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Abstract11

There is a growing realization that experimental tasks that produce reliable
effects in group comparisons can simultaneously provide unreliable assess-
ments of individual differences. Proposed solutions to this “reliability para-
dox” range from collecting more test trials to modifying the tasks and/or the
way in which effects are measured from these tasks. Here we systematically
compare two proposed modeling solutions in a cognitive conflict task. Using
the ratio of individual variability of the conflict effect (i.e., signal) and the
trial-by-trial variation in the data (i.e., noise) obtained from Bayesian hier-
archical modeling, we examine whether improving statistical modeling may
improve the reliability of individual differences assessment in four Stroop
datasets. The proposed improvements are 1) increasing the descriptive ad-
equacy of the statistical models from which conflict effects are derived, and
2) using psychologically-motivated measures from cognitive models. Our
results show that modeling choices do not have a consistent effect on the
signal-to-noise ratio: the proposed solutions improved reliability in only one
of the four datasets. We provide analytical and simulation-based approaches
to compute the signal-to-noise ratio for a range of models of varying sophis-
tication and discuss their potential to aid in developing and comparing new
measurement solutions to the reliability paradox.
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12

Cognitive conflict is commonly assessed using experimental paradigms by comparing condi-13

tions requiring higher versus lower levels of cognitive control. One such paradigm is the classic14

color-Stroop task (Stroop, 1935), in which participants indicate the color in which a color-word is15

printed. The Stroop effect is conventionally measured by the response time (RT) difference be-16

tween trials in which the printed color and the meaning of the word are different (i.e., incongruent;17

e.g., “red” written in blue) and trials in which they match (i.e., congruent; e.g., “red” written in18
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red). Similar cognitive conflict paradigms with a congruency manipulation are the Flanker (Erik-19

sen & Eriksen, 1974) and the Simon task (Simon & Rudell, 1967). In all of them, the incongruent20

condition requires more control to inhibit automatic associations between the wrong response and21

irrelevant information (e.g., color). Positive conflict effects, that is the RT difference between the22

incongruent and the congruent conditions, provide an index of cognitive control necessary to man-23

age the conflict (Hommel, 2011; MacLeod, 1991; Ridderinkhof, Wylie, van den Wildenberg, & et24

al., 2021).25

Conflict effects are highly robust at the population-level – in fact, the Stroop effect is even26

considered universal (Haaf & Rouder, 2017; MacLeod, 1991). At the individual-level, however, the27

picture is more complicated. While almost everyone seems to show a conflict effect, true individual28

differences are assessed with a lot of uncertainty and are masked by measurement error. This sit-29

uation has been labeled the ”reliability paradox” (Hedge, Powell, & Sumner, 2018): experimental30

control, which has the desirable effect of increasing validity, also tends to reduce individual differ-31

ences, and hence decreases reliability (Keye, Wilhelm, Oberauer, & et al., 2009; Paap & Greenberg,32

2013; Pettigrew & Martin, 2014; Rey-Mermet, Gade, & Oberauer, 2018).33

To better understand reliability in experimental tasks, consider typical Stroop task data34

from I participants with two conditions (i.e., congruent and incongruent trials), and K trials35

per condition. For illustrative purposes, we use the simplest model possible, the normal-normal36

model. Individual i’s mean RT differences between the conditions follow a normal population-level37

distribution,38

Yiinc − Yicon ∼ Normal(µθ, σ
2
θ + 2σ2

K
),

with mean µθ and variance σ2
θ + 2σ2

K , where µθ is the population mean of the conflict effect, σθ the39

true individual variation and σ the measurement error1. By ”true individual variation”, we mean40

the extent to which people differ quantitatively in their conflict effect if we had an infinite number41

of observations. By measurement error, we mean the confounding variability that exists because42

participants’ RTs vary across trials, for example due to motor and perceptual processes. Using43

hierarchical modeling, one can estimate both σθ and σ as well as the population mean µθ.44

Reliability is commonly defined as the ratio between true between-subjects variance σ2
θ and45

total variance, where the latter is the sum of true between-subjects variance in the effect of interest46

and an error term:47

r = σ2
θ

σ2
θ + σ2

E

.

1In this paper, we use the terms "variability" and "variation" interchangeably to refer to both variance and standard
deviation (i.e., the square root of the variance)
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In experimental tasks with two main conditions of interest, such as the Stroop task, the error48

term is twice the squared standard error (see Rouder & Haaf, 2019, for more details),49

σ2
E = 2σ2

K
,

where K is the number of trials performed per condition. Therefore, the reliability term becomes50

r = σ2
θ

σ2
θ + 2σ2

K

.

