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Approval-based multiwinner voting, one of the central topics in computational social choice, addresses

collective decision-making scenarios in which 𝑛 voters select a committee of 𝑘 candidates from a larger pool

of alternatives. A fundamental aim is to ensure that the elected committee proportionately represents the

preferences of the electorate. Consequently, much effort has gone into exploring various proportionality

notions and developing voting rules to achieve them. A key intuition underlying many fairness axioms and

voting rules is that an optimal outcome is attained when no subset of voters can improve their position by

reallocating their endorsements. In this paper, we formalize this intuition by defining a new class of games,

which we call budgeting games, where committees occur as a result of voters’ decisions about how to allocate a

given budget. Our primary contribution lies in introducing this new class of normal-form games and showing

that key notions in multiwinner voting theory, such as priceability, the core and EJR (Extended Justified

Representation) can be thought of as equilibria of budgeting games. Remarkably, our budgeting games do not

just capture existing concepts, but also give rise to entirely new families of voting rules. These rules, which

are guaranteed to satisfy desirable fairness axioms, are based on improving-move dynamics in the respective

budgeting games, and include the well-known Method of Equal Shares. Finally, we showcase the applicability

of our game-theoretic perspective by proving existence of strong equilibria in a restricted version of our

budgeting games, which implies that the core in a novel special case of multiwinner elections is non-empty.
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1 Introduction
Voting is one of the oldest and most studied forms of collective decision making. One specific form

of voting that has received particular attention in (computational) social choice is approval-based

multiwinner voting, where 𝑛 voters whose preferences are expressed by granting, or withholding,

approval on each candidate must elect a committee of 𝑘 candidates out of a larger set of available

alternatives [Lackner and Skowron, 2023]. The paradigmatic example for approval-based multi-

winner elections is the selection of a committee, though its usefulness extends beyond the domain

usually associates with elections [Gawron and Faliszewski, 2022, Skowron et al., 2016].

One of the central requirements in multiwinner voting is that the chosen committee represents

the electorate’s preferences in a proportional manner [Faliszewski et al., 2017]. As a result, much

recent work has been devoted to developing appropriate definitions of proportionality [Aziz et al.,

2017, Brill and Peters, 2023, Peters et al., 2021, Sánchez-Fernández et al., 2017], and to the task of

finding proportional committees efficiently [Aziz et al., 2018, Brill et al., 2017, Peters and Skowron,

2020], with Lackner and Skowron [2023] offering a comprehensive overview of this line of research.

Fine details notwithstanding, a common intuition lies behind many of the solutions put forward so

far: a good outcome is to be found by distributing control over the 𝑘 seats on the final committee

among the voters, in such a way that no group of voters can do better by using their ‘budget of

control’ differently. This idea underlies important axioms, e.g., EJR, priceability and the core, as well

as prominent voting rules, such as the Method of Equal Shares (MES) where it shows up explicitly.

Thus framed, this way of looking at multiwinner voting calls for a game-theoretic interpretation,

in which we would see desirable outcomes of multiwinner voting scenarios occurring as equilibria

in some suitably defined game. Despite existing attempts [Aziz et al., 2017, Peters et al., 2021], a

more systematic game-theoretic treatment of proportionality notions in multiwinner voting is still

missing. In this paper, we aim to fill this gap by introducing budgeting games, a class of normal-form

games in which agents decide how to allocate a given budget, in a process that results in ‘activating’

a committee of representatives. Remarkably, many solution concepts of budgeting games turn out

to correspond to central fairness notions and rules from the multiwinner voting literature: the list

includes EJR, the core, priceability, and the Method of Equal Shares.

Contributions. We define budgeting games, a new class of normal-form games that capture the

dynamics of choosing representatives in a multiwinner voting scenario. We demonstrate the

usefulness of this type of game in Section 4, by establishing equivalences between solution concepts

for budgeting games and fair outcomes of multiwinner voting instances described by prominent

proportionality axioms. The types of game-theoretic solution concepts we leverage are linked to

the absence of group deviations from agents of varying degrees of rationality. For example, the EJR

axiom corresponds to what we call the cohesive 𝛼-core: the rule of the game, here, is that groups

of agents are allowed to reallocate their budget only to unanimously approved candidates, and

without relying on contributions of agents outside the group; if no group of agents can find such an

improvement, Theorem 4.7 ensures we are in an equilibrium that corresponds to an EJR committee.

A snapshot of the equivalences we obtain is offered in Figure 1.

In Section 5 we are able to show that certain sequences of similarly natural deviations are

guaranteed to produce an outcome in the cohesive 𝛼-core, which in turn implies that the cohesive

𝛼-core is always non-empty. The family of voting rules described by such sequences turns out

to include both novel methods, not yet explored, as well as, in a pleasingly reassuring twist, the

familiar Method of Equal Shares [Peters et al., 2021].

Finally, in Section 6 we show the existence of strong equilibria for tree-structured budgeting

games. The existence of strong equilibria also implies that the 𝛼-core of these games is non-empty,

which, in turn, means that the core of the corresponding multiwinner voting instances is non-empty.
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Fig. 1. Correspondences between solution concepts for BG and MWV.

Thus, this result shows the non-emptiness of the core for another restricted domain [Pierczyński

and Skowron, 2022], providing a new perspective on the non-emptiness of the core, one of the

major open problems in multiwinner voting.

Related work. There have been previous isolated attempts to rationalize proportionality axioms

in multiwinner voting in terms of games [Aziz et al., 2017] or market equilibria [Peters et al., 2021].

However, these games have been defined in a piecemeal manner for a single axiom. The idea of

characterizing proportional outcomes trough the equilibria of a game in which players coordinate

their contribution to different projects has also successfully been used in divisible participatory

budgeting [Fain et al., 2016] and donor coordination [Brandt et al., 2023]. However, in both settings,

candidates can receive arbitrary amounts of funding and thus the resulting games look similar to

our budgeting games, but are technically quite different as they have continuous utility functions,

in contrast to the discrete utility functions we use. Finally, Kraiczy and Elkind [2023] use dynamics

related to budgeting games to efficiently find proportional outcomes in discrete participatory

budgeting, a generalization of multiwinner voting. However, these dynamics cannot be rationalized

in game theoretic terms as best responses of (sets of) voters. Instead, they should be seen as local

search dynamics with strong algorithmic properties.

2 Preliminaries: Multiwinner Voting
A multiwinner voting (MWV) instance is given by a tuple 𝐼 = ⟨𝑁,𝐴, 𝑘,𝑨⟩, where 𝑁 = [𝑛] is the
set of voters, 𝐴 is the set of alternatives, 𝑘 ∈ N>0 specifies the number of alternatives from 𝐴 to

be selected, and 𝑨 = (𝐴1, . . . , 𝐴𝑛) is an approval profile, i.e., a vector of approval ballots 𝐴𝑖 ⊆ 𝐴

indicating the subset of alternatives agent 𝑖 ∈ 𝑁 approves of.
1
The outcome of a MWV instance is a

committee 𝜋 ∈ P𝑘 (𝐴) of alternatives from 𝐴 of size exactly 𝑘 .2 A set of less than 𝑘 alternatives is a

partial committee. Given a multiwinner voting instance, the goal, typically, is to find committees

that satisfy desirable fairness requirements, chief among them being proportionality. We introduce

below four of the most prominent proportionality notions, beginning with priceability.

A committee 𝜋 ∈ P𝑘 (𝐴) is priceable for a MWV instance 𝐼 if there exists an allowance 𝛼 ∈ R≥0

and a collection (𝛾𝑖 )𝑖∈𝑁 of contribution functions 𝛾𝑖 : 𝐴 → R≥0 such that:

(𝐶1) If 𝛾𝑖 ( 𝑗) > 0, then 𝑗 ∈ 𝐴𝑖 for all alternatives 𝑗 ∈ 𝐴 and voters 𝑖 ∈ 𝑁 .

1
For 𝑛 ∈ N>0, [𝑛] = {1, . . . , 𝑛} is the set of the first 𝑛 natural numbers (excluding 0).

2
If 𝐴 is a set, P𝑘 (𝐴) is the set of subsets of 𝐴 of size exactly 𝑘 .
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(𝐶2) If 𝛾𝑖 ( 𝑗) > 0, then 𝑗 ∈ 𝜋 for all alternatives 𝑗 ∈ 𝐴 and voters 𝑖 ∈ 𝑁 .

(𝐶3)

∑
𝑗∈𝐴 𝛾𝑖 ( 𝑗) ≤ 𝛼 for all voters 𝑖 ∈ 𝑁 .

(𝐶4)

∑
𝑖∈𝑁 𝛾𝑖 ( 𝑗) = 1 for all alternatives 𝑗 ∈ 𝜋 .

(𝐶5)

∑
𝑖∈𝑁 :𝑗∈𝐴

(
𝛼 −∑

𝑚∈𝐴 𝛾𝑖 (𝑚)
)
≤ 1 for all alternatives 𝑗 ∈ 𝐴 \ 𝜋 .

Intuitively, a committee 𝜋 is priceable if there exists a budget 𝛼 for each voter, and a payment

scheme under which all of the alternatives 𝑗 ∈ 𝜋 receive at least a contribution of 1, and there is no

alternative outside 𝜋 whose supporters have an allowance left of strictly more than 1.

To define the core, we first say that, given a MWV instance 𝐼 and a (partial) committee 𝜋 ∈ P𝑘 (𝐴),
a subset 𝑆 ⊆ 𝑁 of voters with |𝑆 | ≥ ℓ · 𝑛/𝑘 blocks 𝜋 if there exists a set 𝑇 ⊆ 𝐴 of alternatives with

|𝑇 | = ℓ such that |𝐴𝑖 ∩𝑇 | > |𝐴𝑖 ∩ 𝜋 |, for all 𝑖 ∈ 𝑆 . A (partial) committee 𝜋 is in the core of a MWV

instance 𝐼 if it is not blocked. In other words, a committee 𝜋 is in the core if there is no group of

voters that is large enough to deserve ℓ seats and that would prefer to fill these ℓ seats by themselves.

Intriguingly, it is not known, at the moment of writing, whether the core is always non-empty

[Lackner and Skowron, 2023]. However, positive results can be obtained for restrictions of the core

in which deviations are allowed only from voter coalitions that satisfy certain constraints.

One such constraint is cohesiveness. For ℓ ∈ N>0, a subset 𝑆 ⊆ 𝑁 of voters is ℓ-cohesive if (𝑖)

|𝑆 | ≥ ℓ · 𝑛/𝑘, and (𝑖𝑖) |⋂𝑖∈𝑆 𝐴𝑖 | ≥ ℓ . A (partial) committee 𝜋 ∈ P𝑘 (𝐴) satisfies extended justified

representation (EJR) if for all ℓ-cohesive groups 𝑆 there is a voter 𝑖 ∈ 𝑆 such that |𝐴𝑖 ∩ 𝜋 | ≥ ℓ .

