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Abstract. New computed tomography (CT) algorithms are commonly de-

veloped in high-level programming languages, such as Python or MATLAB,

while low-level languages are used to support their computation-intensive op-
erations. In the past decade, graphics processing units (GPUs) have become

the de-facto standard for large parallel computations in areas such as computa-

tional imaging, image processing, and machine learning. Our fast-and-flexible
CT reconstruction software, ASTRA Toolbox, therefore already implemented

tomographic projectors, i.e., the core computational operations modeling the

X-ray physics, using NVIDIA CUDA (Compute Unified Device Architecture),
a low-level platform for computation on GPUs. However, the Python-C++

language barrier prevents high-level Python users from modifying these low-
level projectors, and, as a consequence, research into new tomographic algo-

rithms is more complex and time-consuming than necessary. With the ASTRA

KernelKit, we lifted tomographic projectors to Python and leveraged CuPy,
a numerical software like NumPy and SciPy that exposes CUDA to Python,

to obtain a fine-grained control over their efficiency and implementation. In

this article, we introduced our software and illustrated its importance for high-
performance and data-driven applications using examples from deep learning,

real-time X-ray CT, and kernel tuning.

1. Introduction. Computed tomography (CT) is an imaging technique utilized
in scientific, medical, and engineering disciplines to resolve the 3D interior of an
object from a series of 2D projection measurements. In the most commonly used
scanning geometry, conebeam CT, X-ray source, and detector describe a circular
path around the object. However, CT also exists for other imaging modalities and
acquisition geometries. For instance, neutron or proton tomography can offer a
different contrast than X-ray CT, and in electron microscopy, an electron beam
generates projection images from nano-scale objects that are tilted over a limited
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Figure 1. Software overview of ASTRA Toolbox, Tomosipo [23],
and ASTRA KernelKit, illustrating where its components are lo-
cated with respect to the Python-C++ language barrier. (a) and
(b) show two methods of accessing a projector in ASTRA Toolbox.
In comparison, the new ASTRA KernelKit uses a Python-based
projector, as well as run-time compilation of the CUDA kernel.
The figure is further explained in Section 3.1.

range of angles inside a vacuum. The wide range of imaging scenarios leads to a
vast body of tailored data-processing and reconstruction algorithms described in
the literature [22].

Most CT image reconstruction algorithms make use of at least one of two com-
mon building blocks: The forward projection (FP) maps the object to simulated
projection images by modeling the physics and geometry underlying the data ac-
quisition. The model is typically the linear X-ray transform. The backprojection
(BP) is the adjoint of the forward projection, and maps projection images into the
reconstruction volume. The ASTRA Toolbox provides software implementations of
these building blocks and is specifically designed to facilitate the implementation
and development of CT algorithms for nonstandard geometries [50]. The framework
is open source under GPLv3 (GNU Public License v3.0), written in C++, and co-
developed by Vision Lab at the University of Antwerp and Centrum Wiskunde &
Informatica (CWI) in Amsterdam. The ASTRA Toolbox has been used in multiple
tomographic disciplines, e.g., ptychography [2] or neutron imaging [25], and serves
as the back-end in several frameworks [23, 42, 26, 3].

Due to their pivotal role within algorithms, projection operators – commonly
referred to as “projectors” – constitute a significant research focus within compu-
tational imaging, inverse problems, and scientific computing [22, 21, 39, 15]. The
operators process the scan geometry, e.g., a conebeam or parallel beam source,
and circular or helical orbits to emulate X-ray (back)projection lines. The precise
algorithmic formulation thereof, which entails, for instance, the discretization and
interpolation in the volume, critically influences the accuracy and efficiency of recon-
struction. Also, computational aspects of projectors are of research interest [13].
To handle large datasets effectively, projectors need to employ memory-efficient
strategies, such as partitioning reconstruction volumes into manageable chunks.
Moreover, they frequently distribute tasks across multiple computing devices.
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Traditionally, ASTRA Toolbox users only invoke projectors indirectly via calls
to one of the pre-implemented CT algorithms, e.g., FBP (Filtered BackProjection),
FDK (Feldkamp-Davis-Kress), CGLS (Conjugate Gradient for the Least Squares
problem), or SIRT (Simultaneous Iterative Reconstruction Technique) [18, 28, 22,
45, 50]. Figure 1(a) illustrates this process. In the first step, a user passes input
data, such as the sinogram and geometry, to the algorithm. This is possible due
to a Python-C++ interface leveraging the Python-to-C compiler called Cython. In
the case of 3D data, the input is then directed to a projector based on NVIDIA
CUDA. This is a parallel computing platform and C++ programming model for
graphical processing units (GPUs). The final computation is then performed in a
CUDA kernel, which is a relatively small C++ function that runs on many GPU
cores (further discussed in Section 2.3).

In the past decade, algorithms and data pipelines in CT applications increasingly
adopted GPU acceleration for tasks beyond (back)projection. Notable are machine
learning (ML) and deep learning (DL) – data-driven algorithms that are leading
in the field of inverse problems in imaging [6, 1, 38]. As a consequence, there was
a need to pass GPU data more efficiently between external Python frameworks
(e.g., PyTorch or CuPy) and ASTRA projectors. In response, ASTRA Toolbox
introduced two functionalities. The first, GPULink, imports GPU arrays (tensors
in ML terminology) from external packages into ASTRA Toolbox. GPU arrays
are multidimensional Python arrays that are backed by GPU memory but can
directly be manipulated in Python. The second functionality, directFPBP, executes
CUDA projectors on such external data. When combined, they streamline the
use of projectors and enhance data exchange efficiency with external frameworks.
Tomosipo [23] leverages this functionality in a package with a more intuitive Python
front-end for geometry manipulations and visualization. Figure 1(b) illustrates how
this approach gave Python users more flexibility.

Recent advances such as the development of more advanced detector hardware,
data transfer, and storage capabilities have enabled the acquisition of ever larger
and more detailed X-ray CT datasets [32], for both laboratory X-ray systems and
synchrotron light source facilities. As a result, GPUs are becoming mainstream
hardware components for high-performance computing and frequently used in data
preprocessing pipelines. New algorithms, on the other hand, can no longer only
be tested on small datasets or toy problems anymore, but instead require a tight
integration with GPU-accelerated data processing tools. Scientists and developers
working on CT algorithms would therefore benefit from a more fine-grained control
over CUDA projectors. However, due to the Python-C++ language barrier, the
functionality of CUDA projectors has remained difficult to access up to now.

Recent versions of CuPy and NVIDIA CUDA Python have addressed this dif-
ficulty by unifying Python and CUDA into a single interface, which provides full
coverage of the low-level CUDA functions. Based on these developments, we present
ASTRA KernelKit : new high-level CUDA projectors that are fully accessible in
Python. In Figure 1(c), it is illustrated that the fundamental operations inside
the X-ray projection and backprojection, such as data operations or algorithmic
formulations, have now either shifted over the language barrier or can be compiled
during the Python script. This enables more flexible algorithm development as
well as debugging in Python. In this paper, we will explain these advantages and
showcase the approach for patch-based reconstructions for deep learning, real-time
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CT algorithms, and kernel tuning. The article first revisits CT and its implementa-
tion in the case of a conebeam geometry in Section 2, then provides an overview of
KernelKit in Section 3, and demonstrates its use for the aforementioned applications
in Section 4.