Rouder and Haaf (2019) pointed out that to understand the reliability paradox it is important51

to acknowledge that reliability is not ”portable”: even for otherwise identical tasks, reliability differs52

with K. This is due the fact that as K grows, the standard error decreases and the reliability53

increases. Rouder, Kumar, and Haaf (2019) proposed that the suitability of a conflict task for54

individual-differences research instead be evaluated in terms of the signal-to-noise ratio (SNR)55

γ = σθ

σ
,

where the signal is the individual variability of the conflict effect, σθ, and the noise is the trial-to-56

trial variability in RT, σ. Using hierarchical modeling Rouder et al. (2019) found that the ratio, γ,57

was around 1/7 across a large set of conflict tasks, leading them to conclude that for conventional58

conflict tasks, K > 500 (i.e., over 1000 trials per participant) is required to obtain sufficiently59

reliable measurement.60

Low reliability, and the impracticality of collecting that many trials, has spurred research61

to develop more reliable ways of measuring cognitive control in general and cognitive conflict in62

particular. One direction has been to abandon conflict measures based on RT differences, as taking63

a difference doubles the measurement error (Draheim, Mashburn, Martin, & Engle, 2019). Instead,64

it has been suggested that cognitive control should be assessed using accuracy-based, adaptive65

tasks or the number of correct (in)congruent trials performed within a fixed time frame, with66

confounding from overall speed partialed out. However, some of these approaches sacrifice the67

validity of RT difference scores, which is evidenced by a large body of experimental literature, and68

risk confounding from individual differences in processing speed (Kucina et al., 2023; Rouder et al.,69

2019).70

Kucina et al. (2023) used an alternative approach to improve reliability. They used the SNR71

γ to compare, combine, and refine traditional conflict tasks. They also refined the RT difference72

measure itself and took into account that RT distributions are well described by a shifted log-73

normal distribution (Heathcote & Love, 2012), improving the descriptive adequacy of the model74

used. They reported SNRs for conflict effects in the range of 1/3 to 1/2, corresponding to clas-75

sic reliability values of 0.8 or higher, with only 100 trials. In related work, Haines et al. (2020)76

found that modeling RT as lognormally distributed improved test-retest reliability in several con-77

flict datasets (Hedge, Powell, & Sumner, 2018), a delay-discounting task (Gawronski, Morrison,78

Phills, & Galdi, 2017), and an Implicit Association Test (Ahn et al., 2020). More generally, Haines79

et al. (2020) argued that simple atheoretical summaries, such as conflict effects based on mean80

RT, are unable to validly characterize the underlying psychological processes and recommended a81

“generative modeling approach“ instead to overcome a “theory-description gap”. Consistent with82

this recommendation, Hedge, Powell, Bompas, Vivian-Griffiths, and Sumner (2018) demonstrated83

that it can be important to simultaneously account for accuracy and RT because inconsistent re-84

lationships between accuracy-based and RT-based effects are widespread. Individual differences in85

this speed-accuracy trade-off may potentially contribute to the unreliability of RT-based conflict86
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effects. Evidence-accumulation models can disentangle these confounding processes (Hedge, Powell,87

Bompas, et al., 2018).88

In summary, the reliability paradox has triggered a wide range of responses in the commu-89

nity. The proposed solutions range from refining and reinventing traditional tasks and measures,90

to advocating for theoretically-motivated modeling approaches that provide psychologically mean-91

ingful measures of cognitive conflict and a more complete and descriptively more accurate account92

of choice RT performance. Here we investigate the degree to which different modeling choices93

influence the SNR.94

Comparing the Reliability of Model-Based Conflict Effects95

Does improving the descriptive adequacy of the model from which conflict effects are derived96

improve the SNR? Can a cognitive model that provides a psychologically meaningful characteriza-97

tion of performance detect relatively more signal in a given dataset than a purely statistical model?98

And to what extent does this depend on the dataset? We will use the SNR of conflict effects as99

measured by variants of the Stroop task to answer these questions.100

Rouder and Mehrvarz (2024) suggested that the SNR can be used as an indicator for reliability101

that is independent of the trial size. To see the relationship between reliability and SNR, note that102

reliability can be re-expressed in terms of the ratio γ,103

r = γ2

γ2 + 2
K

.

In theory, the independence of the number of trials makes γ a portable indicator of reliability104

(Rouder & Haaf, 2019). In practice, however, the SNR does not always prove to be portable.105

Kucina et al. (2023) modeled the possibility that individual differences in conflict effect and trial-106

to-trial variability changes with K and computed the SNR as a function of the number of trials.107

After de-trending to account for decreased mean RT with practice (Evans, Brown, Mewhort, &108

Heathcote, 2018; Heathcote, Brown, & Mewhort, 2000), their results indicated that the between-109

subjects variability σθ decreased as more trials were performed (i.e., individual differences decreased110

with practice). Although this result raises doubts about the portability of γ, they showed that the111

SNR can be useful for comparing reliability among tasks for a fixed K. Whether the SNR is portable112

or not, however, does not affect its usefulness for our current purpose: comparing reliability among113

models of the same task for a fixed K.114

We investigate the effects of closing the “theory-description gap” (Haines et al., 2020) on115

the SNR by progressively improving the descriptive adequacy and theoretical underpinning of the116

models used to quantify the conflict effect. We examine how reliably various models can detect117

individual differences in four Stroop datasets: we move from purely statistical models, such as118

the normal or (shifted) lognormal distribution that provide a descriptive characterization of RT119

distributions, to cognitive models, such as the lognormal race and the racing diffusion models that120

simultaneously account for choice accuracy and RTs and that provide a psychologically meaningful121

account of performance. We show how the SNR can be computed analytically for these five models122

and outline a simulation-based approach that is more broadly applicable to any model2.123

