
Block-Based Platform for Defining Adaptation Rules
for Automotive Systems

Luigi Altamirano

Eindhoven University of Technology

Eindhoven, Netherlands

luigialtamirano@gmail.com

Mauricio Verano Merino

Vrije Universiteit Amsterdam

Amsterdam, Netherlands

Eindhoven University of Technology

Eindhoven, Netherlands

m.verano.merino@vu.nl

Ion Barosan

Eindhoven University of Technology

Eindhoven, Netherlands

i.barosan@TUE.nl

Abstract
Adaptive human-machine interfaces (HMIs) enhance driver

safety and comfort by tailoring information presentation.

While existing research identifies key adaptation parameters,

their practical application remains challenging due to the

complexity of rule-based decision making and the limitations

of current authoring tools. To address these issues, this paper

introduces AHSL, a domain-specific language for efficiently

specifying message adaptation logic. By unifying established

adaptation parameters within a hierarchical structure, AHSL

simplifies rule creation and improves readability. Usability

testing demonstrates AHSL’s effectiveness in supporting

intuitive and efficient decision logic development.

CCS Concepts: • Software and its engineering → Vi-
sual languages; Domain specific languages; • Human-
centered computing → User interface programming.

Keywords: rule-based systems, HMI, block-based languages,

automotive

ACM Reference Format:
Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan. 2024.

Block-Based Platform for Defining Adaptation Rules for Auto-

motive Systems. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Programming Abstractions and Interactive
Notations, Tools, and Environments (PAINT ’24), October 22, 2024,
Pasadena, CA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3689488.3689989

1 Introduction
In recent years, the number of driver assistance and infotain-

ment systems such as Advanced Driver Assistance Systems

(ADAS) and In-Vehicle Information Systems (IVIS) [2] have

increased. ADAS and IVIS use Human-Machine Interface

PAINT ’24, October 22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1212-8/24/10

https://doi.org/10.1145/3689488.3689989

(HMI) devices (e.g., instrument clusters, touchscreens, and

steering wheel controls) to interact with drivers. Tradition-

ally, the information displayed by onboard systems is prede-

termined by message type (e.g., visual and auditory warnings

may communicate a lane deviation event).

Adaptive interaction [13] emerged as a research field to

improve driver experience and traffic safety. Existing im-

plementations of adaptive interfaces [5, 6, 8, 23], rely on

rule-based reasoning to adapt the interaction with the driver

in real-time. These projects also include the definition of pa-
rameters (e.g., driving situations, driver-vehicle interactions,

and adaptation decisions). These parameters are hard to reuse
because they are scattered across multiple documents and

projects; therefore, the need for a unified model is evident

so that further research can be built upon this model.

Current systems require programming expertise to define

adaptive behavior, hindering domain experts from specify-

ing automotive adaptation rules. This paper addresses the

following research questions:

How can we ease the specification of rules that describe
onboard messages to the driver?

From the main research question we derive the following

sub questions.

1. What parameters are necessary to make adaptation de-
cisions?

2. How can a tool provide non-technical users with a user-
friendly mechanism to specify executable rules for HMI

interaction adaptation?

This paper presents a review of existing adaptive HMI

interaction tools (Section 2.1), introduces a DSL for describ-

ing automotive HMI interfaces (Section 3), and proposes

block-based and text-based editors for domain experts to

specify adaptation rules (Section 3.4). The paper concludes

with an evaluation (Section 4), testing (Section 7), discus-

sion (Section 6), and final remarks with future directions

(Section 7).

2 Background & Related Work
Onboard vehicle systems, such as In-Vehicle Information

Systems (IVIS) and Advanced Driver Assistance Systems

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

1

https://orcid.org/0009-0000-3539-7472
https://orcid.org/0000-0003-2278-1365
https://orcid.org/0000-0001-9398-0543
https://doi.org/10.1145/3689488.3689989
https://doi.org/10.1145/3689488.3689989
https://doi.org/10.1145/3689488.3689989
https://creativecommons.org/licenses/by-nc-sa/4.0/

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

(ADAS), allow drivers to interact with the system via Human-

Machine Interfaces (HMI), and the way messages and warn-

ings are presented to the driver follow certain rules.

To the best of our knowledge, in practice, Original Equip-

ment Manufacturers (OEMs) have not yet implemented adap-

tive HMI in production vehicles. However, rule based sys-

tems have been used in research projects where adaptive

HMI interaction were implemented [5, 6, 8]. Rule-based sys-

tems are computer systems that use rules to mechanize the

decision-making process of a human expert. To implement

an adaptive HMI, a rule-based reasoner is required [5, 6, 8].

In rule-based reasoning, the decision logic is represented as

production rules, consisting of premises and actions [15]. For

example, in the following sentence, if it rains (premise), then

the road gets wet (action). In this case, rules are atomic if-then

statements without secondary paths of execution, i.e., defin-

ing an else branch is impossible. Thus, the number of rules

quickly grows as the decision complexity increases, making

it harder to maintain [9]. In practice, different languages are

used to specify these rules (e.g., Drools Rule Language, IBM

ILOG Rule Language). Nevertheless, each language requires

programming experience and knowledge of its particular

syntax and semantics. As the complexity of rules increases,

the task of maintaining and understanding these languages

becomes significantly more challenging, underscoring the

intricacy of rule-based systems.

2.1 Adaptive Automotive Interfaces
This section presents an overview of projects that developed

adaptive HMIs to improve comfort or safety, and presents the

parameters used and their decision categories. Table 1 sum-

marizes the adaptation features implemented in the previous

projects.

COMUNICAR [5, 7] integrates multimedia HMI to harmo-

nize messages from ADAS and IVIS systems (e.g., adap-

tive cruise control, collision warning, navigation, and

multimedia). It improves safety, comfort, and driver

alertness by choosing when and how system messages

are displayed to the driver according to driving condi-

tions and driver workload.

SAVE-IT [23] targets HMI adaptation in two ways. First, it

improves the effectiveness of ADAS safety warnings

by shortening the reaction time and reducing nuisance

without degrading the crash reduction potential. Sec-

ond, it mitigates IVIS-related distraction by disabling

some features and blocking incoming phone calls. Con-

versely to COMUNICAR, SAVE-IT ’s adaptations deci-
sions and parameters are available, but details about

their reasoning system are not.

AIDE [2, 6] focuses on the integration and adaptation of

HMIs. They generated the required knowledge and

HMI technologies to safely integrate ADAS, IVIS, and
nomad devices in the driving environment.

Figure 1. Example of a rule written using Drools DSL [16].

ADAS & Me [8] develops an adaptive ADAS that automati-

cally transfer control between the vehicle and driver to

ensure safer road usage. A holistic approach that con-

siders automated driving with information on driver

state in the environment is applied.

2.2 Rule Definition Software
Rule-based reasoning is a common approach to implement-

ing adaptive HMIs. This section analyses the out-of-the-box

Drools rule creation mechanisms [19], which is a popular

Java-based Business Rule Management System (BRMS).
Drools has a native rule language called drl. This language,

although powerful, might be complex for end-users. Its com-

plexity lies in the language’s syntax because writing a rule

requires several lines of code and previous programming

knowledge. Nevertheless, Drools provides user-friendly man-

ners for defining rules by supporting different abstractions

over drl such as the Drools DSL and Decision Tables [18].
Drools DSL allows business users to employ domain-oriented

concepts to write simple rules, which is helpful for non-

technical users because they do not have the technical jargon

of drl. Figure 1 shows an example of a drl rule suitable for
non-programmers.

However, this requires the manual definition of a dictio-

nary containing the mapping between business and drl con-
cepts. Moreover, Drools does not provide a mechanism to

edit the rules after they are created [16]. An alternative is to

create a decision table with two sections: (1) RuleSet contains
information that affects all rules, (2) the RuleTable contains
rule templates, where at least each column represents a con-

dition or an action, and each row in the RuleTable becomes a

drl rule. Drools abstractions have a common limitation. Each

rule in Drools DSL maps to one in drl. The same happens

with each row in the RuleTable section of a decision table.