2. Tomographic reconstruction.

2.1. Projectors. The discretized reconstruction problem of CT can be stated as
retrieving the 3D object x ∈ RNxNyNz discretized on a voxel grid by solving the
linear inverse problem

y = Ax, (1)

where the forward projection A : x 7→ y represents the X-ray transform, and
y ∈ RNθNuNv denotes the measured projections at Nθ angles of an (Nu, Nv)-sized
detector. The adjoint, AT : y 7→ x, is the backprojection. In practice, y is often
not the direct quantity measured by a detector in an X-ray setup, but is instead
obtained after several preprocessing steps of the raw measurement data (e.g., using
a log-transform to invert Beer-Lambert’s law [28]).

Several discretization strategies can be considered to construct A as well as
its transpose AT [22, 52]. Each of the NuNvNθ rows of A, c.q. columns of AT ,
discretizes a single line integral associated with the X-ray transform. That is, it
chooses interpolation weights to approximate the integral

[Ax]u,v,θ =

∫ ∞

−∞
x (sθ + (dθ,u,v − sθ)t) dt, (2)

which describes the straight line from a point source sθ to a detector pixel midpoint
dθ,u,v through the volume x. For 3D projectors, ASTRA Toolbox estimates the line
integral (Eq. 2) with the Joseph kernel [27, 22]. In this ray-driven approach, each
integration point takes a trilinearly interpolated value from neighboring points on
the voxel grid. Importantly, the line is modeled such that it precisely arrives at a
detector pixel’s midpoint, and, hence, no re-interpolation is needed in the sinogram.
Conversely, during a voxel-driven backprojection, a bilinear interpolation at each
angle of the sinogram sums up to the voxel’s value [41]. In this case, all lines of
backprojection go precisely through the voxel’s center, and now re-interpolation is
avoided in the volume. The reader is referred to [22] (Chapter 9) for interpolation
formulae.

Due to the difference in forward and backward lines, the 3D conebeam FP and
BP projectors in ASTRA Toolbox are unmatched, i.e., the backprojector is not the
exact transpose of the forward projector. The approach, however, is advantageous
for an implementation on GPUs. All parallel threads (discussed in Section 2.3)
are independent of each other, which avoids potential race conditions, i.e., when
two threads would write to the same memory simultaneously [15]. On the other
hand, unmatched projectors lead to nonconvergence in iterative algorithms due to
a nonsymmetry of the iteration matrix [16]. In the presence of noise, this does not
always pose a problem [53].

2.2. Algorithms. To solve the inverse problem of CT (Eq. (1)), projectors consti-
tute the central algorithmic building blocks. We distinguish three main categories
of methods. Direct methods, such as FBP, use AT once. Iterative methods, such
as SIRT or (S)ART ((Simultaneous) Algebraic Reconstruction Technique), apply A
and AT multiple times to arrive at an estimate of x. ML algorithms, such as the
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unrolled primal-dual method [4], integrate projectors into neural networks. Here,
we provide examples from each category.

The FDK algorithm [18], an example of a direct method, is a filtered-backprojection
type method for the 3D conebeam geometry [15, 28]. After first, convolving the
measurements y with a suitable high-pass filter f , such as Ram-Lak [28], a single
backprojection step retrieves the volume:

x⋆ := AT (y ⊛ f). (3)

In comparison to iterative methods, the FDK method is comparatively fast, as it
requires only a single application of the backprojector AT . It is therefore well-suited
to applications in real-time tomography.

A commonly applied iterative method is the SIRT [22]. SIRT solves the weighted
least-squares problem

x⋆ = argminx∈Λ ∥Ax− y∥2R , (4)

where Λ formulates a set of constraints, and the norm ∥ · ∥R weighs the equations
using the row sums of A in a diagonal matrix R. The optimization is performed
iteratively using a gradient descent preconditioned with a diagonal matrix of col-
umn sums. Iterative methods are typically less susceptible to noise [22, 28]. They
are the basis to more sophisticated model-based iterative reconstruction (MBIR)
algorithms, which introduce additional constraints and prior models on x [1].

ML and DL are becoming ubiquitous in the field of inverse problems, imaging,
and image processing, and define the state of the art performance in these areas
[6, 1, 38]. These algorithms contain parameters (typically weights of affine-linear
mappings) that are optimized based on large training datasets. An example of ML
is the NN-FDK (Neural Network FDK) method [29], where an optimal Fourier filter
(e.g., f of Eq. 3 in Section 4.2) is learned based on a training dataset. DL for image
processing relies on using deep Convolutional Neural Networks (CNNs) that con-
sist of many sequential convolutional operations and nonlinearities. Projectors are
commonly integrated with these algorithms. In denoising or post-processing net-
works, FP or BP layers are added next to the trainable part of the CNN. In unrolled
algorithms [4], the structure of the neural network resembles that of an iterative
method. While these algorithms are not yet suited for large 3D reconstructions, the
design of new network architectures is an important part of ongoing research [44].

2.3. The ASTRA CUDA conebeam backprojector. In the ASTRA Toolbox,
projectors are implemented using CUDA [37]. Their implementations involve two
main tasks. First, projectors manage the reconstruction volume, projections, and
setup geometry, including handling transfers between the CPU (Central Processing
Unit) and GPU device. Second, they perform computations associated with the
line integrals described in Eq. 1. For the latter, building the projector A as a
(sparse) matrix in memory is generally inefficient or impractical. The matrix-vector
products Ax or ATy that most algorithms need are instead computed matrix-free.
This entails implementing a function that, e.g., directly computes Ax, given x as
input.

Kernels are CUDA functions that execute in many parallel threads on GPU
cores [37]. A GPU consists of several streaming multiprocessors to launch these
threads. Threads are divided into thread blocks, and each thread computes a small
portion of the parallel task. For CT, this portion corresponds to processing a small
part of the volume or projection data. In the ASTRA Toolbox, kernels are imple-
mented for 2D and 3D conebeam and parallel beam geometries. In this article, we
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Algorithm 1: The ASTRA Toolbox CUDA conebeam backprojection AT .

Input : Volume x ∈ RNx,Ny,Nz , projections y ∈ RNθ,Nu,Nv , source and
detector geometries.