The main argument for more complex statistical models of the conflict effect is that de-124

scriptive adequacy may increase the SNR (Haines et al., 2020). A better fit means more accurate125

measurement of individual differences and the noise term, the components of the SNR. Additionally,126

cognitive models may further increase the SNR. By adding psychologically meaningful parameters,127

some variability that is attributed to noise in statistical models may be explained by cognitive128

2Any model with unbiased (e.g., maximum likelihood) estimators
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models. Therefore, cognitive modeling may increase the SNR by decreasing its denominator, the129

noise term, which is critical for reliable assessment of individual differences in Stroop effects.130

Method131

From the Normal Model to the Racing Diffusion Model132

The five models employed are illustrated in Figure 1. The first three are purely RT-based133

Bayesian hierarchical models that were also used by Haines et al. (2020). They are shown in in-134

creasing order of descriptive adequacy: a normal model, which makes the unrealistic assumption135

that RTs are normally distributed and assigns probability to negative RTs, followed by two models136

that account for the characteristic right skew of empirical RT distribution by assuming a lognormal137

parametrization, one with and one without an estimated shift parameter. The shift parameter en-138

sures that the lower bound of the RT distribution is shifted away from zero, excluding unrealistically139

fast RTs.140

We then use two psychologically-grounded evidence-accumulation models, the lognormal race141

model (LNR; Heathcote & Love, 2012) and the racing diffusion model (RDM; Tillman, Van Zandt,142

& Logan, 2020), both providing a comprehensive account of performance by simultaneously ac-143

counting for response choices and the corresponding RTs (see also Matzke, Logan, & Heathcote,144

2020). Racing evidence-accumulation models have a long history in psychology because they pro-145

vide a principled yet flexible approach to describe and explain performance in a broad range of146

tasks (Heathcote & Matzke, 2022). Both the LNR and the RDM assume that decisions are made147

by a process of accumulating evidence until a threshold amount is reached, which then triggers a148

response. In particular, the models assume an independent race between a set of evidence accumu-149

lators, corresponding to the different response options. In terms of the color-Stroop task, this means150

separate racers for each response option (e.g., left button for "green" and right button for "red")151

that race against each other. The racer that wins determines the response. Individuals may start152

accumulating evidence at different start points and/or set different thresholds to vary the trade-off153

between the speed of their responses and the accuracy of their choices (Donkin & Brown, 2018).154

For example, a smaller distance from the starting point of evidence accumulation to the response155

threshold leads to faster but less accurate responses. Conversely, larger distances lead to slower156

but more accurate responses. Similar to the shifted lognormal model, the cognitive models also157

feature a ”non-decision time” parameter that accounts for time spent to encode evidence from the158

choice stimulus and to produce a response. This parameter shifts the finishing time distributions159

and ensures that the lower bound of the RT distributions is greater than zero.160

The LNR (Heathcote & Love, 2012) was chosen because it forms a natural extension of the161

RT-only models by assuming a lognormal parameterization but also accounting for choice accuracy.162

The model assumes that the rate of evidence accumulation and the distance between the start163

point and threshold follow independent lognormal distributions. As a result, the time for a single164

accumulator to reach its threshold (i.e., the finishing time) also follows a lognormal distribution.165

When accuracy is perfect, the observed RT distribution follows a shifted lognormal distribution,166

consistent with the use of this distribution by Haines et al. (2020). However, when performance is167

not perfect, as is typically the case for Stroop data (see Table 1 for average error rates in the four168

data sets we examine), the only RT-based shifted lognormal model is mis-specified. Here we use169

the LNR model to assess whether the SNR improves when accuracy is also taken into account.170

A limitation of the LNR model is that the rate of evidence accumulation and the distance171

from starting point to threshold are not separately identified because they combine linearly. As172

a result, the conflict effect of the LNR confounds individual differences in response cuation and173

the effects of congruency on the rate of evidence accumulation. The RDM (Tillman et al., 2020)174
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addresses this challenge to validity by allowing us to separately estimate evidence-accumulation175

rates and response thresholds.176

The RDM (Tillman et al., 2020) assumes that each of the accumulators is a Wiener diffusion177

process with an evidence-accumulation rate v, a starting point of 0, and a response threshold β.178

Trial-to-trial variability in behavior is caused by stochastic accumulation, that is, during accu-179

mulation, the evidence-accumulation rate changes from moment to moment due to the addition180

of fractional Gaussian noise. The finishing time distribution of each accumulator is an inverse181

