¯

, if d is odd.

Plugging the above into Theorem 2.31, we have the following corollary.

Corollary 2.32. Let d ě 4 be an integer, v P Rd be a unit vector, and c ě 1. Then we have

Pr
u„Sd´1

“

|xv, uy| ă
1

c
?
d

‰

ă
1

c
.

Proof. By Theorem 2.31, it suffices to show 2?
π

¨
Γp d

2
q

Γp d´1
2

q
¨ 1?

d
ă 1 for every d ě 4. When d is even,

by using Robbins’ bound 4m?
πm

expp´ 1
6mq ď

`

2m
m

˘

ď 4m?
πm

[Rob55, consequence of Eq. 1], we have

Γpd2q

Γpd´1
2 q

“
2d´2

?
π

¨

´d´2

d´2
2

¯´1
ď

c

d´ 2

2
expp

1

3d´ 6
q ď

c

d

2
expp

1

6
q,

implying that 2?
π

¨
Γp d

2
q

Γp d´1
2

q
¨ 1?

d
ď

b

2
π ¨ expp16q ă 1. Similarly, when d is odd, we have

Γpd2q

Γpd´1
2 q

“

?
πpd´ 2q

2d´2
¨

´d´3

d´3
2

¯

ď
d´ 2

a

2pd´ 3q
,

implying that 2?
π

¨
Γp d

2
q

Γp d´1
2

q
¨ 1?

d
ď

b

2
π ¨ d´2?

dpd´3q
ă 1.

3 Time-efficient unbiased pure-state tomography

In this section we design efficient methods for obtaining a good classical description of a pure
quantum state (i.e., tomography), by manipulating and measuring multiple copies of that state.
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3.1 Pure-state tomography by computational-basis measurements

A direct corollary of Corollary 2.17 as observed in [vACGN23] is that computational-basis measure-
ments yield a good approximation of the absolute values of the amplitudes of a (sub)normalized
quantum state vector.

Corollary 3.1. Suppose that ε, δ P p0, 1s, ψ P Cd has ℓ2-norm at most 1, and we are given

n ě 1
ε2

ln
´

2d
δ

¯

copies of the pure quantum state |φy :“ |0̄y |ψy ` |0̄Ky, where p|0̄yx0̄| b Iq |0̄Ky “ 0.

If we measure each copy in the computational basis and denote by si the normalized number (i.e.,
frequency) of outcomes |0̄y |iy then the vector

ψ̄i :“
?
si

with probability at least 1´δ gives an ε-ℓ8 approximation of |ψ|. Moreover, ∥ψ̄∥2 ď 1 with certainty
and if ∥ψ∥2 “ 1, then also ∥ψ̄∥2 “ 1, and in general

ˇ

ˇ∥ψ̄∥2 ´ ∥ψ∥2
ˇ

ˇ ě ε holds with probability ď δ
d .

Proof. By Corollary 2.17 we have that

Pr
“ˇ

ˇ

?
si ´ |ψi|

ˇ

ˇ ě ε
‰

ď
δ

d
,

and similarly

Pr
“
ˇ

ˇ∥ψ̄∥2 ´ ∥ψ∥2
ˇ

ˇ ě ε
‰

“ Pr

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g

f

f

e

d´1
ÿ

i“0

si ´

g

f

f

e

d´1
ÿ

i“0

|ψi|2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

fi

ffi

fl

ď
δ

d
.

Finally, ∥ψ̄∥22 “
řd´1
i“0 si ď 1, where the last inequality is an equality if ∥ψ∥2 “ 1.

3.2 Pure-state tomography using conditional samples

Now we show how to produce an unbiased estimator of ψ itself (not just of the magnitudes of its
entries) with bounded variance using computational-basis measurements with the help of a reference
state ψ̄. Our approach is inspired by [KP20] but improves over their biased estimator by making
it unbiased.

Lemma 3.2. Suppose that ψ P Cd has ∥ψ∥2 ď 1, and we are given a copy of the state |φ1y :“
´

|`y
`

|0̄y|ψy`|0̄Ky
˘

`|´y
`

|0̄y|ψ̄y`|0̄1Ky
˘

¯

{
?

2, where |0̄y “ |0ay for some a P N, p|0̄yx0̄|bIq |0̄Ky “

0, and p|0̄yx0̄|bIq |0̄1Ky “ 0. If we measure |φ1y in the computational basis and denote by X P t0, 1u2d

the indicator of the measurement outcomes |by |0̄y |iy (this X is a weight-1 Boolean vector indexed
by pb, iq where b P t0, 1u and i P rds ´ 1), then the random vector ψ1 P Cd with coordinates

ψ1
i :“

X0,i ´X1,i

|ψ̄i|

is an unbiased estimator of ψℜ
i :“ Re

´

ψi
ψ̄˚
i

|ψ̄i|

¯

, with ∥ψ1∥2 ď 1
mint|ψ̄i| : iPrds´1u

with certainty, and

covariance matrix Covpψ1q “ I
2 ` diag

´

|ψi|
2

2|ψ̄i|
2

¯

´ |ψℜyxψℜ|.
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Proof. The probabilities of getting measurement outcomes |0y |0̄y |iy and |1y |0̄y |iy are

p0,i :“ | x0| x0̄| xi| |φ1y |2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ψi ` ψ̄i
2

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
|ψi|

2 ` ψiψ̄
˚
i ` ψ˚

i ψ̄i ` |ψ̄i|
2

4
“ ErX0,is,

p1,i :“ | x1| x0̄| xi| |φ1y |2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ψi ´ ψ̄i
2

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
|ψi|

2 ´ ψiψ̄
˚
i ´ ψ˚

i ψ̄i ` |ψ̄i|
2

4
“ ErX1,is,

and therefore

ErX0,i ´X1,is “ p0,i ´ p1,i “
ψiψ̄

˚
i ` ψ˚

i ψ̄i
2

“ |ψ̄i|
ψi

ψ̄˚
i

|ψ̄i|
` ψ˚

i
ψ̄i

|ψ̄i|

2
“ |ψ̄i|ψ

ℜ
i .

For the norm bound observe that

∥ψ1∥2 ď

d´1
ÿ

i“0

|ψ1|i ď

d´1
ÿ

i“0

X0,i `X1,i

|ψ̄|i
ď

d´1
ÿ

i“0

X0,i `X1,i

mint|ψ̄i| : i P rds ´ 1u
ď

1

mint|ψ̄i| : i P rds ´ 1u
.

We can compute the covariance matrix directly as follows

Covpψ1qij “ Erψ1
iψ

1
js ´ Erψ1

isErψ1
js “ δij

p0,i ` p1,i

|ψ̄i|2
´ ψℜ

i ψ
ℜ
j “ δij

|ψi|
2{|ψ̄i|

2 ` 1

2
´ ψℜ

i ψ
ℜ
j ,

where the second equality uses that Xa,iXb,j “ δab ¨ δij ¨ Xa,i because X is a weight-1 Boolean
vector.

By an analogous argument as in the proof of Lemma 3.2, we can obtain an unbiased estimator of

the imaginary parts ψℑ
j :“ Im

ˆ

ψj
ψ̄˚
j

|ψ̄j |

˙

(with the same ℓ2-norm and covariance matrix gaurantee) by

measuring |φ2y :“

ˆ

|`y

´

|0̄y |ψy ` |0̄Ky

¯

` i |´y

´

|0̄y |ψ̄y ` |0̄1Ky

¯

˙

{
?

2 in the computational basis.

We now give a procedure (the first part of Theorem 3.3) to find an unbiased estimator ψ̃
of ψ that simultaneously has a good bound on the error of the estimator (with overwhelming
probability) in some k fixed directions using Lemma 3.2. The second part of Theorem 3.3 shows
that the output ψ̃ will be close (in total variation distance) to an “almost ideal” unbiased estimator
qψ that simultaneously has a good bound on the error of the estimator with certainty in some k
fixed directions. This will be used later when estimating a matrix-vector product Aw in order to
avoid an estimation-error that has too much overlap with k of the eigenvectors of A.

Theorem 3.3. Let ψ P Cd such that ∥ψ∥2 ď 1, ε, δ P p0, 1s, η P R`, k P N, n ě 4d
ε2

´

4
3 ` 1

η

¯

ln
´

8k
δ

¯

.

Suppose there exists a “reference state” (not necessarily known to the algorithm) ψ̄ P Cd such that

|ψ̄j |
2 ě maxt ε

2

d , η|ψj |
2u @j P rds ´ 1, and ∥ψ̄∥ ď 1. Given n copies of the pure quantum states

|φ1y :“

ˆ

|`y

´

|0̄y |ψy ` |0̄Ky

¯

` |´y

´

|0̄y |ψ̄y ` |0̄1Ky

¯

˙

{
?

2,

|φ2y :“

ˆ

|`y

´

|0̄y |ψy ` |0̄Ky

¯

` i |´y

´

|0̄y |ψ̄y ` |0̄1Ky

¯

˙

{
?

2,
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where |0̄y “ |0ay for some a P N, p|0̄yx0̄| b Iq |0̄Ky “ 0, and p|0̄yx0̄| b Iq |0̄1Ky “ 0, if we measure each
copy in the computational basis and denote by s1

b,j, s
2
b,j the normalized number of measurement

outcomes |by |0̄y |jy from measuring the states |φ1y and |φ2y respectively, then the random vector
ψ̃ P Cd with coordinates

ψ̃j :“
´

s1
0,j ´ s1

1,j ` is2
0,j ´ is2

1,j

¯ ψ̄j

|ψ̄j |2

is an unbiased estimator of ψ. Moreover, for every set V “ tvpjq : j P rksu Ă Cd of vectors we have

Pr

„

@v P V : | xψ̃ ´ ψ|vy | ă
ε

?
d
∥v∥2

ȷ

ě 1 ´ δ. (7)

In particular if k ě d, then Pr
”

∥ψ̃ ´ ψ∥2 ă ε
ı

ě 1 ´ δ.

Finally, let tvpjq : j P rksu be a fixed set of orthonormal vectors and Πk be the projector to their
span. Let A be the event that Dj P rks : | xψ̃ ´ ψ|vpjqy | ą ε?

d
, Ā be the complement of A, and Xζ be

an independent Bernoulli random variable such that PrrXζ “ 0s “ ζ :“ δ´p
1´p for p :“ PrrAs. Define

qψ P Cd as follows17

qψ “

$

&

%

ψ̃ on ĀX pXζ “ 1q

pI ´ Πkqψ̃ `
ř

jPrks

|vpjqyErxvpjq|ψ̃y |AY pXζ “ 0qs on AY pXζ “ 0q.

Then Er qψs “ ψ, Prr@j P rks : | x qψ ´ ψ|vpjqy | ď k`3
k

ε?
d

s “ 1 (which is why we call qψ an “al-

most ideal” unbiased estimator), the total variation distance between ψ̃, and qψ is at most δ, and∥∥∥CovpΠk
qψq

∥∥∥ ď

∥∥∥CovpΠkψ̃q

∥∥∥ ` 25δε2 kd ď

ˆ

1
4 lnp 8k

δ q
` 25δk

˙

ε2

d .

Proof. We prove the first part of Theorem 3.3 first. Let us define the random vectors ψ1, ψ2 P Cd
with coordinates

ψ1
j :“

X 1
0,j ´X 1

1,j

|ψ̄j |
, ψ2

j :“
X2

0,j ´X2
1,j

|ψ̄j |
,

where X 1, X2 P t0, 1u2d denote the indicator of the measurements outcomes |by |0̄y |jy for the states
|φ1y and |φ2y, respectively. Then by Lemma 3.2 and the discussion after the proof of Lemma 3.2,

ψ1, ψ2 are unbiased estimators of ψℜ
j :“ Re

ˆ

ψj
ψ̄˚
j

|ψ̄j |

˙

, and ψℑ
j :“ Im

ˆ

ψj
ψ̄˚
j

|ψ̄j |

˙

respectively, such

that ∥ψ1∥2, ∥ψ2∥2 ď
?
d{ε with certainty and

Covpψ1q ` Erψ1sErψ1T s ĺ

ˆ

1

2
`

1

2η

˙

I, Covpψ2q ` Erψ2sErψ2T s ĺ

ˆ

1

2
`

1

2η

˙

I, (8)

where for the latter psd inequalities we used that |ψ̄j |
2 ě η|ψj |

2 and hence diag
´

|ψi|
2

2|ψ̄i|
2

¯

ĺ 1
2η I.

17Here we introduce Xζ to ensure that PrrA Y pXζ “ 0qs exactly equals δ, which is helpful because we use both
upper and lower bounds on this probability in the proof.
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Let w P Rd, then the random variables ψ1
w :“ xψ1|wy , ψ2

w :“ xψ2|wy satisfy |ψ1
w| ď ∥ψ1∥2∥w∥2 ď?

d∥w∥2{ε, |ψ2
w| ď ∥ψ2∥2∥w∥2 ď

?
d∥w∥2{ε with certainty. Also, Er|ψ1

w|2s and Er|ψ2
w|2s are both

ď

´

1
2 ` 1

2η

¯

∥w∥22, because for both ϕ “ ψ1 and ϕ “ ψ2, we have

Er| xϕ|wy |2s “ xw|ErϕϕT s |wy “ xw| pCovpϕq ` ErϕsErϕT sq |wy ď ∥Covpϕq ` ErϕsErϕT s∥ ¨ ∥w∥22.

Let Ψ1,Ψ2 P Rd be the sum of n i.i.d. copies of ψ1, ψ2, respectively, obtained from the measurement
outcomes of the n copies of |φ1y and |φ2y, so that

ψ̃j “ pΨ1
j ` iΨ2

j q
ψ̄j

n|ψ̄j |
. (9)

Let us analogously define Ψ1
w :“ xΨ1|wy, and Ψ2

w :“ xΨ2|wy. Then clearly ErΨ1
ws “ n xψℜ|wy, and

ErΨ2
ws “ n xψℑ|wy. For all τ ě 1, the Bennett-Bernstein tail bound (Proposition 2.15) implies

Pr

„

|Ψ1
w ´ n xψℜ|wy | ě τ

εn∥w∥2
2
?
d

ȷ

ď 2 exp

¨

˚

˝

´
τ2ε2n2∥w∥22{p4dq

´

1 ` 1
η

¯

∥w∥22n` τ
3∥w∥

2
2n

˛

‹

‚

ď 2 exp

˜

´τ
ε2n{p4dq

4
3 ` 1

η

¸

ď 2

ˆ

δ

8k

˙τ

, (10)

and similarly Prr|Ψ2
w ´ n xψℑ|wy | ě τεn∥w∥2{

?
4ds ď 2

´

δ
8k

¯τ
.