Intuitively, a subset 𝑆 of voters is ℓ-cohesive if 𝑆 is large enough to demand ℓ alternatives, and

there are at least ℓ alternatives that all voters in 𝑆 approve of. EJR has been one of the central

concepts in the multiwinner voting literature, because (𝑖) it can always be satisfied, and (𝑖𝑖) there

exist polynomial time computable voting rules that satisfy EJR. Note that if a committee 𝜋 is in the

core, then 𝜋 also satisfies EJR, but not the other way around [Aziz et al., 2017].

One concern regarding EJR is that larger cohesive groups do not regularly appear in real world

examples [Brill and Peters, 2023]. To mitigate this concern, a new axiom has been proposed recently

[Brill and Peters, 2023]. A (partial) committee 𝜋 ∈ P𝑘 (𝐴) satisfies extended justified representation
plus (EJR+) if there is no group of voters 𝑆 ⊆ 𝑁 , alternative 𝑗 ∈ 𝐴 and ℓ ∈ N>0 such that (𝑖) 𝑆 is

large enough to deserve ℓ seats, i.e., |𝑆 | ≥ ℓ · 𝑛/𝑘, (𝑖𝑖) the voters in 𝑆 jointly approve an alternative

that is not in 𝜋 , i.e., (⋂𝑖∈𝑆 𝐴𝑖 ) \ 𝜋 ≠ ∅ and (𝑖𝑖𝑖) no voter in 𝑆 approves of ℓ or more candidates in

𝜋 , i.e., |𝐴𝑖 ∩ 𝜋 | < ℓ for all 𝑖 ∈ 𝑆 . In contrast to EJR, it is possible to verify whether a committee

satisfies EJR+ in polynomial time and EJR+ is much more restrictive in real world instances. At

the same time, the two most prominent voting rules satisfying EJR, namely Proportional Approval

Voting (PAV) and the Method of Equal Shares (MES), also satisfy EJR+.

The aforementioned Method of Equal Shares (MES) is defined as follows. Given a MWV instance

𝐼 = ⟨𝑁,𝐴, 𝑘,𝑨⟩, MES constructs a committee 𝜋 iteratively, starting from the empty set. A load

ℓ𝑖 : 2
𝐴 → R+ is associated with every voter 𝑖 ∈ 𝑁 , and initialized as ℓ𝑖 (∅) = 0 for all 𝑖 ∈ 𝑁 .

Given 𝜋 and a scalar 𝛽 ≥ 0, the contribution of voter 𝑖 ∈ 𝑁 for candidate 𝑗 ∈ 𝐴 \ 𝜋 is defined by

𝛾𝑖 (𝜋, 𝛽, 𝑗) = 𝐴𝑖 ( 𝑗) · min(𝑘/𝑛 − ℓ𝑖 (𝜋), 𝛽). Given a budget allocation 𝜋 , a candidate 𝑗 ∈ 𝐴 \ 𝜋 is said

to be 𝛽-affordable, for 𝛽 ≥ 0, if

∑
𝑖∈𝑁 𝛾𝑖 (𝜋, 𝛽, 𝑗) ≥ 1. For a given round with current committee 𝜋 ,

if no candidate is 𝛽-affordable for any 𝛽 , then MES terminates. Otherwise, it selects a candidate

𝑗 ∈ 𝐴 \ 𝜋 that is 𝛽★-affordable where 𝛽★ is the smallest 𝛽 such that one candidate is 𝛽-affordable

(𝜋 is updated to 𝜋 ∪ { 𝑗}). Loads are then updated to ℓ𝑖 (𝜋 ∪ { 𝑗}) = ℓ𝑖 (𝜋) + 𝛾𝑖 (𝜋, 𝛽, 𝑗). A new round

then starts.

Example 1. Consider the MWV instance with voters 𝑁 = [6], alternatives 𝐴 = [5], a desired size
𝑘 = 3 of the committee and approval sets 𝐴1 = {3}, 𝐴2 = {1, 2, 3}, 𝐴3 = {1}, 𝐴4 = {2}, 𝐴5 = {1, 2, 4}
and 𝐴6 = {4} (see Figure 2). There are no 2- or 3-cohesive sets of voters, but plenty of 1-cohesive sets:

{1, 2}, for instance, is a large enough coalition of agents to deserve 2 · 3/6 = 1 seats, and they agree on
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candidate 3. Committee 𝜋 = {3, 4, 5} manages to represent at least one voter from every 1-cohesive

set with one candidate, and therefore satisfies EJR. It also satisfies EJR+, as both unelected candidates

1 and 2 have only three supporters and for every set of supporters 𝑆 of size two that deserves one

representative, there is at least one voter 𝑖 ∈ 𝑆 who is already represented by one candidate. However,

including candidates 1 and 2 would make voters 2, 3, 4 and 5 happier than with 𝜋 , and these voters form

a large enough group to control two seats. Thus, 𝜋 is not in the core. Committee 𝜋 is also not priceable:

since resource 5 is not approved by any candidate, 5 is barred from receiving any contributions in a

payment scheme that witnesses priceability. The different committee 𝜋 ′ = {1, 2, 3} is priceable: with
an allowance of 0.6, voters 1 and 2 can buy resource 3 by paying 0.6 and 0.4, respectively, {2, 3, 5} buy
resource 1 by paying 0.2, 0.6 and 0.2, and {4, 5} buy resource 2, contributing 0.6 and 0.4, respectively.

Voter 6 has a budget of 0.6 left over but, since voter 5 has exhausted their allowance with different

investments, resource 4 cannot be bought.

3 Our New Class of Strategic Games: Budgeting Games
In this section we introduce budgeting games, the novel type of game central to the results of the

paper. An instance of a budgeting game (BG) is given by a tuple Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩, where 𝑁 = [𝑛] is
a finite set of players (or agents) and 𝑀 = [𝑚] is a finite set of resources. Each player 𝑖 ∈ 𝑁 has a

set 𝑋𝑖 ⊆ 𝑀 of relevant resources and a budget 𝑏 ∈ R>0 that 𝑖 can allocate across the resources in

𝑀 . We also say that the resources in𝑀 \ 𝑋𝑖 are irrelevant to 𝑖 . We use 𝑿 = (𝑋1, . . . , 𝑋𝑛) to refer to

the vector of relevant resource sets of the players. Note that each player 𝑖 has the same budget 𝑏

available; we also say that the budgets of the players are uniform.

A strategy of player 𝑖 ∈ 𝑁 specifices how 𝑖 allocates their budget 𝑏 across the resources in 𝑀 .

Formally, we capture this through an allocation function 𝜆𝑖 : 𝑀 → R≥0 which specifies for each

resource 𝑗 ∈ 𝑀 the amount 𝜆𝑖 ( 𝑗) ≥ 0 that 𝑖 allocates on 𝑗 such that the total amount player 𝑖

allocates across all resources does not exceed the budget 𝑏, i.e.,
∑

𝑗∈𝑀 𝜆𝑖 ( 𝑗) ≤ 𝑏, Note that 𝑖 does

not need to spend the entire budget and is free to contribute to resources that are irrelevant to

them. Each strategy 𝜆𝑖 of player 𝑖 ∈ 𝑁 is equivalently described by an 𝑚-dimensional vector

(𝜆𝑖 (1), . . . , 𝜆𝑖 (𝑚)
)
∈ R𝑚≥0

. We define the set of all strategies Λ𝑖 of player 𝑖 as

Λ𝑖 =

{(
𝜆𝑖 ( 𝑗)

)
𝑗∈𝑀

���� 𝜆𝑖 ( 𝑗) ≥ 0 ∀𝑗 ∈ 𝑀,
∑︁
𝑗∈𝑀

𝜆𝑖 ( 𝑗) ≤ 𝑏

}
⊂ R𝑚≥0

. (1)

Note that the strategy setΛ𝑖 is infinite but compact. Thus, budgeting games are infinite normal-form

games with a finite set of players and each player having an infinite set of strategies.

A strategy profile 𝝀 = (𝜆𝑖 )𝑖∈𝑁 is a vector of strategies of the players. Given an instance Γ of

a BG, we define Λ = Λ1 × · · · × Λ𝑛 as the set of all strategy profiles. Given a strategy profile

𝝀 ∈ Λ, we say that a resource 𝑗 ∈ 𝑀 is active if

∑
𝑖∈𝑁 𝜆𝑖 ( 𝑗) ≥ 1 and inactive otherwise. Given a

strategy profile 𝝀, we define the outcome out (𝝀) of 𝝀 as the set of all active resources in 𝑀 , i.e.,

out (𝝀) = { 𝑗 ∈ 𝑀 | ∑𝑖∈𝑁 𝜆𝑖 ( 𝑗) ≥ 1}. The utility of player 𝑖 ∈ 𝑁 is the number of active resources

relevant to 𝑖 , i.e., 𝑢𝑖 (𝝀) = |𝑋𝑖 ∩ out (𝝀) |. The goal of each player 𝑖 ∈ 𝑁 is to maximize their utility.

Given a strategy profile 𝝀 = (𝜆1, . . . , 𝜆𝑛) and a set of players 𝑆 ⊆ 𝑁 (also referred to as a coalition),

𝝀′ = (𝝀′
𝑆
,𝝀−𝑆 ) is the strategy profile obtained from 𝝀 if each player 𝑖 ∈ 𝑆 deviates to strategy

𝜆′𝑖 ∈ Λ𝑖 , while the strategy of each player 𝑖 ∈ 𝑁 \ 𝑆 remains the same, i.e., 𝜆′𝑖 = 𝜆𝑖 . We call such

a deviation unilateral if |𝑆 | = 1 (i.e., only a single player deviates) and coalitional otherwise. For

a budgeting game Γ, a strategy profile 𝝀 is a 𝑘-strong equilibrium if for every coalition 𝑆 ⊆ 𝑁

with |𝑆 | ≤ 𝑘 , there is no strategy profile 𝝀′ = (𝝀′
𝑆
,𝝀−𝑆 ) such that 𝑢𝑖 (𝝀′) > 𝑢𝑖 (𝝀) for every player

𝑖 ∈ 𝑆 . Profile 𝝀 is called a strong equilibrium simply if it is an 𝑛-strong equilibrium. The notion of

a 𝑘-strong equilibrium captures a familiar intuition (i.e., that there are no profitable deviations),
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Fig. 2. Instance of budgeting game with 𝑛 = 6 players (circle nodes) and𝑚 = 5 resources (square nodes). Each
player 𝑖 is connected to their relevant resources in 𝑋𝑖 (solid edges), and the budget is 𝑏 = 1/2. The edges are
labeled with the allocated amounts, if any. Investment in a non-relevant resource is indicated by a dotted line.
Active resources are colored in green.

under increasingly stronger conditions. Note that a 𝑘-strong equilibrium is also a (𝑘−1)-strong
equilibrium for 𝑘 ≥ 2, and 1-strong equilibria are more familiarly known as Nash equilibria. As is

known, (pure) Nash equilibria are not guaranteed to exist for general normal-form games. However,

for our budgeting games a potential function argument shows that a pure Nash equilibrium does

always exist.