Output: An updated x ∈ RNx,Ny,Nz .
1 const int N̄x, N̄y, N̄z, N̄θ ← 16, 32, 6, 32 ▷ ASTRA Toolbox defaults

2 TextureObject ỹ← ToTexture(y) ▷ Using a CUDA Array

3 • for θstart in {θ startN̄θ : 0 ≤ θstartN̄θ < Nθ} do
4 • for zstart in {zstartN̄z : 0 ≤ zstartN̄z < Nz} parallel do ▷ Blocks

5 • for i in [0 . . Nx − 1] parallel do ▷ N̄x threads

6 • for j in [0 . . Ny − 1] parallel do ▷ N̄y threads

7 • for k in [zstart . . zstart + N̄z − 1] do
8 • for l in [θstart . . θstart + N̄θ − 1] do
9 (p, q)← ProjectRay(source, detector, i, j, k, l)

10 xi,j,k ← xi,j,k+ Interpolate(ỹl, p, q)

Algorithm 1. The ASTRA Toolbox CUDA voxel-driven
conebeam backprojector algorithmAT . The algorithm sequentially
processes subsets of N̄θ angles (line 3), and volumetric chunks of
N̄z vertical voxels in parallel thread blocks (line 4). The •-loops
correspond to CPU code, •-loops to CUDA parallelization, and
•-loops to kernel code.

focus specifically on the 3D conebeam backprojection, using the previously men-
tioned voxel-driven approach, which is most commonly used in high-performance
and experimental-data scenarios. However, the concepts presented can be applied
to the other projectors in the same way.

The backprojector is summarized in Algorithm 1 using color-coded loops to
distinguish CPU code, CUDA parallelization, and kernel code. The main CPU
loop processes the projection data y by launching a kernel for each subset of
N̄θ projection angles sequentially. Each launch issues a sufficient number of 2D
N̄x, N̄y-sized thread blocks to cover the input volume. A single thread block is re-
sponsible for a fixed-size 3D N̄x, N̄y, N̄z-subvolume of x (cf. the green for loops).
The partitioning of the entire reconstruction problem is therefore defined by four
parameters N̄x, N̄y, N̄z, N̄θ (cf. line 1). In the ASTRA Toolbox, they are compiled
with constant values 16, 32, 6, 32 into the binary code. These values are taken after
a bruteforce search over multiple geometries and volume sizes. In Section 4.3, we
will explore different selections of parameters using a kernel tuning strategy.

Zooming in onto lines 7–10 of Algorithm 1 reveals the idea of the voxel-driven
approach. Rather than tracing rays backward though the volume, a single kernel
thread processes a stack of N̄z voxels and collects contributions from N̄θ projec-
tions. Doing so, GPUs can leverage the locality of projection data by coalescing
written operations to the reconstruction volume, i.e., by combining the writings
of multiple threads to adjacent memory locations into a single memory transac-
tion [41, 13]. Moreover, handling multiple voxels in a thread can reduce geometry
computations and benefit from instruction-level parallelism [24]. For each voxel
xi,j,k and projection angle l, a thread first computes the intersection of an X-ray
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at a point (p, q) ∈ R2 in the detector plane, using the spatial coordinates of the
X-ray source and voxel. It then calculates a contribution to xi,j,k via linear inter-
polation of the pixel values around (p, q) in yl. This is efficiently performed using
CUDA textures. Textures are specific read-only structures in CUDA that enable
fast bilinear or trilinear interpolation in 2D or 3D arrays. ASTRA Toolbox creates
such 3D texture, before the kernel call (line 2), with a 3D CUDA Array as the un-
derlying resource. A CUDA Array is a data structure in which elements are stored
with better spatial locality than linear memory. We will further discuss these data
structures in Section 4.3.

3. Software.

3.1. ASTRA KernelKit. KernelKit, our extension to the ASTRA Toolbox, is
designed to enhance the accessibility of tomographic projectors, like Algorithm 1,
for scientists working within the Python ecosystem. This facilitates prototyping
of new algorithms and customization for high-performance use cases. KernelKit
maintains the capability to work with nonstandard geometries, a prominent feature
in the ASTRA Toolbox.

To illustrate its advantages, we compare KernelKit to the most flexible approach
that is currently possible with the ASTRA Toolbox; see Figure 1(b). This ap-
proach, which is the working principle of Tomosipo, consists of two parts. The first,
GPULink, is a straightforward method to point ASTRA to a contiguous memory re-
gion on the GPU allocated by an external software (e.g., a PyTorch tensor). In con-
tiguous memory, all bytes are stored sequentially to allow efficient memory access.
The second, directFPBP, offers a forward or backprojection that directly outputs
into this external region. The combination enables efficient use of ASTRA Toolbox
projectors, while allowing data manipulation with external frameworks. KernelKit
expands and improves upon this functionality in three crucial aspects:

• Python-based projectors: Except for the kernels, KernelKit projectors are fully
written in Python. In comparison to the ASTRA Toolbox, there is no Python-
C++ interfacing code and projectors are transparently accessible. The user is
therefore in full control of the lifetime of the projectors as well as the data that
it stores internally. For example, KernelKit geometries can be modified with-
out destroying and recreating the projector. Application-specific tomographic
modalities, e.g., hyperspectral or dynamic CT, or algorithms with partial data,
e.g., the random-batch gradient descent, often require a fine-grained control
over the projectors to be most efficient.

• High-level CUDA availability : The linkage between KernelKit (Python) and
NVIDIA CUDA (C++) is provided by CuPy. CuPy is a multidimensional
array library for GPU-accelerated computing with Python [36]. As a drop-in
for NumPy and SciPy, it implements a wide range of algorithms and linear
algebra utilities using CUDA-libraries. Since KernelKit is built upon CuPy,
users can leverage advanced CUDA functionality within and alongside custom
algorithms and projectors. Section 4.1 will illustrate an example involving the
use of CUDA graphs. In contrast, developing CUDA-accelerated algorithms
with ASTRA Toolbox is less straightforward due to the language barrier that
prevents accessing CUDA data types, such as streams or texture objects,
created in the toolbox.

• Run-time compiled kernels: KernelKit compiles CUDA kernels during the
Python script, via NVRTC (NVIDIA Run-time Compiler). In contrast to the
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ASTRA Toolbox, which uses pre-compiled kernels, variables such as the N̄x,
N̄y, N̄z, N̄θ, or the processing axis order can now be decided during the Python
script. With run-time compilation, an existing kernel can be swapped out for
a user-written implementation of the Radon transform, or an implementation
can be optimized on basis of the input data.

3.2. Package overview. Since our software is written on top of numerical libraries,
it benefits from concise formulations of the mathematical operations. This keeps
the source code of our package to a minimum, while providing an expressive and
flexible interface. The code consists of three levels:

1. CUDA kernels: FP and BP kernels are implemented as CUDA source files.
As kernels are run-time compiled, the end-user can provide custom sources.
Additionally, we use Jinja2 [40], a placeholder-style templating engine, to
generate a specialized CUDA kernel code before compilation. An example
is given in Appendix B. The voxel-driven conebeam kernel, for example, is
stored in cone bp.cu.

2. Kernel classes: A Python class parses, compiles, and calls the CUDA sources,
e.g., VoxelDrivenConeBP handles the cone bp.cu kernel. These classes ab-
stract low-level CUDA tasks, such as the configuration of block sizes, pre-
computation of kernel parameters, and passing of arguments to the kernel.
They furthermore do not perform CPU-GPU memory transfers. For custom
kernels or specialized algorithms, the user can extend or modify their behavior.