Rules are essentially atomic if-then statements without sec-

ondary execution paths. Consequently, these abstractions

do not solve the rapid growth of rules when the complexity

of the decision logic increases [9].

3 AHSL: DSL for HMI Rule Definition
AHSL [1] is a DSL for specifying HMI adaptation rules with

a user-friendly, compact, and consistent syntax for domain

experts. Also, it allows users to execute adaptation rules for

2

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

Table 1. HMI Adaptations in different research projects [5, 6, 8, 23].

Project HMI Adaptation Feature Decision Category

[5]

Postpone message to avoid distracting the driver Change Timing

Select message modality to avoid information overload Select Modalities

[6]

Postpone message to avoid distracting the driver Change Timing

Increase intensity of an auditory warning/message to be noticeable Set Auditory Salience

Increase intensity/repetition of warning/message to be noticeable Set Auditory Salience

Non-Visual Presentation of a message to avoid distraction Select Modalities

Present the warning earlier to elicit a timely response Change Timing

Use an enhanced modality to elicit a timely response Select Modalities

Suppress a warning to avoid annoying the driver Suppress

[23]

Suppress a warning to avoid annoying the driver Suppress

Present the warning later to reduce annoyance to the driver Change Timing

Present the warning earlier to elicit a timely response Change Timing

Present warning only visually to avoid annoying the driver Select Modalities

Present visual-auditory warning to elicit timely response Select Modalities

Present warning also in the center console to improve reaction time Select Visual Device(s)

Limit the functionality in the GUI to prevent driver distraction GUI Functionality

Suppress incoming calls to prevent distraction Suppress

[8]

Use louder sound notifications to be noticeable Change Salience

Present visual-haptic feedback to be noticeable Select Modalities

Change GUI colors and sounds to improve user experience GUI Display

Change GUI content and format to reduce information overload GUI Functionality

automotive HMIs. Their syntax uses domain concepts rather

than programming concepts, which might help domain ex-

perts in the rule definition process. In addition, AHSL offers

two editors, text and block-based editors, and uses Drools as
the rule execution engine.

3.1 AHSL Syntax
AHSL’s syntax consists of compact structures called assign
statements that define the conditions to assign values to each

parameter. Listing 1 shows an example of the conditions to

determine the priority of an onboard message. We assume

that if the “safety criticality" of the message is high, then
the message’s priority is high. If the “safety criticality" is not

high but the “time criticality" is high, then the priority of the

message is moderate. Otherwise, the priority is low.
The AssignStmt is a control structure that provides mul-

tiple execution paths. A production rule, on the other hand,

is essentially an if-then statement that provides a single ex-

ecution path. Listing 2 shows that three if-then statements

(production rules) are needed to describe the same example.

AHSL provides alternative execution paths, resembling if-
then-else structures but with simpler syntax. By prioritizing

parameter visualization and minimizing code redundancy, it

enhances readability and maintainability for domain experts.

3.2 Grammar
Listing 3 shows AHSL’s grammar. A program (Program) con-

sists of one or more assign statements (AssignStmt). Each as-

sign statement begins with keyword assign followed by the

Listing 1. Example of a message priority using AssignStmt.

assign priority
high when

safety-criticality is high
moderate when

time-criticality is high
default low

assign traffic-risk
high when

vulnerable-road-user
default low

assign driving-demand
default moderate

assign suppress-message
true when

priority is not high
traffic-risk is high
driving-demand is not low

default false

assign use-visual
false when

traffic-risk is high
default true

assign display-hud
true when

driving-relevance
default false

3

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

Listing 2. Specification of the message priority using if-then
statements.

if(safetyCriticality == "high"){
priority = "high";}

if(safetyCriticality != "high" && timeCriticality == "high")
{

priority = "moderate";}

if(safetyCriticality != "high" && timeCriticality != "high")
{

priority = "low";}

target parameter’s name, zero or more conditional state-

ments (ConditionalStmt), and one default statement (DefaultStmt).

Each conditional statement consists of a value (Value) and one

or more condition lines (ConditionLine). A condition line has

one or more conditions (Condition) that are combined using

an or operator. To illustrate this, Listing 1 shows an example

of the usage of multiple conditions in the assign suppress-

message parameter. The syntax definitions of non-terminals

Parameter and Value are not shown.

To make AHSL simpler for end-user, we give it a natural

language appearance, and reduces as much as possible the

usage of special characters commonly found in GPLs such

as the curly brackets ({}), parenthesis(()), quotation marks

(?), semicolons (;), among others. The only exception is the

usage of hyphens (-); it is used to separate words in param-

eter and value names. Table 2 shows a summary of AHSL

operators.

Conditional Operators. An AssignStmt contains condi-

tional statements, therefore,Operators are needed to describe
the condition and action of a conditional statement. Addition-

ally, there are three types of operators (Assignment Operator,
Equality Operators, and Conditional Operators) that are used
to combine conditional statements.

• Assignment Operator. An assignment operator is the

operator used to assign a new value to a variable. They

are needed to define the action part of conditional

statements. Support for the simple assignment operator
is implemented using the keyword assign.

• Equality Operators. Equality operators are used to test

the values of parameters individually. Support for the

equality operator equal to and the inequality opera-

tor not equal to is required. The equality operator

is represented using is and the inequality operator

using is not. In the case of Boolean parameters, is
is omitted.

• Conditional Operators. The decision nodes in the uni-
fied decision hierarchy depend on the values of other

parameters. Driving demand, for example, depends

on the values of up to 15 parameters. Each condition

tests the value of a parameter. Conditional operators

Table 2. Operators used in AHSL

Operator Syntax Example Code

Assignment assign Parameter Value assign driving-demand high when (...)

Bool Equality* when Parameter high when bend

Bool Inequality not Parameter low when not intersection

Enum Equality Parameter is Value low when situation is following
Enum Inequality Parameter is not Value high when traffic-density is not low

Conditional AND* ConditionLine ConditionLine high when situation is overtaking fog
Conditional OR Condition or Condition high when rain or night

(*): Implicit Operator

provide the capability to combine conditions. Thus,

we include support for the or and and operators. Con-
dition(s) in a ConditionLine are combined using or.
while a ConditionLine(s) in a ConditionalStmt are

combined implicitly using and.

3.3 Code Generator& Execution
This section describes the core features and support features
of the code generation, as well as the requirements related

to the code generator, are derived. Table 4 shows a summary

of the five code generator requirements. The DSL shall gen-

erate source code that can be executed on a rule engine. A

complete transformation from AHSL source code to DRL is

implemented. The generated source code is executable as is
and conforms to the concrete syntax of DRL.

3.3.1 Core Features. The core features are derived from

the code generator requirements (Table 4) and are explained

as follows.

Code generation. At a high level, this is achieved by con-

verting each AssignStmt into one or more rules. Each Con-

ditionalStmt and DefaultStmt becomes a rule. The condi-

tions and actions specified in the elements of an AssignStmt

become the LHS and RHS of each rule.

Assignment Integrity. The rules generated from the same

AssignStmt preserve their atomic behavior. This means

that ConditionalStmt(s) are evaluated in descending or-

der, and that the DefaultStmt is evaluated last. Additionally,

a maximum of one rule per AssignStmt should fire. This is

achieved by using the activation-group and salience rule at-
tributes [19]. The activation-group guarantees that only one

rule within a group fires. The rules generated from one As-

signStmt have the same activation-group name. The salience
prioritizes the execution of a rule within an activation-group.
The rule generated from the first ConditionalStmt has a

higher salience. The rule generated from the DefaultStmt

has the lowest salience.

Decision sequence. Rule engines handle the firing of re-
lated rules in what is called rule chaining. Listing 4 shows an
example of chaining. The first two AssignStmt(s) change

the values of priority and traffic-risk, which are included in

4

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

Table 4. Code generator requirements.