Theorem 3.1. Every budgeting game Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩ admits a Nash equilibrium.

Though of independent interest, this result is less relevant in the context of multi-winner voting,

and we omit the proof here.

The interplay between MWV instances and budgeting games is crucial enough to warrant

its own definition. If 𝐼 = ⟨𝑁,𝐴, 𝑘,𝑨⟩ is a MWV instance, the associated budgeting game is Γ𝐼 =

⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩, where 𝑀 = 𝐴 and 𝑋𝑖 = 𝐴𝑖 , for all 𝑖 ∈ 𝑁 . If Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩ is a budgeting game,

with 𝑏 ∈ {1/𝑛, 2/𝑛, . . . , |𝑀 |/𝑛}, the associated MWV instance is 𝐼Γ = ⟨𝑁,𝐴,𝑏 · 𝑛,𝑨⟩, where 𝐴 = 𝑀 and

the approval set of each agent 𝑖 ∈ 𝑁 is 𝐴𝑖 = 𝑋𝑖 .

Example 2. Consider a budgeting game with 𝑁 = [6], 𝑀 = [5], 𝑏 = 1/2 and relevant resources,

together with a profile 𝝀, depicted in Figure 2. Note that this is the budgeting game associated with the

MWV instance in Example 1. The allocation 𝝀 activates resources 3, 4 and 5, i.e., out (𝝀) = {3, 4, 5},
corresponding to committee 𝜋 = {3, 4, 5} that satisfies EJR, but is neither in the core, nor priceable.

Coalition 𝑆 = {2, 3, 4, 5} can deviate to 𝝀′
𝑆
in which agents 2 and 5 contribute 1/4 to each of resources

1 and 2, 3 contributes 1/2 to 1 and 4 contributes 1/2 to 2. As a result, 𝝀′ = (𝝀′
𝑆
,𝝀−𝑆 ) is a profitable

deviation for 𝑆 , since out (𝝀′) = {1, 2}.

4 Proportionality Notions as Equilibria
In this section we characterize prominent proportionality axioms as equilibria of budgeting games.

One of these (the 𝛼-core) has precedent in the game-theory literature; the others arise out of the

connection with multiwinner voting, and are new.

4.1 Priceability and Superset Equilibria
For priceability, the relevant equilibrium relies on a type of group deviation that results in more

resources being activated. For a budgeting game Γ and a coalition 𝑆 ⊆ 𝑁 , a strategy profile

𝝀′ = (𝝀′
𝑆
,𝝀−𝑆 ) is a superset deviation for 𝑆 if out (𝝀) ⊊ out (𝝀′), and out (𝝀) ∩ 𝑋𝑖 ⊊ out (𝝀′) ∩ 𝑋𝑖 ,

for every 𝑖 ∈ 𝑆 . Note that the utility of each player in 𝑆 increases as result of a superset deviation.

Definition 1 (Superset Eqilibrium). Profile 𝝀 is a superset equilibrium if there is no coalition

𝑆 ⊆ 𝑁 of players that has a superset deviation.
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Superset equilibria can be shown to correspond to priceable committees under a mild restriction

on the way agents allocate their budget. This restriction is natural: no player allocates any of their

budget to resources not relevant to them.

Theorem 4.1. For a budgeting game Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩, if 𝝀 is a superset equilibrium such that

𝜆𝑖 ( 𝑗) = 0, for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 \𝑋𝑖 , then the committee 𝜋 = out (𝝀) is priceable for the multiwinner

voting instance 𝐼Γ = ⟨𝑁,𝐴, 𝑘,𝑨⟩, with 𝐴 = 𝑀 , 𝑘 = |𝜋 |, and 𝑨 = 𝑿 .

Conversely, every priceable committee can be mapped to a subset of (the outcome of) a superset

equilibrium in a corresponding budgeting game.

Theorem 4.2. For a MWV instance 𝐼 = ⟨𝑁,𝐴, 𝑘,𝑨⟩ and a committee 𝜋 priceable for allowance 𝛼 ,

the budgeting game Γ𝐼 = ⟨𝑁,𝑀,𝑏,𝑿⟩, with𝑀 = 𝐴, 𝑏 = 𝛼 , and 𝑿 = 𝑨, has a superset equilibrium 𝝀
in which 𝜆𝑖 ( 𝑗) = 0, for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 \ 𝑋𝑖 , and such that 𝜋 ⊆ out (𝝀).

The proofs proceed by following the definitions; we omit them here. Some observations are in order,

however, about the conditions under which these results hold. First, note that without restricting

contributions to relevant resources only, it becomes possible to have superset equilibria whose

outcomes are not priceable, i.e., Theorem 4.1 does not go through anymore.

Example 3. Consider a budgeting game with 𝑁 = [2],𝑀 = [2], 𝑋1 = 𝑋2 = {1}, and budget 𝑏 = 1/2.

Profile 𝝀 in which players 1 and 2 contribute 1/2 to resource 2, which gets activated, is a superset

equilibrium. However, committee {2} in the corresponding MWV instance with 𝑘 = 1 is not priceable:

property𝐶1 forbids voters from investing any of their budget in alternative 2, while property𝐶4 requires

non-negative contributions.

Then, we remark that a strengthening of Theorem 4.2 in which every priceable committee

corresponds exactly to a superset equilibrium is not possible.

Example 4. Consider an MWV instance with 𝑁 = [2], 𝐴 = [2], 𝐴1 = {1} and 𝐴2 = {2}. For 𝑘 = 1,

both committees {1} and {2} are priceable with allowance 1: in one case, voter 1 spends its allowance to

buy candidate 1 while voter 2 spends nothing; the other case is symmetrical. However, in the budgeting

game corresponding to the MWV instance, the output for a budget of 1 is {1, 2}: at equilibrium, with

investment only in relevant resources, players 1 and 2 activate resources 1 and 2, respectively.

The issue here is that the choice of 𝑘 may require the exclusion of a perfectly affordable candidate

simply because of tie-breaking, whereas in the corresponding game players are free to activate

any relevant resource within the allotted budget. It is an interesting question whether setting the

budget to 𝑘/𝑛 in the corresponding budgeting game, and allowing players to invest in non-relevant

resources, would make it possible to simulate each priceable committee of size 𝑘 .

4.2 The Core of a Multiwinner Voting Instance and the 𝛼-Core of a Budgeting Game
To characterize the core of MWV instances we can, interestingly, use the existing notion of the

𝛼-core [Aumann, 1961, Scarf, 1971]. To define it in the context of a budgeting game Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩,
we first say that a coalition 𝑆 ⊆ 𝑁 has an 𝛼-core deviation from a strategy profile 𝝀 if there is a

strategy profile 𝝀′
𝑆
such that 𝑢𝑖 (𝝀′

𝑆
,𝝀′

−𝑆 ) > 𝑢𝑖 (𝝀), for every strategy profile 𝝀′
−𝑆 and for all 𝑖 ∈ 𝑆 . In

this case, we say that strategy profile 𝝀 is 𝛼-blocked by coalition 𝑆 . In other words, deviating to 𝝀′
𝑆

leads to strictly higher utility for all players in 𝑆 , regardless of how players in 𝑁 \ 𝑆 react.

Definition 2 (𝛼-Core). A strategy profile 𝝀 is in the 𝛼-core of a budgeting game Γ if there is no

coalition that 𝛼-blocks it.
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The definition of the 𝛼-core can be phrased equivalently by making players outside 𝑆 contribute

0 to all resources. More precisely, for a strategy profile 𝝀 and a coalition 𝑆 ⊆ 𝑁 , let 𝝀0

−𝑆 be the

stategy profile in which every player in 𝑁 \ 𝑆 resets their contribution to 0, i.e., 𝜆0

𝑖 ( 𝑗) = 0, for all

players 𝑖 ∈ 𝑁 \ 𝑆 and resources 𝑗 ∈ 𝑀 . We then have the following result.

Proposition 4.3. For a budgeting game Γ, a coalition 𝑆 ⊆ 𝑁 𝛼-blocks a strategy profile 𝝀 with 𝝀′
𝑆

if and only if for all 𝑖 ∈ 𝑆 we have 𝑢𝑖 (𝝀′
𝑆
,𝝀0

−𝑆 ) > 𝑢𝑖 (𝝀).
Example 5. For the budgeting game in Example 2, profile 𝝀 depicted in Figure 2 is not in the 𝛼-core,

as the coalition 𝑆 = {2, 3, 4, 5} 𝛼-blocks 𝝀 with the deviation 𝝀′
that activates resources 1 and 2.

Using Proposition 4.3, we can make the relationship between the core of a multwinner voting

instance and the 𝛼-core of the associated budgeting game precise.

Theorem 4.4. If a strategy profile 𝝀 is in the 𝛼-core of a budgeting game Γ = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩, then
out (𝝀) is in the core of the associated MWV instance 𝐼Γ = ⟨𝑁,𝐴, 𝑘,𝑨⟩.
Proof. Take a strategy profile 𝝀 in the 𝛼-core of Γ and assume, for the sake of contradiction,

that out (𝝀) is not in the core of the MWV instance 𝐼Γ , i.e., out (𝝀) is blocked. Intuitively, this means

that there exists some group 𝑆 of voters who would be happier with alternatives 𝑇 , and 𝑆 is large

enough to demand |𝑇 | seats on the committee: this set 𝑆 can then redirect its budget to activate

the resources in 𝑇 , meaning 𝝀 could not have been in the 𝛼-core of the budgeting game Γ. More

formally, there exists a set of voters 𝑆 ⊆ 𝑁 and a set of alternatives 𝑇 ⊆ 𝐴, such that |𝑆 | ≥ |𝑇 | · 𝑛/𝑘
and |𝐴𝑖 ∩𝑇 | > |𝐴𝑖 ∩ out (𝝀) | for all 𝑖 ∈ 𝑆 . This implies that in the associated budgeting game the

players in 𝑆 together have a budget of |𝑆 | · 𝑏 = |𝑆 | · 𝑘/𝑛 ≥ |𝑇 |. This means, in particular, that players

in 𝑆 have sufficient budget to activate all resources in 𝑇 . Hence there exists a profile 𝝀′
𝑆
for the

players in 𝑆 such that out (𝝀′
𝑆
,𝝀0

−𝑆 ) = 𝑇 . From the fact that out (𝝀) is blocked we also have that

|𝐴𝑖 ∩𝑇 | > |𝐴𝑖 ∩ out (𝝀) |, for all 𝑖 ∈ 𝑆 . This allows us to conclude that for all 𝑖 ∈ 𝑆 , we have:

𝑢𝑖 (𝝀′
𝑆 ,𝝀

0

−𝑆 ) = |𝐴𝑖 ∩ out (𝝀′
𝑆 ,𝝀

0

−𝑆 ) | = |𝐴𝑖 ∩𝑇 | > |𝐴𝑖 ∩ out (𝝀) | = 𝑢𝑖 (𝝀).
By Proposition 4.3, this implies that 𝑆 is an 𝛼-blocking coalition, which is a contradiction. □

A similar argument proves the converse.