Gaussian distribution (i.e., Wald distribution; Wald, 1947). Here we use the RDM to investigate182

whether using psychologically-grounded measures of cognitive conflict as captured in the evidence-183

accumulation rate parameter improves the SNR.184

Normal Model

Lognormal Model

I
ψ

Shifted Lognormal Model

I
ψ

Lognormal Race Model

β

ψ
I

ν1 ν2

Racing Diffusion Model

Figure 1 . Model overview. The plots show exemplary shapes of the corresponding response and
finishing time distributions as assumed by the respective models. The lightgrey vertical line indi-
cates response time (RT) = 0 on the x-axis. The normal model crosses this line, demonstrating
that the normal model also allows for negative RTs. The lognormal model accounts for the
fact that RTs can only be positive and that their distribution is typically skewed. The shifted
lognormal model additionally accounts for the fact that RT distributions are shifted away from
zero, whereby ψ indicates the shift parameter. The lognormal race model (LNR) additionally
accounts for choice errors. The model conceptualizes decision-making as an independent race be-
tween evidence accumulators, one for each response option, until a threshold is reached which then
triggers a response. Depicted are the finishing time distributions of the matching and mismatching
accumulators (i.e., stimulus and response (mis)match). The dashed lines show observed distribu-
tions of the respective racers (i.e., those that won the race), scaled by their winning proportions.
ψ indicates the non-decision time parameter. The racing diffusion model (RDM) separately es-
timates the evidence-accumulation rate and the threshold parameters. The yellow paths depict an
exemplary race between the matching and mismatching accumulators. The matching accumulator
(darker yellow) reaches the threshold β first, resulting in a correct response on that trial. ν1 and
ν2 refer to the matching and matching evidence-accumulation rate parameters.
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We deliberately chose to explore the performance of relatively standard evidence-185

accumulation models as opposed to more complex models specifically developed for conflict tasks.186

Although conflict models such as the spotlight diffusion model (White, Ratcliff, & Starns, 2011)187

align more closely with the cognitive processes assumed to underlie performance in these tasks,188

they are limited in terms of tractability: the models grapple with pronounced parameter trade-offs189

and hierarchical estimation is not straightforward. As a result, despite their theoretical merits,190

they are less suitable as measurement models to examine individual differences in conflict tasks.191

The full Bayesian hierarchical model specification can be found in the supplementary mate-192

rials. The three purely RT-based models, the normal, the lognormal, and the shifted lognormal193

models, are parameterized such that the (log) means are decomposed into an intercept αi and a194

conflict or congruency effect θi for individual i. We allow the (log) standard deviation to vary195

across individuals, σi, but not across conditions (i.e., congruent vs. incongruent). For the shifted196

lognormal model, we also estimate individual shift parameters ψi which remain the same across197

conditions. The LNR is parameterized such that the log mean of the accumulator that matches198

the stimulus is decomposed into an intercept α1i and a conflict effect θi. The corresponding log199

standard deviation, σ1i, is allowed to vary across individuals but again not across conditions. Due200

to high accuracy rates in our analyzed datasets (see Table 1), we fix the log mean and log standard201

deviation of the accumulator that mismatches the stimulus across individuals and estimate an in-202

tercept only and no conflict effect (i.e., we estimate α2 and σ2). Just like in the shifted lognormal203

model, we also estimate a non-decision time parameter for each individual, ψi. Lastly, for the RDM,204

we decompose the matching evidence-accumulation rate into an intercept α1i and a conflict effect205

θi. Note that we only model a conflict effect on the rate because we expect that the cognitive con-206

flict will impact the evidence accumulation rate at which participants respond to the (in)congruent207

stimuli. In contrast, the individual response thresholds are set at the beginning of a trial and we208

do not expect stimulus encoding or motor control processed to differ across conditions. Similar to209

the LNR specification, we estimate an intercept only and do not allow for individual differences in210

the mismatching evidence-accumulation rate, α2 (see Lüken, Heathcote, Haaf, & Matzke, 2023).211

Furthermore, we estimate individual response thresholds, βi, and non-decision time parameters, ψi,212

which were fixed across congruency conditions and accumulators.213

Estimating Signal-to-Noise Ratios214

All models have a designated parameter reflecting the numerator of the SNR, σθ (i.e., in-215

dividual differences in the conflict effect). However, this is not the case for its denominator. To216

determine the trial-by-trial variation, we estimate the standard error of the conflict effect. Note217

that in the case of the normal model, the standard error is simply 2σ2

K and that σ can be directly218

estimated using hierarchical modeling and interpreted on the real line (see Rouder & Haaf, 2019;219

Rouder et al., 2019).220

For the normal model, we could use the formula provided by Rouder and Mehrvarz (2024)221

to obtain a point estimate of γ from RT data. However, we prefer to use Bayesian hierarchical222

modeling (Lee, 2011) for all models for several reasons. First, hierarchical models partition the223

variability in data into between and within-participant components. Second, Bayesian estimation224

naturally provides measures of uncertainty in γ estimates, providing a basis for inference about225

the SNR. Third, Bayesian hierarchical models are well suited for estimating the parameters of226

evidence-accumulation models such as the LNR and RDM, as well as the shift parameter of the227

lognormal distribution when it is estimated (e.g., Heathcote et al., 2019; Stevenson et al., 2024).228

Hierarchical modeling typically directly provides an estimate of the between-subjects variabil-229

ity of interest, σθ for all models. The models just need to have parameters reflecting the difference230
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between the congruent and incongruent conditions (i.e., θi). For all but the RDM, the individ-231

ual noise parameters are also directly provided (i.e., σi for the normal and the three lognormal232

models): σi, the shape parameter of the lognormal distribution and standard deviation of the log-233