ID Name Specification Type

1.3.1 AssignStmtIntegrity When the rules execute, the DSL shall enforce that rules from a single AssignStmt fire abiding by its control flow. Func.
1.3.2 Decision Sequence When the rules execute, the DSL shall enforce that rules fire in the decision sequence described in the u.d.h. Func.
1.3.3 Gate Conditions When the rules execute, the DSL shall enforce that rules fire abiding by the gate conditions derived from the u.d.h. Func.
1.3.4 Code Tracing The DSL shall provide information about the mapping between DSL code and the generated rules. Func.
1.3.5 Firing Log After the generated rules execute in Drools, the DSL shall provide information about the rule firing order. Func.

the condition part of the third AssignStmt. The agenda-
group rule attribute is used to categorize rules in groups (i.e.,

SEQ1, SEQ2, SEQ3, and SEQ4) that are evaluated sequentially.

Gate conditions. The rules that modify parameters con-

strained by the value of other parameters shall not fire. These

gate conditions are specified in Figure 2. For example, when

suppress-message is true, use-visual is never true. This is
achieved with gate conditions. A gate condition is added to

the LHS of the affected rules.

Figure 2. Decision sequence and gate conditions derived

from the unified decision hierarchy .

3.3.2 Support Features. To enhance user understanding,

we implemented code tracing and firing log functionalities.

Code tracing maps rules to their corresponding source code

elements (AssignStmt, ConditionalStmt, or DefaultStmt)
via rule names. The firing log records rule activations, includ-
ing modified parameters and new values. Figure 3 outlines

the code generation process, which iteratively processes

AssignStmts in a Program while incorporating these sup-

port features.

Execution Engine. To execute the rules written in AHSL,

it is necessary to generate a Drools project as shown in

Appendix C; we used Eclipse IDE v2021-06 with the Drools
plug-in

3.4 Language Editors
This section presents AHSL’s built-in editors. The language

design and tooling are essential for a language’s success

and adoption. A DSL should offer a user-friendly editing

environment. AHSL offers two editing environments: a text-

based editor and a block-based environment. The first one is

Figure 3. Code generation algorithm of one AssignStmt.

built-in Rascal, which brings a text-based editor almost for

free and is used to create and edit AHSL programs textually.

It allows connecting directly with the language’s parser to

check for syntax correctness while the program is being

typed.

The block-based environment is obtained using Kogi [4,

20–22], which is a tool that allows language engineers to

generate a Google Blockly [17] block-based editor from a

context-free grammar. In this case, we used AHSL’s gram-

mar as input, and the generated block-based environment is

shown in Figure 4.

4 Evaluation
This section presents an evaluation of AHSL using two tech-

niques, usability and functional testing. For the first, we

designed a questionnaire and recruited three participants to

measure the usability of the proposed language.

4.1 Usability Testing
Usability is the question of how well users can use the func-

tionality [14]. DSL usability by domain users is a key factor

for DSL adoption [3]. Usability testing involves test users

performing a specified set of tasks. Two requirements are

5

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

Figure 4. Sample AHSL program containing one Assign-

Stmt in the block-based environment.

related to usability: (1) The DSL shall provide a user-friendly

syntax designed for domain users. (2) The DSL shall provide

a user-friendly editor.

4.2 Tools
Participants answer a questionnaire that comprises Likert

scale questions to assess the editors using usability heuristics
and open-ended questions to identify characteristics of the

DSL along the cognitive dimensions [10]. In addition, a The-
matic analysis is used to analyze the responses to open-ended
questions.

Cognitive Dimensions. The cognitive dimensions (CDS)

are a tool to evaluate the usability of information-based arte-

facts using a broad-brush treatment rather than a lengthy

analysis [10]. The target artifact is evaluated along 13 differ-

ent cognitively relevant dimensions. The 13 cognitive dimen-

sions are available in Appendix B.2. The CDS can be used

with non-interactive artifacts such as computer languages,
and they assess the manipulation of computer programs

by distinguishing four types of activities. (1) Incrementation
refers to adding a new element to a program. (2) Transcrip-
tion refers to converting statements to program elements.

(3) Modification refers to changing existing program ele-

ments. (4) Exploratory design refers to programming on the

fly or "hacking".

ThematicAnalysis. The thematic analysis process described

in [11] is adapted to analyze the open-ended question re-

sponses of the questionnaire. The objective is to find the

features of the AHSL syntax and editors that affect end-users

usability. The adapted methodology of the thematic analysis

are:

• The questionnaire responses are printed to familiarize

with the data. Paper is a convenient medium to detect

reoccurring topics in the participants’ answers.

• Relevant phrases in user responses are marked. Rele-

vance is determined by a feature that positively or

negatively affects usability. These phrases are con-

densed without altering their meaning and written in

a column. These phrases become Codes. The cognitive
dimension that each question is assessing is written

down.

• Patterns in the codes are identified to come up with

initial themes. Themes are broader than codes. Usually,

several codes are combined into a single theme.

• In an iterative process, themes are redefined to accom-

modate for more codes or split into more themes if the

codes contained are not cohesive enough.

• Additional information is identified for each code. The

valence, which indicates whether the user is stating

something "good" or "bad" about AHSL, is written

down. The editor, the participant referred to in the

response, is identified.

• A report which includes the AHSL characteristics (i.e.,

themes) that affect usability and the number of times

a characteristic is mentioned is produced.

4.3 Methodology and Materials
Usability testing involves test users. This type of testing

is essential because it lets us understand how other users

besides the developer interact with our DSL. The testing

materials can be found in Appendix B.

Participants. Participants were healthy adults with pro-

gramming experience who visited Eindhoven University of

Technology to complete a 60-minute evaluation of our soft-

ware prototype and questionnaire. Due to prototype limita-

tions and the need for a coding-familiar user base to assess

our language, we recruited four participants with over two

years of programming experience. All participants weremale,

aged 23-35.

Testing Procedure. Each participant is scheduled at a

separate time. Participants sign a consent form and receive

a ten-minute presentation of AHSL. They are provided with

a computer containing the Rascal text-based editor and a

block-based environment rendered as an HTML file on a

web browser. Participants are requested to perform four

user tasks and to ask questions to the facilitator at any

time. When they complete the tasks, participants answer the

questionnaire. Finally, the user testing session ends. The

user tasks and questionnaire are described below.

User Tasks. A summary of the four user tasks is presented

below.

• Understanding a program in the text-based editor. Par-
ticipants are provided with a text-based editor, file

Task01.ahsl, and input parameter values. They are re-

quested to manually calculate the resulting parameter

values according to the code and input values. This

task is presented first to familiarize participants with

AHSL.

6

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

• Modifying a program in the text-based editor. Partici-
pants are given instructions to change some statements

in file Task01.ahsl using the text-based editor.

• Creating a program in the text-based editor. Participants
are given instructions to create statements that assign

the values of four parameters using the text-based

editor.

• Creating a program in the block-based environment.
Participants are provided with instructions to create

one AssignStmt using the block-based environment.

Questionnaire. The questionnaire has 27 questions (see
Table 9) and consists of two parts:

1. Questions 1-6 request the respondent to assess the text-

based editor and the block-based environment using

six usability heuristics. Heuristics 1, 2, 9, and 10 are

not assessed because they are not relevant for code

editors or because the editors do not have features

related to these heuristics. Instead, we use one Likert

scale question with a scale from 1 (bad) to 5 (excellent)

to assess each heuristic [25].

2. Questions 7-27 encourage the respondent to identify

characteristics of AHSL that are relevant to each cogni-

tive dimension. Ten cognitive dimensions are selected.

Cognitive dimensions 1, 11, and 12 were not assessed

because the language lacks these features. There are

two questions per dimension and one asks the respon-

dent to suggest ways to improve the design of AHSL,

regardless of the dimension.

User Study Approval. The usability testing was approved
according to Eindhoven University of Technology guidelines

for user studies with minimal risk.

4.4 Results
This section presents and analyzes the participant’s responses

to the usability questionnaire.

4.4.1 Usability Heuristics (Q. 1-6). The mean of the Lik-

ert scale responses assessing the editors’ compliance with the

usability heuristics is shown in Figure 5. Below we present

the main findings.