Let ṽj :“ vj
ψ̄˚
j

|ψ̄j |
, ṽℜj :“ Repṽjq, ṽ

ℑ
j :“ Impṽjq, and observe that for any v P V

xψ̃|vy ´ xψ|vy “
1

n
xΨ1 ` iΨ2|ṽy ´ xψℜ ` iψℑ|ṽy

“

˜

xΨ1|ṽℜy

n
´ xψℜ|ṽℜy

looooooooooomooooooooooon

:“a∥ṽℜ∥2

´
xΨ2|ṽℑy

n
` xψℑ|ṽℑy

loooooooooooomoooooooooooon

:“b∥ṽℑ∥2

¸

` i

˜

xΨ1|ṽℑy

n
´ xψℜ|ṽℑy

looooooooooomooooooooooon

:“c∥ṽℜ∥2

´
xΨ2|ṽℜy

n
` xψℑ|ṽℜy

loooooooooooomoooooooooooon

:“d∥ṽℑ∥2

¸

,

so

| xψ̃|vy ´ xψ|vy | ď
?

2 max
!ˇ

ˇ

ˇ
Repxψ̃|vy ´ xψ|vyq

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
Impxψ̃|vy ´ xψ|vyq

ˇ

ˇ

ˇ

)

“
?

2 max
!

ˇ

ˇ

ˇ
a∥ṽℜ∥2 ` b∥ṽℑ∥2

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
c∥ṽℜ∥2 ` d∥ṽℑ∥2

ˇ

ˇ

ˇ

)

ď
?

2 maxt|a|, |b|, |c|, |d|up∥ṽℜ∥2 ` ∥ṽℑ∥2q

ď 2 maxt|a|, |b|, |c|, |d|u∥v∥2,

where the last step uses that |ṽj | “ |vj | for all j, and Cauchy-Schwarz. Using Eq. (10) four times
with different choices of w , and the union bound over 4 events, we have maxt|a|, |b|, |c|, |d|u ă τε

2
?
d

except with probability ď 8
´

δ
8k

¯τ
. Eq. (7) now follows by choosing τ “ 1 and taking the union

bound over all k vectors v P V . If k ě d then we can apply the statement for a set V containing
the computational basis, and then ∥ψ̃ ´ ψ∥8 ď ε?

d
implies ∥ψ̃ ´ ψ∥2 ď ε by Cauchy-Schwarz.
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Now we prove the second part of Theorem 3.3, where V is an orthonormal set (the “Finally”
part). Note that the previous paragraph already proved that for every v P Cd and for all τ ě 1,

Prr| xv|ψ̃ ´ ψy | ą τ
ε

?
d
∥v∥2s ď 8

ˆ

δ

8k

˙τ

. (11)

Defining ε̊ :“ ε{
?
d and ψ̊j :“ xvpjq|ψ̃ ´ ψy, we bound

E
”

|ψ̊j |1p̊ε,8qp|ψ̊j |q
ı

“

8
ÿ

ℓ“0

E
”

|ψ̊j |1p2ℓε̊,2ℓ`1ε̊sp|ψ̊j |q
ı

ď

8
ÿ

ℓ“0

2ℓ`1ε̊Pr
”

|ψ̊j | P p2ℓε̊, 2ℓ`1ε̊s
ı

ď

8
ÿ

ℓ“0

2ℓ`1ε̊Pr
”

|ψ̊j | ą 2ℓε̊
ı

ď

8
ÿ

ℓ“0

2ℓ`1ε̊ 8

ˆ

δ

8k

˙2ℓ ˆ

Prr|ψ̊j | ą τ ε̊s ď 8
´

δ
8k

¯τ
˙

ď

8
ÿ

ℓ“0

2ℓ`1ε̊ 8

ˆ

δ

8k

˙ℓ`1

(since δ{k ď 1, and 2ℓ ě ℓ` 1)

“ 2
δε

k
?
d

8
ÿ

ℓ“0

ˆ

δ

4k

˙ℓ

ď 2
δε

k
?
d

8
ÿ

ℓ“0

ˆ

1

4

˙ℓ

(since δ{k ď 1)

ă
3δ

k

ε
?
d
. (12)

We have already proven Eq. (7), implying that p “ PrrAs ď δ. Observe that

Erxvpjq|ψ̃y |AY pXζ “ 0qs “ xvpjq|ψy ` Erψ̊j |AY pXζ “ 0qs,

and hence
Erxvpjq|ψ̃ ´ ψy |AY pXζ “ 0qs “ Erψ̊j |AY pXζ “ 0qs.

Since PrrAY pXζ “ 0qs “ 1 ´ PrrĀX pXζ “ 1qs “ δ, using (12) we have

|Erψ̊j |AY pXζ “ 0qs| ď Er|ψ̊j | | AY pXζ “ 0qs “
Er|ψ̊j |1AYpXζ“0qs

δ
ď
ε̊δ ` 3δ

k
ε?
d

δ
“

ˆ

1 `
3

k

˙

ε
?
d
.

(13)

Since we modified ψ̃ on an event of probability δ to get qψ, the total variation distance between the
distributions of the random variables qψ and ψ̃ is at most δ. The boundedness of qψ is by construction
and the unbiasedness is inherited from that of ψ̃, as follows: abbreviating the event Ā X pXζ “ 1q

to B, we have

Er qψs “ PrrBs ¨ Er qψ | Bs ` PrrB̄s ¨ Er qψ | B̄s

“ PrrBs ¨ Erψ̃ | Bs ` PrrB̄s ¨ ErpI ´ Πkqψ̃ `
ÿ

jPrks

|vpjqyErxvpjq|ψ̃ys | B̄s

“ PrrBs ¨ Erψ̃ | Bs ` PrrB̄s ¨ ErpI ´ Πkqψ̃ `
ÿ

jPrks

|vpjqy xvpjq| ¨ ψ̃ | B̄s

“ PrrBs ¨ Erψ̃ | Bs ` PrrB̄s ¨ ErpI ´ Πkqψ̃ ` Πkψ̃ | B̄s

“ PrrBs ¨ Erψ̃ | Bs ` PrrB̄s ¨ Erψ̃ | B̄s “ Erψ̃s “ ψ.
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Finally, defining ε̄ :“ ε
b

k
d and ψ̊ :“ Πkpψ̃ ´ ψq “

ř

jPrks ψ̊
jvpjq we bound

∥∥∥∥E”

|ψ̊yxψ̊|1pε̄,8qp∥ψ̊∥2q

ı

∥∥∥∥ ď E
”

∥ψ̊∥221pε̄,8qp∥ψ̊∥2q

ı

“

8
ÿ

ℓ“0

E
”

∥ψ̊∥221p2ℓε̄,2ℓ`1ε̄sp∥ψ̊∥2q

ı

ď

8
ÿ

ℓ“0

4ℓ`1ε̄2 Pr
”

∥ψ̊∥2 P p2ℓε̄, 2ℓ`1ε̄s
ı

ď

8
ÿ

ℓ“0

4ℓ`1ε̄2 Pr
”

∥ψ̊∥2 ą 2ℓε̄
ı

ď

8
ÿ

ℓ“0

4ℓ`1ε̄28k

ˆ

δ

8k

˙2ℓ ˆ

Prr∥ψ̊∥2 ą τ ε̄s ď 8k
´

δ
8k

¯τ
˙

ď

8
ÿ

ℓ“0

4ℓ`1ε̄28k

ˆ

δ

8k

˙ℓ`1

(since δ{k ď 1, and 2ℓ ě ℓ` 1)

“ 4δε2
k

d

8
ÿ

ℓ“0

ˆ

δ

2k

˙ℓ

ď 4δε2
k

d

8
ÿ

ℓ“0

ˆ

1

2

˙ℓ

(since δ{k ď 1)

“ 8δε2
k

d
. (14)

This then implies that∥∥∥CovpΠkψ̃q ´ CovpΠk
qψq

∥∥∥ “

∥∥∥∥E”

|ψ̊yxψ̊| ´ Πk| qψ ´ ψyx qψ ´ ψ|Πk

ı

∥∥∥∥
“

∥∥∥∥∥E
„

´

|ψ̊yxψ̊| ´ Πk| qψ ´ ψyx qψ ´ ψ|Πk

¯

1AYpXζ“0q

ȷ

∥∥∥∥∥
ď

∥∥∥∥E”

|ψ̊yxψ̊|1AYpXζ“0q

ı

∥∥∥∥ `

∥∥∥∥E”

Πk| qψ ´ ψyx qψ ´ ψ|Πk ¨ 1AYpXζ“0q

ı

∥∥∥∥ ,
(15)

where the second equality is because ψ̃ “ qψ on the complement of the event AYpXζ “ 0q. Using the

definition of qψ, and the fact that ΠkpI´Πkq “ 0, we can see that Πk
qψ conditioned on AYpXζ “ 0q

is actually a fixed vector ErΠkψ̃ | AY pXζ “ 0qs, not a random variable anymore. We now have∥∥∥∥E”

Πk| qψ ´ ψyx qψ ´ ψ|Πk ¨ 1AYpXζ“0q

ı

∥∥∥∥ “ PrrAY pXζ “ 0qs ¨

∥∥∥∥E”

Πk |ψ̃ ´ ψy | AY pXζ “ 0q

ı

∥∥∥∥2
2

.

Continuing with Eq. (15), we have∥∥∥CovpΠkψ̃q ´ CovpΠk
qψq

∥∥∥ ď

∥∥∥∥E”

|ψ̊yxψ̊|1AYpXζ“0q

ı

∥∥∥∥ ` δ∥Erψ̊ | AY pXζ “ 0qs∥22

ď E
”

∥ψ̊∥221AYpXζ“0q

ı

` 16δε2
k

d
(by (13) and p1 ` 3{k ď 4q)

“ E
„

∥ψ̊∥221AYpXζ“0q

´

1r0,ε̄sp∥ψ̊∥2q ` 1pε̄,8qp∥ψ̊∥2q

¯

ȷ

` 16δε2
k

d

ď δε̄2 ` 8δε2
k

d
` 16δε2

k

d
“ 25δε2

k

d
. (by (14) and PrrAY pXζ “ 0qs “ δ)
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We obtain∥∥∥CovpΠk
qψq

∥∥∥ ď

∥∥∥CovpΠkψ̃q ´ CovpΠk
qψq

∥∥∥ `

∥∥∥CovpΠkψ̃q

∥∥∥ ď 25δε2
k

d
`

ε2

4d ln
´

8k
δ

¯

because
∥∥∥CovpΠkψ̃q

∥∥∥ ď

∥∥∥Covpψ̃q

∥∥∥ “ 1
n

∥∥Covpψ1q ` Covpψ2q
∥∥, and the matrix inside the latter norm

can be upper bounded by 2p12 ` 1
2η qI using Eq. (8).

If we have n conditional samples |φy :“ p|0y

´

|0̄y |ψy ` |0̄Ky

¯

` |1y |0̄y |0yq{
?

2, then we can first

use Corollary 3.1 to produce (with success probability ě 1 ´ δ
2) a 1?

d
-ℓ8 approximation ψ1 of the

vector |ψ| of the magnitudes of entries, which has ∥ψ1∥2 ď 1. Setting ψ̄i :“
|ψ1

i|`
1?
d

2 , and building a
KP-tree for ψ̄ to be able to efficiently prepare a state that is coordinate-wise 1

4
?
d
-close to |ψ̄y {∥ψ̄∥2,

we can transform the conditional copies |φy to the form required by Theorem 3.3 using O
´

n log2pdq

¯

classical operations, ordinary quantum gates and QRAM read-out calls. Since η “ Ωp1q, we get a

time-efficient unbiased tomography algorithm using O
ˆ

d
ε2

ln
´

2d
δ

¯

˙

conditional samples.

3.3 Improved pure-state tomography using state-preparation oracles

If we have a state-preparation oracle available, rather than copies of the state, then the precision-
dependence can be quadratically improved using iterative refinement [Gil23]:

Corollary 3.4. Let ψ P Cd such that ∥ψ∥ ď 1, and ε, δ P p0, 12 s. Suppose we have access to

a controlled unitary U (and its inverse) that prepares the state U |0ba1

y “ |0bay |ψy ` |0baK
y,

where a1, a “ O
`

poly logpd{pδεqq
˘

. There is a quantum algorithm that outputs a random vector

ψ̃ P Cd such that, for every set V “ tvp1q, vp2q, . . . , vpkqu of unit vectors, with probability at least
1 ´ δ, | xψ ´ ψ̃|vy | ď ε{

?
d for all v P V , using Opdεpoly logpkd{pεδqq applications of controlled U ,

U :, two-qubit quantum gates, read-outs of a QRAM of size Opd ¨ poly logpkd{pεδqqq, and classical
computation.

If k “ d and V is an orthonormal set, then ψ̃ is δ-close in total variation distance to an “almost
ideal” discrete random variable qψ P Cd such that Er qψs “ ψ, Prr@v P V : | x qψ´ψ|vy | ď ε?

d
s “ 1, and

∥Covp qψq∥ ď ε2

d .

Proof. The idea is to use the tomography algorithm of [Gil23] to get an estimator ψ1 with ℓ2-error ε,

with success probability ě 1 ´ δ
4 , using O

´

d
ε logpd{δq

¯

queries in time Opdε logp1{δq ¨ poly logpd{εqq.

In case of failure we set qψ “ ψ.
We first build the KP-tree for ψ1 in QRAM. We can now prepare a state |0y |ψ1y ` |1y |.y, and

thus also the state |00y |pψ ´ ψ1q{2y`|1y |..y, and using linearized amplitude amplification [GSLW19,
Theorem 30], we can also prepare a subnormalized state ϕ such that ∥ϕ ´ pψ ´ ψ1q{p2εq∥ ď δ

16
?
d

with O
`

logpd{δq{ε
˘

(controlled) uses of U and U :.