3. Projectors: The last layer abstracts the details of the kernel and provides
an interface for algorithms at the level of A and AT . A projector, such
as ForwardProjector or BackProjector, compiles a kernel on initialization
and executes it multiple times on invocation. Projectors provide a detailed
interface for memory management, axes conventions, and geometries, and are
the recommended tool for custom algorithms.

Additionally, a few auxiliary modules provide the tools to create and manip-
ulate geometries, e.g., ProjectionGeometry and VolumeGeometry. As examples
for algorithms, we provided the Feldkamp-Davis-Kress algorithm [18] as fdk() and
SIRT [22] as sirt(). XrayTransform builds a linear X-ray operator on top of the
projectors, in the same style as SciPy operators and the MATLAB Spot toolbox [9].
This enables a simpler interface and is more suitable for a high-level integration with
other packages. Appendix B contains code examples of each level to convey an im-
pression.

3.3. Related software. In this section, we position KernelKit by contrasting it
with related software solutions. We restrict the comparison to packages that im-
plement CUDA projectors and that expose these via a Python front-end. They are
ASTRA Toolbox, the Tomographic Iterative GPU-based Reconstruction Toolbox
(TIGRE) [8], Pyro-NN [48], TorchRadon [43], and TomocuPy [33]. Other commonly
used frameworks are Tomosipo [23], Operator Discretization Library (ODL) [3],
TomoPy [42], and core imaging library (CIL) [26]. Rather than implementing pro-
jectors, they use ASTRA Toolbox, TIGRE, and/or Scikit-image as a back-end,
and provide additional algorithms, mathematical abstractions, or data processing
functionality on top.

We first acknowledge that KernelKit does not aim to provide extensive algo-
rithmic functionality, like TomoPy, ODL, CIL, TIGRE, or the ASTRA Toolbox.
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However, its distinctive aspects, i.e., Python projectors, high-level CUDA, and run-
time compilation (Section 3.1), are currently not offered by any other package.
Another unique aspect about KernelKit is its inherited support for vector geome-
tries, meaning that the source and detector do not need to describe a perfect circular
orbit for (back)projection.

In terms of performance, we show that our conebeam backprojection matches
or exceeds ASTRA Toolbox, depending on the configuration of our package (see
Appendix A). Since Tomosipo uses ASTRA Toolbox as a back-end, this also holds
for Tomosipo. Several packages provide alternative backprojection or reprojection
operators. For example, TorchRadon provides a multichannel 2D backprojection
kernel, and TomocuPy implements a kernel for GridRec reconstruction [17]. These
kernels are understood to outperform ASTRA Toolbox counterparts for the use
cases that they are suited for. However, the strength of KernelKit lies in its flex-
ibility, as it allows users to easily add or customize kernels according to their re-
quirements.

All compared packages are on the same level as Tomosipo (Fig. 1(b)), meaning
that the main software features are behind the language barrier. Yet, there are also
benefits to approaches with C++ projectors. In ASTRA Toolbox and TIGRE, pro-
jectors and algorithms can be shared with MATLAB. In Pyro-NN and TorchRadon,
projectors are written as TensorFlow C++ and PyTorch C++ extensions and sub-
sequently exposed to Python as neural network layers. In these approaches, the
projectors can better integrate with the low-level features of the ML framework.
While Python projectors enable easier debugging and development, C++ is some-
times better-suited for low-latency or highly multi-threaded environments.

Among the compared packages, the design principle behind TomocuPy is closest
to KernelKit. TomocuPy utilizes both Python with CuPy and C++, using C++-
level CUDA libraries. TomocuPy does not provide Python objects for projectors or
kernels, but is aimed at high-performance reconstruction pipelines for synchrotron
light sources. In their approach, the two languages are connected via a thin Python-
C++ interface called SWIG (simplified wrapper and interface generator) [7].

Lastly, package developers should consider the convenience of integrating pro-
jectors into their application. ASTRA Toolbox’s direct API (Application Programming

Interface), illustrated in Fig. 1(b), offers straightforward projector invocation. Tomosipo

[23] enhances this with a more intuitive Python front-end for geometry manipula-
tions and visualization. On the other hand, TIGRE provides functions in Python
to invoke Ax or ATy, but lacks support for GPU arrays, making integration less
straightforward. KernelKit, TomocuPy, Pyro-NN, and TorchRadon all use ten-
sor or array data structures from their host frameworks (CuPy, TensorFlow, and
PyTorch). These leverage DLPack, a standardized approach for exchanging GPU
arrays.

4. Case studies. In the upcoming sections, we will demonstrate KernelKit through
practical examples. While we are aware of many, often quite complex, applications
that could benefit from customized projectors, particularly in dynamic imaging
and ML domains, we have chosen three studies that showcase KernelKit’s core
advantages (Section 3.1) while being simple to describe and easy to interpret.
The scenarios use the previously-introduced conebeam backprojector in reconstruc-
tion contexts that are inspired by experiments from our FleX-ray laboratory in
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Amsterdam [14] and the X-ray imaging set-up for fluidized beds at Delft University
of Technology [20].

The implementations of our case studies require customized projectors, high-
level CUDA features, or run-time-compiled kernels. They highlight the complexity
of real-world scenarios, which often pose challenges that cannot be effectively ad-
dressed from the Python interface of the ASTRA Toolbox alone. As an alternative
to solving these in C++ library code, which would request significantly more de-
velopment time from the average Python user, we will present tailored solutions
with KernelKit. In each case study, we will compare the KernelKit solution to the
most efficient use of the ASTRA Toolbox, which is the direct projection approach
illustrated in Fig. 1(b). This is also equivalent to Tomosipo [23].

For a fair comparison, we have ensured that KernelKit projectors can be config-
ured to reproduce the performance of ASTRA Toolbox (Appendix A). This allows
us to explain and attribute performance gains to the enhancements that we describe.
In the experiments, we will use ASTRA Toolbox 2.1.2 with CUDA Toolkit 11.7;
KernelKit with CuPy 12.1 and CUDA Toolkit 12.1; PyTorch 2.1.0.dev20230821
with CUDA Toolkit 12.1; and a modified version of Kernel Tuner 0.3.0. All the ex-
periments use Python 3.10 and the NVIDIA GA102GL [RTX A6000] architecture.

4.1. Patch-based neural network training. In this case study, we will configure
a KernelKit projector for reconstruction of image patches, i.e., small 2D or 3D image
regions. Such a projector is particularly useful for neural network training, where
CNN parameters are optimized based on a large data-set consisting of pairs of input
and desired output. Training on patches that are, e.g., reconstructed from random
locations in a 3D volume, offers several advantages over training on high-resolution
inputs. For example, it can mitigate GPU memory exhaustion and reduce training
time. This approach has proven successful in various image tasks such as super-
resolution and denoising [47, 5].