• Both editors scored well in heuristics user control and
freedom, recognition rather than recall, and aesthetic
and minimalist design.

• The highest rating overall was given to the text-based

editor in terms of Consistency. We believe this is due

to the consistency of the AssignStmt(s) and language

operators’ usage.

• The block-based environment was rated much better

in prevent errors than the text-based editor. This is prob-
ably because the block-based environment ensures by

design that only syntactically compatible blocks are

connected. The text-based editor, on the other hand,

does not prevent syntax errors but warns after they

occur.

• Users rated the text-based editor higher than the block-

based environment in flexibility and efficiency of use.
This can be explained by the fact that participants had

programming experience and were used to coding in

plain text.

Figure 5. User assessment of editor compliance with usabil-

ity heuristics. Source: mean of responses to questions 1-6.

4.4.2 Cognitive Dimensions (Q. 7-27). The responses of
the three participants gave a total of 1,520 words of unstruc-

tured text. The responses were analyzed using a thematic
analysis. The 71 codes identified are found in Table 10. Each

code is assigned a theme—themes groups characteristics of

the text-based editor or the block-based environment that

affect usability. The themes identified and the number of

times they were mentioned for the text-based editor and

block-based environment are shown in Table 5 and Table 6

respectively.

Themes related to text-based editor identified in Table 5

are described below. Usability issues have a negative symbol

(-) on the left.

1. Easy notation. This theme groups comments related to

the notation being clear, easy, simple, and consistent.

2. Natural language. Groups comments mention the sim-

ilarity between the notation and natural language.

3. Assign cohesiveness. Groups responses that are related
to the fact that the elements of the AssignStmt form

a united whole.

4. Minimalistic. Groups responses that mention the brief-

ness or minimalism of the notation.

5. Easy to change. Related to comments that mention

the easiness of editing the internal elements of an

AssignStmt.

6. (-) Using parameters. Groups comments related to the

difficulty of using the parameters.

7. (-) Large conditions. Related to the fact that writing

and comprehending conditions becomes more difficult

as condition complexity or size grows.

8. (-)Action before condition. Related to the inverted order
of actions and conditions.

7

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

Table 5. Assessment of text-based editor characteristics that affect usability, including examples of user responses.

Theme Examples of User Responses Freq.

Po
si
ti
ve

Easy notation notation is clear, easy, simple, consistent 10

Natural language sounds like pure English, reads as natural language, can become documentation 5

Assign cohesiveness closely related elements, conditions and results in neat blocks, dependencies visible 4

Minimalistic can express briefly, notation minimalistic 3

Easy to change easy to change value assigned and condition, target parameter 2

N
eg

at
iv
e

Using parameters can’t see parameter type when typing, typos in names, forgetting parameter and value names 6

Large conditions many "or"s create wider code, comprehending long conditions 5

Action before condition think first about target parameter, difficult to start with assignment instead of condition 3

Assign inter-dependency dependencies between related parameters, must think to assign parameters used in other blocks 2

Unfamiliar notation different from experience, using "is" instead of "=" 2

Implicit and operator remembering that new line is "and", strange that "and" is not expressed in words 2

Table 6. Assessment of block-based environment characteristics that affect usability, including examples of user responses.

Theme Examples of User Responses Freq.

Positive Drop-down menu changing parts of the notation is more or less easy because there is a dropdown 3

Copy-paste blocks the structures can be copied and pasted 2

Negative Using parameters difficult to navigate the left bar and find the blocks and variables you are looking for, there is no searching feature in the block-based interface 11

Frequent drag and drop feels long winded, a lot of dragging and dropping when first starting a project 4

9. (-) Assign interdependency. Groups the phrases point-
ing to the lack of visibility of dependencies between

blocks related by chaining.

10. (-) Unfamiliar notation. Groups comments related to

the lack of familiarity with the operators used in AHSL.

11. (-) Implicit and. Related to the difficulties caused by the

and operator not being explicitly expressed in the code.

The themes related to block-based environment identified
in Table 6 are described below.

1. Drop-down menu. Groups comments related to the ben-

efit of using the drop-down menus in blocks to select

a parameter or value without typing it down.

2. Copy-paste blocks. Related to the feature that enables

reusing blocks by copying and pasting them in the

canvas.

3. Using parameters.Related to the difficulty in navigating

the left pane (i.e., toolbar) to find the parameters and

values needed to build statements.

4. Frequent drag and drop. Related to the repeated need

to drag and drop blocks from the toolbar to the canvas

to write a program.

This section presents a thematic analysis of open-ended

responses assessing cognitive dimensions. Notably, themes

often encompassed codes from multiple cognitive dimen-

sions. For instance, the easy notation theme included codes

from questions on viscosity, diffuseness, closeness of mapping,
role expressiveness, and consistency.
text-based editor feedback primarily focused on syntax-

related usability. Participants appreciated the clear, concise,

and natural language-like syntax. The cohesive assign block

structure was also praised. However, implicit and syntax,

inconsistency, and the inability to visualize AssignStmt in-
terdependence were criticized. Additionally, unfamiliar no-

tation and the action-before-condition structure posed chal-

lenges.

Both text-based editor and block-based environment lacked

features like suggestions, auto-complete, and parameter search.

Consequently, parameter usage was a prevalent usability is-

sue.

The themes identified block-based environment feedback

centered on editor functionality. While drag-and-drop was

often frustrating, drop-down menus and copy-paste features

were beneficial.

5 Functional Testing
To assess AHSL functionality, we conducted manual black-

box testing by generating AHSL code. This system testing

involved crafting a AHSL script, creating the rule file, and

executing the resulting rules using the Drools rule engine.

5.1 System Testing
System tests verify both correct code generation and the accu-

rate execution of generated rules in the target environment.

Unlike unit testing, our focus is on "happy path" scenarios

without anticipated errors.

We tested features aligned with code generator require-

ments, using an AHSL program (Listing 4), two input data

scenarios (Table 8), and their corresponding manually calcu-

lated expected outputs. Successful test cases matched rule

execution results in the target environment with expected

8

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

outputs. Table 7 details two test cases, each with a unique

scenario and expected result.

The testing steps and results are described below.

1. Create the st.ahsl file using the text-based editor.

2. In Rascal, execute the code generator to generate rule

file st.drl.
3. Manually copy the st.drl file to the Drools Project.

4. In class ExecuteRules, assign the initial parameter val-

ues and fire the rules. This step is repeated again for

the second scenario.

The input values and rule firing log are shown in Table 8.

Using this set of rules, the presence of a vulnerable road
user (e.g., a cyclist) caused the evaluation of traffic risk to be

high. This, in turn, led to the system-initiated message being

suppressed by the adaptive HMI system. The behavior was

as expected; as a result, both tests passed.

5.2 Comparing Code Size
We compare the program size between a source file written in

AHSL (Listing 4) and the generated Drools rule file (Listing 5).

We use the source lines of code (SLOC), which is one of the

most commonly used metrics for comparing [24] code. For

the same functionality, the source .ahsl uses 31 SLOC while

the generated .drl uses 161 SLOC. Based on this metric, AHSL

has 5.19 times less complexity than the generated DRL code.

We also compare the number of statements used in both

languages. In AHSL, we count AssignStmt(s) and in DRL we

count rules. In the same example, AHSL needed 6 statements

while DRL needed 12 rules. In this case, AHSL requires half

the number of statements to specify the same conditions.

In summary, we evaluated AHSL’s usability and function-

ality. On one hand, the main findings of usability testing

are:

• The simplicity of the syntax, its closeness to natural

language, and its minimalist design were frequently

rated positively by the users. These characteristics

were particularly evident when using the text-based

editor.

• However, some issues related to the internal structure

of the assign statement were reported. The implicit

use of the and operator and having to write the ac-

tion before the condition was sometimes confusing for

participants. On the other hand, the potential growth

of condition complexity concerned participants. Ad-

ditionally, the lack of visibility of the dependencies

between assigned statements was reported as an issue.