As discussed at the start of this subsection, by Corollary 3.1 using d lnp6dδ q copies of |ϕy we can

output a vector µµµ P r0, 1sd such that with probability at least 1 ´ δ
4 , |µµµj ´ |ϕj || ď 1?

d
for every

j P rds. (In case of failure we once again set qψ “ ψ.) Upon success, the vector µ1µ1µ1 :“ 1
2µµµ ` 1

2
?
d
1d
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where 1d is the d-dimensional all-1 vector, satisfies |µµµ1
j |
2 ě 1

4 maxt|ϕj |
2, 1du for every j P rds. Also,

by using Õpdq time and QRAM bits, we can construct a KP-tree KPµ1µ1µ1 for µ1µ1µ1. Thus, by using one

query to KPµ1µ1µ1 and Õp1q time, we can prepare a state |0̄y |µ1µ1µ1y ` |0̄1Ky, where |µ1µ1µ1y “
ř

jPrds

µ1µ1µ1
j |jy.

By Theorem 3.3 we can output an unbiased estimator ϕ̃ of ϕ such that Prr@v P V : | xϕ̃´ ϕ|vy | ď
1

32
?
d

s ě 1 ´ δ
4 . Defining ψ̃ :“ ψ1 ` 2εϕ̃ we then have Prr@v P V : | xψ̃ ´ ψ|vy | ď ε

8
?
d

s ě 1 ´ δ
4 since

∥ϕ ´ pψ ´ ψ1q{p2εq∥ ď δ
16

?
d
. If V is an orthonormal basis, then furthermore ϕ̃ is δ{4-close to an

“ideal” (though not error-free) unbiased estimator ϕ1 of ϕ such that Prr@v P V : | xϕ1 ´ ϕ|vy | ď
1

8
?
d

s “ 1. Since ∥ϕ ´ pψ ´ ψ1q{p2εq∥ ď δ
16

?
d

there is another discrete-valued estimator qϕ within

total variation distance δ
4 to ϕ1 that satisfies Erqϕs “ pψ ´ ψ1q{p2εq and Prr∥qϕ ´ ϕ1∥ ą 1

4
?
d

s “ 0 in

turn implying Prr@v P V : | xqϕ´ pψ ´ ψ1q{p2εq|vy | ď 1
2

?
d

s “ 1. We then set qψ :“ ψ1 ` 2εqϕ (in case

no failure happened). We have ∥Covpqϕq∥ ď 2∥Covpqϕ ´ ϕ1q∥ ` 2∥Covpϕ1q∥, because for all vectors
a, b, the matrix 2aa: `2bb: ´pa`bqpa`bq: “ pa´bqpa´bq: is psd. Therefore the claimed properties
of ψ̃, qψ follow from those of ϕ̃, ϕ1 as guaranteed by Theorem 3.3, assuming without loss of generality
that δ ď 1

k .

4 Quantum noisy power method

In this section we introduce quantum algorithms for approximating the top eigenvector or top-q
eigenvectors. For simplicity, we assume the input matrix A is real and Hermitian, and has operator
norm ∥A∥ ď 1 (which implies all entries are in r´1, 1s). Since A is Hermitian, its eigenvalues
λ1, . . . , λd are real, and we assume them to be ordered in descending order according to their
absolute value.18 Since the entries of A are real, there is always an associated orthonormal basis
of real eigenvectors v1, . . . , vd. For simplicity and without loss of generality, when we mention the
qth eigenvector of A, we mean vq in this basis. The goal of the algorithms in this section is to find
a unit vector w which has large overlap with v1 in the sense that |xw, v1y| ě 1 ´ ε2{2. Note that
this is equivalent to finding a unit vector w satisfying that either }w ´ v1}2 or }w ` v1}2 is small
(at most ε), and hence we say w approximates v1 with small ℓ2-error.

4.1 Classical noisy power method for approximating the top eigenvector

For the sake of completeness and pedagogy, we start with the noisy power method of Hardt and
Price [HP14], given in Algorithm 1 below. Like the usual power method, it works by starting with
a random vector and applying A some K times to it; the resulting vector will converge to the top
eigenvector after relatively small K, assuming some gap between the first and second eigenvalues
of A. We include a short proof explaining how the noisy power method can approximate the top
eigenvector of A even if there is a small noise vector Gk in the kth matrix-vector computation that
does not have too much overlap with v1.

18Sometimes the eigenvalues are ordered 1 ě λ1 ě ¨ ¨ ¨ ě λd ě ´1 according to their value (instead of their absolute
value). To find the v1 associated with λ1 in this situation, one can just let A1

“ A{3 ` 2I{3. Then the eigenvectors of
A and A1 are the same, and the eigenvalues of A1 now are all between 1{3 and 1 (and hence one can use Algorithm 1
to find v1). This trick can also be used to find vd by simply considering A2

“ ´A{3 ` 2I{3. Note that the gap
between the top and the second eigenvalues of A1 might be different from the gap between the top and the second
eigenvalues of A2.
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input : a Hermitian matrix A P r´1, 1sdˆd with operator norm ∥A∥ ď 1;
Let w0 be a unit vector randomly chosen from Sd´1;
for k Ð 0 to K ´ 1 do

yk “ Awk `Gk;
wk`1 “ yk{}yk}2;

end
output: wK ;

Algorithm 1: Noisy power method (NPM) for approximating the top eigenvector of A

Theorem 4.1. Let A be a dˆ d Hermitian matrix with top eigenvector v1, first and second eigen-
values λ1 and λ2, and γ “ |λ1| ´ |λ2|. Let ε P p0, 0.5q and K “

10|λ1|

γ logp20d{εq (for larger K the

theorem still holds). Suppose |xGk, v1y| ď γ{p50
?
dq and }Gk}2 ď εγ{5 for all k P rKs ´ 1. Then

the unit vector wK in Algorithm 1 satisfies |xwK , v1y| ě 1 ´ ε2{2 with probability ě 0.9.

Proof. Let w0 “
ř

iPrds α
p0q

i vi. Because w0 is chosen uniformly at random over the unit sphere, by

Corollary 2.32 (without loss of generality assuming d ě 4), with probability ě 0.9, we have |α
p0q

1 | ě

1{p10
?
dq and hence we assume |α

p0q

1 | ě 1{p10
?
dq below for simplicity. Suppose wk “

ř

iPrds α
pkq

i vi.

We define the tangent angle of wk as tan θk “
sin θk
cos θk

“

b

řd
i“2pα

pkq

i q2

|α
pkq

1 |
, and hence tan θ0 ď 10

?
d. It

suffices to show that tan θK ď ε{2, because that implies |xwK , v1y| “ cos θK ě 1 ´ ε2{4.

Since wk “
ř

iPrds α
pkq

i vi, we have Awk “
ř

iPrds α
pkq

i λivi. Also because Gk satisfies |xGk, v1y| ď

γ{p50
?
dq and }Gk}2 ď εγ{50, we can give an upper bound for tan θk`1 as follows:

tan θk`1 ď

b

řd
i“2pλ2iα

pkq

i q2 ` }Gk}2

|λ1| ¨ |α
pkq

1 | ´ |xGk, v1y|
ď

|λ2|

b

řd
i“2pα

pkq

i q2 ` εγ{5

|λ1| ¨ |α
pkq

1 | ´ γ{p50
?
dq

ď
1

cos θk
¨

|λ1| sin θk ` εγ{5

|λ1| ´ γ{5

“
1

cos θk
¨

|λ1| sin θk ` εγ{5

|λ2| ` 4γ{5
“

sin θk
cos θk

¨
|λ1|

|λ2| ` 4γ{5
`

1

cos θk
¨

εγ{5

|λ2| ` 4γ{5

ď tan θk ¨
|λ1|

|λ2| ` 4γ{5
` p1 ` tan θkq ¨

εγ{5

|λ2| ` 4γ{5

“
`

1 ´
γ{5

|λ2| ` γ{5

˘ |λ2| ` εγ{5

|λ2| ` 3γ{5
tan θk `

γ{5

|λ2| ` 4γ{5
ε ď maxtε,

|λ2| ` εγ{5

|λ2| ` 3γ{5
tan θku.

Note that |λ2|`εγ{5
|λ2|`3γ{5 ď maxtε, |λ2|

|λ2|`2γ{5u because the left-hand side is a weighted mean of the compo-

nents on the right ( |λ2|`εγ{5
|λ2|`3γ{5 “ ε ¨

γ{5
|λ2|`3γ{5 `

|λ2|

|λ2|`2γ{5 ¨
|λ2|`2γ{5
|λ2|`3γ{5). Also, |λ2|

|λ2|`2γ{5 ď p
|λ2|

|λ2|`5γ{5q2{5 “

p
|λ2|

|λ1|
q2{5, so we have tan θk`1 ď maxtε, tan θk ¨ maxtε, p|λ2λ1

|q2{5uu. By letting K “
10|λ1|

γ logp20d{εq,

we obtain tan θK ď ε{2, which concludes the proof.

4.2 Quantum Gaussian phase estimator

Before we explain our quantum noisy power method, we introduce another tool which we call the
“quantum Gaussian phase estimator”. Its aim is to do phase estimation with (approximately)
Gaussian error on the estimate. The high-level idea of this estimator is to replace the initial
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uniform superposition in the algorithm of phase estimation [Kit95, CEMM98] by a discrete Gaussian
quantum state, with standard deviation s; then the distribution of the error ã ´ a between the
amplitude a and the estimator ã produced by the quantum Gaussian amplitude estimator, is also a
discrete Gaussian distribution, now with standard deviation 1{s.19 Since the latter distribution is
sub-Gaussian with parameter 1{s, with probability at least 1´δ the output is at most

a

logp1{δq{s
away from a. Recall that ps is the pdf for the Gaussian with standard deviation s, defined in
Section 2.9.

Theorem 4.2. Let δ P p0, 0.1s, s ě 20
a

2 logp1{δq, a P r0, 1s, N “ 200 ¨ rs
a

logp100{δqs, U be
a unitary, |ψy be an eigenvector of U such that U |ψy “ exppπia{4q |ψy. There exists a quantum
algorithm that for every such U and a, given one copy of |ψy, outputs an estimator ã satisfying that
a´ ã distributes δ-close to D 8

N
¨Z´ 8

N
ν, 8?

2s
for some ν P r0, 1q, using Ops ¨ polylogps{δqq applications

of controlled-U , controlled-U´1 and Õps ¨ polylogps{δqq time.

Proof. We first explain the algorithm of our quantum Gaussian phase estimator. Let |p̃sy “
1?
G̃

ř

zPt´N{2,...,N{2´1u

pspzq |zy, where G̃ is a normalizing constant. Let Uz be a unitary that maps

|zy |ψy Ñ |zyU z |ψy for z P t´N{2, . . . , N{2 ´ 1u, and Uπ be a unitary that maps |zy Ñ p´1qz |zy

(this Uπ is basically a Z-gate on the least-significant bit of z).
The algorithm is as follows. We first prepare the state |p̃sy |w1y. We then apply Uz to this

state, apply Uπ, apply QFT´1
N on the first register, and then measure the first register in the

computational basis, divide the outcome value by N{8, subtract 4 from it, and output this value.
We first explain the time complexity of the above algorithm. To prepare |p̃sy, it suffices

to compute all values of pspzq for z P t´N{2, . . . , N{2 ´ 1u,20 and computing all those values
(psp´N{2q, . . . , pspN{2´1q) and constructing a KP-tree with those values stored in its leaves takes
OpN ¨ poly logNq time. To construct the unitary Uz, it suffices to use OpNpoly logNq applications
of controlled-U , controlled-U´1 and time. Also, QFTN can be implemented using Oplog2Nq ele-
mentary gates. As a result, the total cost here is OpN logN ¨ logp1{δq` log2Nq “ Ops ¨polylogps{δqq

time and OpN ¨ poly logNq “ Ops ¨ polylogps{δqq applications of controlled-U , controlled-U´1.
Now we show the correctness of the above algorithm. Applying UπUz to |p̃sy |w1y gives the state

1?
G1

ř

zPt´N{2,...,N{2´1u

pspzqp´1qz exppπiaz{4q |zy |w1y. If we discard the second register, which is in

tensor product with the rest of the state, then the remaining state is also 9δ-close to

|Ψy “
1

?
G

ÿ

zPZ
pspzq expp2πipa{8 ` 1{2qzq |pz `N{2 mod Nq ´N{2y

because s ě 8
a

2 logp1{δq, N ą 16s
a

2 lnp1{δq, and by Theorem 2.29, where G is a normalizing
constant. Therefore, the distribution of the outcome of the quantum Gaussian phase estimator is

19There have been other variations of quantum phase estimation with non-uniform initial state to improve the
statistics of the outcome, for instance in the context of Hamiltonian simulation [Chi09], but to the best of our
knowledge ours is the first application with a discrete Gaussian initial state.

20Once we have those values, we can do the controlled-rotation tricks similar to how the KP-tree routine produces
the quantum state. Since we only need to prepare |p̃sy once, it is fine for us to prepare the state using N logN time.
This procedure does not require the use of QRAM. See the discussion above Theorem 2.13 in [CdW23].
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9δ-close to the distribution obtained by measuring the following state (using a1 “ a{8 ` 1{2)

QFT´1
N |Ψy “

1
?
NG

ÿ

yPrNs

ÿ

zPZ
pspzq expp2πia1zq expp´2πiyppz `N{2 mod Nq ´N{2q{Nq |yy

“
1

?
NG

ÿ

yPrNs

ÿ

zPZ
pspzq expp2πizpNa1 ´ yq{Nq |yy (e´2πiyNz{N “ 1)

“
1

?
NG

ÿ

yPrNs

!

ÿ

zP 1
N

¨Z

ps{N pzq expp2πizpNa1 ´ yqq

)

|yy (z Ð z{N)

“
1

?
NG

ÿ

yPrNs

!