To avoid slowing down the training process, a large quantity of patches must be
readily available. When patches are only required as network inputs, one option
would be to precompute and store a vast number of patches on disk, which can then
be loaded back during training. This is, however, only a practical strategy for rela-
tively small datasets. In dynamic CT, or when neural networks use reconstruction
as a layer, on-the-fly generation of the patches from projection data in parallel to
the training process can be faster and more resource-efficient. During online learn-
ing, generating patches ahead of the experiment may not be feasible, and patches
must be generated in parallel to the neural network training process [19].

Since patches can be as small as 20-by-20 voxels, even small computational over-
heads in the projector have relatively large impact on the overall backprojection
time. Recognizing that a projector is executed repetitively, while the geometry
and data sizes remain constant, enables an alternative implementation that is bet-
ter suited to this specific case. In the following, we will show that we can iden-
tify and reduce two overheads and tailor KernelKit conebeam backprojectors AT

(Algorithm 1) to improve upon the ASTRA Toolbox baseline (Fig. 1(b)).
We will use Figure 2 to display timings from the implementations on example

data. The data consists of Nθ := 1000 images of an (N, 1), resp. (N,N)-sized detec-
tor, in the 2D, resp. 3D, case. The input size is varied from N ∈ {50, 100, . . . , 500}
for a 2D patch, and N ∈ {20, 30, . . . , 80} for a small 3D volumetric input. We
implement each backprojection algorithm as a PyTorch neural network layer and
time the execution of the forward pass through the layer. In all ASTRA Toolbox
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Figure 2. Conebeam backprojection PyTorch layers for a
(N,N, 1)-sized input (left) and (N,N,N)-sized volume (right), us-
ing Nθ := 1000 projections of an (N, 1) and (N,N)-sized detector.
2D timings use 2000 samples, and 3D timings 350 samples. Both
cases use GPU warm-up with an equivalent amount of burn-in sam-
ples.

and KernelKit implementations, geometry calculations are not part of any timings,
as they can be avoided by recycling an existing projector object (i.e., the orange
segments of Figure 6 in Appendix A).

ASTRA Toolbox . We first show baseline implementations of ASTRA Toolbox (Fig. 1(a)

and (b)), i.e., the ASTRA 3D backprojection algorithm, and the ASTRA Toolbox
approach taken by Tomosipo. In the former, data is kept in host memory and passed
back-and-forth to the GPU, while in the latter, data is kept on the GPU using
GPULink. Figure 2 shows the results with green and black squares, respectively.
The results emphasize that a careful integration between ASTRA Toolbox and
external software is necessary to obtain good performance. When, for example, a
neural network layer follows after the backprojection, e.g., a PyTorch convolution
on the GPU, an unnecessary “ping-pong” occurs by a device-host-device transfer.
We note that, like Tomosipo, KernelKit retains volumes and projections on the
GPU, as transfers are explicit commands in the CuPy framework.

KernelKit . A first KernelKit implementation, denoted by red triangles in Figure 2,
shows the timings of a PyTorch layer based on a BackProjector instance. In
this reconstruction context, with a fixed geometry, it is advantageous to instruct
the KernelKit projector to recycle as many memory operations as possible. First,
previously-created CUDA textures can be recycled, meaning that they can be over-
written with new projection data when the dimensions of the reconstruction problem
are unchanged. This eliminates memory reallocation and the creation of new tex-
ture objects. More precisely, in Algorithm 1 line 2, the object ỹ is not destroyed
or recreated on every projector invocation. While this would generally come at the
disadvantage of occupying additional memory in-between projector calls, this does
not pose a problem due to the small memory size of patches. Second, a retransfer
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of geometry parameters from global GPU memory into constant memory, i.e., a
fast read-only memory that is shared by all threads, can be avoided. This is about
47 kilobyte for 1,000 angles, approximately the size of a 100-by-100 patch. Fig. 2
shows that these optimizations result in a consistent decrease in reconstruction time
of about 0.3 ms per patch.

KernelKit + CUDA graphs. In the left part of Figure 2, we note that at the smaller
dimensions, N < 250, reconstruction times do not decrease further toward zero,
in both KernelKit and ASTRA Toolbox. This is an indication that a part of the
computation is not yet fully explained by the cost of backprojection in the first im-
plementation. A recent CUDA feature, called CUDA Graphs, provides a mechanism
to launch multiple CUDA kernels with a single CPU operation. This reduces the
overall launch time of kernels and can be used to avoid the recomputation of kernel
arguments on the CPU side. Using the integration between CuPy and PyTorch,
we construct a CUDA Graph in PyTorch (i.e., a PyTorch Graph) by capturing all
kernel launches after a warm-up iteration of the neural network. In a next itera-
tion, with unchanged geometries, the graph replays all the kernel launches using the
same parameters, but with the newly-placed data in memory. Figure 2 shows, with
the blue triangles, that the CUDA graphs are able to remove some of the overhead
and reduce the backprojection time to approximately 0.25 ms. We conclude that
patches can be generated about four times faster than the optimal implementation
with the ASTRA Toolbox, which does not allow an integration with CUDA graphs
due to CUDA data structures not being able to pass through the language barrier.
The results from this use case can be combined with kernel customization, which
we discuss in Section 4.3, to achieve even faster patch generation.

4.2. Real-time X-ray tomography. Reconstruction software generally presumes
a common workflow where a set of projection images is provided by the user and
where the desired output is a single reconstruction volume. Algorithms for less
conventional contexts, e.g., with multiple output volumes, or with a subset of pro-
jection images as input [23], often require modifications to the low-level algorithm
primitives in the software to be implemented in the most efficient way. In this sec-
tion, we will demonstrate an example from real-time tomography, where changing
the backprojector in the FDK algorithm (Eq. 3) improves the efficiency of recon-
struction. Real-time tomography is used to visualize dynamically evolving processes
in synchrotron light source facilities and X-ray microscopy laboratories [14, 34, 49].
Live feedback, provided by the reconstructions, simplifies steering of the experiment
as well as the online optimization of acquisition settings [30]. With that, it prevents
experimental repetition and, therefore, saves valuable experiment time.

In real-time tomography, the processes from data acquisition to reconstruction
are streamlined with tomographic pipelines [12]. Pipelines consist of sequential soft-
ware components, which can be distributed over multiple machines or GPUs. After
data is measured at the detector, it is first preprocessed, e.g., with dark-field and
flat-field corrections, and linearization according to Beer-Lambert’s law [28]. For
FDK, a filtering step is subsequently performed (i.e., the convolution y⊛f in Eq. 3),
and the final step is to apply the conebeam backprojector to the filtered data in
order to reconstruct the object (Algorithm 1). The duration of data processing
tasks is linear in the size of the projection data O(NθNuNv), whereas reconstruc-
tion is O(NxNyNzNθ) using our voxel-driven conebeam kernel, or, alternatively,
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Figure 3. Screenshot of the RECAST3D end-user interface show-
ing a quasi-3D reconstruction. The three cross-sectional slices show
a real-time dissolving tablet at the FleX-ray laboratory [14].