• The main advantage of the block-based environment

over the text-based editor was its ability to prevent

syntax errors. Its primary disadvantage, however, was

its inefficiency. Navigating the toolbar to find language

elements and dragging and dropping them was too

repetitive.

• The most reported usability issue for both editors was

the use of parameters. In the text-based editor, partic-

ipants had to locate the parameter name and values

in a separate list of parameters and type character by

character without assistance (e.g., auto-complete, sug-

gestions). In the block-based environment, participants

had to find the parameters and values by navigating

through categories in the left pane or toolbox.

Functional testing yielded results consistent with AHSL’s

design. We assessed the parser, well-formedness checker,

and code generator, emphasizing the behavior of generated

rules within the Drools environment. Notably, AHSL code

is over five times less complex than DRL code in terms of

SLOCs.

6 Discussion
Usability testing with users revealed that the cohesiveness

and clarity of the textual notation improved usability. All

three users reported that the notation was close to natu-

ral language, minimalist, and simple. These results show

that the language design decisions contributed to the us-

ability of AHSL. On the other hand, the use of implicit

Conditional-AND and the hidden dependencies between

assigned statements were mentioned as issues, although less

frequently. Overall, user responses indicate that the language

syntax contributed to usability. However, the limited number

of users and the background of the participants who took

part in the user study is a limitation of these results.

The editors used for testing were bare-bone versions of a

text-based editor and a block-based environment. The text-

based editor provided by Rascal was used as-is and not fine-

tuned to improve the users’ experience. Although it provided

syntax checking, it did not have standard text-editor features

such as auto-completion or suggestions. Likewise, the block-

based environment has several usability limitations as well.

The editors, unrelated to the syntax, negatively affected the

usability assessment of the users. The lack of assistance pro-

vided by the editors was compounded by the fact that AHSL

only uses the parameters in the unified decision hierarchy.
These parameters, unfamiliar to the users, must also be typed

in the text-based editor or located in the block-based envi-

ronment.

Usability testing was not performed with DRL or Drools

DSL. Thus, it is impossible to state that AHSL is easier to

use than these languages. However, using an example, we

found that AHSL required five times fewer lines of code

than DRL to express equivalent logic. Additionally, AHSL

required half the number of statements to express equivalent

logic. However, a more in-depth analysis of the code com-

plexity between both languages is required to draw concrete

answers.

9

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

Table 7. System test cases.

ID Name Description Expected Result

st01 Message sup-

pressed

Rules and scenario 1 lead to

message suppression

Rule firing log is generated. It shows that order of rule firing followed deci-
sion sequence, and that adaptation decisions beyond suppress-message=true
are not executed due to gate conditions. Generated code is traceable.

st02 Message Dis-

played

Rules and scenario 2 lead to

message displayed

Rule firing log is generated. It shows that order of rule firing fol-

lowed decision sequence, and that adaptation decisions beyond suppress-
message=false are executed due to gate conditions. Generated code is

traceable.

Table 8. Execution of Drools using st.drl in Listing 5 with

two scenarios.

Scenario Initial Parameter Values Rule Firing Log

Empty road

safety-criticality = low

time-criticality = high

driving-relevance = true

vulnerable-road-user = false

speed = high

low-visibility = true

priority = moderate [AS.1 CS.2]

trafficRisk = low [AS.2 DS]

drivingDemand = moderate [AS.3 DS]

suppressMessage = false [AS.4 DS]

useVisual = true [AS.5 DS]

displayHud = true [AS.6 CS.1]

cyclist on the road

safety-criticality = low

time-criticality = high

driving-relevance = true

vulnerable-road-user = true

speed = high

low-visibility = true

trafficRisk = high [AS.2 CS.1]

priority = moderate [AS.1 CS.2]

drivingDemand = moderate [AS.3 DS]

suppressMessage = true [AS.4 CS.1]

7 Conclusions & Future Work
Given the increasing prevalence of ADAS and IVIS systems

in the automotive industry, this paper proposes a novel ap-

proach to facilitate their development by addressing the

following research questions:

How can the HMI be adapted to improve driving comfort
and traffic safety? What parameters are needed to make these
adaptation decisions?
To address this question, we analyzed existing literature

on adaptive HMIs (Section 2.1). These HMIs enhance traffic

safety and comfort by adapting ADAS and IVIS messages and

warnings through suppression, modality selection, timing

adjustments, and signal property modifications. Different pa-

rameter sets describing the driver, vehicle, and environment

are used to achieve various adaptation goals.

How can a tool provide non-technical users with a simple
and compact mechanism to specify executable rules for HMI
adaptation?
We developed a DSL named AHSL, offering a concise,

natural language-like notation for rule definition. AHSL in-

cludes both text-based and block-based editors for program

creation, which are subsequently converted into executable

DRL rules via a code generator. AHSL code demonstrates

a five-fold reduction in complexity compared to DRL code

in terms of lines of code, and it expresses decision logic

using approximately half the number of statements. User

testing confirmed that the clear and concise syntax enhances

usability.

The current work offers several extension points. While

AHSL currently employs predefined, domain-specific param-

eters, future iterations could incorporate variable declaration

and decision hierarchies for broader applicability. Moreover,

enhancing editor functionalities like auto-completion and

suggestions can significantly improve user experience and

productivity. To address the limitations of the assign state-
ment, AHSL could be extended to support multiple parameter

assignments within a single block or the reuse of condi-

tions across statements. Additionally, simulating rule execu-

tion based on automatically generated input values can aid

handling complex scenarios. Additionally, integrating HMI

guidelines as constraints within AHSL would promote adher-

ence to best practices. Furthermore, incorporating regional

regulations and consumer rating requirements for ADAS

warnings would enhance the tool’s adaptability. Finally, ex-

ploring alternative rule creation mechanisms in Drools, such

as those offered by Drools DSL, guided rules, and decision ta-

bles, could potentially provide valuable insights for AHSL’s

evolution.

Acknowledgments
To David A. Manrique Negrin for his insightful suggestions

and thorough proofreading, both of which contributed to

the improvement of this paper.

10

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

A AHSL Grammar

Listing 3. Snippet of AHSL’s grammar definition using Ras-

cal [12].

start syntax Program
= program: AssignStmt+ assignstmts;

syntax AssignStmt
= assignStmt: "assign" Parameter parameter

ConditionalStmt* conditionalstmts DefaultStmt
defaultstmt;

syntax ConditionalStmt
= conditionalStmt: Value value "when" ConditionLine+

conditionlines;

syntax DefaultStmt
= defaultStmt: "default" Value value;

syntax ConditionLine
= conditionline: {Condition "or"}+ conditions;

syntax Condition
= boolean: Negation? negation Parameter parameter
| enumeration: Parameter parameter "is" Negation?

Value value;

syntax Negation
= not: "not";

B Usability Testing
B.1 Usability Heuristics
JakobNielsen [14] suggested the following ten general heuris-

tics for measuring the usability of user interfaces:

1. Visibility of System Status. Systems should provide im-

mediate feedback on the interaction.

2. Match between System and Real World. Systems should

use terms and concepts that are familiar to the user.

3. User Control and Freedom. Systems should provide clear

"emergency exit" mechanisms to leave unwanted states

quickly.

4. Consistency and Standards. Users should not have to

wonder whether different words, visuals, or actions

mean the same. Follow conventions.

5. Error Prevention. Systems should have a careful design

to prevent problems from occurring.

6. Recognition rather than Recall. The user should not

have to remember information. Instructions should be

easily retrievable whenever appropriate.

7. Flexibility and Efficiency of Use. The system can cater

to both inexperienced and experienced users.

8. Aesthetic and Minimalist Design. Dialogues should not

contain informationwhich is irrelevant or rarely needed.

9. Recognize, Diagnose and Recover from Errors. Error mes-

sages should be expressed in plain language and sug-

gest a solution.

10. Help and Documentation. Such information should be

easy to search, focused on the user’s task, list concrete

steps, and not be too large.