N ¨
ÿ

xPN ¨Z
ps{N exp p2πizpNa1 ´ yqq

Ź

pxq

)

|yy (by Theorem 2.30q

“
1

?
NG

ÿ

yPrNs

! s

N
¨N ¨

ÿ

xPN ¨Z
pN{spx´Na1 ` yq

)

|yy (zps{N “
s

N
¨ pN{sq

“
s

?
NG

ÿ

yPrNs

pN{spN ¨ Z ´Na1 ` yq |yy

“
s

?
NG

ÿ

yPZ
pN{sp´Na1 ` yq |y mod Ny .

By Theorem 2.29 again, because a1 P r1{2, 5{8s, N{s ě 8
a

2 logp1{δq, and N ě 16pN{sq
a

2 lnp1{δq,
we know QFT´1

N |Ψy is 9δ-close to 1?
G2

ř

yPrNs pN{sp´Na1 ` yq |yy where G2 is a normalizing con-

stant. Therefore, the probability distribution of y ´ Na1 (letting y be the measurement outcome)

is 9δ-close to Dr´N{2,N{2´1s

Z´Na1, N?
2s

. Moreover, since
a

logp12{δq{π ď N?
2s

and 10 N?
2s

a

2 lnp1{δq ď N{2,

by Corollary 2.28 we know y ´Na1 is also 9δ ` 4δ exppδq-close to DZ´Na1, N?
2s

“ DZ´ν, N?
2s

for some

ν P r0, 1q, implying that the distribution of 8y{N ´ 4 ´ a is 9δ ` 4δ exppδq-close to D 8
N

¨Z´ 8
N
ν, 8?

2s
.

As a result, the output of the algorithm in the second paragraph is 9δ ` 9δ ` 4δ exppδq-close to
D 8

N
¨Z´ 8

N
ν, 8?

2s
. Rescaling δ by a multiplicative constant, we finish the proof.

Using Theorem 2.27, since 4
?
2
s ě 8

a

logp12{δq{π{N by the choice of N , we can see D 8
N

¨Z´8ν, 4
?
2

s

is δ-sub-Gaussian with parameter 4
?
2
s . By letting s “ 4

?
2
ε , we have the following corollary.

Corollary 4.3 (Sub-Gaussian phase estimator, subGPE(U, ε, τ)). Let ε, τ P p0, 0.1s, a P r0, 1s, U
be a unitary, |ψy be an eigenvector of U such that U |ψy “ exppπia{4q |ψy. There exists a quantum
algorithm that, given one copy of |ψy, outputs an estimator ã satisfying that a´ã is τ -close to τ -sub-
Gaussian with parameter ε using Õppoly logp1{τq{εq applications of controlled-U , controlled-U´1

and elementary gates.

4.3 Quantum noisy power method using Gaussian phase estimator

In this subsection we combine the noisy power method and the quantum Gaussian phase estimator
(introduced in the previous subsection) to get a quantum version of the noisy power method. It
approximates the top eigenvector of a given matrix A with additive ℓ2-error ε in Õpd1.75{pγ2εqq

time, which is a factor d0.25 faster in its d-dependence than the best-possible classical algorithm
(see Section 5.2 for the Ωpd2q classical lower bound).
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We first prove the following theorem, which helps us estimate an individual entry of a matrix-
vector product Aw (the vector u would be one of the rows of A).

Theorem 4.4 (Inner product estimator, IPEpτ, δ, εq). Let τ, δ, ε P p0, 0.1s, and u,w P Bd
2 s.t.

}w}2 “ 1. Suppose we can access a KP-tree KPw of w and have quantum query access to entries
of u by a unitary Ou. There is a quantum algorithm that with probability at least 1 ´ δ, outputs
an estimator µ̃ satisfying that µ̃ ´ xu,wy is τ -close to τ -subGpε2q, using Õpd0.75poly logpd{δq `

d0.25poly logp1{τq{εq time.

Proof. In this proof, we index entries of vectors starting from 0. Let I1 “ r´d´0.25, d´0.25s and
I2 “ r´1, 1szI1. Let u “ u1 ` u2, where pu1qj “ uj1I1pujq and pu2qj “ uj1I2pujq for every
j P rds ´ 1. Informally, u1 is the vector with smallish entries, and u2 is the vector with largish
entries. We separately estimate xu1, wy and xu2, wy.

Finding u2 and computing xu2, wy. The number of nonzero entries of u2 is at most
?
d because

∥u∥2 ď 1. We first find (with success probability at least 1 ´ δ{2) all the nonzero entries of u2 in

Op
a

d ¨
?
d ¨ poly logpd{δqq “ Opd0.75 ¨ poly logpd{δqq time using Theorem 2.2. Since we can query

the entries of w through its KP-tree, we can now compute xu2, wy in time Õp
?
dq.

Estimating xu1, wy. Our goal below is first to show how to prepare (in time Õp1q) a superposition
corresponding to the vector d´0.25u1, using the fact that all entries of u1 are small; and then to use
this to estimate xu1, wy with Gaussian error in time Õpd0.25{εq.

We can implement Ou1 using 2 queries to Ou and Õp1q elementary gates: query Ou, and then
apply O´1

u conditional on the magnitude of the value being ą d´0.25 to set the value back to 0 for
entries that are in the support of u2 rather than u1. Let CR be a controlled rotation such that for
every a P r´d´0.25, d´0.25s

CR |ay |0y “ |ay pa ¨ d0.25 |0y `
a

1 ´ a2 ¨ d0.5 |1yq.

This can be implemented up to negligibly small error by Õp1q elementary gates. Using one appli-
cation each of Ou1 , O´1

u1 , and CR, and Õp1q elementary gates, we can map

|0b log dy |0y |0y
Hb log dbI
ÝÝÝÝÝÝÑ

ÿ

jPrds´1

d´0.5 |jy |0y |0y
Ou1bI
ÝÝÝÝÑ

ÿ

jPrds´1

d´0.5 |jy |pu1qjy |0y

IdbCR
ÝÝÝÝÑ

ÿ

jPrds´1

pd´0.25pu1qj |jy |pu1qjy |0y ` p

b

d´1 ´ pu1q2j ¨ d´0.5 |jy |pu1qjy |1yq

O´1
u1

bI
ÝÝÝÝÑ

ÿ

jPrds´1

pd´0.25pu1qj |jy |0y |0y ` p

b

d´1 ´ pu1q2j ¨ d´0.5 |jy |0y |1yq.

Swapping the second register to the front of the state, we showed how to implement the state-
preparation unitary Ud´0.25u1 that maps

Ud´0.25u1 : |0y |0b log dy Ñ |0y
ÿ

jPrds´1

pd´0.25pu1qjq |jy ` |1y |Φy ,

for some arbitrary unnormalized state |Φy.
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Now we show how to estimate xu1, wy. Since we have a KP-tree of w, we can implement the
state-preparation unitary Uw that maps |0b log dy Ñ

ř

jPrds´1wj |jy using Õp1q time by Theorem 2.5.
Let W “ I b Uw b Z and V “ Ud´0.25u1 b I. Using Theorem 2.11 (with x ranging over 2 cases),
we can implement a p1, log d` 2, 0q block-encoding of diag(td´0.25xu1, wy,´d´0.25xu1, wyu) in Õp1q

time. In order to be able to use our Gaussian phase estimator, we want to convert xu1, wy into an
eigenphase. To that end, by Theorem 2.7, we implement a unitary Uexp which is a p1, log d` 2, 0q-
block-encoding of W “ exppiπpxu1, wy{4qZq using Õpd0.25q time. Since |0y is an eigenvector of W
with eigenvalue exppiπxu1, wy{4q, our Gaussian phase estimator (Corollary 4.3) can output (with
success probability ě 1 ´ δ{2) an estimator η̃ such that η̃ ´ xu1, wy is τ -close to τ -subG(ε2) using
Õppoly logp1{τq{εq applications of controlled-Uexp, controlled-U´1

exp, and time.
Because xu,wy “ xu1, wy ` xu2, wy, with probability at least 1 ´ δ we obtain an estimator

µ̃ “ η̃ ` xu2, wy such that µ̃´ xu,wy “ η̃ ´ xu1, wy is τ -close to τ -subG(ε2).

Note that the two terms in the time complexity of the above theorem are roughly equal if ε
is a small constant times 1{

?
d. Such a small error-per-coordinate translates into a small overall

ℓ2-error for a d-dimensional vector. Accordingly, such a setting of ε is what we use in our quantum
noisy power method for estimating the top eigenvector.

input : a Hermitian matrix A P r´1, 1sdˆd with operator norm at most 1;

Let γ “ |λ1pAq| ´ |λ2pAq|; ε P p0, 1q; K “
10|λ1|

γ logp20d{εq;

Let δ “ 1{p1000Kdq; τ “ δ{p1000Kd2q; ζ “
εγ

100d0.5
?

logp1000Kd{δq
;

Let w0 be a unit vector randomly chosen from Sd´1;
for k Ð 0 to K ´ 1 do

Prepare a KP-tree for wk;
For every j P rds, compute an estimator pykqj of xAj , wky using IPEpτ, δ, ζq

of Theorem 4.4 (Aj is the jth row of A);
wk`1 “ yk{}yk}2;

end
output: wK ;

Algorithm 2: Quantum noisy power method using Gaussian phase estimator

Theorem 4.5 (Quantum noisy power method using Gaussian phase estimator, Algorithm 2).
Let A P r´1, 1sdˆd be a symmetric matrix with operator norm at most 1, first and second eigen-
values λ1pAq and λ2pAq, γ “ |λ1pAq| ´ |λ2pAq|, v1 “ v1pAq be the top eigenvector of A, and
ε P p0, 1s. Suppose we have quantum query access to entries of A. There exists a quantum algo-
rithm (namely Algorithm 2) that with probability at least 0.89, outputs a d-dimensional vector w
such that |xw, v1y| ě 1 ´ ε2{2, using Õpd1.75{pγ2εqq time and Õpdq QRAM bits.

Proof. Each iteration of Algorithm 2 uses Õpdq time and QRAM bits to build the KP-tree for wk,
and for every j P rds, we use Õpd0.75poly logpd{δq ` d0.25poly logp1{τq{ζq time and Õp

?
dq QRAM

bits for estimating xAj , wℓy by IPE(τ, δ, ζ) in Theorem 4.4. Hence the total number of elementary
gates we used and queries to entries of A is Õpd ¨ pd0.75 ` d0.25{ζq ¨Kq “ Õpd1.75{pγ2εqq.

Now we are ready to show the correctness of Algorithm 2. By Theorem 4.1 and the union bound,
it suffices to show that for each k P rKs´1, both }yk´Awk}2 ď γε{5 and |xyk´Awk, v1y| ď γ{p50

?
dq

hold with probability ě 1´1{p100Kq. Fix k. By Theorem 4.4, we know that for every j P rds, with
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probability at least 1 ´ δ, pyk ´Awkqj is τ -close to τ -subG(ζ2) for every j P rds. Let e “ yk ´Awk.
There are three different kinds of bad events, whose probabilities we now analyze. Firstly, we can
see that for every j P rds, with probability at least 1 ´ δ,

Pr

„

|ej | ą
γε

5
?
d

ȷ

ď 2 exppτq ¨ exp

¨

˝´
p
γε

5
?
d

q2

2ζ2

˛

‚` τ “ 2 exppτ ´ 200 logp1000Kd{δqq ` τ ď
δ

100Kd
.

Therefore, with probability at least 1 ´ dδ ´ δ{p100Kq, |ej | ď
γε

5
?
d

for every j P rds, implying

that }e}2 ď
γε
5 . Secondly, by the properties of sub-Gaussians from Section 2.9, we know that with

probability at least 1 ´ dδ, xe, v1y is dτ -close to dτ -subG(
ř

jPrds

pv1q2jζ
2). Thirdly, since v1 is a unit

vector, we have that (with probability at least 1 ´ dδ) xe, v1y is dτ -close to dτ -subG(ζ2) and hence

Pr

„

|xe, v1y| ą
γ

50
?
d

ȷ

ď 2 exppdτq ¨ exp

¨

˝´
p

γ

50
?
d

q2

2ζ2

˛

‚` dτ

“ 2 exppdτq ¨ exp

ˆ

´2
logp1000Kd{δq

ε2

˙

` dτ ď
δ

100Kd
.

As a result, by the union bound over the three kinds of error probabilities, for each k P rKs Y t0u,
with probability 1 ´ 2dδ ´ δ{p50Kq ě 1 ´ 1{p100Kq, we have both }yk ´ Awk}2 ď γε{5 and
|xyk ´Awk, v1y| ď γ{p50

?
dq. This proves correctness of Algorithm 2.

4.4 Almost optimal process-tomography of “low-rank” reflections

In this subsection we describe an essentially optimal algorithm for the “tomography” of projectors
Π of rank at most q (or of the corresponding unitary reflection 2Π´I).21 We will use this in the next
subsection to approximate the eigensubspace spanned by the top-q eigenvectors. For generality, we
will from here on allow our matrices to have complex entries, not just real entries like in the earlier
subsections.

Our algorithm is inspired by the noisy power method and has query complexity Õ
`

dq{ε
˘

and

time complexity Õ
`

dq{ε` dq2
˘

(using QRAM). When q ! d this gives a better complexity than the
optimal unitary process-tomography algorithm of Haah, Kothari, O’Donnell, and Tang [HKOT23].
Also in the special case when q “ 1 this gives a qualitative improvement over prior pure-state
tomography algorithms [KP20, vACGN23] which required a state-preparation unitary, while for us
it suffices to have a reflection about the state, which is a strictly weaker input model.22 Surprisingly,
it turns out that this weaker input essentially does not affect the query and time complexity.

Observe that if we have two projectors Π,Π1 of rank r, then

∥Π ´ Π1∥1{p2rq ď ∥Π ´ Π1∥ ď ∥Π ´ Π1∥1{2. (16)

21Having access to a controlled reflection 2Π ´ I is equivalent up to constant factors to having access to controlled
U˘1

Π (i.e., controlled-UΠ and its inverse) for a block-encoding UΠ of the projector Π, as follows from the QSVT
framework [GSLW19].