RTs, directly reflects the individual trial-by-trial variation. Moreover, within models, σθ and σi234

are on the same scale (i.e., on the real line in the normal model and on the log scale in the three235

lognormal models). Therefore, the units cancel out, making the ratios comparable to each other.236

Since we assume individual noise parameters, we need to average estimates of σi across individuals,237

i = 1, ..., I:238

γ = σ̂θ√
1
I

∑I
i=1 σ̂

2
i

(1)

Finding an expression for the noise term σi in the RDM is more complicated. Contrary to the239

other models, trial-by-trial variation is not explicitly represented as a model parameter. Besides the240

hierarchical structure that we place on top of the model parameters, our specification of the RDM241

has one inherent source of variability: within-trial variation of the drift rate, which is described242

by a Wiener diffusion process (Tillman et al., 2020). However, this parameter reflects variation243

within trials and is conventionally set to 1 to make the model identifiable. To get an estimate of244

between-trial variation or measurement error, the standard error of the conflict effect needs to be245

determined. Let ν̂icon and ν̂iinc be individual i’s matching evidence-accumulation rate estimates in246

the congruent and incongruent condition such that ∆ν̂i = ν̂icon − ν̂iinc represents the conflict effect.247

To get an expression for the noise, we need to compute the variance V (∆ν̂i). An expression for this248

variance can be derived as follows:249

V(ν̂icon − ν̂iinc) = V(ν̂icon) + V(ν̂iinc) − 2Cov(ν̂icon , ν̂iinc)
V(v̂) = (E(v̂))2 − E(v̂2)

E(v̂) =
√
K

Γ(K − 3/2)
Γ(K − 1)

( 1
Kβ

+ v

)
E(v̂2) = K

K − 2

(
v2 + 3

K2β2 + 3v
Kβ

)
E(v̂1v̂2) = K

K − 2

( 1
Kβ

+ ν1

) ( 1
Kβ

+ ν2

)
Cov(v̂1, v̂2) = E(v̂1v̂2) − E(v̂1)E(v̂2)

Note that Γ is the gamma function. The proof is provided in the supplementary materials.250

This effect variance reflects the standard error
√

2σi√
Ki

, which can be transformed to get an estimate251

of the individual noise terms σi:
√

V (∆ν̂i
)Ki

2 where Ki is the number of trials per condition that252

individual i performed. Averaging across individuals, the SNR for the RDM is:253

γ = σ̂θ√
1
I

∑I
i=1

V (∆ν̂i
)Ki

2

. (2)

In order to capture uncertainty in γ estimates, we calculate the ratio for all available posterior254

samples of the individual RDM parameters.255

The standard error of the effect of interest within a model can also be computed using a256

simulation-based approach. The details are provided in the supplementary materials. The ad-257

vantage of the simulation-based approach is that it is more broadly applicable than an analytical258

expression which is specific to the particular model. However, the simulation-based approach259
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Table 1
Descriptive statistics (mean RT and accuracy), number of participants (I), number of trials per
congruency condition (K), and task type.

RT (SD) Accuracy I K Task type
Enkavi et al. (2019) .73 (.21) .96 522 48 Color Stroop
Pratte et al. (2010) .77 (.37) .96 38 164 Color Stroop
Rey-Mermet et al. (2018) .59 (.15) .96 128 95 Number Stroop
Von Bastian et al. (2016) .75 (.25) .97 121 48 Number Stroop

requires an unbiased maximum-likelihood estimator for the quantity of interest, which may not260

always be available. For the RDM, this quantity is the evidence-accumulation rate, which has such261

a maximum-likelihood estimator (i.e., the natural estimator; see supplementary materials).3262

Results263

We applied the five models to four datasets: number-Stroop tasks by (Rey-Mermet et al.,264

2018, younger age group) and by Von Bastian, Souza, and Gade (2016), color-Stroop tasks by265

Pratte, Rouder, Morey, and Feng (2010) and by Enkavi et al. (2019). We only analyzed the266

(in)congruent conditions and retrieved all datasets from the preprocessed database made available267

by Haaf, Hoffstadt, and Lesche (2024).268

Before estimation, we removed the first three trials of every block, neutral trials, and RTs269

<= 0.25 seconds. Two studies (Enkavi et al., 2019; Rey-Mermet et al., 2018), used response270

windows to ensure fast responding. This approach lead to somewhat bimodal RT distributions271

and convergence problems for some models. We therefore removed very slow responses, specifically272

responses that were at the upper limit of the response window (Rey-Mermet et al., 2018: RT273

>= 1.9 s;, Enkavi et al., 2019: RT > 1.5 s). Pratte et al. (2010) did not have a response274

window, but the very long RTs caused some convergence problems, so we excluded them (RT275

>= 3 s). We also excluded participants with fewer than 50% remaining trials. Overall, only276

few trials and participants were excluded (von Bastian et al., 2016: 0.9%, Rey-Mermet et al.,277

2018: 5% of the observations including all observations from one participant due to having278

less than 50% trials after data cleaning; Pratte et al., 2010: 5%; Enkavi et al., 2019: 4% of the279

observations including all observations from one participant due to having less than 50% trials after280

data cleaning). For the fitting of the (shifted log)normal models, we also removed all incorrect trials.281

282

We estimated all models using stan(Stan Development Team, 2023)4 using weakly informa-283

tive priors based on prior predictive checks and known plausible ranges of RTs in seconds5. The284

descriptive adequacy of the normal model was consistently worse than for the other four models285

3There exists also a straightforward method-of-moments estimator for the evidence-accumulation rate, but this is
not a maximum-likelihood estimator and is biased (see the supplementary materials).