B.2 Cognitive Dimensions Framework
The Cognitive Dimensions (CD) framework [10] defines the

following 13 dimensions:

1. Abstraction. Types and availability of abstractionmech-

anisms.

2. Hidden dependencies. Important links between entities

are not visible.

3. Premature commitment. Constraints on the order of

doing things.

4. Viscosity. Resistance to change.

5. Visibility. Ability to view components easily.

6. Closeness of mapping. Closeness of representation to

domain.

7. Consistency. Similar semantics are expressed in similar

syntactic forms.

8. Diffuseness. Verbosity of language.

9. Error-proneness. Notation invites mistakes.

10. Hard mental operations. High demand on cognitive

resources.

11. Progressive evaluation. Work-to-date can be checked

at any time.

12. Provisionality. Degree of commitment to actions or

marks.

13. Role-expressiveness. The purpose of a component is

readily inferred.

C Drools Project
The generated Drools project contains three packages:

• Package com.sample contains class ExecuteRules. Upon
execution, it defines initial parameter values, initializes

the Drools environment, and fires the rules.

• Package com.sample.rules contains the generated rule

file.

• Package com.sample.ahsl contains the classes that de-
clare the variables used by the rules. An additional

class Constants) declares the enumerations.

11

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

D AHSL: Example

Listing 4. Source st.ahsl with six AssignStmt(s).

assign priority
high when

safety-criticality is high
moderate when

time-criticality is high
default low

assign traffic-risk
high when

vulnerable-road-user
default low

assign driving-demand
default moderate

assign suppress-message
true when

priority is not high
traffic-risk is high
driving-demand is not low

default false

assign use-visual
false when

traffic-risk is high
default true

assign display-hud
true when

driving-relevance
default false

E Code Generation Example

Listing 5. Target st.drl file.
package com.sample.rules

import com.sample.ahsl .∗;

rule "AS.1 CS.1"
activation −group "AS.1"
agenda−group "SEQ1"
salience 99

when

$MessageDecision :MessageDecision()

MessageData(safetyCriticality == Constants.

enumLevel.high)

then

$MessageDecision.priority = Constants.enumLevel.

high;

update($MessageDecision);

System.out . println (" priority =high [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.1 CS.2"
activation −group "AS.1"
agenda−group "SEQ1"
salience 98

when

$MessageDecision :MessageDecision()

MessageData(timeCriticality == Constants.

enumLevel.high)

then

$MessageDecision.priority = Constants.enumLevel.

moderate;

update($MessageDecision);

System.out . println (" priority =moderate [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.1 DS"
activation −group "AS.1"
agenda−group "SEQ1"
salience −1

when

$MessageDecision :MessageDecision()

then

$MessageDecision.priority = Constants.enumLevel.low

;

update($MessageDecision);

System.out . println (" priority =low [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.2 CS.1"
activation −group "AS.2"
agenda−group "SEQ1"
salience 99

when

$DVEState :DVEState()
TrafficRiskData (vulnerableRoadUser == true)

then

$DVEState.trafficRisk = Constants.enumLevel.high;

update($DVEState);

System.out . println (" trafficRisk =high [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.2 DS"
activation −group "AS.2"
agenda−group "SEQ1"
salience −1

when

$DVEState :DVEState()
then

$DVEState.trafficRisk = Constants.enumLevel.low;

update($DVEState);

System.out . println (" trafficRisk =low [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.3 DS"
activation −group "AS.3"
agenda−group "SEQ1"
salience −1

when

$DVEState :DVEState()
then

$DVEState.drivingDemand = Constants.enumLevel.

moderate;

update($DVEState);

12

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

System.out . println ("drivingDemand=moderate [" +
drools . getRule () .getName() + "] ") ;

end

rule "AS.4 CS.1"
activation −group "AS.4"
agenda−group "SEQ2"
salience 99

when

MessageDecision(priority != null)

$HMIDecision :HMIDecision()

MessageDecision(priority != Constants.enumLevel.

high)

DVEState(trafficRisk == Constants.enumLevel.high)

DVEState(drivingDemand != Constants.enumLevel.low)

then

$HMIDecision.suppressMessage = true;

update($HMIDecision);

System.out . println (" suppressMessage=true [" +

drools . getRule () .getName() + "] ") ;
end

rule "AS.4 DS"
activation −group "AS.4"
agenda−group "SEQ2"
salience −1

when

MessageDecision(priority != null)

$HMIDecision :HMIDecision()

then

$HMIDecision.suppressMessage = false;

update($HMIDecision);

System.out . println (" suppressMessage= false [" +

drools . getRule () .getName() + "] ") ;
end

rule "AS.5 CS.1"
activation −group "AS.5"
agenda−group "SEQ3"
salience 99

when

HMIDecision(suppressMessage == false)

$HMIDecision :HMIDecision()

DVEState(trafficRisk == Constants.enumLevel.high)

then

$HMIDecision.useVisual = false ;

update($HMIDecision);

System.out . println (" useVisual = false [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.5 DS"
activation −group "AS.5"
agenda−group "SEQ3"
salience −1

when

HMIDecision(suppressMessage == false)

$HMIDecision :HMIDecision()

then

$HMIDecision.useVisual = true;

update($HMIDecision);

System.out . println (" useVisual =true [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.6 CS.1"
activation −group "AS.6"
agenda−group "SEQ4"
salience 99

when

HMIDecision(useVisual == true)

$HMIDecision :HMIDecision()

MessageData(drivingRelevance == true)

then

$HMIDecision.displayHud = true;

update($HMIDecision);

System.out . println ("displayHud=true [" + drools .

getRule () .getName() + "] ") ;
end

rule "AS.6 DS"
activation −group "AS.6"
agenda−group "SEQ4"
salience −1

when

HMIDecision(useVisual == true)

$HMIDecision :HMIDecision()

then

$HMIDecision.displayHud = false;

update($HMIDecision);

System.out . println ("displayHud= false [" + drools .

getRule () .getName() + "] ") ;
end

13

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

F Questionnaire
Table 9. Questionnaire for user study

Nr Question To Measure

1 User control and freedom Usability Heuristic 3

2 Consistency Usability Heuristic 4

3 Prevent Errors Usability Heuristic 5

4 Recognition rather than recall Usability Heuristic 6

5 Flexibility and efficiency of use Usability Heuristic 7

6 Aesthetic and minimalist design Usability Heuristic 8

7 How easy is it to see or find the various parts of the notation while it is being created or

changed? Why?

Cognitive Dimension: Visibility

and Juxtaposability

8 What kind of things are more difficult to see or find?

9 When you need to make changes to previous work, how easy is it to make the change?

Why?

Cognitive Dimension: Viscosity

10 Are there particular changes that are more difficult or especially difficult to make? Which

ones?

11 Does the notation a) let you say what you want reasonably briefly, or b) is it long-winded?

Why?

Cognitive Dimension: Diffuseness

12 What sorts of things take more space to describe?

13 What kind of things require the most mental effort with this notation? Cognitive Dimension: Hard Mental

Operations14 Do some things seem especially complex or difficult to work out in your head (e.g. when

combining several things)? What are they?

15 Do some kinds of mistake seem particularly common or easy to make? Which ones? Cognitive Dimension: Error

Proneness16 Do you often find yourself making small slips that irritate you or make you feel stupid?

What are some examples?

17 How closely related is the notation to the result that you are describing? Why? Cognitive Dimension: Closeness of

Mapping18 Which parts seem to be a particularly strange way of doing or describing something?

19 When reading the notation, is it easy to tell what each part is for in the overall scheme?

Why?

Cognitive Dimension: Role

Expressiveness

20 Are there some parts that are particularly difficult to interpret? Which ones?

21 If the structure of the product means some parts are closely related to other parts, and

changes to one may affect the other, are those dependencies visible? What kind of depen-

dencies are hidden?

Cognitive Dimension: Hidden

Dependencies

22 In what ways can it get worse when you are creating a particularly large description?

23 When you are working with the notation, can you go about the job in any order you like,

or does the system force you to think ahead and make certain decisions first?