22Indeed, we can implement a reflection about a state |ψy by a state-preparation unitary and its inverse as in
amplitude amplification. However, if we only have access to a reflection about an unknown classical basis state |iy for
i P rds, then we need to use this reflection Ωp

?
dq times to find i (because of the optimality of Grover search) showing

that the reflection input is substantially weaker than the state-preparation-unitary input.
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This implies that the ε-precise estimation of a rank-1 projector Π (i.e., the density matrix cor-
responding to a pure state) is equivalent to ε-precise approximation of the quantum state Π.
Since the complexity of pure-state tomography using state-preparation unitaries is known to be
rΘpd{εq [vACGN23], it follows that our algorithm is optimal up to log factors in the q “ 1 case.

Similarly, the query complexity of our algorithm is optimal for ε “ 1
6 up to log factors, as can be

seen by an information-theoretic argument using ε-nets, since by Lemma 4.7 there is an ensemble of
exppΩpdqqq rank-q1 projectors for q1 “ minpq, td2 uq such that each pair of distinct projectors is more
than 1

3 apart in operator norm. We conjecture that the query complexity of the task is actually
rΩpdq{εq, meaning that our algorithm has essentially optimal query complexity for all ε P p0, 16 s.

Now we briefly explain our algorithm for finding an orthonormal basis of the image of Π,
assuming for ease of exposition that its rank is exactly q. We want to find a d ˆ q isometry W
such that }WW : ´ Π} is small. Our algorithm (Algorithm 3 below) can be seen as a variant of
the noisy power method: We start with generating m Gaussian vectors g1, . . . , gm (m “ rΘpqq will
be slightly bigger than q), with i.i.d. (complex) normal entries each having standard deviation
„ 1{

?
d. Subsequently, we repeat the following process K « log

a

d{m times: we estimate Πgi for
every i P rms using our quantum state tomography algorithm (Theorem 3.3 and Corollary 3.4),
and multiply the outcome by 2, resulting in m new vectors (these factors of 2 allows our analysis
to treat all the errors together in one geometric series later). Finally, let V be the d ˆ m matrix
whose columns are the versions of those m vectors after the last iteration. The algorithm classically
computes the singular value decomposition (SVD) of this V , and outputs those left-singular vectors
w1, w2, . . . , wq that have singular value greater than the threshold of 1

14 .
Note that the span of g1, . . . , gm includes the q-dimensional image of Π almost surely. Hence

if no error occurs in the tomography step, then V “ 2KΠrg1, . . . , gms, and the image of V is the
image of Π (almost surely). Thus, if

řq
i“1 ςiwiu

:

i is the SVD of V , then
ř

iPrqs wiw
:

i “ Π. That is,
we get the desired output W by rounding the singular values of V appropriately: the first q singular
values are rounded to 1, and the others are rounded to 0. To show the stability of this approach
it remains to show that the singular values ς1, . . . , ςq of the final V in the non-error-free case are
still large (« 1), the other d´ q singular values are still essentially 0, and the error incurred by the
quantum state tomography is small. Our analysis relies on the concentration of the singular values
of sufficiently random matrices, see Section 2.7.

To bound the effect of errors induced by tomography we combine the operator norm bound on
random matrices of Theorem 2.21 with our unbiased tomography algorithm (Theorem 3.3). The
key observation is that Corollary 3.4 gives an estimator ψ̃ that is δ-close in total variation distance
to an “ideal” (though not error-free) estimator qψ that satisfies Er qψs “ ψ, whose covariance matrix

has operator norm at most S2 ď ε2

d , and ∥Π qψ ´ Πψ∥2 ď ε
b

q
d with certainty. For the sake of

analysis we can assume that we work with qψ, because we only notice the difference between qψ
and ψ̃ with probability at most δ, which can be made negligibly small at a logarithmic cost in
Corollary 3.4. Finally, we use perturbation bounds on singular values and vectors from Section 2.5.

We say that UΠ is an ε-approximate block-encoding of Π if ∥UΠ ´U∥ ď ε for some U satisfying
Π “ px0a| b IqUp|0ay b Iq.23

23The condition ∥px0a
| b IqUΠp|0a

y b Iq ´ Π∥ ď ε1 appears similar, however is in some sense quadratically weaker.

Consider, e.g., Π “ 1, a “ 1, and UΠ “

˜

cospxq ´ sinpxq

sinpxq cospxq

¸

, then 1 ´ cospxq “ x2{2 ` Opx4q, but for any unitary

U “ |0yx0| ` z|1yx1| we have ∥UΠ ´ U∥ ě | sinpxq| “ |x| ` Op|x|
3
q. Nevertheless, because Π is a projector, we
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Input : Dimension d, maximum failure probability δ1 P p0, 12 s, target precision ε P p0, 12 s,

Õ
´

εδ1

dq

¯

-approximate block-encoding UΠ of a projector Π of rank ď q

Output: ε-approximate orthonormal basis W of the image of Π, i.e.,
∥∥∥WW : ´ Π

∥∥∥ ď ε

Init: m :“min
´Q

max
´

16C2q, 8c ln
´

10
δ1

¯¯U

, d
¯

, K :“
Q

log2

´
b

d
m ` 1

¯U

, ε1 :“ ε

65`98

b

ln
`

10d
δ1

˘

{c1

// the constants c, C come from Corollary 2.19 and in the real case
11

c, C “ 1
// the constant c1 comes from Theorem 2.21

1.) if m “ d then set gj “ |jy {4, else generate m random vectors gj with i.i.d. complex

(or real if Π P Rdˆd) standard normal entries multiplied by η :“ 4¨2´K

7
?
m

// note η ă 4
7

?
d

2.) for j “ 1 to m do

Set g
p0q

j “ gj ; if ∥gj∥ ą 2 then ABORT

for k “ 0 to K ´ 1 do

Classically compute ∥gpkq

j ∥ and store g
pkq

j {∥gpkq

j ∥ in a KP-tree

(we can now unitarily prepare |ψy “ Πg
pkq

j {∥gpkq

j ∥ using this KP-tree and UΠ)

Obtain y
pk`1q

j via ε1{∥gpkq

j ∥-precise tomography (Corollary 3.4) on |ψy setting

δ Ð δ1{p5mKq // query complexity is Õ
`

d{ε
˘

Set g
pk`1q

j Ð 2∥gpkq

j ∥ypk`1q

j ; if ∥gpk`1q

j ∥ ą 2 then ABORT

endfor

endfor

3.) Output the left-singular vectors of V “ rg
pKq

1 , . . . , g
pKq
m s with singular value above 1

14 .

// Classical complexity is Õ
`

dq2
˘

via direct diagonalization of V :V
// The output is correct with probability at least 1 ´ δ1

// The total UΠ-query and quantum gate complexity is Õ
`

dq{ε
˘

Algorithm 3: Time-efficient approximation of the top-q eigensubspace

Theorem 4.6 (Correctness of Algorithm 3). Let Π P Cdˆd be an orthonormal projector of rank

at most q, given via an Õ
´

εδ1

dq

¯

-approximate block-encoding UΠ. Algorithm 3 outputs an isometry

W such that, with probability at least 1 ´ δ1, }WW : ´ Π} ď ε, using Õ
´

dq
ε

¯

controlled UΠ, U
:

Π,

two-qubit quantum gates, read-outs of a QRAM of size Õpdq, and Õ
`

dq2
˘

classical computation.

Proof. First consider the case when there is no error in tomography and in the implementation of Π.

Then we end up with g
pKq

j “ 2KΠg
p0q

j , and the corresponding matrix Videal “ 2KrΠg
p0q

1 , . . . ,Πg
p0q
m s

has almost surely rankpΠq nonzero singular values with associated left-singular vectors lying in the
image of Π. The m “ d case is trivial. If m ă d, then due to Corollary 2.19 all corresponding
singular values are in p17 , 1q with probability at least 1 ´ δ1

5 .24 By Proposition 2.20 (and a union

can remedy this in general by converting UΠ to an (approximate) block-encoding of Π{2 via linear combination of
unitaries, and then applying quantum singular value transformation with the polynomial ´T3pxq “ 3x ´ 4x3; the
resulting unitary is then indeed Opε1

q-close to a perfect block-encoding of Π, see for example the proof of [GSLW19,
Lemma 23].

24The matrix 1
η

rg
p0q

1 , . . . , g
p0q
m s is a d ˆ m random matrix with i.i.d. (complex) standard normal entries. After
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bound over all j P rms) we know that with probability at least 1 ´ δ1

10 we have for all j P rms that25

∥gj∥ ă ηp
?
d`

a

2 lnp10m{δ1qq ă 6
7 . Thereby with probability at least 1 ´ 3δ1

10 Algorithm 3 does not

abort at the intialization of g
p0q

j , and the left-singular vectors of Videal with singular value at least

1{7 form the columns of the desired matrix W such that WW : “ Π; in the remainder of the proof
we assume this is the case.

Second, we consider what happens when the tomography has error, but we can implement

Π exactly. Let ẽ
pk,ℓq
j :“ g

pkq

j ´ 2k´ℓΠg
pℓq
j be the aggregate tomography error that occurred from

the ℓ-th iteration to the k-th iteration where k P rKs, ℓ P rks ´ 1, and observe that ẽ
pk,ℓq
j “

ẽ
pk,k´1q

j `
řk´1
i“ℓ`1 2k´i ¨ Πẽ

pi,i´1q

j . For each iteration, we do the tomography with precision ε1{∥gpkq

j ∥
on Πg

pkq

j {∥gpkq

j ∥ via Corollary 3.4, guaranteeing that the random variable ẽ
pk,k´1q

j is δ-close in total

variation distance to an “ideal” random variable e
pk,k´1q

j such that ∥epk,k´1q

j ∥ ď ε1 and ∥Πe
pk,k´1q

j ∥ ď

ε1
a

q{d almost surely, and Ere
pk,k´1q

j s “ 0, ∥Covpe
pk,k´1q

j q∥ ď ε1

d2
(to see this, choose V to be an

orthonormal basis whose first q elements span the image of Π). We define analogously e
pk,ℓq
j :“

e
pk,k´1q

j `
řk´1
i“ℓ`1 2k´i ¨ Πe

pi,i´1q

j . Note that the distribution of ẽ
pk,k´1q

j (and e
pk,k´1q

j ) can depend

on ẽ
pi,i´1q

j (and e
pi,i´1q

j1 , respectively) only if j “ j1 and i ď k. Let ẽ̃ẽej :“ pẽ
p1,0q

j , ẽ
p2,1q

j , . . . , ẽ
pK,K´1q

j q,
and define eeej analogously. We can apply Lemma 2.25 recursively to show that dTV pẽ̃ẽej , eeejq ď Kδ.
Since the ẽ̃ẽej are independent from each other, we can assume without loss of generality that so are
the eeej . Once again by Lemma 2.25 we get that when comparing the two sequences of m random

variables, we have dTV ppẽ̃ẽej : j P mq, peeej : j P mqq ď mKδ “ δ1

5 . From now on we replace pẽ̃ẽej : j P mq

by peeej : j P mq throughout the analysis, which can therefore hide an additional failure probability

of at most δ1

5 .
By the triangle inequality we have that

∥epk,0q

j ∥ ď ∥epk,k´1q

j ∥ `

k´1
ÿ

i“1

2k´i∥Πe
pi,i´1q

j ∥ ď ε1 `

k´1
ÿ

i“1

2k´iε1
a

q{d

ď p1 ` 2k
a

q{dqε1 ă p1 ` 2p
a

d{m` 1q
a

q{dqε1 ď 5ε1

for every k P rKs. This also implies that for every k P rKs we have ∥gpkq

j ∥ ď ∥2kΠg
p0q

j ∥ ` ∥epk,0q

j ∥ ď

∥2KΠg
p0q

j ∥ ` 5ε1 ď 1 ` 5ε1 ď 2, and therefore Algorithm 3 also does not abort in the for-loop.

Let us define Etomo :“ re
pK,0q

1 , . . . , e
pK,0q
m s “ V ´Videal as the matrix of accumulated tomography

errors. We can apply Lemma 2.26 recursively with X “ Πe
pk´1,0q

j , Y “ pI ´ Πqe
pk´1,0q

j , Z “ e
pk,k´1q

j

multiplying by Π this effectively (up to a rotation) becomes a q ˆ m random matrix with i.i.d. (complex) standard
normal entries. We apply Corollary 2.19 (with N “ m) to the latter matrix, obtaining the interval r 1

4

?
m, 7

4

?
ms for

its singular values. Multiplying by η2K
“ 4{p7

?
mq we get the interval r 1

7
, 1s for the singular values of Videal.

25We have ηp
?
d`

a

2 lnp10m{δ1qq ď η
?
d` 2

7
?
m

a

2 lnp10m{δ1q ă 4
7

` 2
7

b

2 lnp10m{δ1q

m
“ 4

7
` 2

7

b

2 lnpmq`2 lnp10{δ1q

m
ă 6

7
,

because m ě 8 lnp10{δ1
q and 2 lnpxq

x
takes its maximum at x “ e, where it is less than 3

4
.
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to show that for all k P rKs we have

∥Covpe
pk,0q

j q∥ ď ∥Covpe
pk,k´1q

j q∥ `

k´1
ÿ

i“1

4k´i∥CovpΠe
pi,i´1q

j q∥

ď ∥Covpe
pk,k´1q

j q∥ `

k´1
ÿ

i“1

4k´i∥Covpe
pi,i´1q

j q∥

ď

k
ÿ

i“1

4k´i ε
12

d
ď

4Kε12

3d
ď

4p
a

d{m` 1q2ε12

3d
ď

16ε12

3m
.

Applying Theorem 2.21 for t “
a

lnp10d{δ1q{c1 gives that with probability at least 1 ´ δ1

5 we have

∥Etomo∥ ď
8ε1

?
3

` 7ε1
a

lnp10d{δ1q{c1 ď
ε

14
. (17)

Since ∥Etomo∥ ď ε
14 , using the notation of Theorem 2.13 we have that Π “ ΠVideal

ą0 and the rank
of ΠV

ą 1
14

is rankpΠq ď q due to Weyl’s bound (Theorem 2.12). Therefore, by Theorem 2.13 and

Lemma 2.14 we have ∥Π ´ ΠV
ą 1

14

∥ ď 14∥V ´ Videal∥ “ 14∥Etomo∥ ď ε as desired.