4We used the following R packages: R (Version 4.2.1; R Core Team, 2022) and the R-packages DBI (Version 1.1.3;
R Special Interest Group on Databases (R-SIG-DB), Wickham, & Müller, 2022), dplyr (Version 1.1.3; Wickham,
François, Henry, Müller, & Vaughan, 2023), extraDistr (Version 1.9.1; Wolodzko, 2020), ggplot2 (Version 3.4.3;
Wickham, 2016), papaja (Version 0.1.1; Aust & Barth, 2022), patchwork (Version 1.1.3; Pedersen, 2023), RSQLite
(Version 2.3.1; Müller, Wickham, James, & Falcon, 2023), rstan (Version 2.21.5; Stan Development Team, 2022),
scales (Version 1.2.1; Wickham & Seidel, 2022), StanHeaders (Version 2.21.0.7; Stan Development Team, 2020), stringr
(Version 1.5.0; Wickham, 2022), tidybayes (Version 3.0.2; Kay, 2022), tidyr (Version 1.3.0; Wickham, Vaughan, &
Girlich, 2023), and tinylabels (Version 0.2.3; Barth, 2022).

5See the supplementary materials for the prior specification, estimation results, and the detailed posterior predic-
tive assessment of the absolute descriptive adequacy of the models (i.e., the match between the observed response
time distributions and the posterior predictions).
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because the normal model cannot account for the characteristic skewness of RT data (see Figure286

2). The shifted lognormal, the LNR, and the RDM showed good descriptive adequacy, however the287

RDM and the LNR both had some difficulties capturing slow errors in the incongruent condition,288

particularly for the dataset by (Rey-Mermet et al., 2018, see the Appendix and supplementary289

materials). To quantify descriptive adequacy, we computed the root mean squared error (RMSE)290

for the correct RTs and in the case of the LNR and RDM, additionally for the proportion of correct291

responses6. We simulated 500 datasets from the posterior predictive distributions and computed292

the RMSE for each of the simulated datasets and several quantiles (see Table 2 and 3 in the Ap-293

pendix). For most datasets, RMSE steadily decreased for the first three models and the RMSE for294

the LNR tended to be smaller than for the RDM.295

0 1 2 3

Normal

0 1 2 3

Lognormal

0 1 2 3

Response time

Shifted lognormal

0 1 2 3

Lognormal race

0 1 2 3

Racing diffusion

Figure 2 . Observed (black) and predicted (grey) correct response time distributions collapsed across
participants and conditions for the dataset by Von Bastian et al. (2016). The grey lines represent
500 samples from the posterior predictive distribution. The lognormal race and the racing diffusion
model distributions also contain the incorrect responses.

We then computed the SNRs by plugging the parameter posterior samples into Equations (1)296

and (2) (see Figure 3). Note that the simulation-based approach leads to approximately the same297

result7. Within datasets, the credible intervals overlap substantially, suggesting that the choice of298

the model does not substantially influence the ratio in the analyzed datasets. The only exception299

is the Von Bastian et al. (2016) dataset, where the posterior median increases from below 1
10 for300

the normal model to around 1
5 for the RDM. Notably, the SNRs of the dataset by Enkavi et al.301

(2019) are considerably higher than those of the other datasets.302

6We did not use model selection criteria such as the deviance information criterion (DIC) due to the fact that the
models are not comparable as they were fitted to different data (i.e., the (shifted log)normal models were fitted to
correct responses only).

7see the supplementary materials for the comparisons
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Von Bastian et al., 2016

Rey-Mermet et al., 2018

Pratte et al., 2010

Enkavi et al., 2019

0.0 0.1 0.2 0.3

Signal-to-noise ratio γ

Normal

Lognormal

Shifted-lognormal

Lognormal race

Racing diffusion

Figure 3 . Posterior medians and 95% credible interval of the signal-to-noise ratios γ as computed
by the analytical method.

Enkavi et al., 2019
Pratte et al., 2010

Rey-Mermet et al., 2018
Von Bastian et al., 2016

0.00 0.02 0.04 0.06

Normal

0.01 0.03 0.05 0.07

Lognormal

0.03 0.05 0.08 0.10

Signal  σθ

Shifted Lognormal

0.04 0.06 0.09 0.11

Lognormal race

0.18 0.27 0.36 0.45

Racing diffusion

Enkavi et al., 2019
Pratte et al., 2010

Rey-Mermet et al., 2018
Von Bastian et al., 2016

0.13 0.19 0.26 0.32 0.19 0.24 0.29 0.34 0.30 0.38 0.47 0.56

Noise  σ

0.33 0.41 0.49 0.58 1.40 1.59 1.77 1.96

Figure 4 . Posterior medians and 95% credible intervals of the numerator (i.e., signal) and denom-
inator (i.e., noise) of the signal-to-noise ratios.