Theorem 4.5. If 𝜋 ⊆ 𝐴 is a committee in the core of a MWV instance 𝐼 = ⟨𝑁,𝐴, 𝑘,𝑨⟩, then any

strategy profile𝝀 with out (𝝀) = 𝜋 is in the𝛼-core of the associated budgeting game Γ𝐼 = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩.
Proof. Take a committee 𝜋 in the core of 𝐼 and let 𝝀 be a strategy profile such that out (𝝀) = 𝜋 .

Assume, for the sake of contradiction, that there exists a coalition of players 𝑆 ⊆ 𝑁 acting as

an 𝛼-blocking coalition in 𝝀, witnessed by the deviation 𝝀′
𝑆
. By Proposition 4.3, we have that

𝑢𝑖 (𝝀′
𝑆
,𝝀0

−𝑆 ) > 𝑢𝑖 (𝝀), for all 𝑖 ∈ 𝑆 . We infer that:

|𝐴𝑖 ∩ out (𝝀′
𝑆 ,𝝀

0

−𝑆 ) | > |𝐴𝑖 ∩ out (𝝀) | = |𝐴𝑖 ∩ 𝜋 |,
for every player 𝑖 ∈ 𝑆 . Since no player in 𝑁 \ 𝑆 contributes any of their budget in out (𝝀′

𝑆
,𝝀0

−𝑆 ),
we know that |out (𝝀′

𝑆
,𝝀0

−𝑆 ) | ≤
∑

𝑖∈𝑆 𝑏 = 𝑘/𝑛 · |𝑆 |, and therefore that |𝑆 | ≥ |out (𝝀′
𝑆
,𝝀0

−𝑆 ) | · 𝑛/𝑘 .
However, that means that 𝑆 blocks 𝜋 with out (𝝀′

𝑆
,𝝀0

−𝑆 ), which contradicts the assumption that 𝜋

is a committee in the core of 𝐼 . □

With a budget of 𝑘/𝑛 per player, 𝑛 players can always activate 𝑘 resources, i.e., for every committee

𝜋 there exists at least one strategy profile 𝝀 such that out (𝝀) = 𝜋 . Thus, Theorems 4.4 and 4.5

imply, first, that a strategy profile 𝝀 is in the 𝛼-core if and only if out (𝝀) is in the core and, second,

that the core is always non-empty if and only if for every budgeting game Γ = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩,
𝑘 ∈ {1, 2, . . . , |𝑀 |}, there exists a profile in the 𝛼-core.

58



Committees and Equilibria EC ’24, July 8–11, 2024, New Haven, CT, USA

Note, however, that activation of 𝑘 resources might require some players to spend their budget

on irrelevant resources: if 𝑘 = 1, activating some resource 𝑟 involves each agent investing 1/𝑛 in
𝑟—whether the agent cares about 𝑟 or not. Such behavior borders on irrationality, and it would be

interesting to know if committees in the core can be rationalized with more rational profiles. It

might help to focus on committees in the core that are subset minimal.

Finally, it is worth pointing out that every strong equilibrium of a budgeting game is also in the

𝛼-core, while the converse is not true, i.e., there can be profiles in the 𝛼-core that are not strong

equilibria.

Proposition 4.6. Let Γ be a budgeting game. If a strategy profile 𝝀 is a strong equilibrium of Γ,
then 𝝀 is also in the 𝛼-core of Γ.

4.3 EJR and the Cohesive 𝛼-Core
Extended Justified Representation (EJR) can be seen as a restricted version of the core. Thus, in

order to find an equilibrium characterizing EJR, we restrict the type of deviation players are allowed

to do compared to the 𝛼-core. Given a budgeting game Γ and a profile 𝝀, a cohesive deviation for

coalition 𝑆 ⊆ 𝑁 is a profile 𝝀′
𝑆
such that if 𝜆′𝑖 ( 𝑗) > 0, then 𝑗 ∈ ⋂

𝑚∈𝑆 𝑋𝑚 , for all players 𝑖 ∈ 𝑆 .

In other words, in 𝝀′
𝑆
all players in 𝑆 contribute only to resources that are relevant to all players

in 𝑆 . Profile 𝝀′
𝑆
is a cohesive 𝛼-core deviation if, in addition to being cohesive, it also holds that

𝑢𝑖 (𝝀′
𝑆
,𝝀′

−𝑆 ) > 𝑢𝑖 (𝝀), for all 𝑖 ∈ 𝑆 , and for every strategy profile 𝝀′
−𝑆 . In this case, we also say that

profile 𝝀 is cohesively 𝛼-blocked by coalition 𝑆 ⊆ 𝑁 .

Definition 3 (Cohesive 𝛼-core). A profile 𝝀 is in the cohesive 𝛼-core of a budgeting game Γ if

there is no coalition that cohesively 𝛼-blocks it.

Example 6. For the budgeting game in Example 2, note that deviation 𝝀′
, which makes agents

in 𝑆 = {2, 3, 4, 5} better off, is not cohesive, since it involves contributions to resources that are not
unanimously relevant. The lack of deviations shows that the outcome {3, 4, 5} is in the cohesive 𝛼-core

of the game.

In Example 6 the outcome that ends up in the cohesive 𝛼-core of the budgeting game coincides

with a committee that satisfies EJR in the associated MWV instance. The following results show

that this is no coincidence.

Theorem 4.7. If profile 𝝀 is in the cohesive 𝛼-core of budgeting game Γ = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩, then
out (𝝀) satisfies EJR with respect to the associated MWV instance 𝐼Γ = ⟨𝑁,𝐴, 𝑘,𝑨⟩.

Proof. Suppose, for the sake of contradiction, that there is a profile 𝝀 in the cohesive 𝛼-core of

Γ such that out (𝝀) does not satisfy EJR. Then there exists an ℓ-cohesive group 𝑆 of voters, each

represented by fewer than ℓ candidates in out (𝝀). In other words, there exists a set of alternatives

𝑇 ⊆ 𝐴, with |𝑇 | = ℓ and 𝑇 ⊆ ⋂
𝑖∈𝑆 𝐴𝑖 , such that (𝑖) |𝑆 | ≥ ℓ · 𝑛/𝑘 and (𝑖𝑖) |𝐴𝑖 ∩𝑇 | > |𝐴𝑖 ∩ out (𝝀) | for

all 𝑖 ∈ 𝑆 . Analogously to the proof of Theorem 4.4, it follows from statements (𝑖) and (𝑖𝑖) that the

players in 𝑆 are an 𝛼-blocking coalition for 𝝀, witnessed by a profile 𝝀′
𝑆
such that out (𝝀′

𝑆
,𝝀0

−𝑆 ) = 𝑇 .

As per Proposition 4.3, we can assume without loss of generality that 𝜆𝑖 ( 𝑗) = 0 if 𝑗 ∉ 𝑇 , which,

with the fact that 𝑇 ⊆ ⋂
𝑖∈𝑆 𝐴𝑖 , implies that this deviation is cohesive. □

Theorem 4.8. If committee 𝜋 satisfies EJR with respect to MWV instance 𝐼 = ⟨𝑁,𝐴, 𝑘,𝑨⟩, then
any strategy profile 𝝀 with out (𝝀) = 𝜋 is in the cohesive 𝛼-core of the associated budgeting game

Γ𝐼 = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩.

Proof. Take a committee 𝜋 satisfying EJR and a strategy profile 𝝀 such that out (𝝀) = 𝜋 . Assume,

for the sake of contradiction, that there is a cohesive 𝛼-blocking coalition 𝑆 , witnessed by strategy
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profile 𝝀′
𝑆
. As no player in 𝑁 \ 𝑆 contributes any of their budget in out (𝝀′

𝑆
,𝝀0

−𝑆 ), we know that

|out (𝝀′
𝑆
,𝝀0

−𝑆 ) | ≤
∑

𝑖∈𝑆 𝑏 = |𝑆 | · 𝑘/𝑛. Moreover, 𝝀′
𝑆
is cohesive so only resources 𝑗 with 𝑗 ∈ 𝑋𝑖 for

all 𝑖 ∈ 𝑆 can be in out (𝝀′
𝑆
,𝝀0

−𝑆 ). Therefore 𝑆 is |out (𝝀′
𝑆
,𝝀0

−𝑆 ) |-cohesive with respect to the MWV

instance 𝐼 . Also, because 𝝀′
𝑆
is cohesive we have |𝐴𝑖 ∩ out (𝝀′

𝑆
,𝝀0

−𝑆 ) | = |out (𝝀′
𝑆
,𝝀0

−𝑆 ) |. However, by
Proposition 4.3, we have that 𝑢𝑖

(
𝝀′
𝑆
,𝝀0

−𝑆
)
> 𝑢𝑖 (𝝀), for all 𝑖 ∈ 𝑆 . This means that:��𝐴𝑖 ∩ out (𝝀′

𝑆 ,𝝀
0

−𝑆 )
�� = ��

out (𝝀′
𝑆 ,𝝀

0

−𝑆 )
�� > |𝐴𝑖 ∩ out (𝝀) | = |𝐴𝑖 ∩ 𝜋 | ,

contradicting the assumption that 𝜋 satisfies EJR. □

As for the 𝛼-core, Theorem 4.8 does not provide any guarantee that players in an EJR-satisfying

profile 𝝀 behave sensibly, in the sense of contributing only to relevant resource. Indeed, committees

of size 𝑘 produced by the voting rule PAV (known to satisfy EJR but not priceability) cannot always

be the outcome of a profile 𝝀 in which players contribute only to relevant resources (since then

out (𝝀) would be priceable). On the other hand, as MES produces a partial committee that always

satisfies EJR and ensures that no player pays for a non-approved candidate, we conclude that every

budgeting game where with budget 𝑘/𝑛 for some 𝑘 has a profile in the cohesive 𝛼-core where players

contribute only to relevant resources.

4.4 EJR+ and Weakly Improving Deviations
Intuitively, EJR+ is violated if there is a group 𝑆 of voters such that every voter in 𝑆 is represented

by fewer than 𝑘 · |𝑆 |/𝑛 candidates, and there exists a candidate jointly approved by the voters in 𝑆

that is not elected. It is tempting to assume this corresponds to an equilibrium where no group

of players can afford to activate an additional resource. Such a requirement, however, does not

capture every violation of EJR+, as it leaves open the possibility that voters do not have enough

representation because they spend more than strictly necessary for the resources they activate.

Thus, in order to capture EJR+ we use deviations in which players can increase their representation

either by activating a new resource, or, alternatively, by reducing the amount of money they need

to spend to achieve their current level of representation. More precisely, for budgeting game Γ
and profile 𝝀, strategy profile 𝝀′ = (𝝀′

𝑆
,𝝀−𝑆 ) is a weakly improving singleton deviation for coalition

𝑆 ⊆ 𝑁 if |out (𝝀′) \ out (𝝀) | = 1 and for all 𝑖 ∈ 𝑆 either 𝑢𝑖 (𝝀′) > 𝑢𝑖 (𝝀), or 𝑢𝑖 (𝝀′) = 𝑢𝑖 (𝝀) and∑
𝑗∈𝑀 𝜆′𝑖 ( 𝑗) <

∑
𝑗∈𝑀 𝜆𝑖 ( 𝑗).