Finally, let us analyze the effect of implementation errors in UΠ. We perform tomography mK
times via Corollary 3.4, each time using T “ Opdεpoly logpd{pεδqq applications of U˘1

Π , therefore

the induced total variation distance26 in the output distribution is at most TmK ¨ Õ
´

εδ1

dq

¯

ď

δ1

10 . Preparing a KP-tree that allows a similar precision for the preparation of g
pkq

j {∥gpkq

j ∥ likewise

induces at most an additional δ1

10 total variation distance, implying that our algorithm outputs a
sufficiently precise answer with probability at least 1 ´ δ1 when all approximations are considered.
The quantum gate complexity comes entirely from Corollary 3.4, which is gate efficient, while the
final computation requires computing the SVD of a d ˆ m matrix, which can be performed in
Õ

`

dm2
˘

“ Õ
`

dq2
˘

classical time.

Using basic quantum information theory, one can see that recovering the q-dimensional subspace
with small constant error ε “ 1{6 gains us Ωpdqq bits of information about the subspace, and hence
requires rΩpdqq quantum queries. This shows that the query complexity of our previous algorithm is
essentially optimal in its dq-dependence. We first show that there exists a large set of q-dimensional
projectors that are all far apart from each other. This might be a standard result, but we did not
find a reference in the literature so provide our own proof.

Lemma 4.7. Let q ď d{2. There exists a set S of q-dimensional subspaces of Rd of size exppΩpdqqq

such that for any distinct s, r P S we have ∥Πs ´ Πr∥ ą 1
3 , where Πt denotes the projector to the

subspace t.

Proof. We can assume without loss of generality that d ě 1283.
First let us assume that q ď d{64; we show the existence of such a set S via the probabilistic

method, by showing that for any set S of subspaces, if |S| ă exppqd{32 ´ 1q, then with non-zero

26With more careful tracking of error spreading in the estimated vectors it might be possible to show that it suffices
to have access to a block-encoding satisfying the weaker condition ∥px0a

| b IqUΠp|0a
y b Iq ´ Π∥ ď ε1

?
dm

.
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probability a Haar-random q-dimensional subspace r satisfies ∥Πs´Πr∥ ą 1
3 for every s P S (thereby

we can take S Ð S Y tru). We sample r as follows: generate a random matrix R P Rdˆq with i.i.d.
standard normal entries, and accept R only if ςminpRq ě 3

4

?
d (i.e., take a sample conditioned on

this happening – we know by Theorem 2.18 that this happens with probability ě 1
e ).

Upon acceptance we compute a singular value decomposition R “ UΣV : and define Π “ UU :

as the projector corresponding to the subspace. Since Π “ UU : is an orthogonal projection to the
image of R “ UΣV : we have Πri “ ri for all columns ri of R and thus

∥Πsri∥ ě ∥Πri∥ ´ ∥pΠ ´ Πsqri∥
“ ∥ri∥ ´ ∥pΠ ´ Πsqri∥
ě p1 ´ ∥Π ´ Πs∥q∥ri∥
ě p1 ´ ∥Π ´ Πs∥qςminpRq

ě
3

4

?
dp1 ´ ∥Π ´ Πs∥q.

Hence ∥Π´Πs∥ ď 1
3 is only possible if ∥Πsri∥ ě

?
d{2 for all columns of R. Without the conditioning

(on ςminpRq ě 3
4

?
d, the condition we accept R), Πsri is effectively a random q-dimensional vector

with i.i.d. standard normal entries. Since
?
d{2 ´

?
q ě

?
d{4, by Proposition 2.20 for any s P S we

have Prr∥Πsri∥ ě
?
d{2s ď expp´d{32q, and due to the independece of the columns the probability

that this happens for all i P rqs is less than expp1 ´ qd{32q even after conditioning. Taking the
union bound over all s P S we can conclude that with non-zero probability ∥Π ´ Πs∥ ą 1

3 for all
s P S.

The statement for q “ Ωpdq follows from [HHJ`17, Lemma 8]. Alternatively, if q ą d{64,
we can set q1 :“ rq{128s, d1 :“ d ´ pq ´ q1q so that q1 ď d1{64. Then from a large set S1 of q1-
dimensional subspaces of Rd1

satisfying ∥Πs1 ´ Πr1∥ ą 1
3 for any distinct s1, r1 P S1 we construct

S :“ ts : Πs “ Πs1 ‘ Iq´q1 for some s1 P S1u so that also ∥Πs ´ Πr∥ ą 1
3 for distinct s, r P S.

4.5 Time-efficiently approximating the subspace spanned by top-q eigenvectors

In this subsection, we give a quantum algorithm to “approximate the top-q eigenvectors” in a
strong sense using qd1.5`op1q time (and q

?
sd1`op1q time if the matrix is s-sparse). In particular,

when q “ 1, this algorithm outputs a vector that approximates the top eigenvector using d1.5`op1q

time. This is what we referred to as our “second algorithm” in Section 1.2.
Consider the following situation: for q P rds, suppose we only know there is a significant

eigenvalue gap between the qth eigenvalue λq and the pq ` 1qth eigenvalue λq`1 (it doesn’t really
matter whether we order the eigenvalues by value or by absolute value, we can make the algorithm
work in each of these two cases, see Footnote 18). Is there a way we can learn the subspace spanned
by the top-q eigenvectors? Here we consider the subspace instead of the top-q eigenvectors directly,
because there might be degeneracy among λ1, . . . , λq, in which case the set of the top-q eigenvectors
is not uniquely defined.

We first estimate the magnitude of λq (with additive error γ{100) using the following theorem.

Theorem 4.8. Let δ P p0, 1q, q ă d, A P Cdˆd be a Hermitian matrix with operator norm at
most 1, v1, . . . , vd be an orthonormal basis of eigenvectors of A, and corresponding eigenvalues
λ1, . . . , λd such that |λ1| ě ¨ ¨ ¨ ě |λd|, where we know the gap γ “ |λq| ´ |λq`1|. Suppose UA “

exppπiAq. There is a quantum algorithm that with probability at least 1 ´ δ, estimates |λq| with
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additive error γ{100, using O
´ ?

qd
γ logp

logp1{γq

δ q logpdδ q logp 1
γ q

¯

controlled applications of U˘
A and

Õ
´ ?

qd
γ logp

logp1{γq

δ q logpdδ q logp 1
γ q

¯

time.

Proof. Let δ1 “ δ{p10dq, A “
ř

iPrds

λi|viyxvi|, and T “ 2rlogp200 logp1{δ1q{γqs`2. Unitary W “
T´1
ř

t“0
|tyxt|b

exppπitAq does Hamiltonian simulation according to A on the second register, for an amount of time
specified in the first register. Observe that 1?

d

ř

iPrds

|iy |iy “ 1?
d

ř

iPrds

|viy |v˚
i y because of the invariance

of maximally entangled states under unitaries of the form U b U :. Hence we can apply phase
estimation with precision γ{200 and failure probability δ1 to the quantum state 1?

d

ř

iPrds

|viy |v˚
i y |0y

using W , to obtain the state
1

?
d

ÿ

iPrds

|viy |v˚
i y |Liy , (18)

where the state |Liy contains a superposition over different estimates λ̃i of λi. For each i P rds, if
we were to measure |Liy in the computational basis, then with probability at least 1 ´ δ1 we get an
outcome λ̃i such that |λi ´ λ̃i| ď γ{200.27 Let µ P r0, 1s, and Rµ be a unitary that marks whether
a number’s absolute value is ă µ, i.e., for every a P r´1, 1s

Rµ |ay |0y “

#

|ay |0y , if |a| ě µ

|ay |1y , otherwise.

This unitary can be implemented up to negligibly small error by Õp1q elementary gates. Applying
Rµ on the last register of the state of Eq. (18) and an additional |0y, we obtain

?
pµ |ϕ0y |0y `

a

1 ´ pµ |ϕ1y |1y for some |ϕ0y and |ϕ1y, where pµ is the probability of outcome 0 if we were to
measure the last qubit. Note that if µ ě |λq| ` γ{150 ą |λq| ` γ{200, then pµ ď pq ´ 1q{d `

pd ´ q ` 1qδ1{d, where the first term on the right-hand side is the maximal contribution (to the
probability pµ of getting outcome 0 for the last qubit) coming from |Liy with i ď q ´ 1 and the
second term is the maximal contribution coming from |Liy with i ą q ´ 1. On the other hand, if
µ ď |λq|´γ{150 ă |λq|´γ{200, then pµ ě pq{dq ¨ p1´δ1q, which is the minimal contribution coming
from |Liy with i ď q. The difference between the square-roots of these two values is therefore

c

q

d
¨ p1 ´ δ1q ´

c

q ´ 1

d
`
d´ q ` 1

d
δ1 ě

c

q

d
´ δ1 ´

c

q ´ 1

d
` δ1 “

1
d ´ 2δ1

b

q
d ´ δ1 `

b

q´1
d ` δ1

, (19)

where the last equality is because a ´ b “ pa2 ´ b2q{pa ` bq. Because δ1 “ δ{p10dq P p0, 1{p10dqq,
both terms in the denominator are ď

a

q{d, and hence the right-hand side of Eq. (19) is at least
2{p5

?
qdq. To estimate |λq| with additive error γ{100, it therefore suffices to do binary search over

the values of µ (with precision γ{300, that is, binary search over µ P t0, γ{300, 2γ{300, . . . , 1u),
in each iteration estimating

?
pµ to within ˘1{p5

?
qdq. We can implement the unitary that maps

|0y |0y Ñ
?
pµ |ϕ0y |0y `

a

1 ´ pµ |ϕ1y |1y using one application of W and Õp1q time. Let δ2 “

27There’s a small technical issue here: the unitary eπiA (to which we apply phase estimation) has phases ranging
between ´π and π because the λj range between ´1 and 1, and phase estimation treats ´π and π the same. However,
we can easily fix that by applying phase estimation to the unitary eπiA{2, whose phases range between ´π{2 and π{2.
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δ{p10 logp300{γqq ą 0. By Theorem 2.3 with additive error η “ 1{p5
?
qdq “ Θp1{

?
qdq and with

failure probability δ2, one iteration of the binary search succeeds with probability at least 1 ´ δ2

and uses Oplogp1{δ2q{ηq “ O
`?
qd logp

logp1{γq

δ q
˘

applications ofW andW :, and Õ
`?
qd logp

logp1{γq

δ q
˘

time. Therefore by the union bound, with probability at least 1 ´ prlogp300{γqs ` 1q ¨ δ2 ě 1 ´ δ, all
iterations of the binary search give a sufficiently good estimate of the value

?
pµ of that iteration,

so the binary search gives us an estimate of |λq| to within ˘pγ{150 ` γ{300q “ ˘γ{100.

Since we use Oplogp1{γqq iterations of binary search, we use O
´?

qd logp
logp1{γq

δ q logp 1
γ q

¯

applica-

tions of W and W : and Õ
´?

qd logp
logp1{γq

δ q logp 1
γ q

¯

time for the whole binary search. We can imple-

ment W and W : using OpT q “ Op
logpd{δq

γ q controlled applications of U˘
A and Õp

logpd{δq

γ q time. Thus

we obtain a good estimate of |λq| with probability ě 1 ´ δ, using O
´ ?

qd
γ logp

logp1{γq

δ q logpdδ q logp 1
γ q

¯

controlled applications of U˘
A and Õ

´ ?
qd
γ logp

logp1{γq

δ q logpdδ q logp 1
γ q

¯

time.

The above theorem assumes perfect access to exppπiAq “ UA for doing phase estimation. If we
only assume we have sparse-query-access to A, then by Theorem 2.8 we can implement a unitary
rUA such that } rUA ´ exppπiAq} ď ε using Õps0.5`op1q{εop1qq time and queries.

Since the procedure in Theorem 4.8 makes use of D “ O
´ ?

qd
γ logp

logp1{γq

δ q logpdδ q logp 1
γ q

¯

con-

trolled applications of U˘
A , if we replace UA with rUA, the algorithm still outputs the desired answer

with success probability at least 1 ´ δ´Dε.28 By plugging in the time complexity for constructing
rUA with ε “ Θ

´

δγ
?
qd logplogp1{γq{δq logpd{δq logp1{γq

¯

, with the constant in the Θp¨q chosen such that

Tε ď δ (and rescaling δ by factor of 2), we immediately have the following corollary.

Corollary 4.9. Let q ă d and A P Cdˆd be a Hermitian matrix with operator norm at most 1,
v1, . . . , vd be an orthonormal basis of eigenvectors of A, and eigenvalues λ1, . . . , λd such that |λ1| ě

¨ ¨ ¨ ě |λd|, where we know the gap γ “ |λq| ´ |λq`1|, and δ P p0, 1q. Suppose A has sparsity s and
we have sparse-query-access to A. There is a quantum algorithm that with success probability at

least 1 ´ δ, estimates |λq| with additive error γ{100, using Õ
´

1
δop1q p

?
dqs
γ q1`op1q

¯

queries and time.

The following proposition shows that every bounded-error quantum algorithm needs Ωp
?
dsq

sparse-access queries to estimate the top eigenvalue of an s-sparse matrix with constant additive
error. This implies the above corollary is near-optimal when q “ 1.

Proposition 4.10. Let A P Cdˆd be a Hermitian matrix with operator norm at most 3. Suppose
A has sparsity s and we have sparse-query-access to A. Every bounded-error quantum algorithm
that estimates the top eigenvalue of A with additive error 0.1 uses Ωp

?
dsq queries.