Cognitive Dimension: Premature

Commitment

24 If so, what decisions do you need to make in advance? What sort of problems can this cause

in your work?

25 Where there are different parts of the notation that mean similar things, is the similarity

clear from the way they appear? Please give examples.

Cognitive Dimension: Consistency

26 Are there places where some things ought to be similar, but the notation makes them

different? What are they?

27 After completing this questionnaire, can you think of obvious ways that the design of the

system could be improved? What are they?

Other

14

Block-Based Platform for Defining Adaptation Rules for Automotive Systems PAINT ’24, October 22, 2024, Pasadena, CA, USA

G Thematic Analysis
Table 10. Codes extracted from the cognitive dimensions and open-ended questionnaire and the themes they became part of.

Nr. Dimension Code Theme Valence Editor

1 Visibility sound like pure English Natural Language Positive Any

2 Visibility easy to see [value assigned + condition] Cohesive Assign Statement Positive Any

3 Visibility easy to see [target parameter] Cohesive Assign Statement Positive Any

4 Visibility reads as natural language Natural Language Positive Any

5 Visibility somewhat easy with dropdown Easy Drop-down & Paste Positive Blockly

6 Visibility can be copy pasted Easy Drop-down & Paste Positive Blockly

7 Visibility navigate left bar for blocks difficult Left Bar Know Syntax Negative Blockly

8 Visibility navigate left bar for parameters difficult. Suggests search bar Type/Find Pars & Vals Negative Any

9 Visibility Many parameters hard to find Type/Find Pars & Vals Negative Any

10 Visibility Can’t see parameter type when typing Type/Find Pars & Vals Negative Any

11 Visibility No auto complete for enum literales. Annoying Type/Find Pars & Vals Negative Any

12 Visibility Difficult to get used to notation, different from experience Notation Unfamiliar Negative Any

13 Viscosity More visual to change values (dropdown) Easy Drop-down & Paste Positive Blockly

14 Viscosity easy to change [value assigned + condition] Cohesive Assign Statement Positive Any

15 Viscosity easy to change [target parameter] Cohesive Assign Statement Positive Any

16 Viscosity simplicity of language Notation Understandable Positive Any

17 Viscosity can be copy pasted Easy Drop-down & Paste Positive Blockly

18 Viscosity Easy to change with dropdown Easy Drop-down & Paste Positive Blockly

19 Viscosity navigate left bar for blocks difficult Type/Find Pars & Vals Negative Any

20 Viscosity navigate left bar for parameters difficult. Suggests search bar Type/Find Pars & Vals Negative Any

21 Viscosity Easy, syntax intuitive Notation Understandable Positive Any

22 Viscosity Language clear once you understand it Notation Understandable Positive Any

23 Viscosity Recalling enum names difficult Type/Find Pars & Vals Negative Any

24 Viscosity Navigate left bar for parameters difficult Type/Find Pars & Vals Negative Any

25 Viscosity Navigate left bar for parameters difficult Type/Find Pars & Vals Negative Any

26 Viscosity Unclear difference of shadow from active block Shadow Confusing. Add Block Instead Negative Blockly

27 Diffuseness Can express briefly with notation Notation Concise Positive Rascal

28 Diffuseness Notation minimalistic and unambiguous Notation Concise Positive Rascal

30 Diffuseness Lots of drag&drop at start Drag&Drop Repetitive Negative Blockly

31 Diffuseness Notation clear and consistent Notation Consistent Positive Any

33 Diffuseness Many "or" will create wider code Long Condition Line "or" Negative Any

34 Diffuseness More space when using "or"s for two values of same parameter. Long Condition Line "or" Negative Any

35 Hard Mental Operations Remembering that implicit "and" = new line Implicit "And" Remembering Negative Any

36 Hard Mental Operations Comprehending long and complicated conditions Large Condition Group Understand Negative Any

37 Hard Mental Operations Getting used to consequence before condition Action Before Condition Difficult Negative Any

39 Error Proneness Typos in variable names Type/Find Pars & Vals Negative Any

40 Error Proneness Misplacing block Drag&Drop Repetitive Negative Blockly

41 Error Proneness Using "is" instead of "=" Notation Unfamiliar Negative Any

42 Error Proneness Forgetting parameter/value names Type/Find Pars & Vals Negative Any

43 Error Proneness Relies on user knowing syntax (Condition, Assignment, Value) Left Bar Know Syntax Negative Blockly

44 Error Proneness Error when searching variables Type/Find Pars & Vals Negative Any

45 Error Proneness Dragging incorrect block Drag&Drop Repetitive Negative Blockly

46 Error Proneness Lacking: auto-complete Type/Find Pars & Vals Negative Any

47 Error Proneness lacking: search bar for variables Type/Find Pars & Vals Negative Any

48 Closeness of Mapping Clear notation Notation Understandable Positive Any

49 Closeness of Mapping Closely related, conditions and results in neat blocks Cohesive Assign Statement Positive Any

50 Closeness of Mapping Close because of natural language Natural Language Positive Any

51 Closeness of Mapping Can become easy documentation Natural Language Positive Rascal

52 Closeness of Mapping Strange that "and"s are not expressed with words Implicit "And" Inconsistent Negative Any

53 Closeness of Mapping Finding blocks, suggests search bar Type/Find Pars & Vals Negative Any

54 Closeness of Mapping Continuously drag and drop Drag&Drop Repetitive Negative Blockly

55 Closeness of Mapping Some blocks not added automatically, e.g., condition block Shadow Confusing. Add Block Instead Negative Blockly

56 Role Expressiveness Notation is clear Notation Understandable Positive Any

57 Role Expressiveness Notation is clear Notation Understandable Positive Any

58 Role Expressiveness Highlighting elements differently (parameters, value, keyword) would help Lacks Highlighting Negative Rascal

59 Role Expressiveness Blocks minimalistic Notation Concise Positive Any

60 Role Expressiveness Clear, natural language Natural Language Positive Any

61 Role Expressiveness Start with assignment rather than condition, difficult Action Before Condition Difficult Negative Any

62 Hidden Dependencies Dependencies within block visible Cohesive Assign Statement Positive Any

63 Hidden Dependencies Comprehending long and complicated conditions Complicated Conditions Understand Negative Any

65 Hidden Dependencies Many "or" will create wider code Long Condition Line "or" Negative Any

66 Hidden Dependencies Dependencies between assign pars that depend on each other Assign Statement Coupling Not Visible Negative Any

67 Premature Commitment Must think to define parameters used as conditions in other blocks to avoid errors Assign Statement Coupling Not Visible Negative Any

68 Premature Commitment Think first about target parameter. No problems reported Action Before Condition Difficult Negative Any

69 Consistency Notation consistent Notation Consistent Positive Any

70 Consistency Notation clear and consistent Notation Consistent Positive Any

71 Consistency Not confusing Notation Consistent Positive Any

15

PAINT ’24, October 22, 2024, Pasadena, CA, USA Luigi Altamirano, Mauricio Verano Merino, and Ion Barosan

References
[1] Luigi Altamirano Mollo. 2022. ahsl 0.1. https://doi.org/10.5281/zenodo.

6303824
[2] Angelos Amditis, Luisa Andreone, Katia Pagle, Gustav Markkula, En-

rica Deregibus, Maria Romera Rue, Francesco Bellotti, Andreas En-

gelsberg, Rino Brouwer, Björn Peters, and Alessandro De Gloria. 2010.

Towards the automotive HMI of the future: Overview of the AIDE -

Integrated project results. IEEE Transactions on Intelligent Transporta-
tion Systems 11, 3 (2010), 567–578. https://doi.org/10.1109/TITS.2010.
2048751

[3] Ankica Bariic, Vasco Amaral, and Miguel Goulao. 2012. Usability

evaluation of domain-specific languages. In 2012 Eighth International
Conference on the Quality of Information and Communications Technol-
ogy. IEEE, 342–347.