We will show later that the outcome out (𝝀) of any profile 𝝀 with no available weakly improving

singleton deviations satisfies EJR+. Prior to this, we note that such a condition is too strong to

actually capture EJR+; in fact, there exist games in which every profile allows for such a deviation.

Example 7. Consider a budgeting game with players 𝑁 = [3], resources𝑀 = [3], budget 𝑏 = 0.6,

and relevant resources given by 𝑋1 = {1, 3}, 𝑋2 = {1, 2} and 𝑋3 = {2, 3}. Any strategy profile in this

game allows for a weakly improving singleton deviation: clearly, if no resource is activated, any set

of two players can deviate by activating a resource they jointly approve. At the same time, the total

budget allows for the activation of only one resource. Assume, without loss of generality, that only

resource 1 is active. Then at least one of players 1 and 2 contributes more than 0.4 to 1: assume, again

without loss of generality, that 𝜆1 (1) > 0.4. Then players 1 and 3 have a weakly improving singleton

deviation activating resource 3 such that 0.4 < 𝜆′
1
(3) < 𝜆1 (1) and 𝜆′3 (3) = 1 − 𝜆′

1
(3) ≤ 0.6. But now

either 1 or 3 contributes strictly more than 0.4, hence this player has a weakly improving singleton

deviation together with player 2.

This motivates restricting weakly improving singleton deviations to a well-behaved subset in which

players share the cost of the newly activated resource evenly. Formally, deviation 𝝀′ = (𝝀′
𝑆
,𝝀−𝑆 )
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Fig. 3. Budgeting game for Example 8, with profile 𝝀.

is balanced if for all 𝑗 ∈ out (𝝀′) \ out (𝝀) it holds that that 𝜆′𝑖 ( 𝑗) = 𝜆′𝑖∗ ( 𝑗), for all players 𝑖, 𝑖∗ ∈ 𝑆 .

Though severe, this restriction is still sufficient to guarantee EJR+.

Theorem 4.9. For a budgeting game Γ = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩, if 𝝀 is a profile for which no balanced,

weakly improving singleton deviation is possible, then out (𝝀) satisfies EJR+ with respect to the

associated MWV instance 𝐼Γ = ⟨𝑁,𝐴, 𝑘,𝑨⟩.

Proof. Let 𝝀 be a strategy profile such that out (𝝀) violates EJR+. Let 𝑆 be a set of voters that

witnesses this violation and 𝑗 a candidate in (⋂𝑖∈𝑆 𝐴𝑖 ) \ out (𝝀). We claim that the corresponding

set of players 𝑆 has a balanced, weakly improving singleton deviation 𝝀′ = (𝝀′
𝑆
,𝝀−𝑆 ) activating 𝑗 .

If such a deviation exists we must have 𝜆′𝑖 ( 𝑗) ≤ 1/|𝑆 |. We have to show that for every player 𝑖 ∈ 𝑆

either

𝑏 −
∑︁

𝑗∈𝑋𝑖∩out (𝝀)

©«1 − min
©«1,

∑︁
𝑖′∈𝑁 \{𝑖 }

𝜆𝑖′ ( 𝑗)
ª®¬ª®¬ ≥ 1

|𝑆 | ,

i.e., 𝑖 can contribute 1/|𝑆 | without decreasing their utility, or there exists a resource 𝑗 ′ such that

𝜆𝑖 ( 𝑗 ′) > 1/|𝑆 |. Assume neither holds for player 𝑖 . It follows that 𝑖 contributes at most 1/|𝑆 | to
every active resource in 𝑋𝑖 and has less than 1/|𝑆 | of their budget after this. Thus we know that

1/|𝑆 | > 𝑏 − (1/|𝑆 | · |out (𝝀) ∩𝑋𝑖 |), which is equivalent, after rewriting, to |out (𝝀) ∩𝑋𝑖 | ≥ ⌊𝑘/𝑛 · |𝑆 |⌋ .
However, this contradicts the assumption that 𝑆 witnesses a violation of EJR+. □

The opposite direction of Theorem 4.9 does not hold, as the absence of balanced, weakly improving

singleton deviations is a stronger requirement than EJR+.

Example 8. Consider the budgeting game depicted in Figure 3 with budget 𝑏 = 2/3, corresponding

to a MWV instance with 𝑘 = 6. Any committee containing 1, e.g., 𝜋 = {1, 8, . . . , 12}, satisfies EJR in

the associated MWV instance. Indeed, 𝜋 even satisfies EJR+: every unelected candidate 𝑗 ∈ {2, . . . , 7}
is supported by two voters, one of which also supports candidate 1. As ⌊2 · 6/9⌋ = 1, EJR+ is satisfied.

Now, consider any strategy profile that activates (a subset of) 𝜋 such as the one depicted in Figure 3.

There is at least one player 𝑖 ∈ {1, . . . , 6} that can contribute only 1/6 to resource 1, and thus afford to

activate the resource shared with player 7 in a balanced way, with a contribution of 1/2 each.

The natural question, now, is whether profiles that do not allow for balanced, weakly improving

singleton deviations always exist. The answer is yes, and they can be found using MES (Proposi-

tion 5.4). This turns out to be a straightforward consequence of the game-theoretic characterization

of MES in Section 5, to follow. This means that the absence of such deviations encodes a new

fairness axiom, stronger than existing axioms, and always satisfied by MES!
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5 Defining voting rules through improving move dynamics
We turn our attention now to finding equilibria of the type characterized in Section 4. In particular,

we want to understand when sequences of acceptable deviations (such as the ones described in

Section 4) can settle on an equilibrium. This is of particular interest, as it suggests a new way of

looking at multiwinner voting rules: according to this view, voters can find their way to a fair

outcome on their own, by repeatedly deviating from a starting profile according to pre-specified

rules. The success of this approach hinges, of course, on whether sequences of such deviations are

guaranteed to terminate in a stable outcome. Our first results show that for cohesive and 𝛼-core

deviations such a guarantee is not possible.

Example 9. Consider the budgeting game depicted in Figure 4, with budget 𝑏 = 1/2. Profiles 𝝀, 𝝀′′

and 𝝀′′
form a cycle of cohesive deviations: 𝝀′

, for instance, is obtained from 𝝀 by agents 2 and 3

redirecting their budget to resources 3 and 4, respectively, relevant to both.

𝝀
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2 3
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1

2

3

1

1

1
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2 3
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1

1

1
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1
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1
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1
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1

Fig. 4. A cyclic sequence of cohesive deviations (𝝀 → 𝝀′ → 𝝀′′ → 𝝀) for Example 9.

Though cohesive, the deviations in Example 9 are not 𝛼-core, since they depend on other players’

contributions in order to be profitable. But a slightly modified version of the example creates a

cycle for 𝛼-core deviations.

Example 10. Consider the same budgeting game as in Example 9 but with additional resources

7, 8 and 9, where 7 is relevant for 1, 8 is relevant for 2 and 9 is relevant 3. The budget is 𝑏 = 3/2. As

an initial strategy profile 𝝀, player 2 contributes 1 to 8, player 1 contributes 1 to 7 and 1/4 to both 5

and 6, and player 3 contributes 3/4 to both 5 and 6. Players 2 and 3 can deviate to a strategy 𝝀′
where

2 contributes 3/4 to resources 3 and 4 while 3 contributes 1/4 to 3 and 4 and 1 to 9. This increases the

utility of player 2 from 1 to 2 and the utility of player 3 from 2 to 3. Crucially, this improvement holds

for any possible strategy of 1, i.e., it is an 𝛼-core deviation. It is, however, not cohesive, as 9 is not

relevant to player 2. The resulting strategy profile is exactly symmetric to 𝝀, and now 1 and 2 can

deviate in the same manner.

This leaves cohesive 𝛼-core deviations, for which we derive a positive result: using a potential

function argument, we show that every sequence of cohesive 𝛼-core deviations is finite. To this aim,

we define a potential function Φ : Λ → N𝑛
0
that maps every strategy profile 𝝀 ∈ Λ to a non-negative

integer vector Φ(𝝀) = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ N𝑛0 such that 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑛 (ties broken arbitrarily).

As we show below, these vectors increase lexicographically with every cohesive 𝛼-core deviation.3

Further, each entry 𝑎𝑖 , 𝑖 ∈ [𝑛], will be bounded. Note that the latter is crucial: despite the fact that
3
Recall that the lexicographic ordering ≺ on N𝑛

0
is defined as follows: for any two vectors 𝒂, 𝒂′ ∈ N𝑛

0
, we have 𝒂 ≺ 𝒂′

iff

there is a 𝑘 ∈ [𝑛] such that 𝑎𝑖 = 𝑎′
𝑖
for all 𝑖 = 1, . . . , 𝑘 − 1 and 𝑎𝑘 < 𝑎′

𝑘
.
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our budgeting games have infinite strategy sets, this allows us to conclude that every sequence of

cohesive 𝛼-core deviations must be finite.

Theorem 5.1. Any sequence of cohesive 𝛼-core deviations is finite.

Proof. Fix an arbitrary strategy profile
¯𝝀 and consider a sequence of cohesive 𝛼-core deviations,

starting from
¯𝝀. Define 𝑆𝑘 as the coalition of the 𝑘-th deviation and define 𝝀𝑘 = (𝝀′

𝑆𝑘
,𝝀𝑘−1

−𝑆𝑘 ) as
the resulting strategy profile of the 𝑘-th deviation with 𝑘 > 1, and 𝝀1 = (𝝀′

𝑆1
, ¯𝝀−𝑆1

) for 𝑘 = 1.

For convenience, let 𝒂𝑘 = Φ(𝝀𝑘 ) for 𝑘 ≥ 1. By construction 𝒂𝑘 has length 𝑛 = |𝑁 |, so that for

every player 𝑖 ∈ 𝑁 there is a corresponding value in 𝒂𝑘 at position 𝜎 (𝑖). Recall that 𝒂𝑘 is sorted in

non-increasing order, so for two players 𝑖 and 𝑗 , if 𝑎𝑘
𝜎 (𝑖 ) > 𝑎𝑘

𝜎 ( 𝑗 ) then 𝜎 (𝑖) < 𝜎 ( 𝑗). By the way that

we will define 𝒂𝑘 , it serves as a lower bound on the utility of a player 𝑖 ∈ 𝑁 after the 𝑘-th deviation,

i.e., 𝑢𝑖 (𝝀𝑘 ) ≥ 𝑎𝑘
𝜎 (𝑖 ) . We will prove that 𝒂𝑘−1 ≺ 𝒂𝑘 for any 𝑘 ≥ 1.