Looking at the components of the SNRs separately (Figure 4), the ratio differences across303

datasets and within models seem to be driven by both the extent of individual differences in the304

Stroop effect (i.e., signal) and by trial-by-trial variation (i.e., noise). Note that the credible interval305

(CrI) of the noise term are narrower than those of the signal term because the former is estimated306

from all observations. In contrast, the CrI of σθ differ in width across datasets as more participants307

leads to more precise estimation (see Table 1). Across models, the order of the terms stays largely308

the same – with two exceptions. (1) Moving from the normal model to the RDM for the data by309

Von Bastian et al. (2016), we gain relatively more signal, though note that the scales of the signal310

and the noise terms are not directly comparable. Within the components of the other datasets,311
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there does not appear to be a dominating signal or noise term across models, which is not surprising312

given that the CrI of the SNRs are overlapping.313

Discussion314

Experimental tasks that produce robust group-level differences can simultaneously produce315

unreliable individual differences. Proposed solutions to this “reliability paradox” (Hedge, Powell,316

& Sumner, 2018) include collecting more trials per participant, modifying the cognitive tasks,317

using more descriptively adequate models, and using psychologically-motivated measures derived318

from cognitive models to quantify individual differences in the construct of interest. Here we319

focused on the last two solutions, and built on the work by Rouder and Mehrvarz (2024) and320

Rouder et al. (2019) by using signal-to-noise ratios (SNRs) as a tool for comparing models of321

varying sophistication. The SNR is a useful measure of reliability quantifying how well individual322

differences can be detected relative to measurement error. We provided analytical solutions to323

compute the ratio for five models from the output of Bayesian hierarchical modeling: the normal,324

lognormal, shifted lognormal, lognormal race (LNR), and racing diffusion models (RDM). Moreover,325

we provided a general algorithm that - whenever an unbiased estimator of the quantity of interest326

is available - can be used to compute the SNR for any model. We then applied the five models to327

four Stroop datasets.328

Our analysis showed that modeling choices do not have a consistent effect on the SNR: the329

proposed solutions improved reliability in only one of the four datasets, and we found no consistent330

ordering or pattern as to which model yielded the highest SNR across datasets. Notably, improved331

descriptive accuracy did not correspond to a higher SNR. The normal model is clearly unable332

to accommodate the slow tail of typical RT distributions, yet the corresponding SNRs are not333

consistently worse than those of the RDM or lognormal models that can account for the skewness334

in observed RTs. These differences did not appear to be explained by an effect of trial number or335

sample size. Perhaps a more systematic assessment of more datasets might help identify dataset336

or task characteristics that are predictive of higher SNRs for one model over another. As of now,337

the preferred model can only be established after fitting all models using hierarchical modeling and338

computing the SNRs.339

In our analyses, we only looked at a subset of potential models. For example, other relevant340

models are the diffusion decision model (Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004) or341

the linear ballistic accumulator model (Heathcote & Love, 2012). However, our approach can be342

extended to these models. In both cases the trial-by-trial variation is not directly reflected in343

a model parameter. Yet, there are two ways of computing the measurement error term of the344

SNR: (1) one can try to derive it analytically by computing the variance of the effect of interest345

or standard error, as we have done for the RDM. (2) one can use a simulation-based approach if346

unbiased maximum likelihood estimators are available.347

The focus of this paper is the reliability of measures. However, the validity of a measure348

(i.e., its ability to measure the intended construct) is also important. Cognitive model parameters349

have a clear psychological interpretation and so intrinsically support valid inferences as long as the350

model accurately represents the data and the process that generates it. So, even if a particular351

model parameter might not lead to a higher SNR, it might still be a better measure. For instance,352

suppose we analyze a dataset in which speed-accuracy trade-offs are present. Because the LNR or353

RDM can account for such trade-offs by combining information about accuracy and speed they are354

likely to provide more valid measures. However, estimating a model providing a valid psychological355

account may also require particular qualities in the data and the design from which it comes. For356

example, Lüken et al. (2023) showed that low error rates compromised the quality of estimates of357
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the parameters of the diffusion decision model and the linear ballistic accumulator. It is possible358

that the low error rates in the datasets we analyzed here may have have had the same effect on the359

LNR and RDM, and that is the reason why they did not consistently perform better than the rest.360

Clearly, both reliability and validity need to be taken into account whenever researchers361

attempt to answer substantive questions about the nature of individual differences in cognitive362

control. Descriptive adequacy is also important, as a model that clearly misfits the data is unlikely363

to be valid. However, good fit alone does not ensure validity, the model must also provide a sensible364

account of psychological processes that could plausibly generate the data, preferably one that is365

backed up by converging evidence from prior literature (i.e., the same type of model has provided366

accurate and coherent accounts of data from related tasks and manipulations).367

In sum, the SNR can be used as a tool to identify the statistical or cognitive model that368

is best suited to examine individual differences in conflict data. We have provided analytical and369

simulation-based approaches to compute the SNR for a range of models of varying sophistication370

and showed that models that provide a better, and potentially more valid, description do not371

necessarily consistently improve the reliability with which individual differences in cognitive conflict372

are measured. Hence, we recommend that our methodology be deployed on a case-by-case basis to373

assess the effects of model choices on reliability.374
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Appendix499