O(NxNyNz logNθ) in the case of GridRec [17]. As each pipeline component pro-
cesses an individual chunk of the pipeline data asynchronously, the visualization
frame rate follows the bottleneck component, which is often the backprojection.
The performance of the real-time FDK in a tomographic pipeline therefore depends
on the GPU-accelerated backprojection component.

Although modern GPU technology has pushed the boundaries of what is achiev-
able in parallel computing, high-resolution fully-3D reconstruction and visualization
in milliseconds is still out of reach [11, 33]. While reducing the spatial resolution
or visualization frame rate would render the problem feasible, it is often desirable
to reconstruct at the potential resolution of the setup, i.e., such as defined by the
detector resolution and exposure time, in order to follow the imaged physics. One
successful approach to do so is the quasi-3D reconstruction, which was first intro-
duced in the real-time reconstruction pipeline called RECAST3D (REConstruction
of Arbitrary Slices in Tomography) [12]. The principle of a quasi-3D reconstruction
is that only a few user-selected cross-sectional slices through the volume need to
be reconstructed (see Figure 3). The RECAST3D graphical user interface enables
interaction with the slices and allows for a fast interrogation of the object during
the experiment. The FDK algorithm is especially well-suited in this situation, as
it enables a region-of-interest reconstruction in a time that is linearly related to
the number of voxels in the region. RECAST3D has been used for real-time align-
ment [12], explorative imaging [14], and visualization of experiments with quickly
evolving dynamics [30].

A straightforward quasi-3D implementation with ASTRA Toolbox or Tomosipo,
using the approach in Fig. 1(b), is to reconstruct the three (orthogonal) cross-
sectional slices individually and send each of the slices sequentially to the RECAST3D

user interface. This requires three ASTRA Toolbox projectors, each configured to
handle one slice of the quasi-3D reconstruction. However, this approach leads to
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unnecessary repetitions in converting projections to CUDA texture objects (ỹ on
line 2 of Algorithm 1), which is required for fast interpolation in the sinogram
(Section 2.3). With KernelKit projectors, on the other hand, users can capitalize
on the fact that the same projections are used in each projector. First, a single
texture object ỹ can be constructed and kept in memory for as long as the pro-
jector is needed. This avoids memory reallocation, similar to Section 4.1, then, ỹ
can be shared with the three KernelKit projectors. As a result, only a single ỹ has
to be updated on incoming data to RECAST3D, saving memory and computation
time. The optimizations have the potential to significantly lower the quasi-3D al-
gorithm run-time, as slice reconstructions, with complexity O(NxNyNθ), have the
same order of complexity as data tasks O(NθNuNv).

We will compare the KernelKit projectors to the ASTRA Toolbox approach on
three setups that are used for dynamic CT in the scientific literature. The first is our
FleX-ray laboratory micro-CT scanner at CWI [14]. The second is a recent high-
speed rotational setup that achieves a half-rotation reconstruction every 10 ms [31],
and the third used a high-resolution detector to study the rheology of liquid foams
at SLS TOMCAT (Swiss Light Source, TOmographic Microscopy and Coherent
rAdiology experimenTs beamline) [35, 32]. We will time the KernelKit projector
using an average of 400 quasi-3D reconstructions after 400 warm-up samples. Note
that, in comparison to Section 4.1, in this section we consider the geometries (i.e.,
the slices) to be variable and require the projection data to remain constant during
the reconstruction of the slices. In Section 4.1, the geometries were instead constant
and the projections were variable.

Table 1 lists the frame rates that are achievable with quasi-3D reconstruction for
the three setups. We note that for the FleX-raymicro-CT setup, the ASTRA Toolbox
baseline already achieves a quasi-3D backprojection framerate of 4.8 ms, which is
faster than the frame rate of the detector (12 ms). For the high-speed setup, a
reconstruction can be obtained once every 3.5 half-rotations (180°), and about one
time per half-rotation for the Tomobank setup, although in the latter case, the
frame rate of 3 Hz is comparatively slow. Compared to ASTRA Toolbox, the op-
timizations with KernelKit lead to a factor 8–18 speed-up. In summary, Table 1
shows that customization of quasi-3D backprojection can lead to significantly faster
visualization frame rates and enables a reconstruction in each half-rotation in three
setups. Yet, reconstructing at the frame rates of modern detectors, for example, for
the purpose of automation, remains an open challenge.

4.3. Kernel optimization using Kernel Tuner. In the last use case, we will
leverage KernelKit’s ability to runtime compile kernels with CuPy and the NVIDIA
run-time compiler (NVRTC) to search over CUDA parameters and kernel imple-
mentations. This is termed kernel tuning, and entails maximizing the performance
of GPU computing by optimizing free parameters of kernels, such as block sizes and
algorithmic constants [24]. Tuned algorithms achieve better run-times, reduced en-
ergy consumption [10, 46], or utilize less resources, in particular, GPU memory. In
high-throughput applications, such as in-line CT scanning, a kernel can be tuned
toward a fixed measurement protocol and dedicated GPU architecture. In these
situations, even a slight improvement can lead to significant energy savings over the
equipment’s lifetime.

The efficiency of backprojection depends, in the first place, on the GPU architec-
ture and the dimensions of the reconstruction problem (i.e., Nx, Ny, Nz, Nu, Nv,
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FleX-ray [14] High-speed [31] Tomobank [35, 32]

Detector framerate 12 ms (83 Hz) 78.125 µs (12.8 kHz) 0.8 ms (1.3 kHz)
Detector resolution 400×600 1024×1024 2016×1800
Slice resolution 400×400 1024×1024 2016×2016
Projections per 180° 75 128 300
180° rotation time 900 ms (1.1 Hz) 10 ms (100 Hz) 210 ms (4.8 Hz)

Toolbox 4.8 ms (208 Hz) 35.8 ms (28 Hz) 291.7 ms (3 Hz)
KernelKit 0.6 ms (1.6 kHz) 1.8 ms (0.6 kHz) 15.7 ms (64 Hz)

Table 1. Quasi-3D backprojection for three simulated setup con-
figurations. Preprocessing, uploading, or filtering are not a part of
any timings.

and Nθ). Natural targets for tuning are the CUDA thread block sizes, i.e., free pa-
rameters that define the number of threads grouped together within a single thread
block for parallel execution on the GPU. This is constrained by the capability of the
CUDA architecture, commonly 1024 threads per thread block, and set to sensible
defaults in the ASTRA Toolbox. Another target for tuning is the backprojection
code itself, known as software tuning. In Algorithm 1, for example, the compiled N̄z

and N̄θ constants, which define how the problem is chunked, can be made variable
again through the process of recompilation. In our software, the CUDA/C++ ker-
nel code is parameterized through the Jinja2 templating engine [40] (see Listing 1 in
Appendix B for a code example). In this way, different code paths can be explored
through recompilation at the program run-time.