We begin by introducing some notation in order to formally define 𝒂𝑘 . When considering the

𝑘-th deviation, a coalition 𝑆𝑙 with 𝑙 < 𝑘 is intact if no player 𝑖 ∈ 𝑆𝑙 was part of a coalition after the

𝑙-th deviation and before the (𝑘 + 1)-th deviation, i.e., 𝑖 ∉
⋃

𝑙<ℎ≤𝑘 𝑆
ℎ
. Consider a coalition 𝑆𝑙 that is

still intact when the 𝑘-th deviation is made, 𝑙 < 𝑘 . Then, for any 𝑖 ∈ 𝑆𝑙 , 𝑎𝑘
𝜎 (𝑖 ) can be interpreted as

the number of resources that are relevant for all players in 𝑆𝑙 and that the contributions 𝝀𝑘

𝑆𝑙
= 𝝀′

𝑆𝑙

can activate without any contribution of the players in 𝑁 \𝑆𝑙 . It is thus a lower bound on the utility

of the players in 𝑆𝑙 for the profile 𝝀𝑘
.

We say that a deviation 𝑘 breaks deviation 𝑙 , 𝑙 < 𝑘 , if the coalition 𝑆𝑙 was intact before the 𝑘-th

deviation and is no longer intact after the 𝑘-th deviation. In this case, the values 𝑎𝑘
𝜎 (𝑖 ) are set to

0 for all 𝑖 ∈ 𝑆𝑙\𝑆𝑘 , which is obviously a lower bound on the utility of the players in 𝑆𝑙\𝑆𝑘 for the

profile 𝝀𝑘
. We introduce a set 𝐿𝑘 of players whose coalition is broken due to the 𝑘-th deviation and

who are not part of the 𝑘-th coalition. More formally,

𝐿𝑘 =
⋃
𝑗∈𝑆𝑘

𝐿𝑘𝑗 with 𝐿𝑘𝑗 =

{
𝑖 ∈ 𝑁 \𝑆𝑘 | 𝑎𝑘−1

𝜎 (𝑖 ) ≠ 0, 𝑙 = arg max

1≤ℎ<𝑘
{𝑖 ∈ 𝑆ℎ} and {𝑖, 𝑗} ⊆ 𝑆𝑙

}
,

where 𝐿𝑘𝑗 is the set of players whose coalition is broken due to player 𝑗 ∈ 𝑆𝑘 deviating.

We now define 𝒂𝑘 more formally. Define 𝝀0
as 𝜆0

𝑖 ( 𝑗) = 0 for all 𝑖 ∈ 𝑁 and all 𝑗 ∈ 𝑀 and define

𝒂0 = 0. For the 𝑘-th deviation, 𝑘 ≥ 1, and for every player 𝑖 ∈ 𝑁 we define 𝑎𝑘
𝜎 (𝑖 ) as:

𝑎𝑘
𝜎 (𝑖 ) =


|out (𝝀′

𝑆𝑘
,𝝀0

−𝑆𝑘 ) | if 𝑖 ∈ 𝑆𝑘 ,

0 if 𝑖 ∈ 𝐿𝑘 ,

𝑎𝑘−1

𝜎 (𝑖 ) otherwise.

So after the 𝑘-th deviation for an agent 𝑖 ∈ 𝑁 , the number 𝑎𝑘
𝜎 (𝑖 ) denotes how profitable the last

intact coalition was that 𝑖 was in, or is 0 otherwise. As we consider cohesive 𝛼-core deviations, the

profitability of a deviation is the same for all players in the coalition. If at some point in time, agent

𝑖 decides to break the last coalition that 𝑖 was in to join a new coalition, this new coalition must be

more profitable for 𝑖 . We continue by formally defining this. Note the following two consequences

of the definitions of 𝒂𝑘 and a cohesive 𝛼-core deviation. First, for any 𝑖 ∈ 𝑁 and 𝑘 ≥ 0, it holds that

𝑎𝑘
𝜎 (𝑖 ) ∈ {0, 1, . . . ,min{|𝑋𝑖 |, ⌊𝑏 · 𝑛⌋}}. Secondly, note that for any 𝑖 ∈ 𝑆𝑘 and 𝑘 > 1 it holds that:

𝑎𝑘
𝜎 (𝑖 ) = 𝑢𝑖 (𝝀′

𝑆𝑘
,𝝀0

−𝑆𝑘 ) > 𝑢𝑖 (𝝀𝑘−1) ≥ 𝑎𝑘−1

𝜎 (𝑖 ) ≥ 0,
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and 𝑎𝑘
𝜎 ( 𝑗 ) = 𝑎𝑘

𝜎 (ℎ) for any 𝑗, ℎ ∈ 𝑆𝑘 . Therefore, for any 𝑖 ∈ 𝑆𝑘 and 𝑘 > 1 it holds that:

𝑎𝑘
𝜎 (𝑖 ) > max

𝑗∈𝑆𝑘

{
𝑎𝑘−1

𝜎 ( 𝑗 )
}
. (2)

Note that trivially 𝒂0 ≺ 𝒂1
, as 𝑎1

𝜎 (𝑖 ) = |out (𝝀′
𝑆1
, ¯𝝀−𝑆1

) | > 0 for all 𝑖 ∈ 𝑆1
. We prove that 𝒂𝑘−1 ≺ 𝒂𝑘

for any 𝑘 ≥ 2. First, consider the case where 𝐿𝑘 = ∅. Then it must be that 𝑎𝑘
𝜎 (𝑖 ) = 𝑎𝑘−1

𝜎 (𝑖 ) for all

𝑖 ∈ 𝑁 \𝑆𝑘 . And so by equation (2), it follows that 𝒂𝑘−1 ≺ 𝒂𝑘 . Secondly, consider the case where
𝐿𝑘 ≠ ∅. Note that 𝐿𝑘 ∩ 𝑆𝑘 = ∅ by definition. In this case 𝑎𝑘

𝜎 (𝑖 ) = 𝑎𝑘−1

𝜎 (𝑖 ) for any 𝑖 ∈ 𝑁 \(𝐿𝑘 ∪ 𝑆𝑘 ), as
the intact coalitions of these players 𝑖 (if any) are not affected by the 𝑘-the deviation. Note that for

a player 𝑖 ∈ 𝑆𝑘 and any 𝑗 ∈ 𝐿𝑘𝑖 , it holds that 𝑎
𝑘−1

𝜎 (𝑖 ) = 𝑎𝑘−1

𝜎 ( 𝑗 ) , as 𝑖 and 𝑗 had the same profitability for

the intact coalition they were in. Therefore by equation (2), for any 𝑖 ∈ 𝑆𝑘 and any 𝑗 ∈ 𝐿𝑘 ∪ 𝑆𝑘 , it

holds that 𝑎𝑘
𝜎 (𝑖 ) > 𝑎𝑘−1

𝜎 ( 𝑗 ) . This leads to 𝒂
𝑘−1 ≺ 𝒂𝑘 . Since 𝑎𝑘

𝜎 (𝑖 ) ∈ {0, 1, . . . ,min{|𝑋𝑖 |, ⌊𝑏 · 𝑛⌋}}, for any
𝑘 ≥ 0 and 𝑖 ∈ 𝑁 , we conclude that any sequence of cohesive 𝛼-core deviations is finite. □

This result immediately gives us the tools to define a whole family of voting rules, as outlined at the

beginning of the section, with the starting strategy profile and a rule for picking the next deviation

(some version of cohesive 𝛼-core deviation) as parameters. Per Theorem 4.7, the outcome of such a

rule is guaranteed to satisfy EJR, and hence satisfies a strong baseline proportionality constraint.

Consider, for instance, the rule that starts from the empty profile (contributions uniformly set to

0), and allows any cohesive 𝛼-core deviation. Does this correspond to any existing multiwinner

voting rule, e.g., MES? The example below shows that it does not.

Example 11. Consider a budgeting game with players 𝑁 = [3], resources 𝑀 = [2] and budget

𝑏 = 3/4. Resource 1 is relevant for players 1 and 2 and resource 2 is relevant for players 2 and 3. In the

corresponding multiwinner instance, MES elects candidates 1 and 2, with voters 1 and 2 contributing

1/2 to 1, voter 2 contributing 1/4 to 2 and voter 3 contributing 3/4 to 2. However, there exists no sequence

of cohesive 𝛼-core deviations starting from the empty profile that activates both resources 1 and 2.

Clearly, no cohesive deviation can activate both 1 and 2 at the same time, as there is only one player for

whom both resources are relevant and that player does not have sufficient budget to activate both. So

assume one of the two resources is activated first, say w.l.o.g. resource 1 is activated. As player 2 does

not have enough budget to activate 1 alone, we know that also player 2 is contributing to 1. However,

then no cohesive deviation activating resource 2 can be profitable for player 2 under every strategy

of the remaining players. Indeed, as resource 2 is not relevant for player 1, player 1 cannot be part of

the deviating coalition. Moreover, player 3 will not contribute to resource 1 in any cohesive deviation.

Hence, if player 1 does not contribute to 1 any longer, than the deviation is not profitable for player 2.

Notably, all known voting rules elect both 1 and 2 in Example 11. Thus, cohesive 𝛼-core deviations

on top of an empty starting profile define a different, and completely new family of voting rules,

every member of which satisfies EJR out of the box. It is natural to ask how well such rules perform

in practice, and which starting profiles and restrictions on the set of deviations result in the best

voting rules, but we leave this to future work. Instead, we turn our attention to the question that

motivated Example 11: can we characterize MES with this methodology?

5.1 Characterizing the Method of Equal Shares
MES is a prime candidate for an interpretation in terms of budgeting games, and we show now

that it can be characterized using a type of superset deviation. Any sequence of such deviations is

finite, and, by construction, rules defined in this way will be priceable.

To capture the fact that agents try to achieve the highest satisfaction for budget spent, we

add the condition that deviations need to be efficient. A profitable deviation 𝝀′ =
(
𝝀′
𝑆
,𝝀−𝑆

)
for a
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coalition 𝑆 ⊆ 𝑁 is efficient if there is no player 𝑖 ∈ 𝑆 , set of players 𝑆∗ and profitable deviation

𝝀∗ =
(
𝝀∗
𝑆∗ ,𝝀−𝑆∗

)
such that 𝑖 ∈ 𝑆∗ and:∑

𝑚∈𝑀 𝜆∗𝑖 (𝑚) − 𝜆𝑖 (𝑚)
𝑢𝑖 (𝝀∗) − 𝑢𝑖 (𝝀)

<

∑
𝑚∈𝑀 𝜆

′
𝑖 (𝑚) − 𝜆𝑖 (𝑚)

𝑢𝑖 (𝝀′ ) − 𝑢𝑖 (𝝀)
.

That is, the extra money spent on a unit increase of utility for 𝑖 in 𝝀∗
is strictly smaller than in 𝝀′

.

Note that the denominator in this definition is never 0, as the deviation has to be profitable.