[4] Tom Beckmann and Mauricio Verano Merino. 2021. maveme/skogi:
SKogi 0.1.0. https://doi.org/10.5281/zenodo.5534113

[5] F. Bellotti, A. De Gloria, R. Montanari, N. Dosio, and D. Morreale.

2005. COMUNICAR: Designing a multimedia, context-aware human-

machine interface for cars. Cognition, Technology and Work 7, 1 (2005),

36–45. https://doi.org/10.1007/s10111-004-0168-9
[6] Rino F.T. Brouwer, Marieka Hoedemaeker, and Mark A Neerincx. 2009.

Adaptive interfaces in driving. In International Conference on Founda-
tions of Augmented Cognition. Springer, 13–19.

[7] Centro Ricerche FIAT, CRF, University of Siena, Volvo Car, Daimler-

Chrysler, Borg Instruments, Metravib, ICCS/NTUA, DIBE, FHG/IAO,

BASt, TNO. 2003. COMUNICAR Project Final Report. Technical Report.
58 pages. [Online, accessed 27 February 2022].

[8] Frederik Diederichs, Alessia Knauss, MarcWilbrink, Yannis Lilis, Evan-

gelia Chrysochoou, Anna Anund, Evangelos Bekiaris, Stella Nikolaou,

Svitlana Finér, Luca Zanovello, Pantelis Maroudis, Stas Krupenia, An-

dreas Absér, Nikos Dimokas, Camilla Apoy, Johan Karlsson, Annika

Larsson, Emmanouil Zidianakis, Alexander Efa, Harald Widlroither,

Mengnuo Dai, Daniel Teichmann, Hamid Sanatnama, Andreas Wende-

muth, and Sven Bischoff. 2020. Adaptive transitions for automation in

cars, trucks, buses and motorcycles. IET Intelligent Transport Systems
14, 8 (2020), 889–899. https://doi.org/10.1049/iet-its.2018.5342

[9] Martin Fowler. 2009. Should I use a Rules Engine? https://martinfowler.
com/bliki/RulesEngine.html. [Online, accessed 27 February 2022].

[10] T. R. G. Green and a. Blackwell. 1998. Cognitive Dimensions of In-

formation Artefacts : a tutorial. Applied Psychology October (1998),

75. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:
Cognitive+Dimensions+of+Information+Artefacts+:+a+tutorial#0

[11] Michelle E. Kiger and Lara Varpio. 2020. Thematic analysis of qualita-

tive data: AMEE Guide No. 131. , 846–854 pages. https://doi.org/10.
1080/0142159X.2020.1755030

[12] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. 2009. RASCAL: A

domain specific language for source code analysis and manipulation.

9th IEEE International Working Conference on Source Code Analysis and

Manipulation, SCAM 2009 (2009), 168–177. https://doi.org/10.1109/
SCAM.2009.28

[13] Yannis Lilis, Emmanouil Zidianakis, Nikolaos Partarakis, Margherita

Antona, and Constantine Stephanidis. 2017. Personalizing HMI ele-

ments in ADAS using ontology meta-models and rule based reasoning.

Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 10277 LNCS
(2017), 383–401. https://doi.org/10.1007/978-3-319-58706-6{_}31

[14] Jakob Nielsen. 1994. Usability engineering. Morgan Kaufmann.

[15] OMG. 2009. Production Rule Representation (PRR). http://www.omg.
org/spec/PRR/1.0/. , 74 pages. [Online, accessed 27 February 2022].

[16] Ludwig Ostermayer, Geng Sun, and Dietmar Seipel. 2013. Simplify-

ing the Development of Rules Using Domain Specific Languages in

DROOLS.

[17] Erik Pasternak, Rachel Fenichel, and Andrew N Marshall. 2017. Tips

for creating a block language with blockly. In 2017 IEEE Blocks and
Beyond Workshop (B&B). IEEE, 21–24.

[18] Mauricio Salatino, Mariano De Maio, and Esteban Aliverti. 2016. Mas-
tering JBoss Drools 6. Packt Publishing Ltd.

[19] JBoss Drools Team. 2022. Drools Documentation. https://docs.drools.
org/7.10.0.Final/drools-docs/html_single/. https://docs.drools.org/7.
10.0.Final/drools-docs/html_single/ [Online, accessed 28 July 2022].

[20] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert

Hirschfeld, and Jurgen Vinju. 2021. Getting Grammars into Shape for

Block-Based Editors. https://doi.org/10.1145/3486608.3486908 SIG-

PLAN International Conference on Software Language Engineering

(SLE’21), SLE’21 ; Conference date: 17-10-2021 Through 18-11-2021.

[21] Mauricio Verano Merino and Tijs Van Der Storm. 2020. Block-based

syntax from context-free grammars. SLE 2020 - Proceedings of the
13th ACM SIGPLAN International Conference on Software Language
Engineering, Co-located with SPLASH 2020 (2020), 283–295. https:
//doi.org/10.1145/3426425.3426948

[22] Mauricio Verano Merino and Tijs van der Storn. 2020. cwi-swat/kogi:

Kogi 0.1.0. https://doi.org/10.5281/zenodo.4033220.
[23] GJ Witt. 2003. SAfety VEhicle (s) using adaptive interface Technology

(SAVE-IT) Program. US Department of Transportation, The National
Transportation Systems Center (2003).

[24] Yali Wu, Frank Hernandez, Francisco Ortega, Peter J. Clarke, and

Robert France. 2010. Measuring the effort for creating and using

domain-specific models. Proceedings of the 10th Workshop on Domain-
Specific Modeling, DSM’10 (2010). https://doi.org/10.1145/2060329.
2060360

[25] Xulin Zhao, Ying Zou, Jen Hawkins, and Bhadri Madapusi. 2007. A

business-process-driven approach for generating e-commerce user

interfaces. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 256–270.

Received 2024-07-15; accepted 2024-08-11

16

https://doi.org/10.5281/zenodo.6303824
https://doi.org/10.5281/zenodo.6303824
https://doi.org/10.1109/TITS.2010.2048751
https://doi.org/10.1109/TITS.2010.2048751
https://doi.org/10.5281/zenodo.5534113
https://doi.org/10.1007/s10111-004-0168-9
https://doi.org/10.1049/iet-its.2018.5342
https://martinfowler.com/bliki/RulesEngine.html
https://martinfowler.com/bliki/RulesEngine.html
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cognitive+Dimensions+of+Information+Artefacts+:+a+tutorial#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cognitive+Dimensions+of+Information+Artefacts+:+a+tutorial#0
https://doi.org/10.1080/0142159X.2020.1755030
https://doi.org/10.1080/0142159X.2020.1755030
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/978-3-319-58706-6{_}31
http://www.omg.org/spec/PRR/1.0/
http://www.omg.org/spec/PRR/1.0/
https://docs.drools.org/7.10.0.Final/drools-docs/html_single/
https://docs.drools.org/7.10.0.Final/drools-docs/html_single/
https://docs.drools.org/7.10.0.Final/drools-docs/html_single/
https://docs.drools.org/7.10.0.Final/drools-docs/html_single/
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.5281/zenodo.4033220
https://doi.org/10.1145/2060329.2060360
https://doi.org/10.1145/2060329.2060360

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Adaptive Automotive Interfaces
	2.2 Rule Definition Software

	3 AHSL: DSL for HMI Rule Definition
	3.1 AHSL Syntax
	3.2 Grammar
	3.3 Code Generator& Execution
	3.4 Language Editors

	4 Evaluation
	4.1 Usability Testing
	4.2 Tools
	4.3 Methodology and Materials
	4.4 Results

	5 Functional Testing
	5.1 System Testing
	5.2 Comparing Code Size

	6 Discussion
	7 Conclusions & Future Work
	Acknowledgments
	A AHSL Grammar
	B Usability Testing
	B.1 Usability Heuristics
	B.2 Cognitive Dimensions Framework

	C Drools Project
	D AHSL: Example
	E Code Generation Example
	F Questionnaire
	G Thematic Analysis
	References