To demonstrate the potential of kernel tuning, we demonstrate three tuning re-
sults using KernelKit in conjunction with the Kernel Tuner software package [51].
We utilize the KernelKit projector in such a way that the sinogram and volume
are retained on the GPU, allowing millisecond kernel recompilation and testing for
each point in the parameter search space. Kernel tuning with the ASTRA Toolbox
or Tomosipo would require a scripted recompilation of the ASTRA Toolbox, which
would be significantly slower. Moreover, such an alternative would have less flexibil-
ity in exploring templated code paths, as the ASTRA Toolbox is built around fixed
axis and geometry conventions. We furthermore note that our results are specific
for the NVIDIA RTX A6000 architecture, and that these results do not necessarily
generalize to reconstruction problems of different dimensions, e.g., with low or high
numbers of angles or nonstandard volume geometries.

Figure 4 displays the result of a bruteforce search over all possible CUDA thread
block sizes for the reconstruction of a large, 2000-by-2000 voxels, slice. The projec-
tion data has dimensions Nθ := 32, Nu := 2000, Nv := 2000. We picked Nθ = N̄θ

to time a single kernel launch of Algorithm 1. We warm-start the GPU for every
configuration with 50 samples, and average over 100 subsequent samples. For the
timings, we launch CUDA graphs to eliminate CPU overhead and eliminate the
cost of all data transfers by preloading data onto the GPU. The search takes about
one hour to complete and finds a minimum at (16, 4). The associated run-time of
0.397 ms is about 8% faster than that of the uninformed standard choice of (16, 32),
which yielded 0.431 ms. We confirm that this is a valid optimum by repeating the
(16, 4) and (16, 32) configurations several times with 100 samples. We did, however,
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note a slow decrease of the speed-up with increased numbers of averages. Yet, after
40,000 averages, the new optimum nevertheless leads to a stable improvement of
3% over the uninformed default choice. Such an excessive load may, however, not
be representative of real-world usage of the kernel.

To demonstrate searching over implementations, we parameterize the conebeam
kernel to allow backprojection from four different texture memory back-ends (cf.
line 1 in Algorithm 1), which are termed resources in the CUDA specification [37].
The first option is a texture object with a 3D CUDA Array (the default used by
ASTRA Toolbox; see Section 2.3). A 3D CUDA Array can be used with any axis
order, and can therefore avoid an in-memory transposition of the data. The second
option uses a Layered CUDA Array, which is optimized for spatial look-up in the
second and third dimension, and is often more efficient when Nθ is the major array
axis. The third option uses a list of Nθ two-dimensional texture objects, rather
than a single texture. Compared to a layered texture, this enables a partial update
of projections in-between kernel invocations, for example, in a dynamic imaging
scenario with a moving time window of projections. The last option uses Nθ texture
objects backed up by linear memory, which avoids the creation of a CUDA Array.
Here, the projections are stored in pitched arrays, meaning that the minor array
axis is padded to a multiple of 32 for faster look-up.

To compare the four options, Figure 5 runs Kernel Tuner for increasingly larger
reconstruction problems. Figure 5(a) displays backprojection with an initialization
of textures, and Figure 5(b) a backprojection with an update to existing projections.
Figure 5(a) shows that, for algorithms that require a single invocation of AT , such
as the FDK algorithm, layered CUDA arrays yield the best result, thanks to their
fast initialization. Figure 5(b) shows that linear memory is only marginally slower
than layered arrays, and that their main disadvantage originates from the slow
initialization of Nθ texture objects. Textures that use pitched linear memory are,
therefore, an alternative to CUDA Arrays when an algorithm requires written access
to y, or when GPU memory is scarce.

Kernel tuning holds a large potential for in-line and industrial CT, and partic-
ularly for scientific imaging equipment, as optimized CUDA kernels can improve
algorithm run-times or reduce energy costs. In [20], a setup for ultrafast imaging of
bubbling fluidized beds was introduced at Delft University of Technology. The setup
consists of three stationary X-ray sources and flat panel detectors. In this last ex-
ample, the detectors operate in (300, 1548)-pixels regions of interest at 65 Hz. Each
3-tuple of frames provides the sparse-angular projection data that is necessary to
compute a (300, 300, 1200)-sized reconstruction volume. To find an optimal backpro-
jection kernel, we use the bruteforce search strategy in Kernel Tuner with a search
space consisting of texture options and the N̄z parameter (Algorithm 1). Kernel
Tuner finds that a configuration consisting of layered CUDA arrays and N̄z := 2 is
optimal, and that this improves the run-time from 3.90 ms (ASTRA Toolbox de-
fault parameters) to 2.93 ms, an improvement of 25%. Using the found parameters,
an optimization over block size multiples of 8 finds that (152, 1) further improves
the run-time to 2.18 ms, a 44% improvement compared to the defaults. As fluidized
bed experiments comprise several minutes of experimentation and may contain sev-
eral thousands of time frames, tuned kernels realistically improve the efficiency and
costs of reconstructing bubbling fluidized beds.
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We note that there are many facets of kernel tuning for X-ray CT that we have not
explored in this article. For large reconstruction problems, for example, searching
over the parameter space takes increasingly more time, and a bruteforce search
strategy may not be feasible. Timing a single kernel that is representative of the
entire reconstruction problem may then be able to provide a solution. Another
topic of further research is to find small search spaces that can be explored quickly
before the start of an iterative algorithm. This could already trade off in a faster
run-time, even when the algorithm is ran once. In a follow-up study, we will explore
the geometry-dependence of the kernels as well as the application of the different
optimization strategies in Kernel Tuner to X-ray CT.
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Figure 4. Conebeam backprojection time in microseconds for dif-
ferent CUDA thread block sizes on an NVIDIA GA102GL [RTX
A6000] for a 2000-by-2000 slice and 32 projection angles of a 2000-
by-2000 detector. The ASTRA Toolbox default thread block sizes,
(16, 32), are denoted by the red square. The optimum (16, 4) is
denoted by the red circle. The graphic is restricted to block sizes
smaller than 100 for the purpose of visualization.

5. Conclusion. ASTRA KernelKit is an all-Python CT reconstruction package
that leverages the ASTRA Toolbox CUDA kernels using CuPy. KernelKit is writ-
ten for user-customizable kernels, projectors, and algorithms and enables rapid
prototyping of data-driven algorithms using the Python ecosystem and philosophy.
We envision it to serve as a minimalist back-end for high-level frame works, as
a package to develop projectors, and as a tool for high-performance applications
that benefit from tuned algorithms. In this work, we have focused on the voxel-
driven conebeam backprojector, and demonstrated through patch-based learning,
a tailored real-time algorithm, and run-time kernel compilation that the Python
ecosystem software can now be used to implement efficient tomographic algorithms
in several real-world use cases. In future work, we aim to extend the framework with
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Figure 5. Time per voxel update of AT on an (N,N,N)-sized
volume using an NVIDIA GA102GL [RTX A6000]. (a) includes
texture initialization on the first call to AT . (b) updates exist-
ing textures in any subsequent calls with new data of the same
dimensions. Projections are Nθ := N angles of an (N,N) detec-
tor. A voxel update time is the backprojection time divided by
NxNyNzNθ.

new algorithm- and geometry-specific projectors [15], such as a matched forward-
and backprojector, or kernels for curved detectors, for which the same principles
apply. All in all, our package aims to accelerate the exploration and development
of new high-performance and data-driven algorithms in CT.