Since it is always more efficient for a player if other members of the coalition contribute more,

efficient deviations need to be augmented by further restrictions, in order to ensure fairness

of the contributions, as well as existence. For a budgeting game Γ and a profile 𝝀, a superset

deviation 𝝀′ =
(
𝝀′
𝑆
,𝝀−𝑆

)
for coalition 𝑆 ⊆ 𝑁 is 𝑝-balanced if for every player 𝑖 ∈ 𝑆 it holds that: (𝑖)

𝜆′𝑖 ( 𝑗) = 𝜆𝑖 ( 𝑗), for any resource 𝑗 ∉ out (𝝀′) \ out (𝝀), and (𝑖𝑖) for any resource 𝑗 ∈ out (𝝀′) \ out (𝝀),
we have 𝑗 ∈ 𝑋𝑖 and either 𝜆′𝑖 ( 𝑗) = 𝑝 , or 𝜆′𝑖 ( 𝑗) < 𝑝 and

∑
𝑚∈𝑀 𝜆′𝑖 (𝑚) = 𝑏. Intuitively, in a 𝑝-balanced

deviation players either pay the same amount, or, if they don’t have enough funds left to do so,

everything that they have left.

Finally, we also require that deviations activate only one additional resource at a time. We call a

superset deviation 𝝀′ =
(
𝝀′
𝑆
,𝝀−𝑆

)
a singleton deviation if |out (𝝀′) \ out (𝝀) | = 1. Together, these

conditions carve out the type of superset deviation we need in order to capture the dynamics of

MES. Before proceeding with the main result, we add an existence sanity check.

Proposition 5.2. For any profile 𝝀 with no money spent on inactive resources, if there exists a

superset deviation, then there also exists an efficient 𝑝-balanced singleton deviation.

Proof. Let 𝝀 be a profile for which there exists a superset deviation. It is straightforward, then,

to find a 𝑝-balanced singleton deviation where only one of the resources from the superset deviation

is activated.

It remains to be shown that an efficient singleton deviation exists. Consider a 𝑝-balanced singleton

deviation 𝝀∗
with minimal 𝑝 and let 𝑗 be the additional resource that gets activated in 𝝀∗

. We claim

that it is also efficient. First of all, consider a player 𝑖 that contributes 𝑝 to 𝑗 after the deviation. By

definition, 𝑖 has at least 𝑝 money left before the deviation, hence for any 𝑝∗-balanced singleton

deviation with 𝑝∗ ≥ 𝑝 , 𝑖 needs to contribute at least 𝑝 . Now consider a player 𝑖′ that contributes
𝑞 < 𝑝 to the deviation. This player needs to contribute 𝑞 to any 𝑝∗-balanced deviation with

𝑝∗ ≥ 𝑞. As 𝑞 < 𝑝 ≤ 𝑝∗ for all possible 𝑝∗-balanced deviations, 𝑖′ needs to contribute 𝑞 for every

possible deviation. Since for any singleton deviation 𝝀′
the increase in utility is the same and

𝜆′𝑖 ( 𝑗) − 𝜆𝑖 ( 𝑗) = 𝜆′𝑖 ( 𝑗) holds for all players 𝑖 by the assumption that no money is spent on inactivate

resources in 𝝀, this means the 𝑝-balanced deviation is efficient. □

The assumption that no money is spent on inactive resources in Proposition 5.2 is crucial. Without

it there might be a voter 𝑖 who already contributes 𝑝 to an inactive resource 𝑗 and for whom a

𝑝-balanced deviation activating 𝑗 would be preferable to a 𝑝∗-balanced deviation activating another

resource, even if 𝑝∗ < 𝑝 . Similarly, dropping any one of the above restrictions on superset deviations

results in a loss of the existence guarantee.

It is straightforward to see that any sequence of efficient, 𝑝-balanced singleton deviations is

finite. Surprisingly, any such sequence also leads to a profile in the cohesive 𝛼-core—surprising

given that these deviations are much more restricted than cohesive 𝛼-core deviations.

Theorem 5.3. For a budgeting game Γ and a superset equilibrium 𝝀, if 𝝀 can be reached from the

profile 𝝀0
, where 𝜆0

𝑖 ( 𝑗) = 0 for all 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑀 , through a sequence of efficient, 𝑝-balanced singleton

deviations, then 𝝀 is in the cohesive 𝛼-core of Γ.
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Fig. 5. Budgeting game for Example 12.

Proof. Assume there is a set of players 𝑆 ⊆ 𝑁 that is cohesively 𝛼-blocking 𝝀 with 𝝀′ =

(𝝀′
𝑆
,𝝀0

−𝑆 ). Then, by definition for each 𝑖 ∈ 𝑆 we have 𝑢𝑖 (𝝀′) > 𝑢𝑖 (𝝀). Hence there is at least one
𝑗∗ ∈ (out (𝝀′)\out (𝝀)). Moreover, observe that there is also a deviation 𝝀′′ = (𝝀′′

𝑆
,𝝀0

−𝑆 ) such that

for all 𝑗 ∈ out (𝝀′) we have 𝜆𝑖 ( 𝑗) = 1/|𝑆 | and for all 𝑗 ∉ out (𝝀′) we have 𝜆𝑖 ( 𝑗) = 0. This deviation

also witnesses that 𝑆 is cohesively 𝛼-blocking and out (𝝀′) = out (𝝀′′).
Now, let (𝝀0,𝝀2, . . . ,𝝀𝑘 ) be the sequence of profiles generated by the sequence of efficient, 𝑝-

balanced singleton deviations. Let 𝝀ℓ
be the first profile such that for at least one voter 𝑖∗ ∈ 𝑆 we

have

∑
𝑗∈𝑀 𝜆ℓ

𝑖∗ ( 𝑗) > 𝑏 − 1/|𝑆 |. We need to make a few observations: (1) In every profile 𝝀𝑡
for 𝑡 < ℓ ,

every player in 𝑆 has at least 1/|𝑆 | money left over. Therefore, the players in 𝑆 have a 1/|𝑆 |-balanced
singleton deviation by funding 𝑗∗. (2) We know that 𝑢𝑖 (𝝀′) > 𝑢𝑖 (𝝀′) − 1 ≥ 𝑢𝑖 (𝝀ℓ ). (3) As 𝝀′′

is a

possible deviation, we also know that

∑
𝑗∈out (𝝀′ )\𝑗∗ 𝜆

′′
𝑖∗ ( 𝑗) ≤ 𝑏 − 1/|𝑆 |. (3) Finally, as 𝝀ℓ

was reached

only by singleton deviations, we know that 𝜆ℓ
𝑖∗ ( 𝑗) ≠ 0 implies 𝑗 ∈ 𝑋𝑖∗ ∩ out (𝝀ℓ ).

Together, these observations imply that |𝑋𝑖∗ ∩ out (𝝀ℓ ) | = 𝑢𝑖∗
(
𝝀ℓ

)
≤ 𝑢𝑖∗

(
𝝀′′) − 1, and:∑︁

𝑗∈𝑋𝑖∗∩out (𝝀ℓ )
𝜆ℓ𝑖∗ ( 𝑗) > 𝑏 − 1

|𝑆 | ≥
∑︁

𝑗∈𝑋𝑖∗∩(out (𝝀′′ )\𝑗∗ )
𝜆′′𝑖∗ ( 𝑗).

Therefore, there is at least one resource 𝑗 ∈ (𝑋𝑖∗ ∩ out (𝝀ℓ )) such that 𝜆ℓ
𝑖∗ ( 𝑗) > 1/|𝑆 |. However, this

contradicts the assumption that 𝝀ℓ
was reached by efficient, 𝑝-balanced singleton deviations, as a

1/|𝑆 |-balanced singleton deviation would also have been possible for 𝑖∗. □

At this point we have stumbled upon yet another game-theoretically defined voting rule satisfying

EJR. How does it relate to MES? It is easy to see that each run of MES defines a sequence of efficient,

𝑝-balanced singleton deviations, i.e., every co-winner of MES can be reached by such a sequence.

The opposite, however, is not true.

Example 12. Consider the budgeting game depicted in Figure 5 with budget 𝑏 = 7/8. Any sequence

of efficient, 𝑝-balanced singleton deviations has to start with activating the resources 1, 2 and 3 with

every voter contributing 1/4. However, then there are two possible 𝑝-balanced singleton deviations,

either activating 4 or 5. In both cases, player 1 would contribute 1/8, all the remaining budget. Therefore,

both deviations are efficient. On the other hand, {1, 2, 3, 4} is the unique winner set under MES.

What we can thus say is that MES simulates a game where players activate resources one by one,

myopically maximizing their utility per unit of money at every turn, up to some tie-breaking. This

gives additional motivation to MES, as one can argue that it selects a committee that would be

reached by rational, utility maximizing agents in this specific buying process. It is also possible

to fully characterize MES in our model, however doing so requires restrictions that are hard to

motivate from a game theoretic perspective.
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Finally, this way of looking at MES shows that any committee selected by it corresponds to a

profile that does not admit a balanced, weakly improving singleton deviation. This proves that the

new condition introduced in Section 4.4, which is stronger than EJR+, is indeed satisfiable.

Proposition 5.4. If a superset equilibrium 𝝀 can be reached from the profile 𝝀0
, where 𝜆0

𝑖 ( 𝑗) = 0

for all 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑀 , by a sequence of efficient, 𝑝-balanced singleton deviations, then 𝝀 does not admit

a balanced, weakly improving singleton deviation.

6 Strong Equilibria in Trees
Though difficult in the general case, showing non-emptiness of the core is possible for restricted

classes of multiwinner voting instances relevant in practice [Pierczyński and Skowron, 2022]. We

add to this literature by proving the existence of strong equilibria for a novel restricted class of

budgeting games (implying non-emptiness of the core for the associated MWV instances), namely,

for instances that have a tree-like underlying graph structure.

Consider an instance Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩ of a budgeting game. Define the corresponding graph

𝐺Γ = (𝑉 , 𝐸) of the game as 𝑉 = 𝑁 ∪𝑀 and 𝐸 = {(𝑖, 𝑗) |𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 and 𝑗 ∈ 𝑋𝑖 }. Then Γ has a tree

structure if 𝐺Γ
is a tree (see Figure 6 for an example). Note that if a budgeting game Γ has a tree

structure, many players can agree on one resource 𝑗 , i.e., 0 ≤ |{𝑖 ∈ 𝑁 | 𝑗 ∈ 𝑋𝑖 }| ≤ 𝑛, but any subset

𝑆 ⊆ 𝑁 of players agrees on at most one resource, i.e., |⋂𝑖∈𝑆 𝑋𝑖 | ≤ 1. To analyse a budgeting game

Γ that has a tree structure, we assign a level to each player 𝑖 ∈ 𝑁 and each resource 𝑗 ∈ 𝑀 , denoted

by 𝐿𝑖 and 𝐿 𝑗 respectively. The root of the tree is always a player 𝑖 ∈ 𝑁 with 𝐿𝑖 = 1. All the relevant

resources of this root player 𝑖 are one level down, i.e., 𝐿 𝑗 = 2 for all 𝑗 ∈ 𝑋𝑖 . The levels in the tree

alternate between levels of players and levels of resources, so for all 𝑗 ∈ 𝑀 it holds that 𝐿 𝑗 is even

and for all 𝑖 ∈ 𝑁 it holds that 𝐿𝑖 is uneven. A representation exists where a player 𝑖 ∈ 𝑁 that is not

the root player, 𝐿𝑖 ≠ 1, has only one resource 𝑗 ∈ 𝑋𝑖 above 𝑖 , i.e., 𝐿 𝑗 = 𝐿𝑖 − 1, and can have many (or

none) resources ℎ ∈ 𝑋𝑖 below 𝑖 , i.e., 𝐿ℎ = 𝐿𝑖 + 1, ℎ ≠ 𝑗 . We also define leaf players: a player 𝑖 ∈ 𝑁

is a leaf player if the resources in 𝑋𝑖 that are below 𝑖 are not relevant to any other player. More

formally, if |𝑋𝑖 | = 1 or if ∀𝑗 ∈ 𝑋𝑖 with 𝐿 𝑗 = 𝐿𝑖 + 1, �ℎ ∈ 𝑁 such that 𝑗 ∈ 𝑋ℎ .