Below, we present plots of the model fits (observed and predicted cumulative distribution500

functions) and tables displaying the RMSE for all models and datasets. Additional figures assessing501

the fits can be found in the supplementary materials.502
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Figure 5 . Observed and predicted cumulative distribution functions (CDFs) for Enkavi et al. (2019).
Observed = pink, blue = predicted, RDM = racing diffusion model, LNR = lognormal race model,
SLN = shifted lognormal model, LN = lognormal model, N = normal model. The predictions are
based on 500 sampled datasets from the posterior predictive distribution and plotted is the median
including 95% credible interval. The points show the 10%, 30%, 50%, 70%, and 90% quantiles
averaged across participants, separately for the two congruency conditions. Note that for the RDM
and the LNR, both the (defective) CDFs of correct and incorrect responses are shown, whereas for
the other models, only the CDFs of correct responses are depicted.
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Figure 6 . Observed and predicted cumulative distribution functions (CDFs) for Rey-Mermet et al.
(2018). Observed = pink, blue = predicted, RDM = racing diffusion model, LNR = lognormal
race model, SLN = shifted lognormal model, LN = lognormal model, N = normal model. The
predictions are based on 500 sampled datasets from the posterior predictive distribution and plotted
is the median including 95% credible interval. The points show the 10%, 30%, 50%, 70%, and 90%
quantiles averaged across participants, separately for the two congruency conditions. Note that for
the RDM and the LNR, both the (defective) CDFs of correct and incorrect responses are shown,
whereas for the other models, only the CDFs of correct responses are depicted.
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Figure 7 . Observed and predicted cumulative distribution functions (CDFs) for Pratte et al. (2010).
Observed = pink, blue = predicted, RDM = racing diffusion model, LNR = lognormal race model,
SLN = shifted lognormal model, LN = lognormal model, N = normal model. The predictions are
based on 500 sampled datasets from the posterior predictive distribution and plotted is the median
including 95% credible interval. The points show the 10%, 30%, 50%, 70%, and 90% quantiles
averaged across participants, separately for the two congruency conditions. Note that for the RDM
and the LNR, both the (defective) CDFs of correct and incorrect responses are shown, whereas for
the other models, only the CDFs of correct responses are depicted.
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Figure 8 . Observed and predicted cumulative distribution functions (CDFs) for Von Bastian et al.
(2016). Observed = pink, blue = predicted, RDM = racing diffusion model, LNR = lognormal
race model, SLN = shifted lognormal model, LN = lognormal model, N = normal model. The
predictions are based on 500 sampled datasets from the posterior predictive distribution and plotted
is the median including 95% credible interval. The points show the 10%, 30%, 50%, 70%, and 90%
quantiles averaged across participants, separately for the two congruency conditions. Note that for
the RDM and the LNR, both the (defective) CDFs of correct and incorrect responses are shown,
whereas for the other models, only the CDFs of correct responses are depicted.
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Goodness of fit (RMSE)504

Table 2
Median and 95 % credible interval of the root mean squared error based on the 1%, 10%, 30%, 50%,
70%, 90%, and 99% quantiles of the correct response times and 500 samples from the posterior
predictive distribution.

Enkavi et al. (2019) Pratte et al. (2010) Rey-Mermet et al. (2018) Von Bastian et al. (2016)
N 0.054 [0.051, 0.057] 0.168 [0.152, 0.184] 0.069 [0.064, 0.073] 0.126 [0.116, 0.136]
LN 0.011 [0.009, 0.013] 0.073 [0.045, 0.100] 0.054 [0.047, 0.059] 0.086 [0.071, 0.100]
SLN 0.019 [0.013, 0.024] 0.016 [0.006, 0.049] 0.027 [0.018, 0.035] 0.033 [0.013, 0.051]
LNR 0.016 [0.011, 0.021] 0.018 [0.007, 0.048] 0.031 [0.023, 0.038] 0.031 [0.023, 0.038]
RDM 0.025 [0.018, 0.031] 0.049 [0.018, 0.077] 0.027 [0.019, 0.034] 0.027 [0.019, 0.034]

Table 3
Median and 95 % credible interval of the root mean squared error computed on the proportion of
correct responses using 500 samples from the posterior predictive distribution.

Enkavi et al. (2019) Pratte et al. (2010) Rey-Mermet et al. (2018) Von Bastian et al. (2016)
LNR 0.001 [0.000, 0.003] 0.002 [0.000, 0.005] 0.001 [0.000, 0.004] 0.002 [0.000, 0.005]
RDM 0.001 [0.000, 0.003] 0.011 [0.006, 0.016] 0.001 [0.000, 0.004] 0.006 [0.002, 0.010]
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