Appendix A. Run-time and computational overhead analysis. In the fol-
lowing, we configure KernelKit in “Toolbox configuration”, i.e., such that it precisely
matches the behavior and kernel settings of the ASTRA Toolbox. We subsequently
compare the run-times of different components of the two software packages side-
by-side. This validates that our Python implementation is correct and allows us to
detect computational overhead differences (e.g., due to the use of Python, CuPy,
or the NVRTC compiler). Moreover, it verifies that the comparison between the
two software packages is fair. We take the ASTRA Toolbox conebeam kernel with
default parameters and disable the use of advanced CuPy features. Software tests
are used to validate the implementation numerically. Note that the comparison
does not aim to demonstrate the best achievable run-time of either package.

Figure 6 displays a break-up of calls to the ASTRA Toolbox using directFPBP

(cf. Section 3.1) and to KernelKit using BackProjector, for four reconstruction
problems. The problems are selected such that they load the projector differently.
Problem (a) and (b) are a large and small reconstruction problem. Problem (a)
consists of a 10003 volume, 1000 angles, and a 1000-by-1000 detector. Likewise,
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Figure 6. Validation of KernelKit in “Toolbox configuration”,
i.e., such that it precisely matches the behavior and kernel set-
tings of ASTRA Toolbox, on an NVIDIA GA102GL [RTX A6000].
(a) is a 10003 volume, (b) a 503 volume, (c) a (300, 300, 1200) vol-
ume with Nθ := 3 projections of size (300, 1200), and (d) is a 2000-
by-2000 slice reconstructed by Nθ := 1000 images of a (2000, 1) line
detector.

problem (b) has a 503 volume, 50 angles, and a 50-by-50 detector. Problem (c) is a
reconstruction from a severe sparse-angular geometry (Nθ := 3), and problem (d)
is a 2D slice geometry (Nz := 1 and Nv := 1).

Figure 6(a)-(d) shows that directFPBP and kernel execution in our package
(blue segments) have virtually equivalent run-times, confirming that we can use
ASTRA Toolbox as a baseline measurement. In (b), the smaller reconstruction,
we find that geometry processing in Python is typically slower than in C++, but
that in some cases the ASTRA Toolbox projector initialization is somewhat slower
(orange). This overhead is in many contexts negligible, as both frameworks allow
the reuse of projectors. For algorithms that use a single backprojection, such as
the filtered-backprojection or FDK (Section 4.2), a considerable amount of time
may be spent in data transfers between the host (CPU) and device (GPU). With
the ASTRA Toolbox algorithms API, Fig. 1(a), such transfers are unavoidable.
However, using Tomosipo, Fig. 1(b) or KernelKit, data can be kept on the GPU.

Figure 6(c) shows that for a setup with three angles, only a small amount of time
is spent in the kernel execution compared to the transfer of the resulting volume. In
Figure 6(d), the geometry is reduced to a slice: In this case, the ASTRA Toolbox
switches to dedicated kernel with N̄z := 1 (cf. the standard value of N̄z := 6 in
Algorithm 1). Also in this scenario, we observe a run-time of KernelKit that is
similar to the ASTRA Toolbox precompiled binary (blue segments). This suggests
that run-time compilation does not lead to observably better or worse performing
binary code. Lastly, the compilation of a kernel with CuPy (red) takes a few
milliseconds. This is insignificant for most applications, since the kernel is cached
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after its first use. Yet, it can be of importance for kernel tuning (Section 4.3), where
each kernel configuration requires a recompilation.

Appendix B. Code listings.

1 __global__ void cone_bp(

2 {% if texture == ’3D’ or texture == ’2DLayered ’ %}

3 cudaTextureObject_t projTexture , // a single texture object

4 {% else %}

5 cudaTextureObject_t * projTextures , // a C-style array of

textures

6 {% endif %}

7 float * volume ,

8 int start ,

9 int nrProjections ,

10 int voxelsX ,

11 // ...

Listing 1. An excerpt from the conebeam backprojection kernel,
written in C++/CUDA. The Jinja2 tags, {% and %}, enable
different code paths before compilation. In this excerpt, the input of
the kernel is modified, depending on whether a single texture object
or Nθ texture objects are provided.

1 def backproject(x, y, vol_geom , proj_geoms):

2 """A simple voxel -driven backprojection function."""

3 # set kernel constants

4 bp = VoxelDrivenConeBP(voxels_per_block =(16, 32, 6))

5 # compile for a layered texture

6 bp.compile(texture=bp.TextureFetching.Tex2DLayered)

7 # geometries -> constant memory

8 bp.set_params(bp.geoms2params(proj_geoms , vol_geom))

9 txt = copy_to_texture(y, layered=True) # CUDA Array texture

10 bp(txt , x, vol_geom) # execute the kernels

11 return x.get() # device -to-host transfer

Listing 2. Using an object of the Kernel subtype provides
customized backprojection options. This example shows a
straightforward compilation of the kernel, with preparation of
texture objects and geometries, and its launch. A BackProjector

in essence performs the same task with extended functionality.

1 def backproject_random_subset(x, y, vol_geom , proj_geoms ,

2 batch_size =10, iters =100):

3 """An algorithm to backproject from random angles."""

4 p = BackProjector ()

5 p.volume_geometry = vol_geom

6 p.volume = x

7 for _ in range(iters):

8 I = numpy.random.choice(len(y), size=batch_size , replace=False)

9 p.projection_geometry = proj_geoms[I]

10 # Assignment is overridden to efficiently update textures

11 p.projections = y[I]

12 p(additive=True)

13 yield x

Listing 3. Using an object of a Projector subtype enables
algorithm development at the level of Python. In this prototype
algorithm, random projections are backprojected in batches of 10.
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1 geom_0 = ProjectionGeometry(source_position =..., ..., )

2 proj_geoms = [rotate(geom_0 , phi)

3 for phi in np.linspace(0, 2*np.pi , 1200, False)]

4 # the volume geometry is a cube with isotropic voxel sizes

5 vol_geom = resolve_volume_geometry(shape =[100]*3 ,

6 voxel_size =[0.01]*3)

7 y = numpy.load (...) # load projections from disk

8 x = fdk(y, proj_geoms , vol_geom) # Feldkamp -Davis -Kress

Listing 4. A high-level example of an FDK reconstruction
with a circular conebeam geometry, using geometry helper
functions.

Appendix C. Code availability. The KernelKit code is available at https://
github.com/adriaangraas/astra-kernelkit/.
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and K. J. Batenburg, Tomosipo: Fast, flexible, and convenient 3D tomography for complex

scanning geometries in Python, Optics Express, 29 (2021), 40494-40513.
[24] P. Hijma, S. Heldens, A. Sclocco, B. van Werkhoven and H. E. Bal, Optimization techniques

for gpu programming, ACM Comput. Surv., 55.
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