1

3

2

4

2

4

3

1

Fig. 6. Example of a budgeting game with a tree structure. Player 1 is the root of the tree and players 3 and 4
are leaf players.

For instances of a budgeting game Γ that have a tree structure, the algorithm Tree-Sweep

computes a strong equilibrium. The idea behind Tree-Sweep is to compute the strategies of the

players in a specific order, and to compute these strategies so that all players play best response

down. We define the best response down strategy for a player 𝑖 as follows:

• First, consider resources 𝑗 ∈ 𝑋𝑖 below 𝑖 (𝐿 𝑗 = 𝐿𝑖+1) with 0 ≤ ∑
ℎ∈𝑁 𝜆ℎ ( 𝑗) < 1. If the remaining

budget is sufficient, activate these resources precisely, so set 𝜆𝑖 ( 𝑗) = 1−∑
ℎ∈𝑁 𝜆ℎ ( 𝑗), in order

of lowest to highest contribution required for activating (breaking ties arbitrarily).
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ALGORITHM 1: Tree-Sweep (Γ)
Input: An instance Γ = ⟨𝑁,𝑀,𝑏,𝑿⟩ of a budgeting game.

Output: A strong equilibrium 𝝀 for Γ.
Initialize 𝝀 with 𝜆𝑖 ( 𝑗) = 0 ∀𝑖 ∈ 𝑁 and ∀𝑗 ∈ 𝑀 and define 𝐿 = max𝑖∈𝑁 {𝐿𝑖 | 𝑖 is not a leaf player}.
for all leaf players 𝑖 do

Let player 𝑖 play the best response down strategy.

end
for 𝑙 = 𝐿, 𝐿 − 2, . . . , 1 do

for players 𝑖 with 𝐿𝑖 = 𝑙 that are not leaf players do
Let player 𝑖 play the best response down strategy.

end
end
return 𝝀

• Finally, if player 𝑖 has budget left, 𝑖 only contributes budget to the resource 𝑗 ∈ 𝑋𝑖 above 𝑖

(𝐿 𝑗 = 𝐿𝑖 − 1), if this is (potentially) ‘useful’, i.e., 𝜆𝑖 ( 𝑗) = min{𝑏 −∑
ℎ∈𝑁 𝜆ℎ ( 𝑗), 1−

∑
ℎ∈𝑁 𝜆ℎ ( 𝑗)}.

The algorithm initializes by computing the strategies of all the leaf players. Then, the algorithm

continues by computing the strategies of all the players of level 𝐿, where 𝐿 is the highest level of

players that contains at least one player that is not a leaf player. The algorithm continues with the

next level of players until the strategy of the root player is computed.

By construction, any profile 𝝀 computed by Tree-Sweep (Γ) has three useful properties: (1) every
resource in out (𝝀) is precisely activated, (2) if a player 𝑖 spends money on an inactive resource 𝑗 ,

then 𝑗 is above 𝑖 and (3) if a player 𝑖 that is not the root player has budget left, then the resource

above 𝑖 is active. More formally:

(1)

∑
𝑖∈𝑁 𝜆𝑖 ( 𝑗) = 1 for any 𝑗 ∈ out (𝝀);

(2) If 𝜆𝑖 ( 𝑗) > 0 and 𝑗 ∉ out (𝝀), then 𝐿 𝑗 = 𝐿𝑖 − 1 for any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 ;

(3) If 𝑏 −∑
ℎ∈𝑋𝑖

𝜆𝑖 (ℎ) > 0, then either 𝑖 is the root player or 𝑗 ∈ 𝑋𝑖 with 𝐿 𝑗 = 𝐿𝑖 − 1 is in out (𝝀).
Additionally, the profile 𝝀 computed by Tree-Sweep is a Nash equilibrium, which will turn out to

be useful when proving that 𝝀 is also a strong equilibrium.

Theorem 6.1. For every instance of a budgeting game with a tree structure, Tree-Sweep computes

a Nash equilibrium.

Proof. Let Γ be an instance of a budgeting gamewith a tree structure and let𝝀 = Tree-Sweep(Γ).
We show that no player 𝑖 ∈ 𝑁 can unilaterally deviate and strictly improve their utility. This trivially

holds for a player 𝑖 with 𝑋𝑖 ∩ out (𝝀) = ∅, as there is no resource 𝑗 ∈ 𝑋𝑖 that 𝑖 can activate by

setting 𝝀′
𝑖 ( 𝑗) = 𝑏. For players 𝑖 with 𝑋𝑖 ∩ out (𝝀) ≠ ∅, we proof that this holds by showing that

under 𝝀 player 𝑖 activates its relevant resources in order of lowest to highest contribution required.

This holds by construction for the root player 𝑖 . This also holds for players ℎ ∈ 𝑁 , ℎ ≠ 𝑖 , with the

resource above them active ( 𝑗 ∈ 𝑋ℎ , 𝐿 𝑗 = 𝐿ℎ − 1 and 𝑗 ∈ out (𝝀)). Consider a player ℎ ∈ 𝑁 , ℎ ≠ 𝑖 ,

with the resource above them inactive, i.e., 𝑗 ∈ 𝑋ℎ , 𝐿 𝑗 = 𝐿ℎ − 1 and 𝑗 ∉ out (𝝀). Note that ℎ not

necessarily activates its relevant resources in order of lowest to highest contribution required. Let

𝑘 = arg max𝑙∈𝑋ℎ∩out (𝝀) {𝜆ℎ (𝑙)}. It could be that for 𝜆′
ℎ
( 𝑗) such that

∑
𝑙∈𝑁 \{ℎ} 𝜆𝑙 ( 𝑗) + 𝜆′

ℎ
( 𝑗) = 1, it

holds that 𝜆′
ℎ
( 𝑗) < 𝜆ℎ (𝑘). Suppose that ℎ deviates and activates resource 𝑗 precisely with 𝜆′

ℎ
( 𝑗)

and retrieves its contribution to 𝑘 . Then as ℎ had no budget left under 𝝀 by (3), the budget that

ℎ has left is 𝜆ℎ (𝑘) − (𝜆′
ℎ
( 𝑗) − 𝜆ℎ ( 𝑗)), which is smaller than 𝜆ℎ (𝑘) as (𝜆′ℎ ( 𝑗) − 𝜆ℎ ( 𝑗)) > 0 because

𝑗 ∉ out (𝝀). Note that by the best response down strategy, ℎ cannot activate a relevant inactive

resource with this budget left, as this would contradict ℎ activating resource 𝑘 under 𝝀. Consider
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cohesive not cohesive

MWV Exists FIP MWV Exists FIP

Nash — — ✓ (Th. 3.1) ✓
Superset — ✓ (by def.) ✓ (by def.) Price. ✓ (by def.) ✓ (by def.)

𝛼-core EJR ✓ (Th. 5.1) ✓ (Th. 5.1) Core ? ✗ (Ex. 10)

strong eq. — ? ✗ (Ex. 9) — ? ✗ (Ex. 9)

Table 1. Related MWV concepts, existence and FIP (Finite Improvement Property) for the different equilibria
notions that we introduced in this paper. Note that the FIP for Nash equilibria holds for budgeting games in
which each player is restricted to only contribute to their relevant resources.

this 𝝀′
ℎ
(with 𝜆′

ℎ
(𝑘) = 0 and 𝜆′

ℎ
(𝑙) = 𝜆ℎ (𝑙) for 𝑙 ≠ 𝑗, 𝑘). Note that that the utility of ℎ is unchanged,

i.e., 𝑢ℎ (𝝀′
ℎ
,𝝀−ℎ) = 𝑢ℎ (𝝀), and ℎ now activates its relevant resources in order of lowest to highest

contribution required. Finally, note that we only reasoned about players 𝑖 contributing to relevant

resources (resources in 𝑋𝑖 ). However, we can prove that a Nash equilibrium always exists for

budgeting games in which each player is restricted to only contribute to their relevant resources,

and that this profile also constitutes a Nash equilibrium in the original game, but omit the proof

here. We therefore conclude that 𝝀 is a Nash equilibrium. □

Theorem 6.2. For every instance of a budgeting game with a tree structure, Tree-Sweep computes

a strong equilibrium.

So for an instance Γ = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩ of a budgeting game with a tree structure, Tree-Sweep

can be used to compute a strong equilibrium 𝝀 = Tree-Sweep(Γ). And by Theorem 4.4 and the

fact that any strong equilibrium is also in the 𝛼-core, it follows that out (𝝀) is in the core of the

associated MWV instance 𝐼Γ = ⟨𝑁,𝐴, 𝑘,𝑨⟩. Significantly, this proves non-emptiness of the core for

a restricted domain of MWV instances. Note that this also holds for instances Γ = ⟨𝑁,𝑀, 𝑘/𝑛,𝑿⟩ of
a budgeting game with a forest structure, i.e., 𝐺Γ

consists out of multiple trees, as Tree-Sweep can

be used for each tree in order to compute a strong equilibrium.

7 Conclusion
Our paper provides the first systematic game-theoretic treatment of fairness notions in multiwin-

ner voting. In particular, we characterize priceability, the core, EJR and MES, and find a type of

equilibrium that maps activated outcomes onto committees that satisfy EJR+. We have also shown

that, unlike cohesive deviations and 𝛼-core deviations, cohesive 𝛼-core deviations have the finite

improvement property, and thus immediately define new classes of voting rules. Finally, we have

shown how our game theoretic perspective can be used to find strong equilibria for a restricted

class of budgeting games. Table 1 offers a more detailed summary of our results.

The most pressing direction for future work arising from our paper is the study of the novel

class of voting rules resulting from cohesive 𝛼-core deviations. Another natural extension of our

framework would be to allow resources to have different activation thresholds, which could be used

to model participatory budgeting. Finally, it would be interesting to identify other graph structures

for which strong equilibria exist and that capture common properties of MWV instances.
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