Proof. For simplicity and without loss of generality we assume A has sparsity 2s` 1 and d ě 2s` 1
is a multiple of s. The idea is to encode an spd ´ sq-bit string into a 2s ` 1-sparse d ˆ d matrix.
Given a string X P t0, 1uspd´sq – Xp1qXp2q . . . Xpd{sq´1 with Hamming weight either 0 or 1, where
Xpkq is an s2-bit Boolean string for each k P rd{s´1s. For every k P rd{s´1s, define Y pkq P t0, 1usˆs

28Here we use the fact that if two unitaries are ε-close in operator norm, and they are applied to the same quantum
state, then the resulting two states are ε-close in Euclidean norm, and the two probability distributions obtained by
measuring the resulting two states in the computational basis are ε-close in total variation distance.
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as pY pkqqij “ X
pkq

s¨i`j . Let A be defined by d{s ¨ d{s “ d2{s2 many s ˆ s square matrices such that
for i ě j

Aij “

$

’

’

&

’

’

%

Is if i “ j

Y piq ` 2´d ¨ Js if i “ j ` 1

0s otherwise,

where Is is the s ˆ s identity matrix, Js is the s ˆ s all-1 matrix, and 0s is the s ˆ s all-0 matrix;
and for i ă j, Aij “ ATji. One can easily see that A has sparsity 2s` 1, and because the Hamming

weight Ham(X) of X is at most 1, the operator norm of A is at most 2 ` 2s ¨ 2´d ď 2 ` d ¨ 2´d ď 3.
Note that given access to the oracle OX that maps |iy |0y Ñ |iy |Xiy for every i P rspd´ sqs, one can
construct an oracle that allows us to make sparse-query-access to A using 2 applications of O˘

X .
Observe that if Ham(X)=0, then the operator norm of A is at most 1 ` 2s ¨ 2´d ď 1 ` d ¨ 2´d ď

1 ` 1{pe ¨ ln 2q ă 1.6, while if Ham(X)=1, then the operator norm of A is at least 2. Therefore, if
there exists a T -query quantum algorithm A that estimates the top eigenvector of A with additive
error 0.1, then A can also be used to decide whether the spd´sq-bit string X has Hamming weight 0
or 1 using 2T queries to OX . By the well-known quantum query lower bound for search, every
bounded-error quantum algorithm needs Ωp

?
dsq queries for this, implying T “ Ωp

?
dsq.

Note that a
?
ds lower bound for estimating the top eigenvalue implies a

?
ds lower bound for

approximating the quantum state |v1y of the top eigenvector: once we have |v1y, we can apply the
quantum phase estimation algorithm with precision ε to estimate λ1 with additive error ε using
Õ

`

1{ε
˘

controlled applications of exppπiAq and expp´πiAq. Combining this with Hamiltonian
simulation (Theorem 2.8) and our lower for approximating λ1 (Proposition 4.10), we conclude that
every bounded-error quantum algorithm that outputs a state at ℓ2-distance ď 0.05 from |v1y, needs
Ωp

?
dsq queries.

Once we know |λq|, we can apply [GSLW19, Theorem 31] to implement a block-encoding of UΠ

using Õ
`

1{γ
˘

applications of a block-encoding of A, where Π “
ř

iPrqs viv
:

i . Combining the above
argument with Theorem 2.10, we directly get the following corollary of Theorem 4.6:

Corollary 4.11. Let q ă d and A P Cdˆd be a Hermitian matrix with operator norm at most 1,
v1, . . . , vd be an orthonormal eigenbasis of A with respective eigenvalues λ1, . . . , λd such that |λ1| ě

¨ ¨ ¨ ě |λd|, where we know the gap γ “ |λq| ´ |λq`1|. Let ε, δ P p0, 1q and Π “
ř

iPrqs viv
:

i . Suppose
A has sparsity s and we have sparse-query-access to A. There exists a quantum algorithm that
outputs a d ˆ q matrix W with orthonormal columns such that, with probability at least 1 ´ δ,

}WW : ´ Π} ď ε, using Õ
ˆ

´

d
?
sq

γε

¯1`op1q

` 1
δop1q

´ ?
dqs
γ

¯1`op1q

` dq2
˙

time and Õpdq QRAM bits.

For the case of dense matrix A, we can set s “ d to get time complexity roughly qd1.5. The
special case q “ 1 gives our main result for approximating the top eigenvector (with additive ℓ2-

error ε)29 in time Õ
´

`

d1.5{pγεq
˘1`op1q

¯

. The ε-dependency is slightly worse than the algorithm in

Section 4.3, while both the d-dependency and γ-dependency are significantly better (for d, the power
is 1.5 ` op1q instead of 1.75; for γ, the power is 1 ` op1q instead of 2). In Section 5 we show that its
d-dependence to be essentially optimal. However, the complexity with respect to q is sub-optimal

29Note that for every unit w, v P Cd it holds that ∥ww:
´ vv:∥ “ 2

a

1 ´ |xw, vy|2, thus ε ě ∥ww:
´ vv:∥ implies

|xw, vy| ě
a

1 ´ ε2{4 ě 1 ´ ε2{4 ě 1 ´ ε2{2.
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for q close to d, because one can diagonalize the entire matrix A classical in matrix-multiplication
time Opdωq.

We also remark that one can (approximately) prepare the quantum state |v1y of the top eigen-

vector of the matrix A (with success probability ě 0.9) in time „ p
?
ds
γ q1`op1q without using QRAM:

first use Corollary 4.9 to estimate λ1 (with additive error γ{100 and with success probability ě 0.99)

and then implement an ε1-approximate block-encoding of projector |v1y xv1| in time Õ
´ ?

sps{ε1qop1q

γ

¯

by Theorem 2.10 and [GSLW19, Theorem 31]. After that, we generate a vector g with i.i.d.
(complex) standard normal entries, prepare the corresponding normalized quantum state |gy (with
probability ě 0.99 ´ expp´d{2q it has overlap ě 1{p100

?
2dq with v1)

30 and apply the block-
encoding to project it down, obtaining a state that looks like α |0y |v1y `

a

1 ´ |α|2 |1y |vK
1 y where

|α| “ Ωp1{
?
dq. By Theorem 2.1, O

´?
d logp1{εq

¯

amplitude amplification rounds then suffice

to prepare |v1y (up to ℓ2-norm error ε{2), and the total cost is therefore Õ
´

1
εop1q p

?
ds
γ q1`op1q

¯

by

choosing ε1 “ Θpε{p
?
d logp1{εqqq such that Tε1 ď ε{2, where T is number of amplitude amplifica-

tion rounds. This algorithm is near-optimal in its d-dependence and s-dependence because of the
argument after the proof of Proposition 4.10.

Corollary 4.12. Let A P Cdˆd be a Hermitian matrix with operator norm at most 1, v1, . . . , vd be
an orthonormal eigenbasis of A with respective eigenvalues λ1, . . . , λd such that |λ1| ě ¨ ¨ ¨ ě |λd|,
where we know the gap γ “ |λ1| ´ |λ2|. Let ε P p0, 1q. Suppose A has sparsity s and we have sparse-
query-access to A. There exists a quantum algorithm that with probability at least 0.98´expp´d{2q,

outputs |ṽ1y that approximates |v1y with ℓ2-error ε using Õ
´

1
εop1q p

?
ds
γ q1`op1q

¯

time.

5 Lower bounds for approximating the top eigenvector

In this section we prove essentially tight classical and quantum query lower bounds for approxi-
mating the top eigenvector of a matrix whose entries we can query.

5.1 The hard instance for the lower bound

Consider the following case, which is the “hard instance” for which we prove the lower bounds. Let
u P t´1, 1ud be a vector, and define symmetric random matrix A “ 1

duu
T ` N where the entries

of N are i.i.d. Nij „ Np0, 1
4¨106d

q for all 1 ď i ď j ď d (and Nij “ Nji if i ą j); the goal is to
recover most (say, 99%) of the entries of the vector u. In this problem, the information about the
ui-s is hidden in the matrix A: the entry Aij is clearly a sample from Np

uiuj
d , 1

4¨106d
q. Hence to

learn entries of u, intuitively we should be able to distinguish the distribution Np1d ,
1

4¨106d
q from

the distribution Np´1
d ,

1
4¨106d

q. In the classical case (where querying an entry of Aij is the same
as obtaining one sample fom the distribution) it requires roughly Ωpdq queries to the entries of the
ith row and column to learn one ui, even if all uj with j ‰ i are already known. In the quantum
case, it requires Ωp

?
dq queries. Intuitively, learning 0.99d of the ui-s should then require roughly d

30Since g has i.i.d. (complex) standard normal entries, xv1|gy has (complex) standard normal distribution. Since
by Proposition 2.20, with probability ě 1 ´ expp´d{2q, }g} ď

?
2d, and since the pdf of the standard normal

distribution is ppxq “ 1?
2π

expp´x2{2q), we know with probability ě 1´expp´d{2q´0.01 ¨2 ¨ 1?
2π

ě 0.99´expp´d{2q,

| xv1|gy |{}g} ě 1{p100
?

2dq.
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times more queries, so Ωpd2q and Ωpd1.5q classical and quantum queries in total, respectively. We
show in the next two subsections that this is indeed the case.

First we show that (with high probability) A has a large eigenvalue gap. Note that A “
1
duu

T ` 1
2000

?
d
G where Gij „ Np0, 1q for 1 ď i ď j ď d and Gij “ Gji for the lower-triangular

elements. Since G itself is symmetric and its entries are i.i.d. „ Np0, 1q, by Theorem 2.22 with
t “ 0.4

?
d (here bmax “

?
d and b˚

max “ 1) we have that the operator norm of G is upper bounded
by 2.5

?
d` p0.4 ` op1qq

?
d ď 3

?
d with probability at least 1 ´ expp´0.04dq; below we assume this

is indeed the case. Therefore, by triangle inequality, the top eigenvalue of A is upper bounded by
1 ` 3

2000 and lower bounded by }A u?
d

}2 ě 1 ´ 3
2000 , implying that there is a unit top eigenvector

v1 “ v1pAq of A that has inner product nearly 1 with the unit vector u?
d
:

1 ´
3

2000
ď }Av1}2 ď }

1

d
uuT v1}2 ` }

1

2000
?
d
Gv1}2 ď |

1
?
d
uT v1| `

3

2000
,

hence |xv1,
u?
d

y| ě 1 ´ 3
1000 . We may assume without loss of generality that the eigenvector v1 has

been chosen such that xv1,
u?
d

y is positive, so we can ignore the absolute value sign. The signs of

v1pAq have to agree with the signs of u in at least 99.4% of the d entries, because each entry where
the signs are different contributes at least 1{d to the squared distance between u{

?
d and v1pAq:

1

d
#tj P rds | uj ¨ pv1pAqqj ď 0u ď }

u
?
d

´ v1pAq}22 “ 2 ´ 2x
u

?
d
, v1pAqy ď

3

500
.

Moreover, the second eigenvalue λ2pAq of A is at most 0.08:

λ2pAq “ max
w:}w}2“1,wKv1

}Aw}2 ď
3

2000
` max
w:}w}2“1,wKv1

}
uuTw

d
}2 ď

3

2000
`

?
3 ¨ 1997

997
ă 0.08,

where the last inequality holds because xv1,
u?
d

y ě 1´ 3
1000 .31 Hence there is a constant gap between

the top and the second eigenvalue of A.
If we have an algorithm that outputs a vector ũ satisfying }ũ ´ v1pAq}2 ď 1

1000 , then we can
use the signs of ũ to learn 99% of the ui-s. Hence a (classical or quantum) query lower bound for
recovering (most of) u is also a query lower bound for approximating the top eigenvector of our
hard instance.

5.2 A classical lower bound

We first show that every classical algorithm that recovers 99% of the ui-s needs Ωpd2q queries.

Theorem 5.1. Let u P t´1, 1ud be a vector, e11, e12, . . . , e1d, e22, . . . , edd be dpd` 1q{2 independent
samples drawn from Np0, 1

4¨106d
q, and A P Rdˆd be the matrix defined by

Aij “

#

1
duiuj ` eij , if 1 ď i ď j ď d,

Aji, otherwise.

Suppose we have query access to entries of A. Every bounded-error classical algorithm that computes
a ũ P t´1, 1ud at Hamming distance ď d{100 from u, uses Ωpd2q queries.

31Let v1 “ α1
u?
d

` β1w1 and v2 “ α2
u?
d

` β2w2 for some unit vectors w1, w2 K u?
d

and for some α1, α2, β1, β2 P

r´1, 1s satisfying α2
1 ` β2

1 “ α2
2 ` β2

2 “ 1. Since v1 K v2, we have xv1, v2y “ α1α2 ` β1β2xw1, w2y “ 0, implying

|α2| “
|β1β2|

|α1|
|xw1, w2y| ď

|β1|

|α1|
“

?
1´α2

1
|α1|

ď
?
3¨1997
997

.
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Proof. Suppose there exists a T -query bounded-error classical algorithm A to compute such a ũ,
with worst-case error probability ď 1{20. Note that the only entries that depend on ui are in the
ith column and row of A. Let random variable Ti be the number of queries that A makes in the
ith column and row (here the randomness comes from the input distribution and from the internal
randomness of A). Because every query is counted at most twice among the Ti-s (and only once
if the query is to a diagonal entry of A), we have Er

ř

iPrds Tis ď 2T . Define index i as “good” if
Prrui “ ũis ě 0.8, and let IG be the set of good indices. Since A has error probability at most 1{20,
we can bound the expected Hamming distance by

ErHampu, ũqs ď PrrHampu, ũq ď
d

100
s ¨

d

100
` PrrHampu, ũq ą

d

100
s ¨ d ď 1 ¨

d

100
`

1

20
¨ d ď

d

10
.

By plugging in the definition of IG, we obtain

d

10
ě ErHampu, ũqs “

ÿ

iPrds

Prrui ‰ ũis ě
ÿ

iPrdszIG

Prrui ‰ ũis ě
ÿ

iPrdszIG

1

5
“
d´ |IG|

5
,

implying that |IG| ě d{2. Because Er
ř

iPIG
Tis ď Er

ř

iPrds Tis ď 2T , by averaging there exists an

index i P IG such that ErTis ď 4T {d. This implies that there is a classical algorithm A1 that recovers
ui with probability at least 0.8 using an expected number of at most 4T {d queries to entries in the
ith row and column of A.

Now suppose we want to distinguish ui “ 1 from ui “ ´1 using samples from Np
ui
d ,

1
4¨106d

q. We
can use A1 for this task, as follows. Generate u1, . . . , ui´1, ui`1, . . . , ud uniformly at random from
˘1, and generate e1

ij from Np0, 1
4¨106d

q for all 1 ď i ď j ď d. Then we define a dˆ d matrix A1 as

A1
ij “

$

’

’

’

’

&

’

’

’

’

%

1
duiuj ` e1

ij , if 1 ď i ď j ď d, i R ti, ju

uj ¨ sample from Np
ui
d ,

1
4¨106d

q if i “ i and i ă j

ui ¨ sample from Np
ui
d ,

1
4¨106d

q if j “ i and i ă j

A1
ji, otherwise.

Note that for every i, j P rds, A1
ij is a sample drawn from Np

uiuj
d , 1

4¨106d
q. Given that our algorithm

knows the values it generated itself (in particular, all uj with j ‰ i), it can implement one query to
an entry in the ith row or column of A1 by at most one new sample from Np

ui
d ,

1
4¨106d

q, and queries
to other entries of A1 do not cost additional samples.

By running A1 on the input matrix A1, we have Prrui “ ũis ě 0.8. Hence by using an expected
number of 4T {d samples drawn from Np

ui
d ,

1
4¨106d

q, we can distinguish ui “ 1 from ui “ ´1 with
probability ě 0.8. Then by Markov’s inequality, worst-case 40T {d samples suffice to distinguish
ui “ 1 from ui “ ´1 with probability ě 0.7.

The KL-divergence between Np1d ,
1

4¨106d
q and Np´1

d ,
1

4¨106d
q is Ex„Np 1

d
, 1
4¨106d

qr8 ¨ 106xs “ 8¨106

d .

As a result, by using the well-known Pinsker’s inequality (dTV pP,Qq ď

b

1
2DKLpP }Qq [Kul67,

Csis67, Kem69]) and the fact that DKLpPbt }Qbtq “ t ¨DKLpP }Qq for any distributions P,Q and
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natural number t, we obtain

Ωp1q ď dTV

´

Np
1

d
,

1

4 ¨ 106d
qb 40T

d , Np´
1

d
,

1

4 ¨ 106d
qb 40T

d

¯

ď

c

1

2
DKL

´

Np
1

d
,

1

4 ¨ 106d
qb 40T

d

›

›

›
Np´

1

d
,

1

4 ¨ 106d
qb 40T

d

¯

(by Pinsker’s inequality)

“

c

1

2
¨

40T

d
¨DKL

´

Np
1

d
,

1

4 ¨ 106d
q

›

›

›
Np´

1

d
,

1

4 ¨ 106d
q

¯

“ O
´

a

T {d2
¯

,

implying T “ Ωpd2q.

By the discussion in Section 5.1, we therefore obtain the following corollary.

Corollary 5.2. Let A be a dˆd symmetric matrix with∥A∥ “ Op1q and an Ωp1q gap between its top
and second eigenvalues. Suppose we have query access to the entries of A. Every classical algorithm
that with probability at least ě 99{100, approximates the top eigenvector of A with ℓ2-error at most
1

1000 uses Ωpd2q queries.

This query lower bound is tight up to the constant factor, since we can compute the top
eigenvector exactly using d2 queries: just query every entry of A and diagonalize the now fully
known matrix A (without any further queries) to find the top eigenvector exactly.

5.3 A quantum lower bound

Now we move to the quantum case, still using the same hard instance. Our proof uses similar ideas
as the hybrid method [BBBV97] and adversary method [Amb02, Amb06] for quantum query lower
bounds, but adjusted to continuous random variables instead of input bits.

Theorem 5.3. Let u P t´1, 1ud be a uniformly random vector, e11, e12, . . . , e1d, e22, . . . , edd be
dpd ` 1q{2 independent samples drawn from Np0, 1

4¨106d
q, and A P Rdˆd be the random matrix

defined by

Aij “

#

1
duiuj ` eij , if 1 ď i ď j ď d,

Aji, otherwise.

Suppose we have quantum query access to entries of A. Every bounded-error quantum algorithm
that computes ũ P t´1, 1ud at Hamming distance ď d{100 from u, uses Ωpd1.5{

?
log dq queries.

Proof. Let ν denote the input distribution given in the theorem statement, and X „ ν be a random
dˆd input matrix according to that distribution (with instantiations of random variable X denoted
by lower-case x). Let Ox denote the query oracle to input matrix x. Suppose there exists a T -
query quantum algorithm A “ UTOxUT´1 ¨ ¨ ¨U1OxU0, alternating queries and input-independent
unitaries on some fixed initial state (say, all-0), to compute such a ũ with error probability ď 1{20,
probability taken over both ν and the internal randomness of A caused by the measurement of its
final state. Our goal is to lower bound T .

For t P t0, . . . , T ´ 1u, let |ψtxy “
ř

i,jPrds

αtxij |i, jy |ϕtxijy be the quantum state of algorithm A just

before its pt` 1qst query on input matrix x. Let |ψTx y be the final state on input x. We define the
query mass on pi, jq P rds ˆ rds on input x as pijx “

ř

tPrT s

|αtxij |
2, and define the query mass on i on
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input x as pix “
ř

tPrT s,jPrds

|αtxij |
2 ` |αtxji|

2. Note that
ř

i,j |αtxij |
2 ď 1 for all x and t. Every |αtxij |

2

is counted once in pix and once in pjx if i ‰ j, and counted only in pix if i “ j. Hence we have
ř

iPrds pix ď 2T for every x. Define Ti “ Ex„νrpixs as the expected query mass on the ith row and
column of the input matrix, then

ř

iPrds Ti ď 2T .
Call index i P rds “good” if Prrui “ ũis ě 0.8, where the probability is taken over ν and

the internal randomness of the algorithm. Let IG be the set of good indices. Since A has error
probability at most 1{20, we have

ExrHampu, ũqs ď PrrHampu, ũq ď
d

100
s ¨

d

100
` PrrHampu, ũq ą

d

100
s ¨ d ď 1 ¨

d

100
`

1

20
¨ d ď

d

10
.

Using linearity of expectation and the definition of IG, we have

d

10
ě ExrHampu, ũqs “

ÿ

iPrds

Prrui ‰ ũis ě
ÿ

iPrdszIG

Prrui ‰ ũis ě
d´ |IG|

5
,

which implies |IG| ě d{2. Since
ř

iPIG
Ti ď

ř

iPrds Ti ď 2T , by averaging there exists an index
i P IG such that Ti ď 4T {d. We fix this i for the rest of the proof. Note that because i has
Prνrui “ ũis ě 0.8, we also have Prν`

rui “ ũis ě 0.6 and Prν´
rui “ ũis ě 0.6, where the

distributions ν` and ν´ are ν conditioned on ui “ 1 and ui “ ´1, respectively.
We now define an (adversarial) joint distribution µ on pX,Y q-pairs of input matrices, such that

the marginal distribution of X is ν` and the marginal distribution of Y is ν´. First sample a
matrix x (with associated u P t´1, 1ud with ui “ 1) according to ν`. We want to probabilistically
modify this into a matrix y by changing only a small number of entries, and only in the ith row
and column of x. Let f and g be the pdf of Np1d ,

1
4¨106d

q and Np´1
d ,

1
4¨106d

q, respectively. Consider
an entry xij in the ith row of x, with j ‰ i. Conditioned on the particular u we sampled, its pdf
was f if uj “ 1 and g if uj “ ´1. If the pdf of xij was f , then obtain yij from xij as follows: if

xij ą 0, then negate it with probability
fpxijq´gpxijq

fpxijq
, else leave it unchanged.

Claim: If xij „ Np1d ,
1

4¨106d
q, then yij „ Np´1

d ,
1

4¨106d
q.

Proof: Let h be the pdf of yij . For a value z ą 0, we have hpzq “ fpzq ´ fpzq ¨
fpzq´gpzq

fpzq
“ gpzq.

For z ď 0 we have hpzq “ fpzq ` fp´zq ¨
fp´zq´gp´zq

fp´zq
“ fpzq ` fp´zq ´ gp´zq “ fp´zq “ gpzq. ■

If the pdf of xij was g instead of f , then we do something analogous: if xij ă 0, then negate it

with probability
gpxijq´fpxijq

gpxijq
. This gives the analogous claim: the pdf of yij is then f .

Let matrix y be obtained by applying this probabilistic process to all entries in the ith row of x,
and changing the entries in the ith column to equal the new ith row (since the resulting y needs
to be a symmetric matrix). Outside of the ith row and column, x and y are equal. Let µ be the
resulting joint distribution on px, yq pairs. An important property of this distribution that we use
below, is that the d ˆ d matrices x and y typically only differ in roughly

?
d entries, because the

probability with which xij is modified (=negated) is Op1{
?
dq. The marginal distribution of Y is

ν´, because the change we made in the X-distribution corresponds exactly to changing ui from 1
to ´1. We could equivalently have defined µ by first sampling Y „ ν´, and then choosing xij by
an analogous negating procedure on yij .

We now use the general template of the adversary method [Amb02] together with our distri-
bution µ to lower bound the total number T of queries that A makes. Define a progress measure
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St “ Exy„µrxψtx|ψtyys. As usual in the adversary method, this measure is large at the start of the
algorithm and becomes small at the end: S0 “ 1 because xψ0

x|ψ0
yy “ 1 for all x, y (since the initial

state is fixed, independent of the input); and ST ď 1 ´ Ωp1q because for px, yq „ µ, our algorithm
outputs 1 with probability at least 0.6 on x and outputs ´1 with probability at least 0.6 on y,
meaning that xψTx |ψTy y is typically bounded below 1. Let ∆t “ |St`1 ´ St| be the change in the
progress measure due to the pt` 1qst query. We can upper bound that change as follows:

∆t “ |Exy„µrxψt`1
x |ψt`1

y y ´ xψtx|ψtyys|

“ |Exy„µrxψtx|
`

O:
xOy ´ I

˘

|ψtyys|

“ |Exy„µ

»

–

ÿ

i,jPrds

αtxij xi, j| xϕtxij |
ÿ

i,j:xij‰yij

αtyij |i, jy |ϕ1t
yijy

fi

fl|

ď Exy„µ

»

–

ÿ

i,j:xij‰yij

|αtxij | ¨ |αtyij |

fi

fl

“ Exy„µ

»

–

ÿ

j:xij‰yij

|αtxij | ¨ |αtyij | `
ÿ

j:xji‰yji

|αtxji| ¨ |αtyji|

fi

fl

ď
1

2
Exy„µ

»

–

ÿ

j:xij‰yij

´

|αtxij |
2 ` |αtyij |

2
¯

`
ÿ

j:xji‰yji

´

|αtxji|
2 ` |αtyji|

2
¯

fi

fl.

where we use that |ψt`1
x y “ Ut`1Ox |ψtxy and |ψt`1

y y “ Ut`1Oy |ψtyy, that O:
xOy : |i, j, by Ñ

|i, jy |b´ xij ` yijy, that x and y only differ in the ith row and column, and the AM-GM inequality
(ab ď pa2 ` b2q{2) in the last step.

Now observe that

Exy„µ

»

–

ÿ

j:xij‰yij

|αtxij |
2

fi

fl “
ÿ

jPrds

Exr Pr
y„µ|x

rxij ‰ yijs ¨ |αtxij |
2s

“
ÿ

j

ż 8

0

fpxijq ´ gpxijq

fpxijq
¨ |αtxij |

2 ¨ fpxijqdxij

“
ÿ

j

´

ż
10

?
log d

?
d

0

`

1 ´
gpxijq

fpxijq

˘

¨ |αtxij |
2 ¨ fpxijqdxij

`

ż 8

10
?
log d

?
d

`

fpxijq ´ gpxijq
˘

¨ |αtxij |
2dxij

¯

ď
ÿ

j

´

max
zPr0, 10

?
log d

?
d

s

|1 ´ expp´8 ¨ 106zq| ¨ Exr|αtxij |
2s

`

ż 8

10
?
log d

?
d

`

fpxijq ´ gpxijq
˘

dxij

¯

ď
ÿ

j

´8 ¨ 107
?

log d
?
d

¨ Ex„ν`
r|αtxij |

2s ` 2d´100
¯

,
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where the first part of the first inequality holds because
gpxijq

fpxijq
“ expp´8 ¨ 106xijq, the first part

of the second inequality holds because for every z, 1 ´ expp´zq ď z, and the second part of the

second inequality holds because both f and g are Gaussians with variance 1
4¨106d

and 10
?
log d

?
d

´ 1
d ě

10 ¨ 1
2000

?
d
.

We can similarly upper bound
ř

tPrT s

Exy„µr
ř

j:xji‰yji

|αtxji|
2s,

ř

tPrT s

Exy„µr
ř

j:xij‰yij

|αtyij |
2s,

and
ř

tPrT s

Exy„µr
ř

j:xji‰yji

|αtyji|
2s. Now we have

Ωp1q ď |S0 ´ ST |

ď
ÿ

tPrT s´1

∆t

ď
1

2

ÿ

tPrT s´1

Exy„µ

»

–

ÿ

j:xij‰yij

´

|αtxij |
2 ` |αtyij |

2
¯

`
ÿ

j:xji‰yji

´

|αtxij |
2 ` |αtyij |

2
¯

fi

fl

ď
ÿ

tPrT s´1,jPrds

´4 ¨ 107
?

log d
?
d

`

Ex„ν`
r|αtxij |

2 ` |αtxij |
2s ` Ey„ν´

r|αtyij |
2 ` |αtyji|

2s
˘

` 4d´100
¯

ď
4 ¨ 107

?
log d

?
d

´

Ex„ν`
rpixs ` Ey„ν´

rpiys

¯

` 4d´97

ď
8 ¨ 107

?
log d

?
d

Ex„νrpixs ` 4d´97

ď
8 ¨ 107

?
log d

?
d

¨
4T

d
` 4d´97,

where the sixth inequality uses that ν` ` ν´ “ 2ν, and that j ranges over d values and t ranges
over T values (and T ď d2 without loss of generality). This implies T “ Ωpd1.5{

?
log dq.

Again invoking the discussion in Section 5.1, we obtain the following corollary which shows that
our second algorithm is close to optimal.

Corollary 5.4. Let A be a d ˆ d symmetric matrix with ∥A∥ “ Op1q and an Ωp1q gap between
its top and second eigenvalues. Suppose we have quantum query access to the entries of A. Every
quantum algorithm that with probability at least ě 99{100, approximates the top eigenvector of A
with ℓ2-error at most 1

1000 uses Ωpd1.5{
?

log dq queries.
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